WorldWideScience

Sample records for oxygen radicals electronic

  1. Migration of methyl and phenyl radicals, oxygen and sulphur atoms in certain diphenylthiophosphorane derivatives under electron impact

    International Nuclear Information System (INIS)

    Cauquis, G.; Divisia, B.; Ulrich, J.

    The fragmentation of various diphenylthiophosphoranes (Ph 2 P(S)R) subjected to electron impact gives rise to rearrangements dependent on the nature of the radical R. Migrations of phenyl or methyl radicals from phosphorus towards sulphur were thus observed for R=Ph, CH 3 , CH 2 Ph and NH 2 . When an electrophilic centre is formed, during a fragmentation, on a carbon in the α-position of the diphenylthiophosphoranyl radical, migrations of sulphur atoms and phenyl radicals take place from the phosphorus towards the carbon. This is found to be the case with certain fragmentations of diazo 5 and 6 compounds [fr

  2. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals

    Science.gov (United States)

    Yuan, Songhu; Liu, Xixiang; Liao, Wenjuan; Zhang, Peng; Wang, Xiaoming; Tong, Man

    2018-02-01

    Production of hydroxyl radicals (radOH) has been recently revealed upon oxygenation of sediments in redox-dynamic subsurface environments. In particular, Fe(II)-bearing clay minerals are the major sediment components contributing to radOH production upon oxygenation, and the produced radOH can oxidize contaminants and inactivate bacteria. Whereas, the mechanisms of radOH production from oxygenation of Fe(II)-bearing clay minerals remain elusive. The objectives of this study were to identify the structural variation of Fe(II) entities during the oxidation of Fe(II)-bearing clay minerals by O2, and to unravel the mechanisms of electron transfer within the mineral structure and from mineral to O2 for radOH production. Nontronite (NAu-2, 23% Fe) which was chemically reduced to 54.5% Fe(II) in total Fe was used as a model Fe(II)-bearing clay mineral. Production of radOH and oxidation of Fe(II) were measured during the oxidation of reduced NAu-2 by O2. A wide spectrum of spectroscopic techniques, including Fourier transform infrared spectroscopy (FTIR), Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectra, and X-ray photoelectron spectroscopy (XPS), were employed to explore the structural variation of Fe(II) entities in NAu-2 and the electron transfer within NAu-2 and from NAu-2 to O2. For 180 min oxidation of 1 g/L reduced NAu-2, a biphasic radOH production was observed, being quick within the initial 15 min and slow afterwards. Production of radOH correlates well with oxidation of Fe(II) in the reduced NAu-2. Within the initial 15 min, trioctahedral Fe(II)-Fe(II)-Fe(II) entities and edge Fe(II) in the reduced NAu-2 were preferentially and quickly oxidized, and electrons from the interior Fe(II)-Fe(II)-Fe(II) entities were most likely ejected from the basal siloxane plane to O2. Meanwhile, trioctahedral Fe(II)-Fe(II)-Fe(II) entities were mainly transformed to dioctahedral Fe(II)-Fe(II) entities. When the time of oxygenation was longer than 15 min

  3. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)

    1986-01-01

    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  4. Improving the Characteristics of Sn-doped In{sub 2}O{sub 2} Grown at Room Temperature with Oxygen Radical-Assisted Electron Beam Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Min-Suk [Korea Institute of Industrial Technology, Gwangju (Korea, Republic of); Seo, Inseok [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-07-15

    Sn-doped In{sub 2}O{sub 3} (Indium tin oxide, ITO) is widely utilized in numerous industrial applications due to its high electrical conductivity and high optical transmittance in the visible region. High quality ITO thin-films have been grown at room temperature by oxygen radical assisted e-beam evaporation without any post annealing or plasma treatment. The introduction of oxygen radicals during e-beam growth greatly improved the surface morphology and structural properties of the ITO films. The obtained ITO film exhibits higher carrier mobility of 43.2 cm{sup 2}/V·s and larger optical transmittance of 84.6%, resulting in a higher figure of merit of ∼ 2.8 × 10{sup −2} Ω{sup −1}, which are quite comparable to the ITO film deposited by conventional e-beam evaporation. These results show that ITO films grown by oxygen radical assisted e-beam evaporation at room temperature with high optical transmittance and high electron conductivity have a great potential for organic optoelectronic devices.

  5. Improving the characteristics of Sn-doped In2O2 grown at room temperature with oxygen radical-assisted electron beam deposition

    Science.gov (United States)

    Oh, Min-Suk; Seo, Inseok

    2017-07-01

    Sn-doped In2O3 (Indium tin oxide, ITO) is widely utilized in numerous industrial applications due to its high electrical conductivity and high optical transmittance in the visible region. High quality ITO thin-films have been grown at room temperature by oxygen radical assisted e-beam evaporation without any post annealing or plasma treatment. The introduction of oxygen radicals during e-beam growth greatly improved the surface morphology and structural properties of the ITO films. The obtained ITO film exhibits higher carrier mobility of 43.2 cm2/V·s and larger optical transmittance of 84.6%, resulting in a higher figure of merit of ˜ 2.8 × 10-2 Ω-1, which are quite comparable to the ITO film deposited by conventional e-beam evaporation. These results show that ITO films grown by oxygen radical assisted e-beam evaporation at room temperature with high optical transmittance and high electron conductivity have a great potential for organic optoelectronic devices.

  6. One electron transfer redox potentials of free radicals. I. The oxygen-superoxide system. Progress report, September 1, 1975--July 1, 1976

    International Nuclear Information System (INIS)

    Ilan, Y.A.; Czapski, G.; Meisel, D.

    1976-01-01

    The method of determination of Redox potentials of radicals, using the pulse radiolysis technique, is outlined. The method is based on the determination of equilibria constants of electron transfer reactions between the radicals and appropriate acceptors. The limitations of this technique are discussed. The redox potentials of several quinones--semi-quinones are calculated, as well as the standard redox potential of the peroxy radical. E 0 /sub O 2 /O 2 /sup -/ = -0.33 V and the redox oxidation properties of the peroxy radical in various systems and pH are discussed. The value determined for the redox potentials of O 2 /O 2 - is higher by more than 0.2 volts than earlier estimates, which has important implications on the possible role of O 2 - in biological processes of O 2 fixation

  7. Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure

    International Nuclear Information System (INIS)

    Nishi, J.; Ogura, R.; Sugiyama, M.; Hidaka, T.; Kohno, M.

    1991-01-01

    To elucidate the radical mechanism of lipid peroxidation induced by ultraviolet light (UV) irradiation, an electron spin resonance (ESR) study was made on epidermal homogenate prepared from albino rat skin. The exposure of the homogenate to UV light resulted in an increase in lipid peroxide content, which was proportional to the time of UV exposure. Using ESR spin trapping (dimethyl-1-pyrroline-N-oxide, DMPO), the DMPO spin adduct spectrum of lipid radicals (L.) was measured following UV exposure (DMPO-L.:aN = 15.5 G, aH = 22.7 G), as was the spectrum of DMPO-hydroxyl radical (DMPO-OH, aN = aH = 15.5 G). In the presence of superoxide dismutase, the DMPO spin adduct spectrum of lipid radicals was found to be reduced remarkably. Therefore, it was shown that the generation of the lipid radicals partially involves superoxide anion radicals, in addition to hydroxyl radicals. In the ESR free-radical experiment, an ESR signal appeared at g = 2.0064 when the ESR tube filled with homogenate was exposed to UV light at -150 degrees C. The temperature-dependent change in the ESR free radical signal of homogenate exposed to UV light was observed at temperatures varying from -150 degrees C to room temperature. By using degassed samples, it was confirmed that oxygen is involved in the formation of the lipid peroxide radicals (LOO.) from the lipid radicals (L.)

  8. Free radicals, oxygen and radiosensitizing drugs: a very brief introduction

    International Nuclear Information System (INIS)

    Willson, R.

    1981-01-01

    A review is presented of the historical aspects of the search for radiation sensitizing drugs. Metronidazole, Flagyl and misonidazole are undergoing clincial trials as the result of basic free radical and cellular research. Studies at the molecular, biochemical and cellular levels are described. From the information obtained it now appears that several processes may be involved in sensitization: interference with charge recombination due to a sensitizer having a high electron affinity; an increase in the yield of oxidizing hydroxyl radicals by electron sequestration; interference with radical combination reactions due to a sensitizer having a high one electron oxidation potential; oxidation or organic radicals so fixing them; formation of products which are toxic; and changes in the biochemistry of the cell. 106 references, 4 figures

  9. Oxygen radical microscopy in living plant tissues

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Møller, Ian Max; Schulz, Alexander

    the ROS production stems from the mitochondria and peroxisomes as is seen in animal cells. At the Bioimaging Center at KVL we employ different techniques to induce, detect and monitor ROS production, distribution and in and among living plant cells. Both confocal laser scanning microscopy and 2-photon......Reactive oxygen species (ROS) play a crucial role in a wide variety of processes. Initiation of many different cellular pathways, crosstalk between cells, developmental signalling in planta, programmed cell death and hypersensitive response in connection with plant-pathogen interactions are among...... the different roles ROS play. On the other hand ROS also cause damage to cellular components at sub-lethal to lethal levels. In photosynthesizing plants the major production of ROS origin from the chloroplast. ROS is a by product from the Photosystem I/II handling of light energy. In nonphotosynthesizing plants...

  10. Fluorophore-based sensor for oxygen radicals in processing plasmas

    International Nuclear Information System (INIS)

    Choudhury, Faraz A.; Shohet, J. Leon; Sabat, Grzegorz; Sussman, Michael R.; Nishi, Yoshio

    2015-01-01

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye

  11. Fluorophore-based sensor for oxygen radicals in processing plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Sabat, Grzegorz; Sussman, Michael R. [Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  12. Electronic spectrum of 9-methylanthracenium radical cation

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Gerard D.; Schmidt, Timothy W., E-mail: timothy.schmidt@unsw.edu.au [School of Chemistry, UNSW Sydney, New South Wales 2052 (Australia); Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)

    2016-04-21

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm{sup −1} to 44 500 cm{sup −1}. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D{sub 1}←D{sub 0} transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH{sub 2} or CH{sub 3}. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  13. Radical fragmentation of six-membered oxygen-containing heterocycles

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kosobutskij, V.S.; Shadyro, O.I.

    1982-01-01

    Using chromatography, the composition and radiation-chemical yields of final products of desctruction of six-member saturated oxygen-containing heterocycles (the effect of #betta#-radiation on aqueous solutions of tetrahydropyran, 1,3-dioxane, 2,2 dimethyl-1,3 dioxane, 1,4-dioxane, paraldehyde) have been determined. It is established that the identified products are formed at the expense of decomposition of primary radicals of the initial compounds and point to the realization of the following fragmentation ways: 1) #betta#-scattering, 2) #betta#-scattering with a subsequent 1,5 migration of an H atom, 3) simultaneous rupture of two vicinal, relative to the radical center, bonds. A formation mechanism of the substances desctruction products is suggested. Material balance of the product yields of 1,3-dioxane radical synchronous decomposition is presented

  14. β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G.

    1981-01-01

    The synthesis of a number of new aliphatic fluorinated β- diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed [ru

  15. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1981-10-01

    The synthesis of a number of new aliphatic fluorinated ..beta..-diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed.

  16. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Tresp, H; Hammer, M U; Winter, J; Reuter, S; Weltmann, K-D

    2013-01-01

    In this paper the qualitative and quantitative detection of oxygen radicals in liquids after plasma treatment with an atmospheric pressure argon plasma jet by electron paramagnetic resonance spectroscopy is investigated. Absolute values for · OH and O 2 ·- radical concentration and their net production rate in plasma-treated liquids are determined without the use of additional scavenging chemicals such as superoxide dismutase (SOD) or mannitol (D-MAN). The main oxygen-centred radical generation in PBS was found to originate from the superoxide radical. It is shown that hidden parameters such as the manufacturer of chemical components could have a big influence on the comparability and reproducibility of the results. Finally, the effect of a shielding gas device for the investigated plasma jet with a shielding gas composition of varying oxygen-to-nitrogen ratio on radical generation after plasma treatment of phosphate-buffered saline solution was investigated. (paper)

  17. Electron affinities of atoms, molecules, and radicals

    International Nuclear Information System (INIS)

    Christodoulides, A.A.; McCorkle, D.L.; Christophorou, L.G.

    1982-01-01

    We review briefly but comprehensively the theoretical, semiempirical and experimental methods employed to determine electron affinities (EAs) of atoms, molecules and radicals, and summarize the EA data obtained by these methods. The detailed processes underlying the principles of the experimental methods are discussed very briefly. It is, nonetheless, instructive to recapitulate the definition of EA and those of the related quantities, namely, the vertical detachment energy, VDE, and the vertical attachment energy, VAE. The EA of an atom is defined as the difference in total energy between the ground state of the neutral atom (plus the electron at rest at infinity) and its negative ion. The EA of a molecule is defined as the difference in energy between the neutral molecule plus an electron at rest at infinity and the molecular negative ion when both, the neutral molecules and the negative ion, are in their ground electronic, vibrational and rotational states. The VDE is defined as the minimum energy required to eject the electron from the negative ion (in its ground electronic and nuclear state) without changing the internuclear separation; since the vertical transition may leave the neutral molecule in an excited vibrational/rotational state, the VDE, although the same as the EA for atoms is, in general, different (larger than), from the EA for molecules. Similarly, the VAE is defined as the difference in energy between the neutral molecule in its ground electronic, vibrational and rotational states plus an electron at rest at infinity and the molecular negative ion formed by addition of an electron to the neutral molecule without allowing a change in the intermolecular separation of the constituent nuclei; it is a quantity appropriate to those cases where the lowest negative ion state lies above the ground states of the neutral species and is less or equal to EA

  18. Electron scattering by molecular oxygen

    International Nuclear Information System (INIS)

    Duddy, P.E.

    1999-03-01

    Collisions of electrons with molecules is one of the fundamental processes which occur both in atomic and molecular physics and also in chemistry. These collisions are vital in determining the energy balance and transport properties of electrons in gases and plasmas at low temperatures. There are many important applications for the basic understanding of these collision processes. For example, the study of planetary atmospheres and the interstellar medium involves electron collisions with both molecules and molecular ions. In particular, two of the major cooling mechanisms of electrons in the Earth's ionosphere are (i) the fine structure changing transitions of oxygen atoms by electron impact and (ii) the resonant electron-impact vibrational excitation of N 2 . Other applications include magnetohydrodynamic power generation and laser physics. A molecule, by definition, will contain more than one nucleus and consequently the effect of nuclear motion in the molecule leads to many extra processes in electron scattering by molecules which cannot occur in electron-atom scattering. As for atoms, both elastic and inelastic scattering occur, but in the case of inelastic electron scattering by molecules, the target molecule is excited to a different state by the process. The excitation may be one, or some combination, of rotational, vibrational and electronic transitions. Other reactions which may occur include dissociation of the molecule into its constituent atoms or ionisation. Another difficulty arises when considering the interactions between the electron and the molecule, This interaction, which considerably complicates the calculation, is non-spherical and various methods have been developed over the years to represent this interaction. This thesis considers electron scattering by molecular oxygen in the low energy range i.e. 0-15eV. These collisions are of considerable interest in atmospheric physics and chemistry where the electron impact excitation of O 2 has

  19. Synoviocytes, not chondrocytes, release free radicals after cycles of anoxia/re-oxygenation

    International Nuclear Information System (INIS)

    Schneider, Nicole; Mouithys-Mickalad, Ange L.; Lejeune, Jean-Philippe; Deby-Dupont, Ginette P.; Hoebeke, Maryse; Serteyn, Didier A.

    2005-01-01

    By oxymetry and electron paramagnetic resonance (EPR), we investigated the effects of repeated anoxia/re-oxygenation (A/R) periods on the respiration and production of free radicals by synoviocytes (rabbit HIG-82 cell line and primary equine synoviocytes) and equine articular chondrocytes. Three periods of 20 min anoxia followed by re-oxygenation were applied to 10 7 cells; O 2 consumption was measured before anoxia and after each re-oxygenation. After the last A/R, cellular free radical formation was investigated by EPR spectroscopy with spin trapping technique (n = 3 for each cell line). Both types of synoviocytes showed a high O 2 consumption, which was slowered after anoxia. By EPR with the spin trap POBN, we proved a free radical formation. Results were similar for equine and rabbit synoviocytes. For chondrocytes, we observed a low O 2 consumption, unchanged by anoxia, and no free radical production. These observations suggest an oxidant activity of synoviocytes, potentially important for the onset of osteoarthritis

  20. Enhancement by platelets of oxygen radical responses of human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-03-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O-/sub 2/ and H/sub 2/O/sub 2/. This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O-/sub 2/ generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O-/sub 2/ responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils.

  1. Enhancement by platelets of oxygen radical responses of human neutrophils

    International Nuclear Information System (INIS)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-01-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O- 2 and H 2 O 2 . This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O- 2 generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O- 2 responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils

  2. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  3. Oxygen free radical altered immunoglobin G in the etiopathogenesis of rheumatoid arthritis

    NARCIS (Netherlands)

    H.A. Kleinveld (Henk)

    1990-01-01

    textabstractThe particular association of RA with anti-lgG antibodies suggests an important role of lgG in the etiology and pathology of RA. One of the suggested mechanisms by which lgG could be altered is exposure to oxygen free radicals. During inflammation large amounts of oxygen free radicals

  4. Electron spin resonance study of radicals in irradiated polyethylene

    International Nuclear Information System (INIS)

    Fujimura, Takashi

    1979-02-01

    In order to elucidate radiation effect in polyethylene, the nature and behavior of radicals produced in polyethylene and the model compound of polyethylene irradiated at 77 0 K were studied by using electron spin resonance. The structure of radical pairs, which are composed of two radicals produced very closely each other, was investigated in drawn polyethylene and the single crystal of n-eicosane. The radical pairs of intrachain type and interchain type were found in polyethylene and n-eicosane respectively. It was suggested that these two types of radical pairs are the precursors of double bonds and crosslinks respectively. The thermal decay reactions of radicals themselves produced in irradiated polyethylene were investigated. It was made clear that the short range distances between two radicals play an important role in the decay reaction of alkyl radicals at low temperatures. The trapping regions of radicals were studied and it was clarified that allyl radicals, which are produced by the reaction of alkyl radicals with double bonds, are trapped both in the crystalline and non-crystalline regions. (author)

  5. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  6. DPPH and oxygen free radicals as pro-oxidant of biomolecules.

    Science.gov (United States)

    Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor

    2008-03-01

    Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.

  7. With medium-chain triglycerides, higher and faster oxygen radical production by stimulated polymorphonuclear leukocytes occurs.

    Science.gov (United States)

    Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B

    2000-01-01

    Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.

  8. Characterization of Neutral Radicals from a Dissociative Electron Attachment Process

    Science.gov (United States)

    Li, Zhou; Milosavljević, Aleksandar R.; Carmichael, Ian; Ptasinska, Sylwia

    2017-08-01

    Despite decades of gas-phase studies on dissociative electron attachment (DEA) to various molecules, as yet there has been no direct detection and characterization of the neutral radical species produced by this process. In this study, we performed stepwise electron spectroscopy to directly measure and characterize the neutrals produced upon zero-electron-energy DEA to the model molecule, carbon tetrachloride (CCl4 ). We observed the direct yield of the trichloromethyl radical (CCl3. ) formed by DEA to CCl4 and measured the appearance energies of all the other neutral species. By combining these experimental findings with high-level quantum chemical calculations, we performed a complete analysis of both the DEA to CCl4 and the subsequent electron-impact ionization of CCl3. . This work paves the way toward a complete experimental characterization of DEA processes, which will lead to a better understanding of the low-energy electron-induced formation of radical species.

  9. Antioxidant capacity and oxygen radical diseases in the preterm newborn.

    Science.gov (United States)

    Rogers, S; Witz, G; Anwar, M; Hiatt, M; Hegyi, T

    2000-06-01

    Bronchopulmonary dysplasia, intraventricular hemorrhage, necrotizing enterocolitis, and retinopathy of prematurity may be different manifestations of oxygen radical diseases of prematurity (ORDP). To test the hypothesis that the antioxidant capacity of cord blood serum will predict risk of ORDP. An inception cohort of premature neonates was followed up from birth until discharge or death to determine if outcome was related to cord blood serum antioxidant capacity, as determined by a manual assay measuring the relative inhibition of oxidation of 2,2'-azino-di-(3-ethylbenzthiazoline)-6 sulfonic acid (ABTS). Possible correlations between antioxidant capacity and various perinatal factors were also tested. Level 3 newborn intensive care unit. All inborn very low-birth-weight neonates from whom cord blood was available and for whom maternal consent was obtained were included. Newborns who died in the first week of life or who had major congenital malformations were excluded. A convenience sample of newborns weighing more than 1500 g was used to perfect assay and explore confounders. Significant ORDP was defined as the presence of intraventricular hemorrhage greater than grade 2, retinopathy of prematurity greater than stage 1, bronchopulmonary dysplasia at the postconceptional age of 36 weeks, or necrotizing enterocolitis with the hypothesis that neonates with ORDP will have lower antioxidant capacity in cord blood serum. Serum antioxidant capacity at birth correlated with gestational age for the entire sample of 41 neonates and for the 26 neonates born before 32 weeks' gestation. After correction for gestational age, cord serum antioxidant capacity did not correlate with maternal smoking, preeclampsia, chorioamnionitis, cord pH Apgar scores, or any of the ORDP studied. Cord serum antioxidant capacity correlates with gestational age but does not predict ORDP risk.

  10. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review

    Science.gov (United States)

    Truscott, T. George

    2018-01-01

    We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252

  11. CRC handbook of methods for oxygen radical research

    National Research Council Canada - National Science Library

    Greenwald, Robert A

    1985-01-01

    .... This volume is divided into five sections. Section I deals with preparative methodology for isolation and purification of the components of the oxy radical experimental systems used most frequently, including all the three forms of SOD...

  12. Production of perhydroxy radical (HO2) and oxygen in the radiolysis of aqueous solution and the LET effects

    International Nuclear Information System (INIS)

    Imamura, Masashi

    1987-01-01

    This article aims to review the results concerning the production of perhydroxy radical (HO 2 ) and oxygen from irradiated aqueous solutions and the LET effects on these products, beginning with a brief introduction to the elementary primary processes in radiolysis of aqueous solution. Oxygen, if produced in the radiolysis of aqueous solution, may be considered responsible for the decreased oxygen enhancement ratio (OER) in biological systems exposed to high LET radiation. A Harwell's group has determined oxygen generated from aqueous ferrous solutions irradiated with heavy ions and concluded that the oxygen is a precursor of perhydroxy radicals. The LET-dependent yields for perhydroxy radical have been determined by LaVerne and Schuler; the analysis of their results sheds light into the reactions taking place in high-LET track cores. In conjunction with these results, the possible contributions to the LET effects are pointed out and discussed of the energetic secondary electrons ejected from the track core by knock-on collision with heavy ions and of the variation in the track core size with energy of the heavy particles. (author)

  13. The oxygen-centered radicals scavenging activity of sulfasalazine and its metabolites. A direct protection of the bowel.

    Science.gov (United States)

    Prónai, L; Yukinobu, I; Láng, I; Fehér, J

    1992-01-01

    Oxygen-centered radicals, such as superoxide (O2-) and hydroxyl radicals (.OH) generated by phagocytes have been suggested to be involved in the pathogenesis of chronic inflammations of the bowel, such as Crohn's disease and colitis ulcerosa. Recently, sulfasalazine (SASP) and its metabolites have been reported to exert their effects as a direct scavenger of oxygen-centered radicals in the bowel. To scavenge oxygen-centered radicals in vivo, however, SASP and its metabolites have to react with O2- and/or .OH in vitro very rapidly, furthermore they have to reach an appropriate (possible millimolar) concentration range at the site of inflammation. To test this possibility, we investigated the direct O2- and .OH scavenging activity of SASP and its metabolites using the specific electron paramagnetic resonance/spin trapping method, and we compared the 50% inhibition rates of SASP and its metabolites with their known concentrations in the bowel and in the human plasma. It was found that SASP and its metabolites, such as 5-amino-salicylic acid (5-ASA), and acetyl-5-amino-salicylic acid (AC-5-ASA), but not sulfapyridine (SP) and acetyl-sulfapyridine (Ac-SP) have a direct O2- and .OH scavenging activity in vitro systems. Among the compounds, SASP and 5-ASA can reach a concentration which is appropriate to scavenge oxygen-centered radicals in the bowel but not in the human plasma. It was concluded that the in vivo antiinflammatory effects of SASP and its metabolites are, at least partly, due to the direct oxygen-centered scavenging activity of these drugs.

  14. Calculus of the radical integrals in electrons

    International Nuclear Information System (INIS)

    Soto Vargas, C.W.

    1996-01-01

    The radial integrals which arise from the distorted wave treatment of photon emission processes in electron and positron scattering, involve products of the electron's (or positron's) in going and outgoing wave functions and the radial part of the electromagnetic Green's function. They can be performed analytically for point Dirac-Coulomb wave functions, but are difficult to evaluate because they involve slowly converging doubly infinite series. We present a discussion and review of the formulation and methods employed to calculate these basic integral at a given value of the energy transferred. (author) [es

  15. Progress modelling of aqueous electrons and hydroxyl radicals in RAIM code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A Yeong; Kim, Han-Chul; Lee, Jongseong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, the RAIM code was revised minutely with regards to aqueous electrons and hydroxyl radicals, and simulated the P10T2 test. The recent study indicated that the RAIM had the potential for improvement of simulating the iodine behavior influenced by water radiolysis products such as aqueous electrons and hydroxyl radicals. In the existing RAIM modelling, it was considered that aqueous electrons only interacted with oxygen as a consumption reaction, but the reaction with hydrogen peroxide also could be major contributor to the iodine behavior as well as the consumption reaction of aqueous electrons. In case of hydroxyl radicals, RAIM took no notice of the pH impact. In other words, it dealt with the consumption reaction constants but not as a variable of pH. In this communication, the procedures to develop the model related to aqueous electrons and hydroxyl radicals in RAIM will be addressed. And the upgraded RAIM (RAIM-1, 2, 3) codes were applied to OECD-BIP P10T2 test which showed the effect of pH on the iodine behavior and compared with the existing RAIM1.8.3 code. Comparing with the existing RAIM, the improvement reduced the difference about 10%. However, the absolute difference values that is about one order at pH 10 could not be reduced by this approach.

  16. Excimer laser corneal surgery and free oxygen radicals.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Akata, F; Hasanreisoğlu, B; Türközkan, N

    1996-01-01

    Corneal photoablation with 193 nm argon fluoride excimer laser is a new technique for the treatment of refractive errors and for removing corneal opacities and irregularities. Ultraviolet radiation and thermal injury induce free radical formation in the tissues. The aim of this study was to confirm the production of free radicals by excimer laser photoablation in rabbits. The thermal changes of the posterior corneal surface were recorded during excimer laser photoablation. The lipid peroxide (LPO) levels and superoxide dismutase (SOD) activities of aqueous humour were measured after excimer laser keratectomy. The aqueous LPO levels were not changed after excimer laser ablation, but both the thermal increase in the cornea during the photoablation and the decreased aqueous SOD activities suggest that free radicals are formed in the cornea during excimer laser keratectomy, and that they may be responsible for some of the complications of excimer laser corneal surgery.

  17. Effects of oxygen radical scavengers on the inactivation of SS phi X174 DNA by the semi-quinone free radical of the antitumor agent etoposide

    NARCIS (Netherlands)

    van Maanen, M.J.; Mans, D.R.A.; Lafleur, M.V.M.; Van Schaik, M A; de Vries, J; Vermeulen, N P; Retèl, J.; Lankelma, J

    1990-01-01

    We have studied the effects of oxygen radical scavengers on the inactivation of ss phi X174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH greater than or equal to 7.4. A semi-quinone free radical of

  18. Electron transfer oxidation of DNA radicals by paranitroacetophenone

    Energy Technology Data Exchange (ETDEWEB)

    Whillans, D W; Adams, G E [Mount Vernon Hospital, Northwood (UK)

    1975-12-01

    The reaction of a typical electron-affinic sensitizer, paranitroacetophenone (PNAP) with the model compounds thymine, thymidine, thymidylic acid, deoxyribose and single and double-stranded DNA has been investigated by pulse radiolysis. Radicals formed by one-electron reduction of the bases and of DNA reacted rapidly and efficiently with PNAP by electron transfer. A small yield of transfer (< 10 per cent) was also observed arising from oxidation of the radicals formed by the small proportion of OH which reacted at the sugar moieties in DNA. In contrast, electron transfer oxidation by PNAP of radicals formed by the addition of OH to the base moieties, e.g. thymine, was not an efficient process. Further, addition of the sensitizer to the thymine OH-adduct proceeded at a rate that was too low to measure the pulse radiolysis. We conclude that, since the major sites of OH reaction by DNA are the heterocyclic bases (> 80 per cent), oxidation of the resultant radicals is unlikely to be a major step in the mechanism of sensitization by this typical hypoxic-cell sensitizer.

  19. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study.

    Science.gov (United States)

    Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey

    2018-01-01

    Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.

  20. Role of oxygen free radicals in the induction of sister chromatid exchanges by cigarette smoke

    International Nuclear Information System (INIS)

    Lee, C.K.; Brown, B.G.; Rice, W.Y. Jr.; Doolittle, D.J.

    1989-01-01

    Cigarette smoke has been reported to contain free radicals and free radical generators in both the gas and particulate phases. Studies in our laboratory have shown that both cigarette smoke condensate (CSC) and smoke bubbled through phosphate buffered saline solution (smoke-PBS) increased sister chromatid exchanges (SCE) in Chinese hamster ovary cells in a dose-dependent manner. Since oxygen free radicals have been shown to cause SCEs and other chromosomal damage, we investigated the role of these radicals in the induction of SCEs by CSC and smoke-PBS. Addition of the antioxidant enzymes catalase and superoxide dismutase or the oxygen-radical scavenger ascorbic acid failed to reduce the SCE frequency in the presence of either CSC or smoke-PBS. Additional studies indicated that the quantity of hydrogen peroxide produced in CSC or smoke-PBS is too small to account for the observed SCE induction. It appears, therefore, that SCE induction by CSC or smoke-PBS does not involve the participation of oxygen free radicals

  1. The scavenger activities of tea polyphenol and quercetin against oxygen radicals

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiecheng; Dong Jirong; Wang Wenfeng; Lin nianyun

    1992-01-01

    Studies of free radical biology and medicine have shown that carcinogenesis, vascular diseases of heart and brain, radiation injuries, ageing etc are strictly correlated with free radical injury of tissues. Thus, pharmacologists and biologists are focusing attention on searching for scavengers, especially naturally occurring antioxidant of oxidizing free radicals. Previous studies have indicated that phenolic antioxidants have efficient scavenger activities. Utilizing following methods including chemical luminescence, ESR spectroscopy and pulse radiolysis techniques the scavenger activities of tea polyphenols and quercetin against active species of oxygen have been studied

  2. Radical intermediates involved in the bleaching of the carotenoid crocin. Hydroxyl radicals, superoxide anions and hydrated electrons

    International Nuclear Information System (INIS)

    Bors, W.; Saran, M.; Michel, C.

    1982-01-01

    The participation of the primary radicals in the bleaching of aqueous solutions of the carotenoid crocin by ionizing radiation was investigated, employing both X-radiolysis and pulse radiolysis. The pulse-radiolytic data demonstrated a very rapid diffusion-controlled attack by both hydroxyl radicals (radicalsOH) and hydrated electrons (e - sub(aq)), while superoxide anions (O 2 - ) did not react at all. The site of the initial reaction of these radicals was not limited to the polyene chromophore. Slower secondary reactions involving crocin alkyl or peroxy radicals contribute mainly to the overall bleaching, in particular during steady-state irradiation. (author)

  3. Selectivity of alkyl radical formation from branched alkanes studied by electron spin resonance and electron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Tsuneki, Ichikawa; Hiroshi, Yoshida

    1992-01-01

    Alkyl radicals generated from branched alkanes by γ radiation are being measuring by electron spin resonance and electron spin echo spectroscopy. This research is being conducted to determine the mechanism of selective alkyl radical formation in low-temperature solids

  4. Resonances in Electron Impact on Atomic Oxygen

    International Nuclear Information System (INIS)

    Yang, Wang; Ya-Jun, Zhou; Li-Guang, Jiao; Ratnavelu, Kuru

    2008-01-01

    The momentum-space coupled-channels-optical (CCO) method is used to study the resonances in electron-oxygen collision in the energy region of 9–12eV. Present results have shown agreement with the available experimental and theoretical results, and new positions of resonances are found by the comparison of total cross sections. (fundamental areas of phenomenology (including applications))

  5. Electronic structure of Co islands grown on the {radical}3 x {radical}3-Ag/Ge(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiao-Lan; Chou, Chi-Hao; Lin, Chun-Liang; Tomaszewska, Agnieszka; Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw

    2011-09-30

    By means of room temperature scanning tunneling spectroscopy (RT STS), we have studied the electronic structure of two different Ag/Ge(111) phases as well as Co islands grown on the {radical}3 x {radical}3-Ag/Ge (111) forming either {radical}13 x {radical}13 or 2 x 2 patterns. The spectrum obtained from 4 x 4-Ag/Ge(111) structure shows the existence of a shoulder at 0.7 V which is also present in the electronic structure of the Ge(111)-c2 x 8 and indicates donation of Ge electrons to electronic states of the Ag-driven phase. However, this fact is not supported by the electronic spectrum taken from the {radical}3 x {radical}3-Ag/Ge (111). The complexity of the Co-{radical}13 x {radical}13 islands bonding with the substrate is mirrored by a large number of peaks in their electronic spectra. The spectra obtained from the Co-2 x 2 islands which had grown on the step differ from those taken from Co-2 x 2 islands located along the edge of the terrace by a number of peaks at negative sample bias. This discrepancy is elucidated in terms of dissimilarities of Co-substrate interaction accompanying Co islands growth on different areas of the stepped surface.

  6. Fate of free radicals generated during one-electron reductions of 4-alkyl-1,4-peroxyquinols by cytochrome P-450

    International Nuclear Information System (INIS)

    Yumibe, N.P.; Thompson, J.A.

    1988-01-01

    Free radicals resulting from the one-electron reduction and subsequent homolytic cleavage of oxygen-oxygen bonds by heme proteins are likely to be responsible for some aspects of the toxicity of organic hydroperoxides. In the present work, effects of the 4-alkyl substituent of 2,6-di-tert-butyl-4-alkyl-4-hydroperoxycytohexa-2,5-dienones on radical production were investigated with microsomal cytochrome P-450 from rat liver. Quinoxy radicals from homolysis of the peroxyquinols underwent β-scission to produce a quinone and an alkyl radical, and this process occurred with increasing frequency as the stability of the alkyl radical increased. The fate of benzyl and 2-phenylethyl radicals generated from the appropriately substituted peroxyquinols was investigated also. The former was converted to benzyl alcohol, benzaldehyde, and toluene and the latter to 2-phenylethanol, phenylacetaldehyde, ethylbenzene, styrene, and benzaldehyde. Oxygen-18 labeling studies demonstrate that 80-85% of the benzyl alcohol incorporated oxygen from the hydroperoxide and the balance from molecular oxygen. This indicates that the predominant reaction pathway involved recombination between the benzyl radical and the iron-bound hydroxyl radical of the P-450 intermediate complex. By contrast, about 50% of 2-phenylethanol from the 2-phenylethyl radical incorporated oxygen from water and the balance from O 2 . Two alternative mechanisms are proposed to explain the formation of 2-phenylethanol that contained oxygen from water and the concurrent formation of styrene: (a) oxygen exchange of the P-450 intermediate with water, followed by hydrogen abstraction and radical recombination reactions with the P-450 complex, or (b) oxidation of the radical to the 2-phenylethyl cation followed by proton elimination and hydration

  7. Gastric injury induced by hemorrhage, local ischemia, and oxygen radical generation

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Perry, M.A.

    1987-01-01

    Gastric mucosal injury caused by local intra-arterial generation of oxygen-derived free radicals was compared with gastric injury caused by 30 min of hemorrhage-induced ischemia or local ischemia. The index of injury was the loss of 51 Cr-labeled red cells across the gastric mucosa. Generation of oxygen radicals in the celiac artery caused a rapid increase in mucosal blood loss during the period of radical generation, and this loss was maintained after radical production ceased. Local ischemia produced similar mucosal injury; however, this occurred after reperfusion of the stomach and not during the ischemic episode. Hemorrhage-induced ischemia produced a threefold greater mucosal blood loss than local ischemia. The results of this study indicate that (1) oxygen radicals generated enzymatically in the blood supply to the stomach cause mucosal bleeding of similar magnitude to that observed after local ischemia and (2) that gastric ischemia induced by systemic hypotension produces more severe gastric injury than the same level of local hypotension

  8. Antioxidant activity of the giant jellyfish Nemopilema nomurai measured by the oxygen radical absorbance capacity and hydroxyl radical averting capacity methods.

    Science.gov (United States)

    Harada, Kazuki; Maeda, Toshimichi; Hasegawa, Yoshiro; Tokunaga, Takushi; Ogawa, Shinya; Fukuda, Kyoko; Nagatsuka, Norie; Nagao, Keiko; Ueno, Shunshiro

    2011-01-01

    The giant jellyfish Nemopilema nomurai (reaching sizes of up to 2 m diameter and 150 kg), which forms dense blooms, has caused extensive damage to fisheries by overloading trawl nets, while its toxic nematocysts cause dermatological symptoms. Giant jellyfish are currently discarded on the grounds of pest control. However, the giant jellyfish is considered to be edible and is part of Chinese cuisine. Therefore, we investigated whether any benefits for human health may be derived from consumption of the jellyfish in order to formulate medicated diets. Antioxidant activity of Nemopilema nomurai was measured using the oxygen radical absorbance capacity (ORAC) and hydroxyl radical averting capacity (HORAC) methods. Based on the results, the ORAC value of the giant jellyfish freeze-dried sample was 541 µmol trolox equivalent (TE)/100 g and the HORAC value was 3,687 µmol gallic acid equivalent (GAE)/100 g. On the other hand, the IC50 value of hydroxyl radical scavenging activity measured by using the electron spin resonance method was 3.3%. In conclusion, the results suggest that the freeze-dried powder of the giant jellyfish Nemopilema nomurai is a potentially beneficial food for humans.

  9. Development of sensors for monitoring oxygen and free radicals in plant physiology

    Science.gov (United States)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  10. Effects of Actinobacillus pleuropneumoniae cytotoxins on generation of oxygen radicals by porcine neutrophils

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    1999-03-01

    Full Text Available Cytotoxins produced by Actinobacillus pleuropneumoniae (App suggested to be the most important pathogenic and virulent factors for this organism. However, the mechanisms on how the cytotoxins contribute to the disease process remain unclear. The purpose of this study is to investigate the effect of the cytotoxins on the oxidative-burst metabolism of porcine neutrophils. In this study, neutrophils were firstly loaded with an oxidative probe dichlorofluorescin diacetate (DCFHDA then expose to cytotoxins. Cells producing oxygen radicals emitted fluorescence and its intensity was measured with a FACScan flow cytometer. All cytotoxins derived from either App serotypes producing ApxI and ApxII, App serotypes producing ApxII only, or App serotypes producing ApxII and ApxIII were capable of stimulating neutrophils for oxygen-radical generation. However, compared with phorbol myristate acetate (PMA, App cytotoxins were much weaker as stimulants for oxygen radicals. In addition, Apx preparation stimulated an oxidative-burst metabolism of neutrophils at a low, narrow range of Apx doses. At higher doses, the toxins inhibit the oxidative burst metabolism. The effects of cytotoxins produced by App during infection on recruited neutrophils into the lungs are assumed to be comparable to those observed in this in vitro study. Neutrophils, and other host cells, adjacent to the bacteria become lysis due to high toxin concentration, whereas those at some distance to the bacteria produce oxygen radicals which in turn cause tissue damage or necrosis.

  11. Induction of oxygen free radical generation in human monocytes by lipoprotein(a)

    DEFF Research Database (Denmark)

    Riis Hansen, P; Kharazmi, A; Jauhiainen, M

    1994-01-01

    The mechanism behind the association of elevated plasma lipoprotein(a) [Lp(a)] levels with atherosclerotic disease is unknown. In the present study, Lp(a) induced generation of oxygen free radicals by monocytes from selected healthy individuals in vitro. This observation may provide a link between...

  12. Rate constants for the reactions of free radicals with oxygen in solution

    International Nuclear Information System (INIS)

    Maillard, B.; Ingold, K.U.; Scaiano, J.C.

    1983-01-01

    The kinetics of the rections of several free radicals with oxygen have been examined in solution at 300 K using laser flash photolysis techniques. The reactions of resonance-stabilized radicals are only slightly slower than those of nonstabilized radicals: for example, for tert-butyl (in cyclohexane), 4.93 x 10 9 ; benzyl, 2.36 x 10 9 (in cyclohexane); cyclohexadienyl (in benzene), 1.64 x 10 9 M -1 s -1 . The reaction of butyl-tin (n-Bu 3 Sn.) radicals is unusually fast (7.5 x 10 9 M -1 s -1 ), a fact that has been tentatively attributed to a relaxation of spin selection rules due to heavy atom effects. 1 table

  13. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Science.gov (United States)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  14. Os radicais livres de oxigênio e as doenças pulmonares Oxygen free radicals and pulmonary disease

    Directory of Open Access Journals (Sweden)

    Dahir Ramos de Andrade Júnior

    2005-02-01

    Full Text Available Os radicais livres de oxigênio são moléculas que apresentam elétrons não pareados em sua órbita externa, capazes de transformar outras moléculas com as quais se encontram, como proteínas, carbohidratos, lípides e o ácido desoxirribonucleico. Essas moléculas são geradas em situações clínicas onde microambientes de hipóxia são seguidos por microambientes de reoxigenação. Nesse grupo estão o choque hemodinâmico, a septicemia, a resposta inflamatória sistêmica, as hepatites fulminantes, o transplante de órgãos, e a insuficiência respiratória, entre outras condições. Neste trabalho discutimos os principais conceitos sobre os radicais livres de oxigênio: os principais tipos, sua formação e a forma como atuam sobre todas as estruturas celulares provocando lesão tecidual significativa. Os principais sistemas de defesa antioxidante existentes para combater o estresse oxidativo são comentados, com destaque para a glutationa, superóxido dismutase, catalase, glutationa peroxidase e N-acetilcisteína. A influência dos radicais livres de oxigênio sobre as principais doenças pulmonares também é discutida, com ênfase nos produtos do cigarro, doença pulmonar obstrutiva crônica, asma, apnéia obstrutiva do sono e síndrome do desconforto respiratório agudo.Oxygen free radicals are molecules that present unpaired electrons in their outer orbit and can transform other molecules such as proteins, carbohydrates, lipids and deoxyribonucleic acid. Oxygen free radicals are produced in various clinical conditions in which hypoxic microenvironments are generated and reoxygenation follows. Such situations include clinical shock, septicemia, systemic inflammatory response, fulminant hepatitis, organ transplant and respiratory failure. In this review, we discuss the main concepts related to oxygen free radicals: the principal types and their formation, as well as the way in which they affect cellular structures and cause

  15. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Functionalised Oximes: Emergent Precursors for Carbon-, Nitrogen- and Oxygen-Centred Radicals

    Directory of Open Access Journals (Sweden)

    John C. Walton

    2016-01-01

    Full Text Available Oxime derivatives are easily made, are non-hazardous and have long shelf lives. They contain weak N–O bonds that undergo homolytic scission, on appropriate thermal or photochemical stimulus, to initially release a pair of N- and O-centred radicals. This article reviews the use of these precursors for studying the structures, reactions and kinetics of the released radicals. Two classes have been exploited for radical generation; one comprises carbonyl oximes, principally oxime esters and amides, and the second comprises oxime ethers. Both classes release an iminyl radical together with an equal amount of a second oxygen-centred radical. The O-centred radicals derived from carbonyl oximes decarboxylate giving access to a variety of carbon-centred and nitrogen-centred species. Methods developed for homolytically dissociating the oxime derivatives include UV irradiation, conventional thermal and microwave heating. Photoredox catalytic methods succeed well with specially functionalised oximes and this aspect is also reviewed. Attention is also drawn to the key contributions made by EPR spectroscopy, aided by DFT computations, in elucidating the structures and dynamics of the transient intermediates.

  17. Electron transfer pathways in microbial oxygen biocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano, E-mail: stefano@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Tsujimura, Seiya, E-mail: seiya@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan); Kano, Kenji, E-mail: kkano@kais.kyoto-u.ac.j [Bio-analytical and Physical Chemistry Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8205 (Japan)

    2010-01-01

    The ability of some bacteria to enhance the rate of cathodic oxygen reduction to water has been recently discovered, opening the way to an entirely renewable and environmentally friendly concept of biocathode. In this study we reveal that several mechanisms may induce catalytic effects by bacteria. These comprise mechanisms that are putatively beneficial to the bacteria as well as mechanisms which are merely side effects, including quinone autoxidation and direct O{sub 2} reduction by heme compounds. Here we showed that 1 muM of ACNQ is able to generate a significant catalytic wave for oxygen reduction, with onset at approximately 0 V vs. SHE. Similarly, adsorption of hemin on a carbon surface catalyses O{sub 2} reduction to H{sub 2}O{sub 2} with an onset of +0.2 V vs. SHE. To evaluate the catalytic pathways of live cells on cathodic oxygen reduction, two species of electrochemically active bacteria were selected as pure cultures, namely Acinetobacter calcoaceticus and Shewanella putrefaciens. The former appears to exploit a self-excreted redox compound with redox characteristics matching those of pyrroloquinoline quinone (PQQ) for extracellular electron transfer. The latter appears to utilise outer membrane-bound redox compounds. Interaction of quinones and cytochromes with the membrane-bound electron transfer chain is yet to be proven.

  18. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    Science.gov (United States)

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  19. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (pHFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  20. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  1. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Pohl, Radek; Císařová, I.; Klepetářová, Blanka; Jones, P. G.; Jahn, Ullrich

    2015-01-01

    Roč. 21, č. 27 (2015), s. 9877-9888 ISSN 0947-6539 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : cyclization * domino reactions * electron transfer * Michael addition * radical reactions Subject RIV: CC - Organic Chemistry Impact factor: 5.771, year: 2015

  2. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones.

    Science.gov (United States)

    Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi

    2017-10-26

    Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.

  3. One-electron transfer equilibria and redox potentials of radicals studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Meisel, D.; Czapski, G.

    1975-01-01

    The pulse radiolysis technique is utilized for measurements of the equilibrium constants for electron transfer between the durosemiquinone radical anion and oxygen, menadione, and indigodisulfonate. These equilibrium constants are in turn used for calculations of one-electron redox potentials for these systems. Each of these equilibrium constants was determined experimentally and independently and found to be self-consistent. Only for the reactions of the semiquinone radical ions with oxygen could the electron transfer reaction be followed directly. For the reactions between the various quinone-semiquinone systems substantial indirect evidence is presented that these equilibria are achieved rapidly. In those cases equilibrium constants were determined from studies of the effect of quinone concentrations on the relative yields of the semiquinones. A method for distinguishing between kinetic competition and equilibrium is outlined and its usefulness is emphasized. The DQ parallel DQ - (DQ = duroquinone) and IDS parallel IDS - (IDS = indigodisulfonate) systems were employed as reference couples as the redox potentials for those systems are either available in the literature (IDS parallel IDS - ) or may be calculated from available data (DQ parallel DQ - ). Taking E 7 1 , the redox potential for the first one-electron reduction step at pH 7, of DQ parallel DQ - as -0.235 V or of IDS parallelIDS - as -0.247 V both yield E 7 1 = -0.325 V for the O 2 parallel O 2 - system (1 atm of O 2 ) and E 2 1 = -0.20 V for the menadione system. (U.S.)

  4. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  5. Generation of Oxygen Free Radicals by Proflavine: Implication in Protein Degradation

    Directory of Open Access Journals (Sweden)

    Mansour K.M. Gatasheh

    2017-07-01

    Full Text Available Proflavine, an acridine dye, is a known DNA intercalating agent. In the present study, we show that proflavine alone on photoillumination can generate reactive oxygen species (ROS. These proflavine-derived ROS cause damage to proteins, and this effect is enhanced when the divalent metal ion Cu (II is included in the reaction. Bathocuproine, a specific Cu (I sequestering agent, when present in the reaction mixture containing Cu (II, was found to inhibit the protein degradation, showing that Cu (I is an essential intermediate in the reaction. The effect of several scavengers of ROS such as superoxide dismutase, sodium azide, potassium iodide, and thiourea were examined on the protein damaging reaction. Potassium iodide was found to be the most effective in inhibiting protein damage followed by sodium azide and thiourea. Our results indicate the involvement of superoxide, singlet oxygen, triplet oxygen, and hydroxyl radicals in proflavine-induced damage to proteins.

  6. Role of macrophages and oxygen radicals in IgA induced lung injury in the rat

    International Nuclear Information System (INIS)

    Johnson, K.J.; Ward, P.A.; Kunkel, R.G.; Wilson, B.S.

    1986-01-01

    Acute lung injury in the rat has been induced by the instillation of affinity-purified mouse monoclonal IgA antibody with specific reactivity to dinitrophenol (DNP) coupled to albumin. This model of lung injury requires an intact complement system but not neutrophils, and evidence suggests that pulmonary macrophages are the critical effector cell. Macrophages retrievable from the lungs of the IgA immune complex treated rats are considerably increased in number as compared to control animals which received only the antibody. In addition these cells show evidence of activation in vivo with greater spontaneous generation of the superoxide anion (O 2 - ) as well as significantly enhanced O 2 - response in the presence of a second stimulus. Inhibition studies in vivo suggest that the lung injury is mediated by oxygen radical generation by the pulmonary macrophages. Pretreatment of rats with superoxide dismutase (SOD), catalase, the iron chelator deferoxamine or the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) all markedly suppressed the development of the lung injury. In summary, these studies suggest that IgA immune complex injury in the rat lung is mediated by oxygen radical formation from pulmonary macrophages

  7. Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study

    Directory of Open Access Journals (Sweden)

    Wagner Brett A

    2010-08-01

    Full Text Available Abstract Background Gallic acid (3,4,5-trihydroxybenzoic acid is found in a wide variety of plants; it is extensively used in tanning, ink dyes, as well as in the manufacturing of paper. The gallate moiety is a key component of many functional phytochemicals. In this work electron paramagnetic spectroscopy (EPR was used to detect the free radicals generated by the air-oxidation of gallic acid. Results We found that gallic acid produces two different radicals as a function of pH. In the pH range between 7-10, the spectrum of the gallate free radical is a doublet of triplets (aH = 1.00 G, aH = 0.23 G, aH = 0.28 G. This is consistent with three hydrogens providing hyperfine splitting. However, in a more alkaline environment, pH >10, the hyperfine splitting pattern transforms into a 1:2:1 pattern (aH (2 = 1.07 G. Using D2O as a solvent, we demonstrate that the third hydrogen (i.e. aH = 0.28 G at lower pH is a slowly exchanging hydron, participating in hydrogen bonding with two oxygens in ortho position on the gallate ring. The pKa of this proton has been determined to be 10. Conclusions This simple and novel approach permitted the understanding of the prototropic equilibrium of the semiquinone radicals generated by gallic acid, a ubiquitous compound, allowing new insights into its oxidation and subsequent reactions.

  8. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    Science.gov (United States)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  9. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  10. Global Model of Time-Modulated Electronegative Discharges for Neutral Radical and Electron Temperature Control

    Science.gov (United States)

    Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Control and reduction of neutral radical flux/ion flux ratio and electron temperature Te is required for next generation etching in the microelectronics industry. We investigate time-modulated power for these purposes using a volume-averaged (global) oxygen discharge model, We consider pressures of 10-50 mTorr and plasma densities of 10^10-10^11 cm-3. In this regime, the discharge is found to be weakly electronegative. The modulation period and the duty ratio (on-time/period) are varied to determine the optimum conditions for reduction of FR= O-atom flux/ion flux and T_e. Two chambers with different height/diameter ratios (SMART Contract SM99-10051.

  11. Zwitterion radicals and anion radicals from electron transfer and solvent condensation with the fingerprint developing agent ninhydrin.

    Science.gov (United States)

    Schertz, T D; Reiter, R C; Stevenson, C D

    2001-11-16

    Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.

  12. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matasovic, Brunislav [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia); Bonifacic, Marija, E-mail: bonifacic@irb.h [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia)

    2011-06-15

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals {sup {center_dot}C}O{sub 2}{sup -}, {sup {center_dot}C}H{sub 2}OH, {sup {center_dot}C}H(CH{sub 3})OH, and {sup {center_dot}C}H(CH{sub 3})O{sup -} have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production {sup 60}Co {gamma}-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U{sup {center_dot}} radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U{sup {center_dot}} radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of {alpha}-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism (). Thus, while both {sup {center_dot}C}H{sub 2}OH and {sup {center_dot}C}H(CH{sub 3})OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm{sup -3} concentrations, pH 7, brought about chain debromination to occur in the case of {sup {center_dot}C}H(CH{sub 3})OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of {alpha}-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U{sup {center_dot}} radicals have been estimated to amount to about {>=}85 and 1200 dm{sup 3} mol{sup -1} s{sup -1

  13. Relationship between oxygen free radicals, cytokines, cortisol and stress complications in patients with acute cerebrovascular disease

    International Nuclear Information System (INIS)

    Zhu Yingbin; Wang Bingjie; Li Yunchao

    2010-01-01

    Objective: To investigate the relationship between oxygen free radicals, cytokines, cortisol and stress complications in patients with acute cerebrovascular disease (ACVD). Methods: Serum levels of superoxide dismutases (SOD), malonaldehyde (MDA) (with biochemistry) interleukin-6 (IL-6), tumor necrosis factor (TNF-α) and cortisol (with RIA) were measured in 32 patients with acute cerebrovascular disease (ACVD) plus stress complications and 48 patients without stress complications as well as 36 controls. Results: Serum SOD contents in non-stressed group were higher than those in stressed group (P<0.05) but lower than those of the controls (P<0.05). However the levels of MDA, IL-6, TNF-α and cortisol were highest in the stressed group and lowest in the controls (all P<0.05). Conclusion: Oxygen free radicals, IL-6, TNF-α and cortisol were involved in stress complications in patients with ACVD. Monitoring the levels of serum SOD, MDA, IL-6, TNF-α and cortisol could be useful for predicting stress complications and evaluating the therapeutic effect. (authors)

  14. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters

    Science.gov (United States)

    Kaur, R.; Anastasio, C.

    2017-09-01

    The atmospheric aqueous-phase is a rich medium for chemical transformations of organic compounds, in part via photooxidants generated within the drops. Here we measure light absorption, photoformation rates and steady-state concentrations of two photooxidants - hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) - in 8 illuminated fog waters from Davis, California and Baton Rouge, Louisiana. Mass absorption coefficients for dissolved organic compounds (MACDOC) in the samples are large, with typical values of 10,000-15,000 cm2 g-C-1 at 300 nm, and absorption extends to wavelengths as long as 450-600 nm. While nitrite and nitrate together account for an average of only 1% of light absorption, they account for an average of 70% of •OH photoproduction. Mean •OH photoproduction rates in fogs at the two locations are very similar, with an overall mean of 1.2 (±0.7) μM h-1 under Davis winter sunlight. The mean (±1σ) lifetime of •OH is 1.6 (±0.6) μs, likely controlled by dissolved organic compounds. Including calculated gas-to-drop partitioning of •OH, the average aqueous concentration of •OH is approximately 2 × 10-15 M (midday during Davis winter), with aqueous reactions providing approximately one-third of the hydroxyl radical source. At this concentration, calculated lifetimes of aqueous organics are on the order of 10 h for compounds with •OH rate constants of 1 × 1010 M-1 s-1 or higher (e.g., substituted phenols such as syringol (6.4 h) and guaiacol (8.4 h)), and on the order of 100 h for compounds with rate constants near 1 × 109 M-1 s-1 (e.g., isoprene oxidation products such as glyoxal (152 h), glyoxylic acid (58 h), and pyruvic acid (239 h)). Steady-state concentrations of 1O2* are approximately 100 times higher than those of •OH, in the range of (0.1-3.0) × 10-13 M. Since 1O2* is a more selective oxidant than •OH, it will only react appreciably with electron-rich species such as dimethyl furan (lifetime of 2.0 h) and

  15. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells

    International Nuclear Information System (INIS)

    Ramu, A.; Cohen, L.; Glaubiger, D.

    1984-01-01

    One of the proposed mechanisms for the cytotoxic effects of anthracycline compounds suggests that the effect is mediated through the formation of intracellular superoxide radicals. It is therefore possible that doxorubicin resistance is associated with increased intracellular enzyme capacity to convert these superoxide radicals to inactive metabolites. We have measured the relative activities of superoxide dismutase, glutathione peroxidase, and catalase in P388 mouse leukemia cells and in a doxorubicin-resistant subline. Since oxygen-reactive metabolites also play a role in mediating the cytotoxicity of ionizing radiation, the radiosensitivity of both cell lines was also studied. No significant differences in superoxide dismutase activity between these cell lines was observed, indicating that they have a similar capacity to convert superoxide anion radicals to hydrogen peroxide. P388 cells that are resistant to doxorubicin have 1.5 times the glutathione content and 1.5 times the activity of glutathione peroxidase measured in drug-sensitive P388 cells. However, incubation with 1-chloro-2,4-dinitrobenzene, which covalently binds glutathione, had no effect on the sensitivity of either cell line to doxorubicin. Measured catalase activity in drug-resistant P388 cells was one-third of the activity measured in doxorubicin-sensitive P388 cells. The activity of this enzyme was much higher than that of glutathione peroxidase in terms of H 2 O 2 deactivation in both cell lines. It is therefore unlikely that doxorubicin-resistant P388 cells have an increased ability to detoxify reactive oxygen metabolites when compared to drug-sensitive cells. Doxorubicin-resistant P388 cells were significantly more sensitive to X-irradiation than were drug-sensitive P388 cells. These observations suggest that the difference in catalase activity in these cell lines may be associated with the observed differences in radiosensitivity

  16. Kinetics of several oxygenated carbon-centered free radical reactions with NO2.

    Science.gov (United States)

    Rissanen, Matti P; Arppe, Suula L; Timonen, Raimo S

    2013-05-16

    Five oxygenated carbon-centered free radical reactions with nitrogen dioxide (NO2) have been studied in direct time-resolved measurements. Experiments were conducted in a temperature-controlled flow tube reactor coupled to a 193 nm exciplex laser photolysis and a resonance gas lamp photoionization mass spectrometer. Reactions were investigated under pseudofirst-order conditions, with the NO2 concentrations of the experiments in great excess over the initial radical concentrations ([R]0 CH3CO radical reactions with NO2 and, hence, includes the three smallest hydroxyalkyl radical species (CH2OH, CH2CH2OH, and CH3CHOH). The obtained rate coefficients are high with the temperature-dependent rate coefficients given by a formula k(T) = k300K × (T/300 K)(-n) as (in units of cm(3) molecule(-1) s(-1)): k(CH2OH + NO2) = (8.95 ± 2.70) × 10(-11) × (T/300 K)(-0.54±0.27) (T = 298-363 K), k(CH2CH2OH + NO2) = (5.99 ± 1.80) × 10(-11) × (T/300 K)(-1.49±0.45)(T = 241-363 K), k(CH3CHOH + NO2) = (7.48 ± 2.24) × 10(-11) × (T/300 K)(-1.36±0.41) (T = 266-363 K), k(CH3OCH2 + NO2) = (7.85 ± 2.36) × 10(-11) × (T/300 K)(-0.93±0.28) (T = 243-363 K), and k(CH3CO + NO2) = (2.87 ± 0.57) × 10(-11) × (T/300 K)(-2.45±0.49) (T = 241-363 K), where the uncertainties refer to the estimated overall uncertainties of the values obtained. The determined rate coefficients show negative temperature dependence with no apparent bath gas pressure dependence under the current experimental conditions (241-363 K and about 1-3 Torr helium). This behavior is typical for a radical-radical addition mechanism with no potential energy barrier above the energy of the separated reactants in the entrance channel of the reaction. Unfortunately the absence of detected product signals prevented gaining deeper insight into the reaction mechanism.

  17. Demonstration using EPR spin-trapping of an oxygen-dependent, carbon-centered free radical generated by soybean lipoxygenase

    International Nuclear Information System (INIS)

    Carpenter, M.F.; Smith, F.L.

    1986-01-01

    Purified prostaglandin synthase produces a carbon-centered, oxygen-dependent free radical which they have shown forms a spin-trapped adduct with 4-POBN and has characteristic hyperfine spin coupling constants (hfsc). As production of this radical is cyclooxygenase-dependent, additional studies on radical production were done using soybean lipoxygenase. The latter generates a lipid substrate-derived free radical trapped by the EPR spin trap 4-POBN [α-(4-pyridyl 1-oxide)N-tert-butyl nitrone]. With linoleate as substrate, the hfsc are a/sub N/ = 15.5 G, a/sub β//sup H/ = 2.7 G. This signal is inhibited by ETYA, various antioxidants and heat inactivation of the enzyme. Additional hfsc are not seen when the enzyme is incubated in an 17 O 2 atmosphere, but the signal is inhibited by anaerobeosis. Substitution of 13 C 18 carbon free fatty acids from Chlorella pyrenoisdosa for linoleate produces 2 new lines for each of the original 6 observed with 12 C substrate; the new spectrum has hfsc of a/sub N/ = 16.0 G, a/sub β//sup H/ = 2.4 G, a/sub β/ 13 C = 4.2 G. This demonstrates that the radical is carbon centered and oxygen-dependent and appears not to be the same radical formed by enzymic hydrogen abstraction from the lipid substrate. This radical and the prostaglandin synthase-dependent radical appear to be nearly identical

  18. Oxoferryl-Porphyrin Radical Catalytic Intermediate in Cytochrome bd Oxidases Protects Cells from Formation of Reactive Oxygen Species*

    Science.gov (United States)

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-01-01

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b558 that donates electrons to a binuclear heme b595/heme d center. The reaction with O2 and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O2, the O–O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b595. Compound I accumulates to 0.75–0.85 per enzyme in agreement with its much higher rate of formation (∼20,000 s−1) compared with its rate of decay (∼1,900 s−1). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b558 before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O–O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O–O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species. PMID:22287551

  19. Analysis of electron spin resonance spectra of irradiated gingers: Organic radical components derived from carbohydrates

    International Nuclear Information System (INIS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2010-01-01

    Electron spin resonance (ESR) spectral characterizations of gingers irradiated with electron beam were studied. Complex asymmetrical spectra (near g=2.005) with major spectral components (line width=2.4 mT) and minor signals (at 6 mT apart) were observed in irradiated gingers. The spectral intensity decreased considerably 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of characteristics of free radical components derived from carbohydrates in gingers are in good agreement with the observed spectra. Analysis showed that shortly after irradiation the major radical components of gingers were composed of radical species derived from amylose and cellulose, and the amylose radicals subsequently decreased considerably. At 30 days after irradiation, the major radical components of gingers were composed of radical species derived from cellulose, glucose, fructose or sucrose.

  20. Role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII

    Directory of Open Access Journals (Sweden)

    Liying Wang

    2013-02-01

    Full Text Available Previous studies have demonstrated the important role of angiotension II (AngII in promoting proliferation of myofibroblasts (myoFbs and myocardial fibrosis. However, the underlying mechanisms and the role of oxygen free radicals in the proliferation of myofibroblasts induced by AngII are unclear. The present study was designed to shed light on this issue through exploration of AngII signaling pathways via in vitro experiments. Primary cultures of neonatal rat myoFbs were divided into five groups which were treated with AngII (10−8 to 10−6 M, AngII with the antioxidant N-acetyl-L-cysteine (NAC, or normal culture medium. We observed the proliferation of myoFbs as induced by AngII at different concentrations with MTT. Reactive oxygen species (ROS levels in myoFbs were detected by monitoring the fluorescence of 2′,7′-dichlorofluorescein. The contents and levels of oxygen free radicals (OH· in the three groups were detected by spectrophotometer, immunocytochemical staining, and confocal fluorescence. Western blot and image analysis were used to measure membrane translocation and expression of phospho-protein kinase Cα. MyoFbs incubated with AngII (10−8 to 10−6 M for 24 h increased their rate of proliferation, the content of OH·, and expression of ROS (P<0.01 vs. control group, whereas these parameters decreased in the presence of NAC. Immunocytochemistry, confocal fluorescence staining and image analysis showed that AngII could promote the translocation and expression of p-PKCα in membrane, and the antioxidant NAC blocked this increase (P<0.01. Western blot results also showed that NAC could inhibit the expression of p-PKCα.

  1. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices

    International Nuclear Information System (INIS)

    Rawal, Avinash; Muddeshwar, Manohar; Biswas, Saibal

    2004-01-01

    The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO 2 )]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O2-), hydroxyl radicals (OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO - ) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of γ-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage

  2. Electron spin resonance spectroscopy of organic radicals spectroscopy of organic radicals

    CERN Document Server

    Gerson, Fabian

    2006-01-01

    ""This book should serve as a comprehensive one-volume source for finding what is known about the splitting constants and g factors of virtually all types of organic radicals."" Journal of the American Chemistry Society, 2004, Vol. 126 No. 20

  3. Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inhibitable by the micropeptide humanin.

    Science.gov (United States)

    Blasco, Natividad; Cámara, Yolanda; Núñez, Estefanía; Beà, Aida; Barés, Gisel; Forné, Carles; Ruíz-Meana, Marisol; Girón, Cristina; Barba, Ignasi; García-Arumí, Elena; García-Dorado, David; Vázquez, Jesús; Martí, Ramon; Llovera, Marta; Sanchis, Daniel

    2018-06-01

    The endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding the link between ENDOG activity and cardiomyocyte growth. Endog deficiency induced reactive oxygen species (ROS) accumulation and abnormal growth in neonatal rodent cardiomyocytes, altering the AKT-GSK3β and Class-II histone deacethylases (HDAC) signal transduction pathways. These effects were blocked by ROS scavengers. Lack of ENDOG reduced mitochondrial DNA (mtDNA) replication independently of ROS accumulation. Because mtDNA encodes several subunits of the mitochondrial electron transport chain, whose activity is an important source of cellular ROS, we investigated whether Endog deficiency compromised the expression and activity of the respiratory chain complexes but found no changes in these parameters nor in ATP content. MtDNA also codes for humanin, a micropeptide with possible metabolic functions. Nanomolar concentrations of synthetic humanin restored normal ROS levels and cell size in Endog-deficient cardiomyocytes. These results support the involvement of redox signaling in the control of cardiomyocyte growth by ENDOG and suggest a pathway relating mtDNA content to the regulation of cell growth probably involving humanin, which prevents reactive oxygen radicals accumulation and hypertrophy induced by Endog deficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Prevention of alloimmunization by ultraviolet-B irradiation. Inactivation of leukocytes and the generation of active oxygen and radicals

    International Nuclear Information System (INIS)

    Takahashi, Tsuneo; Mogi, Yuko; Sekiguchi, Sadayoshi; Akasaka, Junichi; Kamo, Naoki; Kuwabara, Mikinori.

    1994-01-01

    UV-B irradiation of platelet concentrates (PC) has been tried in several institutes to inactivate leukocytes in PC and prevent alloimmunization on platelet transfusion. However, the mechanism of inactivation of leukocytes contaminating PC has not been fully understood. It is known that UV-B light is absorbed by photosensitizers in cells and produces active oxygen and radicals, such as singlet oxygen, superioxide anions and hydroxyl radicals. These active oxygen or radicals should injure cellular components and this could cause the suppression of cellular functions. In this study, we investigated the relationships among UV-B irradiation, free radical generation and leukocyte inactivation. We found the evidence that active oxygen and radicals were produced in peripheral blood mononuclear cells by UV-B irradiation. UV-B irradiation suppressed the stimulatory function of leukocytes in a mixed lymphocyte reaction (MLR), and the suppression depended on the dosage of UV-B. Even a low dosage of UV-B, 10 J/m 2 , could inhibit the MLR if the irradiated cells were incubated at 37degC for 24 hours before co-culture with responder cells. Treatments of cells with the exogenous singlet oxygen or superoxide anions also caused suppression of the stimulatory function in the MLR, inhibition of capping formation of HLA-DR antigens, and an increase of intracellular free Ca 2+ levels as did the UV-B treatment. These results indicate that the active oxygen or radicals generated in UV-B-irradiated leukocytes could be one of the causes of leukocyte inactivation. (author0

  5. Effect of electron affinic hypoxic cell sensitizers on the radiolytic depletion of oxygen in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.

    1982-01-01

    When CHO cells are equilibrated with a low level of oxygen (e.g. 0.4% O 2 ) and irradiated with single 3 ns pulses of electrons, a breaking survival curve is observed. This effect is believed to be the result of radiolytic oxygen depletion and can be prevented by the presence of a relatively low concentraton of hypoxic cell radiosensitizer. This prevention of the breaking survival curve has been observed for 2- and 5-nitroimidazoles, nitrofurans, and diamide. It is hypothesized that the sensitizer acts by competing wth oxygen for the radiation-induced intracellular oxygen-binding species, perhaps a hydrated electron adduct, leaving oxygen free to participate in radiosensitization reactions during the lifetime of the oxygen-sensitive radiation-induced target sites for lethal damage, probably DNA radicals produced by hydroxyl radical attack. The proposed role of the sensitizer in the interference with oxygen depletion is a transient phenomenon, occuring on the microsecond to millisecond time scale

  6. Electron beam treatment with radical scavengers/enhancers

    International Nuclear Information System (INIS)

    Gehringer, P.

    1994-08-01

    E-beam treatment of low level contaminated groundwater is best apt to demonstrate the role of scavengers and enhancers, respectively because groundwater already contains some scavengers as natural solutes. The action of ionizing radiation to water is known to result in the formation of ions, molecular and free radical species. For low level contaminations of groundwater (pollutant concentration aqu - and H are of interest for pollutant decomposition. The pollutants have to compete for the free radical species with the natural solutes. 10 figures are discussed. (author)

  7. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    International Nuclear Information System (INIS)

    Bisby, R.H.; Tabassum, N.

    1988-01-01

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k 2 ) of (2.2 ± 0.4) x 10 9 M -1 sec -1 . In alkaline solutions the radical deprotonates with a pK of 11.1 ± 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 ± 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10 6 M -1 sec -1 at pH7 and 2.7 x 10 8 M -1 sec -1 at pH 11.3 were obtained. The reaction of O 2 with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed. (author)

  8. Electronic states of aryl radical functionalized graphenes: Density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-06-01

    Functionalized graphenes are known as a high-performance molecular device. In the present study, the structures and electronic states of the aryl radical functionalized graphene have been investigated by the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of graphene (GR). Also, the mechanism of aryl radical reaction with GR was investigated. The benzene, biphenyl, p-terphenyl, and p-quaterphenyl radicals [denoted by (Bz) n (n = 1-4), where n means numbers of benzene rings in aryl radical] were examined as aryl radicals. The DFT calculation of GR-(Bz) n (n = 1-4) showed that the aryl radical binds to the carbon atom of GR, and a C-C single bond was formed. The binding energies of aryl radicals to GR were calculated to be ca. 6.0 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists in the aryl radical addition: the barrier heights were calculated to be 10.0 kcal mol-1. The electronic states of GR-(Bz) n were examined on the basis of theoretical results.

  9. Carbonate radical anion-induced electron transfer in bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2006-07-15

    Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO{sub 3}{sup -} radical) has been studied using pulse radiolysis technique. Scavenging of CO{sub 3}{sup -} radical by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k{approx}1.7x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO{sub 3}{sup -} radical and the electron transfer process have been studied and discussed in this paper.

  10. Kinetics of Several Oxygen-Containing Carbon-Centered Free Radical Reactions with Nitric Oxide.

    Science.gov (United States)

    Rissanen, Matti P; Ihlenborg, Marvin; Pekkanen, Timo T; Timonen, Raimo S

    2015-07-16

    Kinetics of four carbon-centered, oxygen-containing free radical reactions with nitric oxide (NO) were investigated as a function of temperature at a few Torr pressure of helium, employing flow tube reactors coupled to a laser-photolysis/resonance-gas-discharge-lamp photoionization mass spectrometer (LP-RPIMS). Rate coefficients were directly determined from radical (R) decay signals under pseudo-first-order conditions ([R]0 ≪ [NO]). The obtained rate coefficients showed negative temperature dependences, typical for a radical-radical association process, and can be represented by the following parametrizations (all in units of cm(3) molecule(-1) s(-1)): k(CH2OH + NO) = (4.76 × 10(-21)) × (T/300 K)(15.92) × exp[50700/(RT)] (T = 266-363 K, p = 0.79-3.44 Torr); k(CH3CHOH + NO) = (1.27 × 10(-16)) × (T/300 K)(6.81) × exp[28700/(RT)] (T = 241-363 K, p = 0.52-3.43 Torr); k(CH3OCH2 + NO) = (3.58 ± 0.12) × 10(-12) × (T/300 K)(-3.17±0.14) (T = 221-363 K, p = 0.50-0.80 Torr); k(T)3 = 9.62 × 10(-11) × (T/300 K)(-5.99) × exp[-7100/(RT)] (T = 221-473 K, p = 1.41-2.95 Torr), with the uncertainties given as standard errors of the fits and the overall uncertainties estimated as ±20%. The rate of CH3OCH2 + NO reaction was measured in two density ranges due to its observed considerable pressure dependence, which was not found in the studied hydroxyalkyl reactions. In addition, the CH3CO + NO rate coefficient was determined at two temperatures resulting in k298K(CH3CO + NO) = (5.6 ± 2.8) × 10(-13) cm(3) molecule(-1) s(-1). No products were found during these experiments, reasons for which are briefly discussed.

  11. The effect of oxygen exposure on pentacene electronic structure

    NARCIS (Netherlands)

    Vollmer, A; Jurchescu, OD; Arfaoui, [No Value; Salzmann, [No Value; Palstra, TTM; Rudolf, P; Niemax, J; Pflaum, J; Rabe, JP; Koch, N; Arfaoui, I.; Salzmann, I.

    We use ultraviolet photoelectron spectroscopy to investigate the effect of oxygen and air exposure on the electronic structure of pentacene single crystals and thin films. it is found that O-2 and water do not react noticeably with pentacene, whereas singlet oxygen/ozone readily oxidize the organic

  12. Induction of radiation resistance and radio-protective mechanism. On the reactive oxygen and free radical

    International Nuclear Information System (INIS)

    Yukawa, Osami

    2003-01-01

    Radical scavenging system for reactive oxygen species (ROS) leading to radio-protection is reviewed on findings in animals, tissues and cells. Protection against oxygen toxicity in evolution can be seen in anaerobes' superoxide dismutase (SOD) over 3500 million years ago. ROS is generated endogenously and also by radiation. However, the intracellular sites of the generated ROS are different depending on its cause. The protection is done through enzymes like SOD, peroxidase, catalase, glutathione-related enzymes and through substances like GSH, α-tocopherol, ascorbic acid etc. Induction of ROS scavenging substances related with radio-resistance includes the responses to the low dose radiation (5-50 cGy) in those enzymes described above; to middle to high dose radiation (1-30 Gy) in a similar and in other unknown mechanisms; to exposure of ROS like H 2 O 2 at low concentration; and to antioxidant treatment. The cross-resistance between radiation and drugs suggests necessity of this induction. (N.I.)

  13. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  14. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology (see comments)

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, G.P. (Institute of Anesthesiology and Intensive Care, University of Florence, Careggi Hospital, (Italy))

    1992-04-01

    Circulatory shock is accepted as a consequence of an acute oxygen radical overgeneration. Spin-trapping nitrones inactivate free radicals by forming relatively stable adducts. Three spin-trapping nitrones (N-tert-phenyl-butyl-nitrone; alpha-4-pyridyl-oxide-N-tert-butyl-nitrone; 5-5,dimethyl,1,pyrroline-N-oxide) were tested regarding their role in the pathophysiology and evolution of circulatory shock in rats. A prospective, randomized, controlled trial of spin-trapping nitrones in rats experiencing three different models of circulatory shock was designed. In the first group, endotoxic, traumatic, and mesenteric artery occlusion shock (all 100% lethal in control experiments) was prevented by the ip administration of N-tert-phenyl-butyl-nitrone (150 mg/kg); alpha-4-pyridyl-oxide-N-tert-butyl-nitrone (100 mg/kg); or 5-5,dimethyl,1,pyrroline-N-oxide (100 mg/kg). However, the evolution of shock was unaffected by the same compounds when all three nitrones had been previously inactivated by exposure to light and air. In the second group, microcirculatory derangements that were provoked by endotoxin and were observed in the mesocecum of rats were completely prevented by pretreatment with either peritoneal administration of each of the three nitrones or by their topical application to the microscopic field. While the rats survived after systemic treatment, those rats receiving topical nitrones died from endotoxic shock. In the third group, cell-membrane stiffness (a sign of peroxidative damage) was measured by spin-probes and electron-spin resonance in mitochondrial and microsomal membranes. Cell membranes obtained from shocked rats were more rigid than those membranes of controls. However, the membranes obtained from rats that were submitted to trauma or endotoxin after pretreatment with N-tert-phenyl-butyl-nitrone had normal stiffness.

  16. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain

    Science.gov (United States)

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2011-01-01

    Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. PMID:21483483

  17. Study Free Radical Of Irradiated Pulasari (Alexyia reinwadrtii BI) By Using Electron Spin Resonance (ESR)

    International Nuclear Information System (INIS)

    Erizal; Chosdu, Rahayu

    2000-01-01

    In the effort to develop the application of gamma irradiation for medicinal plant preservation especially for seeds i.e. pulasari (Alyxia reinwardtii Bi), the characteristic of free radical of irradiated pulasari (water content 4-6%) at doses of 10; 20; 30 kGy after storage time ranged 0-70 days were studied by using electron spin resonance. It was found that with increasing irradiation dose, the yield of free radicals formation increase. The yield of free radical of pulasari powder more lower than in a chips state. With increasing storage time up 5 days, the yield of free radical decrease up to 60-70 %. At storage time up to 70 days, the free radical remained ranged 10-20%, relatively

  18. Sign of the electron exchange coupling in random radical encounter pairs in solution

    International Nuclear Information System (INIS)

    Thurnauer, M.C.; Chiu, T.M.; Trifunac, A.D.

    1985-01-01

    An important parameter in the study of reacting radical systems is the electron exchange interaction, J. The properties of interest are the sign and magnitude of J, and its functional dependence on distance between radicals. One source of information about J is from understanding the Chemically Induced Dynamic Electron Polarization (CIDEP) which is observed in the EPR spectra of reactive radical systems. For radicals reacting in solution to form new covalent bonds, it has generally been found that J O. It is suggested that F-pairs react at a separation greater than that at which spin correlated (geminate) pairs of the same radicals are formed, so that the intervening solvent molecules become involved in the exchange interaction giving rise to J>O via some sort of superexchange process. This is an interesting proposition since superexchange via solvent molecules may play a role in rates of long-distance electron transfer reactions and in the electron transfer reactions of photosynthesis. However, the model suggested runs contrary to all F-air radicals are produced. In order to clarify this important point, the authors present here a definitive study in which we examine several systems of radgenerated independently (exclusive F-pairs) by pulsed laser photolysis and pulsed radiolicals generatedysis in aqueous, alcoholic and hydrocarbon solvents

  19. Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P

    2018-01-16

    The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be

  20. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, or electron magnetic resonance, EMR, spectroscopy) is often described as the “gold standard” for the detection and characterisation of radicals in chemical, biological and medical systems. The article...... reviews aspects of EPR spectroscopy and discusses how this methodology and related techniques can be used to obtain useful information from biological systems. Consideration is given to the direct detection of radicals, the use of spin traps and the detection of nitric oxide, and the advantages...

  1. Ethylene formation from methionine as a method to evaluate oxygen free radical scavenging and metal inactivation by cosmetics.

    Science.gov (United States)

    Galey, J B; Millecamps, F; Nguyen, Q L

    1991-04-01

    Synopsis It has been proposed that oxygen free radicals are involved in skin aging. This paper describes a new method for the evaluation of oxygen free radical scavenging by cosmetic products. It is based on the measurement, by gas chromatography, of ethylene produced during the oxidation of methionine by the hydroxyl radical. OH. is produced by an iron catalyzed superoxide-driven Fenton reaction in which superoxide is obtained by photochemical oxygen reduction. The cosmetic is applied, together with methionine, riboflavine, NADH, FeCl(3) and EDTA, on a glass microfibre filter and submitted to UVA exposure through a quartz cell. Ethylene is then measured from aliquots of the atmosphere inside the cell. Catalase or Desferal completely inhibits ethylene production. SOD or high concentrations of hydroxyl radical scavengers (Mannitol, DMSO etc.) afford a partial protection. Thus the efficiency of O(2) (-)., H(2)O(2) and OH. scavengers and iron chelators can be measured. The main advantage of this test is that it is performed in conditions which simulate skin during UV exposure (e.g. air and UV exposed thin layer). Furthermore, as it is non-invasive, it can also be applied to human skin in vivo.

  2. Formation of radicals in coal pyrolysis examined by electron spin resonance

    Directory of Open Access Journals (Sweden)

    Tong Chang

    2017-09-01

    Full Text Available Electron spin resonance (ESR spectroscopy is used to study materials with unpaired electrons, such as organic radicals and metal complexes. This method can also be used to follow radical reactions during pyrolysis of carbonaceous materials. However, the temperature dependence of ESR measurement should be considered. To enable reasonable comparisons, results measured at different temperatures must be converted. In this study, we investigated the behavior of free radicals in the process of coal pyrolysis using in situ and ex situ ESR. The ESR data were collected at both pyrolysis and room temperatures, and apparent differences were analyzed. The differences were diminished when our data were converted to the same measurement temperature level based on the Boltzmann distribution law. Furthermore, we investigated the effects of process conditions on the behavior of free radicals in the solid phase of coal. We found that temperature is the most important factor determining the formation and behavior of free radicals in the solid phase, followed by the residence time. Relatively active radicals were quenched by hydrogen-donor solvents to some degree, while stable radicals remained.

  3. Study by electron spin resonance of the free radicals created under irradiation in glycine

    International Nuclear Information System (INIS)

    Thomet, P.; Rassat, A.; Servoz-Gavin, P.; Choudens, H. de

    1967-01-01

    The free radicals created by different radiations in glycine are measured by electron spin resonance and their number is evaluated in function of the absorbed dose. This number decreases when the LET of the radiations increases ; in other words,high LET radiations gives less radiochemical effects; in contrary with the fact that high LET radiations creates more damage in biological materials. The decreasing with time of the number of free radicals and the speed of this decrease is a function of temperature; by the study of the kinetics of this decrease, an attempt has been made to prove the presence of three radicals. (authors) [fr

  4. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    International Nuclear Information System (INIS)

    Mani, Tomoyasu; Brookhaven National Laboratory; Grills, David C.

    2017-01-01

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we show that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1 . IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.

  5. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.

    Science.gov (United States)

    Nardi, Giacomo; Manet, Ilse; Monti, Sandra; Miranda, Miguel A; Lhiaubet-Vallet, Virginie

    2014-12-01

    For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Exploring the Role of Persulfate in the Activation Process: Radical Precursor Versus Electron Acceptor.

    Science.gov (United States)

    Yun, Eun-Tae; Yoo, Ha-Young; Bae, Hyokwan; Kim, Hyoung-Il; Lee, Jaesang

    2017-09-05

    This study elucidates the mechanism behind persulfate activation by exploring the role of various oxyanions (e.g., peroxymonosulfate, periodate, and peracetate) in two activation systems utilizing iron nanoparticle (nFe 0 ) as the reducing agent and single-wall carbon nanotubes (CNTs) as electron transfer mediators. Since the tested oxyanions serve as both electron acceptors and radical precursors in most cases, oxidative degradation of organics was achievable through one-electron reduction of oxyanions on nFe 0 (leading to radical-induced oxidation) and electron transfer mediation from organics to oxyanions on CNTs (leading to oxidative decomposition involving no radical formation). A distinction between degradative reaction mechanisms of the nFe 0 /oxyanion and CNT/oxyanion systems was made in terms of the oxyanion consumption efficacy, radical scavenging effect, and EPR spectral analysis. Statistical study of substrate-specificity and product distribution implied that the reaction route induced on nFe 0 varies depending on the oxyanion (i.e., oxyanion-derived radical), whereas the similar reaction pathway initiates organic oxidation in the CNT/oxyanion system irrespective of the oxyanion type. Chronoamperometric measurements further confirmed electron transfer from organics to oxyanions in the presence of CNTs, which was not observed when applying nFe 0 instead.

  7. Electron spin resonance of radicals and metal complexes

    International Nuclear Information System (INIS)

    1993-01-01

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  8. Properties of the radicals formed by one-electron oxidation of acetaminophen - a pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Bisby, R H; Tabassum, N

    1988-07-15

    The semi-iminoquinone radical of acetaminophen, which has previously been proposed as a possible hepatotoxic intermediate in the cytochrome P-450 catalysed oxidation of acetaminophen, has been generated and studied by pulse radiolysis. In the absence of other reactive solutes, the radical decays rapidly by second order kinetics with a rate constant (2k/sub 2/) of (2.2 +- 0.4) x 10/sup 9/ M/sup -1/ sec/sup -1/. In alkaline solutions the radical deprotonates with a pK of 11.1 +- 0.1 to form a radical-anion. The acetaminophen radical-anion reacts with resorcinol at high pH values, leading to the formation of a transient equilibrium from which the one-electron reduction potential of the semi-iminoquinone radical of acetaminophen is estimated to be + 0.707 +- 0.01 V at pH 7. This value predicts that acetaminophen should be oxidised by thiyl radicals. This was confirmed by pulse radiolysis experiments for reaction of the cysteinyl radical, for which rate constants of 7 x 10/sup 6/ M/sup -1/ sec/sup -1/ at pH7 and 2.7 x 10/sup 8/ M/sup -1/ sec/sup -1/ at pH 11.3 were obtained. The reaction of O/sub 2/ with the acetaminophen semi-iminoquinone radical could not be detected by pulse radiolysis, and alternative mechanisms for superoxide radical formation are discussed.

  9. Radiation-induced damage in T4 bacteriophage: the effect of superoxid radicals and molecular oxygen. Progress report, December 1, 1977--November 30, 1978

    International Nuclear Information System (INIS)

    Samuni, A.; Chevion, M.; Halpern, Y.S.; Ilan, Y.A.; Czapski, G.

    1978-01-01

    The sensitivity of T4 bacteriophage towards γ irradiation has been studied in phosphate buffer suspensions. The spectrum of the water radicals was controlled by a careful choice of the appropriate saturating gas and the addition of radical scavengers. Thus, it was possible to distinguish between the effects of molecular oxygen and the superoxide radicals formed through its reactions. About 90 percent of the damage was caused by the water radicals formed in the bulk suspensions. These probably affected the phage proteins; only the remainder of the damage involved the viral DNA. The oxygen enhancement ratio observed was not connected in any way with the formation of the superoxide radicals. The results confirmed that the OH radicals are the reactive species, while e - /sub aq/ as well as the superoxide radical do not contribute to the radiodamage

  10. Protection by free oxygen radical scavenging enzymes against salicylate-induced embryonic malformations in vitro.

    Science.gov (United States)

    Karabulut, A K; Ulger, H; Pratten, M K

    2000-08-01

    Salicylates are among the oldest and most widely used drugs and are known to lead to foetal death, growth retardation and congenital abnormalities in experimental animals. In this study, the effects of acetyl salicylic acid (ASA), salicylic acid (SAL) and sodium salicylate (NaSAL) on early organogenesis and the interaction of these molecules with free radicals has been investigated. Postimplantation rat embryos were cultured in vitro from day 9.5 of gestation for 48 hr. ASA, SAL and NaSAL were added to whole rat serum at concentrations between 0.1 and 0.6 mg/ml. Also, the lowest effective concentration of ASA for all parameters (0.3 mg/ml) and the same concentration of NaSAL and SAL was added to the culture media in the presence of superoxide dismutase (SOD) (30 U/ml) or glutathione (0.5 micromol/ml). The growth and development of embryos was compared and each embryo was evaluated for the presence of any malformations. When compared to growth of control embryos, the salicylates decreased all growth and developmental parameters in a concentration-responsive manner. There was also a concentration-related increase in overall dysmorphology, including the incidence of haematoma in the yolk sac and neural system, open neural tube, abnormal tail torsion and the absence of fore limb bud. When SOD was added in the presence of ASA, growth and developmental parameters were improved and there was a significant decrease in the incidence of malformations. Addition of SOD also decreased the incidence of malformations in the presence of SAL, but did not effect the growth and developmental parameters of SAL and NaSAL. There was no significant difference between the embryos grown in the presence of these three molecules on the addition of glutathione. The effects of salicylates might involve free oxygen radicals by the non-enzymatic production of the highly teratogenic metabolites 2,3- and 2,5-dihydroxybenzoic acid. An enhanced production of these metabolites in embryonic tissues

  11. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  12. Photoprotective effect of vitamins A and E on polyamine and oxygenated free radical metabolism in hairless mouse epidermis.

    Science.gov (United States)

    Khettab, N; Amory, M C; Briand, G; Bousquet, B; Combre, A; Forlot, P; Barey, M

    1988-12-01

    The purpose of this study was to confirm the photoprotective effect on skin of vitamins A and E, due to inhibition of polyamine synthesis and production of free radicals. These variables were measured in the lumbar epidermis of the female hairless mouse subjected to UVA + B irradiation. Polyamines were assayed in epidermal homogenate by HPLC, and production of oxygenated free radicals was determined by spectrofluorometric assay of malonyl dialdehyde. It was determined that butyl-hydroxy-toluene and vitamin E inhibited production of free radicals (56% and 60%, respectively) and caused a significant reduction in polyamine biosynthesis (P less than 0.01), whereas the inhibitory effect of malonyl dialdehyde induced by vitamin A (30%) had no associated effect on polyamine metabolism.

  13. Electron spin resonance study on γ-ray-induced radical species in ethylene hydrate

    International Nuclear Information System (INIS)

    Takeya, Kei; Sugahara, Takeshi; Ohgaki, Kazunari; Tani, Atsushi

    2007-01-01

    Electron spin resonance (ESR) study on γ-irradiated synthetic ethylene hydrate was performed to investigate induced radicals and their thermal stability. ESR spectra of induced 3-butenyl radical (.CH 2 C 2 H 3 =CH 2 ,g=2.0039±0.0005,A α =2.2±0.1mTandA β =3.0±0.1mT) and induced ethyl radical (.C 2 H 5 , g=2.0044±0.0005, A α =2.2±0.1mT and A β =2.7±0.1mT) were observed in irradiated ethylene hydrate. The decay of the 3-butenyl radicals was observed above 200 K with the activation energy of 51.9±4.4kJ/mol. The obvious decay of ethyl radicals starts above 240 K that is close to the dissociation temperature of ethylene hydrate at atmospheric pressure. The activation energy of the ethyl radical decay is estimated as 63.4±8.2kJ/mol and nearly equal to the enthalpy change of ethylene hydrate into liquid water and gaseous ethylene. It is suggested that the decay of ethyl radicals would be caused by the hydrate dissociation and that ethylene hydrate dissociates into water (supercooled) and ethylene at 240-265 K.

  14. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  15. Detection of free radicals in γ-irradiated seasnail hard tissues by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Koeseoglu, Rahmi; Koeksal, Fevzi

    2003-01-01

    Gamma-irradiated seasnail (from family of Helix lukortium) hard tissues (CaCO 3 ) were investigated by electron paramagnetic resonance (EPR) at room temperature. The radicals produced by γ-irradiation in seasnail were attributed to orthorhombic C · O 2 - , freely rotating C · O 2 - , orthorhombic C · O 3 - , axial C · O 3 - , and axial C · O 3 3- free radicals. Unirradiated seasnail hard tissues also feature Mn 2+ ions in their EPR spectra. The hyperfine values were determined for the 13 C nucleus in the orthorhombic C · O 2 - and axial C · O 3 3- free radicals and for the manganese impurity ions. The g values of all the free radicals have been measured. The results were compared with the literature data for similar defects

  16. Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance.

    Science.gov (United States)

    Kusar, A; Zupancic, A; Sentjurc, M; Baricevic, D

    2006-10-01

    Yellow gentian (Gentiana lutea L.) is a herbal species with a long-term use in traditional medicine due to its digestive and stomachic properties. This paper presents an investigation of the free radical scavenging activity of methanolic extracts of yellow gentian leaves and roots in two different systems using electron spin resonance (ESR) spectrometry. Assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the superoxide radicals (O2*-) generated by the xanthine/xanthine oxidase (X/XO) system. The results of gentian methanolic extracts were compared with the antioxidant capacity of synthetic antioxidant butylated hydroxyanisole (BHA). This study proves that yellow gentian leaves and roots exhibit considerable antioxidant properties, expressed either by their capability to scavenge DPPH or superoxide radicals.

  17. Studies of a nitroxide radical by EPR in monocrystal: interaction of protons and electronic relaxation

    International Nuclear Information System (INIS)

    Alonso, A.

    1986-01-01

    The ESR spectra of a nitroxide radical, 4-hydroxi-2,2,6,6-tetramethylpiperidine-1-oxyl (TANOL II), introduced as impurity in a diamagnetic host, 4-hydroxi-2,6,6-tetramethylpiperedine (I), were investigated. The use of deuterated radical, 4-hydroxi-2,2,6,6 tetramethylpiperidine-d sub(17) -1, oxyl (PD-TANOL, III) improved the resolution of ESR spectra for most of orientations of magnetic field. The proton interqactions in the neighbourhood of magnetic group N-O were studied and superpyresfine tensors for two strongly coupled protons were determined. In order to study the influence of protons on electronic relaxation of radicals, the relaxation times T sub(1) and T sub(2) were estimated in the temperature range-160 sup(0)C - 25 sup(0)C for several orientations, and comparing data for protonated and deuterated radicals II and III, using the continuous wave saturation method. (author)

  18. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs

    OpenAIRE

    Lai, Y -L; Chiou, W -Y; Lu, F J; Chiang, L Y

    1999-01-01

    Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes+citric acid; hexa(sulphobutyl)fullerenes+phosphoramidon+citric acid; dimethylthiourea (DMTU)+citric acid; and DMTU+phosphoramidon+citric acid. Hexa(sulphobutyl...

  19. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Directory of Open Access Journals (Sweden)

    Konstantinos Fiotakis

    2009-02-01

    Full Text Available Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR and spin- trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2·- and hydroxyl (HO· radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis.Also, we observed synergistic effects in the generation of HO·, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc. and ambient particulate matter (PM, such as PM10, PM2.5 and diesel exhaust particles (DEP. The highest synergistic effects was observed with the asbestos fibres (freshly grounded, PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase.

  20. Tobacco Smoke: Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable Particles

    Science.gov (United States)

    Valavanidis, Athanasios; Vlachogianni, Thomais; Fiotakis, Konstantinos

    2009-01-01

    Tobacco smoke contains many toxic, carcinogenic and mutagenic chemicals, as well as stable and unstable free radicals and reactive oxygen species (ROS) in the particulate and the gas phase with the potential for biological oxidative damage. Epidemiological evidence established that smoking is one of the most important extrinsic factor of premature morbidity and mortality. The objective of this study was to investigate oxidative and carcinogenic mechanisms of tobacco and synergistic action with other respirable particles in the respiratory system of smokers. Electron Paramagnetic Resonance (EPR) and spin-trapping techniques were used to study stable free radicals in the cigarette tar, and unstable superoxide anion (O2•−) and hydroxyl (HO•) radicals in the smoke Results showed that the semiquinone radical system has the potential for redox recycling and oxidative action. Further, results proved that aqueous cigarette tar (ACT) solutions can generate adducts with DNA nucleobases, particularly the mutagenic 8-hydroxy-2’-deoxyguanosine (a biomarker for carcinogenesis). Also, we observed synergistic effects in the generation of HO•, through the Fenton reaction, with environmental respirable particles (asbestos fibres, coal dust, etc.) and ambient particulate matter (PM), such as PM10, PM2.5 and diesel exhaust particles (DEP). The highest synergistic effects was observed with the asbestos fibres (freshly grounded), PM2.5 and DEP. Finally, we discuss results from our previous study of conventional cellulose acetate filters and “bio-filters” with hemoglobin impregnated activated carbon, which showed that these filters do not substantially alter the free radical content of smoke in the particulate and in the gaseous phase. PMID:19440393

  1. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals

    International Nuclear Information System (INIS)

    Inauen, W.; Payne, D.K.; Kvietys, P.R.; Granger, D.N.

    1990-01-01

    We assessed the effect of hypoxia/reoxygenation on 14C-albumin flux across endothelial monolayers. Cultured bovine pulmonary artery endothelial cells were grown to confluence on nitrocellulose filters (pore size 12 microns). The endothelialized filters were mounted in Ussing-type chambers which were filled with cell culture medium (M 199). Equimolar amounts (33 nM) of 14C-labeled and unlabeled albumin were added to the hot and cold chambers, respectively. The monolayers were then exposed to successive periods (90 min) of normoxia (pO2 145 mmHg), hypoxia (pO2 20 mmHg), and reoxygenation (pO2 145 mmHg). A gas bubbling system was used to control media pO2 and to ensure adequate mixing. Four aliquots of culture media were taken during each period in order to calculate the 14C-albumin permeability across the endothelialized filter. In some experiments, either the xanthine oxidase inhibitor, oxypurinol (10 microM), or superoxide dismutase (600 U/mL), was added to the media immediately prior to the experiments. As compared to the normoxic control period, albumin permeability was 1.5 times higher during hypoxia (p less than 0.01) and 2.3 times higher during reoxygenation (p less than 0.01). The reoxygenation-induced increase in albumin permeability was prevented by either oxypurinol or superoxide dismutase. These data indicate that xanthine oxidase-derived oxygen radicals contribute to the hypoxia/reoxygenation-induced endothelial cell dysfunction. The altered endothelial barrier function induced by hypoxia/reoxygenation is consistent with the microvascular dysfunction observed following reperfusion of ischemic tissues

  2. Effect of early rehabilitation training on oxygen free radical generation and nerve injury in patients with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Zhao-Shu Liu

    2017-08-01

    Full Text Available Objective: To study the effect of early rehabilitation training combined with edaravone on oxygen free radical generation and nerve injury in patients with cerebral hemorrhage. Methods: A total of 56 patients with acute cerebral hemorrhage who were treated in Zigong Third People’s Hospital between July 2014 and March 2017 were selected and randomly divided into early rehabilitation group and routine rehabilitation group, the early rehabilitation group began the rehabilitation training 2 d after cerebral hemorrhage condition was stabilized, and routine rehabilitation group began the rehabilitation training 14 d after cerebral hemorrhage. Serum contents of oxygen free radicals, nerve injury markers and neurotrophic molecules were detected 28 d and 56 d after cerebral hemorrhage. Results: 28 d and 56 d after cerebral hemorrhage, serum MDA, AOPP, 8-OHdG, GFAP, NSE, Tf, Ft and S100B levels of early rehabilitation group were significantly lower than those of routine rehabilitation group while BDNF, NGF, NTF-α and IGF-I levels were significantly higher than those of routine rehabilitation group. Conclusion: Early rehabilitation training combined with edaravone for cerebral hemorrhage can inhibit the oxygen free radical generation, reduce the degree of nerve injury and improve the neurotrophic state.

  3. Involvement of oxygen free radicals in the respiratory uncoupling induced by free calcium and ADP-magnesium in isolated cardiac mitochondria: comparing reoxygenation in cultured cardiomyocytes.

    Science.gov (United States)

    Meynier, Alexandra; Razik, Hafida; Cordelet, Catherine; Grégoire, Stéphane; Demaison, Luc

    2003-01-01

    Recently, we have observed that the simultaneous application of free calcium (fCa) and ADP-magnesium (Mg) reduced the ADP:O ratio in isolated cardiac mitochondria. The uncoupling was prevented by cyclosporin A, an inhibitor of the permeability transition pore. The purpose of this study was to know if the generation of oxygen free radicals (OFR) is involved in this phenomenon and if it occurs during reoxygenation (Reox) of cultured cardiomyocytes. Cardiac mitochondria were harvested from male Wistar rats. Respiration was assessed in two media with different fCa concentrations (0 or 0.6 microM) with palmitoylcarnitine and ADP-Mg as respiration substrates. The production of Krebs cycle intermediates (KCI) was determined. Without fCa in the medium, the mitochondria displayed a large production of citrate + isocitrate + alpha-ketoglutarate. fCa drastically reduced these KCI and promoted the accumulation of succinate. To know if OFR are involved in the respiratory uncoupling, the effect of 4OH-TEMPO (250 microM), a hydrosoluble scavenger of OFR, was tested. 4OH-TEMPO completely abolished the fCa- and ADP-Mg-induced uncoupling. Conversely, vitamin E contributed to further decreasing the ADP:O ratio. Since no hydrosoluble electron acceptor was added in our experiment, the oxygen free radical-induced oxidized vitamin E was confined near the mitochondrial membranes, which should reduce the ADP:O ratio by opening the permeability transition pore. The generation of OFR could result from the matrix accumulation of succinate. Taken together, these results indicate that mitochondrial Ca uptake induces a slight increase in membrane permeability. Thereafter, Mg enters the matrix and, in combination with Ca, stimulates the isocitrate and/or alpha-ketoglutarate dehydrogenases. Matrix succinate favors oxygen free radical generation that further increases membrane permeability and allows respiratory uncoupling through proton leakage. To determine whether the phenomenon takes place

  4. Free Radical Chemistry of Disinfection Byproducts 1: Kinetics of Hydrated Electron and Hydroxyl Radical Reactions with Halonitromethanes in Water

    International Nuclear Information System (INIS)

    B. J. Mincher; R. V. Fox; S. P. Mezyk; T. Helgeson; S. K. Cole; W. J. Cooper; P. R. Gardinali

    2006-01-01

    Halonitromethanes are disinfection-byproducts formed during ozonation and chlorine/chloramine treatment of waters that contain bromide ion and natural organic matter. In this study, the chemical kinetics of the free-radical-induced degradations of a series of halonitromethanes were determined. Absolute rate constants for hydroxyl radical, OH, and hydrated electron, e aq - , reaction with both chlorinated and brominated halonitromethanes were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M -1 s -1 ), for e aq - /OH, respectively, were the following: chloronitromethane (3.01 ± 0.40) x 10 10 /(1.94 ± 0.32) x 10 8 ; dichloronitromethane (3.21 ± 0.17) x 10 10 /(5.12 ± 0.77) x 10 8 ; bromonitromethane (3.13 ± 0.06) x 10 10 /(8.36 ± 0.57) x 107; dibromonitromethane (3.07 ± 0.40) x 10 10 /(4.75 ± 0.98) x 10 8 ; tribromonitromethane (2.29 ± 0.39) x 10 10 /(3.25 ± 0.67) x 10 8 ; bromochloronitromethane (2.93 ± 0.47) x 10 10 /(4.2 ± 1.1) x 10 8 ; bromodichloronitromethane (2.68 ± 0.13) x 10 10 /(1.02 ± 0.15) x 10 8 ; and dibromochloronitromethane (2.95 ± 0.43) x 10 10 /(1.80 ± 0.31) x 10 8 at room temperature and pH ∼7. Comparison data were also obtained for hydroxyl radical reaction with bromoform (1.50 ± 0.05) x 10 8 , bromodichloromethane (7.11 ± 0.26) x 10 7 , and chlorodibromomethane (8.31 ± 0.25) x 10 7 M -1 s -1 , respectively. These rate constants are compared to recently obtained data for trichloronitromethane and bromonitromethane, as well as to other established literature data for analogous compounds

  5. Single-electron transfer living radical copolymerization of SWCNT-g-PMMA via graft from approach

    Czech Academy of Sciences Publication Activity Database

    Jaisankar, S. N.; Haridharan, N.; Murali, A.; Ponyrko, Sergii; Špírková, Milena; Mandal, A. B.; Matějka, Libor

    2014-01-01

    Roč. 55, č. 13 (2014), s. 2959-2966 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : single electron transfer * single-walled carbon nanotubes * controlled radical polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.562, year: 2014

  6. Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides

    DEFF Research Database (Denmark)

    Savitski, Mikhail M; Kjeldsen, Frank; Nielsen, Michael L

    2007-01-01

    Hydrogen rearrangement is an important process in radical chemistry. A high degree of H. rearrangement to and from z. ionic fragments (combined occurrence frequency 47% compared with that of z.) is confirmed in analysis of 15,000 tandem mass spectra of tryptic peptides obtained with electron...

  7. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    International Nuclear Information System (INIS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-01-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable. - Highlights: → We identified the radical components in irradiated black pepper skin and core. → The ESR spectra near g=2.005 with 3-7 lines were emerged after irradiation. → Spectra simulated basing on the content and the stability of radical from the plant constituents. → Cellulose radical component in black pepper skin was highly stable. → Single signal near g=2.005 was the most stable in black pepper core.

  8. Asymmetric recombination and electron spin relaxation in the semiclassical theory of radical pair reactions

    International Nuclear Information System (INIS)

    Lewis, Alan M.; Manolopoulos, David E.; Hore, P. J.

    2014-01-01

    We describe how the semiclassical theory of radical pair recombination reactions recently introduced by two of us [D. E. Manolopoulos and P. J. Hore, J. Chem. Phys. 139, 124106 (2013)] can be generalised to allow for different singlet and triplet recombination rates. This is a non-trivial generalisation because when the recombination rates are different the recombination process is dynamically coupled to the coherent electron spin dynamics of the radical pair. Furthermore, because the recombination operator is a two-electron operator, it is no longer sufficient simply to consider the two electrons as classical vectors: one has to consider the complete set of 16 two-electron spin operators as independent classical variables. The resulting semiclassical theory is first validated by comparison with exact quantum mechanical results for a model radical pair containing 12 nuclear spins. It is then used to shed light on the spin dynamics of a carotenoid-porphyrin-fullerene triad containing considerably more nuclear spins which has recently been used to establish a “proof of principle” for the operation of a chemical compass [K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore, Nature (London) 453, 387 (2008)]. We find in particular that the intriguing biphasic behaviour that has been observed in the effect of an Earth-strength magnetic field on the time-dependent survival probability of the photo-excited C ·+ PF ·− radical pair arises from a delicate balance between its asymmetric recombination and the relaxation of the electron spin in the carotenoid radical

  9. Effects of exogenous oxygen derived free radicals on myocardial capillary permeability, vascular tone, and incidence of ventricular arrhythmias in the canine heart

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Bjerrum, P J

    1992-01-01

    The aim was to examine the effects of exogenous oxygen derived free radicals on myocardial capillary permeability for a small hydrophilic indicator, postischaemic vascular tone, and the occurrence of arrhythmias in the canine heart in vivo.......The aim was to examine the effects of exogenous oxygen derived free radicals on myocardial capillary permeability for a small hydrophilic indicator, postischaemic vascular tone, and the occurrence of arrhythmias in the canine heart in vivo....

  10. Inactivation of catalase by free radicals derived from oxygen via gamma radiolysis

    International Nuclear Information System (INIS)

    Malhaire, J.P.; Gardes-Albert, M.; Ferradini, C.; Sabourault, D.; Ribiere, C.

    1991-01-01

    The inactivation of catalase (10 -5 mol/l) by OH· or OH·/O 2 - · free radicals, at pH 7.4, has been investigated using γ radiolysis with doses up to 9000 Gy. Maxima initial G-values of catalase inactivation have been determined. These values are inferior to those of the free radicals OH· and O 2 - · produced by water radiolysis. Nevertheless, the presence of O 2 /O 2 - · enhances the inactivation due to OH· radicals. The general shape of the inactivation curves as a function of the radiation dose is biphasic: an initial rapid phase (from 0 to ∼ 500 Gy) followed by a slow phase (from ∼ 500 to 9000 Gy). The addition of H 2 O 2 at the beginning of irradiation decreases the inactivation yield by OH· radicals. This phenomenon could be due to the formation of compound-I (catalase-H 2 O 2 ) which would be less sensitive towards OH· radicals than catalase. In the presence of 0.1 mol/l ethanol, catalase (5 x 10 -6 mol/l) is not inactived by O 2 - · and RO 2 · (from ethanol) radicals for an irradiation dose of 2000 Gy, implying a complete protecting effect by ethanol [fr

  11. Abstraction of iodine from aromatic iodides by alkyl radicals: steric and electronic effects.

    Science.gov (United States)

    Dolenc, Darko; Plesnicar, Bozo

    2006-10-13

    Abstraction of the iodine atom from aryl iodides by alkyl radicals takes place in some cases very efficiently despite the unfavorable difference in bond dissociation energies of C-I bonds in alkyl and aryl iodides. The abstraction is most efficient in iodobenzenes, ortho-substituted with bulky groups. The ease of abstraction can be explained by the release of steric strain during the elimination of the iodine atom. The rate of abstraction correlates fairly well with the strain energy, calculated by density functional theory (DFT) and Hartree-Fock (HF) methods as a difference in the total energy of ortho and para isomers. However, besides the steric bulk, the presence of some other functional groups in an ortho substituent also influences the rate. The stabilization of the transition state, resembling a 9-I-2 iodanyl radical, by electron-withdrawing groups seems to explain a positive sign of the Hammett rho value in the radical abstraction of halogen atoms.

  12. Detection of organic free radicals in irradiated pepper by electron spin resonance

    International Nuclear Information System (INIS)

    Ukai, Mitsuko; Shimoyama, Yuhei

    2002-01-01

    Using electron spin resonance (ESR) spectroscopy, we revealed various free radicals in a Japanese commercially available black pepper before and after γ-irradiation. The representative ESR spectrum of the pepper is composed of a sextet centered at g=2.0, a singlet at the same g-value and a singlet at g=4.0. The first one is attributable to a signal with hyperfine interactions of Mn 2+ ion (7.4 mT). The second one is due to an organic free radical. The third one may be originated from Fe 3+ ion of the non-hem Fe in proteins. A pair of signals appeared in the black pepper after γ-irradiation. The progressive saturation behavior reconfirmed the signal identification for the radicals in the black pepper. (author)

  13. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  14. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning.

    Science.gov (United States)

    Matsuzaki, Satoshi; Szweda, Pamela A; Szweda, Luke I; Humphries, Kenneth M

    2009-11-30

    Excessive production of free radicals by mitochondria is associated with, and likely contributes to, the progression of numerous pathological conditions. Nevertheless, the production of free radicals by the mitochondria may have important biological functions under normal or stressed conditions by activating or modulating redox-sensitive cellular signaling pathways. This raises the intriguing possibility that regulated mitochondrial free radical production occurs via mechanisms that are distinct from pathologies associated with oxidative damage. Indeed, the capacity of mitochondria to produce free radicals in a limited manner may play a role in ischemic preconditioning, the phenomenon whereby short bouts of ischemia protect from subsequent prolonged ischemia and reperfusion. Ischemic preconditioning can thus serve as an important model system for defining regulatory mechanisms that allow for transient, signal-inducing, production of free radicals by mitochondria. Defining how these mechanism(s) occur will provide insight into therapeutic approaches that minimize oxidative damage without altering normal cellular redox biology. The aim of this review is to present and discuss evidence for the regulated production of superoxide by the electron transport chain within the ischemic preconditioning paradigm of redox regulation.

  15. Free radicals imaged in vivo in the rat by using proton-electron double-resonance imaging

    International Nuclear Information System (INIS)

    Lurie, D.J.; Nicholson, Ian; Foster, M.A.; Mallard, J.R.

    1990-01-01

    A new technique called proton-electron double-resonance imaging is described for imaging free radicals in aqueous samples. The method is a combination of proton NMR imaging with nuclear electron double resonance. The results of using this technique to image free radicals in vivo in the rat are presented. Rats were injected intravenously with a nitroxide free radical solution and a series of images was obtained from which the clearance of the free radical through the liver and kidneys could be observed. (author)

  16. Esterified dendritic TAM radicals with very high stability and enhanced oxygen sensitivity.

    Science.gov (United States)

    Song, Yuguang; Liu, Yangping; Hemann, Craig; Villamena, Frederick A; Zweier, Jay L

    2013-02-15

    In this work, we have developed a new class of dendritic TAM radicals (TG, TdG, and dTdG) through a convergent method based on the TAM core CT-03 or its deuterated analogue dCT-03 and trifurcated Newkome-type monomer. Among these radicals, dTdG exhibits the best EPR properties with sharpest EPR singlet and highest O(2) sensitivity due to deuteration of both the ester linker groups and the TAM core CT-03. Like the previous dendritic TAM radicals, these new compounds also show extremely high stability toward various reactive species owing to the dendritic encapsulation. The highly charged nature of these molecules resulting from nine carboxylate groups prevents concentration-dependent EPR line broadening at physiological pH. Furthermore, we demonstrate that these TAM radicals can be easily derivatized (e.g., PEGylation) at the nine carboxylate groups and the resulting PEGylated analogue dTdG-PEG completely inhibits the albumin binding, thereby enhancing suitability for in vivo applications. These new dendritic TAM radicals show great potential for in vivo EPR oximetric applications and provide insights on approaches to develop improved and targeted EPR oximetric probes for biomedical applications.

  17. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.

    2017-01-01

    Laccases (EC 1.10.3.2) catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...... to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047–2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin...... for the radical formation rate in organosolv lignin was determined by response surface methodology to pH 4.8, 33 °C and pH 5.8, 33 °C for the Tv laccase and the Mt laccase, respectively. The results verify direct radical formation action of fungal laccases on lignin without addition of mediators and the EPR...

  18. The scavenging of free radical and oxygen species activities and hydration capacity of collagen hydrolysates from walleye pollock ( Theragra chalcogramma) skin

    Science.gov (United States)

    Zhuang, Yongliang; Li, Bafang; Zhao, Xue

    2009-06-01

    Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock ( Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.

  19. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  20. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu; Aly, Shawkat Mohammede; Usman, Anwar; Parida, Manas R.; Del Gobbo, Silvano; Alarousu, Erkki; Mohammed, Omar F.

    2015-01-01

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  1. Intramolecular transformation of thiyl radicals to α-aminoalkyl radicals: 'ab initio' calculations on homocystein

    International Nuclear Information System (INIS)

    Chhun, S.; Berges, J.; Bleton, V.; Abedinzadeh, Z.

    2000-01-01

    One-electron oxidation of thiols by oxidizing radicals leads to the formation of thiyl radical and carbon-centered radicals. It has been shown experimentally that in the absence of oxygen, the thiyl radicals derived from certain thiols of biological interest such as glutathion, cysteine and homocysteine decay rapidly by intramolecular rearrangement reactions into the carbon-centered radical. In the present work we have investigated theoretically the structure and the stability of thiyl and carbon-centered radicals of homocysteine in order to check the possibility of this rearrangement. (author)

  2. DFT and time-resolved IR investigation of electron transfer between photogenerated 17- and 19-electron organometallic radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James B.; Kling, Matthias F.; Sawyer, Karma R.; Andersen, Lars K.; Harris, Charles B.

    2008-04-30

    The photochemical disproportionation mechanism of [CpW(CO){sub 3}]{sub 2} in the presence of Lewis bases PR{sub 3} was investigated on the nano- and microsecond time-scales with Step-Scan FTIR time-resolved infrared spectroscopy. 532 nm laser excitation was used to homolytically cleave the W-W bond, forming the 17-electron radicals CpW(CO){sub 3} and initiating the reaction. With the Lewis base PPh{sub 3}, disproportionation to form the ionic products CpW(CO){sub 3}PPh{sub 3}{sup +} and CpW(CO){sub 3}{sup -} was directly monitored on the microsecond time-scale. Detailed examination of the kinetics and concentration dependence of this reaction indicates that disproportionation proceeds by electron transfer from the 19-electron species CpW(CO){sub 3}PPh{sub 3} to the 17-electron species CpW(CO){sub 3}. This result is contrary to the currently accepted disproportionation mechanism which predicts electron transfer from the 19-electron species to the dimer [CpW(CO){sub 3}]{sub 2}. With the Lewis base P(OMe){sub 3} on the other hand, ligand substitution to form the product [CpW(CO){sub 2}P(OMe){sub 3}]{sub 2} is the primary reaction on the microsecond time-scale. Density Functional Theory (DFT) calculations support the experimental results and suggest that the differences in the reactivity between P(OMe){sub 3} and PPh{sub 3} are due to steric effects. The results indicate that radical-to-radical electron transfer is a previously unknown but important process for the formation of ionic products with the organometallic dimer [CpW(CO){sub 3}]{sub 2} and may also be applicable to the entire class of organometallic dimers containing a single metal-metal bond.

  3. Evaluation by electronic paramagnetic resonance of the number of free radicals produced in irradiated rat bone

    International Nuclear Information System (INIS)

    Marble, G.; Valderas, R.

    1966-01-01

    The number of long half-life free radicals created by gamma irradiation in the bones of the rat has been determined from the electrons paramagnetic resonance spectrum. This number decreases slowly with time (calculated half life: 24 days). It is proportional to the dose of gamma radiation given to the rat. The method could find interesting applications in the field of biological dosimetry. (authors) [fr

  4. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Junchao Yu

    Full Text Available Hyperbaric oxygen (HBO therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS, breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2 can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  5. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.

    Science.gov (United States)

    Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M

    2011-12-20

    The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.

  6. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    Science.gov (United States)

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to

  7. Insertion of molecular oxygen into a palladium(II) methyl bond: a radical chain mechanism involving palladium(III) intermediates.

    Science.gov (United States)

    Boisvert, Luc; Denney, Melanie C; Hanson, Susan Kloek; Goldberg, Karen I

    2009-11-04

    The reaction of (bipy)PdMe(2) (1) (bipy = 2,2'-bipyridine) with molecular oxygen results in the formation of the palladium(II) methylperoxide complex (bipy)PdMe(OOMe) (2). The identity of the product 2 has been confirmed by independent synthesis. Results of kinetic studies of this unprecedented oxygen insertion reaction into a palladium alkyl bond support the involvement of a radical chain mechanism. Reproducible rates, attained in the presence of the radical initiator 2,2'-azobis(2-methylpropionitrile) (AIBN), reveal that the reaction is overall first-order (one-half-order in both [1] and [AIBN], and zero-order in [O(2)]). The unusual rate law (half-order in [1]) implies that the reaction proceeds by a mechanism that differs significantly from those for organic autoxidations and for the recently reported examples of insertion of O(2) into Pd(II) hydride bonds. The mechanism for the autoxidation of 1 is more closely related to that found for the autoxidation of main group and early transition metal alkyl complexes. Notably, the chain propagation is proposed to proceed via a stepwise associative homolytic substitution at the Pd center of 1 with formation of a pentacoordinate Pd(III) intermediate.

  8. One- or two-electron water oxidation, hydroxyl radical, or H_2O_2 evolution

    International Nuclear Information System (INIS)

    Siahrostami, Samira; Li, Guo-Ling; Viswanathan, Venkatasubramanian; Nørskov, Jens K.

    2017-01-01

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H_2O_2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O_2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H_2O_2, and O_2.

  9. Diode laser spectroscopy of oxygen electronic band at 760 nm

    International Nuclear Information System (INIS)

    Lucchesini, A.; De Rosa, M.; Gozzini, S.

    1998-01-01

    Collisional broadening and shift coefficients have been obtained by analyzing the line shapes of oxygen absorptions in the 760 nm electronic band. By using a diode laser spectrometer with commercially available etherostructure Al x Ga 1-x As diode lasers operating in 'free-running mode', line shape parameters have been collected at room temperature by varying the gas pressure. A systematic study has been carried on seven absorption lines by scanning the diode laser emission wavelength around the gas resonances. The weak absorption lines have been detected by using the wavelength modulation (WM) spectroscopy technique with second-harmonic detection

  10. Pulse radiolysis study of reaction of bull serum albumin electron adduct with oxygen. Polychromatic kinetics of reaction with adsorbed oxygen

    International Nuclear Information System (INIS)

    Pribush, A.G.

    1986-01-01

    By the method of pulse radiolysis the reaction of bull serum albumin electron adduct with oxygen is investigated. As pulsed radiation source electron linear accelerators with particle energy of 8.0 and 4.5 MeV and pulse time of 40 ns and 2.2 μs, respectively have been used. It is assumed that the disappearance of protein electron adduct occurs in the course of its interaction with oxygen adsorbed on protein globular molecule

  11. Reaction between aminoalkyl radicals and akyl halides: Dehalogenation by electron transfer?

    Science.gov (United States)

    Lalevée, J.; Fouassier, J. P.; Blanchard, N.; Ingold, K. U.

    2011-07-01

    Aminoalkyl radicals, such as Et2NCrad HCH3, have low oxidation potentials and are therefore powerful reducing agents. We have found that Et2NCrad HCH3 reacts with CCl4 and CBr4 in di-tert-butyl peroxide with bimolecular rate constants (measured by LFP) close, or equal, to the diffusion-controlled limit. For the less reactive halide, CH2Br2, the reaction rate is increased substantially by the addition of acetonitrile as a co-solvent. It is tentatively concluded that these reactions occur by electron-transfer from the aminoalkyl to the organohalide with formation of the iminium ion, Et2N+dbnd CHCH3 (NMR detection), halide ion and a halomethyl radical, e.g., rad CCl3 and rad CHCl2 (ESR, spin-trapping detection).

  12. Suppression of Raman electron spin relaxation of radicals in crystals. Comparison of Cu2+ and free radical relaxation in triglycine sulfate and Tutton salt single crystals.

    Science.gov (United States)

    Hoffmann, S K; Goslar, J; Lijewski, S

    2011-08-31

    Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.

  13. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    Directory of Open Access Journals (Sweden)

    Marek Rác

    Full Text Available The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules.

  14. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.

    Science.gov (United States)

    Dikalov, Sergey I; Polienko, Yuliya F; Kirilyuk, Igor

    2018-05-20

    Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.

  15. Electron mobility enhancement in (100) oxygen-inserted silicon channel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nuo; King Liu, Tsu-Jae [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Takeuchi, Hideki; Hytha, Marek; Cody, Nyles W.; Stephenson, Robert J.; Mears, Robert J. [Mears Technologies, Inc., Wellesley Hills, Massachusetts 02481 (United States); Kwak, Byungil; Cha, Seon Yong [SK Hynix, Icheon-si, Gyeonggi-do 467-701 (Korea, Republic of)

    2015-09-21

    High performance improvement (+88% in peak G{sub m} and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at N{sub inv} = 4.0 × 10{sup 12} cm{sup −2} and +25% at N{sub inv} = 8.0 × 10{sup 12} cm{sup −2}). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.

  16. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus

    NARCIS (Netherlands)

    Mols, J.M.; Pier, I.; Zwietering, M.H.; Abee, T.

    2009-01-01

    Both the growth and stress survival of two model Bacillus cereus strains, ATCC 14579 and ATCC 10987, were tested in three different conditions varying in oxygen availability, i.e., aerobic, microaerobic and anaerobic conditions. Both B. cereus strains displayed highest growth rates and yields under

  17. Radiation-induced damage in E. coli B: The effect of superoxide radicals and molecular oxygen. Progress report, December 1, 1978--November 30, 1979

    International Nuclear Information System (INIS)

    Samuni, A.; Czapski, G.

    The roles of superoxide radicals and of molecular oxygen in the radiodamage of E. coli B suspended in dilute phosphate buffer were studied. The presence of high concentrations of polyethylene glycol in the γ-irradiated cell suspensions, had no effect on bacterial radiosensitivity. This indicates that the damage was primarily endogenous, i.e. originated intracellularly. Saturation of the cell suspensions with N 2 O doubled the radiosensitivity, thus indicating that OH radicals are responsible for the majority of the damage (indirect radiation effect). The presence of oxygen either in the absence or presence of N 2 O brought about roughly a three-fold increase in the radiosensitivity. Since in the presence of N 2 O all e - /sub aq/ are scavenged by the nitrous oxide rather than by oxygen, this shows that superoxide radicals play no role in the bacterial radiodamage. Our results substantiate the attribution of the oxygen effect to a direct interaction of O 2 with the hydroxyl-radical-damaged sites on vital biomolecules, and exclude any significant contribution of e - /sub aq/ and superoxide radicals to the cellular radiodamage

  18. Carp head kidney leukocytes display different patterns of oxygen radical production after stimulation with PAMPs and DAMPs

    DEFF Research Database (Denmark)

    Jiménez, Natalia Ivonne Vera; Nielsen, Michael Engelbrecht

    2013-01-01

    . Consistent with a pathogen eradication strategy, ROS responses to PAMP stimulation (β-glucan) was fast, vigorous and highly dominated by production of superoxide anion. In contrast, stimulation with DAMPs led to a slow, subtle but long-lasting production of oxygen radicals dominated by hydrogen peroxide....... Using an in vitro model of scratch-wounded CCB fibroblast cell cultures and a novel PhotoID proliferation assay, stimulation with low and continuous levels of hydrogen peroxide (5μM) led to a slight increase in the percentage of wound recovery and thus promoted wound closure. In contrast, high doses...... and thereby potential tissue damage. Direct in vitro stimulation with β-glucans did not impact fibroblast scratch-wound recovery, which further suggests that interaction with tissue-resident leukocytes or other components of the fish immune system are required to induce fibroblast proliferation and thus...

  19. Electron transfer rates and equilibria between substituted phenoxide ions and phenoxyl radicals

    International Nuclear Information System (INIS)

    Steenken, S.; Neta, P.

    1979-01-01

    The rate constants for electron transfer from a series of substituted isomeric dihydroxy- and diaminobenzenes to different substituted phenoxyl radicals were measured by observing the decay or buildup of one of the radicals invoved. In many cases the electron transfer reactions were reversible and the equilibrium constants could be calculated from the individual rate constants for attainment of equilibrium and from the concentrations of the species involved at equilibrium. From the equilibrium constants the one-electron redox potentials for 15 individual Q - ./Q 2- pairs were determined, using the value for hydroquinone (23 mV at pH 13.5) as a reference. The potential for catechol (43 mV) is near that of hydroquinone; resorcinol is oxidized much less readily (300 mV), while phenol is even a weaker reductant (>500mV). Methyl, methoxy, and hydroxy substituents decrease the redox potentials while acetyl and carboxyl substituents increase these values. Ascorbate has a potential (15mV) similar to that of hydroquinone, while TMPD (82mV) and p-phenylenediamine (183mV) are less easily oxidized

  20. Dose distribution of chest wall electron beam radiotherapy for patients with breast cancer after radical mastectomy

    International Nuclear Information System (INIS)

    Cong Yetong; Chen Dawei; Bai Lan; Zhou Yinhang; Piao Yongfeng; Wang Xi; Qu Yaqin

    2006-01-01

    Objective: To study the dose distribution of different bolus after different energy electron beam irradiation to different chest wall radiotherapy for the patients with breast cancer. Methods: The paper simulated the dose distribution of women's left breast cancer after radical mastectomy by 6 and 9 MeV electron beam irradiation, and TLD was used to measure. Results: The dose of skin became higher and the dose of lung was less when 0.5 and 1.0 cm bolus were used on the body; with the increasing of the energy of electron beam, the high dose field became larger; and with the same energy of electron beam, the high dose field moved to surface of the body when the bolus was thicker. Conclusion: When different energy electron ray irradiates different thickness bolus, the dosage of skin surface increases and the dosage of anterior margin of lung reduces. With electron ray energy increasing, the high dosage field is widen, when the electron ray energy is identity, the high dosage field migrates to the surface after adding bolus. Using certain depth bolus may attain the therapeutical dose of target area. (authors)

  1. Total cross section for chloroflouromethanes and CClx radicals by electron impact

    International Nuclear Information System (INIS)

    Gupta, Dhanoj; Antony, Bobby

    2013-01-01

    Highlights: ► A model to find total CS for freons and CCl x by e − impact is employed. ► Complex optical potential formalism is used to find total inelastic and elastic CS. ► Result shows very good agreement with previous data wherever available. ► Maiden attempt to find cross section for the CCl x radicals. -- Abstract: We report here the total cross section for chloroflouromethanes namely CCl 3 F (Freon 11), CCl 2 F 2 (Freon 12), CClF 3 (Freon 13), CCl 4 and CCl x (x = 1–3), radicals by electron impact 50 to 5000 eV. The total inelastic and elastic cross sections are obtained employing a complex optical potential formalism and solving the Schrödinger equation through partial wave analysis. The total cross section is obtained as the sum of total inelastic and elastic cross sections. The results obtained are compared with the existing experimental and theoretical data, wherever available. The present result shows reasonable agreement with previous data. For the CCl x radicals, we have predicted the total cross sections for the first time. The data reported here has immense interest to atmospheric and technological plasma modelling

  2. One electron oxidation of Ni(II)-iminodiacetate by carbonate radical

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.; Bhattacharyya, S.N.

    1995-01-01

    Reactions of carbonate radical (CO 3 - ), generated by photolysis or by radiolysis of a carbonate solution with nickel(II)-iminodiacetate (Ni(II)IDA) were studied at pH 10.5 and ionic strength (I)=0.2 mol x dm -3 . The stable product arising from the ligand degradation in the complex is mainly glyoxalic acid. Time-resolved spectroscopy and transient kinetics were studied using flash photolysis. From the kinetic data it was suggested that the carbonate radical initially reacts with Ni(III)IDA with a rate constant (2.4.±0.4) x 10 6 dm 3 x mol -1 x s -1 to form a Ni(II)IDA species which, however, undergoes a first-order transformation (k=2.7 x 10 2 x s -1 ) to give a radical intermediate of the type Ni(II)RNHCHCO - 2 ) which rapidly forms an adduct containing a Ni-C bond. This adduct decays very slowly to give rise to glyoxalic acid. From a consideration of equilibrium between Ni(II)IDA and Ni(III)IDA, the one electron reduction potential for the Ni(III)IDA/Ni(II)IDA couple was determined to be 1.467 V. (author) 30 refs.; 5 figs

  3. Electron spin resonance study on γ-ray-induced ethyl radical in ethane hydrate

    International Nuclear Information System (INIS)

    Takeya, Kei; Nango, Kouhei; Sugahara, Takeshi; Ohgaki, Kazunari; Tani, Atsushi; Ito, Hironori; Okada, Michio; Kasai, Toshio

    2007-01-01

    Electron spin resonance (ESR) studies have been performed to investigate radicals induced in ethane hydrate irradiated by γ-rays at 77K. Two ESR spectra are observed and identified as the induced ethyl radical (g=2.0031±0.0005, A α sub(perpendicular)=2.2±0.1mT, A α sub(parallel)=2.5±0.1mT, A β =2.7±0.1mT) and induced atomic hydrogen (g=2.0026±0.0005, A=50.5±0.1mT). From the results of ESR analysis and gas mass spectroscopy, it is concluded that the ethyl radical decays into butane by dimerization in the first-order reaction in the temperature region of 250-265K. The activation energy of the decay reaction is 73.1±6.3kJ/mol, which is near the dissociation enthalpy change of ethane hydrate to liquid water and gaseous ethane. This finding implies that ethane hydrate does not dissociate into ice but supercooled water in the present temperature region, similar to the dissociation of methane hydrate in our previous study. (author)

  4. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Ikuo; Takahashi, Hitoshi (Kumamoto Univ. Medical School (Japan). Inst. for Medical Immunology)

    1992-01-01

    Degradation of methyl mercury (MeHg) and ethyl Hg (EtHg) with reactive oxygens was studied in vitro by using peroxidase-hydrogen peroxide (H{sub 2}O{sub 2})-halide and rose bengal-ultraviolet light A systems. For this purpose, the direct determination method for inorganic Hg was employed. Both systems could effectively degrade EtHg, and MeHg to some extent. Degradation of MeHg and EtHg with the myeloperoxidase (MPO)-H{sub 2}O{sub 2}-chloride system was inhibited by MPO inhibitors (cyanide and azide), catalase, hypochlorous acid (HOCl) scavengers (glycine, alanine, serine and taurine), 1,4-diazabicyclo(2,2,2)octane and 2,5-dimethylfuran, but not by hydroxyl radical scavengers (ethanol and mannitol). Iodide was more effective than chloride as the halide component. Lactoperoxidase (LPO) could substitute for MPO in the iodide, but not the chloride system. With MPO-H{sub 2}O{sub 2}-chloride, MPO-H{sub 2}O{sub 2}-iodide and LPO-H{sub 2}O{sub 2}-iodide systems, we observed the increased degradation of EtHg in deuterium oxide (D{sub 2}O) medium better than that in H{sub 2}O medium. The D{sub 2}O effect upon MeHg degradation was extremely weak. These results suggested that HOCl (or HOI) might be also capable of degrading MeHg and EtHg, besides the hydroxyl radical already reported by us. Singlet oxygen could degrade EtHg but not MeHg. (orig.).

  5. Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition

    International Nuclear Information System (INIS)

    Henglein, A.

    1979-01-01

    Organic free radicals of high negative redox potential such as α-alcohol radicals were found to transfer electrons to colloidal silver particles stabilized by sodium dodecyl sulfate in aqueous solution. The colloidal particles thus became a pool of stored electrons that could reduce water to form hydrogen or react with suitable acceptors in solution. The organic radicals were produced by irradiation, using suitable scavengers for the primary radicals from the radiolysis of the aqueous solvent. The solutions initially contained silver ions at 1 x 10 -4 - 2 x 10 -3 M. At doses below 10 5 rd, the silver ions were completely reduced to form the colloidal catalyst. In this dose range, the corresponding hydrogen yield amounted to 1 molecule per 100 eV. It increased steeply at higher doses up to 3 molecules per 100 eV. The H 2 yield decreased with increasing dose rate and with increasing pH in alkaline solutions. It was highest at a concentration of sodium dodecyl sulfate of 1 x 10 -3 M, i.e., far below the critical micelle concentration of this surfactant. Changes in the absorption spectrum of the colloid are attributed to changes in the size of the silver particles upon charging up with electrons. The competition of radical-colloid reactions with radical-radical deactivation in the bulk of solution or at the surface of the colloidal particles is also discussed. 11 figures

  6. Electron stimulated desorption study of oxygen adsorption on tungsten

    International Nuclear Information System (INIS)

    Prince, R.H.; Floyd, G.R.

    1978-01-01

    The adsorption of oxygen on a polycrystalline tungsten surface at approximately 800 K has been studied by means of electron stimulated desorption (ESD). Although precision gas dosing was not employed, the initial sticking probability for dissociative adsorption appears to be essentially unity, while the variation with coverage suggests that a high degree of order exists and that precursor state kinetics are significant. A most noticeable and reproducible discontinuity in ESD parameters occurs at a fractional coverage theta approximately 0.8 (exposure approximately 1.4 X 10 15 molecules/cm 2 incident) which is interpreted as an order-disorder transition within a single (β 1 ) chemisorption state, and results in an increase in the ionic desorption cross-section by a factor of approximately 1.26. A discussion of the adsorption kinetics and the disorder transition is given in terms of current models of dissociative adsoption which include the effects of nearest neighbour lateral interactions. (Auth.)

  7. An Experimental and Quantum Chemical Study of the Electronic Spectrum of the HBCl Free Radical

    Science.gov (United States)

    Gharaibeh, Mohammed A.; Nagarajan, Ramya; Clouthier, Dennis J.; Tarroni, Ricardo

    2012-06-01

    The chloroborane (HBCl) free radical has a complex electronic spectrum in the visible that involves a transition from a bent ground state to a linear excited state, both of which are the Renner-Teller components of what would be a ^2π state at linearity. We have used the synchronous-scan LIF and single vibronic level emission techniques to untangle the many overlapping vibronic bands and assign upper state K quantum numbers for jet-cooled HBCl and DBCl. The radicals were produced in a pulsed electric discharge jet using a precursor mixture of boron trichloride (BCl_3) and hydrogen or deuterium in high-pressure argon. As an important aid to understanding the data, the ground and excited state high level ab initio potential energy surfaces (PES) have been calculated and the vibrational levels obtained variationally. The calculated ground state levels are in excellent agreement with the emission data validating the quality of the PES. Aside from an approximately 100 cm-1 shift in the upper state electronic term value, the calculated excited state vibrational energy levels and isotope shifts match the LIF data very well, allowing the observed bands to be assigned with confidence.

  8. Effects of scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation

    International Nuclear Information System (INIS)

    Henderson, B.W.; Miller, A.C.

    1986-01-01

    The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H 2 O 2 . The addition of catalase, which prevents H 2 O 2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O 2 , acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H 2 O 2 , was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species

  9. Electron affinities, molecular structures, and thermochemistry of the fluorine, chlorine and bromine substituted methyl radicals

    Science.gov (United States)

    Li, Qian-Shu; Zhao, Jun-Fang; Xie, Yaoming; Schaefer, Henry F., III

    Four independent density functional theory (DFT) methods have been employed to study the structures and electron affinities of the methyl and F-, Cl- and Br-substituted methyl radicals and their anions. The methods used have been carefully calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews, 2002, 102, 231). The first dissociation energies together with the vibrational frequencies of these species are also reported. The basis sets used in this work are of double- ζ plus polarization quality with additional s- and p-type diffuse functions, labelled as DZP++. Previously observed trends in the prediction of bond lengths by the DFT methods are also demonstrated for the F-, Cl- and Br-substituted methyl radicals and their anions. Generally, the Hartree-Fock/DFT hybrid methods predict shorter and more reliable bond lengths than the pure DFT methods. Neutral-anion energy differences reported in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Compared with the available experimental electron affinities, the BHLYP method predicts much lower values, while the other methods predict values (EAad, EAvert, VDE) close to each other and almost within the experimental range. For those systems without reliable experimental measurements, our best adiabatic EAs predicted by BLYP are 0.78 (CHF2), 1.23 (CHFCl), 1.44 (CHFBr), 1.61 (CHClBr), 2.24 (CF2Cl), 2.42 (CF2Br), 2.56 (CFBr2), 2.36 (CCl2Br), 2.46 (CClBr2), and 2.44 eV (CFClBr). The most striking feature of these predictions is that they display an inverse relationship between halogen electronegativity and EA. The DZP++ B3LYP method determines the vibrational frequencies in best agreement with available experimental results for this series, with an average relative error of ~2%. The value of using a variety of DFT methods is observed in that BHLYP does best for geometries, BLYP for electron

  10. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia.

    Science.gov (United States)

    Prabhakar, Nanduri R; Peng, Ying-Jie; Yuan, Guoxiang; Nanduri, Jayasri

    2018-05-01

    Sleep apnea is a prevalent respiratory disease characterized by periodic cessation of breathing during sleep causing intermittent hypoxia (IH). Sleep apnea patients and rodents exposed to IH exhibit elevated sympathetic nerve activity and hypertension. A heightened carotid body (CB) chemoreflex has been implicated in causing autonomic abnormalities in IH-treated rodents and in sleep apnea patients. The purpose of this article is to review the emerging evidence showing that interactions between reactive oxygen species (ROS) and gaseous transmitters as a mechanism cause hyperactive CB by IH. Rodents treated with IH exhibit markedly elevated ROS in the CB, which is due to transcriptional upregulation of pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and insufficient transcriptional regulation of anti-oxidant enzymes by HIF-2. ROS, in turn, increases cystathionine γ-lyase (CSE)-dependent H 2 S production in the CB. Blockade of H 2 S synthesis prevents IH-evoked CB activation. However, the effects of ROS on H 2 S production are not due to direct effects on CSE enzyme activity but rather due to inactivation of heme oxygenase-2 (HO-2), a carbon monoxide (CO) producing enzyme. CO inhibits H 2 S production through inactivation of CSE by PKG-dependent phosphorylation. During IH, reduced CO production resulting from inactivation of HO-2 by ROS releases the inhibition of CO on CSE thereby increasing H 2 S. Inhibiting H 2 S synthesis prevented IH-evoked sympathetic activation and hypertension.

  11. Biphasic effect of oxygen radicals on prostaglandin production by rat mesangial cells

    International Nuclear Information System (INIS)

    Adler, S.; Stahl, R.A.K.; Baker, P.J.; Chen, Y.P.; Pritzl, P.M.; Couser, W.G.

    1987-01-01

    Cultured rat mesangial cells were exposed to a reactive oxygen species (ROS) generating system (xanthine plus xanthine oxidase) to explore the effect of ROS on their metabolism of arachidonic acid (AA). Cell viability, as assessed by 51 Cr release, was not affected by the concentrations of xanthine plus xanthine oxidase used. Prostaglandin E 2 (PGE 2 ) production following exposure to increasing quantities of xanthine plus xanthine oxidase was significantly decreased when cells were stimulated with the calcium ionophore A23187 or AA. Maximum suppression of production was seen within 10 min of ROS exposure. Thromboxane B 2 production was similarly decreased. This effect was reversed by addition of catalase to the ROS generating system but not by superoxide dismutase or mannitol, which suggested that H 2 O 2 was the responsible metabolite. High levels of H 2 O 2 suppressed PGE 2 production. Lower levels of H 2 O 2 resulted in significant stimulation of base-line PGE 2 production. Analysis of release of 3 H]AA-labeled metabolites from A23187-stimulated cells showed no effect of H 2 O 2 on phospholipase activity. Thus ROS can stimulate or inhibitor AA metabolism in the glomerular mesangium, which may have important effects on glomerular hemodynamics during glomerular injury

  12. Does ibuprofen treatment in patent ductus arteriosus alter oxygen free radicals in premature infants?

    Science.gov (United States)

    Akar, Melek; Yildirim, Tulin G; Sandal, Gonca; Bozdag, Senol; Erdeve, Omer; Altug, Nahide; Uras, Nurdan; Oguz, Serife S; Dilmen, Ugur

    2017-04-01

    Introduction Ibuprofen is used widely to close patent ductus arteriosus in preterm infants. The anti-inflammatory activity of ibuprofen may also be partly due to its ability to scavenge reactive oxygen species and reactive nitrogen species. We evaluated the interaction between oxidative status and the medical treatment of patent ductus arteriosus with two forms of ibuprofen. Materials and methods This study enrolled newborns of gestational age ⩽32 weeks, birth weight ⩽1500 g, and postnatal age 48-96 hours, who received either intravenous or oral ibuprofen to treat patent ductus arteriosus. Venous blood was sampled before ibuprofen treatment from each patient to determine antioxidant and oxidant concentrations. Secondary samples were collected 24 hours after the end of the treatment. Total oxidant status and total antioxidant capacity were measured using Erel's method. This prospective randomised study enrolled 102 preterm infants with patent ductus arteriosus. The patent ductus arteriosus closure rate was significantly higher in the oral ibuprofen group (84.6 versus 62%) after the first course of treatment (p=0.011). No significant difference was found between the pre- and post-treatment total oxidant status and total antioxidant capacity in the groups. Discussion Ibuprofen treatment does not change the total oxidant status or total antioxidant capacity. We believe that the effect of ibuprofen treatment in inducing ischaemia overcomes the scavenging effect of ibuprofen.

  13. Chemical repair of trypsin-histidinyl radical

    International Nuclear Information System (INIS)

    Jovanovic, S.V.; Ruvarac, I.; Jankovic, I.; Josimovic, L.

    1991-01-01

    Oxyl radicals, such as hydroxyl, alkoxyl and peroxyl, react with biomolecules to produce bioradicals. Unless chemically repaired by suitable antioxidants, these bioradicals form stable products. This leads to loss of biological function of parent biomolecules with deleterious biological results, such as mutagenesis and cancer. Consequently, the understanding of the mechanisms of oxyl radical damage to biomolecules and chemical repair of such damage is crucial for the development of strategies for anticarcinogenesis and radioprotection. In this study the chemical repair of the histidinyl radical generated upon the trichloromethylperoxyl radical reaction with trypsin vas investigated by gamma radiolysis. The trypsin histidinyl radical is a resonance-stabilized heterocyclic free radical which was found to be unreactive with oxygen. The efficacy of the chemical repair of the trypsin-histidinyl radical by endogenous antioxidants which are electron donors (e.g. 5-hydroxytryptophan, uric acid) is compared to that of antioxidants which are H-atom donors (e. g. glutathione). 9 refs., 2 figs., 1 tab

  14. Critical role of oxygen radicals in the initiation of hepatic depression after trauma hemorrhage.

    Science.gov (United States)

    Jarrar, D; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    2000-11-01

    Although depression in hepatocellular function occurs early after trauma and severe hemorrhage and persists despite fluid resuscitation, it remains unknown whether reactive oxygen species (ROS) play any role in the initiation of hepatocellular depression and damage under those conditions. We hypothesized that administration of a ROS scavenger at the beginning of resuscitation will attenuate organ injury after severe shock. Male Sprague-Dawley rats (275-325 g) underwent laparotomy (i.e., induction of soft tissue trauma) and were then bled to and maintained at a mean arterial pressure of 40 mm Hg until 40% of the maximal bleed-out volume was returned in the form of Ringer's lactate. The animals were then resuscitated with four times the volume of maximal bleed-out with RL over 60 minutes. The ROS scavenger 2-mercaptopropionyl glycine (30 mg/kg) or vehicle was administered intravenously as a bolus at the beginning of resuscitation. At 2 hours after the completion of crystalloid resuscitation or the equivalent interval after sham-operation, cardiac index was measured by a dye dilution technique. Hepatocellular function, i.e., the maximum velocity of indocyanine green clearance (Vmax) and the efficiency of the active transport (Km), was determined using an in vivo hemoreflectometer. Serum levels of tumor necrosis factor (TNF)-alpha and alanine aminotransferase were determined with ELISA and colorimetrically, respectively. The results indicate that at 2 hours after trauma hemorrhage and resuscitation, cardiac index and hepatocellular function were markedly depressed with concomitantly increased serum levels of TNF-alpha and alanine aminotransferase (p hepatic function and markedly attenuated liver enzyme release and serum levels of TNF-alpha (p trauma hemorrhage and resuscitation.

  15. Electron paramagnetic resonance study of conformational effects in alkyl-substituted 2-cyclohexanonyl radicals in an adamantane matrix

    International Nuclear Information System (INIS)

    Walter, H.F.

    1975-01-01

    Electron paramagnetic resonance spectra have been obtained for radicals produced by x-irradiation of cyclohexanone and various alkyl-substituted cyclohexanones trapped in an adamantane matrix. Temperature variation of these spectra permits determination of the enthalpy and entropy of activation for interconversion between the two half-chair conformations. In those cases where the two conformations have intrinsically different energies, the enthalpy and entropy differences between conformations are determined. For 2-cyclohexanonyl radical, the enthalpy of activation is 3.90 +- 0.07 kcal/mole and the entropy of activation is -2.3 +- 0.3 e.u. Methyl substitution on C 3 or C 5 gives a radical with activation parameters similar to the parent radical, indicating moderate realignment of atoms during the conformational change. Methyl substitution on C 4 gives a radical with lower activation parameters, which are interpreted to indicate conformational change mainly be a folding along the diagonal through the radical site. Larger groups attached to C 3 influence enthalpy and entropy differences between conformations much less than when they are attached to C 5 . Very large groups attached to C 5 apparently flatten the ring; it is not known whether or not this is a matrix effect. Deuteration seems to cause a slight reduction in the activation parameters for 2-cyclohexanonyl radical

  16. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    Science.gov (United States)

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  17. Pancreatic nitric oxide and oxygen free radicals in the early stages of streptozotocin-induced diabetes mellitus in the rat

    Directory of Open Access Journals (Sweden)

    González E.

    2000-01-01

    Full Text Available The objective of the present study was to explore the regulatory mechanisms of free radicals during streptozotocin (STZ-induced pancreatic damage, which may involve nitric oxide (NO production as a modulator of cellular oxidative stress. Removal of oxygen species by incubating pancreatic tissues in the presence of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD (1 U/ml produced a decrease in nitrite levels (42% and NO synthase (NOS activity (50% in diabetic but not in control samples. When NO production was blocked by N G-monomethyl-L-arginine (L-NMMA (600 µM, SOD activity increased (15.21 ± 1.23 vs 24.40 ± 2.01 U/mg dry weight. The increase was abolished when the NO donor, spermine nonoate, was added to the incubating medium (13.2 ± 1.32. Lipid peroxidation was lower in diabetic tissues when PEG-SOD was added (0.40 ± 0.02 vs 0.20 ± 0.03 nmol/mg protein, and when L-NMMA blocked NOS activity in the incubating medium (0.28 ± 0.05; spermine nonoate (100 µM abolished the decrease in lipoperoxide level (0.70 ± 0.02. We conclude that removal of oxygen species produces a decrease in pancreatic NO and NOS levels in STZ-treated rats. Moreover, inhibition of NOS activity produces an increase in SOD activity and a decrease in lipoperoxidation in diabetic pancreatic tissues. Oxidative stress and NO pathway are related and seem to modulate each other in acute STZ-induced diabetic pancreas in the rat.

  18. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    Science.gov (United States)

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  19. One electron transfer equilibria and redox potentials of radicals studies by pulse radiolysis. Progress report, September 1, 1975--July 1, 1976

    International Nuclear Information System (INIS)

    Meisel, D.; Czapski, G.

    1976-01-01

    The pulse radiolysis technique is utilized for measurements of the equilibrium constants for electron transfer between the durosemiquinone radical anion and oxygen, menadione and indigo disulfonate. These equilibrium constants are in turn used for calculations of one-electron redox potentials for these systems. Each of these equilibrium constants was determined experimentally and independently and found to be self consistent. Only for the reactions of the semiquinones with oxygen could the electron transfer reaction be followed directly. For the reactions between the various quinone/semiquinone systems substantial indirect evidence is presented that these equilibria are achieved rapidly. In those cases equilibrium constants were determined from studies of the effect of quinone concentrations on the relative yields of the semiquinones. A method for distinguishing between kinetic competition and equilibrium is outlined and its usefulness is emphasized. The DQ/DQ - (DQ = duroquinone) and IDS/IDS - (IDS = indigo disulfonate) systems were employed as reference couples as the redox potentials for those systems are either available in the literature (IDS/IDS - ) or may be calculated from available data (DQ/DQ - ). Taking E 7 1 , the redox potential for the first one-electron reduction step at pH 7, of DQ/DQ - as -0.235 volts or of IDS/IDS - as -0.125 volts, both yield E 7 1 = -0.325 V for the O 2 /O 2 - system (1 atm O 2 ) and E 7 1 = -0.20 for the menadione system

  20. The free radical species in polyacrylonitrile fibers induced by γ-radiation and their decay behaviors

    International Nuclear Information System (INIS)

    Liu Weihua; Wang Mouhua; Xing Zhe; Wu Guozhong

    2012-01-01

    Free radicals in vacuum, air and oxygen atmospheres were studied using electron spin resonance (ESR). Mainly two types of radicals, namely alkyl radicals and polyimine radicals, are formed in polyacrylonitrile (PAN) fibers after γ-ray irradiation. The G value of the radical formation was calculated to be 2.1 (number of radicals per 100 eV absorbed) in air at room temperature based on the ESR measurements. The radical stability and decay behaviors at room temperature and elevated temperatures were also investigated under different atmospheres. The alkyl radicals were found to be rather stable when stored in vacuum at room temperature, but they decayed via reaction with oxygen when stored in air. The alkyl radicals disappeared completely after a thermal treatment at 110 °C in vacuum, but only 15% of the polyimine radicals decayed; this indicates that polyimine radicals are more stable compared to the alkyl radicals due to their lower mobility. - Highlights: ► Radicals formed by radiation were assigned to polyimine and alkyl radicals. ► G-value of radicals was measured to be 2.1 per 100 eV. ► The radicals were found to be extremely stable in vacuum at room temperature. ► Effect of oxygen on radical decay under various conditions was studied.

  1. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    International Nuclear Information System (INIS)

    Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O.; Mihaila, M.A.; Kaya, D.A.; Stan, R.; Meghea, A.

    2015-01-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL −1 has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL −1 lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor cells. • 50

  2. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Mihaila, M.A. [Institute of Virusology “Stefan S. Nicolau”, Center of Immunology, Bravu Road, No. 285, 030304 Bucharest (Romania); Kaya, D.A. [Department of Field Crops, Faculty of Agriculture, Mustafa Kemal University, 31030 Antakya, Hatay (Turkey); Stan, R., E-mail: rl_stan2000@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Meghea, A. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania)

    2015-11-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL{sup −1} has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL{sup −1} lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor

  3. Stability of radicals in electron-irradiated fluoropolymer film for the preparation of graft copolymer fuel cell electrolyte membranes

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Qian, Huan

    This presentation concerns the stability of radicals generated in poly(ethylene-alt-tetra­fluoro­ethylene) (ETFE) film by electron irradiation prior to grafting of styrene onto this base material. It has been demonstrated that the grafting yield decreases as the storage time of the irradiated fil...

  4. Cyclosporine treatment reduces oxygen free radical generation and oxidative stress in the brain of hypoxia-reoxygenated newborn piglets.

    Directory of Open Access Journals (Sweden)

    Richdeep S Gill

    Full Text Available Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H(2O(2 production and markers of oxidative stress. Piglets (1-4 d, 1.4-2.5 kg were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation (n = 8/group. At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls or cyclosporine (2.5 or 10 mg/kg i.v. bolus in a blinded-randomized fashion. An additional sham-operated group (n = 4 underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe, cerebral cortical H(2O(2 production (electrochemical sensor, cerebral tissue glutathione (ELISA and cytosolic cytochrome-c (western blot levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40-48% of baseline, hypotension (mean arterial pressure 27-31 mmHg and acidosis (pH 7.04 at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg, significantly attenuated the increase in cortical H(2O(2 concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H(2O(2 production and minimizes oxidative stress in newborn piglets following hypoxia-reoxygenation.

  5. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag{sup +}/TiO{sub 2}: Influence of electron donating and withdrawing substituents

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jiadong [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Han, Qingzhen [State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wang, Yujiao [Department of Chemical and Biomedical Engineering, University of Science and Technology Beijing (China); Nawaz, Faheem; Duan, Feng [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-03-05

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O{sub 2}{sup −}, rather than ·OH, {sup 1}O{sub 2} or h{sup +}. • ·O{sub 2}{sup −} preferred to nucleophilically attack EDG substituted phenols. • ·O{sub 2}{sup −} more likely electrophilically attacked EWG substituted phenols. • ·O{sub 2}{sup −} simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag{sup +}/TiO{sub 2} suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O{sub 2}{sup −}) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O{sub 2}{sup −} and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O{sub 2}{sup −} and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O{sub 2}{sup −}, while ·O{sub 2}{sup −} preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O{sub 2}{sup −} could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate

  6. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag"+/TiO_2: Influence of electron donating and withdrawing substituents

    International Nuclear Information System (INIS)

    Xiao, Jiadong; Xie, Yongbing; Han, Qingzhen; Cao, Hongbin; Wang, Yujiao; Nawaz, Faheem; Duan, Feng

    2016-01-01

    Highlights: • A weak EWG benefited photocatalytic oxidation of phenols the most. • Phenolic compounds were dominantly oxidized by ·O_2"−, rather than ·OH, "1O_2 or h"+. • ·O_2"− preferred to nucleophilically attack EDG substituted phenols. • ·O_2"− more likely electrophilically attacked EWG substituted phenols. • ·O_2"− simultaneously nucleophilically and electrophilically assaulted p-chlorophenol. - Abstract: A comparative study was constructed to correlate the electronic property of the substituents with the degradation rates of phenolic compounds and their oxidation pathways under UV with Ag"+/TiO_2 suspensions. It was verified that a weak electron withdrawing substituent benefited photocatalytic oxidation the most, while an adverse impact appeared when a substituent was present with stronger electron donating or withdrawing ability. The addition of p-benzoquinone dramatically blocked the degradation, confirming superoxide radicals (·O_2"−) as the dominant photooxidant, rather than hydroxyl radicals, singlet oxygen or positive holes, which was also independent of the substituent. Hammett relationship was established based on pseudo-first-order reaction kinetics, and it revealed two disparate reaction patterns between ·O_2"− and phenolic compounds, which was further verified by the quantum chemical computation on the frontier molecular orbitals and Mulliken charge distributions of ·O_2"− and phenolic compounds. It was found that electron donating group (EDG) substituted phenols were more likely nucleophilically attacked by ·O_2"−, while ·O_2"− preferred to electrophilically assault electron withdrawing group (EWG) substituted phenols. Exceptionally, electrophilic and nucleophilic attack by ·O_2"− could simultaneously occur in p-chlorophenol degradation, consequently leading to its highest rate constant. Possible reactive positions on the phenolic compounds were also detailedly uncovered.

  7. The Range of 1-3 keV Electrons in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Oehlenschlæger, M.; Andersen, H.H.; Schou, Jørgen

    1985-01-01

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than that in n......The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than...

  8. Effect of ultraviolet irradiation on free radical scavenging activity of immunosuppressants used in lung transplantation and comparative electron paramagnetic resonance study of kinetics of their interactions with model free radicals.

    Science.gov (United States)

    Stanjek-Cichoracka, A; Żegleń, S; Ramos, P; Pilawa, B; Wojarski, J

    2018-06-01

    The immunosuppressive drugs used in solid organ transplantation or autoimmunological processes were studied by electron paramagnetic resonance (EPR) spectroscopy to estimate their free radical scavenging activity. The interactions of immunosuppressants with free radicals were examined by an X-band (9.3 GHz) EPR spectroscopy and a model of DPPH free radicals. The EPR spectra of DPPH and DPPH interacting with individual drugs were compared. Kinetic studies were performed, and the effect of ultraviolet (UV) irradiation on the free radical scavenging activity of the tested drugs was determined. The free radical scavenging activity of non-irradiated drugs decreased in the order: rapamycin > mycophenolate mofetil > ciclosporin > tacrolimus. UV irradiation increased the free radical scavenging activity of all the tested immunosuppressive drugs, and the effect was highest for tacrolimus. For the non-irradiated samples, the speed of free radical interactions decreased in the order: ciclosporin > tacrolimus > mycophenolate mofetil > rapamycin. UV irradiation only slightly affected the speed of interactions of the immunosuppressive drugs with the model DPPH free radicals. Electron paramagnetic resonance spectroscopy is useful for obtaining information on interactions of immunosuppressive drugs with free radicals. We hypothesized that the long-term immunosuppressive effects of these drugs after transplantation or during autoimmune disorders may be mediated by anti-inflammatory action in addition to the known receptor/cell cycle inhibition. © 2018 John Wiley & Sons Ltd.

  9. Electron paramagnetic relaxation studies of free radicals in. gamma. -irradiated DNA

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M; Yoshi, G [Hokkaido Univ., Sapporo (Japan)

    1980-01-01

    Using the continuous microwave power saturation method the T/sub 1/ spin-lattice relaxation time and T/sub 2/ spin-spin relaxation time for DNA radicals (measured at 297/sup 0/K) are reported. Identical experiments carried out on thymidine-5'-monophosphate sodium salt (TMP) and deoxycytidine-5'-monophosphate sodium salt (dCMP) are also reported. Irradiated DNA produces TMP radicals on the base moiety and dCMP radicals on the sugar moiety. Comparing the relaxation times of DNA with those of TMP and dCMP provided a reliable analysis of the nature of DNA radicals.

  10. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-01-01

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume (∼18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts (∼1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving ∼6.5 kJ L -1 atm -1 per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O 2 : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O 2 (a 1 Δ g ) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value ∼3% for W ∼ 1.0 kJ L -1 atm -1 is in agreement with the theoretical estimate. Theoretical calculations performed for W ∼ 6.5 kJ L -1 atm -1 at a fixed temperature show that the singlet-oxygen yield may be ∼20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  11. Free radicals in an adamantane matrix. XIII. Electron paramagnetic resonance study of sigma* - π* orbital crossover in fluorinated pyridine anions

    International Nuclear Information System (INIS)

    Yim, M.B.; DiGregorio, S.; Wood, D.E.

    1977-01-01

    Pentafluoropyridine,2,3,4,6-tetrafluoropyridine, 2,6-difluoropyridine, and 2-fluoropyridine anion radicals were produced by x irradiation of an adamantane matrix which was doubly doped with the aromatic precursors and Me 3 NBH 3 and their EPR spectra obtained. The large fluorine hyperfine splitting constants (hfsc) of penta- and 2,3,4,6-tetrafluoropyridine anions and the small fluorine hfsc's of 2,6-di- and 2-fluoropyridine anions suggest that the former two are sigma radicals while the latter two are π radicals. The sigma*-π* orbital crossover phenomenon observed in these fluorinated pyridine anions is explained in terms of the combined effects of stabilization of sigma* orbitals and destabilization of π* orbitals. The EPR results show that nitrogen has a negligible contribution to the unpaired electron sigma* orbitals. INDO calculations were performed for the various states and the results compared with experiment

  12. Measurements of electron attachment by oxygen molecule in proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Tosaki, M., E-mail: tosaki.mitsuo.3v@kyoto-u.ac.jp [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan); Kawano, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki 509-5292 (Japan); Isozumi, Y. [Radioisotope Research Center, Kyoto University, Kyoto 606-8501 (Japan)

    2013-11-15

    We present pulse height measurements for 5-keV Auger electrons from a radioactive {sup 55}Fe source mounted at the inner cathode surface of cylindrical proportional counter, which is operated with CH{sub 4} admixed dry air or N{sub 2}. A clear shift of the pulse height has been observed by varying the amount of the admixtures; the number of electrons, created in the primary ionization by Auger electrons, is decreased by the electron attachment of the admixtures during their drift from the place near the source to the anode wire. The large gas amplification (typically 10{sup 4}) in the secondary ionization of proportional counter makes it possible to investigate a small change in the number of primary electrons. The electron attenuation cross-section of O{sub 2} has been evaluated by analyzing the shifts of the pulse height caused by the electron attachment to dry air and N{sub 2}.

  13. Oxygen adsorption on Cu-9 at. %Al(111) studied by low energy electron diffraction and Auger electron spectroscopy

    Science.gov (United States)

    Yoshitake, Michiko; Bera, Santanu; Yamauchi, Yasuhiro; Song, Weijie

    2003-07-01

    Cu-based alloys have been used for electric cables for long time. In the field of microelectronics, Al had been used for electrical wiring. However, it became clear that electromigration occurs in Al that causes breaking of wires in minute wirings. Due to this problem, Cu wiring is used in most advanced microprocessors. Cu metal is more corrosive than Al and Cu-based alloys with a small amount of Al is expected to solve problems both on electromigration and corrosion. The initial stage of corrosion is oxygen adsorption. We studied surface segregation of Al on Cu-9% Al(111) and oxygen adsorption on the surface with/without Al segregation in ultrahigh vacuum by low energy electron diffraction (LEED) and Auger electron spectroscopy. It was found that Al segregates on the surface to form (√3×√3)R30° structure and the structure vanishes above 595 K to give (1×1) structure while Al still segregates. The specimen was exposed to oxygen at different temperatures. The amount of oxygen uptake was not structure dependent but temperature dependent. Below 595 K, only a small amount of oxygen adsorbed. Between 595 and 870 K, oxygen adsorbed surface showed amorphous LEED pattern. The specimen was annealed at 1070 K after oxygen exposure. When the specimen was exposed oxygen below 870 K, the oxygen Auger intensity decreased significantly by annealing and the annealed surface showed (√3×√3)R30° structure at room temperature. When the specimen was exposed to oxygen at 870 K, diffused spots developed newly in LEED pattern but the pattern disappeared after 1070 K annealing while oxygen Auger intensity remained almost constant. Exposing the specimen to oxygen at 995 K resulted in clear spots in the LEED pattern, which were attributed to the (7/√3×7√3)R30° structure.

  14. Investigation of the Mechanism of Electron Capture and Electron Transfer Dissociation of Peptides with a Covalently Attached Free Radical Hydrogen Atom Scavenger.

    Science.gov (United States)

    Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L

    2015-11-15

    The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX TEMPO EEQQQTEDELQDK. The X TEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-C α backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b H ) and y + H (y H ) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long

  15. Electron spin resonance of spin-trapped radicals of amines and polyamines

    International Nuclear Information System (INIS)

    Mossoba, M.M.; Rosenthal, Ionel; Riesz, Peter

    1982-01-01

    The reactions of hydroxyl radicals with methylamine, dimethylamine, trimethylamine, diethylamine, sec-butylamine, ethylene-diamine, 1,3-diaminopropane, putrescine, cadaverine, 1,7-diaminoheptane, ornithine, spermidine, spermine, agmatine, and arcaine in aqueous solutions have been investigated by spin-trapping and esr. Hydroxyl radicals were generated by the uv photolysis of H 2 O 2 and 2-methyl-2-nitrosopropane (MNP) was used as the spin-trap. The effects of ionizing radiation on the same polyamines in the polycrystalline state were also investigated. The free radicals produced by ν-radiolysis of these solids at room temperature in the absence of air were identified by dissolution in aqueous solutions of MNP. The predominant reaction of OH radicals with amines and polyamines below pH 7 was the abstraction of hydrogen atoms from a carbon that is not adjacent to the protonated amino group. For agmatine and arcaine which contain guanidinium groups abstraction occurred from the α-CH. Dimethylamine was oxidized to the dimethylnitroxyl radical by H 2 O 2 in the dark. ν-Radiolysis of polyamines in the polycrystalline state generated radicals due to H-abstraction from either the α-Ch or from a carbon atom in the middle of the alkyl chain. The deamination radical was obtained from ornithine

  16. Kinetics and mechanisms of the reactions of alkyl radicals with oxygen and with complexes of Co(III), Ru(III), and Ni(III)

    International Nuclear Information System (INIS)

    Kelley, D.

    1990-01-01

    The kinetics of the reactions of C 2 H 5 radical with Co(NH 3 ) 5 X 2+ , Ru(NH 3 ) 5 X 2+ , and Co(dmgH) 2 (X) (Y) (X = Br, Cl, N 3 , SCN; Y = H 2 O, CH 3 CN) complexes were studied using laser flash photolysis of ethylcobalt complexes. The kinetics were obtained by the kinetic probe method. Some relative rate constants were also determined by a competition method based on ethyl halide product ratios. The kinetics of colligation reactions of a series of alkyl radicals with β-Ni(cyclam) 2+ were studied using flaser flash photolysis of alkylcobalt complexes. Again, the kinetics were obtained by employing the kinetic probe competition method. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H 2 O 2+ were studied. Activation parameters were obtained for the unimolecular homolysis of C 2 H 5 Ni(cyclam)H 2 O 2+ . Kinetic and thermodynamic data obtained from these reactions were compared with those for the σ-bonded organometallic complexes. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H 2 O 2+ complexes were studied by monitoring the formation of the oxygen insertion product RO 2 Ni(cyclam)H 2 O 2+ . The higher rate constants for the reactions of alkyl radicals with oxygen in solution, as compared with those measured in the gas phase, were discussed. 30 refs

  17. Electron loss from multiply protonated lysozyme ions in high energy collisions with molecular oxygen

    DEFF Research Database (Denmark)

    Hvelplund, P; Nielsen, SB; Sørensen, M

    2001-01-01

    We report on the electron loss from multiply protonated lysozyme ions Lys-Hn(n)+ (n = 7 - 17) and the concomitant formation of Lys-Hn(n+1)+. in high-energy collisions with molecular oxygen (laboratory kinetic energy = 50 x n keV). The cross section for electron loss increases with the charge state...... of the precursor from n = 7 to n = 11 and then remains constant when n increases further. The absolute size of the cross section ranges from 100 to 200 A2. The electron loss is modeled as an electron transfer process between lysozyme cations and molecular oxygen....

  18. Electron attachment to molecules and clusters of atmospheric relevance: oxygen and ozone

    International Nuclear Information System (INIS)

    Matejcik, S.; Cicman, P.; Skalny, J.; Kiendler, A.; Stampfli, P.; Maerk, T.D.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    Highly monochromatized electrons are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O 2 )-n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O 2 ) n + e → O 2 - varies inversely with the electron energy, indicative of s-wave electron capture to (O 2 ) n . Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to ozone and mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Absolute attachment cross sections for both fragment ions anions, O - and O 2 - , from ozone could be deduced. Moreover, despite the initially large excess of oxygen molecules in the neutral oxygen/ozone clusters the dominant attachment products are un-dissociated cluster ions (O 3 ) m - including the O 3 - monomer while oxygen cluster ions (O 2 ) n appear with comparatively low intensity. (authors)

  19. Titanium oxidation-reduction at low oxygen pressure under electron bombardment

    International Nuclear Information System (INIS)

    Brasca, R.; Passeggi, M.C.G.; Ferron, J.

    2006-01-01

    The effect of the electron bombardment on the first stages of the titanium oxidation process has been studied by means of Auger Electron Spectroscopy. Using Factor Analysis and the valence electron dependence behaviour of the titanium LMV Auger transition, we found that the process is strongly dependent on the oxygen pressure and electron current density. Depending on the irradiation conditions, films of different thickness and Ti oxidized states are obtained

  20. Radioprotective effects of dimethyl sulfoxide in golden hamster embryo cells exposed to gamma rays at 77 K. I. Radical formation as studied by electron spin resonance

    International Nuclear Information System (INIS)

    Miyazaki, T.; Hayakawa, Y.; Suzuki, K.; Suzuki, M.; Watanabe, M.

    1990-01-01

    Formation of free radicals in golden hamster embryo (GHE) cells in the frozen living state by gamma irradiation has been studied by electron spin resonance spectroscopy at 4.2 and 77 K. The relative yields of H atoms, OH radicals, and organic radicals trapped in the irradiated GHE cells are 12, 72, and 16%, respectively, of total radical yields. When dimethylsulfoxide (DMSO) is added to GHE cells at 77 K, a large quantity of CH2SOCH3 radicals (DMSO radicals) are formed after gamma irradiation. The yields of OH radicals are not affected by the addition of DMSO. When the GHE cell-DMSO mixtures are irradiated with gamma rays at 77 K and then warmed to 111 K, the OH radicals decay, whereas the DMSO radicals do not increase complementarily. Moreover, the decay rates of the OH radicals at 111 K do not depend upon the concentration of DMSO. Thus OH radicals do not react with DMSO during warming of the irradiated sample. When H atoms are produced by gamma irradiation of acid ice at 60 K, the decay rates of the H atoms at 77 K increase with increasing DMSO concentration, indicating that DMSO reacts with H atoms (CH3SOCH3 + H----.CH2SOCH3 + H2) at 77 K by quantum-mechanical tunneling. When the GHE cell-DMSO mixture is irradiated with gamma rays at 77 or 4.2 K in the dark, DMSO ions are produced in addition to DMSO radicals. Therefore it is concluded that DMSO does not scavenge OH radicals, but does capture H atoms, holes and/or electrons in the gamma-irradiated cells, resulting in the remarkable formation of DMSO radicals. This scavenger effect of DMSO may be related to the radioprotection of DMSO against cell killing

  1. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin.

    Science.gov (United States)

    Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba

    2016-01-14

    Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.

  2. Multiple free-radical scavenging capacity in serum

    Science.gov (United States)

    Oowada, Shigeru; Endo, Nobuyuki; Kameya, Hiromi; Shimmei, Masashi; Kotake, Yashige

    2012-01-01

    We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool. PMID:22962529

  3. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    Matsuura, K.; Muto, H.

    1991-01-01

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--H β proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp 2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  4. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics Education, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Firmansyah, Teguh [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Yang, Dong-Seok [Department of Physics Education, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 16678 (Korea, Republic of)

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  5. Electron spin resonance studies of γ-irradiated phosphite and phosphate esters. Identification of phosphinyl, phosphonyl, phosphoranyl, and phosphine dimer cation radicals

    International Nuclear Information System (INIS)

    Kerr, C.M.L.; Webster, K.; Williams, F.

    1975-01-01

    The powder ESR spectra of several γ-irradiated phosphorus esters at 77 0 K were analyzed into their distinguishable radical components, each spectrum being generally a composite of anisotropic features from a number of alkyl and phosphorus-centered radicals. Resolution of overlapping spectra was achieved in some instances by radiation-chemical experiments designed to suppress or enhance the products of electron capture relative to the radicals formed by other mechanisms. The radiation chemistry of dialkyl phosphites, (RO) 2 P(O)H, is influenced by the ease with which the P--H bond in these compounds is broken, the principal radicals being the phosphonyl species (RO) 2 PO and ROP(O)O - . Both of these species are thought to be the secondary products of hydrogen atom abstraction by the alkyl radical R which is produced by dissociative electron capture. A similar primary step was found to apply for the trialkyl phosphates, (RO) 3 PO, but in this case only carbon-centered radicals are formed by secondary H-atom abstraction processes. Results for the pyrophosphite differ from those for the trialkyl phosphites in showing the absence of alkyl radicals or their phosphoranyl adducts and the formation of the phosphonyl species (EtO) 2 PO, the latter being produced presumably by cleavage of the P--O--P bridge. The ESR parameters for each of the four main groups of phosphorus-centered radicals are summarized and the electronic structures of these radicals are discussed briefly

  6. Resonant electron attachment to mixed hydrogen/oxygen and deuterium/oxygen clusters

    Science.gov (United States)

    Renzler, Michael; Kranabetter, Lorenz; Barwa, Erik; Grubwieser, Lukas; Scheier, Paul; Ellis, Andrew M.

    2017-11-01

    Low energy electron attachment to mixed (H2)x/(O2)y clusters and their deuterated analogs has been investigated for the first time. These experiments were carried out using liquid helium nanodroplets to form the clusters, and the effect of the added electron was then monitored via mass spectrometry. There are some important differences between electron attachment to the pure clusters and to the mixed clusters. A particularly notable feature is the formation of HO2- and H2O- ions from an electron-induced chemical reaction between the two dopants. The chemistry leading to these anions appears to be driven by electron resonances associated with H2 rather than O2. The electron resonances for H2 can lead to dissociative electron attachment (DEA), just as for the free H2 molecule. However, there is evidence that the resonance in H2 can also lead to rapid electron transfer to O2, which then induces DEA of the O2. This kind of excitation transfer has not, as far as we are aware, been reported previously.

  7. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    Science.gov (United States)

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  8. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy.

    Science.gov (United States)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P; Nguyen, Huong T H; Dang, Andy; Tureček, František

    2018-01-16

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z 4 + H] +● fragment ion-radicals of the R-C ● H-CONH- type, initially formed by N-C α bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [ ● DAAR + H] + isomers and used to assign structures to the action spectra. The potential energy surface of [ ● DAAR + H] + isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [ ● XAAR + H] + ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone C α positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H] ● -ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.

  9. Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants.

    Science.gov (United States)

    Calliste, C A; Trouillas, P; Allais, D P; Simon, A; Duroux, J L

    2001-07-01

    In an effort to discover new antioxidant natural compounds, seven plants that grow in France (most of them in the Limousin countryside) were screened. Among these plants, was the extensively studied Vitis vinifera as reference. For each plant, sequential percolation was realized with five solvents of increasing polarities (hexane, chloroform, ethyl acetate, methanol, and water). Free radical scavenging activities were examined in different systems using electron spin resonance (ESR) spectroscopy. These assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), the hydroxyl radicals generated by a Fenton reaction, and the superoxide radicals generated by the X/XO system. Antiproliferative behavior was studied on B16 melanoma cells. ESR results showed that three plants (Castanea sativa, Filipendula ulmaria, and Betula pendula) possessed, for the most polar fractions (presence of phenolic compounds), high antioxidant activities in comparison with the Vitis vinifera reference. Gentiana lutea was the only one that presented a hydroxyl scavenging activity for the ethyl acetate and chloroform fractions. The antiproliferative test results showed that the same three plants are the most effective, but for the apolar fractions (chloroform and hexane).

  10. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy

    Science.gov (United States)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P.; Nguyen, Huong T. H.; Dang, Andy; Tureček, František

    2018-01-01

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. [Figure not available: see fulltext.

  11. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    Science.gov (United States)

    Wassall, Cynthia D.

    The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76

  12. Molecular dynamics simulation of the first electron transfer step in the oxygen reduction reaction

    NARCIS (Netherlands)

    Hartnig, C.B.; Koper, M.T.M.

    2002-01-01

    We present a molecular dynamics simulation of solvent reorganization in the first electron transfer step in the oxygen reduction reaction, i.e. O2+e-¿O2-, modeled as taking place in the outer Helmholtz plane. The first electron transfer step is usually considered the rate-determining step from many

  13. Pulse radiolysis investigation of the reaction of the electronic adduct of bovine serum albumin with oxygen. Polychromatic kinetics of the reaction with adsorbed oxygen

    International Nuclear Information System (INIS)

    Pribush, A.G.

    1986-01-01

    The method of pulse radiolysis was used to investigate the reaction of the electronic adduct of bovine serum albumin with oxygen. It was suggested that the disappearance of the electronic adduct of the protein occurs in the course of its interaction with oxygen adsorbed on the globular protein molecule

  14. Free radicals in an Adamantane matrix. XI. Electron paramagnetic resonance study of conformations in the β-halo-tert-butyl radicals

    International Nuclear Information System (INIS)

    Lloyd, R.V.; Wood, D.E.

    1975-01-01

    The β-halo-tert-butyl radicals were prepared by x-irradiation of the corresponding isobutyl halides in an adamantane matrix at 77 0 K and their conformations were determined by analysis of their EPR spectra. The radicals are nonplanar at the radical site, the fluoro and chloro radicals trans eclipsed and the bromo and iodo radicals gauche staggered with respect to the relative orientation of the carbon halogen bond and the direction of the singly occupied orbital. Vibration-rotation motions about the favored conformation are much larger for the fluoro radical than for the others. The rate of interconversion of the inequivalent methylene protons is approximately 1.5 x 10 9 sec -1 for the bromo radical at 202 0 K while it is too slow to measure for the iodo radical at the same temperature. The barrier to interconversion has a lower limit of 3 kcal/mol for the bromo radical and higher than that for the iodo radical. The halogen and proton hfsc in gauss and the g values for the XCH 2 C(CH 3 ) 2 radicals are: 19 F = 103.7, CH 2 = 10.4, CH 3 = 23.3, g = 2.0030 at 214 K; 35 Cl = 19.5, CH 2 = 6.3, CH 3 = 21.1, g = 2.0042 at 215 K; 81 Br = 6.7, CH 2 = 21.4, 42.7, CH 3 = 21.4, g = 2.0010 at 202 K; 127 I = 7.0, CH 2 = 21.9, 43.8, CH 3 = 21.9, g = 2.0009 at 208 K. The fluoro radical decays to nonradical products above 318 0 K, the chloro radical converts to 2-methyl allyl radical above 306 0 K, the bromo radical converts to tert-butyl radical by exchange with a matrix proton (or deuteron) at 209 0 K as does the iodo radical above 225 0 K. Photolysis with a Xe lamp converts the bromo and iodo radicals to nonradical products in less than the experimental time constant of 0.3 sec. The hypothesis is put forward that the nonplanarity and high barrier to rotation observed explain the retention of stereochemical configuration in reactions involving β-chloro, β-bromo, and β-iodo alkyl radicals. (auth)

  15. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Science.gov (United States)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  16. Electronic Paramagnetic Resonance (EPR) of free radicals induced by X-rays in pyrene

    International Nuclear Information System (INIS)

    Moya Partiti, C.S. de.

    1982-01-01

    Pyrene single crystals C 16 H 10 , irradiated by X-rays, at room temperature, were studied by EPR technique, to determine free radicals formed by radiation. The angular dependence of EPR spectra was explained by the presence of two kinds of radicals with an aditional hydrogen: 2-H 2 pyrene and 3-H 2 pyrene. It was studied the isothermic decay of the EPR signal and two typical values for the activation energy were found = (1,9+-0,1) eV and (1,93+-0,03) eV. (author) [pt

  17. N,2,3,4-Tetrasubstituted Pyrrolidines through Tandem Lithium Amide Conjugate Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Kafka, František; Pohl, Radek; Císařová, I.; Mackman, R.; Bahador, G.; Jahn, Ullrich

    2016-01-01

    Roč. 2016, č. 22 (2016), s. 3862-3871 ISSN 1434-193X R&D Projects: GA ČR GA13-40188S Grant - others:COST(XE) CM1201 Institutional support: RVO:61388963 Keywords : tandem reactions * nitrogen heterocycles * Michael addition * radical reactions * cyclization * enolates Subject RIV: CC - Organic Chemistry Impact factor: 2.834, year: 2016

  18. Formation of radical cations and dose response of alpha-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays

    CERN Document Server

    Emmi, S S; Ceroni, P; D'Angelantonio, M; Lavalle, M; Fuochi, P G; Kovács, A

    2002-01-01

    The radiation-induced UV-vis spectrum of alpha-terthiophene radical cation in solid is reported. The radical cation initiates an oligomerization in the CTA matrix producing permanently coloured conjugated polarons. The specific net absorbance at 465 nm is linearly related with dose up to 2x10 sup sup 6 sup sup G y, for electrons and gamma irradiation. The decrease of the UV typical absorption (355 nm) and of four IR bands of alpha-terthiophene is linear with dose, as well. Although sensitivity is influenced by dose rate, it turned out that a linear relationship holds between sensitivity and log dose rate, in the range from 2 to 10 sup sup 5 Gy, min. These findings suggest a potential application of the system for dosimetric purposes over a wide range of dose and dose rate.

  19. Heavy-ion induced secondary electron emission from Mg, Al, and Si partially covered with oxygen

    International Nuclear Information System (INIS)

    Weng, J; Veje, E.

    1984-01-01

    We have bombarded Mg, Al, and Si with 80 keV Ar + ions and measured the secondary electron emission yields at projectile incidence angles from 0 0 to 85 0 , with oxygen present at the target as well as under UHV conditions. The total secondary electron emission yields are found to depend fairly much on the amount of oxygen present. The three elements studied show relatively large individual variations. For all three elements, and with as well as without oxygen present, the relative secondary electron emission yield is observed to vary as 1/cos v, where v is the angle of incidence of the projectiles. This seems to indicate that the secondary electron production is initiated uniformly along the projectile path in the solid, in a region close to the surface. The results are discussed, and it is tentatively suggested, that the increase in secondary electron emission, caused by the presence of oxygen, originates from neutralization of sputtered oxygen, which initially is sitting as O 2- ions. (orig.)

  20. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  1. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    International Nuclear Information System (INIS)

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-01-01

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations

  2. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Science.gov (United States)

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-01

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon "halo" deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  3. Measurement of the top quark pair production cross section in the muon-electron decay channel at {radical}(s)=7 TeV with the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marienfeld, Markus

    2011-07-15

    The start of proton-proton collisions at the LHC inaugurates a new era in high-energy physics. It enables the possibility of discoveries at the high-energy frontier and also allows for studies of known Standard Model processes with unrivalled precision. Top quark pairs are produced at high rates and allow for precision measurements of the properties of the top quark with high statistics. The measurement of the top quark pair production cross section in proton-proton collisions at {radical}(s)=7 TeV is presented using the dileptonic decay channel with a muon-electron pair in the final state. The data sample, which is used in this analysis, corresponds the complete 2010 data taking period with an integrated luminosity of 35.9 pb{sup -1}. Top quark pair candidate events are selected in a cut-based event selection. Based on 59 observed muon-electron events in the final state event sample, the top quark pair production cross section is measured to be {sigma}{sub t} {sub anti} {sub t}=(156{+-}25(stat.){+-}14(sys.)) pb. Furthermore, a kinematic event reconstruction is applied, which is complementary to the use of b-tagging techniques, and validates the top quark-like topology of the selected events. First results from the measurement of differential cross sections based on the data from the complete 2010 data taking period are presented. For the first time in the CMS collaboration, the cross section of the production of top quark pairs is measured differentially as a function of the kinematic observables of the final state objects, such as the transverse momentum p{sub T} of the leptons and the invariant mass of the lepton pair. Based on the solution of the kinematic event reconstruction, the cross section is also calculated differentially as a function of the kinematic properties of the reconstructed top-antitop quark pair. First results from the measurement of differential cross sections as a function of the kinematics of the final state leptons are presented, using the

  4. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free.

    Science.gov (United States)

    Horitani, Masaki; Byer, Amanda S; Shisler, Krista A; Chandra, Tilak; Broderick, Joan B; Hoffman, Brian M

    2015-06-10

    Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S-C5' bond, which creates the highly reactive 5'-deoxyadenosyl radical (5'-dAdo•), the same radical generated by homolytic Co-C bond cleavage in B12 radical enzymes. The SAM surrogate S-3',4'-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of (13)C, (2)H, and (15)N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 "tames" the 5'-dAdo• radical, preventing it from carrying out harmful side reactions: this "free radical" in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S-C5' bond, thereby enabling the 5'-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ∼0.6 Å toward the target and ∼1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5' radical, with "van der Waals control" of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature.

  5. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer.

    Science.gov (United States)

    Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu

    2018-02-14

    Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.

  6. The strong influence of the solvent on the electron spin resonance spectra of semiquinone radical anions

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2013-01-01

    ). The proton hyperfine constants predicted for the chrysazin semiquinone radical anion were highly sensitive to the assumed dielectric constant ε of the solvent continuum, inverting the relative magnitudes of the hyperfine constants and thereby leading to agreement with the observed data published by Stegmann...

  7. Singlet oxygen in the low-temperature plasma of an electron-beam-sustained discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Klimachev, Yu. M.; Kotkov, A. A.; Kochetov, I. V.; Napartovich, A. P.; Podmar'kov, Yu. P.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.; Frolov, M. P.; Yuryshev, N. N.

    2006-01-01

    Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (∼18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ∼2 to ∼11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results

  8. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals.

    Science.gov (United States)

    Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J

    2013-03-01

    The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing

  9. Electron loss and capture from low-charge-state oxygen projectiles in methane

    International Nuclear Information System (INIS)

    Santos, A C F; Wolff, W; Sant’Anna, M M; Sigaud, G M; DuBois, R D

    2013-01-01

    Absolute cross sections for single- and double-electron loss and single- and multiple-electron capture of 15–1000 keV oxygen projectiles (q = −1, 0, 1, 2) colliding with the methane molecule are presented. The experimental data are used to examine cross-section scaling characteristics for the electron loss of various projectiles. In addition, a modified version of the free-collision model was employed for the calculation of the single- and total-electron-loss cross sections of oxygen projectiles presented in this work. The comparison of the calculated cross sections with the present experimental data shows very good agreement for projectile velocities above 1.0 au. The comparison of the present single-electron-capture cross sections with other projectiles having the same charge shows good agreement, and a common curve can be drawn through the different data sets. (paper)

  10. Radicais livres de oxigênio: um software introdutório Oxygen free radicals: an introductory software

    Directory of Open Access Journals (Sweden)

    Daniela K. Yokaichiya

    2000-04-01

    Full Text Available Though Free Radicals is one of the most frequently explored scientific subjects in mass communication media, the topic is absent of many Biochemistry introductory courses, especially those in which the students do not have a good chemical background. To overcome this contradictory situation we have developed a software treating this topic in a very simple way. The software is divided in four sections: (1 definition and description of free radicals, (2 production pathways, (3 mechanism of action and (4 enzymatic and non enzymatic protection. The instructional capacity of the software has been both qualitative and quantitatively evaluated through its application in undergraduate courses. The software is available in the INTERNET at the site: http://www.unicamp.br/ib/bioquimica/ensino.

  11. Regeneration of phenolic antioxidants from phenoxyl radicals: An ESR and electrochemical study of antioxidant hierarchy

    DEFF Research Database (Denmark)

    Jørgensen, Lars V.; Madsen, Helle L.; Thomsen, Marianne K.

    1999-01-01

    Radicals from the flavonoids quercetin, (+)-catechin, (+/-)-taxifolin and luteolin, and from all-rac-alpha-tocopherol have been generated electrochemically by one-electron oxidation in deaerated dimethylformamide (DMF), and characterised by electron spin resonance spectroscopy (ESR) after spin......-trapping by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Simulations of the ESR spectrum based on estimated coupling constants of the spin-trapped quercetin radical, confirmed that this antioxidant radical is oxygen-centered. The complex mixture of radicals, quinoid intermediates and stable two-electron oxidation...

  12. Electron spin ressonance of radicals produced by ultra-violet photolysis of KCL dopped with potassium cyanide and potassium cyanate

    International Nuclear Information System (INIS)

    Duran, J.E.R.

    1975-01-01

    The production of radicals by ultra-violet photolysis of KCL dopped with potassium cyanide and potassium cyanate is studied by electron spin resonance. Several new paramagnetic species are detected which are identified as HCNO - , NCN - /NCNO - , CNN - /CNON - and CNOsup(=) all giving isotropic spectra at 77 0 K. The temperature dependence of the CNOsup(=) spectrum is investigated down to 1.6 0 K. It is found that two different recrientation motions ocurr which freeze at different temperatures. The effect of this motion on the line width is analized using Anderson's theory of exchange narrowing. The electronic structure of the CNOsup(=) radical is discussed using the measured the carbon and nitrogen hfs constants. It is found that a bonding scheme similar to that accepted for the isoelectronic molecule NO 2 is applicable, and a one electron molecular orbital scheme is given. Within this scheme a negative contribution to the nitrogen isotropic hfs constant is found which is assumed to originate from the polarization of the fully occupied ls orbitals [pt

  13. Electron spin resonance of spin-trapped radicals of amines and polyamines. Hydroxyl radical reactions in aqueous solutions and. gamma. radiolysis in the solid state

    Energy Technology Data Exchange (ETDEWEB)

    Mossoba, M.M.; Rosenthal, I.; Riesz, P. (National Cancer Inst., Bethesda, MD (USA))

    1982-06-15

    The reactions of hydroxyl radicals with methylamine, dimethylamine, trimethylamine, diethylamine, sec-butylamine, ethylene-diamine, 1,3-diaminopropane, putrescine, cadaverine, 1,7-diaminoheptane, ornithine, spermidine, spermine, agmatine, and arcaine in aqueous solutions have been investigated by spin-trapping and esr. Hydroxyl radicals were generated by the uv photolysis of H/sub 2/O/sub 2/ and 2-methyl-2-nitrosopropane (MNP) was used as the spin-trap. The effects of ionizing radiation on the same polyamines in the polycrystalline state were also investigated. The free radicals produced by ..gamma..-radiolysis of these solids at room temperature in the absence of air were identified by dissolution in aqueous solutions of MNP. The predominant reaction of OH radicals with amines and polyamines below pH 7 was the abstraction of hydrogen atoms from a carbon that is not adjacent to the protonated amino group. For agmatine and arcaine which contain guanidinium groups abstraction occurred from the ..cap alpha..-CH. Dimethylamine was oxidized to the dimethylnitroxyl radical by H/sub 2/O/sub 2/ in the dark. ..gamma..-Radiolysis of polyamines in the polycrystalline state generated radicals due to H-abstraction from either the ..cap alpha..-Ch or from a carbon atom in the middle of the alkyl chain. The deamination radical was obtained from ornithine.

  14. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M. (Eindhoven Univ. of Technology (Netherlands))

    1990-01-31

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed.

  15. Intermolecular effects on the radiogenic formation of electron-capture phosphorus-centered radicals. A single-crystal ESR study of diastereoisomeric precursors

    International Nuclear Information System (INIS)

    Aagaard, O.M.; Janssen, R.A.J.; de Waal, B.F.M.; Buck, H.M.

    1990-01-01

    ESR experiments on X-irradiated single crystals of the 2R,4S,5R and 2S,4S,5R diastereoisomers of 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide reveal that the yield of radiogenic electron-capture reactions in the solid state strongly depends on intermolecular interactions in the crystal. In the present case a high yield of P-Cl three-electron-bond phosphoranyl radical anions is found in crystals of the 2R,4S,5R isomer, whereas no radical formation can be detected for the 2S,4S,5R isomer. An analysis of nonbonded interactions with neighboring molecules reveals that the geometry relaxation necessary for the radical stabilization is easily accommodated in crystals of the 2R,4S,SR isomer but not in the 2S,4S,5R isomer, explaining the observed difference in electron-capture efficiency. Experiments on radical formation in a MeTHF host matrix give further insight into the importance of the environment on radiogenic radical formation. The possible concurrent effect of the matrix on the electronic configuration and spin density distribution of the resulting phosphoranyl radical is discussed

  16. Long distance electron transmission couples sulphur, iron, calcium and oxygen cycling in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    sulfide oxidation leads to electric field formation, sulfide depletion and acidification of the upper centimeters of the sediment. This promoted ion migration and dissolution of carbonates and iron sulfides. Sulfide released from iron sulfides was the major e-donor in the system. Ferrous iron released...... from iron sulfides was to a large extend deposited in the oxic zone as iron oxides and Ca2+ eventually precipitates at the surface as due to high pH caused by cathodic oxygen reduction. The result show how long distance electron transmission allows oxygen to drive the allocation of important minerals...... geochemical alterations in the upper centimetres of the anoxic sediment: Sulphides were oxidized to sulphate in anoxic sediment layers. Electrons from this half-reaction were passed to the oxic layers cm above. In this way the domain of oxygen was extended far beyond it’s physically presence. Bioelectrical...

  17. Long-range intramolecular electron transfer in aromatic radical anions and binuclear transition metal complexes

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Ulstrup, Jens

    1981-01-01

    Intramolecular electron transfer (ET) over distances up to about 10 Å between states in which the electron is localized on donor and acceptor groups by interaction with molecular or external solvent nuclear motion occurs, in particular, in two classes of systems. The excess electron in anionic ra...

  18. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions

    NARCIS (Netherlands)

    Henkel, S.G.; Ter Beek, A.S.; Steinsiek, S.; Stagge, S.; Bettenbrock, K.; Teixeira De Mattos, M.J.; Sauter, T.; Sawodny, O.; Ederer, M.

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear

  19. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  20. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation.

    Science.gov (United States)

    Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R

    2012-03-01

    Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.

  1. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    International Nuclear Information System (INIS)

    Grodkowski, J.; Bobrowski, K.; Mehnert, R.; Brede, O.

    1989-01-01

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl 4 and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN +radical ) and the former to the known carbonium ion of malachite green dye (MG + ). Observation of the consecutive charge transfer via the schemes: DCE +radical → BPh +radical → MGCN +radical and DCE +radical → MGCN +radical → TMPD +radical , allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV MGCN +radical radical cation is located in the ''aniline'' part of the molecule. (author)

  2. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Grodkowski, J; Bobrowski, K; Mehnert, R; Brede, O

    1989-01-01

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl/sub 4/ and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN/sup +radical/) and the former to the known carbonium ion of malachite green dye (MG/sup +/). Observation of the consecutive charge transfer via the schemes: DCE/sup +radical/ -> BPh/sup +radical/ -> MGCN/sup +radical/ and DCE/sup +radical/ -> MGCN/sup +radical/ -> TMPD/sup +radical/, allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV < Ip/sub MGCN/ < 8.27 eV. Presented results and literature data suggest that positive charge in MGCN/sup +radical/ radical cation is located in the ''aniline'' part of the molecule. (author).

  3. Effects of iron salts and haemosiderin from a thalassaemia patient on oxygen radical damage as measured in the comet assay

    NARCIS (Netherlands)

    Anderson, D.; Yardley-Jones, A.; Hambly, R.J.; Vives-Bauza, C.; Smykatz-Kloss, V.; Chua-anusorn, W.; Webb, J.

    2000-01-01

    Thalassaemia is a group of genetic diseases where haemoglobin synthesis is impaired. This chronic anaemia leads to increased dietary iron absorption, which develops into iron overload pathology. Treatment through regular transfusions increases oxygen capacity but also provides iron through the red

  4. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlOx/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    International Nuclear Information System (INIS)

    Akushichi, T.; Shuto, Y.; Sugahara, S.; Takamura, Y.

    2015-01-01

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO x /n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO x barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accurately fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels

  5. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2001-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species

  6. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2004-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species. (author)

  7. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E{sub c}) and at 415 K (0.9 below E{sub c}); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E{sub c} known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E{sub c} is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  8. Electron spin echo studies of the internal motion of radicals in crystals: Phase memory vs correlation time

    International Nuclear Information System (INIS)

    Kispert, L.D.; Bowman, M.K.; Norris, J.R.; Brown, M.S.

    1982-01-01

    An electron spin echo (ESE) study of the internal motion of the CH 2 protons in irradiated zinc acetate dihydrate crystals shows that quantitative measurements of the motional correlation time can be obtained quite directly from pulsed measurements. In the slow motional limit, the motional correlation time is equal to the phase memory time determined by ESE. In the fast motional limit, the motional correlation time is proportional to the no motion spectral second moment divided by the ESE phase memory time. ESE offers a convenient method of studying motion, electron transfer, conductivity, etc. in a variety of systems too complicated for study by ordinary EPR. New systems for study by ESE include biological samples, organic polymers, liquid solutions of radicals with unresolved hyperfine, etc. When motion modulates large anisotropic hyperfine couplings, ESE measurements of the phase memory time are sensitive to modulation of pseudosecular hyperfine interactions

  9. Metabolomic Analyses of Brain Tissue in Sepsis Induced by Cecal Ligation Reveal Specific Redox Alterations-Protective Effects of the Oxygen Radical Scavenger Edaravone

    DEFF Research Database (Denmark)

    Hara, Naomi; Chijiiwa, Miyuki; Yara, Miki

    2015-01-01

    at analyzing the preventive effect of the free radical scavenger edaravone on sepsis-induced brain alterations. Sepsis was induced by cecal ligation and puncture (CLP) and the mice were divided into three groups-CLP vehicle (CLPV), CLP and edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one) (CLPE......), and sham-operated (Sham). Mice in CLPV and CLPE were injected with saline or edaravone intraperitoneally at a dose of 10 mg/kg twice daily. The treatments were initiated 4 days prior to the surgical procedure. Mortality, histological changes, electron microscopy (EM), and expression of Bcl-2 family genes...

  10. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair

    International Nuclear Information System (INIS)

    Okazaki, M.; Shiga, T.; Sakata, S.; Konaka, R.; Toriyama, K.

    1988-01-01

    Microwave effects on the spin adduct yield were observed in the photoreduction of menadione in micellar solutions with ordinary sodium dodecyl sulfate (SDS), deuterium-labeled SDS, and a mixture of them. A large isotope effect was found in the microwave modulation of the spin adduct yield, which is due to the ESR transitions of the transient radical pair in the reaction. It is demonstrated for the first time that the microwave field can be used to enrich one of the isotopes which coexist in the system

  11. Investigations of structure, bonding, and reactions of radiation-induced free radicals in the solid state using electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Hudson, R.L.

    1978-01-01

    Electron spin resonance spectroscopy (ESR) has been used to study the structure, bonding, and reactions of several types of free radicals produced by γ irradiation of solids at 77K. Well-defined spectral patterns and the use of photolysis and annealing treatments assisted the analyses and interpretations. The radical anion BF 3 - was generated and identified unequivocally in a matrix of tetramethylsilane at 77K. Both the ESR data and theoretical calculations support a pyramidal structure with a bond angle of about 110 0 . The present experiments showed that BF 3 - has ESR parameters consistent with those of the isoelectronic radicals CF 3 , NF 3 + , and F 2 NO. γ irradiation of polycrystalline trimethyl borate at 77K gave an ESR spectrum which was assigned to the dimer radical anion [(MeO) 3 B.B(OMe) 3 ] - . Radical anions of dialkyl carbonates were observed for the first time and found to undergo a β-scission reaction to produce alkyl radicals. This free radical reaction is unusual in that it proceeds both thermally and photochemically. For the dimethyl carbonate radical anion, 13 C parameters were obtained from a 13 C enriched sample. The photolysis of trapped radicals in γ irradiated carboxylic esters, RC(O)OR', was studied by ESR spectroscopy and two different reactions were characterized. Two hypervalent silicon radical anions were prepared and examined in SI(OCH 3 ) 4 . The results of the present work thus represent the first complete sets of data on the silicon 3s and 3p spin densities for such species. The first PL 3 - radical anion was prepared by the γ irradiation of crystalline trimethylphosphite, and identified through its photolysis reactions and from the results of radiation chemical experiments

  12. Characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    The concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000°C) in biomass char have been studied. A room temperature electron spin resonance spectroscopy study was conducted on original wood...... because the free radicals were trapped in a char consisting of a molten amorphous silica at heating rates of 103-104 K s-1. The experimental electron spin resonance spectroscopy spectra were analyzed by fitting to simulated data in order to identify radical types, based on g-values and line widths......, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7·1016 and 1.5·1018 spins g -1. The results indicated...

  13. Can Electron-Rich Oxygen (O2-) Withdraw Electrons from Metal Centers? A DFT Study on Oxoanion-Caged Polyoxometalates.

    Science.gov (United States)

    Takazaki, Aki; Eda, Kazuo; Osakai, Toshiyuki; Nakajima, Takahito

    2017-10-12

    The answer to the question "Can electron-rich oxygen (O 2- ) withdraw electrons from metal centers?" is seemingly simple, but how the electron population on the M atom behaves when the O-M distance changes is a matter of controversy. A case study has been conducted for Keggin-type polyoxometalate (POM) complexes, and the first-principles electronic structure calculations were carried out not only for real POM species but also for "hypothetical" ones whose heteroatom was replaced with a point charge. From the results of natural population analysis, it was proven that even an electron-rich O 2- , owing to its larger electronegativity as a neutral atom, withdraws electrons when electron redistribution occurs by the change of the bond length. In the case where O 2- coexists with a cation having a large positive charge (e.g., P 5+ (O 2- ) 4 = [PO 4 ] 3- ), the gross electron population (GEP) on the M atom seemingly increases as the O atom comes closer, but this increment in GEP is not due to the role of the O atom but due to a Coulombic effect of the positive charge located on the cation. Furthermore, it was suggested that not GEP but net electron population (NEP) should be responsible for the redox properties.

  14. Room temperature Q-band electron magnetic resonance study of radicals in X-ray-irradiated L-threonine single crystals

    International Nuclear Information System (INIS)

    Vanhaelewyn, Gauthier; Vrielinck, Henk; Callens, Freddy

    2014-01-01

    In the past, decennia radiation-induced radicals were successfully identified by electron magnetic resonance (EMR) in several solid-state amino acids and sugars. The authors present a room temperature (RT) EMR study of the stable radicals produced by X-ray-irradiation in the amino acid L-threonine (CH 3 CH(OH)CH(NH3 + )COO - ). Its chemical structure is similar to that of the well-known dosimetric material L-alanine (CH 3 CH(NH3 + )COO - ), and radiation defects in L-threonine may straightforwardly be compared with the extensively studied L-alanine radicals. The hyperfine coupling tensors of three different radicals were determined at RT using electron nuclear double resonance. These results indicate that the two most abundant radicals share the same basic structure CH 3 .C(OH)CH(NH3 + )COO - , obtained by H-abstraction, but are stabilised in slightly different conformations. The third radical is most probably obtained by deamination (CH 3 CH(OH).CHCOO - ), similar in structure to the stable alanine radical. (authors)

  15. Electron attachment to oxygen, ozone and other compounds of atmospheric relevance as studied with ultra-high energy resolution

    International Nuclear Information System (INIS)

    Maerk, T.D.; Matejcik, S.; Kiendler, A.; Cicman, P.; Senn, G.; Skalny, J.; Stampfli, P.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    The processes of electron attachment to oxygen, ozone, ozone/oxygen cluster and oxygen cluster as well as other compounds of atmospheric relevance (CF 2 Cl 2 , CHCl 3 and CCl 3 Br) were studied with ultra-high energy resolution crossed beam technique

  16. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  17. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    International Nuclear Information System (INIS)

    1996-01-01

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented

  18. Electron paramagnetic resonance of radicals and metal complexes. 2. international conference of the Polish EPR Association. Warsaw 9-13 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The conference of Electron Paramagnetic Resonance of Radicals and Metal Complexes has been held in Warsaw from 9 to 13 September 1996. It was the Second International Conference of the Polish EPR Association. The very extensive group of systems containing paramagnetic species has been studied by means of ESR or other magnetic techniques like ENDOR, Spin Echo etc. By radiation or photochemically generated radicals have been stabilized in low temperatures or being detected by means of very fast pulsed techniques. The chemical reactions, reaction kinetics of radicals as well as spin interaction with matrices have been studied and discussed. Over 100 lectures and posters have been presented.

  19. Electron spin resonance and E.N.D.O.R. double resonance study of free radicals produced by gamma irradiation of imidazole single crystals

    International Nuclear Information System (INIS)

    Lamotte, B.

    1970-01-01

    Gamma irradiation of imidazole single crystals at 300 deg. K gives two radicals. Identification and detailed studies of their electronic and geometric structure have been made by ESR and ENDOR techniques. A study of the hydrogen bonded protons hyperfine tensor is made and let us conclude to the inexistence of movement and tunneling of these protons. The principal low temperature radical, produced by gamma irradiation at 77 deg. K has been also studied by ESR and a model has been proposed. (author) [fr

  20. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  1. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  2. Reduction of charge trapping and electron tunneling in SIMOX by supplemental implantation of oxygen

    International Nuclear Information System (INIS)

    Stahlbush, R.E.; Hughes, H.L.; Krull, W.A.

    1993-01-01

    Silicon-on-insulator, SOI, technologies are being aggressively pursued to produce high density, high speed, radiation tolerant electronics. The dielectric isolation of the buried oxide makes it possible to design integrated circuits that greatly minimize single event upset and eliminate dose-rate induced latchup and upset. The reduction of excess-silicon related defects in SIMOX by the supplemental implantation of oxygen has been examined. The supplemental implant is 6% of the oxygen dose used to form the buried oxide, and is followed by a 1,000 C anneal, in contrast to the >1,300 C anneal used to form the buried oxide layer of SIMOX. The defects examined include shallow electron traps, deep hole traps, and silicon clusters. The radiation-induced shallow electron and deep hole trapping are measured by cryogenic detrapping and isothermal annealing techniques. The low-field (3 to 6 MV/cm) electron tunneling is interpreted as due to a two phase mixture of stoichiometric SiO 2 and Si clusters a few nm in size. Single and triple SIMOS samples have been examined. All of the defects are reduced by the supplemental oxygen processing. Shallow electron trapping is reduced by an order of magnitude. Because of the larger capture cross section for hole trapping, hole trapping is not reduced as much. The low-field electron tunneling due to Si clusters is also significantly reduced. Both uniform and nonuniform electron tunneling have been observed in SIMOX samples without supplement processing. In samples exhibiting only uniform tunneling, electron capture at holes has been observed. The nonuniform tunneling is superimposed upon the uniform tunneling and is characterized by current spiking

  3. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  4. Zinc vacancy and oxygen interstitial in ZnO revealed by sequential annealing and electron irradiation

    Science.gov (United States)

    Knutsen, K. E.; Galeckas, A.; Zubiaga, A.; Tuomisto, F.; Farlow, G. C.; Svensson, B. G.; Kuznetsov, A. Yu.

    2012-09-01

    By combining results from positron annihilation and photoluminescence spectroscopy with data from Hall effect measurements, the characteristic deep level emission centered at ˜1.75 eV and exhibiting an activation energy of thermal quenching of 11.5 meV is associated with the zinc vacancy. Further, a strong indication that oxygen interstitials act as a dominating acceptor is derived from the analysis of charge carrier losses induced by electron irradiation with variable energy below and above the threshold for Zn-atom displacement. We also demonstrate that the commonly observed green emission is related to an extrinsic acceptorlike impurity, which may be readily passivated by oxygen vacancies.

  5. γ radiolysis of thymine in oxygen-free aqueous solution in the presence of electron affinic radiosensitizers: identification of stable products

    International Nuclear Information System (INIS)

    Cadet, J.; Guttin-Lombard, M.; Teoule, R.

    1976-01-01

    Radiosensitizers react with nucleic radicals by addition and by electron transfer reactions. A study has been made of the steady-state γ radiolysis of 1 mM thymine in oxygen-free aqueous solutions containing different classes of radiosensitizing drugs: N-oxyl-free radicals (TAN and TMPN), quinones (menadione and naphthoquinone), nitroheterocyclic compounds (metronidazole and 5-nitro-2-furoic acid) and N-ethylmaleimide. Two classes of thymine degradation products were isolated by thin-layer chromatography and characterized by spectroscopic measurements. The main products, irrespective of radiosensitizers, resulting from oxidation reaction were identified as the cis and trans isomers of 5,6-dihydroxy-5, 6-dihydrothymine, N-pyruvyl-N'-formylurea, 6-hydroxy-5,6-dihydrothymine and 5-hydroxy-5,6-dihydrothymine. In the experimental conditions used only N-oxyls and to a lesser extent NEM reacted with 5-hydroxy-5,6-dihydrothymine-6-yl radical, giving stable covalently-bonded addition products with a high yield. TAN showed a higher binding ability with respect to TMPN, which is in good agreement with the rate-constants previously reported for these bimolecular reactions. (author)

  6. Prospects of radical-interacting porphyrin photosensitizers and their possible use in photodynamic therapy

    Science.gov (United States)

    Gal, Dezso; Shuliakovskaya, T.; Vidoczy, Tamas; Elzemzam, Saleh; Vasvari, Gabor; Suemegi, L.; Kuti, Zsolt

    1994-03-01

    Based on literature data obtained in various fields with respect to studies on the role of free radicals in biology and on the kinetics of triplet-doublet interactions, it is suggested that excited photosensitizers react in vivo with free radicals formed in malignant tissues during photodynamic therapy (PDT) and this interaction competes with sensitizer-radical + molecule and the singlet oxygen mediated effects. Experimental results by laser flash photolysis and electron spin resonance revealed that sensitizer applied in PDT react with stable free radicals presumably both by energy transfer and electron transfer.

  7. One-electron oxidation of BD84, an ellipticine antitumor derivative

    International Nuclear Information System (INIS)

    Sekaki, A.; Gardes-Albert, M.; Houee-Levin, C.; Ferradini, C.; Rivalle, C.; Bisagni, E.; Hickel, B.

    1991-01-01

    The one-electron oxidation of BD84, an ellipticine-related drug, has been studied by pulse radiolysis using OH· radicals as oxidizing agents. In the absence of oxygen, R· radicals are formed. They disappear by recombination. In the presence of oxygen, R· radicals react with O 2 to give peroxy radicals RO 2 ·, which decay by a second-order process. These results are compared to those obtained for other ellipticine derivatives [fr

  8. The structure and properties of free radicals: An electron spin resonance study of radiation damage to nucleic acid and protein components and to some sulfur-substituted derivitives

    International Nuclear Information System (INIS)

    Sagstuen, E.

    1979-01-01

    When cellular systems are exposed to ionizing radiation the long-term effects may range from minor disturbances to such dramatic changes as mutations and cell death. The processes leading to these macroscopical injuries are primarily confined at the molecular level. In all models aimed at a description of the action of radiation at the molecular level the formation of free radicals (which are species containing unpaired electrons) is a central concept. The technique of ESR spectroscopy is uniquely suited to study free radicals, as it is based on resonance absorption of energy by unpaired electrons in a magnetic field. ESR spectroscopy makes it possible to detect free radicals and, in some cases, to identify them. In order to study free radicals by ESR it is necessary to build up a sufficient number of unpaired spins in the sample (approximately 10 11 or more, depending on the shape of the resonance). This may be different techniques have been used to trap the induced radicals or to attain a sufficient steady state concentration level. A procedure which seems to contain a large amount of information is to irradiate at low temperatures, and, by subsequent heat-treatment of the sample to study the reactions and fate of the induced radicals. In this thesis single crystal studies of aromatic amino acids and pyrimidine derivitives together with some substituted purine derivitives are presented, and the results are discussed in relation to the present knowledge about radical formation in these classes of compounds. Single crystal studies of some sulfur-containing aromatic compounds have been presented with the purpose of shedding light on the electronic structure of sulfur-centred radicals. (JIW)

  9. Electron-impact vibrational excitation of the hydroxyl radical in the nighttime upper atmosphere

    Science.gov (United States)

    Campbell, Laurence; Brunger, Michael J.

    2018-02-01

    Chemical processes produce vibrationally excited hydroxyl (OH) in a layer centred at an altitude of about 87 km in the Earth's atmosphere. Observations of this layer are used to deduce temperatures in the mesosphere and to observe the passage of atmospheric gravity waves. Due to the low densities and energies at night of electrons at the relevant altitude, it is not expected that electron-impact excitation of OH would be significant. However, there are unexplained characteristics of OH densities and radiative emissions that might be explained by electron impact. These are measurements of higher than expected densities of OH above 90 km and of emissions at higher energies that cannot be explained by the chemical production processes. This study simulates the role of electron impact in these processes, using theoretical cross sections for electron-impact excitation of OH. The simulations show that electron impact, even in a substantial aurora, cannot fully explain these phenomena. However, in the process of this investigation, apparent inconsistencies in the theoretical cross sections and reaction rates were found, indicating that measurements of electron-impact excitation of OH are needed to resolve these problems and scale the theoretical predictions to allow more accurate simulations.

  10. Thermal behavior of organic free radicals in γ-ray irradiated pepper studied by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Ichii, Akane; Abe, Aika; Ukai, Mitsuko

    2003-01-01

    Using electron spin resonance (ESR) spectroscopy, we revealed heating effects on irradiated pepper. The representative ESR spectrum of the irradiated pepper is consisted of four components a sextet centered at g=2.0, a singlet at the same g-value, a singlet at g=4.0 and side peaks near g=2.0. The first one is attributable to a signal with hyperfine (hf) interactions of Mn 2+ (hf constant=7.4 mT). The second one is due to an organic free radical that is induced by the γ-ray irradiation. The third one may originated from Fe 3+ in the nonhem proteins. The fourth signal was found at the symmetric positions of the organic free radical, i.e., the second signal. Upon heating, the forth signals decreased monotonicaly. The ESR signal of the pepper heated for more than 10 min was essentially the same as that before the irradiation. On the other hand, the second signal increased and then leveled off at a constant value by further heating. This is indicative the occurrence of some biochemical reactions such as Maillard reaction during heating procedures. (author)

  11. Electron density and temperature in NIO1 RF source operated in oxygen and argon

    Science.gov (United States)

    Barbisan, M.; Zaniol, B.; Cavenago, M.; Pasqualotto, R.; Serianni, G.; Zanini, M.

    2017-08-01

    The NIO1 experiment, built and operated at Consorzio RFX, hosts an RF negative ion source, from which it is possible to produce a beam of maximum 130 mA in H- ions, accelerated up to 60 kV. For the preliminary tests of the extraction system the source has been operated in oxygen, whose high electronegativity allows to reach useful levels of extracted beam current. The efficiency of negative ions extraction is strongly influenced by the electron density and temperature close to the Plasma Grid, i.e. the grid of the acceleration system which faces the source. To support the tests, these parameters have been measured by means of the Optical Emission Spectroscopy diagnostic. This technique has involved the use of an oxygen-argon mixture to produce the plasma in the source. The intensities of specific Ar I and Ar II lines have been measured along lines of sight close to the Plasma Grid, and have been interpreted with the ADAS package to get the desired information. This work will describe the diagnostic hardware, the analysis method and the measured values of electron density and temperature, as function of the main source parameters (RF power, pressure, bias voltage and magnetic filter field). The main results show that not only electron density but also electron temperature increase with RF power; both decrease with increasing magnetic filter field. Variations of source pressure and plasma grid bias voltage appear to affect only electron temperature and electron density, respectively.

  12. Nature of oxygen containing radicals in radiation chemistry and photochemistry of aqueous solutions. Annual progress report, September 1978--July 1979

    International Nuclear Information System (INIS)

    Czapski, G.

    1979-01-01

    The proposed research is a continuation of the work conducted under this contract and is outlined. During this year, the main emphasis will be given to study further the properties of HO 2 and O 2 - and OH, mainly in their role in biological systems. We will continue to study and elucidate how O 2 - reacts in biological systems. The toxicity of O 2 - is quite well established, but the mechanism is still obscure. The Haber Weiss reaction most probably can not account for the toxicity of O 2 - nor for the formation of singlet oxygen, nor of OH. We will study if reduction of Fe 3+ complexes by O 2 - in biological systems does catalyze the Haber Weiss reaction and if OH is formed in this mechanism. The role of oxygen, radiosensitizers in radiation damage of bacteriophages and cells will be further studied, as well as on E. Coli and Enzymes. We will try to elucidate the formation and role of OH, O 2 - and O 2 in these systems as well as the relative contribution of endogenous and exogenous damage, and the role of direct and indirect radiation damage to cells. We intend also to study if SOD (super oxide dismutase) does react only with O 2 - or also with biological peroxides (RO 2 ) and Hydroperoxides (RO 2 H). Further studies of O 2 - and O 2 with various cytochromes, and hemoglobins is planned

  13. Enhancement of alpha particles-induced cell transformation by oxygen free radicals and tumor necrosis factor released from phagocytes

    International Nuclear Information System (INIS)

    Gong Yifen; Guo Renfeng; Zhu Maoxiang; Shou Jiang; Ge Guixiu; Yang Zhihua; Hieber, L.; Peters, K.; Schippel, C.

    1997-01-01

    To illustrate the role of several endogenous factors released from phagocytes under chronic inflammation in radiation-induced cancer. C 3 T 10 T 1/2 and SHE cells were used as targets, and 238 Pu alpha source was used in alpha irradiation. The enhancement of TF in alpha particles-induced cell transformation by PMA-stimulated human blood and zymosan-stimulated U-937 cells was studied using formation of transformed foci. Transformation frequency (TF) of C 3 H 10 T 1/2 cells exposed to alpha particles of 0.5 Gy increased 2.1 and 2.8 fold by PMA-and PMA-stimulated neutrophils, respectively. TF of irradiated SHE cells at a dose of 0.5 Gy increased 12 fold by the addition of the supernatant of macrophage-like U-937 cell line. It was shown that TF of irradiated SHE cells at above dose increased 8 fold by the supernatant treated with anti-TNF-α could be subcultured continuously in vitro. The cells at 40 th passage and two lines of monoclone cells have the ability to develop malignant tumors in nude mice. The overdose of free radicals and TNF-α released from neutrophils and macrophages have played an important role in low dose radiation-induced cancer

  14. Application of Electron Structure Calculations to the Migration of Oxygen through a Perovskite Membrane

    Science.gov (United States)

    Wood, Douglas A.

    The focus of this thesis is the application of electron structure calculations, particularly density functional theory, to the analysis of the process by which oxygen is able to migrate through a perovskite crystal. This property creates the possibility of using perovskite membranes to separate oxygen from air. This could be applied to the generation of syngas directly from natural gas without the need for a separate air separation unit. A perovskite has the nominal formula ABO3 where A is a rare earth type cation and B is a transition type cation. The structure consists of the B cations arranged in a cube with the A cation in the center. The oxygen ions are located at the midpoint of each B-B cube edge and form an octahedron centered on each B cation. Any real perovskite crystal will contain a certain fraction of vacancies at the oxygen sites. Oxygen migrates through the crystal by jumping from a neighboring site to the vacancy. The permeability of the crystal is thus a function of the concentration of vacancies and the activation energy of the jump from a neighboring site to the vacancy. These properties can be modified by adding dopants for the A and B cations. The literature contains a substantial amount of experimental work on the effect of such dopants. The overall migration process can be divided into components (i) the concentration of oxygen vacancies, (ii) the activation energy for a neighboring on-site oxygen atom to jump to the vacant site, (iii) the concentration of surface vacancies, and (iv) the processes by which oxygen ions transfer back and forth between the perovskite surface and the contiguous vapor space. Using SrTiO3 and LaCoO3 as model compounds, DFT calculations have been used to (i) calculate various properties of the perovskite crystal, (ii) estimate the activation energy of a jump between an occupied oxygen site and an adjacent vacant oxygen site, (iii) predict the effects of various dopants at the A and B site and (iv) analyze the

  15. Stability and electronic properties of oxygen-doped ZnS polytypes: DFTB study

    Science.gov (United States)

    Popov, Ilya S.; Vorokh, Andrey S.; Enyashin, Andrey N.

    2018-06-01

    Synthesis from aqueous solutions is an affordable method for fabrication of II-VI semiconductors. However, application of this method often imposes a disorder of crystal lattice, manifesting as a rich variety of polytypes arising from wurtzite and zinc blende phases. The origin of this disordering still remains debatable. Here, the influence of the most likely impurity at water environment - substitutional oxygen - on the polytypic equilibrium of zinc sulphide is studied by means of density-functional tight-binding method. According to calculations, the inclusion of such oxygen does not affect the polytypic equilibrium. Apart of thermodynamic stability, the electronic and elastic properties of ZnS polytypes are studied as the function of oxygen distribution.

  16. Structural, electronic, and magnetic properties of pristine and oxygen-adsorbed graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, R.H.; Veiga, R.G.A. [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, CEP 38400-902, Uberlandia, MG (Brazil); Srivastava, G.P., E-mail: gps@excc.ex.ac.uk [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2010-07-15

    The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond.

  17. Photo-electron spectroscopy using synchrotron radiation of molecular radicals and fragments produced by laser photo-dissociation

    International Nuclear Information System (INIS)

    Nahon, Laurent

    1991-01-01

    This research thesis reports the combined use of a laser and of a synchrotron radiation in order to respectively photo-dissociate a molecule and to photo-ionize fragments which are analysed by photo-electron spectroscopy. This association allows, on the one hand, radical photo-ionization to be studied, and, on the other hand, polyatomic molecule photo-dissociation to be studied. The author studied the photo-excitation and/or photo-ionization in layer 4d (resp. 3d) of atomic iodine (resp. bromine) produced almost complete laser photo-dissociation of I_2 (resp. Br_2). He discuses the processes of relaxation of transitions from valence 4d to 5p (resp. 3d to 4p) which occur either by direct self-ionization or by resonant Auger effect, and reports the study of photo-dissociation of s-tetrazine (C_2N_4H_2) [fr

  18. Research of oxygen free copper of Upcast {sup registered} technology for electric and electronic uses

    Energy Technology Data Exchange (ETDEWEB)

    Knych, Tadeusz; Smyrak, Beata; Walkowicz, Monika [AGH-Univ. of Science and Technology, Cracow (Poland)

    2011-01-15

    Rapid development of electronics and electrical engineering imposes a necessity to search for new materials enabling fast and lossless transmission of electrical signals. Increasingly common application of electronic systems and elements of electrical engineering contributed to the development of a new group of products representing highly advanced properties. Modern solutions concerning the materials to be used for manufacturing of the above specified products concentrate mainly on high purity copper. As a standard Oxygen Free Copper (OFC) or high purity Oxygen Free High Conductivity Copper (OFHC) are used for production of this kind of wires. OFHC copper purity class of 4N (99.99 %) contains approximately 1 to 3 ppm of oxygen and the total amount of impurities on the level not exceeding 22 ppm. This type of copper is additionally characterized by excellent deformation capabilities as well as corrosion and hydrogen embrittlement resistance. This article presents the analysis of the results of the complex research program on identification of the properties pertaining to wire rods produced oxygen free copper from Upcast line and ETP wire rod produced on Contirod {sup registered} line - in both cases the same type of cathode was used. Additionally, a subsequent analysis of the annealing susceptibility of wires obtained from Cu-OF rod (Upcast {sup registered}) and Cu-ETP wire rod (Contirod {sup registered}) was carried out. The comparative research on the recrystallization temperature proved to be the most interesting point. (orig.)

  19. Decay of organic free radicals in γ-ray irradiated pepper during thermal treatment as detected by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Ukai, Mitsuko; Shimoyama, Yuhei

    2004-01-01

    Using electron spin resonance (ESR) spectroscopy we analysed the thermal decay process of radicals in γ-Irradiated pepper Upon irradiation, the satellite signals were newly induced and appeared at the symmetric positions of the organic free radical, i.e., the g=2.0 signal. Heat treatment decreased the satellite signals exponentially. The ESR signal of the pepper heated for more than 10 min was essentially the same as that before irradiation. To evaluate the radical decay by heat-treatment, we formulated a time-dependent master equation. We could evaluate the time constant of the radical decay based upon the general solution of the equation together with the nonlinear least-squares method

  20. Electron Paramagnetic Resonance pO2 Image Tumor Oxygen-Guided Radiation Therapy Optimization.

    Science.gov (United States)

    Epel, Boris; Maggio, Matt; Pelizzari, Charles; Halpern, Howard J

    2017-01-01

    Modern standards for radiation treatment do not take into account tumor oxygenation for radiation treatment planning. Strong correlation between tumor oxygenation and radiation treatment success suggests that oxygen-guided radiation therapy (OGRT) may be a promising enhancement of cancer radiation treatment. We have developed an OGRT protocol for rodents. Electron paramagnetic resonance (EPR) imaging is used for recording oxygen maps with high spatial resolution and excellent accuracy better than 1 torr. Radiation is delivered with an animal intensity modulated radiation therapy (IMRT) XRAD225Cx micro-CT/ therapy system. The radiation plan is delivered in two steps. First, a uniform 15% tumor control dose (TCD 15 ) is delivered to the whole tumor. In the second step, an additional booster dose amounting to the difference between TCD 98 and TCD 15 is delivered to radio-resistant, hypoxic tumor regions. Delivery of the booster dose is performed using a multiport conformal beam protocol. For radiation beam shaping we used individual radiation blocks 3D-printed from tungsten infused ABS polymer. Calculation of beam geometry and the production of blocks is performed next to the EPR imager, immediately after oxygen imaging. Preliminary results demonstrate the sub-millimeter precision of the radiation delivery and high dose accuracy. The efficacy of the radiation treatment is currently being tested on syngeneic FSa fibrosarcoma tumors grown in the legs of C3H mice.

  1. Collisions of carbon and oxygen ions with electrons, H, H2 and He: Volume 5

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Janev, R.K.; Pindzola, M.S.

    1987-02-01

    This report provides a handbook for fusion research of recommended cross-section and rate-coefficient data for collisions of carbon and oxygen ions with electrons, hydrogen atoms and molecules, and helium atoms. Published experimental and theoretical data have been collected and evaluated, and recommended data are presented in tabular, graphical, and parametrized form. Processes considered include exciation, ionization, and charge exchange at collision energies appropriate to applications in fusion-energy research

  2. Electron Attachment to C2 Fluorocarbon Radicals at High Temperature (Postprint)

    Science.gov (United States)

    2016-01-28

    constant curve for C2F3. Figure 3 shows an extrap - olation of the electron attachment rate constant for C2F3 as a function of Tgas and Tel similar to...weight to the use of kinetic modeling to extrap - olate data taken over narrower ranges. ACKNOWLEDGMENTS The project was funded by the United States Air

  3. The Role of Electronically Excited States and Free Radicals in Ultraviolet-Induced Lens Opacification.

    Science.gov (United States)

    1980-12-01

    of a noncrystallin protein. It has a molecular weight of 14,400 ± 100 and is found in tears, nasal mucus , milk , saliva, and blood serum and is known...electron spin resonance (EPR) can be found in an article by Yamanashi et al. (33). This recent paper describes the EPR-monitored wavelength depen- dence of

  4. The effect of electron localization on the electronic structure and migration barrier of oxygen vacancies in rutile.

    Science.gov (United States)

    Zhu, Linggang; Hu, Qing-Miao; Yang, Rui

    2014-02-05

    By applying the on-site Coulomb interaction (Hubbard term U) to the Ti d orbital, the influence of electron localization on the electronic structure as well as the transport of oxygen vacancies (VO) in rutile was investigated. With U = 4.5 eV, the positions of defect states in the bandgap were correctly reproduced. The unbonded electrons generated by taking out one neutral oxygen atom are spin parallel and mainly localized on the Ti atoms near VO, giving rise to a magnetic moment of 2 μB, in agreement with the experimental finding. With regard to the migration barrier of VO, surprisingly, we found that U = 4.5 eV only changed the value of the energy barrier by ±0.15 eV, depending on the diffusion path. The most probable diffusion path (along [110]) is the same as that calculated by using the traditional GGA functional. To validate the GGA + U method itself, a hybrid functional with a smaller supercell was used, and the trend of the more probable diffusion path was not changed. In this regard, the traditional GGA functional might still be reliable in the study of intrinsic-defect transportation in rutile. Analyzing the atomic distortion and density of states of the transition states for different diffusion paths, we found that the anisotropy of the diffusion could be rationalized according to the various atomic relaxations and the different positions of the valence bands relative to the Fermi level of the transition states.

  5. THE PROTECTIVE ROLE OF VITAMIN E AGAINST OXYGEN FREE RADICAL AND DNA DAMAGE IN CHILDREN WITH β-THALASSEMIA MAJOR

    International Nuclear Information System (INIS)

    NASSAR, E.M.

    2008-01-01

    The present study aimed to determine the benefits of vitamin E as antioxidant supplement in β thalassemia children who are at risk of iron overload due to multiple blood transfusion and oxidative stress. Antioxidant markers, oxidative products, hematological parameters and biomarkers of cell damage were studied in 24 transfusion-dependent β -thalassemia children before and after treatment with vitamin E at a dose of 10 mg/kg /day for a period of four weeks. Plasma thiobarbituric acid reactive species (TBARS) and urinary 8-hydroxy-2 ' -deoxyguanosine (8-OHdG) were analyzed as oxidative markers, whereas the plasma vitamin E and the activities of the antioxidant enzymes glutathione peroxidase (GSH-Px), superoxide dismutase(SOD) and catalase were measured to show the antioxidant status of thalassemic children. All these parameters were also studied in 15 non-anemic healthy controls .The results showed that all the patients had increased signs of iron overload and cell damage that were obvious from the increase in serum iron, ferritin, alanine transaminases (ALT), aspartate transaminases (AST) and both total and direct bilirubin .The level of plasma vitamin E in the thalassemia patients were found to be significantly lower as compared to normal subjects (1.3 ± 0.7 and 3.14 ± 1.5 mg % , respectively). The activities of antioxidants enzymes, glutathione peroxidase and catalase in untreated β-thalassemic patients were found to be significantly (P<0.001) less than that of the normal subjects. However, SOD level was significantly increased. Markers of free radical injury such as TBARS , urinary 8-OHdG levels in thalassemic children were significantly higher than control levels . All these changes in the antioxidant status as well as the hematological parameters, iron overload and cell damage markers in β-thalassemia patients showed significant improvement after vitamin E supplementation. Vitamin E levels showed significant positive correlations with each of Hb, GSH

  6. Topological analysis of the electron density and of the electron localization function of pyrene and its radicals

    International Nuclear Information System (INIS)

    Hernandez-Trujillo, Jesus; Garcia-Cruz, Isidoro; Martinez-Magadan, Jose Manuel

    2005-01-01

    The topological properties of the charge distribution of pyrene and the three derived monoradicals in their ground state and of didehydrogenated pyrenes in the lowest singlet and triplet electronic states are discussed in detail by means of the quantum theory of atoms in molecules (TAIM) and by the electron localization function (ELF). The non-equivalence of the fused aromatic rings of pyrene prevents one from anticipating the stability and reactivity of these species from the chemistry of didehydrogenated species derived from benzene only. Whereas some of these didehydrogenated molecules were found to display a diradical character in the singlet ground state, the topological analysis reveals that others correspond to normal closed shells. Using these theoretical tools, the energetic and geometric details of o-, m- and p-benzyne-like pyrene derivatives are explained

  7. Hydroxyl radical-PLIF measurements and accuracy investigation in high pressure gaseous hydrogen/gaseous oxygen combustion

    Science.gov (United States)

    Vaidyanathan, Aravind

    In-flow species concentration measurements in reacting flows at high pressures are needed both to improve the current understanding of the physical processes taking place and to validate predictive tools that are under development, for application to the design and optimization of a range of power plants from diesel to rocket engines. To date, non intrusive measurements have been based on calibrations determined from assumptions that were not sufficiently quantified to provide a clear understanding of the range of uncertainty associated with these measurements. The purpose of this work is to quantify the uncertainties associated with OH measurement in a oxygen-hydrogen system produced by a shear, coaxial injector typical of those used in rocket engines. Planar OH distributions are obtained providing instantaneous and averaged distribution that are required for both LES and RANS codes currently under development. This study has evaluated the uncertainties associated with OH measurement at 10, 27, 37 and 53 bar respectively. The total rms error for OH-PLIF measurements from eighteen different parameters was quantified and found as 21.9, 22.8, 22.5, and 22.9% at 10, 27, 37 and 53 bar respectively. These results are used by collaborators at Georgia Institute of Technology (LES), Pennsylvania State University (LES), University of Michigan (RANS) and NASA Marshall (RANS).

  8. Kinetics of elementary atom and radical reactions: Progress report

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1986-01-01

    Our research program is concerned with the kinetics of elementary gas phase reactions and energy transfer involving polyatomic molecules. We report here on three ongoing projects: The reaction of oxygen atoms with hydrogen molecules, the electronic relaxation of NH radicals, and the vibrational relaxation of highly excited SF 6 molecules. 10 refs., 5 figs

  9. Nature of oxygen containing radicals in radiation chemistry and photochemistry of aqueous solutions. Annual progress report, September 1979-July 1980

    International Nuclear Information System (INIS)

    Czapski, G.

    1980-01-01

    During this year, emphasis will be given on the properties of HO 2 and O 2 - and OH, mainly in their role in biological systems. We will continue to study and elucidate how O 2 - reacts in biological systems. The toxicity of O 2 - is quite well established but the mechanism is still obscure. One way O 2 - is toxic is that OH is formed from O 2 - through reduction of Fe 3+ , and subsequently the reaction of Fe 2+ with H 2 O 2 (Fenton reaction). This mechanism is sometimes called the Haber Weiss Reaction. We will study if reduction of Fe 3+ complexes by O 2 - in biological systems does catalyze the Haber Weiss reaction and if OH is formed in this mechanism. The role of oxygen, radiosensitizers in radiation damage of bacteriophages and cells will be further studied, as well as on E. coli and enzymes. Use of different mutants, such as ones with repair deficiencies, or others which are deficient in glutathione will help to elucidate the role of O 2 - and O 2 toxicity. We will try to elucidate the formation and role of OH, O 2 - and O 2 in these systems as well as the relative contribution of endogenous and exogenous damage, and the role of direct and indirect radiation damage to cells. As there is some doubt how and if SOD protects cells from irradiation as literature results show lots of conflict, we will try to clear this point, in studies with E. coli mutants, and adding SOD endogenously and exogenously. We also intend to study if SOD (super oxide dismutase) does react only with O 2 - or also with biological peroxides (RO 2 ) and hydroperoxides (RO 2 H). Further studies of O 2 - and O 2 with various cytochromes, and hemoglobins is planned

  10. Electron paramagnetic resonance highlights that the oxygen effect contributes to the radiosensitizing effect of paclitaxel.

    Directory of Open Access Journals (Sweden)

    Fabienne Danhier

    Full Text Available BACKGROUND: Paclitaxel (PTX is a potent anti-cancer chemotherapeutic agent and is widely used in the treatments of solid tumors, particularly of the breast and ovaries. An effective and safe micellar formulation of PTX was used to administer higher doses of PTX than Taxol® (the current commercialized drug. We hypothesize that PTX-loaded micelles (M-PTX may enhance tumor radiosensitivity by increasing the tumor oxygenation (pO(2. Our goals were (i to evaluate the contribution of the "oxygen effect" to the radiosensitizing effect of PTX; (ii to demonstrate the therapeutic relevance of the combination of M-PTX and irradiation and (iii to investigate the underlying mechanisms of the observed oxygen effect. METHODOLOGY AND PRINCIPAL FINDINGS: We used (PEG-p-(CL-co-TMC polymeric micelles to solubilize PTX. pO(2 was measured on TLT tumor-bearing mice treated with M-PTX (80 mg/kg using electron paramagnetic resonance (EPR oximetry. The regrowth delay following 10 Gy irradiation 24 h after M-PTX treatment was measured. The tumor perfusion was assessed by the patent blue staining. The oxygen consumption rate and the apoptosis were evaluated by EPR oximetry and the TUNEL assay, respectively. EPR oximetry experiments showed that M-PTX dramatically increases the pO(2 24 h post treatment. Regrowth delay assays demonstrated a synergy between M-PTX and irradiation. M-PTX increased the tumor blood flow while cells treated with M-PTX consumed less oxygen and presented more apoptosis. CONCLUSIONS: M-PTX improved the tumor oxygenation which leads to synergy between this treatment and irradiation. This increased pO(2 can be explained both by an increased blood flow and an inhibition of O(2 consumption.

  11. Electronic symmetry breaking in polyatomic molecules. Multiconfiguration self-consistent field study of the cyclopropenyl radical C3H3

    International Nuclear Information System (INIS)

    Hoffmann, M.R.; Laidig, W.D.; Kim, K.S.; Fox, D.J.; Schaefer, H.F. III

    1984-01-01

    For equilateral triangle geometries (point group D/sub 3h/), the C 3 H 3 radical has a degenerate 2 E'' electronic ground state. Although the 2 A 2 and 2 B 1 components separate in energy for C/sub 2v/ geometries, these two components should have identical energies for equilateral triangle structures. In fact, when approximate wave functions are used and the orbitals not required to transform according to the D/sub 3h/ irreducible representations, an energy separation between the 2 A 2 and 2 B 1 components is observed. At the single configuration self-consistent field (SCF) level of theory this separation is 2.8 kcal with a double-zeta basis set and 2.4 kcal with double-zeta plus polarization. It has been demonstrated that this spurious separation may be greatly reduced using multiconfiguration self-consistent field (up to 7474 variationally optimum configurations) and configuration interaction (up to 60 685 space and spin adapted configurations) techniques. Configurations differing by three and four electrons from the Hartree--Fock reference function are found necessary to reduce the 2 A 2 - 2 B 1 separation to below 0.5 kcal

  12. Theoretical Treatment of Degenerate Electron Exchange and Dimerization in Spin Dynamics of Radical Ion Pairs as Observed by Magnetic Field Effects

    NARCIS (Netherlands)

    Ivanov, K.L.; Stass, D.V.; Kalneus, E.V.; Kaptein, R.; Lukzen, N.K.

    2013-01-01

    In this work we have compared manifestations of degenerate electron exchange (DEE) and dimerization reactions in MARY (magnetically affected reaction yield) spectroscopy and time-resolved magnetic field effects (TR-MFE) of radical ion pairs (RIPs). It is shown that dimerization results in phase and

  13. Reactive oxygen species in health and disease : Finding the right balance

    NARCIS (Netherlands)

    van der Wijst, Monique

    2016-01-01

    When oxygen takes up an electron, reactive oxygen species are formed. These free radicals can react with important molecules in our body (DNA, proteins), just like iron rusts (oxidation). Too many reactive oxygen species, called oxidative stress, result in cellular damage causing either cell death

  14. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  15. Simulation of the Atomic and Electronic Structure of Oxygen Vacancies and Polyvacancies in ZrO2

    Science.gov (United States)

    Perevalov, T. V.

    2018-03-01

    Cubic, tetragonal, and monoclinic phases of zirconium oxide with oxygen vacancies and polyvacancies are studied by quantum chemical modeling of the atomic and electronic structure. It is demonstrated that an oxygen vacancy in ZrO2 may act as both an electron trap and a hole one. An electron added to the ZrO2 structure with an oxygen vacancy is distributed between two neighboring Zr atoms and is a bonding orbital by nature. It is advantageous for each subsequent O vacancy to form close to the already existing ones; notably, one Zr atom has no more than two removed O atoms related to it. Defect levels from oxygen polyvacancies are distributed in the bandgap with preferential localization in the vicinity of the oxygen monovacancy level.

  16. Long-lived gas-phase radicals from combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Takashi; Furusawa, Koji; Amano, Toshiji; Okubo, Yoichi; Tsuchiya, Jun' ichi; Yoshizawa, Fujiroku; Akutsu, Yoshiaki; Tamura, Masamitsu; Yoshida, Tadao (Univ. of Tokyo (Japan))

    1989-04-20

    On indoor air pollution or fire, it is feared that the gas-phase radicals from the combustion of inflammables or fuel seriously exert an influence on the organisms as harmful matter. The gas-phase radicals were studied using the electron spin resonance (ESR) spin-trapping technique. For the spin trap solution, 0.1 mol solution of {alpha}-phenyl-N-t-butylnitron in benzene was used. As a result, apparently long-lived and highly reactive oxygen-centered radicals were detected in the smoke from polyethylene, polypropylene, polystyrene, polymethylmethacrylate, cellulose, kerosene, benzene, acetone, methanol and butylalcohol. It is suggested that the production mechanism for the radicals should be different from olefin-NOx-air system reaction, which is considered for the radicals from cigarette smoke. 11 refs., 6 figs., 2 tabs.

  17. The mechanisms and process of acephate degradation by hydroxyl radical and hydrated electron

    Directory of Open Access Journals (Sweden)

    Yuanyuan Huang

    2018-02-01

    Full Text Available The degradation process of acephate in aqueous solution with ·OH and eaq− produced by 60Co-γ irradiation and electron pulse radiolysis was studied in the present paper. In the aqueous solution, acephate reacted with eaq− and transformed to transient species which can absorb weakly in the wavelength range of 300–400 nm and decay very fast. According to the decay of hydrated electron, the reaction rate constant of eaq− and acephate is (3.51 ± 0.076 × 109 dm3·mol−1·s−1. The transient species produced in the reaction of ·OH and acephate do not distinctly absorb the light in the wavelength range of 300–700 nm, so the decay and kinetics of the transient species cannot determinedirectly. The competing reaction of KSCN oracephate with ·OH were studied to obtain the reaction rate constant of ·OH and acephate, which is (9.1 ± 0.11 × 108 dm3·mol−1·s−1. Although acetylamide and inorganic ions were determined in the products of the reaction of acephate with ·OH or eaq−, the concentration of inorganic ions in the products of the reaction of acephate with ·OH is higher than that in the product of the reaction of acephate with eaq−. Moreover, there were sulfide in the products of the reaction of acephatewith eaq−. The degradation pathways of acephate by ·OH and eaq− were also proposed based on the products from GC-MS.

  18. Role of aqueous electron and hydroxyl radical in the removal of endosulfan from aqueous solution using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Noor S., E-mail: samadchemistry@gmail.com [Institute of Chemical Sciences, University of Swat, Swat 19130 (Pakistan); Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan); Khan, Javed Ali; Nawaz, Shah; Khan, Hasan M. [Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120 (Pakistan)

    2014-08-15

    Highlights: • Removal of endosulfan was assessed by gamma irradiation under different conditions. • Removal of endosulfan by gamma irradiation was mainly due to reaction of aqueous electron. • The radiation yield value decreased while dose constant increased with increasing gamma-ray dose-rate. • Second-order rate constant of endosulfan with aqueous electron was determined by competition kinetic method. • Degradation pathways were proposed from the nature of identified by-products. - Abstract: The removal of endosulfan, an emerging water pollutant, from water was investigated using gamma irradiation based advanced oxidation and reduction processes (AORPs). A significant removal, 97% of initially 1.0 μM endosulfan was achieved at an absorbed dose of 1020 Gy. The removal of endosulfan by gamma-rays irradiation was influenced by an absorbed dose and significantly increased in the presence of aqueous electron (e{sub aq}{sup −}). However, efficiency of the process was inhibited in the presence of e{sub aq}{sup −} scavengers, such as N{sub 2}O, NO{sub 3}{sup −}, acid, and Fe{sup 3+}. The observed dose constant decreased while radiation yield (G-value) increased with increasing initial concentrations of the target contaminant and decreasing dose-rate. The removal efficiency of endosulfan II was lower than endosulfan I. The degradation mechanism of endosulfan by the AORPs was proposed showing that reductive pathways involving e{sub aq}{sup −} started at the chlorine attached to the ring while oxidative pathway was initiated due to attack of hydroxyl radical at the S=O bond. The mass balance showed 95% loss of chloride from endosulfan at an absorbed dose of 1020 Gy. The formation of chloride and acetate suggest that gamma irradiation based AORPs are potential methods for the removal of endosulfan and its by-products from contaminated water.

  19. Single electron detachment of carbon group and oxygen group elements incident on helium

    International Nuclear Information System (INIS)

    Huang Yongyi; Li Guangwu; Gao Yinghui; Yang Enbo; Gao Mei; Lu Fuquan; Zhang Xuemei

    2006-01-01

    The absolute single electron detachment (SED) cross sections of carbon group elements C - , Si - , Ge - in the energy range of 0.05-0.29 a.u. (5 keV-30 keV) and oxygen group elements O - and S - 0.08-0.27 a.u. (5 keV-30 keV), incident on helium are measured with growth rate method. In our energy region, the SED cross sections of C - , Si - , S - and Ge - increase with the projectiles velocity, at the same time, O - cross sections reach a conspicuous maximum at 0.18 a.u. Some abnormal behavior occurs in measurement of SED cross sections for the oxygen group collision with helium. Our results have been compared with a previous work

  20. Electron beam induced oxygen in YBa2Cu3O7-x superconductors

    International Nuclear Information System (INIS)

    Basu, S.N.; Roy, T.; Mitchell, T.E.; Nastasi, M.

    1989-01-01

    Thin foils of bulk YBa 2 Cu 3 O 7-x (YBCO) superconductors were subjected to electron irradiation in a Transmission Electron Microscope (TEM). The resulting disordering of the oxygen atoms and vacancies in the Cu-O planes was monitored by measuring the splitting of the (110) diffraction spots in the [001] diffraction pattern. Samples were irradiated at 83K with 100, 150, 200 and 300kV electrons. The 100kV electrons did not cause any disordering, even after prolonged irradiation. The results of the higher energy irradiations showed an excellent fit to a disordering model, indicating a lack of radiation assisted ordering at 83K. This was further confirmed by the insensitivity of the disordering to the dose rate of 300kV electrons at 83K. However, at 300K, an increase in the dose rate of 300kV electrons increased the disordering rate, indicating that radiation assisted reordering was occurring at that temperature. 7 refs., 4 figs

  1. Electron beam induced oxygen disordering in YBa2Cu3O7-x superconductors

    International Nuclear Information System (INIS)

    Basu, S.N.; Roy, T.; Mitchell, T.E.; Nastasi, M.

    1990-01-01

    Thin foils of bulk YBa 2 Cu 3 O 7-x (YBCO) superconductors were subjected to electron irradiation in a transmission electron microscope (TEM). The resulting disordering of the oxygen atoms and vacancies in the Cu-O planes was monitored by measuring the splitting of the (110) diffraction spots in the [001] diffraction pattern. Samples were irradiated at 83 K with 100, 150, 200 and 300 kV electrons. The 100 kV electrons did not cause any disordering, even after prolonged irradiation. The results of the higher energy irradiations showed an excellent fit to a disordering model, indicating a lack of radiation assisted reordering at 83 K. This was further confirmed by the insensitivity of the disordering to the dose rate of 300 kV electrons at 83 K. However, at 300 K, an increase in the dose rate of 300 kV electrons increased the disordering rate, indicating that radiation assisted reordering was occurring at that temperature

  2. Muonium-containing vinyl radicals

    International Nuclear Information System (INIS)

    Rhodes, C.J.; Symons, M.C.R.; Roduner, E.; Heming, M.

    1987-01-01

    Exposure of trimethylsilylacetylene and bis(trimethylsilyl)acetylene to positive muons gave radicals whose muon-electron hyperfine coupling constants establish that the corresponding vinyl radicals were formed. (author)

  3. Nitroxyl free radicals formed from hindered amine light stabilizers under 60Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Wang Huiliang; Chen Wenxiu

    2006-01-01

    Nitroxyl free radicals formed from several low molecular weight (LMW) hindered amine light stabilizers (HALS) under 60 Co γ-ray irradiation was studied with electron spin resonance (ESR) spectroscopy. All the HALSs irradiated in air formed nitroxyl free radicals under irradiation in air. For most of the HALSs, concentration of the nitroxyl free radicals increased linearly and quickly with absorbed dose in 0-10 kGy range, but increased slowly, or even kept constant, with doses of greater than 10 kGy. Concentration of nitroxyl free radicals formed from LMW HALS was usually higher than high molecular weight HALS. Tetramethyl HALS was easier to form nitroxyl free radicals than pentamethyl HLAS. Concentration of nitroxyl free radicals formed from the samples irradiated in oxygen was about two times higher than that the samples irradiated in air. Mechanisms of the nitroxyl free radical formation from the γ-ray irradiated HALSs were was discussed. (authors)

  4. Aminoxyl (nitroxyl) radicals in the early decomposition of the nitramine RDX.

    Science.gov (United States)

    Irikura, Karl K

    2013-03-14

    The explosive nitramine RDX (1,3,5-trinitrohexahydro-s-triazine) is thought to decompose largely by homolytic N-N bond cleavage, among other possible initiation reactions. Density-functional theory (DFT) calculations indicate that the resulting secondary aminyl (R2N·) radical can abstract an oxygen atom from NO2 or from a neighboring nitramine molecule, producing an aminoxyl (R2NO·) radical. Persistent aminoxyl radicals have been detected in electron-spin resonance (ESR) experiments and are consistent with autocatalytic "red oils" reported in the experimental literature. When the O-atom donor is a nitramine, a nitrosamine is formed along with the aminoxyl radical. Reactions of aminoxyl radicals can lead readily to the "oxy-s-triazine" product (as the s-triazine N-oxide) observed mass-spectrometrically by Behrens and co-workers. In addition to forming aminoxyl radicals, the initial aminyl radical can catalyze loss of HONO from RDX.

  5. Muonium and muonic radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Geeson, D.; Symons, M.C.R.

    1985-01-01

    An energetic positive muon which is injected in a liquid sample of substrate molecules (S) creates an ionization track consisting of substrate cations (S + ) and electrons. Near the end of this track the muon may combine with an electron to form muonium (Mu) which is observable in inert liquids, but which reacts by addition to form a radical. Alternatively, the electron can add to S to form S - , which then combines with the muon to form the radical. Furthermore, instead of ending up in Mu or in a radical the muon may stay in a diamagnetic environment as a solvated muon, or as a muon substituting a proton in a molecule. Of interest in these schemes are the mechanisms and rates of formation of muonated radicals and in particular the rate constants for their reactions to products. Investigations are based on the observation of Mu and the radical by means of the μSR technique in transverse magnetic fields. (Auth.)

  6. Low-lying electronic states of the OH radical: potential energy curves, dipole moment functions, and transition probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Qin, X.; Zhang, S. D. [Qufu Normal University, Qufu (China)

    2014-12-15

    The six doublet and the two quartet electronic states ({sup 2}Σ{sup +}(2), {sup 2}Σ{sup -}, {sup 2}Π(2), {sup 2}Δ, {sup 4}Σ{sup -}, and {sup 4}Π) of the OH radical have been studied using the multi-reference configuration interaction (MRCI) method where the Davidson correction, core-valence interaction and relativistic effect are considered with large basis sets of aug-cc-pv5z, aug-cc-pcv5z, and cc-pv5z-DK, respectively. Potential energy curves (PECs) and dipole moment functions are also calculated for these states for internuclear distances ranging from 0.05 nm to 0.80 nm. All possible vibrational levels and rotational constants for the bound state X{sup 2}Π and A{sup 2}Σ{sup +} of OH are predicted by numerical solving the radial Schroedinger equation through the Level program, and spectroscopic parameters, which are in good agreements with experimental results, are obtained. Transition dipole moments between the ground state X{sup 2}Π and other excited states are also computed using MRCI, and the transition probability, lifetime, and Franck-Condon factors for the A{sup 2}Σ{sup +} - X{sup 2}Π transition are discussed and compared with existing experimental values.

  7. One-electron oxidation of the hydroquinonic form of vitamin K by OH· and N3· free radicals. A steady-state gamma radiolysis study

    International Nuclear Information System (INIS)

    Nguyen Van Binh, E.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1991-01-01

    The oxidation of a water-soluble model of vitamin K hydroquinone, symbolised by KH 2 p, has been studied by γ radiolysis using OH· or N 3 · free radicals as oxidants. Irradiation doses were up to 300 Gy. The analysis of final products by spectrophotometric absorption and HPLC allowed to characterize the formation of the quinone K and to estimate the initial yield of KH 2 p-disappearance and K-formation. N 3 · radicals led selectively to the formation of the quinone K with a G-value of (3.0 ± 0.3) x 10 -7 mol/J, thus involving a simple one-electron oxidation mechanism. On the contrary, when OH· radicals oxidized KH 2 p, in addition to the quinone, other non identified species were simultaneously produced during the radiolysis, thus requiring a more complex oxidation mechanism [fr

  8. Low energy electron stimulated desorption from DNA films dosed with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Cloutier, Pierre; Massey, Sylvain; Sanche, Leon [Groupe en sciences des radiations, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-06-21

    Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O{sub 2}. The OH{sup -} desorption yields increase markedly with exposure to O{sub 2} at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O{sup -}, attributable to dissociative electron attachment to trapped O{sub 2} molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O{sub 2} shows that this surprising increase in OH{sup -} desorption, at elevated temperatures, arises from the reaction of O{sub 2} with damaged DNA sites. These results thus appear to be a manifestation of the so-called 'oxygen fixation' effect, well known in radiobiology.

  9. Stability of radicals in electron-irradiated fluoropolymer film for the preparation ofgraft copolymer fuel cell electrolyte membranes

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Qian, Huan

    2010-01-01

    The content of radicals in the base polymer film before and after grafting is an important issue in theproduction and use of membranes for electrochemical devices by radiation grafting. In this work a methodhas been developed for determination of relative radical content in fluoropolymer films us...

  10. Design of a mixed ionic/electronic conducting oxygen transport membrane pilot module

    Energy Technology Data Exchange (ETDEWEB)

    Pfaff, E.M.; Kaletsch, A.; Broeckmann, C. [RWTH Aachen University, IWM, Aachen (Germany)

    2012-03-15

    In the last years, a lot of ceramic materials were developed that, at higher temperatures, have a high electrical conductivity and a high conductivity of oxygen ions. Such mixed ionic/electronic conductors can be used to produce high-purity oxygen. This work focuses on the realization of a pilot membrane module, with BSCF (Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}) perovskite selected as the membrane material. An amount of 500 kg of powder was industrially fabricated, spray-granulized and pressed into tubes. The best operation conditions concerning energy consumption were calculated, and a module reactor was designed operating at 850 C, with an air pressure of 15-20 bar on the feed site and a low vacuum of about 0.8 bar on the permeate site. Special emphasis was placed on joining alternatives for ceramic tubes in metallic bottoms. A first laboratory module was tested with a membrane area of 1 m{sup 2} and then advanced to a pilot module with 570 tubes and a capability of more than 300 000 L of pure oxygen per day. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    Science.gov (United States)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  12. Calculations on thirteen Λ–S states of PO radical: Electronic structure, spectroscopy and spin–orbit coupling

    International Nuclear Information System (INIS)

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2013-01-01

    This paper presents the potential energy curves (PECs) of X 2 Π, B 2 Σ + , B′ 2 Π, C 2 Σ − , C′ 2 Δ, 3 2 Π, a 4 Π, b 4 Σ − , 1 4 Δ, 2 4 Δ, 1 4 Σ + , 1 6 Σ + and 1 6 Π Λ–S states and the PECs of 16 Ω states generated from the eight bound Λ–S states of PO radical. All the PECs are calculated by the CASSCF method, which is followed by the internally contracted MRCI approach with the Davidson modification. The spin–orbit coupling is included by the state interaction approach with the Breit–Pauli Hamiltonian. The convergent behavior is observed and discussed with respect to the correlation-consistent basis set and level of theory. The effect on the energy splitting by core-electron correlations is studied. To improve the quality of PECs, core-valence correlation corrections are included by a cc-pCVTZ basis set. Scalar relativistic correction calculations are made by the third-order Douglas–Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. All the PECs are extrapolated to the complete basis set limit. With these PECs, the spectroscopic parameters of 10 Λ–S and 16 Ω bound states are evaluated. The vibrational manifolds of the first 16 vibrational states are evaluated for each Λ–S and Ω state of non-rotation radical. With the PECs obtained by the MRCI+Q/CV+DK+56+SO calculations, the SO coupling splitting energy of X 2 Π Λ–S state is determined as 225.18 cm −1 , which agrees well with the measurements of 224.17 cm −1 . Moreover, other spectroscopic parameters and molecular constants calculated here are also in excellent agreement with the available measurements. It shows that the spectroscopic parameters and molecular constants reported here can be expected to be reliable predicted ones. -- Highlights: ► Convergent behavior is observed with respect to the basis set and level of theory. ► Effect on the PECs by core-valence correlation and relativistic corrections is included. ► PECs are extrapolated

  13. Electronic structure of 2,5,8-tri-tert-butylphenalenyl radical studied by He(I) photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Mari [School of Medicine, Keio University, Hiyoshi-4, Kohoku, Yokohama 223-8521 (Japan)], E-mail: marik@hc.cc.keio.ac.jp; Kobayashi, Tsunetoshi [School of Medicine, Keio University, Hiyoshi-4, Kohoku, Yokohama 223-8521 (Japan); Kubo, Takashi; Nakasuji, Kazuhiro [Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2008-09-15

    Phenalenyl radical is an odd-alternant hydrocarbon radical of high symmetry, D{sub 3h} and is extremely attractive as the constituent of molecular magnets. But it has not been characterized in detail. Recently, 2,5,8-tri-tert-butylphenalenyl radical has successfully been synthesized. In this work the gas phase He(I) photoelectron spectrum of this radical has been measured and analyzed with the aid of UHF MO and RHF MO SECI calculations. The first band has been assigned to the ionization from the SO-{pi}-MO of the neutral radical. The second band group has been ascribed to the ionized states relevant to three triplet ionic states and one singlet ionic state of the monocation, the third band group being ascribed to the two singlet ionic states of the monocation.

  14. Oxidation of aromatic amines and diamines by OH radicals. Formation and ionization constants of amine cation radicals in water

    International Nuclear Information System (INIS)

    Hayon, E.; Rao, P.S.

    1975-01-01

    The one-electron oxidation by hydroxyl radicals of aromatic amines and diamines in water was studied using the fast-reaction technique of pulse radiolysis and kinetic absorption spectrophotometry. The following compounds were examined: N,N,N 1 ,N 1 - tetramethyl-p-phenylenediamine (TMPD), p-phenylenediamine (PD), N,N-dimethyl-p-phenylenediamene (DMPD), N,N,N 1 ,N 1 -tetramethylbenzidine (TMB), and diphenylamine (DPA). The main initial reaction of the OH radicals is suggested to be an addition to these compounds to give absorption spectra which absorb strongly in the visible and uv regions. These OH radical adducts decay by first-order kinetics and have lifetimes of approximately 5-50 μsec, dependent on the pH, buffer concentration, and the nature of the aromatic amines and diamines. They decay to give species with somewhat similar absorption spectra and extinction coefficients, which are very long lived in the absence of oxygen. The latter species are assigned to the cation radicals TMPD. + , PD. + , DMPD. + , TMB. + , and DPA. + . The OH radical adducts and the cation radicals have acid-base properties. The pK/sub a/ values of the cation radicals TMPDH. 2+ , PDH. 2+ , DMPDH. 2+ , TMBH. 2+ , and DPAH. 2+ were found to be 5.3, 5.9, 6.1, 5.1, and 4.2, respectively. The results indicate that these aromatic amines and diamines can be oxidized by free radicals to yield the corresponding cation radicals. (U.S.)

  15. [Effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial partial-thickness scald at early stage].

    Science.gov (United States)

    Yang, Y X; Wang, J H; Liu, L; Zou, Q; Zhang, Y; Bai, Z

    2017-06-20

    Objective: To study the effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial-thickness scald at early stage. Methods: Seventy Wistar rats were divided into healthy control group (HC, n =7), pure scald group (PS, n =21), scald+ fresh water immersion group (SF, n =21), and scald+ seawater immersion group (SS, n =21) according to the random number table. Rats in group HC did not receive any treatment, while 5% total body surface area superficial partial-thickness scald was made on the back of rats in the latter three groups. Rats in group PS lived freely immediately post burn, while wounds on the back of rats in groups SF and SS were immersed into fresh water and seawater, respectively. Serum and full-thickness skin tissue in the center of wounds on the back of 7 rats in groups PS, SF, and SS at post immersion (injury) hour (PIH) 2, 4, and 6 were collected, respectively, while serum and full-thickness skin tissue at the same position of the 7 rats in group HC were collected at PIH 6 of rats in other groups. Morphology of skin tissue was observed with HE staining; tumor necrosis factor-alpha (TNF-α) content in serum and skin tissue was determined by enzyme-linked immunosorbent assay; superoxide dismutase (SOD) content in serum and skin tissue was determined by hydroxylamine method; malondialdehyde content in serum and skin tissue was determined by thiobarbituric acid method. Data were processed with analysis of variance of factorial design, one-way analysis of variance, Welch test, LSD test, and Tamhane test. Results: (1) Epidermal cells of skin tissue of rats in group HC arranged in order and continuously, and the dermis tissue and accessory structures were clear and complete. The skin layer and epidermis of wounds of rats in group PS had no significant change, but the edema of epidermis and dermis and infiltration of inflammatory cells enhanced over time at PIH 2, 4, and 6. The horny layer of epidermis of

  16. Basic regulatory principles of Escherichia coli's electron transport chain for varying oxygen conditions.

    Science.gov (United States)

    Henkel, Sebastian G; Ter Beek, Alexander; Steinsiek, Sonja; Stagge, Stefan; Bettenbrock, Katja; de Mattos, M Joost Teixeira; Sauter, Thomas; Sawodny, Oliver; Ederer, Michael

    2014-01-01

    For adaptation between anaerobic, micro-aerobic and aerobic conditions Escherichia coli's metabolism and in particular its electron transport chain (ETC) is highly regulated. Although it is known that the global transcriptional regulators FNR and ArcA are involved in oxygen response it is unclear how they interplay in the regulation of ETC enzymes under micro-aerobic chemostat conditions. Also, there are diverse results which and how quinones (oxidised/reduced, ubiquinone/other quinones) are controlling the ArcBA two-component system. In the following a mathematical model of the E. coli ETC linked to basic modules for substrate uptake, fermentation product excretion and biomass formation is introduced. The kinetic modelling focusses on regulatory principles of the ETC for varying oxygen conditions in glucose-limited continuous cultures. The model is based on the balance of electron donation (glucose) and acceptance (oxygen or other acceptors). Also, it is able to account for different chemostat conditions due to changed substrate concentrations and dilution rates. The parameter identification process is divided into an estimation and a validation step based on previously published and new experimental data. The model shows that experimentally observed, qualitatively different behaviour of the ubiquinone redox state and the ArcA activity profile in the micro-aerobic range for different experimental conditions can emerge from a single network structure. The network structure features a strong feed-forward effect from the FNR regulatory system to the ArcBA regulatory system via a common control of the dehydrogenases of the ETC. The model supports the hypothesis that ubiquinone but not ubiquinol plays a key role in determining the activity of ArcBA in a glucose-limited chemostat at micro-aerobic conditions.

  17. Effect of hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery on the synthesis of pain mediators, inflammatory mediator and oxygen free radicals

    Directory of Open Access Journals (Sweden)

    Liang-Ying Luo

    2017-08-01

    Full Text Available Objective: To explore the effect of hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery on the synthesis of pain mediators, inflammatory mediator and oxygen free radicals. Methods: A total of 120 patients with fracture who underwent operation in the hospital between July 2014 and December 2016 were collected and divided into control group and observation group according to the random number table method, 60 cases in each group. Control group received morphine hydrochloride combined with ropivacaine for analgesia, observation group received hydromorphone hydrochloride combined with ropivacaine for analgesia, and the postoperative analgesia lasted for 48 h. The differences in serum levels of pain mediators, inflammatory mediators and oxidative stress indexes were compared between the two groups. Results: Immediately after operation, the differences in serum levels of pain mediators, inflammatory mediators and oxidative stress indexes were not statistically significant between the two groups. 48 h after operation, serum PGE2, SP, β-EP, IL-6, MCP-1, HMGB-1 and MDA levels of both groups of patients were significantly lower than those immediately after operation while Cu-Zn SOD and GSH-Px levels were significantly higher than those immediately after operation, and serum PGE2, SP, β-EP, IL-6, MCP-1, HMGB-1 and MDA levels of observation group were significantly lower than those of control group while Cu-Zn SOD and GSH-Px levels were significantly higher than those of control group. Conclusion: Hydromorphone hydrochloride combined with ropivacaine for PCEA after orthopedic surgery is effective in alleviating pain and inhibiting systemic inflammatory response.

  18. [Effects of Electroacupuncture Intervention on Oxygen Free Radicals and Expression of Apoptosis-related Proteins in Rats with Ischemic Learning and Memory Disorder].

    Science.gov (United States)

    Hou, Zhi-tao; Sun, Zhong-ren; Liu, Song-tao; Xiong, Sheng-biao; Liu, Yi-tian; Han, Xiao-xia; Sun, Hong-fang; Han, Yu-sheng; Yin, Hong-na; Xu, Jin-qiao; Li, Dong-dong

    2015-12-01

    To observe the effect of electroacupuncture (EA) therapy on levels of oxygen free radicals (OFR) and hippocampal apoptosis-related protein expression in ischemic learning-memory disorder rats so as to investigate its mechanisms underlying improvement of ischemic learning-memory impairment. A total of 60 SD rats were randomly divided into sham operation (sham), model, medication, and EA groups, with 15 rats in each group. The learning-memory disorder model was made by occlusion of bilateral carotid arteries. EA (2- 3 Hz, 2 mA) was applied to "Zhi San Zhen" ["Shenting" (GV 24) and bilateral "Benshen" (GB 13)] for 30 min, once a day for 3 weeks. The rats of the medication group were treated by lavage of Aricept (0.03 mg . kg(-1) . d(-1)), once daily for 3 weeks. The rats' learning-memory ability was detected by Morris water maze tests and the state of hippocampal apoptosis cells was observed by light microscope after TUNEL staining and the expression of hippocampal Bcl-2, Bax and Caspase-3 proteins was detected by immunohistochemistry. Serum and hippocampal superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) contents were detected by chemical colorimetric analysis. Compared with the sham group, the escape latencies (place-navigation) after modeling were evidently prolonged, and the times of target-platform crossing in 90 sec (spatial probe test) considerably reduced in the model group (Plearning-memory ability. After the treatment for 21 d, the increased escape latency and the reduced target-platform crossing time in both EA and medication groups were reversed in comparison with the model group (Pmemory ability, and the effect of the EA group was significantly superior to that of the medication group (Plearning-memory ability in ischemic learning-memory disorder rats which may be associated with its effects in reducing blood and hippocampal OFR contents and hippocampal cellular apoptosis.

  19. Application of Numerical Analysis of the Shape of Electron Paramagnetic Resonance Spectra for Determination of the Number of Different Groups of Radicals in the Burn Wounds

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-01-01

    Full Text Available Background. The evidence exists that radicals are crucial agents necessary for the wound regeneration helping to enhance the repair process. Materials and methods. The lineshape of the electron paramagnetic resonance (EPR spectra of the burn wounds measured with the low microwave power (2.2 mW was numerically analyzed. The experimental spectra were fitted by the sum of two and three lines. Results. The number of the lines in the EPR spectrum corresponded to the number of different groups of radicals in the natural samples after thermal treatment. The component lines were described by Gaussian and Lorentzian functions. The spectra of the burn wounds were superposition of three lines different in shape and in linewidths. The best fitting was obtained for the sum of broad Gaussian, broad Lorentzian, and narrow Lorentzian lines. Dipolar interactions between the unpaired electrons widened the broad Gaussian and broad Lorentzian lines. Radicals with the narrow Lorentzian lines existed mainly in the tested samples. Conclusions. The spectral shape analysis may be proposed as a useful method for determining the number of different groups of radicals in the burn wounds.

  20. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2011-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  1. Radical chemistry of artemisinin

    Science.gov (United States)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  2. Radical chemistry of artemisinin

    International Nuclear Information System (INIS)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G

    2010-01-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  3. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  4. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  5. Detection of free radicals in gamma-irradiated soybean paste and model system by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Lee, E.-J.; Volkov, Vitaly I.; Byun, M.-W.; Lee, C.-H.

    2002-01-01

    We have investigated ESR spectra of fermented soybean paste irradiated at 77 K and compared with those of soybean protein isolate and soybean oil. The influences of irradiation dose, moisture content and heating after irradiation on the free radical concentration and species were examined. Four different carbon type free radicals, FR1-FR4, were identified as the product of amino acid decomposition. In the case of FR1, the doublet line arises from the hydrogen atom on the β-carbon adjacent to the carbonyl free radical. It disappeared at 150 K. FR2 was most abundant and disappeared at 190 K in wet soybean paste (WSP) and at 210 K in dry soybean paste (DSP), respectively. The radical FR4 originated from decarboxylation and deamination of amino acids, which disappeared at 210 K in both WSP and DSP. FR3 was assumed to be formed by the damage of amino acid side chains. The radical · OH was originated from water molecules, and was not observed in dry system. Sulfur radical was stable even at room temperature observed in both wet and dry systems. Aldehyde radical must be originated from the chemical reactions of enzymatic hydrolysates of soybean

  6. The Mechanisms of Oxygen Reduction in the Terminal Reducing Segment of the Chloroplast Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2016-07-01

    The review is dedicated to ascertainment of the roles of the electron transfer cofactors of the pigment-protein complex of PSI, ferredoxin (Fd) and ferredoxin-NADP reductase in oxygen reduction in the photosynthetic electron transport chain (PETC) in the light. The data regarding oxygen reduction in other segments of the PETC are briefly analyzed, and it is concluded that their participation in the overall process in the PETC under unstressful conditions should be insignificant. Data concerning the contribution of Fd to the oxygen reduction in the PETC are examined. A set of collateral evidence as well as results of direct measurements of the involvement of Fd in this process in the presence of isolated thylakoids led to the inference that this contribution in vivo is negligible. The increase in oxygen reduction rate in the isolated thylakoids in the presence of either Fd or Fd plus NADP + under increasing light intensity was attributed to the increase in oxygen reduction executed by the membrane-bound oxygen reductants. Data are presented which imply that a main reductant of the O 2 molecule in the terminal reducing segment of the PETC is the electron transfer cofactor of PSI, phylloquinone. The physiological significance of characteristic properties of oxygen reductants in this segment of the PETC is discussed. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. An electron spin resonance study of radicals formed from tetrolic acid by radiolysis in a freon matrix

    International Nuclear Information System (INIS)

    Rhodes, C.J.

    1989-01-01

    In the present study, e.s.r. spectra have been observed following γ-irradiation of dilute frozen solutions of tetrolic acid, MeC≡CCO 2 H, in CFCl 3 at 77 K. A typical spectrum is shown which we interpret in terms of an isotropic quartet from the parent radical cation. MeC≡CCo 2 H +· , and an anisotropic triplet arising from the propargyl radical, ·CH 2 C≡CCO 2 H, formed by deprotonation of the parent cation. This appears to be the first example of an alkyne radical cation to be observed in a CFCl 3 matrix. (author)

  8. A multiplexed electronic architecture for opto-electronic patch sensor to effectively monitor heart rate and oxygen saturation

    Science.gov (United States)

    Yan, Liangwen; Hu, Sijung; Alharbi, Samah; Blanos, Panagiotis

    2018-02-01

    To effectively capture human vital signs, a multi-wavelength optoelectronic patch sensor (MOEPS), together with a schematic architecture of electronics, was developed to overcome the drawbacks of present photoplethysmographic (PPG) sensors. To obtain a better performance of in vivo physiological measurement, the optimal illuminations, i.e., light emitting diodes (LEDs) in the MOEPS, whose wavelength is automatically adjusted to each specific subject, were selected to capture better PPG signals. A multiplexed electronic architecture has been well established to properly drive the MOEPS and effectively capture pulsatile waveforms at rest. The protocol was designed to investigate its performance with the participation of 11 healthy subjects aged between 18 and 30. The signals obtained from green (525nm) and orange (595nm) illuminations were used to extract heart rate (HR) and oxygen saturation (SpO2%). These results were compared with data, simultaneously acquired, from a commercial ECG and a pulse oximeter. Considering the difficulty for current devices to attain the SpO2%, a new computing method, to obtain the value of SpO2%, is proposed depended on the green and orange wavelength illuminations. The values of SpO2% between the MOEPS and the commercial Pulse Oximeter devics showed that the results were in good agreement. The values of HR showed close correlation between commercial devices and the MOEPS (HR: r1=0.994(Green); r2=0.992(Orange); r3=0.975(Red); r4=0.990(IR)).

  9. Oxygen diffusion kinetics and reactive lifetimes in bacterial and mammalian cells irradiated with nanosecond pulses of high intensity electrons

    International Nuclear Information System (INIS)

    Epp, E.R.; Weiss, H.; Ling, C.C.; Djordjevic, B.; Kessaris, N.D.

    1975-01-01

    Experiaments have been designed to gain information on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and on the time-diffusion of oxygen in cells. An approach developed in this laboratory involves the delivery of two high intensity electron pulses each of 3 ns duration to a thin layer of cells equilibrated with a known concentration of oxygen. The first pulse serves to render the cells totally anoxic by the radiochemical depletion of oxygen; the second is delivered at a time electronically delayed after the first allowing for diffusion of oxygen during this time. Under these conditions the radiosensitivity of E coli B/r has been measured over six decades of interpulse time. Cellular time-diffusion curves constructed from the measurements show that oxygen establishes its sensitizing effect within 10 -4 s after the creation of intracellular anoxia establishing this time as an upper limit to the lifetime of the species. Unusual behaviour of the diffusion curve observed for longer delay times can be explained by a model wherein it is postulated that a radiation-induced inhibiting agent slows down diffusion. Application of this model to the experimental data yields a value of 0.4x10 -5 cm 2 s -1 for the cellular oxygen diffusion coefficient. Similar experiments recently carried out for Serratia marcescens will also be described. The oxygen effect in cultured HeLa cells exposed to single short electron pulses has been examined over a range of oxygen concentrations. A family of breaking survival curves was obtained similar to those previously measured for E coli B/r by this laboratory. The data appear to be reasonably consistent with a physicochemical mechanism involving the radiochemical depletion of oxygen previously invoked for bacteria. (author)

  10. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry.

    Directory of Open Access Journals (Sweden)

    Laura M Langan

    Full Text Available Advanced in vitro culture from tissues of different origin includes three-dimensional (3D organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells using Electron Paramagnetic Resonance (EPR oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid and absolute size (118±32 μm allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid cultures in biomedical and

  11. Search for high mass resonances decaying into electron-positron pairs in proton-proton collisions at {radical}(s)=7 TeV with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Goeringer, Christian

    2013-04-25

    The Standard Model of particle physics was developed to describe the fundamental particles, which form matter, and their interactions via the strong, electromagnetic and weak force. Although most measurements are described with high accuracy, some observations indicate that the Standard Model is incomplete. Numerous extensions were developed to solve these limitations. Several of these extensions predict heavy resonances, so-called Z' bosons, that can decay into an electron positron pair. The particle accelerator Large Hadron Collider (LHC) at CERN in Switzerland was built to collide protons at unprecedented center-of-mass energies, namely 7 TeV in 2011. With the data set recorded in 2011 by the ATLAS detector, a large multi-purpose detector located at the LHC, the electron positron pair mass spectrum was measured up to high masses in the TeV range. The properties of electrons and the probability that other particles are mis-identified as electrons were studied in detail. Using the obtained information, a sophisticated Standard Model expectation was derived with data-driven methods and Monte Carlo simulations. In the comparison of the measurement with the expectation, no significant deviations from the Standard Model expectations were observed. Therefore exclusion limits for several Standard Model extensions were calculated. For example, Sequential Standard Model (SSM) Z' bosons with masses below 2.10 TeV were excluded with 95% Confidence Level (C.L.).

  12. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    Science.gov (United States)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  13. General and Efficient a-Oxygenation of Carbonyl Compounds by TEMPO Induced by Single-Electron-Transfer Oxidation of Their Enolates

    Czech Academy of Sciences Publication Activity Database

    Dinca, E.; Hartmann, P.; Smrček, Jakub; Dix, I.; Jones, P. G.; Jahn, Ullrich

    -, č. 24 (2012), s. 4461-4482 ISSN 1434-193X Institutional support: RVO:61388963 Keywords : carbonyl compounds * oxidation * radicals * electron transfer * enolates Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2012

  14. Quasi-elastic and inelastic inclusive electron scattering from an oxygen jet target

    International Nuclear Information System (INIS)

    Anghinolfi, M.; Cenni, R.; Levi Sandri, P.; Longhi, A.; Mokeev, V.I.; Polli, E.; Reolon, A.; Ricco, G.; Simula, S.; Taiuti, M.; Teglia, A.; Zucchiatti, A.

    1996-01-01

    The results of an experiment on inclusive electron scattering from an oxygen jet target, performed in a wide range of energy and momentum transfer covering both quasi-elastic and Δ(1232) resonance regions, are reported. In the former region the theoretical predictions, obtained including effects of nucleon-nucleon correlations in both initial and final states, give a good description of the experimental data. In the inelastic region a broadening as well as a damping of the resonant part of the cross section with respect to the free nucleon case is observed. The need of more detailed calculations including nuclear structure effects on the electroproduction cross section of nucleon resonances is highlighted. (orig.)

  15. Multiple free-radical scavenging (MULTIS) capacity in cattle serum.

    Science.gov (United States)

    Sueishi, Yoshimi; Kamogawa, Erisa; Kimura, Anna; Kitahara, Go; Satoh, Hiroyuki; Asanuma, Taketoshi; Oowada, Shigeru

    2017-01-01

    Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile.

  16. Electron paramagnetic resonance evidence of hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A in Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Shi Huahong [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China)]. E-mail: huahongshi@tom.com; Wang Xiaorong [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Luo Yi [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China); Su Yan [State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210093 (China)

    2005-09-30

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants (BFRs). To confirm its putative oxidative stress-inducing activity, freshwater fish Carassius auratus were injected intraperitoneally with TBBPA. One experiment lasted 3 h to 28 days after a single injection of 100 mg/kg TBBPA, and the other lasted 24 h after a single injection of 0-300 mg/kg TBBPA. Reactive oxygen species (ROS) were trapped by phenyl-tert-butyl nitrone (PBN) and detected by electron paramagnetic resonance (EPR). Protein carbonyl (PCO) and lipid peroxidation product (LPO) content were also determined. A six-line EPR spectrum was detected in the sample prepared in air, and a multiple one was obtained in nitrogen. The observed spectrum in nitrogen fits the simulation one with PBN/{center_dot}OCH{sub 3} and PBN/{center_dot}CH{sub 3} quite well. As compared to the control group, TBBPA significantly induced ROS production marked by the intensity of the prominent spectra in liver and bile. TBBPA (100 mg/kg) also significantly increased PCO content in liver starting 24 h and LPO content 3 days after injection. Either PCO or LPO content showed significant relation with ROS production. Based on the hyperfine constants and shape of the spectrum, ROS induced by TBBPA was determined as {center_dot}OH. The results clearly indicated that TBBPA could induce {center_dot}OH generation and result in oxidative damage in liver of C. auratus.

  17. Resistance to the ionizing radiation in cells of human melanoma. Role of the antioxidant enzymes and of the free radicals of the oxygen

    International Nuclear Information System (INIS)

    Medina, V.; Cricco, G.; Massari, N.; Nunez, M.; Martin, G.; Mohanad, N.; Gutierrez, A.; Bergoc, R.; Rivera, E.; Crescenti, E.; Croci, M.

    2006-01-01

    The malignant melanoma is a highly aggressive and potentially lethal type of skin cancer. Previously we have reported that the cellular human lines of melanoma WM35 and M15 are resistant to the ionizing radiation (IR). The histamine (HA) although it has a regulator effect of the cellular proliferation in these lines, it is not capable of to modify the response to the IR like it makes with other malignant cellular lines. To investigate the bases of the radioresistance of the melanoma lines we have studied in the WM35 the production of free radicals of oxygen (ROS), the activity of the antioxidant enzymes and their modifications by action of the IR and of the HA. In studies in vitro the cells were treated with HA 10 μM from 20 hs before being irradiated with a dose of 2 Gy (source 137 Cs, dose rate 7.7 Gy/min). The ROS levels, superoxide anion (O 2 - ) and hydrogen peroxide (H 2 O 2 ) its were measured by flow cytometry using fluorescent coloring and the activity of dismutase superoxide (SOD), Catalase (CAT) and Glutathion Peroxidase (GPx) its were determined by spectrophotometric techniques and the protein levels by Western blot. The results indicate that in the cells WM35 the HA increases the production of H 2 O 2 in 96% and it diminishes lightly (17%) the levels of O 2 - . On the contrary, the IR diminishes the levels of H 2 O-2 in 47% and it increases in 46% those of O 2 - . In the irradiated cells the HA power the decrease of H 2 O 2 produced by the IR. The variation of the enzymes activity is coincident with these changes in the levels of ROS: the treatment with HA increases the activity of SOD and it diminishes that of CAT in cells without irradiating; on the other hand, in the irradiated cells the HA it diminishes the SOD significantly. On the base of these results we can conclude that the levels of H 2 O 2 are directly related with the sensitivity of the cells WM35 to the IR. The HA is able to modulate the activity of the antioxidant enzymes and the levels

  18. Are mitochondria a permanent source of reactive oxygen species?

    Science.gov (United States)

    Staniek, K; Nohl, H

    2000-11-20

    The observation that in isolated mitochondria electrons may leak out of the respiratory chain to form superoxide radicals (O(2)(radical-)) has prompted the assumption that O(2)(radical-) formation is a compulsory by-product of respiration. Since mitochondrial O(2)(radical-) formation under homeostatic conditions could not be demonstrated in situ so far, conclusions drawn from isolated mitochondria must be considered with precaution. The present study reveals a link between electron deviation from the respiratory chain to oxygen and the coupling state in the presence of antimycin A. Another important factor is the analytical system applied for the detection of activated oxygen species. Due to the presence of superoxide dismutase in mitochondria, O(2)(radical-) release cannot be realistically determined in intact mitochondria. We therefore followed the release of the stable dismutation product H(2)O(2) by comparing most frequently used H(2)O(2) detection methods. The possible interaction of the detection systems with the respiratory chain was avoided by a recently developed method, which was compared with conventional methods. Irrespective of the methods applied, the substrates used for respiration and the state of respiration established, intact mitochondria could not be made to release H(2)O(2) from dismutating O(2)(radical-). Although regular mitochondrial respiration is unlikely to supply single electrons for O(2)(radical-) formation our study does not exclude the possibility of the respiratory chain becoming a radical source under certain conditions.

  19. Radical transfer between proteins: role of tyrosine, tryptophan and protein peroxyl radicals

    International Nuclear Information System (INIS)

    Irwin, J.A.; Ostdal, H.; Davies, M.J.

    1998-01-01

    Reaction of the Fe(III) forms of the heme proteins myoglobin (Mb) and horseradish peroxidase (HRP) with H 2 O 2 gives rise to high-oxidation-state heme-derived species which can be described as a Fe(IV)-oxo porphyrin radical-cation ('Compound 1'). In the case of Mb, the Fe(IV)-oxo porphyrin radical-cation undergoes rapid electron transfer with the surrounding protein to give protein (globin)-derived radicals and an Fe(lV)-oxo species ('Compound 2'). The globin-derived radicals have been shown to be located at two (or more) sites: Tyr-103 or Trp-14, with the latter radical known to react with oxygen to give a Trp-derived peroxyl radical (Mb-Trp-OO*). With HRP, the Fe(lV)-oxo porphyrin radical-cation carries out two successive one-electron oxidation reactions at the exposed heme edge to give firstly 'Compound 2' [the Fe(lV)oxo species] and then the resting Fe(III) state of the enzyme. n this study we have investigated whether the Trp-14 peroxyl radical from Mb and the Compound 1 and 2 species from HRP (in the absence and presence of free Tyr) can oxidise amino acids, peptides and proteins. Such reactions constitute intermolecular protein-to-protein radical transfer reactions and hence protein chain-oxidation. We have also examined whether these oxidants react with antioxidants. Reaction of these heme-protein derived oxidants with amino acids, proteins and antioxidants has been carried out at room temperature for defined periods of time before freeze-quenching to 77K to halt reaction. The radical species present in the reaction system at the time of freezing were subsequently examined by EPR spectroscopy at 77K. Three free amino acids, Tyr, Trp and Cys (with Cys the least efficient) have been shown to react rapidly with Mb-Trp-OO*, as evidenced by the loss of the characteristic EPR features of Mb-Trp-OO* on inclusion of increasing concentrations of the amino acids. All other amino acids are much less reactive. Evidence has also been obtained for (inefficient) hydrogen

  20. Variation of oxygen enhancement ratio with radiation dose studies using 8 MeV electron beam

    International Nuclear Information System (INIS)

    Yerol, Narayana; Nairy, Rajesha K.; Sanjeev, Ganesh

    2014-01-01

    The radiobiological effects can be modified by physical, chemical and biological factors. Oxygen is one of the best known modifiers, and the biological effects are greater in the presence of oxygen. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells; therefore clarifying the mechanism of the oxygen effect is important. In the present study, an attempt was made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52 and 8 MeV electron beam from Microtron accelerator. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1%:2%:2%) medium for several generations in stationary phase to a density of approximately 3 x 10 8 cells mL -1 . Cells were washed thrice by centrifugation and re-suspended to a cell concentration of 1 x 10 8 cells mL -1 in a sterile polypropylene vial for irradiation. Hypoxic conditions were achieved by incubating the samples in air tight vials at 30℃ for 30 min prior to irradiation. For euoxic samples, a cell suspension of 1 x 10 6 cells mL -1 was prepared and was thoroughly aerated by mixing before irradiation. Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30℃ in dark and normal atmospheric conditions and the colonies were counted. The study confirmed that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. For repair proficient cells OER value has been found to increase with dose, while remain constant for repair deficient cell lines. A theoretical model has been formulated to estimate OER values. The OER value varies from 1.51 to 2.53 for D7, 2.02 to 2.98 for X2180, and 2.58 for rad 52. (author)

  1. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Schudt Christian

    2005-07-01

    Full Text Available Abstract Background The sources and measurement of reactive oxygen species (ROS in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR with spin trapping is a specific method for ROS detection, and may address some these technical problems. Methods We have established a protocol for the measurement of intravascular ROS release from isolated buffer-perfused and ventilated rabbit and mouse lungs, combining lung perfusion with the spin probe l-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CPH and ESR spectroscopy. We then employed this technique to characterize hypoxia-dependent ROS release, with specific attention paid to NADPH oxidase-dependent superoxide formation as a possible vasoconstrictor pathway. Results While perfusing lungs with CPH over a range of inspired oxygen concentrations (1–21 %, the rate of CP• formation exhibited an oxygen-dependence, with a minimum at 2.5 % O2. Addition of superoxide dismutase (SOD to the buffer fluid illustrated that a minor proportion of this intravascular ROS leak was attributable to superoxide. Stimulation of the lungs by injection of phorbol-12-myristate-13-acetate (PMA into the pulmonary artery caused a rapid increase in CP• formation, concomitant with pulmonary vasoconstriction. Both the PMA-induced CPH oxidation and the vasoconstrictor response were largely suppressed by SOD. When the PMA challenge was performed at different oxygen concentrations, maximum superoxide liberation and pulmonary vasoconstriction occurred at 5 % O2. Using a NADPH oxidase inhibitor and NADPH-oxidase deficient mice, we illustrated that the PMA-induced superoxide release was attributable to the stimulation of NADPH oxidases. Conclusion The perfusion of isolated lungs with CPH is suitable for detection of intravascular ROS release by ESR spectroscopy. We employed this technique to

  2. Penile rehabilitation after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Ohl, Dana A; Ralph, David

    2013-01-01

    The pathophysiology of erectile dysfunction after radical prostatectomy (RP) is believed to include neuropraxia, which leads to temporarily reduced oxygenation and subsequent structural changes in penile tissue. This results in veno-occlusive dysfunction, therefore, penile rehabilitation programmes...

  3. Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids

    Science.gov (United States)

    Zhang, Peng; Yuan, Songhu

    2017-12-01

    Besides acidic environments, pyrite oxidation also occurs in circumneutral environments, such as well-buffered marine and estuarine sediments and salt marshes where low-molecular-weight organic acids (LMWOAs) (e.g., citrate and oxalate) prevail. However, the production of hydroxyl radicals (radOH) from pyrite oxidation by oxygen (O2) in these circumneutral environments is poorly understood. In this study, radOH production was measured during the abiotic oxidation of pyrite by O2 under circumneutral conditions. A pyrite suspension (50 g/L pyrite) that was buffered at pH 6-8 was exposed to air for oxygenation in the dark. Benzoate (20 mM) was added into the suspension to trap radOH. At pH 7, the cumulative radOH reached 7.5 μM within 420 min in the absence of LMWOAs, whereas it increased to 14.8, 12 and 11.2 μM in the presence of 1 mM ethylenediaminotetraacetate, citrate and oxalate, respectively. When the citrate concentration, which serves as a LMWOAs model, was increased from 0.5 to 5 mM, the cumulative radOH increased from 10.3 to 27.3 μM within 420 min at pH 7. With the decrease in pH from 8 to 6, the cumulative radOH increased from 2.1 to 23.3 μM in the absence of LMWOAs, but it increased from 8.8 to 134.9 μM in the presence of 3 mM citrate. The presence of LMWOAs enhanced the radOH production from pyrite oxidation under circumneutral conditions. In the absence of LMOWAs, radOH is produced mostly from the oxidation of adsorbed Fe(II) by O2. In the presence of citrate, radOH production is attributed mainly to the oxidation of Fe(II)-citrate- by O2 and secondarily to the oxidation of H2O on surface-sulfur defects. The acceleration of pyrite oxidation by Fe(III)-citrate increases radOH production. Fe(II)-citrate- is generated mainly from the complexation of adsorbed Fe(II) by citrate and the reduction of Fe(III)-citrate, and the generation is suppressed by the oxidation of adsorbed Fe(II). Fe(III)-citrate is generated predominantly from Fe

  4. The effect of oxygen impurity on the electronic and optical properties of calcium, strontium and barium chalcogenide compounds

    International Nuclear Information System (INIS)

    Dadsetani, M.; Beiranvand, R.

    2010-01-01

    Electronic and optical properties of calcium, strontium and barium chalcogenide compounds in NaCl structure are studied using the band structure results obtained through the full potential linearized augmented palne wave method. Different linear relationships are observed between theoretical band gap and 1/a 2 (where a is lattice constant) for calcium, strontium and barium chalcogenide compounds with and without oxygen, respectively. An abnormal behavior of electronic and optical properties are found for compounds containing oxygen. These effects are ascribed to the special properties of Ca-O, Sr-O and Ba-O bonds, which are different from chemical bonds between Ca, Sr and Ba and other chalcogen atoms.

  5. Neuroprotection by Radical Avoidance: Search for Suitable Agents

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2009-12-01

    Full Text Available Neurodegeneration is frequently associated with damage by free radicals. However, increases in reactive oxygen and nitrogen species, which may ultimately lead to neuronal cell death, do not necessarily reflect its primary cause, but can be a consequence of otherwise induced cellular dysfunction. Detrimental processes which promote free radical formation are initiated, e.g., by disturbances in calcium homeostasis, mitochondrial malfunction, and an age-related decline in the circadian oscillator system. Free radicals generated at high rates under pathophysiological conditions are insufficiently detoxified by scavengers. Interventions at the primary causes of dysfunction, which avoid secondary rises in radical formation, may be more efficient. The aim of such approaches should be to prevent calcium overload, to reduce mitochondrial electron dissipation, to support electron transport capacity, and to avoid circadian perturbations. l-Theanine and several amphiphilic nitrones are capable of counteracting excitotoxicity and/or mitochondrial radical formation. Resveratrol seems to promote mitochondrial biogenesis. Mitochondrial effects of leptin include attenuation of electron leakage. Melatonin combines all the requirements mentioned, additionally regulates anti- and pro-oxidant enzymes and is, with few exceptions, very well tolerated. In this review, the perspectives, problems and limits of drugs are compared which may be suitable for reducing the formation of free radicals.

  6. The radical cations of sulphur (S8sup(.+)) and tetrasulphur tetranitride (S4N4sup(.+)): a radiation-electron spin resonance study

    International Nuclear Information System (INIS)

    Chandra, Harish; Ramakrishna Rao, D.N.; Symons, M.C.R.

    1987-01-01

    Exposure of dilute solutions of S 8 and S 4 N 4 in trichlorofluoromethane to 60 Co γ-rays at 77 K gave the corresponding radical cations. Enrichment (99%) with 33 S gave greatly broadened electron spin resonance x and y features, with A( 33 S) approx. = + - 4 G, where A is the first formed species from sulfur. The z features showed a clear central line flanked by others with Asub(z) approx. = 28 G. The results suggest the presence of two equally coupled sulphur atoms. On annealing, species (A) changes irreversibly into species (B),possibly, S 8 radical + in a relaxed form in which two opposite atoms have formed a weak three-electron bond. A clear spectrum was produced from S 4 N 4 which showed little g-value variation and no evidence for 14 N splitting. It is concluded that the S 4 N 4 radical + cation has a relatively isolated semi-occupied molecular orbital, with low spin density on nitrogen. (author)

  7. Ionization of one-electron oxygen and fluorine projectiles by molecular hydrogen

    International Nuclear Information System (INIS)

    Tipping, T.N.; Sanders, J.M.; Hall, J.; Shinpaugh, J.L.; Lee, D.H.; McGuire, J.H.; Richard, P.

    1988-01-01

    Cross sections for projectile ionization have been measured for hydrogenlike oxygen and fluorine ions incident on a molecular-hydrogen target over a projectile energy range of 0.5--2.5 MeV/amu. The experimental cross sections are compared to the plane-wave Born approximation (PWBA) and to the Glauber-approximation cross sections all of which were calculated for atomic hydrogen and multiplied by 2. The PWBA calculations have a projectile energy dependence similar to the measured cross sections but slightly underestimate them. The Glauber approximation also underestimates the measured projectile-ionization cross sections when the hydrogen target electrons are neglected, while it overestimates the measured cross sections when the effects of the hydrogen target electrons are included. The measured projectile-ionization cross sections for hydrogenlike ions incident on molecular hydrogen are approximately a factor of 2 smaller than previously reported projectile-ionization cross sections for hydrogenlike ions incident on helium. No cross sections are available for atomic hydrogen in this velocity and ion-charge regime

  8. Secondary electron emission influenced by oxidation on the aluminum surface: the roles of the chemisorbed oxygen and the oxide layer

    Science.gov (United States)

    Li, Jiangtao; Hoekstra, Bart; Wang, Zhen-Bin; Qiu, Jie; Pu, Yi-Kang

    2018-04-01

    A relationship between the apparent secondary electron yield ({γ }{{se}}) and the oxygen coverage/oxide layer thickness on an aluminum cathode is obtained in an experiment under a controlled environment. The apparent secondary electron yield ({γ }{{se}}) is deduced from the breakdown voltage between two parallel plate electrodes in a 360 mTorr argon environment using a simple Townsend breakdown model with the assumption that the variation of the apparent secondary electron yield is dominated by the variation of the argon ion induced processes. The oxygen coverage/oxide layer thickness on the aluminum cathode is measured by a semi in situ x-ray photoemission spectroscopy equipment which is directly attached to the discharge chamber. It is found that three phases exist: (1) in the monomonolayer regime, as the oxygen coverage increases from 0 to 0.3, {γ }{{se}} decreases by nearly 40 % , (2) as the oxygen coverage increases from 0.3 to 1, {γ }{{se}} keeps nearly constant, (3) as the oxide layer thickness increases from about 0.3 nm to about 1.1 nm, {γ }{{se}} increases by 150 % . We propose that, in the submonolayer regime, the chemisorbed oxygen on the aluminum surface causes the decrease of {γ }{{se}} by creating a local potential barrier, which reduces the Auger neutralization rate and the energy gained by the Auger electrons. In the multilayer regime, as the oxide layer grows in thickness, there are three proposed mechanisms which cause the increase of {γ }{{se}}: (1) the work function decreases; (2) resonance neutralization and Auger de-excitation may exist. This is served as another channel for secondary electron production; (3) the kinetic energy of Auger electrons is increased on average, leading to a higher probability for electrons to overcome the surface potential barrier.

  9. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  10. Some aspects of radiation-induced free-radical chemistry of biologically important molecules

    International Nuclear Information System (INIS)

    Sonntag, C. von

    1992-01-01

    Biologically relevant material is usually associated with considerable amounts of water. When ionizing radiation interacts with such material one must consider two modes of energy deposition: the direct effect (ionizing radiation is absorbed by the biomolecules) and the indirect effect (ionizing radiation is absorbed by the surrounding water). In the direct effect, radical cations plus electrons, and excited states of the biomolecules are formed. In the indirect effect the water is decomposed resulting in the formation of the water radicals OH,H and e aq - . These reactive intermediates then interact with the biomolecules. When such systems are irradiated oxygen is often present. As a result of this, the radicals formed in the biomolecules by the various routes are converted into the corresponding peroxyl radicals. In certain cases, e.g. with the nucleobases of DNA, radical cations can be produced in dilute aqueous solutions by radiation-generated SO 4 - radicals, and the fate of these nucleobase radical cations studied by pulse radiolysis and product analysis. Attention will be drawn to the fact that frequently some of the reaction products of the radical cations with water are identical to those formed by OH radical attack, but that there are also marked differences. Similarly, protonation of radical anions (formed by the reaction of solvated electrons with the biomolecules) and the reaction of H-atoms with these molecules can lead to radical intermediates with considerably differing characteristics. Our present knowledge of the variety of reactions of the peroxyl radicals occurring in aqueous solutions will be briefly discussed, emphasizing the large variety of HO 2 /O 2 - elimination reactions and pointing to the reversibility of the oxygen addition (RO 2 →R + O 2 ) in some systems recently studied. (author)

  11. Free radical formation in single crystals of 9-methyladenine X-irradiated at 10 K. An electron paramagnetic resonance and electron nuclear double resonance study

    International Nuclear Information System (INIS)

    Hole, E.O.; Sagstuen, E.; Nelson, W.H.

    1995-01-01

    Single crystals of 9-methyladenine were X-irradiated at 10 K and at 65 K and were studied using K-band EPR, ENDOR and field-swept ENDOR (FSE) techniques in the temperature range 10 K to 290 K. Three major radicals are stabilized in 9-methyladenine at 10 K. These are: MA1, the adenine anion, probably protonated at N3; MA2, the species formed by net hydrogen abstraction from the 9-methyl group; and MA3, the radical formed by net hydrogen addition to C8 of the adenine moiety. Radical MA1 decayed at about 80 K, possibly into the C2 H adduct (MA4). The other two species (MA2, MA3) were stable at room temperature. A fifth radical species was clearly present in the EPR spectra at 10 K but was not detectable by ENDOR. This species, which decayed above 200 K (possibly into MA3), remains unidentified. The radical population at room temperature is as described by previous authors. The mechanisms for radical formation in 9-methyladenine are discussed in light of the hydrogen bonding scheme and molecular stacking interactions. 32 refs., 4 figs., 2 tabs

  12. Computational investigation of the electronic and structural properties of CN radical on the pristine and Al-doped (6, 0) BN nanotubes

    International Nuclear Information System (INIS)

    Soltani, Alireza; Moradi, Ali Varasteh; Bahari, Mahsa; Masoodi, Anis; Shojaee, Shamim

    2013-01-01

    We have performed first-principle calculations to investigate the adsorption behavior of the CN radical (CåN) on the external surface of H-capped Al-doped (6, 0) zigzag single-walled BN nanotubes (BNNT). We calculated the bond length, gap energies, dipole moments, and electronic properties of the · CN on the exterior surface of SWBNNT. Binding energy corresponding to the most stable configuration of CN radical on Al N -doped BNNT is found to be −471.73 kJ mol −1 . The calculated density of states (DOS) reveals that there is a significant orbital hybridization between · CN and Al-doping species in the adsorption process being evidence of an exothermic process. The results indicate that BNNT could be a suitable sensor

  13. Computational investigation of the electronic and structural properties of CN radical on the pristine and Al-doped (6, 0) BN nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Alireza, E-mail: alireza.soltani46@yahoo.com [Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Moradi, Ali Varasteh [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Bahari, Mahsa [Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Masoodi, Anis [Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of); Shojaee, Shamim [Young Researchers and Elite Club, Gorgan Branch, Islamic Azad University, Gorgan (Iran, Islamic Republic of)

    2013-12-01

    We have performed first-principle calculations to investigate the adsorption behavior of the CN radical (CåN) on the external surface of H-capped Al-doped (6, 0) zigzag single-walled BN nanotubes (BNNT). We calculated the bond length, gap energies, dipole moments, and electronic properties of the {sup ·}CN on the exterior surface of SWBNNT. Binding energy corresponding to the most stable configuration of CN radical on Al{sub N}-doped BNNT is found to be −471.73 kJ mol{sup −1}. The calculated density of states (DOS) reveals that there is a significant orbital hybridization between {sup ·}CN and Al-doping species in the adsorption process being evidence of an exothermic process. The results indicate that BNNT could be a suitable sensor.

  14. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    Science.gov (United States)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  15. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical.

    Science.gov (United States)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  16. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    International Nuclear Information System (INIS)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2016-01-01

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH • radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH • radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  17. Interplay of oxygen octahedral rotations and electronic instabilities in strontium ruthenate Ruddlesden-Poppers from first principles

    Science.gov (United States)

    Voss, Johannes; Fennie, Craig J.

    2011-03-01

    The Ruddlesden-Popper ruthenates Sr n+1 Ru n O3 n + 1 display a broad range of electronic phases including p -wave superconductivity, electronic nematicity, and ferromagnetism. Elucidating the role of the number of perovskite blocks, n , in the realization of these differently ordered electronic states remains a challenge. Additionally dramatic experimental advances now enable the atomic scale growth of these complex oxide thin films on a variety of substrates coherently, allowing for the application of tunable epitaxial strain and subsequently the ability to control structural distortions such as oxygen octahedral rotations. Here we investigate from first principles the effect of oxygen octahedral rotations on the electronic structure of Sr 2 Ru O4 and Sr 3 Ru 2 O7 . We discuss possible implications for the physics of the bulk systems and point towards new effects in thin films.

  18. Electron gain and electron loss radicals stabilized on the purine and pyrimidine of a cocrystal exhibiting base-base interstacking: ESR-ENDOR of X-irradiated adenosine:5-bromouracil

    International Nuclear Information System (INIS)

    Kar, L.; Bernhard, W.A.

    1983-01-01

    The predominant free radicals trapped in cocrystals of adenosine:5-bromouracil X-irradiated at 12 0 K were identified by ESR-ENDOR spectroscopy and the radical reactions were followed upon annealing to 480 0 K. The dominant electron abstraction and electron addition products stabilized on the bases at 12 0 K are observed to be the bromouracil π-cation and the adenine π-cation and π-anion. The formation of an anion on bromouracil is inferred from the presence of a radical formed by deuterium addition to C 6 of bromouracil at higher temperatures. Above 40 0 K the bromouracil π-cation appears to decay by recombination and is reduced to undetectable levels at approx.170 0 K. Both adenine π-ions are also observed to decay within the same temperature range. Above 200 0 K hydrogen adducts are stabilized on the bases. Experiments using partially deuterated cocrystals indicate that the H-adducts are formed via both hydrogen addition and protonation of the respective anions. Two hydrogen abstraction radicals stabilized on the sugar residue are detectable at temperatures above 200 0 K, but these may be present at much lower temperatures. The results presented here question the generally accepted hypothesis that, in the presence of purine:pyrimidine stacking interactions, holes are predominantly transferred to the purines while electrns are predominantly transferred to the pyrimidines

  19. Investigation of the generation of singlet oxygen in ensembles of photoexcited silicon nanocrystals by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Konstantinova, E. A.; Demin, V. A.; Timoshenko, V. Yu.

    2008-01-01

    The generation of singlet oxygen is investigated and its concentration upon photoexcitation of silicon nanocrystals in porous silicon layers is determined using electron paramagnetic resonance spectroscopy. The relaxation times of spin centers, i.e., silicon dangling bonds, in vacuum and in an oxygen atmosphere in the dark and under illumination of the samples are measured for the first time. It is revealed that the spin-lattice relaxation in porous silicon is retarded as compared to that in a single-crystal substrate. From analyzing experimental data, a microscopic model is proposed for interaction of oxygen molecules in the triplet state and spin centers at the surface of silicon nanocrystals. The results obtained have demonstrated that porous silicon holds promise for the use as a photosensitizer of molecular oxygen in biomedical applications

  20. Radical's view of sciences

    International Nuclear Information System (INIS)

    Mittal, J.P.

    2004-01-01

    Full text: General concept in radiation biology is that free radicals are highly reactive and they can damage vital cellular molecules leading to injurious effects. However, in this talk, evidence will be presented through the techniques of electron paramagnetic resonance ( EPR ) and pulse radiolysis that free radicals can be highly selective in their reaction with the target molecules. In addition, attempts will be made to present a brief account of emerging scenario of free radical generation, identification and their involvement in radiation damage mechanisms in chemical and biological systems

  1. Heterogeneous electron transfer and oxygen reduction reaction at nanostructured iron(II) phthalocyanine and its MWCNTs nanocomposites

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-05-01

    Full Text Available species within the porous layers of MWCNTs. Electron transfer process is much easier at the EPPGE-MWCNT and EPPGE-MWCNT-nanoFePc compared to the other electrodes. The best response for oxygen reduction reaction was at the EPPGE-MWCNTnanoFePc, yielding a 4...

  2. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  3. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    Science.gov (United States)

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Oxygen-related 1-platinum defects in silicon: An electron paramagnetic resonance study

    Science.gov (United States)

    Juda, U.; Scheerer, O.; Höhne, M.; Riemann, H.; Schilling, H.-J.; Donecker, J.; Gerhardt, A.

    1996-09-01

    A monoclinic 1-platinum defect recently detected was investigated more thoroughly by electron paramagnetic resonance (EPR). The defect is one of the dominating defects in platinum doped silicon. With a perfect reproducibility it is observed in samples prepared from n-type silicon as well as from p-type silicon, in float zone (FZ) silicon as well as in Czochralski (Cz) silicon. Its concentration varies with the conditions of preparation and nearly reaches that of isolated substitutional platinum in Cz silicon annealed for 2 h at 540 °C after quenching from the temperature of platinum diffusion. Because of its concentration which in Cz-Si exceeds that in FZ-Si the defect is assumed to be oxygen-related though a hyperfine structure with 17O could not be resolved. The defect causes a level close to the valence band. This is concluded from variations of the Fermi level and from a discussion of the spin Hamiltonian parameters. In photo-EPR experiments the defect is coupled to recently detected acceptorlike self-interstitial related defects (SIRDs); their level position turns out to be near-midgap. These defects belong to the lifetime limiting defects in Pt-doped Si.

  5. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  6. Population densities and rate coefficients for electron impact excitation in singly ionized oxygen

    International Nuclear Information System (INIS)

    Awakowicz, P.; Behringer, K.

    1995-01-01

    In non-LTE arc plasmas, O II excited state number densities were measured relative to the O II ground and metastable states. The results were compared with collisional-radiative code calculations on the basis of the JET ADAS programs. Stationary He plasmas with small oxygen admixtures, generated in a 5 mm diameter cascade arc chamber (pressures 13-70 hPa, arc current 150 A), were investigated spectroscopically in the visible and the VUV spectral range. The continuum of a 2 mm diameter pure He arc (atmospheric pressure, current 100 A) served for calibration of the VUV system response. Plasma diagnostics on the basis of Hβ Stark broadening yielded electron densities between 2.4 x 10 14 and 2.0 x 10 15 cm -3 for the low-pressure O II mixture plasmas. The agreement of measured and calculated excited state populations is generally very satisfactory, thus confirming the rate coefficients in the code. This is of particular interest in this intermediate region between corona balance and LTE, where many atomic data are required in the simulation. Clear indications were found for the diffusion of metastables lowering their number densities significantly below their statistical values. (author)

  7. Prediction of spur overlap time, radical yield profiles, and decomposition of trichloroethylene induced by various pulse types of electron beam

    International Nuclear Information System (INIS)

    Kim, D.-W.; Han, K.-C.; Lee, W.-K.; Ihm, S.-K.

    1996-01-01

    A kinetic model was suggested to compute the yield profiles of primary radicals generated from water radiolysis. For various cases including pulse radiolysis and steady irradiation time of spur overlap was computed in order to ensure homogeneity over the entire system. As a result, consistency to roughly first order kinetics was resulted for decomposition of 1 ppm trichloroethylene (TCE) and slight deviation from the linear model was predicted for 10 ppm TCE. (author)

  8. Electronic excitation of Ti atoms sputtered by energetic Ar+ and He+ from clean and monolayer oxygen covered surfaces

    International Nuclear Information System (INIS)

    Pellin, M.J.; Gruen, D.M.; Young, C.E.; Wiggins, M.D.; Argonne National Lab., IL

    1983-01-01

    Electronic excitation of Ti atoms ejected during energetic ion bombardment (Ar + , He + ) of well characterized clean and oxygen covered polycrystalline Ti metal surfaces has been determined. For states with 0 to 2 eV and 3 to 5.5 eV of electronic energy, static mode laser fluorescence spectroscopy (LFS) and static mode spontaneous fluorescence spectroscopy (SFS) were used respectively. These experiments which were carried out in a UHV ( -10 Torr) system equipped with an Auger spectrometer provide measurements of the correlation between oxygen coverage (0 to 3 monolayers) and the excited state distribution of sputtered Ti atoms. The experimentally determined electronic partition function of Ti atoms does not show an exponential dependence on energy (E) above the ground state but rather an E -2 or E -3 power law dependence. (orig.)

  9. Pulsed radiation studies of carotenoid radicals and excited states

    International Nuclear Information System (INIS)

    Burke, M.

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of β-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar (∼1 x 10 7 M -1 s -1 ) for β-carotene and zeaxanthin and somewhat lower (∼0.5 x 10 7 M -1 s -1 ) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for β-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having

  10. Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo applications

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Barth, Eugene D.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. Results: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above∼100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. Conclusions: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors. PMID:21626937

  11. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    International Nuclear Information System (INIS)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-01-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10 –17 cm 2 molecule –1 was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  12. Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids.

    Science.gov (United States)

    Kozuleva, Marina A; Ivanov, Boris N

    2010-07-01

    The contribution to reduction of oxygen by ferredoxin (Fd) to the overall reduction of oxygen in isolated pea thylakoids was studied in the presence of Fd versus Fd + NADP(+). The overall rate of electron transport was measured using a determination of Photosystem II quantum yield from chlorophyll fluorescence parameters, and the rate of oxidation of Fd was measured from the light-induced redox changes of Fd. At low light intensity, increasing Fd concentration from 5 to 30 microM in the absence of NADP(+) increased the proportion of oxygen reduction by Fd from 25-35 to 40-60% in different experiments. This proportion decreased with increasing light intensity. When NADP(+) was added in the presence of 15 microM Fd, which was optimal for the NADP(+) reduction rate, the participation of Fd in the reduction of oxygen was low, no more than 10%, and it also decreased with increasing light intensity. At high light intensity, the overall oxygen reduction rates in the presence of Fd + NADP(+) and in the presence of Fd alone were comparable. The significance of reduction of dioxygen either by water-soluble Fd or by the membrane-bound carriers of the photosynthetic electron transport chain for redox signaling under different light intensities is discussed.

  13. Investigation on the recombination kinetics of the pyrolytic free-radicals in the irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Chengyue; Wu Yiyong; Yue Long; Shi Yaping; Xiao Jingdong

    2012-01-01

    Highlights: ► Free radicals behavior was exposure during the irradiation and anneal during the post storage. ► Both of the recombination and oxygen reaction affect the post-annealing evolution of free radicals. ► The activation energy and the surface reaction rate were calculated by the analysis of the free radical anneal process. - Abstract: The free radical behavior of 60 and 110 keV proton-irradiated polyimide were investigated using electron paramagnetic resonance measurements. The results indicate that during proton irradiation, a type of pyrolytic carbon free radical was formed with a g value of 2.0025. The radical population was found, after proton irradiation to decrease in a combination of an exponential and linear modes with an annealing time in the range of 50–120 °C. The exponential part indicated a radical recombination process while the linear part is due to the reaction of the radical with the ambient. Using the annealing results, the recombination activation energy of the radicals was determined as 12.4 ± 0.2 and 17.6 ± 0.2 kJ/mol for 60 and 110 keV irradiated polyimide, respectively, with a surface reaction rate of about 0.02/h. It is possible that the kinetic study presented here is used as one of the criteria for predicting the optical properties of polyimide material in spacecraft. The mechanism of the free radical evolution will be discussed in this paper.

  14. cis-Stilbene and (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the Mn(III)(salen)-catalyzed epoxidation: influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer.

    Science.gov (United States)

    Adam, Waldemar; Roschmann, Konrad J; Saha-Möller, Chantu R; Seebach, Dieter

    2002-05-08

    cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.

  15. Study of the secondary electron energy spectrum of clean aluminium modification during oxygen adsorption, hydrogen adsorption or carbon segregation

    International Nuclear Information System (INIS)

    Pellerin, Francois

    1981-01-01

    The first part of this work is a review of both theoretical and experimental aspects of the fine structure appearing in the Secondary Electron Spectrum (SES) and in the electron energy loss spectrum. In the second part, we report the results of a study of the SES and ELS spectra of clean and gas covered aluminium. The use of very low primary electron energies (E p ≤ 30 eV) enables the detection of previously unobserved peaks in the ELS spectra of clean and oxygen covered aluminium. They are attributed to single electron excitations. Furthermore, a very large peak appears in the SES spectrum during oxygen or carbon adsorption on aluminium. It is interpreted in terms of interaction of the background electrons with the valence electrons of the surface. Molecular hydrogen adsorption is observed on Ta, Pt, Al 2 O 3 , Si. It is responsible for an ELS peak located 13 eV below the elastic peak. Furthermore, on silicon, the chemisorbed hydrogen form can be distinguished from the molecular form with the help of ELS. Finally, some examples are given of the application of these results to surface imaging. (author) [fr

  16. Electron paramagnetic resonance study of radicals formed by radiolysis at 77 K of nitroalkanes and of their solutions in organic glasses. Chromatography analysis of radiolysis products of nitromethane in ethanol solution in a vitreous medium

    International Nuclear Information System (INIS)

    Rosilio, C.

    1969-01-01

    With a view to explaining the formation of the final products resulting from the photolysis and the radiolysis of nitro-alkanes, we have attempted to identify the paramagnetic species formed as intermediates during the radiolysis. Our work has covered the structure and the reactivity of the radicals formed by 7 irradiation of the nitrogen containing derivatives at 77 K, and on the mechanism of formation and of disappearance of these radicals in the various matrices used. The radicals resulting from the removal of a hydrogen atom in the α position of the NO 2 group, and the radicals resulting from addition reactions on the nitrogen group characterized by an unpaired electron on the nitrogen have been identified, either during the radiolysis of pure nitroalkanes, or during the radiolysis of nitro-alkanes in solution in organic glasses at 77 K. A study has been made of the conformation and the movements of radicals in the matrices, and the mechanism of formation of the observed radicals produced generally by the capture by the nitro-alkanes of primary radiolysis species. The nitro-alkanes in ethanol solution can behave as traps both for electrons and for free radicals. The study of the radiolysis of nitro-alkanes in solution in a polar ethanol glass has been completed with chemical analyses on the final radiolysis products; it has been possible to deduce the capture efficiency of trapped electrons and of free radicals by nitro-alkanes in ethanol. For this we have determined the radio-chemical yields of hydrogen, acetaldehyde and glycol as a function of the capture agent concentration, for the nitro-methane-ethanol system. A mechanism for the disappearance of the observed radicals is proposed. (author) [fr

  17. Titanium dioxide induced cell damage: A proposed role of the carboxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, Nicholas J.F. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [Ecotoxicology and Stress Biology Research Centre, School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: a.jha@plymouth.ac.uk

    2009-01-15

    Titanium dioxide (TiO{sub 2}) nanoparticles have been shown to be genotoxic to cells exposed to ultraviolet A (UVA) radiation. Using the technique of electron spin resonance (ESR) spin trapping, we have confirmed that the primary damaging species produced on irradiation of TiO{sub 2} nanoparticles is the hydroxyl (OH) radical. We have applied this technique to TiO{sub 2}-treated fish and mammalian cells under in vitro conditions and observed the additional formation of carboxyl radical anions (CO{sub 2}{sup -}) and superoxide radical anions (O{sub 2}{sup -}). This novel finding suggests a hitherto unreported pathway for damage, involving primary generation of OH radicals in the cytoplasm, which react to give CO{sub 2}{sup -} radicals. The latter may then react with cellular oxygen to form O{sub 2}{sup -} and genotoxic hydrogen peroxide (H{sub 2}O{sub 2})

  18. Mulliken-Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    International Nuclear Information System (INIS)

    Rosokha, S.V.; Newton, M.D.; Head-Gordon, M.; Kochi, J.K.

    2006-01-01

    The paramagnetic [1:1] encounter complex (TCNE) 2 -dot is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor (TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE) 2 -dot by its intervalence absorption band at the solvent-dependent wavelength of λ IV ∼1500nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of H DA =1000cm -1 . The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of H DA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy (λ) and the electronic coupling element (H DA ) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes

  19. Electronic Structure and Magnetic Interactions in the Radical Salt [BEDT-TTF]2[CuCl4].

    Science.gov (United States)

    Calzado, Carmen J; Rodríguez-García, Bárbara; Galán Mascarós, José Ramón; Hernández, Norge Cruz

    2018-06-07

    The magnetic behavior and electric properties of the hybrid radical salt [BEDT-TTF] 2 [CuCl 4 ] have been revisited through extended experimental analyses and DDCI and periodic DFT plane waves calculations. Single crystal X-ray diffraction data have been collected at different temperatures, discovering a phase transition occurring in the 250-300 K range. The calculations indicate the presence of intradimer, interdimer, and organic-inorganic π-d interactions in the crystal, a magnetic pattern much more complex than the Bleaney-Bowers model initially assigned to this material. Although this simple model was good enough to reproduce the magnetic susceptibility data, our calculations demonstrate that the actual magnetic structure is significantly more intricate, with alternating antiferromagnetic 1D chains of the organic BEDT-TTF + radical, connected through weak antiferromagnetic interactions with the CuCl 4 2- ions. Combination of experiment and theory allowed us to unambiguously determine and quantify the leading magnetic interactions in the system. The density-of-states curves confirm the semiconductor nature of the system and the dominant organic contribution of the valence and conduction band edges. This general and combined approach appears to be fundamental in order to properly understand the magnetic structure of these complex materials, where experimental data can actually be fitted from a variety of models and parameters.

  20. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Perera, Ajith [Department of Chemistry and Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States); Department of Chemistry, Quantum Theory Project, University of Florida, Gainesville, Florida 32611 (United States)

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  1. The effect of topological defects and oxygen adsorption on the electronic transport properties of single-walled carbon-nanotubes

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Singh, R.

    2003-01-01

    Ab initio density functional theory (DFT) calculations of the interactions between isolated infinitely-long semiconducting zig-zag (10, 0) or isolated infinitely-long metallic arm-chair (5, 5) single-walled carbon-nanotubes (SWCNTs) and single oxygen-molecules are carried out in order to determine the character of molecular-oxygen adsorption and its effect on electronic transport properties of these SWCNTs. A Green's function method combined with a nearest-neighbor tight-binding Hamiltonian in a non-orthogonal basis is used to compute the electrical conductance of SWCNTs and its dependence on the presence of topological defects in SWCNTs and of molecular-oxygen adsorbates. The computational results obtained show that in both semiconducting and metallic SWCNTs, oxygen-molecules are physisorbed to the defect-free nanotube walls, but when such walls contain topological defects, oxygen-molecules become strongly chemisorbed. In semiconducting (10, 0) SWCNTs, physisorbed O 2 -molecules are found to significantly increase electrical conductance while the effect of 7-5-5-7 defects is practically annulled by chemisorbed O 2 -molecules. In metallic (5, 5) SWCNTs, both O 2 adsorbates and 7-5-5-7 defects are found to have a relatively small effect on electrical conductance of these nanotubes

  2. About the 'enlightenment' of nonideal hydrogen-oxygen plasma at a electron concentration Ne19 cm-3

    International Nuclear Information System (INIS)

    Fedorovich, O.A.

    2013-01-01

    The results of experimental determination of the emissivity of the hydrogen-oxygen plasma pulsed discharge in water and their comparison with calculations. It is shown that when concentrations nonideal plasma N e >3 centre dot 10 18 cm -3 , is observed 'enlightenment' of plasma. The reduction of a emitting ability . can be more order in the N e =3 centre dot 10 19 cm -3 and increases with increasing electron concentration.

  3. Low energy electron irradiation induced carbon etching: Triggering carbon film reacting with oxygen from SiO{sub 2} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China); Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Wang, Chao, E-mail: cwang367@szu.edu.cn, E-mail: dfdiao@szu.edu.cn; Diao, Dongfeng, E-mail: cwang367@szu.edu.cn, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2016-08-01

    We report low-energy (50–200 eV) electron irradiation induced etching of thin carbon films on a SiO{sub 2} substrate. The etching mechanism was interpreted that electron irradiation stimulated the dissociation of the carbon film and SiO{sub 2}, and then triggered the carbon film reacting with oxygen from the SiO{sub 2} substrate. A requirement for triggering the etching of the carbon film is that the incident electron penetrates through the whole carbon film, which is related to both irradiation energy and film thickness. This study provides a convenient electron-assisted etching with the precursor substrate, which sheds light on an efficient pathway to the fabrication of nanodevices and nanosurfaces.

  4. Role of apical oxygen in 2-1-4 electron-doped superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.; Riou, G.; Jandl, S.; Poirier, M.; Fournier, P.; Nekvasil, V.; Divis, M

    2004-08-01

    We report a crystal-field infrared transmission and Raman study of oxygenated and reduced Nd{sub 2-x}Ce{sub x}CuO{sub 4} single crystals. Some Nd{sup 3+} crystal-field absorption bands corresponding to rare-earth ions in non-regular sites are attributed to Nd{sup 3+} ions in the vicinity of apical oxygens. This is correlated with a study of the A{sup *} ({approx}580 cm{sup -1}) Raman local mode and with the transport properties of undoped materials. We show that the apical oxygen is not removed by the reduction.

  5. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    Science.gov (United States)

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  6. The Rise of Radicals in Bioinorganic Chemistry.

    Science.gov (United States)

    Gray, Harry B; Winkler, Jay R

    2016-10-01

    Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O 2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) and tryptophan (Trp) residues have been found in many O 2 -reactive enzymes, raising the possibility that they play an antioxidant protective role. In blue copper proteins with plastocyanin-like domains, Tyr/Trp clusters are uncommon in the low-potential single-domain electron-transfer proteins and in the two-domain copper nitrite reductases. The two-domain muticopper oxidases, however, exhibit clusters of Tyr and Trp residues near the trinuclear copper active site where O 2 is reduced. These clusters may play a protective role to ensure that reactive oxygen species are not liberated during O 2 reduction.

  7. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Liu, Liangji [Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  8. Redox properties of free radicals

    International Nuclear Information System (INIS)

    Neta, P.

    1981-01-01

    Results of electron transfer reactions observed and monitored by pulse radiolysis are reported. This technique allows determination of the first one-electron reduction or oxidation of a compound rather than the overall two-electron transfer usually reported. Pulse radiolysis allows the determination of absolute rate constants for reactions of free radicals and helps elucidate the mechanisms involved. Studies using this technique to study radicals derived from quinones, nitro compounds, pyridines, phenols, and anilines are reported. Radicals of biochemical interest arising from riboflavin, ascorbic acid, vitamin K 3 , vitamin E, MAD + , porphyrins, etc. have also been studied

  9. BIOREMEDIATION OF BTEX, NAPTHALENE, AND PHENANTHRENE IN AQUIFER MATERIAL USING MIXED OXYGEN/NITRATE ELECTRON

    Science.gov (United States)

    The goal of the research described herein was to examine the feasibility of biodegradation of mono and polycyclic aromatic hydrocarbons typically present in a manufactured gas processing (MGP) site groundwater and subsurface sediments under mixed oxygen/denitrifying conditions. ...

  10. Amyloid-β and α-Synuclein Decrease the Level of Metal-Catalyzed Reactive Oxygen Species by Radical Scavenging and Redox Silencing

    DEFF Research Database (Denmark)

    Pedersen, Jeppe T; Chen, Serene W; Borg, Christian B

    2016-01-01

    formation of ROS in vitro in the presence of a biological reductant. We find that the levels of ROS, and the rate by which ROS is generated, are significantly reduced when Cu(2+) is bound to Aβ or αS, particularly when they are in their oligomeric or fibrillar forms. This effect is attributed...... to a combination of radical scavenging and redox silencing mechanisms. Our findings suggest that the increase in ROS associated with the accumulation of aggregated Aβ or αS does not result from a particularly ROS-active form of these peptides, but rather from either a local increase of Cu(2+) and other ROS...

  11. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R"."+), carbon-centered radicals (R".), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R"."+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  12. In vitro free radical scavenging activity of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Miyamoto, Yusei [Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 (Japan); Takahashi, Kyoko; Mashino, Tadahiko, E-mail: yusei74@k.u-tokyo.ac.j [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512 (Japan)

    2009-11-11

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 {+-} 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical AOO. generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O{sub 2} and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by AOO. generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 {mu}M DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 {mu}M DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  13. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  14. Electron spin resonance and optical studies on the radiolysis of carbon tetrachloride. II. Structure and reaction of CClṡ-4 radical anion in tetramethylsilane low-temperature solids

    Science.gov (United States)

    Muto, Hachizo; Nunome, Keichi

    1991-04-01

    An electron spin resonance (ESR) and optical study of carbon tetrachloride radical anion has been made to provide for a better understanding of the radiolysis of CCl4, following CClṡ+4 cation previously studied. It was found that the anion was metastably trapped in tetramethylsilane (TMS) matrices γ irradiated at 4 or 77 K. The g tensor and the hyperfine coupling tensors of all atoms of the radical were determined from ESR spectral simulation by using 12 CCl4 and the 13C enriched compound: g∥=2.004-5, g1=2.015,(A∥,A⊥) =(24.3,18.3) mT for 13C, (0.9, 0.2) mT for one 35Cl atom, and (A1,A2=A3)=(1.98,0.45) mT for the other three equivalent 35Cl atoms. From these parameters and a consideration on the g anisotropy combined with the optical data, the anion was found to have a predissociating molecular structure (CCl3ṡṡṡCl) ˙- with C3v symmetry, where the unpaired electron occupies A*1γ antibonding orbital. The carbon atom has a large spin density and near sp3 hybridization: ρp=0.62, ρs=0.18, ρp/ρs=3.4, and three Cl atoms and the other Cl atom have the spin densities ρp=0.10 and ρp=0.05, respectively. The species had two optical absorptions at λmax=265 and 370 nm which were assigned to the Eγ-A*1γ and A1γ-A*1γ electronic transitions, respectively. The anion converted to CCl ṡ3 radical by warming to ˜150 K in the TMS matrix. The present results have given unequivocal ESR and optical spectroscopic evidence and support for the assignment of the 370 nm band reported in the radiolyses of organic solutions containing CCl4.

  15. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions

    International Nuclear Information System (INIS)

    Schaefer, K.; Asmus, K.D.

    1980-01-01

    Phosphite radicals HPO 3 - and PO 3 2 -, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO 3 - and PO 3 2 - are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO 2 ) 3 - are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO 3 2 -. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO 5 - . reversible PO 5 2- . + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed

  16. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    NARCIS (Netherlands)

    Gremmels, Hendrik; De Jong, Olivier G.; Hazenbrink, Diënty H.; Fledderus, Joost O.; Verhaar, Marianne C.

    2017-01-01

    Background. Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2

  17. Bran data of total flavonoid and total phenolic contents, oxygen radical absorbance capacity, and profiles of proanthocyanidins and whole grain physical traits of 32 red and purple rice varieties

    Directory of Open Access Journals (Sweden)

    Ming-Hsuan Chen

    2016-09-01

    Full Text Available Phytochemicals in red and purple bran rice have potential health benefit to humans. We determined the phytochemicals in brans of 32 red and purple global rice varieties. The description of the origin and physical traits of the whole grain (color, length, width, thickness and 100-kernel weight of this germplasm collection are provided along with data of total flavonoid and total phenolic contents, oxygen radical absorbance capacity and total proanthocyanidin contents. The contents and proportions of individual oligomers, from degree of polymerization of monomers to 14-mers, and polymers in bran of these 32 rice varieties are presented (DOI: http://dx.doi.org/10.1016/j.foodchem.2016.04.004 [1]. Keywords: Purple rice, Red rice, Black rice, Proanthocyanidins, Tannins, Flavonoids, Rice bran

  18. Dysbaric osteonecrosis (caisson disease of bone): are active oxygen species and the endocrine system responsible, and can control of the production of free radicals and their reaction products confer protection?

    Science.gov (United States)

    Jones, G R

    1987-01-01

    The development of osteonecrosis after exposure to altered air pressures is consistent with cellular injury brought about by active oxygen species. The syndrome is considered to arise as a result of an unusual combination of circumstances in which hyperoxia itself, together with the additive responses of the endocrine system to hyperoxia, hypothermia and exertion, each appear to play a part; the net result is thought to increase the mitochondrial generation of superoxide. It is suggested that effective prophylaxis may be possible primarily by establishing a nutritional status that is adequate to ensure that the functional activities of radical-scavenging systems are not hampered by deficiencies either of essential trace elements or of vitamin E. Pharmacological pretreatments designed both to decrease excessive levels of superoxide through increased catalysis of anionic dismutation and to attenuate enzyme-dependent peroxidation may provide an additional line of defence.

  19. Oxidation of substituted alkyl radicals by IrCl62-, Fe(CN)63-, and MnO4- in aqueous solution. Electron transfer versus chlorine transfer from IrCl62-

    International Nuclear Information System (INIS)

    Steenken, S.; Neta, P.

    1982-01-01

    Alkyl radicals substituted at C/sub α/ by alkyl, carboxyl, hydroxyl, alkoxyl, and chlorine react in aqueous solutions with Ir/sup IV/Cl 6 2- to yield Ir(III) species. In the case of substitution by hydroxyl and alkoxyl, the rate constants are in the diffusion-controlled range ((4-6) x 10 9 M -1 s -1 ) and the reaction proceeds by electron transfer. In the case of ethyl, methyl, carboxymethyl, and chloromethyl radicals the rate constants range from 3.1 x 10 9 for ethyl to 2.8 x 10 7 M -1 s -1 for trichloromethyl and the reaction proceeds by chlorine transfer from IrCl 6 2- to the alkyl radical. With isopropyl and tert-butyll radicals the reaction proceeds by both electron and chlorine transfer. Alkyl radicals also react with Fe(CN) 6 3- . The rate constants increase strongly with increasing alkylation at C/sub α/ from 5 x 10 6 for methyl to 3.6 x 10 9 M -1 s -1 for tert-butyl, indicating that the transition state for the reaction is highly polar. Rate constants for reaction of MnO 4 - with alkyl radicals are of the order 10 9 M -1 s -1 . 4 figures, 1 table

  20. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations

    Science.gov (United States)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.; Ramana, Chintalapalle V.

    2016-12-01

    In this work, we investigated theoretically the role of oxygen vacancies on the electronic and optical properties of cubic, γ-monoclinic, and tetragonal phases of tungsten oxide (WO3) thin films. Following the examination of structural properties and stability of the bulk tungsten oxide polymorphs, we analyzed band structures and optical properties, applying density functional theory (DFT) and GW (Green's (G) function approximation with screened Coulomb interaction (W)) methods. Careful benchmarking of calculated band gaps demonstrated the importance of using a range-separated functional, where results for the pristine room temperature γ-monoclinic structure indicated agreement with experiment. Further, modulation of the band gap for WO3 structures with oxygen vacancies was quantified. Dielectric functions for cubic WO3, calculated at both the single-particle, essentially time-dependent DFT, as well as many-body GW-Bethe-Salpeter equation levels, indicated agreement with experimental data for pristine WO3. Interestingly, we found that introducing oxygen vacancies caused appearance of lower energy absorptions. A smaller refractive index was indicated in the defective WO3 structures. These predictions could lead to further experiments aimed at tuning the optical properties of WO3 by introducing oxygen vacancies, particularly for the lower energy spectral region.

  1. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  2. Disordering of two-dimensional oxyxgen lattices on Mo(011) initiated by electron transitions in oxygen and molybdenum atoms

    International Nuclear Information System (INIS)

    Zasimovich, I.N.; Klimenko, E.V.; Naumovets, A.G.

    1988-01-01

    The first observation of electron-induced disordering (EID) of the submonolayer film of heavier adsorbate-oxygen is reported. The investigation of energy dependence of the effective cross section of this process, which points to the fact that EID can be initiated by the electron transitions not only in adatoms, but in the substrate, is also presented. When irradiating by electrons, the sample surface cooled up to 77 K, intensity of diffraction reflects of the (2x2) and (6x2) structures decreases rather quickly, but the reflects of more dense (6x1) lattice do not practically attenuate. The conclusions are made that the knowledge of physical factors, determining the probability of radiation defect formation in an adfilm, gives the possibility either to avoid disordering, if it is undesirable, or to use it to control the surface properties

  3. Synthesis and electron paramagnetic resonance study of a nitroxide free radical covalently bonded on aminopropyl-silica gel

    International Nuclear Information System (INIS)

    Tudose, Madalina; Constantinescu, Titus; Balaban, Alexandru T.; Ionita, Petre

    2008-01-01

    A solid spin-labeled material was obtained starting from 2-chloro-3,5-dinitro-N-(4-(2,2,6,6-tetramethyl-piperidine-1-oxyl) -benzamide) and aminopropyl-silica gel. Stability tests showed that even after several months the spin-labeled material had the same properties as immediately after synthesis. EPR properties of the TEMPO-derivatized silica were studied as a function of solvent polarity and temperature. Rotational correlation times were calculated from EPR spectra and correlated with solvent characteristics and temperature. Polar solvents induce a fast motion of the spin-label, clearly seen in the EPR spectra by the apparition of the well-known TEMPO radical triplet. The solid spin-labeled (dry) sample showed a high interspin interaction, which can be disrupted not only by different (liquid) solvents, but also by absorption of different solids, like cyclodextrins, dendrimers or polyethyleneglycols. Also, changes induced by the temperature were studied in the case of toluene wet sample. From 150 to 370 K, the spectrum is changing from a slow motion spectrum type to a fast motion regime. The preparative procedures to obtain the spin-labeled silica as well as some of its parameters are described

  4. Synthesis and electron paramagnetic resonance study of a nitroxide free radical covalently bonded on aminopropyl-silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Tudose, Madalina; Constantinescu, Titus [Institute of Physical Chemistry, Spl. Independentei 202, 060021 Bucharest (Romania); Balaban, Alexandru T. [Texas A and M University at Galveston, Marine Sciences Department, Galveston, TX 77551 (United States); Ionita, Petre [Institute of Physical Chemistry, Spl. Independentei 202, 060021 Bucharest (Romania)], E-mail: pionita@icf.ro

    2008-01-30

    A solid spin-labeled material was obtained starting from 2-chloro-3,5-dinitro-N-(4-(2,2,6,6-tetramethyl-piperidine-1-oxyl) -benzamide) and aminopropyl-silica gel. Stability tests showed that even after several months the spin-labeled material had the same properties as immediately after synthesis. EPR properties of the TEMPO-derivatized silica were studied as a function of solvent polarity and temperature. Rotational correlation times were calculated from EPR spectra and correlated with solvent characteristics and temperature. Polar solvents induce a fast motion of the spin-label, clearly seen in the EPR spectra by the apparition of the well-known TEMPO radical triplet. The solid spin-labeled (dry) sample showed a high interspin interaction, which can be disrupted not only by different (liquid) solvents, but also by absorption of different solids, like cyclodextrins, dendrimers or polyethyleneglycols. Also, changes induced by the temperature were studied in the case of toluene wet sample. From 150 to 370 K, the spectrum is changing from a slow motion spectrum type to a fast motion regime. The preparative procedures to obtain the spin-labeled silica as well as some of its parameters are described.

  5. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  6. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5′-dAdo• “Free Radical” Is Never Free

    Science.gov (United States)

    Horitani, Masaki; Byer, Amanda S.; Shisler, Krista A.; Chandra, Tilak; Broderick, Joan B.; Hoffman, Brian M.

    2015-01-01

    Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S–C5′ bond, which creates the highly reactive 5′-deoxyadenosyl radical (5′-dAdo•), the same radical generated by homolytic Co–C bond cleavage in B12 radical enzymes. The SAM surrogate S-3′,4′-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of 13C, 2H, and 15N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 “tames” the 5′-dAdo• radical, preventing it from carrying out harmful side reactions: this “free radical” in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S–C5′ bond, thereby enabling the 5′-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ~0.6 Å toward the target and ~1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5′ radical, with “van der Waals control” of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature. PMID:25923449

  7. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-09-01

    Full Text Available Heterogeneous electron transfer dynamics and oxygen reduction reaction (ORR) activities using octabutylsulphonylphthalocyanine complexes of iron (FeOBSPc) and cobalt (CoOBSPc) supported on multi-walled carbon nanotube (MWCNT) platforms have been...

  8. Structural and electronic transformations in substituted La-Sr manganites depending on cations and oxygen content

    Science.gov (United States)

    Karpasyuk, Vladimir; Badelin, Alexey; Merkulov, Denis; Derzhavin, Igor; Estemirova, Svetlana

    2018-05-01

    In the present research experimental data are obtained for the Jahn-Teller O‧ phase formation, phase transformation "orthorhombic-rhombohedral structure" and the change of the conductance type in the systems of manganites La3+1-c+xSr2+c-xMn3+1-c-x-2γMn4+c+2γZn2+xO3+γ, La3+1-c-xSr2+c+xMn3+1-c-x-2γMn4+c+2γGe4+xO3+γ, La3+1-cSr2+cMn3+1-x-c-2γMn4+c+2γ(Zn2+0.5Ge4+0.5)xO3+γ, where Mn4+ ions concentration is independent of "x". Ceramic samples were sintered in air at 1473 K. As-sintered samples had an excess of oxygen content. In order to provide stoichiometric oxygen content, the samples were annealed at 1223 K and partial pressure of oxygen PO2 = 10-1 Pа. Structural characteristics of the O‧ phase were obtained. The position of the phase boundary "orthorhombic-rhombohedral structure" and the temperature of the conductance type change depending on the cation composition of manganites and oxygen content were determined. Possible approaches to the interpretation of experimental results were suggested.

  9. Role of apical oxygen in 2-1-4 electron-doped superconductors

    Czech Academy of Sciences Publication Activity Database

    Richard, P.; Riou, G.; Jandl, S.; Poirier, M.; Furnier, P.; Nekvasil, Vladimír; Diviš, M.

    408-410, - (2004), s. 830-831 ISSN 0921-4534 R&D Projects: GA ČR GA202/03/0552 Institutional research plan: CEZ:AV0Z1010914 Keywords : Nd 2-x Ce x CuO 4 * crystal-field * apical oxygen * HTSC Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.072, year: 2004

  10. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2016-02-04

    The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is

  11. Radical Evil

    Directory of Open Access Journals (Sweden)

    Carlos Manrique

    2007-12-01

    Full Text Available There is an aporia in Kant’s analysis of evil: he defines radical evilas an invisible disposition of the will, but he also demands an inferential connection between visible evil actions and this invisible disposition. This inference,however, undermines the radical invisibility of radical evil according to Kant’s own definition of the latter. Noting how this invisibility of moral worth is a distinctive feature of Kant’s approach to the moral problem, the paper then asks why, in the Groundwork, he nonetheless forecloses a question about evil that seems to be consistent with this approach. It is argued that to account for this aporia and this foreclosure, one has to interrogate the way in which the category of religion orients Kant’s incipient philosophy of history in Die Religion.

  12. Presence of hydrogen peroxide, a source of hydroxyl radicals, in acid electrolyzed water.

    Directory of Open Access Journals (Sweden)

    Takayuki Mokudai

    Full Text Available BACKGROUND: Acid electrolyzed water (AEW, which is produced through the electrolysis of dilute sodium chloride (NaCl or potassium chloride solution, is used as a disinfectant in various fields because of its potent antimicrobial activity. The hydroxyl radical, an oxygen radical species, is often suggested as a putative active ingredient for AEW antimicrobial activity. METHODOLOGY/PRINCIPAL FINDINGS: The aim of the present study is to detect hydroxyl radicals in AEW. The hydroxyl radicals in AEW prepared under different conditions were determined using an electron spin resonance (ESR technique. A signal from 5,5-dimethyl-1-pyrroline N-oxide (DMPO-OH, an adduct of DMPO and the hydroxyl radical, was detected in AEW prepared by double or triple electrolyses of 1% NaCl but not of 0.1% NaCl solution. Then the presence of hydrogen peroxide as a proposed source of hydroxyl radicals was examined using a combination of ESR and a Fenton reaction. The DMPO-OH signal was clearly detected, even in AEW prepared by single electrolysis of 0.1% NaCl solution, when ferrous sulfate was added to induce a Fenton reaction, indicating the presence of hydrogen peroxide in the AEW. Since sodium formate, a hydroxyl radical scavenger, did not affect the bactericidal activity of AEW, it is concluded that the radical is unlikely to contribute to the antimicrobial activity of AEW, although a small amount of the radical is produced from hydrogen peroxide. Dimethyl sulfoxide, the other hydroxyl radical scavenger used in the present study, canceled the bactericidal activity of AEW, accompanied by complete depletion of free available chlorine, suggesting that hypochlorous acid is probably a major contributor to the antimicrobial activity. CONCLUSIONS: It is strongly suggested that although hydrogen peroxide is present in AEW as a source of hydroxyl radicals, the antimicrobial activity of AEW does not depend on these radicals.

  13. 248-NM Laser Photolysis of CHBr3/O-Atom Mixtures: Kinetic Evidence for UV CO(A)-Chemiluminescence in the Reaction of Methylidyne Radicals With Atomic Oxygen

    National Research Council Canada - National Science Library

    Vaghjiani, Ghanshyam L

    2005-01-01

    4TH Positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr3 vapor in an excess of O-atoms...

  14. Pathology of oxygen

    National Research Council Canada - National Science Library

    Autor, Anne Pomeroy

    1982-01-01

    .... The book is divided into three general sections. The first and smallest section of the book explains the molecular and biochemical basis of our current understanding of oxygen radical toxicity as well as the means by which normal aerobic cells...

  15. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    Science.gov (United States)

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction

  16. Coupled Effect of Ferrous Ion and Oxygen on the Electron Selectivity of Zerovalent Iron for Selenate Sequestration.

    Science.gov (United States)

    Qin, Hejie; Li, Jinxiang; Yang, Hongyi; Pan, Bingcai; Zhang, Weiming; Guan, Xiaohong

    2017-05-02

    Although the electron selectivity (ES) of zerovalent iron (ZVI) for target contaminant and its utilization ratio (UR) decide the removal capacity of ZVI, little effort has been made to improve them. Taking selenate [Se(VI)] as a target contaminant, this study investigated the coupled influence of aeration gas and Fe(II) on the ES and UR of ZVI. Oxygen was necessary for effective removal of Se(VI) by ZVI without Fe(II) addition. Due to the application of 1.0 mM Fe(II), the ES of ZVI was increased from 3.2-3.6% to 6.2-6.8% and the UR of ZVI was improved by 5.0-19.4% under aerobic conditions, which resulted in a 100-180% increase in the Se(VI) removal capacity by ZVI. Se(VI) reduction by Fe 0 was a heterogeneous redox reaction, and the enrichment of Se(VI) on ZVI surface was the first step of electron transfer from Fe 0 core to Se(VI). Oxygen promoted the generation of iron (hydr)oxides, which facilitated the enrichment of Se(VI) on the ZVI particle surface. Therefore, the high oxygen fraction (25-50%) in the purging gas resulted in only a slight decrease in the ES of ZVI. Fe(II) addition resulted in a pH drop and promoted the generation of lepidocrocite and magnetite, which benefited Se(VI) adsorption and the following electron transfer from underlying Fe 0 to surface-located Se(VI).

  17. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    OpenAIRE

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by ...

  18. Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker Degn; Larsen Andresen, Mogens

    of mathematical models that can predict yields, composition and rates of product (char, tar, light gases) formation from fast pyrolysis. The modeling of cross-linking and polymerization reactions in biomass pyrolysis includes the formation of free radicals and their disappearance. Knowledge about these radical...... reactions is important in order to achieve the high fuel conversion at short residence times. However, little is known about the extent of free radical reactions in pulverized biomass at fast pyrolysis conditions.The concentration and type of free radicals from the decay (termination stage) of pyrolysis...... to the less efficient catalytic effects of potassium on the bond-breaking and radical re-attachments. The high Si levels in the rice husk caused an increase in the char radical concentration compared to the wheat straw because the free radicals were trapped in a char consisting of a molten amorphous silica...

  19. Modification of Ultra-High Vacuum Surfaces Using Free Radicals

    CERN Document Server

    Vorlaufer, G

    2002-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption of surface adsorbates are usually the factors which determine pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchrotron radiation and bombardment by energetic ions and electrons, surface properties like the molecular desorption yield or secondary electron yield can strongly influence the performance of the accelerator. Well-established treatment methods like vacuum bake-out or glow-discharge cleaning have been successfully applied in the past to condition ultra-high vacuum surfaces, but these methods are sometimes difficult to carry out, for example if the vacuum chambers are not accessible. In this work, an alternative treatment method is investigated. This method is based on the strong chemical reactivity of free radicals, electrically neutral fragments of molecules. Free radicals (in the case of this work, nitrogen and oxygen radi...

  20. Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum

    International Nuclear Information System (INIS)

    Pflugmacher, S.; Pietsch, C.; Rieger, W.; Steinberg, C.E.W.

    2006-01-01

    Dissolved natural organic matter (NOM) is dead organic matter exceeding, in freshwater systems, the concentration of organic carbon in all living organisms by far. 80-90% (w/w) of the NOM is made up of humic substances (HS). Although NOM possesses several functional groups, a potential effect on aquatic organisms has not been studied. In this study, direct effects of NOM from various origins on physiological and biochemical functions in the aquatic plant Ceratophyllum demersum are presented. Environmentally relevant concentrations of NOM cause inhibitory effects on the photosynthetic oxygen production of C. demersum. Various NOM sources and the synthetic humic substance HS1500 inhibit the photosynthetic oxygen production of the plant as observed with 1-amino-anthraquinone, a known inhibitor of plant photosynthesis. 1-Aminoanthraquinone may serve as an analogue for the quinoid structures in NOM and HS. Most likely, the effects of NOM may be related to quinoid structures and work downstream of photosynthesis at photosystem (PS) II

  1. Nickel complexes of o-amidochalcogenophenolate(2-)/o-iminochalcogenobenzosemiquinonate(1-) pi-radical: synthesis, structures, electron spin resonance, and x-ray absorption spectroscopic evidence.

    Science.gov (United States)

    Hsieh, Chung-Hung; Hsu, I-Jui; Lee, Chien-Ming; Ke, Shyue-Chu; Wang, Tze-Yuan; Lee, Gene-Hsiang; Wang, Yu; Chen, Jin-Ming; Lee, Jyh-Fu; Liaw, Wen-Feng

    2003-06-16

    The preparation of complexes trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) (1), cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) (2), trans-[Ni(-SC(6)H(4)-o-NH-)(2)](-) (3), and [Ni(-SC(6)H(4)-o-S-)(2)](-) (4) by oxidative addition of 2-aminophenyl dichalcogenides to anionic [Ni(CO)(SePh)(3)](-) proves to be a successful approach in this direction. The cis arrangement of the two tellurium atoms in complex 2 is attributed to the intramolecular Te.Te contact interaction (Te.Te contact distance of 3.455 A). The UV-vis electronic spectra of complexes 1 and 2 exhibit an intense absorption at 936 and 942 nm, respectively, with extinction coefficient epsilon > 10000 L mol(-)(1) cm(-)(1). The observed small g anisotropy, the principal g values at g(1) = 2.036, g(2) = 2.062, and g(3) = 2.120 for 1 and g(1) = 2.021, g(2) = 2.119, and g(3) = 2.250 for 2, respectively, indicates the ligand radical character accompanied by the contribution of the singly occupied d orbital of Ni(III). The X-ray absorption spectra of all four complexes show L(III) peaks at approximately 854.5 and approximately 853.5 eV. This may indicate a variation of contribution of the Ni(II)-Ni(III) valence state. According to the DFT calculation, the unpaired electron of complex 1 and 2 is mainly distributed on the 3d(xz)() orbital of the nickel ion and on the 4p(z)() orbital of selenium (tellurium, 5p(z)()) as well as the 2p(z)() orbital of nitrogen of the ligand. On the basis of X-ray structural data, UV-vis absorption, electron spin resonance, magnetic properties, DFT computation, and X-ray absorption (K- and L-edge) spectroscopy, the monoanionic trans-[Ni(-SeC(6)H(4)-o-NH-)(2)](-) and cis-[Ni(-TeC(6)H(4)-o-NH-)(2)](-) complexes are appositely described as a resonance hybrid form of Ni(III)-bis(o-amidochalcogenophenolato(2-)) and Ni(II)-(o-amidochalcogenophenolato(2-))-(o-iminochalcogenobenzosemiquinonato(1-) pi-radical; i.e., complexes 1 and 2 contain delocalized oxidation levels of the nickel ion and ligands.

  2. An experimental and ab initio study of the electronic spectrum of the jet-cooled F{sub 2}BO free radical

    Energy Technology Data Exchange (ETDEWEB)

    Grimminger, Robert; Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Sheridan, Phillip M. [Department of Chemistry and Biochemistry, Canisius College, Buffalo, New York 14208 (United States)

    2014-04-28

    We have studied the B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence (LIF) spectrum of the jet-cooled F{sub 2}BO radical for the first time. The transition consists of a strong 0{sub 0}{sup 0} band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B{sup ~} state exhibit two electronic transitions: a very weak, sparse B{sup ~}–X{sup ~} band system in the 450–500 nm region and a stronger, more extensive set of B{sup ~} {sup 2}A{sub 1}–A{sup ~} {sup 2}B{sub 1} bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X{sup ~} {sup 2}B{sub 2}, A{sup ~2}B{sub 1} and B{sup ~} {sup 2}A{sub 1} electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} 0{sub 0}{sup 0} LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C{sub 2v} symmetry in the X{sup ~}, A{sup ~}, and B{sup ~} states. The spectra provide considerable new information about the vibrational energy levels of the X{sup ~} and A{sup ~} states, but very little for the B{sup ~} state, due to the very restrictive Franck-Condon factors in the LIF spectra.

  3. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability of nanost...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  4. Use of spectrophotometric readout method for free radical dosimetry in radiation processing including low energy electrons and bremsstrahlung

    International Nuclear Information System (INIS)

    Gupta, B.L.

    2000-01-01

    Our laboratory maintains standards for high doses in India. The glutamine powder dosimeter (spectrophotometric readout) is used for this purpose. Present studies show that 20 mg of unirradiated/irradiated glutamine dissolved in freshly prepared 10 ml of aerated aqueous acidic FX solution containing 2 x 10 -3 mol dm -3 ferrous ammonium sulphate and 10 -4 mol dm -3 xylenol orange in 0.033 mol dm -3 sulphuric acid is suitable for the dosimetry in the dose range of 0.1-100 kGy. Normally no corrections are required for the post-irradiation fading of the irradiated glutamine. The response of glutamine dosimeter is independent of irradiation temperature in the range of about 23-30 deg. C and at other temperatures, a correction is necessary. The dose intercomparison results for photon, electron and bremsstrahlung radiations show that glutamine can be used as a reference standard dosimeter. The use of flat polyethylene bags containing glutamine powder has proved very successful for electron dosimetry of wide energies. Several other amino acids like alanine, valine and threonine can also be used to cover wide range of doses using spectrophotometric readout method. (author)

  5. Oxidation of carbon monoxide, hydrogen peroxide and water at a boron doped diamond electrode: the competition for hydroxyl radicals.

    Science.gov (United States)

    Kisacik, Izzet; Stefanova, Ana; Ernst, Siegfried; Baltruschat, Helmut

    2013-04-07

    Boron doped diamond (BDD) electrodes have an extremely high over-voltage for oxygen evolution from water, which favours its use in oxidation processes of other compounds at high potentials. We used a rotating ring disc (RRDE) assembly and differential electrochemical mass spectrometry (DEMS) in order to monitor the consumption or the production of species in the course of the electrode processes. By intercepting the intermediate of the electrochemical water oxidation with chemical reactions we demonstrate clearly, albeit indirectly, that in the water oxidation process at BDD above 2.5 V the first step is the formation of ˙OH radicals. The electro-oxidation of CO to CO2 at BDD electrodes proceeds only via a first attack by ˙OH radicals followed by a further electron transfer to the electrode. At potentials below the onset of oxygen evolution from water, H2O2 is oxidised by a direct electron transfer to the BDD electrode, while at higher potentials, two different reactions paths compete for the ˙OH radicals formed in the first electron transfer from water: one, where these ˙OH radicals react with each other followed by further electron transfers leading to O2 on the one hand and one, where ˙OH radicals react with other species like H2O2 or CO with subsequent electron transfers on the other hand.

  6. Photo-driven electron transfer from the highly reducing excited state of naphthalene diimide radical anion to a CO 2 reduction catalyst within a molecular triad

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose F. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; La Porte, Nathan T. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; Mauck, Catherine M. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; Wasielewski, Michael R. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA

    2017-01-01

    The naphthalene-1,4:5,8-bis(dicarboximide) radical anion (NDI-˙), which is easily produced by mild chemical or electrochemical reduction (-0.5 Vvs.SCE), can be photoexcited at wavelengths as long as 785 nm, and has an excited state (NDI-˙*) oxidation potential of -2.1 Vvs.SCE, making it a very attractive choice for artificial photosynthetic systems that require powerful photoreductants, such as CO2 reduction catalysts. However, once an electron is transferred from NDI-˙* to an acceptor directly bound to it, a combination of strong electronic coupling and favorable free energy change frequently make the back electron transfer rapid. To mitigate this effect, we have designed a molecular triad system comprising an NDI-˙ chromophoric donor, a 9,10-diphenylanthracene (DPA) intermediate acceptor, and a Re(dmb)(CO)3carbon dioxide reduction catalyst, where dmb is 4,4'-dimethyl-2,2'-bipyridine, as the terminal acceptor. Photoexcitation of NDI-˙ to NDI-˙* is followed by ultrafast reduction of DPA to DPA-˙, which then rapidly reduces the metal complex. The overall time constant for the forward electron transfer to reduce the metal complex is τ = 20.8 ps, while the time constant for back-electron transfer is six orders of magnitude longer, τ = 43.4 μs. Achieving long-lived, highly reduced states of these metal complexes is a necessary condition for their use as catalysts. The extremely long lifetime of the reduced metal complex is attributed to careful tuning of the redox potentials of the chromophore and intermediate acceptor. The NDI-˙–DPA fragment presents many attractive features for incorporation into other photoinduced electron transfer assemblies directed at the long-lived photosensitization of difficult-to-reduce catalytic centers.

  7. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

    Science.gov (United States)

    Balodite, Elina; Strazdina, Inese; Galinina, Nina; McLean, Samantha; Rutkis, Reinis; Poole, Robert K; Kalnenieks, Uldis

    2014-09-01

    The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase. © 2014 The Authors.

  8. Mechanisms of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  9. Development of a new free radical absorption capacity assay method for antioxidants: aroxyl radical absorption capacity (ARAC).

    Science.gov (United States)

    Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo

    2013-10-23

    A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.

  10. Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 7. Trp -> TyrO radical transformation in hen egg-white lysozyme. Effects of pH, temperature, Trp62 oxidation and inhibitor binding

    DEFF Research Database (Denmark)

    Bobrowski, K.; Holcman, J.; Poznanski, J.

    1997-01-01

    Intramolecular long-range electron transfer (LRET) in hen egg-white lysozyme (HEWL) accompanying Trp --> TyrO radical transformation was investigated in aqueous solution by pulse radiolysis as a function of pH (5.2-7.4) and temperature (283-328K). The reaction was induced by highly selective...... below its denaturation temperature. Selective oxidation by ozone of the Trp62 indole side-chain in HEWL to N'-formylkynurenine (NFKyn62-HEWL) caused a large drop in the initial yield of Trp(.) radicals, G(Trp(.))(i). This was accompanied by a relatively small decrease in k(5) but selective oxidation...

  11. Radiobiology of Bacillus megaterium spores: physicochemical events involving oxygen and caffeine

    International Nuclear Information System (INIS)

    Raghu, B.; Kesavan, P.C.

    1986-01-01

    Caffeine which is now known to react with the radiolytically produced electrons and hydroxyl radicals, is a radioprotector against the oxic, but a radiosensitizer of the anoxic component of the gamma-ray-induced damage to B. megaterium spores. A specific scavenger of hydroxyl radicals, t-butanol, also affords partial protection to spores irradiated in O 2 , thus revealing an 'OH-component' within the oxygen-dependent damage. Based on the data on inactivation constant (k) and H 2 O 2 yields of spores irradiated in O 2 or N 2 with a mixture of caffeine and t-butanol, it is suggested that radioprotection against oxic damage accrues from the competition of the former with oxygen for electrons. The simplest interpretation of radioprotection, therefore, is the substantial reduction in the formation of oxygen-electron adducts (HO 2 , O 2 , RO 2 ). The hypothesis of 'electron sequestration' satisfactorily accounts for the anoxic radiosensitization by caffeine. (author)

  12. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  13. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    Science.gov (United States)

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by other genotoxicants—e.g., UV light and alkylating agents. Increased expression of APE mRNA and protein was observed both in the HeLa S3 tumor line and in WI 38 primary fibroblasts, and it was accompanied by translocation of the endonuclease to the nucleus. ROS-treated cells showed a significant increase in resistance to the cytotoxicity of such ROS generators as H2O2 and bleomycin, but not to UV light. This “adaptive response” appears to result from enhanced repair of cytotoxic DNA lesions due to an increased activity of APE-1, which may be limiting in the base excision repair process for ROS-induced toxic lesions. PMID:9560228

  14. Removal of oxygen free-radical-induced 5′,8-purine cyclodeoxynucleosides from DNA by the nucleotide excision-repair pathway in human cells

    Science.gov (United States)

    Kuraoka, Isao; Bender, Christina; Romieu, Anthony; Cadet, Jean; Wood, Richard D.; Lindahl, Tomas

    2000-01-01

    Exposure of cellular DNA to reactive oxygen species generates several classes of base lesions, many of which are removed by the base excision-repair pathway. However, the lesions include purine cyclodeoxynucleoside formation by intramolecular crosslinking between the C-8 position of adenine or guanine and the 5′ position of 2-deoxyribose. This distorting form of DNA damage, in which the purine is attached by two covalent bonds to the sugar-phosphate backbone, occurs as distinct diastereoisomers. It was observed here that both diastereoisomers block primer extension by mammalian and microbial replicative DNA polymerases, using DNA with a site-specific purine cyclodeoxynucleoside residue as template, and consequently appear to be cytotoxic lesions. Plasmid DNA containing either the 5′R or 5′S form of 5′,8-cyclo-2-deoxyadenosine was a substrate for the human nucleotide excision-repair enzyme complex. The R diastereoisomer was more efficiently repaired than the S isomer. No correction of the lesion by direct damage reversal or base excision repair was detected. Dual incision around the lesion depended on the core nucleotide excision-repair protein XPA. In contrast to several other types of oxidative DNA damage, purine cyclodeoxynucleosides are chemically stable and would be expected to accumulate at a slow rate over many years in the DNA of nonregenerating cells from xeroderma pigmentosum patients. High levels of this form of DNA damage might explain the progressive neurodegeneration seen in XPA individuals. PMID:10759556

  15. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen

    DEFF Research Database (Denmark)

    Farver, O; Wherland, S; Pecht, I

    1994-01-01

    Intramolecular electron transfer from the type 1 copper center to the type 3 copper(II) pair is induced in the multi-copper enzyme, ascorbate oxidase, following pulse radiolytic reduction of the type 1 Cu(II) ion. In the presence of a slight excess of dioxygen over ascorbate oxidase, interaction...... between the trinuclear copper center and O2 is observed even with singly reduced ascorbate oxidase molecules. Under these conditions, the rate constant for intramolecular electron transfer from type 1 Cu(I) to type 3 Cu(II) increases 5-fold to 1100 +/- 300 s-1 (20 degrees C, pH 5.8) as compared...

  16. Mechanistic investigations of novel photoinitiators for radical polymerization

    International Nuclear Information System (INIS)

    Griesser, M.

    2012-01-01

    Nowadays, there is a wide variety of photoinitiators (PIs) available for radical polymerizations. A common example are two-component (Type II) systems such as benzophenone and tertiary amines. However these systems also suffer from problems due to bimolecularity. These include the possible back electron transfer (BET) leading to deactivation, as well as the solvent cage effect, occurring in highly viscous media. The aim of this thesis was to investigate the reaction mechanism of several photoinitiating systems, which show superior performance. Moreover, they exhibit additional benefits such as circumvention of oxygen inhibition by decarboxylation. Thereby this work helps to understand the molecular basis of the performance of different PI systems. In vestigated PIs included benzaldoxime esters, covalently linked benzophenone and N-phenylglycine as well as derivatives of both systems. Furthermore a PI based on benzophenone extended by ethynyl moeities is discussed. The main tool in this investigation was photo-CIDNP (chemically induced dynamic nuclear polarization), an NMR based technique for studying radical reactions. A complementary view was obtained with TR-EPR (time-resolved electron paramagnetic resonance), which provides direct information about the active radical species. The results were further compared with quantum mechanical calculations (DFT) of the magnetic properties of the radicals. The theoretical approach was further applied to other paramagnetic species such as donor-acceptor systems. (author) [de

  17. Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111)

    DEFF Research Database (Denmark)

    Jacobsen, Joachim; Hammer, Bjørk; Jacobsen, Karsten Wedel

    1995-01-01

    an attractive O-O interaction is identified together with an enhancement in the dipole moment induced per O atom. Finally, Tersoff-Hamann-type scanning tunneling microscopy (STM) topographs are derived based on the calculated one-electron wave functions and spectra. For the clean Al(111) a theoretical STM...

  18. Effect of electron injection on defect reactions in irradiated silicon containing boron, carbon, and oxygen

    Science.gov (United States)

    Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.

    2018-04-01

    Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.

  19. Regeneration of β-Carotene from Radical Cation by Eugenol, Isoeugenol, and Clove Oil in the Marcus Theory Inverted Region for Electron Transfer.

    Science.gov (United States)

    Chang, Hui-Ting; Cheng, Hong; Han, Rui-Min; Wang, Peng; Zhang, Jian-Ping; Skibsted, Leif H

    2017-02-01

    The rate of regeneration of β-carotene by eugenol from the β-carotene radical cation, an initial bleaching product of β-carotene, was found by laser flash photolysis and transient absorption spectroscopy to be close to the diffusion limit in chloroform/methanol (9:1, v/v), with a second-order rate constant (k 2 ) of 4.3 × 10 9 L mol -1 s -1 at 23 °C. Isoeugenol, more reducing with a standard reduction potential of 100 mV lower than eugenol, was slower, with k 2 = 7.2 × 10 8 L mol -1 s -1 . Regeneration of β-carotene following photobleaching was found 50% more efficient by eugenol, indicating that, for the more reducing isoeugenol, the driving force exceeds the reorganization energy for electron transfer significantly in the Marcus theory inverted region. For eugenol/isoeugenol mixtures and clove oil, kinetic control by the faster eugenol determines the regeneration, with a thermodynamic backup of reduction equivalent through eugenol regeneration by the more reducing isoeugenol for the mixture. Clove oil, accordingly, is a potential protector of provitamin A for use in red palm oils.

  20. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  1. Role of oxygen adsorption in modification of optical and surface electronic properties of MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kumar, Sanjeev; Mohanty, Tanuja

    2018-04-01

    In this work, the effect of surface oxidation of molybdenum disulfide (MoS2) nanosheets induced by hydrogen peroxide (H2O2) on the work function and bandgap of MoS2 has been investigated for tuning its optical and electronic properties. Transmission electron microscopy studies reveal the existence of varying morphologies of few layers of MoS2 as well as quantum dots due to the different absorbing effects of two mixed solvents on MoS2. The X-ray diffraction, electron paramagnetic resonance, and Raman studies indicate the presence of physical as well as chemical adsorption of oxygen atoms in MoS2. The photoluminescence spectra show the tuning of bandgap arising from the passivation of trapping centers leading to radiative recombination of excitons. The value of work function obtained from scanning Kelvin probe microscopy of MoS2 in mixed solvents of H2O2 and N-methyl-2-pyrrolidone increases with an increase in the concentration of H2O2. A linear relationship could be established between H2O2 content in mixed solvent and measured values of work function. This work gives the alternative route towards the commercial use of defect engineered transition metal dichalcogenide materials in diverse fields.

  2. Doping the Copper-Oxygen Planes with Electrons: The View with Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Armitage, Norman P.

    2002-03-07

    The undoped parent compounds of high-temperature cuprate superconductors are known to be antiferromagnetic Mott insulators. As the CuO{sub 2} planes are doped with charge carriers, the antiferromagnetic phase subsides and superconductivity emerges. The symmetry, or the lack thereof, between doping with electrons (n-type) or holes (p-type) has important theoretical implications as most models implicitly assume symmetry. However, most of what we know about these superconductors comes from experiments performed on p-type materials. The much fewer number of measurements from n-type compounds suggest that there may be both commonalities and differences between the two sides of the phase diagram. This issue of electron/hole symmetry has not been seriously discussed, perhaps, because the experimental database of n-type results is very limited.

  3. Radical fashion and radical fashion innovation

    NARCIS (Netherlands)

    Zhang, D.; Benedetto, Di A.C.

    2010-01-01

    This is a study of the related concepts of radical fashion and radical fashion innovation. Radical fashions are defined here as those that may never enter the market at all, and exist primarily on runway shows, in exhibitions and in publicity; by contrast, radical fashion innovations may be very

  4. Mobility-electron density relation probed via controlled oxygen vacancy doping in epitaxial BaSnO3

    Directory of Open Access Journals (Sweden)

    Koustav Ganguly

    2017-05-01

    Full Text Available The recently discovered high room temperature mobility in wide band gap semiconducting BaSnO3 is of exceptional interest for perovskite oxide heterostructures. Critical open issues with epitaxial films include determination of the optimal dopant and understanding the mobility-electron density (μ-n relation. These are addressed here through a transport study of BaSnO3(001 films with oxygen vacancy doping controlled via variable temperature vacuum annealing. Room temperature n can be tuned from 5 × 1019 cm−3 to as low as 2 × 1017 cm−3, which is shown to drive a weak- to strong-localization transition, a 104-fold increase in resistivity, and a factor of 28 change in μ. The data reveal μ ∝ n0.65 scaling over the entire n range probed, important information for understanding mobility-limiting scattering mechanisms.

  5. Electronic and Structural Parameters of Phosphorus-Oxygen Bonds in Inorganic Phosphate Crystals

    Science.gov (United States)

    Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V.

    Wide set of experimental results on binding energy of photoelectrons emitted from P 2p, P 2s, and O 1s core levels has been observed for inorganic phosphate crystals and the parameters were compared using energy differences Δ(O 1s - P 2p) and Δ (O 1s - P 2s) as most robust characteristics. Linear dependence of the binding energy difference on mean chemical bond length L(P-O) between phosphorus and oxygen atoms has been found. The functions are of the forms: Δ (O 1s - P 2p) (eV) = 375.54 + 0.146 · L(P-O) (pm) and Δ (O 1s - P 2s) (eV) = 320.77 + 0.129 · L(P-O) (pm). The dependencies are general for inorganic phosphates and may be used in quantitative component analysis of X-ray photoemission spectra of complex oxide compounds including functional groups with different coordination of P and O atoms.

  6. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    Science.gov (United States)

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  7. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress...... tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected...... examples of radical formation on proteins....

  8. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    International Nuclear Information System (INIS)

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-01-01

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ 0 /τ 100 (PL decay time τ at 0% O 2 /τ at 100% O 2 ) that is often used to express S

  9. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  10. Development of methods for determining organic free radical structures by electron spin resonance and application to the radiation chemistry of nucleic acid model compounds

    International Nuclear Information System (INIS)

    Fouse, G.W. Jr.

    1977-01-01

    This project was undertaken with the objective of developing more efficient and reliable methods for the analysis of free radicals in organic single crystals. A technique was developed for the rapid calculation of single crystal ESR line positions and intensities. This method, which avoids the time-consuming matrix operations required by conventional methods, has been incorporated into a computer program for determining ESR parameters by the least-squares fitting of digitized ESR spectra. This program has been used to analyze complex spectra arising from a . CH 2 -CH 2 -O-PO 3 H - radical trapped in O-phosphorylethanolamine. A method was developed for the estimation of variance and covariance of eigenvectors and eigenvalues of experimentally-determined tensors. This error analysis is quite general, and may be applied to any tensors which can be determined by the non-linear least-squares fitting of ESR data. Monte-Carlo simulations have been employed to estimate the limitations of the approximation method. This error analysis has been included in the analysis of two phosphite radicals, - O 2 -P-OX, found in single crystals of O-phosphorylethanolamine. To aid in the formulation and evaluation of free radical models, a generalized method for the calculation of theoretically-expected hyperfine coupling tensors for arbitrary radical models was developed. Tensors are calculated for a furan-type radical which may be found in 5' dCMP. These calculated tensors are compared with tensors determined by an ENDOR experiment. Two ENDOR studies were done, one in 5' dCMP, the other in L-asparagine. The observed radical in 5' dCMP is allylic, characterized by coupling to three α-hydrogens. In L-asparagine, the dominant room-temperature radical has the form CO(NH 2 )CHCH(N + H 3 )CO 2 - . In both these studies, a series of molecular orbital calculations were performed as a means of substantiating the postulated radical structures

  11. Ab initio investigation of barium-scandium-oxygen coatings on tungsten for electron emitting cathodes

    Science.gov (United States)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2010-02-01

    Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of

  12. Oxygen consumption in EPDM irradiated under different oxygen pressures and at different LET

    International Nuclear Information System (INIS)

    Dely, N.; Ngono-Ravache, Y.; Ramillon, J.-M.; Balanzat, E.

    2005-01-01

    We conceived a novel set-up for measuring the radiochemical yields of oxygen consumption in polymers. The measurement is based on a sampling of the gas mixture with a mass spectrometer, before and after irradiation. We irradiated an ethylene, propylene and 1,4-hexadiene terpolymer (EPDM) with 1 MeV electron and 10.75 MeV/A carbon beams. Samples were irradiated under oxygen within a wide range of pressure (5-200 mbar). The yields under C irradiation are four times smaller than the yields under electron irradiation. This shows that radiooxidation is very sensitive to the linear energy transfer of the projectiles and hence to the heterogeneity of the energy deposition. The oxygen consumption yields do not vary significantly in the range of pressure investigated; even at 5 mbar, the kinetics is still governed by the bimolecular recombination of peroxy radicals

  13. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    Science.gov (United States)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  14. A study on relation between nitroxyl radical reduction potency and X-ray irradiation on mouse lung using L-band electron spin resonance

    International Nuclear Information System (INIS)

    Taneike, Makoto; Sho, Keizen; Morita, Rikushi

    1999-01-01

    Changes in nitroxy radical reduction potency (''reduction potency''), caused by different doses and different number of fractions of X-ray irradiation were studied using a L-band electron spin resonance system on mouse lungs into which 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (hydroxy-TEMPO) was introduced through the trachea. The ''reduction potency'' lineally decreased as the irradiation dose increased from 1.0 to 5.0 Gy, but no further decrease was observed at higher doses of 7.5 and 10 Gy. The reduction potency'' dropped at 20 min after each irradiation, but it recovered to the control levels after 1 week in all 3 groups of single dose of 10 Gy, 3 fractions and 5 fractions in a similar manner. Although the levels of the ''reduction potency'' were kept high in the groups of fractionated irradiation through 1-4 weeks after irradiation, the levels dropped again in the single dose group at 1 week and the levels were kept significantly low until 4 weeks after irradiation. suggesting that the fractionation of X-ray irradiation would also be effective to prevent the deterioration of the ''reduction potency''. Pre-treatment with sufficient ascorbic acid inhibited the lowering effects of radiation on the ''reduction potency'' in a dose dependent manner. Furthermore the levels of the reduction potency'' ever elevated higher than those of controls with the large amount of ascorbic acid of 750 mg/kg or more, suggesting that the large amounts of ascorbic acid could prevent the adverse effects associated with radiation therapy for the lung malignancy. (author)

  15. Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques.

    Science.gov (United States)

    Gauquelin, N; van den Bos, K H W; Béché, A; Krause, F F; Lobato, I; Lazar, S; Rosenauer, A; Van Aert, S; Verbeeck, J

    2017-10-01

    Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO 3 -La 0.67 Sr 0.33 MnO 3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony; Lefebvre, Quentin; Rueping, Magnus

    2016-01-01

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  17. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony

    2016-06-20

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  18. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings.

    Science.gov (United States)

    Liao, Shaohua; Pan, Bo; Li, Hao; Zhang, Di; Xing, Baoshan

    2014-01-01

    Biochar can benefit human society as a carbon-negative material and soil amendment. However, negative biochar impacts on plant germination and growth have been observed, and they have not been fully explained. Therefore, protocols to avoid these risks cannot be proposed. We hypothesized that the free radicals generated during charring may inhibit plant germination and growth. Significant electron paramagnetic resonance (EPR) signals were observed in the biochars derived from several types of common biomass (corn stalk, rice, and wheat straws) and the major biopolymer components of biomass (cellulose and lignin), but not in the original materials, suggesting the ubiquitous presence of free radicals in biochars. EPR signal intensity increased with increasing pyrolysis temperature, and it was dominantly contributed by oxygen centered in the mixture of oxygen- and carbon-centered free radicals as the temperature increased. The free radicals in biochars induced strong ·OH radicals in the aqueous phase. Significant germination inhibition, root and shoot growth retardation and plasma membrane damage were observed for biochars with abundant free radicals. Germination inhibition and plasma membrane damage were not obvious for biochars containing low free radicals, but they were apparent at comparable concentrations of conventional contaminants, such as heavy metals and polyaromatic hydrocarbons. The potential risk and harm of relatively persistent free radicals in biochars must be addressed to apply them safely.

  19. Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study

    International Nuclear Information System (INIS)

    Han Zhenhui; Lu Changyuan; Wang Wenfeng; Lin Weizhen; Yao Side; Lin Nianyun

    2000-01-01

    Direct excitation of riboflavin with 248 nm laser gives rise to a transient absorption spectrum with contributions from (1) oxidized radical, (2) hydrated electron, (3) triplet state and reduced radical, and distinction between the transient species below 360 nm is difficult for the absorption overlapped. The RF ·+ or RF(-H) · has been clearly produced via direct photoionization by 248 nm laser in aqueous solution, which has been unambiguously identified by SO 4 ·- radical oxidation, although its transient absorption can not be observed clearly for both lower absorption coefficient (ε = 2000 dm 3 mol -1 cm -1 at 640 nm at pH 7.1) and overlap from others. In the present paper, electron transfer from purine and pyrimidine nucleotides to one-electron oxidized radical of riboflavin were observed for the first time in aqueous solution, and the reaction rate constants were determined respectively, which would obviously be of considerable significance in vivo and in vitro. The results clearly demonstrate the importance of oxidized radical of riboflavin in flavin photochemistry and photobiology. These reaction paths are important for the elucidation of the interaction between riboflavin and DNA nucleotides under photoexcitation. When riboflavin was excited, triplet state and oxidized radical can be formed directly or by sequence reactions of triplet state. In the presence of DNA, electron transfer can take place to form a base radical cation, then hole migration to GG step along base-stacking of DNA leads to DNA strand scission, which has been verified by many steady product analysis. This selective cleavage of DNA shows the potential application of riboflavin as a site-specify photonuclease, which has become a highlight' in the currently photochemistry, photomedicine and photobiology areas. The mechanism implies that riboflavin can be applied potentially to photosensitization of oxygen deficient or under high intensity pulsed laser irradiation. (author)

  20. The roles of polycarboxylates in Cr(VI)/sulfite reaction system: Involvement of reactive oxygen species and intramolecular electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bo, E-mail: bjiang86upc@163.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, Shandong (China); School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033 (China); Wang, Xianli; Liu, Yukun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, Shandong (China); Wang, Zhaohui [College of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480 (Australia); Zheng, Jingtang, E-mail: jtzheng03@163.com [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, Shandong (China); Wu, Mingbo, E-mail: wumb@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, Shandong (China)

    2016-03-05

    Highlights: • The formations of SO{sub 4}·{sup −} and OH·, involve in Cr(VI) reduction induced by S(IV). • Affinity of polycarboxylate to Cr(VI) accelerates Cr(VI) reduction rate. • Polycarboxylates can act as electron donors for Cr(VI) reduction retrenching S(IV). • Only oxalate can enhance the formations of SO{sub 4}·{sup −} and OH· in Cr(VI)/S(IV) system. - Abstract: In this study, the effects of polycarboxylates on both Cr(VI) reduction and S(IV) consumption in Cr(VI)/S(IV) system was investigated in acidic solution. Under aerobic condition, the productions of reactive oxygen species (ROS), i.e., SO{sub 4}·{sup −} and OH·, have been confirmed in S(IV) reducing Cr(VI) process by using electron spin resonance and fluorescence spectrum techniques, leading to the excess consumption of S(IV). However, when polycarboxylates (oxalic, citric, malic and tartaric acid) were present in Cr(VI)/S(IV) system, the affinity of polycarboxylates to CrSO{sub 6}{sup 2−} can greatly promote the reduction of Cr(VI) via expanding the coordination of Cr(VI) species from tetrahedron to hexahedron. Besides, as alternatives to S(IV), these polycarboxylates can also act as electron donors for Cr(VI) reduction via intramolecular electron transfer reaction, which is dependent on the energies of the highest occupied molecular orbital of these polycarboxylates. Notably, the variant electron donating capacity of these polycarboxylates resulted in different yield of ROS and therefore the oxidation efficiencies of other pollutants, e.g., rhodamine B and As(III). Generally, this study does not only shed light on the mechanism of S(IV) reducing Cr(VI) process mediated by polycarboxylates, but also provides an escalated, cost-effective and green strategy for the remediation of Cr(VI) using sulfite as a reductant.

  1. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  2. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  3. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  4. Photochemical characterization of water samples from Minnesota and Vermont sites with malformed frogs: potential influence of photosensitization by singlet molecular oxygen (1O2) and free radicals on aquatic toxicity

    International Nuclear Information System (INIS)

    Bilski, P.; Burkhart, J.G.; Chignell, C.F.

    2003-01-01

    Environmental pollutants activated by UV sunlight may have contributed to the recent decline in frog populations and the concomitant increase in malformations in the USA and abroad. UV radiation is able to mutate DNA and to initiate photosensitization processes that generate mutagenic and biologically disruptive oxygen transients. We have examined water from selected sites in Minnesota and Vermont using singlet molecular oxygen ( 1 O 2 ), detected by its phosphorescence and free radicals detected by spin trapping, as markers for photosensitization. Water from a pond in Minnesota with malformed frogs, which also causes malformations in the laboratory, photosensitized more 1 O 2 , even though it absorbed less UV light compared to water from a site that did not cause malformations. This suggested that unknown natural or pollutant agents were present, and that photosensitization may be involved. Although UV irradiation of the two Minnesota water samples in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the presence of the DMPO/·OH, DMPO/·H(e aq - ) and DMPO/·C(unknown) adducts there were no qualitative or quantitative differences between them. We also examined water samples from several sites in Vermont, and compared them by measuring the quantum yield of 1 O 2 photosensitization. While all the Vermont samples produced a small amount of 1 O 2 , there was no clear correlation with the incidence of frog malformations. However, the samples differed strongly in absorption spectra and the ability to quench 1 O 2 . These factors may determine how much UV light is absorbed and converted into chemical reactions. Our results show that photochemical characterization of 1 O 2 photosensitization is possible in untreated natural water samples. Photosensitization falls into the category of global factors that may be closely associated with the effects of UV irradiation of the Earth's environments. Thus, photosensitization might be an important

  5. Photochemical characterization of water samples from Minnesota and Vermont sites with malformed frogs: potential influence of photosensitization by singlet molecular oxygen ({sup 1}O{sub 2}) and free radicals on aquatic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bilski, P.; Burkhart, J.G.; Chignell, C.F

    2003-11-19

    Environmental pollutants activated by UV sunlight may have contributed to the recent decline in frog populations and the concomitant increase in malformations in the USA and abroad. UV radiation is able to mutate DNA and to initiate photosensitization processes that generate mutagenic and biologically disruptive oxygen transients. We have examined water from selected sites in Minnesota and Vermont using singlet molecular oxygen ({sup 1}O{sub 2}), detected by its phosphorescence and free radicals detected by spin trapping, as markers for photosensitization. Water from a pond in Minnesota with malformed frogs, which also causes malformations in the laboratory, photosensitized more {sup 1}O{sub 2}, even though it absorbed less UV light compared to water from a site that did not cause malformations. This suggested that unknown natural or pollutant agents were present, and that photosensitization may be involved. Although UV irradiation of the two Minnesota water samples in the presence of the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) revealed the presence of the DMPO/{center_dot}OH, DMPO/{center_dot}H(e{sub aq}{sup -}) and DMPO/{center_dot}C(unknown) adducts there were no qualitative or quantitative differences between them. We also examined water samples from several sites in Vermont, and compared them by measuring the quantum yield of {sup 1}O{sub 2} photosensitization. While all the Vermont samples produced a small amount of {sup 1}O{sub 2}, there was no clear correlation with the incidence of frog malformations. However, the samples differed strongly in absorption spectra and the ability to quench {sup 1}O{sub 2}. These factors may determine how much UV light is absorbed and converted into chemical reactions. Our results show that photochemical characterization of {sup 1}O{sub 2} photosensitization is possible in untreated natural water samples. Photosensitization falls into the category of global factors that may be closely associated with the effects of

  6. First-Principles Study on the Structural and Electronic Properties of N Atoms Doped-Rutile TiO2 of Oxygen Vacancies

    Directory of Open Access Journals (Sweden)

    Zhong-Liang Zeng

    2015-01-01

    Full Text Available For the propose of considering the actual situation of electronic neutral, a simulation has been down on the basis of choosing the position of dual N and researching the oxygen vacancy. It is found that the reason why crystal material gets smaller is due to the emergence of impurity levels. By introducing the oxygen vacancy to the structure, the results show that while the oxygen vacancy is near the two nitrogen atoms which have a back to back position, its energy gets the lowest level and its structure gets the most stable state. From its energy band structure and density, the author finds that the impurity elements do not affect the migration of Fermi level while the oxygen vacancy has been increased. Instead of that, the conduction band of metal atoms moves to the Fermi level and then forms the N-type semiconductor material, but the photocatalytic activity is not as good as the dual N-doping state.

  7. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    Science.gov (United States)

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion

  8. Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x - inclusion of electron spin and charge degrees of freedom

    DEFF Research Database (Denmark)

    Schleger, P.; Hardy, W.N.; Casalta, H.

    1994-01-01

    A lattice-gas model for the high temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x is presented, which assumes constant effective pair interactions between oxygen atoms and includes in a simple fashion the effect of the electron spin and charge degrees of freedom. This is done using...... a commonly utilized picture relating the creation of mobile electron holes and unpaired spins to the insertion of oxygen into the basal plane. The model is solved using the nearest-neighbor square approximation of the cluster-variation method. In addition, preliminary Monte Carlo results using next......-nearest-neighbor interactions are presented. The model is compared to experimental results for the thermodynamic response function, kT (partial derivative x/partial derivative mu)T (mu is the chemical potential), the number of monovalent copper atoms, and the fractional site occupancies. The model drastically improves...

  9. The determination of carbon, nitrogen and oxygen in TiCsub(x)Nsub(y)Osub(z) with the Auger electron spectroscopy (AES)

    International Nuclear Information System (INIS)

    Schneider, H.; Nold, E.; Miller, H.T.

    1980-01-01

    The possibility of determining the carbon, nitrogen and oxygen contents in TiCsub(x)Nsub(y)Osub(z) with the Auger-electron-spectroscopy (AES) is discussed. As an example the concentration dependence over the cross section of 1 μm thick TiN-layers is presented. (orig.)

  10. Free radicals in biology. Volume II

    International Nuclear Information System (INIS)

    Pryor, W.A.

    1976-01-01

    This volume continues the treatment of topics in free radical biology and free radical pathology from Volume I. In the first chapter, pyridinyl radicals, radicals which are models for those derived from NAD, are discussed. Pyridinyl radicals can be synthesized and isolated and directly studied in a number of chemical systems. The next chapter treats the role of glutathione in the cell. It is becoming even more apparent that this vital thiol controls a large number of important cellular functions. The GSH/GSSG balance has recently been implicated as a control for cellular development; this balance also may be important in relaying the effects of oxidants from one site to another in the body. The next chapter outlines the reactions of singlet oxygen; some of these involve free radicals and some do not. This reactive intermediate appears to be important both in photochemical smog and in cellular chemistry where singlet oxygen is produced by nonphotochemical processes. The production of free radicals from dry tissues, a controversial area with conflicting claims is reviewed. The next chapter outlines the current status of the studies of photochemical smog. The next two chapters treat specific reactive materials which are present in smog. The first discusses the chemistry of nitrogen oxides and ozone. The second chapter treats the chemistry of the peroxyacyl nitrites. These compounds, although present in only small concentration, are among the most toxic components of smog. The last two chapters treat radiation damage to proteins and radiation protection and radical reactions produced by radiation in nucleic acids

  11. The Rise of Radicals in Bioinorganic Chemistry

    OpenAIRE

    Gray, Harry B.; Winkler, Jay R.

    2016-01-01

    Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O_2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) a...

  12. Free radicals in wood induced by γ-radiation

    International Nuclear Information System (INIS)

    Xu Honglin; Zhang Wenhui

    1994-01-01

    The free radicals in wood induced by γ-radiation were studied by electron spin resonance. The fine structure of the ESR signal from sawdust samples irradiated could be resolved into various radicals. These free radicals have a very long lifetime. The major spectrum for the free radicals will exponentially increased along with the radiation dose according to Y 1-Exp(-α a D). The intensity of radiation radicals is dependent on tree species. The stronger the intensity of mechanic free radicals is, the stronger the intensity of radiation free radicals

  13. Generation and reactivity of ketyl radicals with lignin related structures. On the importance of the ketyl pathway in the photoyellowing of lignin containing pulps and papers.

    Science.gov (United States)

    Fabbri, Claudia; Bietti, Massimo; Lanzalunga, Osvaldo

    2005-04-01

    [reaction: see text] Ketyl radicals with lignin related structures have been generated by means of radiation chemical and photochemical techniques. In the former studies ketyl radicals are produced by reaction of alpha-carbonyl-beta-aryl ether lignin models with the solvated electron produced by pulse radiolysis of an aqueous solution at pH 6.0. The UV-vis spectra of ketyl radicals are characterized by three main absorption bands. The shape and position of these bands slightly change when the spectra are recorded in alkaline solution (pH 11.0) being now assigned to the ketyl radical anions and a pKa = 9.5 is determined for the 1-(3,4,5-trimethoxyphenyl)-2-phenoxyethanol-1-yl radical. Decay rates of ketyl radicals are found to be dose dependent and, at low doses, lie in the range (1.7-2.7) x 10(3) s(-1). In the presence of oxygen a fast decay of the ketyl radicals is observed (k2 = 1.8-2.7 x 10(9) M(-1) s(-1)) that is accompanied by the formation of stable products, i.e., the starting ketones. In the photochemical studies ketyl radicals have been produced by charge-transfer (CT) photoactivation of the electron donor-acceptor salts of methyl viologen (MV2+) with alpha-hydroxy-alpha-phenoxymethyl-aryl acetates. This process leads to the instantaneous formation of the reduced acceptor (methyl viologen radical cation, MV+*), as is clearly shown in a laser flash photolysis experiment by the two absorption bands centered at 390 and 605 nm, and an acyloxyl radical [ArC(CO2*))(OH)CH2(OC6H5)], which undergoes a very fast decarboxylation with formation of the ketyl radicals. Steady-state photoirradiation of the CT ion pairs indicates that 1-aryl-2-phenoxyethanones are formed as primary photoproducts by oxidation of ketyl radicals by MV2+ (under argon) or by molecular oxygen. Small amounts of acetophenones are formed by further photolysis of 1-aryl-2-phenoxyethanones and not by beta-fragmentation of the ketyl radicals. The high reactivity of ketyl radicals with oxygen coupled

  14. Photoionization of the OH radical

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1985-01-01

    The hydroxyl radical (OH) is one of the most thoroughly studied free radicals because of its importance in atmospheric chemistry, combustion processes, and the interstellar medium. Detailed experimental and theoretical studies have been performed on the ground electronic state (X 2 PI/sub i/) and on the four lowest bound excited electronic states (A 2 Σ + , B 2 Σ + , D 2 Σ - , and C 2 Σ + ). However, because it is difficult to distinguish the spectrum of OH from the spectra of the various radical precursors, the absorption spectrum in the wavelength region below 1200 A has not been well characterized. In the present work, the spectrum of OH has been determined in the wavelength region from 750 to 950 A using the technique of photoionization mass spectrometry. This technique allows complete separation of the spectrum of OH from that of the other components of the discharge and permits the unambiguous determination of the spectrum of OH

  15. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: Simultaneous oxygen and pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui; Xiao, Teng; Cui, Weipan [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Joseph, E-mail: jshinar@iastate.edu [Ames Laboratory-USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Shinar, Ruth, E-mail: rshinar@iastate.edu [Microelectronics Research Center and Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States)

    2013-05-17

    Graphical abstract: -- Highlights: •Novel simply-fabricated all-organic electronics pH and oxygen optical monitor. •Excitation sources: directionally emitting, narrowed multicolor microcavity OLEDs. •Photodetectors: small molecule- or polymer-based with selective spectral responses. •Sensor film: structured high molecular weight polystyrene:polyethylene glycol blend. •×1.9 sensitivity enhancement and ×2.7 increase in the photoluminescence for oxygen. -- Abstract: Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs’ broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ∼20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ{sub 0}/τ{sub 100} (PL decay time τ at 0% O{sub 2}/τ at 100% O{sub 2}) that is often used

  16. A Quantitative Method to Monitor Reactive Oxygen Species Production by Electron Paramagnetic Resonance in Physiological and Pathological Conditions

    Science.gov (United States)

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the “instantaneous” presence of ROS returning absolute concentration levels that correlate with “a posteriori” assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R 2 = 0.95), plasma (R 2 = 0.82), and erythrocytes (R 2 = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001–0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  17. Layout designs of surface barrier coatings for boosting the capability of oxygen/vapor obstruction utilized in flexible electronics

    Science.gov (United States)

    Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan

    2018-04-01

    Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.

  18. Quantifying height of ultraprecisely machined steps on oxygen-free