WorldWideScience

Sample records for oxygen phosphorescence study

  1. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evaluation of multi-exponential curve fitting analysis of oxygen-quenched phosphorescence decay traces for recovering microvascular oxygen tension histograms

    Bezemer, Rick; Faber, Dirk J.; Almac, Emre; Kalkman, Jeroen; Legrand, Matthieu; Heger, Michal; Ince, Can

    2010-01-01

    Although it is generally accepted that oxygen-quenched phosphorescence decay traces can be analyzed using the exponential series method (ESM), its application until now has been limited to a few (patho)physiological studies, probably because the reliability of the recovered oxygen tension (pO(2))

  3. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements

    Mik, Egbert G.; van Leeuwen, Ton G.; Raat, Nicolaas J.; Ince, Can

    2004-01-01

    This study describes the use of two-photon excitation phosphorescence lifetime measurements for quantitative oxygen determination in vivo. Doubling the excitation wavelength of Pd-porphyrin from visible light to the infrared allows for deeper tissue penetration and a more precise and confined

  4. Oxygenation measurement by multi-wavelength oxygen-dependent phosphorescence and delayed fluorescence: catchment depth and application in intact heart

    Balestra, Gianmarco M.; Aalders, Maurice C. G.; Specht, Patricia A. C.; Ince, Can; Mik, Egbert G.

    2015-01-01

    Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO(2)) in myocardium, using oxygen-dependent quenching of phosphorescence and delayed fluorescence of

  5. Measurement of cell respiration and oxygenation in standard multichannel biochips using phosphorescent O2-sensitive probes.

    Kondrashina, Alina V; Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2013-09-07

    Measurement of cell oxygenation and oxygen consumption is useful for studies of cell bioenergetics, metabolism, mitochondrial function, drug toxicity and common pathophysiological conditions. Here we present a new platform for such applications which uses commercial multichannel biochips (μ-slides, Ibidi) and phosphorescent O2 sensitive probes. This platform was evaluated with both extracellular and intracellular O2 probes, several different cell types and treatments including mitochondrial uncoupling and inhibition, depletion of extracellular Ca(2+) and inhibition of V-ATPase and histone deacetylases. The results show that compared to the standard microwell plates currently used, the μ-slide platform provides facile O2 measurements with both suspension and adherent cells, higher sensitivity and reproducibility, and faster measurement time. It also allows re-perfusion and multiple treatments of cells and multi-parametric analyses in conjunction with other probes. Optical measurements are conducted on standard fluorescence readers and microscopes.

  6. TH-C-17A-05: Cherenkov Excited Phosphorescence Oxygen (CEPhOx) Imaging During Multi-Beam Radiation Therapy

    Zhang, R; Pogue, B [Dartmouth College, Hanover, NH (United States); Holt, R [Dartmouth College, Hanover, NH - New Hampshire (United States); Esipova, T; Vinogradov, S [University of Pennsylvania, Philadelphia, PA (United States); Gladstone, D [Dartmouth-Hitchcock Medical Center, Hanover, City of Lebanon (Lebanon)

    2014-06-15

    Purpose: Cherenkov radiation is created during external beam radiation therapy that can excite phosphorescence in tissue from oxygen-sensitive, bio-compatible probes. Utilizing the known spatial information of the treatment plan with directed multiple beam angles, Cherenkov Excited Phosphorescence Oxygen (CEPhOx) imaging was realized from the reconstructions of Cherenkov excited phosphorescence lifetime. Methods: Platinum(II)-G4 (PtG4) was used as the oxygen-sensitive phosphorescent probe and added to a oxygenated cylindrical liquid phantom with a oxygenated/deoxygenated cylindrical anomaly. Cherenkov excited phosphorescence was imaged using a time-gated ICCD camera temporallysynchronized to the LINAC pulse output. Lifetime reconstruction was carried out in NIRFAST software. Multiple angles of the incident radiation beam was combined with the location of the prescribed treatment volume (PTV) to improve the tomographic recovery as a function of location. The tissue partial pressure of oxygen (pO2) in the background and PTV was calculated based on the recovered lifetime distribution and Stern-Volmer equation. Additionally a simulation study was performed to examine the accuracy of this technique in the setting of a human brain tumor. Results: Region-based pO2 values in the oxygenated background and oxygenated/deoxygenated PTV were correctly recovered, with the deoxygenated anomaly (15.4 mmHg) easily distinguished from the oxygenated background (143 mmHg). The data acquisition time could be achieved within the normal irradiation time for a human fractionated plan. The simulations indicated that CEPhOx would be a sufficient to sample tumor pO2 sensing from tumors which are larger than 2cm in diameter or within 23mm depth from the surface. Conclusion: CEPhOx could be a novel imaging tool for pO2 assessment during external radiation beam therapy. It is minimally invasive and should work within the established treatment plan of radiation therapy with multiple beams in

  7. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  8. Investigation of Oxygen-Induced Quenching of Phosphorescence in Photoexcited Aromatic Molecules by Positron Annihilation Spectroscopy

    Singh, Jag J.; Eftekhari, Abe

    1996-01-01

    Platinum OctaEthyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state P(T(Sup 1)) is readily quenched by the oxygen O2 molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the P(T(Sup 1) approaches P(S(Sub O)) transitions is still unknown. The diamagnetic singlet states P(S(Sub n)), which feed P(T(Sub 1)) states via intersystem crossings, would presumably not be affected by O2. It must be only the magnetic P(T(Sub 1)) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of O2P(S(Sub n)), complexes which can also eventually reduce the population of the P(T(Sub 1)) states (i.e., quench phosphorescence). This reduction is possible because higher triplet states in (Pt.OEP) are admixed with the P(S(Sub 1)), states via spin orbit interactions. The experimental procedures and the results of various measurements are presented in this paper.

  9. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  10. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  11. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  12. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  13. Oxygen sensor via the quenching of room-temperature phosphorescence of perdeuterated phenanthrene adsorbed on Whatman 1PS filter paper.

    Ramasamy, S M; Hurtubise, R J

    1998-11-01

    Perdeuterated phenanthrene (d-phen) exhibits strong room-temperature phosphorescence (RTP) when adsorbed on Whatman 1PS filter paper. An oxygen sensor was developed that depends on oxygen quenching of RTP intensity of adsorbed d-phen. The system designed employed a continuous flow of nitrogen or nitrogen-air onto the adsorbed phosphor. The sensor is simple to prepare and needs no elaborate fabrication procedure, but did show a somewhat drifting baseline for successive determinations of oxygen. Nevertheless, very good reproducibility was achieved with the RTP quenching data by measuring the RTP intensities just before and at the end of each oxygen determination. The calibration plots gave a nonlinear relationship over the entire range of oxygen (0-21%). However, a linear range was obtained up to 1.10% oxygen. A detection limit of 0.09% oxygen in dry nitrogen was acquired. Also, carbon dioxide was found to have a minimal effect on the RTP quenching. Thus, oxygen could be measured accurately in relatively large amounts of carbon dioxide. The performance of the oxygen sensor was evaluated by comparing data obtained with a commercial electrochemical trace oxygen analyzer. Also, additional information on the quenching phenomena for this system was obtained from the RTP lifetime data acquired at various oxygen contents.

  14. Study of different roles phosphorescent material played in different positions of organic light emitting diodes

    Keke, Gu; Jian, Zhong; Jiule, Chen; Yucheng, Chen; Ming, Deng

    2013-09-01

    Phosphorescent materials are crucial to improve the luminescence and efficiency of organic light emitting diodes (OLED), because its internal quantum efficiency can reach 100%. So the studying of optical and electrical properties of phosphorescent materials is propitious for the further development of phosphorescent OLED. Phosphorescent materials were generally doped into different host materials as emitting components, not only played an important role in emitting light but also had a profound influence on carrier transport properties. We studied the optical and electrical properties of the blue 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi)-based devices, adding a common yellow phosphorescent material bis[2-(4- tert-butylphenyl)benzothiazolato- N,C2'] iridium(acetylacetonate) [( t-bt)2Ir(acac)] in different positions. The results showed ( t-bt)2Ir(acac) has remarkable hole-trapping ability. Especially the ultrathin structure device, compared to the device without ( t-bt)2Ir(acac), had increased the luminance by about 60%, and the efficiency by about 97%. Then introduced thin 4,4'-bis(carbazol-9-yl)biphenyl (CBP) host layer between DPVBi and ( t-bt)2Ir(acac), and got devices with stable white color.

  15. Studies on phosphorescence and trapping effects of Mn-doped and undoped zinc germinates

    He, Zhiyi [Optoelectronic Institute, Guilin University of Electronic Technology, Guilin 541004, Guangxi (China); Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Ma, Li [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Wang, Xiaojun, E-mail: xwang@georgiasouthern.edu [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); School of Physics, Northeast Normal University, Changchun 130024 (China)

    2016-01-15

    Photoluminescence and phosphorescence from different recombining centers in the Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4} phosphors have been observed. By UV excitation the undoped sample presents a broad band of blue–white emission from the host defects while the Mn-doped samples show both the host and Mn{sup 2+} emissions with different phosphorescent durations. At the beginning of UV excitation after the phosphorescence has been exhausted, the fluorescent time dependence of Mn{sup 2+} exhibits a fast decay process to a constant intensity, different from the rising or charging process as the typical behavior for the common persistent phosphors. This unusual behavior was studied using electron paramagnetic resonance (EPR) spectroscopy. A decrease of the EPR signal from Mn{sup 2+} was found for the sample under UV irradiation, suggesting the occurrence of ionization of Mn{sup 2+} to Mn{sup 3+}. A slow recovering process of the ionization has also been detected, which is consistent with the observation of phosphorescence from Mn{sup 2+} doped samples. - Highlights: • Photoluminescence and phosphorescence observed from Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4}. • Unusual charging process from the common phosphors observed and analyzed. • Photo-stimulated EPR with a slow recovering process of Mn{sup 2+} ionization observed.

  16. Phosphorescence spectroscopy and its application to the study of colloidal dynamics

    Lettinga, M.P.

    1999-01-01

    The technique of Time-resolved phosphorescence anisotropy (TPA) has been frequently used to study rotational motions of particles on the micro- to millisecond time-scale. The interpretation of the observed TPA signals is, however, not straightforward. The theoretical description of the

  17. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2015-01-01

    In this study, we have undertaken efforts to find correlation between phosphorescence lifetimes of single tryptophan containing proteins and some structural indicators of protein flexibility/rigidity, such as the degree of tryptophan burial or its exposure to solvent, protein secondary and tertiary structure of the region of localization of tryptophan as well as B factors for tryptophan residue and its immediate surroundings. Bearing in mind that, apart from effective local viscosity of the protein/solvent matrix, the other factor that concur in determining room temperature tryptophan phosphorescence (RTTP) lifetime in proteins is the extent of intramolecular quenching by His, Cys, Tyr and Trp side chains, the crystallographic structures derived from the Brookhaven Protein Data Bank were also analyzed concentrating on the presence of potentially quenching amino acid side chains in the close proximity of the indole chromophore. The obtained results indicated that, in most cases, the phosphorescence lifetimes of tryptophan containing proteins studied tend to correlate with the above mentioned structural indicators of protein rigidity/flexibility. This correlation is expected to provide guidelines for the future development of phosphorescence lifetime-based method for the prediction of structural flexibility of proteins, which is directly linked to their biological function.

  18. Synthesis, Properties, Calculations and Applications of Small Molecular Host Materials Containing Oxadiazole Units with Different Nitrogen and Oxygen Atom Orientations for Solution-Processable Blue Phosphorescent OLEDs

    Ye, Hua; Wu, Hongyu; Chen, Liangyuan; Ma, Songhua; Zhou, Kaifeng; Yan, Guobing; Shen, Jiazhong; Chen, Dongcheng; Su, Shi-Jian

    2018-03-01

    A series of new small molecules based on symmetric electron-acceptor of 1,3,4-oxadiazole moiety or its asymmetric isomer of 1,2,4-oxadiazole unit were successfully synthesized and applied to solution-processable blue phosphorescent organic light-emitting diodes for the first time, and their thermal, photophysical, electrochemical properties and density functional theory calculations were studied thoroughly. Due to the high triplet energy levels ( E T, 2.82-2.85 eV), the energy from phosphorescent emitter of iridium(III) bis[(4,6-difluorophenyl)-pyridinate- N,C2']picolinate (FIrpic) transfer to the host molecules could be effectively suppressed and thus assuring the emission of devices was all from FIrpic. In comparison with the para-mode conjugation in substitution of five-membered 1,3,4-oxadiazole in 134OXD, the meta-linkages of 1,2,4-isomer appending with two phenyl rings cause the worse conjugation degree and the electron delocalization as well as the lower electron-withdrawing ability for the other 1,2,4-oxadiazole-based materials. Noting that the solution-processed device based on 134OXD containing 1,3,4-oxadiazole units without extra vacuum thermal-deposited hole/exciton-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 8.75 cd/A due to the excellent charge transporting ability of 134OXD, which far surpassed the similar devices based on other host materials containing 1,2,4-oxadiazole units. Moreover, the device based on 134OXD presented small efficiency roll-off with current efficiency (CE) of 6.26 cd/A at high brightness up to 100 cd/m2. This work demonstrates different nitrogen and oxygen atom orientations of the oxadiazole-based host materials produce major impact on the optoelectronic characteristics of the solution-processable devices.

  19. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material

  20. Stereoselective Binding of Flurbiprofen Enantiomers and their Methyl Esters to Human Serum Albumin Studied by Time-Resolved Phosphorescence

    mr. Lammers, I.; Lhiaubet-Vallet, V.; Jimenez, M.C.; Ariese, F.; Miranda, M.A.; Gooijer, C.

    2012-01-01

    The interaction of the nonsteroidal anti-inflammatory drug flurbiprofen (FBP) with human serum albumin (HSA) hardly influences the fluorescence of the protein's single tryptophan (Trp). Therefore, in addition to fluorescence, heavy atom-induced room-temperature phosphorescence is used to study the

  1. Synthesis and photophysical studies of blue phosphorescent Ir(III) complexes with dimethylphenylphospine.

    Ham, Ho-Wan; Jung, Kyung-Yoon; Kim, Young-Sik

    2012-02-01

    New blue emitting mixed ligand iridium(III) complexes comprising one cyclometalating, two phosphines trans to each other such as Ir{(CF3)2Meppy}(PPhMe3)2(H)(L) [L = CI, NCMe, CN] [(CF3)2Meppy = 2-(3', 5'-bis-trifluoromethylphenyl)-4-methylpyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To achieve deep blue emission, the trifluoromethyl group substituted on the phenyl ring and the methyl group substituted on the pyridyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift. To gain insight into the factors responsible for the emission color change and the different luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the complexes. From these results, we discuss how the ancillary ligand influences the emission peak as well as the metal to ligand charge transfer (MLCT) transition efficiency. The maximum emission spectra of Ir{(CF3)2Meppy}(PPhMe3)2(H)(Cl), [Ir{(CF3),Meppy)(PPhMe3),(H)(NCMe)]+ and Ir{(CF3)2Meppy}(PPhMe3)2(H)(CN) were in the ranges of 441, 435, 434 nm, respectively.

  2. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer

    Kim, Jin Wook; You, Seung Il; Kim, Nam Ho; Yoon, Ju-An; Cheah, Kok Wai; Zhu, Fu Rong; Kim, Woo Young

    2014-11-01

    In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500 Å)/NPB(700 Å)/mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300 Å)/TPBi(300 Å)/Liq(20 Å)/Al(1200 Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41).

  3. Steady-state fluorescence and phosphorescence spectroscopic studies of bacterial luciferase tryptophan mutants.

    Li, Z; Meighen, E A

    1994-09-01

    Bacterial luciferase, which catalyzes the bioluminescence reaction in luminous bacteria, consists of two nonidentical polypeptides, α and β. Eight mutants of luciferase with each of the tryptophans replaced by tyrosine were generated by site-directed mutagenesis and purified to homogeneity. The steady-state tryptophan fluorescence and low-temperature phosphorescence spectroscopic properties of these mutants were characterized. In some instances, mutation of only a single tryptophan residue resulted in large spectral changes. The tryptophan residues conserved in both the α and the β subunits exhibited distinct fluorescence emission properties, suggesting that these tryptophans have different local enviroments. The low-temperature phosphorescence data suggest that the tryptophans conserved in bot the α and the β subunits are not located at the subunit interface and/or involved in subunit interactions. The differences in the spectral properties of the mutants have provided useful information on the local environment of the individual tryptophan residues as well as on the quaternary structure of the protein.

  4. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    Kikuchi, Azusa; Nakabai, Yuya; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2015-01-01

    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k T–T , decreases in the following order: k T–T (BMDBM–DOMBM)>k T–T (BMDBM–OMC)≥k T–T (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed

  5. Degradation of phosphorescent blue organic light-emitting diodes

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Steinbacher, Frank [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2009-07-01

    Development of phosphorescent materials has significantly improved the efficiency of organic light-emitting diodes (OLEDs). By using efficient red, green and blue phosphorescent emitter materials high efficient white OLEDs can be achieved. However, due to low stability of blue phosphorescent materials the lifetime of phosphorescent white OLEDs remains an issue. As a result, degradation of blue phosphorescent materials needs to be further investigated and improved. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated. For investigation of degradation process the devices were stressed with electrical current and UV-light to study the impact of charge carriers as well as excitons and exciton-polaron quenching on the stability of the blue dye.

  6. Investigation of phosphorescent blue organic light emitting diodes

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2008-07-01

    Recently, rapid development of phosphorescent materials has significantly improved the efficiency of organic light emitting diodes (OLEDs). By using efficient phosphorescent emitter materials white OLEDs with high power efficiency values could be demonstrated. But especially blue phosphorescent devices, due to stability issues, need to be further investigated und optimized. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated and characterized to study the impact of charge carriers on device performance.

  7. Study on the paper substrate room temperature phosphorescence of theobromine, caffeine and theophylline and analytical application

    Chuan, Dong; Yan-Li, Wei; Shao-Min, Shuang

    2003-05-01

    Paper substrate room temperature phosphorescence (RTP) of theobromine (TB), caffeine (CF) and theophylline (TP) were investigated. The method is based on fast speed quantitative filter paper as substrate and KI-NaAc as heavy atom perturber. Various factors affecting their RTP were discussed in detail. Under the optimum experimental conditions, the linear dynamic range, limit of detection (LOD), and relative standard deviation (R.S.D.) were 14.41˜576.54 ng per spot, 1.14 ng per spot, 4.8% for TB, 5.44˜699.08 ng per spot, 0.78 ng per spot, 1.56% for CF, 7.21˜360.34 ng per spot, 1.80 ng per spot, 3.80% for TP, respectively. The first analytical application for the determination of these compounds was developed. The recovery of standard samples added to commercial products chocolate, tea, coffee and aminophylline is in the range 92.80-106.08%. The proposed method was successfully applied to real sample analysis without separation.

  8. Studies on the photodegradation of red, green and blue phosphorescent OLED emitters

    Susanna Schmidbauer

    2013-10-01

    Full Text Available The photodegradation behavior of four well-established iridium emitters was investigated. Irradiation of the samples in different solvents and under atmospheric as well as inert conditions helped to identify several pathways that can contribute to the deterioration of these compounds. Degradation via singlet oxygen or the excited states of the emitters as well as the detrimental influence of halogenated solvents are discussed for the different investigated iridium complexes. Some of the resulting degradation products could be identified by using LC–MS or other analytical techniques. The results show how even small structural changes can have a huge influence on rate and mechanism of the photodegradation. The observations from this study may help to better understand degradation processes occurring during the handling of the materials, but also during device processing and operation.

  9. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena

    2015-01-01

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...

  10. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  11. Theoretical study on the electronic structures and phosphorescent properties of a series of iridium(III) complexes with the different positional N-substitution in the pyridyl moiety

    Han, Deming; Hao, Fengqi [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Tian, Jian [Clean Energy Technology Laboratory, Changchun University of Science and Technology, Changchun 130022 (China); Pang, Chunying; Li, Jingmei [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhao, Lihui, E-mail: zhaolihui@yahoo.com [School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022 (China); Zhang, Gang [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China)

    2015-03-15

    The geometry structures, electronic structures, absorption and phosphorescent properties of a series of iridium(III) complexes with the different N-substitution cyclometalating ligand and the same benzyldiphenylphosphine auxiliary ligand have been theoretically investigated by using the density functional theory method. The lowest energy absorption wavelengths are located at 378 nm for A, 430 nm for B, 411 nm for C, 436 nm for D, and 394 nm for E. The introduction of N atom substitution at 1-, 2-, 3-, and 4-positions on the pyridyl moiety of complex A leads to an obvious redshifted absorption. The lowest energy emissions for complexes A–E are localized at 450, 409, 438, 483, and 429 nm, respectively, simulated in CH{sub 2}Cl{sub 2} medium at M052X level. Ionization potential and electron affinity have been calculated to evaluate the injection abilities of holes and electrons into these complexes. For complex C, the calculated results showed that it can possibly possess the larger radiative decay rate (k{sub r}) value than those of other four complexes. It is anticipated that the theoretical studies can provide valuable information for designing new phosphorescent metal complexes of organic light-emitting diodes. - Highlights: • Five Ir(III) complexes have been theoretically investigated. • The effect of N-substitution cyclometalating ligand has been studied. • The complex C possibly possesses the largest radiative decay rate value.

  12. Phosphorescence parameters for platinum (II) organometallic chromophores: A study at the non-collinear four-component Kohn–Sham level of theory

    Norman, Patrick; Jensen, Hans Jørgen Aagaard

    2012-01-01

    A theoretical characterization of the phosphorescence decay traces of a prototypical platinum (II) organic chromophore has been conducted. The phosphorescence wavelength and radiative lifetime are predicted to equal 544 nm and 160 μs, respectively. The third triplet state is assigned as participa...

  13. Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes

    Baldo, M.; Segal, M.

    2004-01-01

    The development of highly efficient phosphorescent molecules has approximately quadrupled the quantum efficiency of organic light emitting devices (OLEDs). By harnessing triplet as well as singlet excitons, efficient molecular phosphorescence has also enabled novel studies of exciton physics in organic semiconductors. In this review, we will summarize recent progress in understanding exciton formation and energy transfer using phosphorescent molecular probes. Particular emphasis is given to two topics of current interest: energy transfer in blue phosphorescent OLEDs, and quantifying the formation ratio of singlet to triplet excitons in small-molecular weight materials and polymers. (orig.)

  14. Microchambers with Solid-State Phosphorescent Sensor for Measuring Single Mitochondrial Respiration.

    Pham, Ted D; Wallace, Douglas C; Burke, Peter J

    2016-07-09

    It is now well established that, even within a single cell, multiple copies of the mitochondrial genome may be present (genetic heteroplasmy). It would be interesting to develop techniques to determine if and to what extent this genetic variation results in functional variation from one mitochondrion to the next (functional heteroplasmy). Measuring mitochondrial respiration can reveal the organelles' functional capacity for Adenosine triphosphate (ATP) production and determine mitochondrial damage that may arise from genetic or age related defects. However, available technologies require significant quantities of mitochondria. Here, we develop a technology to assay the respiration of a single mitochondrion. Our "micro-respirometer" consists of micron sized chambers etched out of borofloat glass substrates and coated with an oxygen sensitive phosphorescent dye Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) mixed with polystyrene. The chambers are sealed with a polydimethylsiloxane layer coated with oxygen impermeable Viton rubber to prevent diffusion of oxygen from the environment. As the mitochondria consume oxygen in the chamber, the phosphorescence signal increases, allowing direct determination of the respiration rate. Experiments with coupled vs. uncoupled mitochondria showed a substantial difference in respiration, confirming the validity of the microchambers as single mitochondrial respirometers. This demonstration could enable future high-throughput assays of mitochondrial respiration and benefit the study of mitochondrial functional heterogeneity, and its role in health and disease.

  15. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  16. Optical detection of magnetic resonance of the F-centre in CaO in its phosphorescent state

    Krap, C.J.

    1980-01-01

    The F-centre in CaO consists of two electrons trapped in an oxygen vacancy. The centre possesses bound excited states, of which the phosphorescent 3 Tsub(1u) state is a Jahn-Teller state. Jahn-Teller systems have been of interest in many investigations. However, detailed experimental studies about the relaxation paths for the Jahn-Teller states are relatively few. The author studies by means of optical detection of magnetic resonance (ODMR) and phosphorescence microwave double resonance (PMDR) techniques the relaxation between the components of the 3 Tsub(1u) state, the magnetic properties of the individual spin-vibronic Jahn-Teller states and the inhomogeneous line broadening in the ODMR and PMDR spectra. (Auth.)

  17. Intersystem-crossing and phosphorescence rates in fac-Ir{sup III}(ppy){sub 3}: A theoretical study involving multi-reference configuration interaction wavefunctions

    Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany); Wüllen, Christoph van [Fachbereich Chemie and Forschungszentrum OPTIMAS, Technical University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern (Germany)

    2015-03-07

    phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence decay times of 264 μs, 13 μs, and 0.9 μs, respectively, for the T{sub 1,I}, T{sub 1,II}, and T{sub 1,III} fine-structure levels in dichloromethane (DCM) solution. In addition to reproducing the correct orders of magnitude for the individual phosphorescence emission probabilities, our theoretical study gives insight into the underlying mechanisms. In terms of intensity borrowing from spin-allowed transitions, the low emission probability of the T{sub 1,I} substate is caused by the mutual cancellation of contributions from several singlet states to the total transition dipole moment. Their contributions do not cancel but add up in case of the much faster T{sub 1,III} → S{sub 0} emission while the T{sub 1,II} → S{sub 0} emission is dominated by intensity borrowing from a single spin-allowed process, i.e., the S{sub 2} → S{sub 0} transition.

  18. Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation

    Sinaasappel, M.; van Iterson, M.; Ince, C.

    1999-01-01

    1. The aim of this study was to investigate the relation between microvascular and venous oxygen pressures during haemorrhagic shock and resuscitation in the pig intestine. To this end microvascular PO2 (microPO2) was measured by quenching of Pd-porphyrin phosphorescence by oxygen and validated for

  19. First-principles study of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material

    Duan, H.; Dong, Y. Z.; Huang, Y.; Hu, Y. H.; Chen, X. S.

    2016-01-01

    Electronic structures of intrinsic vacancy defects in Sr2MgSi2O7 phosphorescent host material are investigated using first-principles calculations. Si vacancies are too high in energy to play any role in the persistent luminescence of Sr2MgSi2O7 phosphor. Mg vacancies form easier than Sr vacancies as a result of strain relief. Among all the vacancies, O1 vacancies stand out as a likely candidate because they are the most favorable in energy and introduce an empty triply degenerate state just below the CBM and a fully-occupied singlet state at ~1 eV above the VBM, constituting in this case effective hole trap level and electron trap levels, respectively. Mg vacancies are unlikely to explain the persistent luminescence because of its too shallow electron trap level but they may compensate the hole trap associated with O1 vacancies. We yield consistent evidence for the defect physics of these vacancy defects on the basis of the equilibrium properties of Sr2MgSi2O7, total-energy calculations, and electronic structures. The persistent luminescence mechanism of Sr2MgSi2O7:Eu2+, Dy3+ phosphor is also discussed based on our results for O1 vacancies trap center. Our results provide a guide to more refined experiments to control intrinsic traps, whereby probing synthetic strategies toward new improved phosphors.

  20. Effect of frost on phosphorescence for thermographic phosphor thermometry

    Kim, Dong; Kim, Mirae; Kim, Kyung Chun

    2017-12-01

    In this study, we analyzed phosphorescence lifetime and its accuracy by growing frost for thermographic phosphor thermometry in a low-temperature environment. Mg4FGeO6:Mn particles were coated on an aluminum plate and excited with a UV-LED to obtain phosphorescence signals. The surface temperature was maintained at  -20, -15, -10 °C, and the phosphorescence signal was acquired as the frost grew for 3700 s. The lifetime was calculated and compared with the calibration curve under no-frost conditions. The error of the measured lifetime was within 0.7% of that in the no-frost conditions. A 2D surface temperature profile of the target plate was successfully obtained with the frost formation.

  1. Optical study of SrAl1.7B0.3O4:Eu, R (R=Nd, Dy) pigments with long-lasting phosphorescence for industrial uses

    Sanchez-Benitez, J.; Andres, A. de; Marchal, M.; Cordoncillo, E.; Regi, M.V.; Escribano, P.

    2003-01-01

    We have studied and compared the optical properties of SrAl 1.7 B 0.3 O 4 :Eu, R (R=Nd, Dy) pigments that present long-lasting phosphorescence obtained by different synthesis techniques. Samples obtained by ceramic methods, in our laboratories and by an industrial process, present better phosphorescent properties than those obtained by sol-gel technique. Raman spectra show that grinding produces severe damage of the lattice. We have obtained and analyzed the Eu 3+ crystal field luminescence indicating that Eu 3+ is found in quite different sites comparing ceramic and sol-gel samples. Codoping, with Nd or Dy is necessary in order to reduce the Eu 3+ content, in all cases. The green luminescence band, obtained under UV illumination, can be fitted to two and three components in ceramic and sol-gel samples, respectively, due to different Eu 2+ sites. Eu-Dy samples present the longest and the most efficient phosphorescence. The time evolution of the afterglow is well described by a t -1 law, up to about 2 h, indicating that the recombination process is achieved by electron-hole tunneling

  2. Brain Tissue PO2 Measurement During Normoxia and Hypoxia Using Two-Photon Phosphorescence Lifetime Microscopy.

    Xu, Kui; Boas, David A; Sakadžić, Sava; LaManna, Joseph C

    2017-01-01

    Key to the understanding of the principles of physiological and structural acclimatization to changes in the balance between energy supply (represented by substrate and oxygen delivery, and mitochondrial oxidative phosphorylation) and energy demand (initiated by neuronal activity) is to determine the controlling variables, how they are sensed and the mechanisms initiated to maintain the balance. The mammalian brain depends completely on continuous delivery of oxygen to maintain its function. We hypothesized that tissue oxygen is the primary sensed variable. In this study two-photon phosphorescence lifetime microscopy (2PLM) was used to determine and define the tissue oxygen tension field within the cerebral cortex of mice to a cortical depth of between 200-250 μm under normoxia and acute hypoxia (FiO 2  = 0.10). High-resolution images can provide quantitative distributions of oxygen and intercapillary oxygen gradients. The data are best appreciated by quantifying the distribution histogram that can then be used for analysis. For example, in the brain cortex of a mouse, at a depth of 200 μm, tissue oxygen tension was mapped and the distribution histogram was compared under normoxic and mild hypoxic conditions. This powerful method can provide for the first time a description of the delivery and availability of brain oxygen in vivo.

  3. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    Eersel, H. van, E-mail: h.v.eersel@tue.nl; Coehoorn, R. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-10-06

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy){sub 3}) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J{sub 90}, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  4. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    Eersel, H. van; Coehoorn, R.; Bobbert, P. A.; Janssen, R. A. J.

    2014-01-01

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy) 3 ) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J 90 , the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  5. Phosphorescence quenching microrespirometry of skeletal muscle in situ

    Golub, Aleksander S.; Tevald, Michael A.

    2011-01-01

    We have developed an optical method for the evaluation of the oxygen consumption (V̇o2) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po2, together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po2 values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po2 decreased rapidly and the initial slope of the ODC was used to calculate the V̇o2. Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of V̇o2. The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was V̇o2 = 123.4 ± 13.4 (SE) nl O2/cm3·s (N = 38, within 6 muscles) at a baseline interstitial Po2 of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle. PMID:20971766

  6. Phosphorescence Tuning through Heavy Atom Placement in Unsymmetrical Difluoroboron β-Diketonate Materials.

    Liu, Tiandong; Zhang, Guoqing; Evans, Ruffin E; Trindle, Carl O; Altun, Zikri; DeRosa, Christopher A; Wang, Fang; Zhuang, Meng; Fraser, Cassandra L

    2018-02-06

    Difluoroboron β-diketonates (BF 2 bdks) show both fluorescence (F) and room-temperature phosphorescence (RTP) when confined to a rigid matrix, such as poly(lactic acid). These materials have been utilized as optical oxygen sensors (e.g., in tumors, wounds, and cells). Spectral features include charge transfer (CT) from the major aromatic donor to the dioxaborine acceptor. A series of naphthyl-phenyl dyes (BF 2 nbm) (1-6) were prepared to test heavy-atom placement effects. The BF 2 nbm dye (1) was substituted with Br on naphthyl (2), phenyl (3), or both rings (4) to tailor the fluorescence/phosphorescence ratio and RTP lifetime-important features for designing O 2 sensing dyes by means of the heavy atom effect. Computational studies identify the naphthyl ring as the major donor. Thus, Br substitution on the naphthyl ring produced greater effects on the optical properties, such as increased RTP intensity and decreased RTP lifetime compared to phenyl substitution. However, for electron-donating piperidyl-phenyl dyes (5), the phenyl aromatic is the major donor. As a result, Br substitution on the naphthyl ring (6) did not alter the optical properties significantly. Experimental data and computational modeling show the importance of Br position. The S 1 and T 1 states are described by two singly occupied MOs (SOMOs). When both of these SOMOs have substantial amplitude on the heavy atom, passage from S 1 to T 1 and emission from T 1 to S 0 are both favored. This shortens the excited-state lifetimes and enhances phosphorescence. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phosphorescence and delayed fluorescence properties of fluorone dyes in bio-related films

    Penzkofer, A.; Tyagi, A.; Slyusareva, E.; Sizykh, A.

    2010-01-01

    Graphical abstract: The spectral and temporal phosphorescence and delayed fluorescence behaviour of five fluorescein dyes in gelatine, starch, and chitosan is studied and basic parameters are determined. Research highlights: → Phosphorescence quantum yields of fluorone dyes in bio-related films are measured at room temperature. → Delayed fluorescence quantum yields of fluorone dyes in bio-related films are measured at room temperature. → Phosphorescence lifetimes of fluorone dyes in bio-related films are measured at room temperature. → Delayed fluorescence lifetimes of fluorone dyes in bio-related films are measured at room temperature. → General theory of short-pulse excited phosphorescence and delayed fluorescence is presented and relevant parameters are extracted. - Abstract: The phosphorescence and delayed fluorescence behaviour of the fluorone dyes disodium fluorescein (FL, uranine), 4,5-dibromofluorescein (DBF), eosin Y (EO), erythrosine B (ER), and rose bengal (RB) in bio-films of gelatine, starch, and chitosan at room temperature is studied. Phosphorescence and delayed fluorescence quantum yields and lifetimes were measured. The singlet-triplet dynamics is described and applied to the fluorone dyes for parameter extraction. For uranine films at room temperature no phosphorescence could be resolved. The efficiency of singlet-triplet intersystem crossing increased in the order φ ISC (DBF) ISC (EO) ISC (ER) ISC (RB) due to the heavy atom effect on spin-orbit coupling. The phosphorescence quantum yields increased in the order φ P (DBF) P (EO) P (RB) P (ER). The phosphorescence lifetimes followed the order τ P (DBF) > τ P (EO) > τ P (ER) > τ P (RB).

  8. Fluorescence and phosphorescence of rutin

    Bondarev, Stanislav L., E-mail: bondarev@imaph.bas-net.by [Minsk State Higher Radioengineering College, 220005 Minsk (Belarus); Knyukshto, Valeri N. [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk (Belarus)

    2013-10-15

    Rutin is one of the most promising flavonoid from a pharmacological and biochemical point of view. Here we have explored its spectroscopic and photophysical properties at room temperature and 77 K using steady-state absorption-luminescence methods and pulse spectroscopy equipment. By excitation into the absorption band 1 of rutin in methanol at room temperature the normal Stokes' shifted fluorescence with a maximum at 415 nm and quantum yield of 2×10{sup −4} was revealed. However, by excitation into the bands 2 and 3 any emission wasn’t observed. At 77 K in ethanol glass we have observed fluorescence at 410 nm and phosphorescence at 540 nm for the first time. As a result the adequate energetic scheme including the lowest electronic excited singlet at 26000 cm{sup −1} and triplet at 19600 cm{sup −1} states was proposed. -- Highlights: • Rutin fluorescence and phosphorescence at 77 K were revealed for the first time. • Room temperature fluorescence is determined by maximum at 415 nm and yield of 2×10{sup −4}. • Violation of Vavilov–Kasha rule by excitation into the absorption bands 2 and 3. • Fluorescence and phosphorescence in rutin are caused by the allowed π, π{sup (⁎)} transitions.

  9. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  10. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van [Applied Physics Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Maes, N. C. J.; Sweep, A. M.; Dam, N. J. [Mechanical Engineering Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Lamberts, T. [Institute of Theoretical Chemistry, University of Stuttgart, D-70569 Stuttgart (Germany)

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  11. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1) - S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n) central dot O2) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt.OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  12. Imaging of oxygen gradients in giant umbrella cells: an ex vivo PLIM study.

    Zhdanov, A V; Golubeva, A V; Okkelman, I A; Cryan, J F; Papkovsky, D B

    2015-10-01

    O2 plays a pivotal role in aerobic metabolism and regulation of cell and tissue function. Local differences and fluctuations in tissue O2 levels are well documented; however, the physiological significance of O2 microgradients, particularly at the subcellular level, remains poorly understood. Using the cell-penetrating phosphorescent O2 probe Pt-Glc and confocal fluorescence microscopy, we visualized O2 distribution in individual giant (>100-μm) umbrella cells located superficially in the urinary bladder epithelium. We optimized conditions for in vivo phosphorescent staining of the inner surface of the mouse bladder and subsequent ex vivo analysis of excised live tissue. Imaging experiments revealed significant (≤85 μM) and heterogeneous deoxygenation within respiring umbrella cells, with radial O2 gradients of up to 40 μM across the cell, or ∼0.6 μM/μm. Deeply deoxygenated (5-15 μM O2) regions were seen to correspond to the areas enriched with polarized mitochondria. Pharmacological activation of mitochondrial respiration decreased oxygenation and O2 gradients in umbrella cells, while inhibition with antimycin A dissipated the gradients and caused gradual reoxygenation of the tissue to ambient levels. Detailed three-dimensional maps of O2 distribution potentially can be used for the modeling of intracellular O2-dependent enzymatic reactions and downstream processes, such as hypoxia-inducible factor signaling. Further ex vivo and in vivo studies on intracellular and tissue O2 gradients using confocal imaging can shed light on the molecular mechanisms regulating O2-dependent (patho)physiological processes in the bladder and other tissues. Copyright © 2015 the American Physiological Society.

  13. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    Whited, Matthew T.; Djurovich, Peter I.; Roberts, Sean T.; Durrell, Alec C.; Schlenker, Cody W.; Bradforth, Stephen E.; Thompson, Mark E.

    2011-01-01

    efficient near-infrared phosphorescence (λem = 772 nm, φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable

  14. Principles of phosphorescent organic light emitting devices.

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  15. Efficient Phosphorescent OLEDS Based on Vacuum Deposition ...

    Thereby, we demonstrate high-efficiency organic light-emitting diodes by incorporating a double emission layer {i.e. both doped with the green phosphorescent dye tris(phenylpyridine)iridium [Ir(ppy)3]} into p-i-n-type device structure based on vacuum deposition technology. The intrinsic and doped transports layers are ...

  16. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  17. Spin-lattice relaxation in phosphorescent triplet state molecules

    Verbeek, P.J.F.

    1979-01-01

    The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)

  18. A Method for Combined Retinal Vascular and Tissue Oxygen Tension Imaging.

    Felder, Anthony E; Wanek, Justin; Tan, Michael R; Blair, Norman P; Shahidi, Mahnaz

    2017-09-06

    The retina requires adequate oxygenation to maintain cellular metabolism and visual function. Inner retinal oxygen metabolism is directly related to retinal vascular oxygen tension (PO 2 ) and inner retinal oxygen extraction fraction (OEF), whereas outer retinal oxygen consumption (QO 2 ) relies on oxygen availability by the choroid and is contingent upon retinal tissue oxygen tension (tPO 2 ) gradients across the retinal depth. Thus far, these oxygenation and metabolic parameters have been measured independently by different techniques in separate animals, precluding a comprehensive and correlative assessment of retinal oxygenation and metabolism dynamics. The purpose of the current study is to report an innovative optical system for dual oxyphor phosphorescence lifetime imaging to near-simultaneously measure retinal vascular PO 2 and tPO 2 in rats. The use of a new oxyphor with different spectral characteristics allowed differentiation of phosphorescence signals from the retinal vasculature and tissue. Concurrent measurements of retinal arterial and venous PO 2 , tPO 2 through the retinal depth, inner retinal OEF, and outer retinal QO 2 were demonstrated, permitting a correlative assessment of retinal oxygenation and metabolism. Future application of this method can be used to investigate the relations among retinal oxygen content, extraction and metabolism under pathologic conditions and thus advance knowledge of retinal hypoxia pathophysiology.

  19. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue

    Sakadžić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A.; Mandeville, Emiri T.; Srinivasan, Vivek J.; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H.; Vinogradov, Sergei A.; Boas, David A.

    2010-01-01

    The ability to measure oxygen partial pressure (pO2) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO2 measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here, we report the first practical in vivo two-photon high-resolution pO2 measurements in small rodents’ cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 µm, sub-second temporal resolution and requires low probe concentration. Most importantly, the properties of the probe allowed for the first direct high-resolution measurement of cortical extravascular (tissue) pO2, opening numerous possibilities for functional metabolic brain studies. PMID:20693997

  20. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.

    Sakadzić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A; Mandeville, Emiri T; Srinivasan, Vivek J; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H; Vinogradov, Sergei A; Boas, David A

    2010-09-01

    Measurements of oxygen partial pressure (pO(2)) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO(2) measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here we report to our knowledge the first practical in vivo two-photon high-resolution pO(2) measurements in small rodents' cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 microm, sub-second temporal resolution and requires low probe concentration. The properties of the probe allowed for direct high-resolution measurement of cortical extravascular (tissue) pO(2), opening many possibilities for functional metabolic brain studies.

  1. Theoretical study on electronic structures and optical properties of blue phosphorescent Iridium(III) complexes with C{sup ∧}N and N{sup ∧}N ligands

    Shang, Xiaohong [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); College of Chemistry and Life Science, Changchun University of Technology, Changchun 130024 (China); Liu, Yuqi; Qu, Xiaochun [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wu, Zhijian, E-mail: zjwu@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2013-11-15

    We report a quantum-chemical study on the electronic structures and optical properties of two series of heteroleptic iridium(III) complexes [(dfb-pz){sub 2}Ir(N{sup ∧}N+sub)], [dfb-pz=2,4-difluorobenzyl-N-pyrazole, sub indicates substituent group, N{sup ∧}N+sub=tphppz=4-tert-butyl-2-(5-phenyl-[1,2,4]triazol-3-yl)-pyridine (1a), tmppz=4-tert-butyl-2-(5-methyl-[1,2,4]triazol-3-yl)-pyridine (1b), fphppz=4-fluoro-phenyl-5-(2-pyridyl)pyrazole (1c), and fmphppz=4-trifluoromehtyl-phenyl-5-(2-pyridyl)pyrazole (1d)]; with [(C{sup ∧}N+sub){sub 2}Ir(fppz)], [C{sup ∧}N=b-pz=benzyl-N-pyrazole, fppz=3-trifluoromethyl-5-(2-pyridyl)pyrazole, C{sup ∧}N+sub=dfb-pz=2,4-difluorobenzyl-N-pyrazole (2a), tfmfb-pz=2-trifluoromethyl-5-fluorobenzyl-N-pyrazole (2b), phb-pz=3-phenyl-benzyl-N-pyrazole (2c), and dfphb-pz=3-phenyl-2,4-difluorobenzyl-N-pyrazole (2d)]. The calculated results shed light on the reasons of the remarkably manipulated excited-state and electroluminescent properties through substitution effect. The phenyl ring on main ligands can enhance the π-conjugation of the main ligands moiety and increase the metal-ligand bond strength for 2c and 2d, then enhancing the transition strength. From 1c, 1d, 2c, and 2d, it can also be seen that substituents on the terminal phenyl ring have a slight effect on the excited energy because the distance between the substituents and the ancillary (or main) ligand is interrupted by the phenyl moiety. The calculated absorption and luminescence properties of the four complexes 1a, 1b, 2a, and 2b are compared with the available experimental data and a good agreement is obtained. Furthermore, the assumed complex 1c, 2c, and 2d possess better charge transfer abilities and more balanced charge transfer rates. The designed complexes 2c and 2d are potential candidates for blue phosphorescent materials. -- Highlights: • Two series of electroluminescent iridium(III) complexes have been studied. • The charge transfer properties are affected

  2. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

    Sakadžić, Sava; Yuan, Shuai; Dilekoz, Ergin; Ruvinskaya, Svetlana; Vinogradov, Sergei A.; Ayata, Cenk; Boas, David A.

    2009-01-01

    We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain. PMID:19340106

  3. High temperature microcalorimetry. Study of metal-oxygen systems

    Tetot, R.; Picard, C.; Boureau, G.; Gerdanian, P.

    1981-01-01

    Determination of partial molar enthalpy in metal-oxygen systems at 1050 0 C. Three representative systems are studied: the solution of oxygen in titanium, the titanium-oxygen system and the uranium-oxygen system from UOsub(2.00) to UOsub(2.60) [fr

  4. Gated Detection Measurements of Phosphorescence Lifetimes

    Yordan Kostov

    2004-10-01

    Full Text Available A low-cost, gated system for measurements of phosphorescence lifetimes is presented. An extensive description of the system operating principles and metrological characteristics is given. Remarkably, the system operates without optical filtering of the LED excitation source. A description of a practical system is also given and its performance is discussed. Because the device effectively suppresses high-level background fluorescence and scattered light, it is expected to find wide-spread application in bioprocess, environmental and biomedical fields.

  5. Study of argon-oxygen flowing afterglow

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  6. Experimental study on ceramic membrane technology for onboard oxygen generation

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure d...

  7. Experimental study on ceramic membrane technology for onboard oxygen generation

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  8. Controlling excitons. Concepts for phosphorescent organic LEDs at high brightness

    Reineke, Sebastian

    2009-11-15

    This work focusses on the high brightness performance of phosphorescent organic light-emitting diodes (OLEDs). The use of phosphorescent emitter molecules in OLEDs is essential to realize internal electron-photon conversion efficiencies of 100 %. However, due to their molecular nature, the excited triplet states have orders of magnitude longer time constants compared to their fluorescent counterparts which, in turn, strongly increases the probability of bimolecular annihilation. As a consequence, the efficiencies of phosphorescent OLEDs decline at high brightness - an effect known as efficiency roll-off, for which it has been shown to be dominated by triplet-triplet annihilation (TTA). In this work, TTA of the archetype phosphorescent emitter Ir(ppy){sub 3} is investigated in time-resolved photoluminescence experiments. For the widely used mixed system CBP:Ir(ppy){sub 3}, host-guest TTA - an additional unwanted TTA channel - is experimentally observed at high excitation levels. By using matrix materials with higher triplet energies, this effect is efficiently suppressed, however further studies show that the efficiency roll-off of Ir(ppy)3 is much more pronounced than predicted by a model based on Foerster-type energy transfer, which marks the intrinsic limit for TTA. These results suggest that the emitter molecules show a strong tendency to form aggregates in the mixed film as the origin for enhanced TTA. Transmission electron microscopy images of Ir(ppy){sub 3} doped mixed films give direct proof of emitter aggregates. Based on these results, two concepts are developed that improve the high brightness performance of OLEDs. In a first approach, thin intrinsic matrix interlayers are incorporated in the emission layer leading to a one-dimensional exciton confinement that suppresses exciton migration and, consequently, TTA. The second concept reduces the efficiency roll-off by using an emitter molecule with slightly different chemical structure, i.e. Ir(ppy){sub 2

  9. New strategies to produce and detect singlet oxygen in a cell

    Gollmer, Anita

    2012-01-01

    of the general methodology to generate and detect singlet oxygen is currently of great importance in order to better understand the roles played by singlet oxygen in photo-induced cell death. From a mechanistic perspective, experiments performed at the level of a single cell provide unique insight......Singlet oxygen, the first excited electronic state of molecular oxygen, plays a major role in oxygen-dependent photo-induced cell death. In such systems, singlet oxygen is generally produced in a photosensitized process wherein light is absorbed by a molecule (the so-called sensitizer) which......, and that is the perspective of this study. Although the direct optical detection of singlet oxygen by its near IR phosphorescence is the ideal way to monitor this species, it suffers from the problem of weak signal intensity. Fluorescent probes can be a more sensitive way to detect singlet oxygen. The photochemical behavior...

  10. Effect of host polymer blends to phosphorescence emission | Alias ...

    Each polymer was blended with the same ratio composition. The influences of host polymer composition to the phosphorescence emission were observed under pulsed UV excitation source of Xenon lamp. The results shows that there were changing in the phosphorescence emission and life time with difference host ...

  11. Real-time monitoring of luminescent lifetime changes of PtOEP oxygen sensing film with LED/photodiode-based time-domain lifetime device.

    Ji, Shaomin; Wu, Wanhua; Wu, Yubo; Zhao, Taiyang; Zhou, Fuke; Yang, Yubin; Zhang, Xin; Liang, Xiaofen; Wu, Wenting; Chi, Lina; Wang, Zhonggang; Zhao, Jianzhang

    2009-05-01

    A cost-effective LED/photodiode(PD)-based time-domain luminescent lifetime measuring device with rugged electronics and simplified algorithms was assembled and successfully used to characterize oxygen sensing films, by continuously monitoring phosphorescence lifetime changes of phosphorescent platinum octaethylporphyrin (PtOEP) in cardo poly(aryl ether ketone) polymer (IMPEK-C) vs. variation of the oxygen partial pressure in a gas mixture (O(2)/N(2)). The results determined by both phosphorescence lifetime and intensity monitoring were compared and the lifetime mode gave results which are in good agreement with the intensity mode. The lifetime-based linear Stern-Volmer plot indicates that the PtOEP molecules are nearly homogeneously distributed in the sensing film. The phosphorescent lifetime of the PtOEP film changes from 75 micros in neat N(2) to less than 2 micros in neat O(2). The sensing system (by combination of the PtOEP sensing film with the home-assembled lifetime device) gives a high lifetime-based O(2) sensing resolution, e.g. about 2 micros Torr(-1) for low O(2) concentration (below 3.5% O(2), V/V). This feasible lifetime device configuration is affordable to most sensor laboratories and the device may facilitate the study of O(2) sensing material with the continuous lifetime monitoring method.

  12. Oxygen Equipment and Rapid Decompression Studies

    1979-03-01

    at 45,000 ft, Final Report, Contract FA-3082, May 1963. 8. Noble, L. E., J. C. Davis, 1. Margolis, and K. D. Kable: Hyperbaric Oxygen Therapy in a...drasticallymodify these results. 113 ’i 1 Reference 1. Stork, R. L., and T. R. Morgan: Oxygen Accumulation in Hypobaric Chambers, USAF School of Aerospace

  13. Oxygenates in automotive fuels. Consequence analysis - preliminary study

    Brandberg, Aa.; Saevbark, B.

    1994-01-01

    Oxygenates is used in gasoline due to several reasons. They are added as high-octane components in unleaded gasoline and as agents to reduce the emission of harmful substances. Oxygenates produced from biomass might constitute a coming market for alternative fuels. This preliminary study describes the prerequisites and consequences of such an oxygenate utilization. 39 refs, 9 figs, 5 tabs

  14. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.

    Alimova, Alexandra; Katz, A; Sriramoju, Vidyasagar; Budansky, Yuri; Bykov, Alexei A; Zeylikovich, Roman; Alfano, R R

    2007-01-01

    Fluorescence and phosphorescence measurements are performed on normal and malignant ex vivo human breast tissues using UV LED and xenon lamp excitation. Tryptophan (trp) phosphorescence intensity is higher in both normal glandular and adipose tissue when compared to malignant tissue. An algorithm based on the ratio of trp fluorescence intensity at 345 nm to phosphorescence intensity at 500 nm is successfully used to separate normal from malignant tissue types. Normal specimens consistently exhibited a low I(345)I(500) ratio (15). The ratio analysis correlates well with histopathology. Intensity ratio maps with a spatial resolution of 0.5 mm are generated in which local regions of malignancy could be identified.

  15. Matrix perdeuteration effects on the 3ππ→S0 phosphorescence of p-chlorobenzaldehyde at 4.2degreeK. I. Phenomenology

    Khalil, O.S.; Goodman, L.

    1976-01-01

    The effect of matrix perdeuteration and variation of cooling rate on the phosphorescence vibrational structure of p-chlorobenzaldehyde (PCB) are studied in methylcyclohexane (MCH) and p-xylene. PCB shows very different phosphorescence spectra in slowly cooled MCH-h 14 and MCH-d 14 , generally broad spectra in fast cooled samples, and a mixture of the two phosphorescences (observed in the slow cooled sample) in intermediate cooled MCH-d 14 . In p-xylene, no change in the phosphorescence vibrational structure is observed on matrix perdeuteration. These observations are interpreted by postulating two crystalline modifications for methylcyclohexane, one of them stable in slowly cooled MCH-h 14 , the other stable in slowly cooled MCH-d 14 . The spectra of PCB is different in the two modifications. The anomalous response of the PCB phosphorescence vibrational structure to the crystalline modifications of MCH is indicative of a large degree of distortability in its 3 ππ* state. The distortability is interpreted as originating from vibrational--electronic interactions between the closely spaced 3 ππ*-- 3 nπ* states. Support for this view is found in the phosphorescence spectra of various deuterated derivatives of PCB in perprotonated and perdeuterated MCH. The apparent distortability of the emitting state varies with the extent of deuteration

  16. Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid

    Bian, Wei [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wang, Fang [School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wei, Yanli; Wang, Li; Liu, Qiaoling; Dong, Wenjuan [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Shuang, Shaomin, E-mail: smshuang@sxu.edu.cn [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Choi, Martin M.F., E-mail: mmfchoi@gmail.com [Partner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR (China)

    2015-01-26

    Highlights: • A turn-on phosphorescence quantum dots probe for histidine is fabricated. • High sensitivity, good selectivity and low interference are achieved. • Histidine in urine samples can be easily detected by the phosphorescence probe. - Abstract: We report a turn-on phosphorescence probe for detection of histidine based on Co{sup 2+}-adsorbed N-acetyl-L-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co{sup 2+} attributing to the adsorption of Co{sup 2+} onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co{sup 2+} with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25–30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5–103%.

  17. Blue phosphorescent mono-cyclometalated iridium(III) complexes

    Ham, Ho Wan; Yang, Yoon A; Kim, Young Sik [Hongik University, Seoul (Korea, Republic of)

    2010-12-15

    New deep blue phosphorescent iridium(III) complexes comprised of one cyclometalate, two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(Cl), Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(NCMe){sup +}, and Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(CN), [F{sub 2}Meppy = 2-(2', 4'- difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigated the strong field effects of ancillary ligands to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of the phosphine ligand with PPh{sub 2}Me leads to more efficient deep-blue organic light-emitting devices (OLED) by thermal processing instead of through solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring, the electron-donating methyl group on the pyridyl ring, and the cyano strong field ancillary ligand increased the HOMO-LUMO gap and achieved a hypsochromic shift in the emission color. As a result, the maximum emission spectra of Ir(F{sub 2}Meppy)-(PPh{sub 2}Me){sub 2}(H)(Cl), Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2}(H)(NCMe){sup +}, and Ir(F{sub 2}Meppy)(PPh{sub 2}Me){sub 2-}(H)(CN) were in the ranges of 440.5, 437, 436 nm, respectively.

  18. Blue phosphorescent mono-cyclometalated iridium(III) complexes

    Ham, Ho Wan; Yang, Yoon A; Kim, Young Sik

    2010-01-01

    New deep blue phosphorescent iridium(III) complexes comprised of one cyclometalate, two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(Cl), Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(NCMe) + , and Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(CN), [F 2 Meppy = 2-(2', 4'- difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigated the strong field effects of ancillary ligands to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of the phosphine ligand with PPh 2 Me leads to more efficient deep-blue organic light-emitting devices (OLED) by thermal processing instead of through solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring, the electron-donating methyl group on the pyridyl ring, and the cyano strong field ancillary ligand increased the HOMO-LUMO gap and achieved a hypsochromic shift in the emission color. As a result, the maximum emission spectra of Ir(F 2 Meppy)-(PPh 2 Me) 2 (H)(Cl), Ir(F 2 Meppy)(PPh 2 Me) 2 (H)(NCMe) + , and Ir(F 2 Meppy)(PPh 2 Me) 2- (H)(CN) were in the ranges of 440.5, 437, 436 nm, respectively.

  19. Willamette oxygen supplementation studies. Annual progress report

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1994-09-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present runs from 2.5 million adult fish to 5.0 million adult fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults. Rearing density is one of the most important elements in fish culture. Fish culturists have attempted to rear fish in hatchery ponds at densities that most efficiently use the rearing space available. Such efficiency studies require a knowledge of cost of rearing and the return of adults to the fisheries and to the hatchery

  20. Willamette Oxygen Supplementation Studies : Annual Report 1994.

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1994-09-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present runs from 2.5 million adult fish to 5.0 million adult fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults. Rearing density is one of the most important elements in fish culture. Fish culturists have attempted to rear fish in hatchery ponds at densities that most efficiently use the rearing space available. Such efficiency studies require a knowledge of cost of rearing and the return of adults to the fisheries and to the hatchery.

  1. Smart responsive phosphorescent materials for data recording and security protection.

    Sun, Huibin; Liu, Shujuan; Lin, Wenpeng; Zhang, Kenneth Yin; Lv, Wen; Huang, Xiao; Huo, Fengwei; Yang, Huiran; Jenkins, Gareth; Zhao, Qiang; Huang, Wei

    2014-04-07

    Smart luminescent materials that are responsive to external stimuli have received considerable interest. Here we report ionic iridium (III) complexes simultaneously exhibiting mechanochromic, vapochromic and electrochromic phosphorescence. These complexes share the same phosphorescent iridium (III) cation with a N-H moiety in the N^N ligand and contain different anions, including hexafluorophosphate, tetrafluoroborate, iodide, bromide and chloride. The anionic counterions cause a variation in the emission colours of the complexes from yellow to green by forming hydrogen bonds with the N-H proton. The electronic effect of the N-H moiety is sensitive towards mechanical grinding, solvent vapour and electric field, resulting in mechanochromic, vapochromic and electrochromic phosphorescence. On the basis of these findings, we construct a data-recording device and demonstrate data encryption and decryption via fluorescence lifetime imaging and time-gated luminescence imaging techniques. Our results suggest that rationally designed phosphorescent complexes may be promising candidates for advanced data recording and security protection.

  2. Extended OLED operational lifetime through phosphorescent dopant profile management

    Forrest, Stephen R.; Zhang, Yifan

    2017-05-30

    This disclosure relates, at least in part, an organic light emitting device, which in some embodiments comprises an anode; a cathode; a first emissive layer disposed between the anode and the cathode, the first emissive layer comprising an electron transporting compound and a phosphorescent emissive dopant compound; and wherein the phosphorescent emissive dopant compound has a concentration gradient, in the emissive layer, which varies from the cathode side of the first emissive layer to the anode side of the emissive layer.

  3. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals

    Takeuchi, Toshiyuki; Zhang, Shaojuan; Negishi, Kazuya; Yoshihara, Toshitada; Hosaka, Masahiro; Tobita, Seiji

    2010-02-01

    Iridium complex, a promising organic light-emitting diode material for next generation television and computer displays, emits phosphorescence. Phosphorescence is quenched by oxygen. We used this oxygen-quenching feature for imaging tumor hypoxia. Red light-emitting iridium complex Ir(btp)2(acac) (BTP) presented hypoxia-dependent light emission in culture cell lines, whose intensity was in parallel with hypoxia-inducible factor (HIF)-1 expression. BTP was further applied to imaging five nude mouse-transplanted tumors. All tumors presented a bright BTP-emitting image as early as 5 min after the injection. The BTP-dependent tumor image peaked at 1 to 2 h after the injection, and was then removed from tumors within 24 h. The minimal BTP image recognition size was at least 2 mm in diameter. By morphological examination and phosphorescence lifetime measurement, BTP is presumed to localize to the tumor cells, not to stay in the tumor microvessels by binding to albumin. The primary problem on suse of luminescent probe for tumor imaging is its weak penetrance to deep tissues from the skin surface. Since BTP is easily modifiable, we made BTP analogues with a longer excitation/emission wavelength to improve the tissue penetrance. One of them, BTPHSA, displayed 560/720 wavelength, and depicted its clear imaging from tumors transplanted over 6-7 mm deep from the skin surface. We suggest that BTP analogues have a vast potential for imaging hypoxic lesions such as tumor tissues.

  4. A specific Tween-80-Rhodamine S-MWNTs phosphorescent reagent for the detection of trace calcitonin

    Liu Jiaming, E-mail: zzsyliujiaming@163.com [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Huang Xiaomei; Zhang Lihong; Zheng Zhiyong [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, 363000 (China); Lin Xuan; Zhang Xiaoyang; Jiao Li; Cui Malin [Department of Chemistry and Environmental Science, Zhangzhou Normal College, Zhangzhou, 363000 (China); Jiang Shulian [Fujian Provincial Bureau of Quality and Technical Supervision, Zhangzhou, 363000 (China); Lin Shaoqin [Department of Biochemistry, Fujian Education College, Fuzhou 350001 (China)

    2012-09-26

    Graphical abstract: A new Tween-80-Rhodamine S-water-soluble multi-walled carbon nanotubes (Tween-80-Rhod.S-MWNTs-EDC-NHS, TRMEN) phosphorescent labelling reagent was developed. High sensitive solid substrate room temperature phosphorescence immunoassay (SSRTPIA) for the determination of calcitonin (CT) in human serum and the prediction of human diseases based on the TRMEN could be used to label anti-calcitonin antibody (Ab{sub CT}) to form the TRMEN-Ab{sub CT} labelling product, which could take high specific immunoreaction with CT causing that the {Delta}I{sub p} of the system was linear to the content of CT. Moreover, the reaction mechanisms of both labelling Ab{sub CT} by TRMEN and SSRTPIA for the determination of trace CT were discussed. This research not only provides a new hormones analysis method, but also expands the application field of MWNTs and promotes the development of SSRTP and IA. --Highlights: Black-Right-Pointing-Pointer A Tween-80-Rhodamine S-multi-walled carbon nanotubes labelling reagent was developed. Black-Right-Pointing-Pointer The phosphorescence immunoassay was established for the determination of calcitonin. Black-Right-Pointing-Pointer This method has been applied to determine CT and the prediction of diseases. Black-Right-Pointing-Pointer The structure of MWNTs was characterized with SEM and IR. Black-Right-Pointing-Pointer The mechanisms for both determining trace CT and labelling Ab{sub CT} were discussed. - Abstract: The present study proposed a simple sensitive and specific immunoassay for the quantification of calcitonin (CT) in human serum with water-soluble multi-walled carbon nanotubes (MWNTs). The -COOH group of MWNTs could react with the -NH- group of rhodamine S (Rhod.S) molecules to form Rhod.S-MWNTs, which could emit room temperature phosphorescence (RTP) on acetate cellulose membrane (ACM) and react with Tween-80 to form micellar compound. Tween-80-Rhod.S-MWNTs (TRM), as a phosphorescent labelling reagent, could

  5. Spectral structure of the X-ray stimulated phosphorescence of monocrystalline ZnSe

    Degoda, V. Ya., E-mail: degoda@univ.kiev.ua [Taras Shevchenko Kyiv National University, Physics Department, 03680 Kyiv (Ukraine); Pavlova, N. Yu., E-mail: pavlovan7@gmail.com [The National Pedagogical Dragomanov University, Pyrogova 9, 01601 Kyiv (Ukraine); Podust, G.P., E-mail: vasylenkog379@gmail.com [Taras Shevchenko Kyiv National University, Physics Department, 03680 Kyiv (Ukraine); Sofiienko, A.O., E-mail: asofienko@gmail.com [University of Bergen, Allegaten 55, PO Box 7803, 5020 Bergen (Norway)

    2015-05-15

    This work presents the extensive experimental studies of the X-ray stimulated luminescence, conductivity, phosphorescence and electric current relaxation, and the thermally stimulated luminescence and conductivity of monocrystalline ZnSe. It was found that the luminescence emission band with a maximum at 635 nm is a combination of at least three emission bands and that the appropriate recombination centres implement both electronic and hole recombination mechanisms. We propose an energy model of the traps and recombination centres in monocrystalline ZnSe and show that the majority of the generated free electrons and holes recombine in the luminescence centres with an estimated probability of 94.3% and that only a small fraction (5.7%) of generated charge carriers are accumulated in traps during the X-ray excitation of the ZnSe sample. - Highlights: • ZnSe has intensive X-ray luminescence and phosphorescence in the spectral range from 600 nm to 1000 nm. • We measured the phosphorescence of ZnSe for different wavelengths of 591 nm, 635 nm and 679 nm. • The dominant emission band of ZnSe with a maximum at 635 nm is a combination of at least three emission bands. • We propose and verify an energy model of the traps and recombination centres in monocrystalline ZnSe.

  6. The experimental study of oxygen contrast MR ventilation imaging

    Yang Jian; Guo Youmin; Wu Xiaoming; Xi Nong; Wang Jianguo; Zhu Li; Lei Xiaoyan; Xie Enyi

    2003-01-01

    Objective: To study the feasibility and basic technology of the oxygen contrast MR ventilation imaging in lung. Methods: Six canine lungs were scanned by using inversion recovery pulse sequence with turbo spin echo acquisition before and after inhalation of the 100% oxygen as T 1 contrast agent, and the T 1 values were measured. The contrast-to-noise ratio (CNR) for each inversion recovery time was compared and the relationship between arterial blood oxygen pressure (PaO 2 ) and T 1 relaxation rate was observed. Subtraction technique was employed in the postprocessing of pre- and post-oxygen conditions. Results: Molecular oxygen could shorten the pulmonary T 1 value (average 13.37%, t=2.683, P 1 value of pre- and post-oxygen conditions. The relaxtivity of T 1 resulted in excellent linear correlation (r 2 =0.9974) with PaO 2 . Through the subtraction of pre- and post-oxygen image, the oxygen contrast MR ventilation -image was obtained. Conclusion: The oxygen contrast MR ventilation imaging has the feasibility and clinical potential for the assessment of regional pulmonary function

  7. Determination of macromolecular exchange and PO2 in the microcirculation: a simple system for in vivo fluorescence and phosphorescence videomicroscopy

    Torres L.N.

    2001-01-01

    Full Text Available We have developed a system with two epi-illumination sources, a DC-regulated lamp for transillumination and mechanical switches for rapid shift of illumination and detection of defined areas (250-750 µm² by fluorescence and phosphorescence videomicroscopy. The system permits investigation of standard microvascular parameters, vascular permeability as well as intra- and extravascular PO2 by phosphorescence quenching of Pd-meso-tetra (4-carboxyphenyl porphine (PORPH. A Pechan prism was used to position a defined region over the photomultiplier and TV camera. In order to validate the system for in vivo use, in vitro tests were performed with probes at concentrations that can be found in microvascular studies. Extensive in vitro evaluations were performed by filling glass capillaries with solutions of various concentrations of FITC-dextran (diluted in blood and in saline mixed with different amounts of PORPH. Fluorescence intensity and phosphorescence decay were determined for each mixture. FITC-dextran solutions without PORPH and PORPH solutions without FITC-dextran were used as references. Phosphorescence decay curves were relatively unaffected by the presence of FITC-dextran at all concentrations tested (0.1 µg/ml to 5 mg/ml. Likewise, fluorescence determinations were performed in the presence of PORPH (0.05 to 0.5 mg/ml. The system was successfully used to study macromolecular extravasation and PO2 in the rat mesentery circulation under controlled conditions and during ischemia-reperfusion.

  8. Numerical study of effect of oxygen fraction on local entropy ...

    This study considers numerical simulation of the combustion of methane with air, including oxygen and nitrogen, in a burner and the numerical solution of local entropy generation rate due to high temperature and velocity gradients in the combustion chamber. The effects of equivalence ratio () and oxygen percentage () ...

  9. Microstructural Study on Oxygen Permeated Arc Beads

    Kuan-Heng Liu

    2015-01-01

    Full Text Available We simulated short circuit of loaded copper wire at ambient atmosphere and successfully identified various phases of the arc bead. A cuprous oxide flake was formed on the surface of the arc bead in the rapid solidification process, and there were two microstructural constituents, namely, Cu-κ eutectic structure and solutal dendrites. Due to the arc bead formed at atmosphere during the local equilibrium solidification process, the phase of arc bead has segregated to the cuprous oxide flake, Cu-κ eutectic, and Cu phase solutal dendrites, which are the fingerprints of the arc bead permeated by oxygen.

  10. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    Graupner, Robert Kurt

    Gettering of impurities with oxygen precipitates is widely used during the fabrication of semiconductors to improve the performance and yield of the devices. Since the effectiveness of the gettering process is largely dependent on the initial interstitial oxygen concentration, accurate measurements of this parameter are of considerable importance. Measurements of interstitial oxygen following thermal cycles are required for development of semiconductor fabrication processes and for research into the mechanisms of oxygen precipitate nucleation and growth. Efforts by industrial associations have led to the development of standard procedures for the measurement of interstitial oxygen in wafers. However practical oxygen measurements often do not satisfy the requirements of such standard procedures. An additional difficulty arises when the silicon wafer has a low resitivity (high dopant concentration). In such cases the infrared light used for the measurement is severely attenuated by the electrons of holes introduced by the dopant. Since such wafers are the substrates used for the production of widely used epitaxial wafers, this measurement problem is economically important. Alternative methods such as Secondary Ion Mass Spectroscopy or Gas Fusion Analysis have been developed to measure oxygen in these cases. However, neither of these methods is capable of distinguishing interstitial oxygen from precipitated oxygen as required for precipitation studies. In addition to the commercial interest in heavily doped silicon substrates, they are also of interest for research into the role of point defects in nucleation and precipitation processes. Despite considerable research effort, there is still disagreement concerning the type of point defect and its role in semiconductor processes. Studies of changes in the interstitial oxygen concentration of heavily doped and lightly doped silicon wafers could help clarify the role of point defects in oxygen nucleation and precipitation

  11. Phosphorescence lifetimes of organic light-emitting diodes from two-component time-dependent density functional theory

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2014-12-14

    “Spin-forbidden” transitions are calculated for an eight-membered set of iridium-containing candidate molecules for organic light-emitting diodes (OLEDs) using two-component time-dependent density functional theory. Phosphorescence lifetimes (obtained from averaging over relevant excitations) are compared to experimental data. Assessment of parameters like non-distorted and distorted geometric structures, density functionals, relativistic Hamiltonians, and basis sets was done by a thorough study for Ir(ppy){sub 3} focussing not only on averaged phosphorescence lifetimes, but also on the agreement of the triplet substate structure with experimental data. The most favorable methods were applied to an eight-membered test set of OLED candidate molecules; Boltzmann-averaged phosphorescence lifetimes were investigated concerning the convergence with the number of excited states and the changes when including solvent effects. Finally, a simple model for sorting out molecules with long averaged phosphorescence lifetimes is developed by visual inspection of computationally easily achievable one-component frontier orbitals.

  12. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Yang, Dan; Duan, Yahui; Yang, Yongqiang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Hu, Nan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Wang, Xiao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Sun, Fengbo [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Duan, Yu, E-mail: duanyu@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China)

    2015-10-15

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C{sup 2'}) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors.

  13. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Yang, Dan; Duan, Yahui; Yang, Yongqiang; Hu, Nan; Wang, Xiao; Sun, Fengbo; Duan, Yu

    2015-01-01

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C 2' ) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors

  14. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  15. Spectroscopic, Electrochemical and DFT Studies of Phosphorescent Homoleptic Cyclometalated Iridium(III) Complexes Based on Substituted 4-Fluorophenylvinyl- and 4-Methoxyphenylvinylquinolines.

    Adeloye, Adewale O; Mphahlele, Malose J; Adekunle, Abolanle S; Rhyman, Lydia; Ramasami, Ponnadurai

    2017-09-21

    This study reports the synthesis and comparative investigation of the substituent effects of a new series of highly luminescent homoleptic tris-cyclometalated iridium(III) complexes of the type [Ir(N ˄ C)₃]. These are based on two ligand type derivatives comprising of 4-fluorophenylvinylquinolines and 4-methoxyphenylvinylquinolines with electron-donating and/or electron-withdrawing groups as aryl substituents at 2-position. The structures of the ligands and their complexes were characterized by means of FT-IR, UV-Vis and NMR spectrometry complemented with photoluminescence and cyclic voltammetry. The photophysical properties of 2-aryl-4-(4-fluorophenylvinyl)quinoline and its corresponding complex were also studied using the density functional theory method. The photoluminescent properties of the ligands and the corresponding complexes showed high fluorescent intensities and quantum yields in solvents of different polarities. The photoluminescence spectra of the complexes in solid film, showed common transmission curves at longer wavelengths maximum (λ em = 697 nm) possibly originating from the interference of scattered light of higher-order transmission of monochromators.

  16. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  17. Study the effect of hyperbaric oxygen therapy in Egyptian autistic ...

    Farida El-baz

    2014-02-20

    Feb 20, 2014 ... autistic children has been correlated with repetitive, self-stimulatory and ... Sessions were done at pressure 1.5 ATA (atmosphere absolute) with 100% oxygen concen- ..... Other studies reported that parents are often aware of.

  18. Distraction decreases prefrontal oxygenation: A NIRS study.

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  20. Kinetic study of the alkaline metals oxidation by dry oxygen

    Touzain, Ph.

    1967-06-01

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [fr

  1. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    Jourdan, J.

    2009-11-01

    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  2. Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5 : Eu2+ and Sr3SiO5 : Eu2+, Dy3+ phosphors

    Sun Xiaoyuan; Zhang Jiahua; Zhang Xia; Luo Yongshi; Wang Xiaojun

    2008-01-01

    We report the observation of long lasting yellow phosphorescence and photostimulated luminescence (PSL) in Sr 3 SiO 5 : Eu 2+ and Sr 3 SiO 5 : Eu 2+ , Dy 3+ phosphors. The decay patterns of phosphorescence and thermoluminescence curves demonstrate that introduction of Dy 3+ into Sr 3 SiO 5 : Eu 2+ can generate a large number of shallow traps and deep traps. The generated deep traps prolong the phosphorescence up to 6 h after UV irradiation. The PSL is studied under 808 nm excitation. Slow rising and falling edges of the emission in Sr 3 SiO 5 : Eu 2+ , Dy 3+ are observed, showing a retrapping process by the generated shallow traps due to co-doping Dy 3+ .

  3. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  4. Phosphorescent systems based on iridium(III) complexes

    Ulbricht, C.

    2009-01-01

    Phosphorescent iridium(III)-based complexes are experiencing a growing interest in a number of research fields. Aside from lighting and display technologies (i.e. OLEDs and LECs), they find use in various applications such as biolabeling, sensors, solar cells and water splitting. In particular, the

  5. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A latitudinal study of oxygen isotopes within horsehair

    Thompson, E.; Bronk Ramsey, C.; McConnell, J. R.

    2016-12-01

    This study aims to explore the hypothesis that 'if oxygen isotope ratios deplete with decreasing temperature then a study of oxygen isotope ratios within horsehair from Oxfordshire to Iceland will show a latitudinal depletion gradient'. By looking at oxygen isotope values at different geographical positions, we can track the relationship with latitude and with different regional climate features. This will provide a firmer understanding of how to compare climate records from different locations. Additionally, a comparison of the horse breeds from this study to those analysed within previous studies will create an even better understanding of the intra-species variation within the δ18O values of horsehair. A total of 24 horses were sampled on the 7th March from Thordale Stud in Shetland, the Icelandic Food And Veterinary Authority in Iceland, the Exmoor Pony Centre in Exmoor and the Pigeon House Equestrian Centre in Oxfordshire. By starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. The samples were analysed for oxygen isotope values using an IRMS coupled within a Sercon HTEA. Preliminary results show a latitudinal gradient is evident on comparison between the locations, consistent with the findings of Darling and Talbot's study of fresh water isotopes in the British Isles (2003). These results support the hypothesis, showing that a study of oxygen isotope ratios within horse hair from Oxfordshire to Iceland showing a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures. Darling, W. and Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth System Science, 7(2), pp.163-181.

  7. A Singlet Oxygen Photogeneration and Luminescence Study of Unsymmetrically Substituted Mesoporphyrinic Compounds

    Anabela Sousa Oliveira

    2009-01-01

    Full Text Available This paper deals with a series of new unsymmetrically substituted mesoporphyrins: 5-(2-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHO, 5-(3-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHM, 5-(4-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHP, 5-(2-hydroxyphenyl-10,15,20-tris-butyl-21,23-H-porphyrin (TBPOHO, and their parent nonsubstituted compounds, respectively, 5,10,15,20-tetrakis-phenyl-21,23-H-porphyrin (TPP and 5,10,15,20-tetrakis-butyl-21,23-H-porphyrin (TBP. Several photophysical studies were carried out to access the influence of the unsymmetrical substitution at the porphyrinic macrocycle on porthyrin's photophysical properties, especially porthyrin's efficiency as singlet oxygen sensitizers. The quantum yields of singlet oxygen generation were determined in benzene (ΦΔ(TPP = 0.66 ± 0.05; ΦΔ(TPPOHO = 0.69 ± 0.04; ΦΔ(TPPOHM = 0.62 ± 0.04; ΦΔ(TPPOHP = 0.73 ± 0.03; ΦΔ(TBP = 0.76 ± 0.03; ΦΔ(TBPOHO = 0.73 ± 0.02 using the 5,10,15,20-tetraphenyl-21,23-H-porphine (ΦΔ(TPP = 0.66 and Phenazine (ΦΔ(Phz = 0.83 as reference compounds. Their fluorescence quantum yields were found to be (Φf(TPPOHO = 0.10 ± 0.04; Φf(TPPOHM = 0.09 ± 0.03; Φf(TPPOHP = 0.13 ± 0.02; Φf(TBP = 0.08 ± 0.03 and Φf(TBPOHO = 0.08 ± 0.02 using 5,10,15,20-tetraphenyl-21,23-H-porphine as reference Φf(TPP = 0.13. Singlet state lifetimes were also determined in the same solvent. All the porphyrins presented very similar fluorescence lifetimes (mean values of τS (with O2, air equilibrated = 9.6 ± 0.3 nanoseconds and (without O2, argon purged = 10.1 ± 0.6 nanoseconds, resp.. The phosphorescence emission was found to be negligible for this series of unsymmetrically substituted mesoporphyrins, but an E-type, thermally activated, delayed fluorescence process was proved to occur at room temperature.

  8. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  9. Origin of colour stability in blue/orange/blue stacked phosphorescent white organic light-emitting diodes

    Kim, Sung Hyun; Jang, Jyongsik; Yook, Kyoung Soo; Lee, Jun Yeob

    2009-01-01

    The origin of colour stability in phosphorescent white organic light-emitting diodes (PHWOLEDs) with a blue/orange/blue stacked emitting structure was studied by monitoring the change in a recombination zone. A balanced recombination zone shift between the blue and the orange light-emitting layers was found to be responsible for the colour stability in the blue/orange/blue stacked PHWOLEDs.

  10. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    Michael Hack

    2001-10-31

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been

  11. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  12. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  13. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Javier Morales

    Full Text Available Detection of singlet oxygen emission, λ(max = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T, and the reactive reaction rate constant, k(r, for the reaction between singlet oxygen and several flavonoids. Values of k(T determined in deuterated water, ranging from 2.4×10(7 M(-1 s(-1 to 13.4×10(7 M(-1 s(-1, for rutin and morin, respectively, and the values measured for k(r, ranging from 2.8×10(5 M(-1 s(-1 to 65.7×10(5 M(-1 s(-1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  14. Extremely high efficiency phosphorescent organic light-emitting diodes with horizontal emitting dipoles

    Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-10-01

    We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.

  15. A new analytical application of nylon-induced room-temperature phosphorescence: Determination of thiabendazole in water samples

    Correa, R.A. [Departamento de Quimica Analitica, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531 (2000) Rosario (Argentina); Escandar, G.M. [Departamento de Quimica Analitica, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531 (2000) Rosario (Argentina)]. E-mail: gescanda@fbioyf.unr.edu.ar

    2006-06-30

    This paper discusses the first analytical determination of the widely used fungicide thiabendazole by nylon-induced phosphorimetry. Nylon was investigated as a novel solid-matrix for inducing room-temperature phosphorescence of thiabendazole, which was enhanced under the effect of external heavy-atom salts. Among the investigated salts, lead(II) acetate was the most effective in yielding a high phosphorescence signal. An additional enhancement of the phosphorescence emission was attained when the measurements were carried out under a nitrogen atmosphere. There was only a moderate increase in the presence of cyclodextrins. The room-temperature phosphorescence lifetimes of the adsorbed thiabendazole were measured under different working conditions and, in all cases, two decaying components were detected. On the basis of the obtained results, a very simple and sensitive phosphorimetric method for the determination of thiabendazole was established. The analytical figures of merit obtained under the best experimental conditions were: linear calibration range from 0.031 to 0.26 {mu}g ml{sup -1} (the lowest value corresponds to the quantitation limit), relative standard deviation, 2.4% (n = 5) at a level of 0.096 {mu}g ml{sup -1}, and limit of detection calculated according to 1995 IUPAC Recommendations equal to 0.010 {mu}g ml{sup -1} (0.03 ng/spot). The potential interference from common agrochemicals was also studied. The feasibility of determining thiabendazole in real samples was successfully evaluated through the analysis of spiked river, tap and mineral water samples.

  16. Kinetic analysis of pulsed laser induced phosphorescence for uranium determination

    Serdeiro, Nelida H.

    2003-01-01

    The laser induced kinetic phosphorescence allows the uranium determination in different kind of matrices, with a lower detection limit than those reached by other spectroscopic methods. It involves the uranyl ions excitation by a pulsed dye-laser source, followed by temporal resolution of the phosphorescence. This method is used for the determination of trace quantities of uranium in aqueous solution, with a suitable complexant agent, without chemical separation before the analysis. The objective of this paper is to present the results of uranium determinations in different standard samples, water, soil, filter and urine, and a comparison with other methods such as fluorimetry, alpha spectrometry and mass spectrometry. Moreover, the measurement conditions, the advantages and disadvantages, the sample preparation, the interferences and the detection limit are described. (author)

  17. Micelle-stabilized room-temperature phosphorescence with synchronous scanning

    Femia, R.A.; Love, L.J.C.

    1984-01-01

    The experimental requirements for synchronous wavelength scanning micelle-stabilized room temperature phosphorescence and the factors affecting peak resolution are presented and compared with those for synchronous wavelength scanning fluorescence. Identification of individual compounds in a four-component mixture is illustrated, and criteria to identify and minimize triplet state energy transfer are given. Considerable improvement in resolution of the synchronous peaks is obtained via second derivative spectra. 20 references, 7 figures, 2 tables

  18. Red organic light emitting devices with reduced efficiency roll-off behavior by using hybrid fluorescent/phosphorescent emission structure

    Zheng Tianhang; Choy, Wallace C.H., E-mail: chchoy@eee.hku.h

    2010-11-01

    Organic light emitting device (OLED) with a fluorescence-interlayer-phosphorescence emissive structure (FIP EML) is proposed to solve efficiency roll-off issue effectively. By doping fluorescent emitter of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) and phosphorescent emitter of tris(1-phenylisoquinolinolato-C2,N)iridium(III) (Ir(piq){sub 3}) into the different regions of emission zone to form FIP EML in red OLED, an improvement of more than 20% in luminance efficiency roll-off compared with that of typical phosphorescent OLED with single EML in 10-500 mA/cm{sup 2} range has been obtained. Detailed mechanisms have been studied. Such improvement should be attributed to the distinct roles of the two emitters, where DCJTB mainly used to influence the carrier transport leading to an improved balance of charge carriers while Ir(piq){sub 3} functions as the radiative decay sites for most generated excitons. Meanwhile, with the help of the formation of FIP EML, the redistribution of excitons in recombination zone, the suppression of non-radiative exciton quenching processes and the elimination of energy transfer loss also contribute to the enhancement of efficiency roll-off. The method proposed here may provide a route to develop efficient OLED for high luminance applications.

  19. Highly efficient orange and warm white phosphorescent OLEDs based on a host material with a carbazole-fluorenyl hybrid.

    Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing

    2014-06-01

    A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  1. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  2. Efficient blue and green phosphorescent OLEDs with host material containing electronically isolated carbazolyl fragments

    Grigalevicius, Saulius; Tavgeniene, Daiva; Krucaite, Gintare; Blazevicius, Dovydas; Griniene, Raimonda; Lai, Yi-Ning; Chiu, Hao-Hsuan; Chang, Chih-Hao

    2018-05-01

    Dry process-able host materials are well suited to realize high performance phosphorescent organic light-emitting diodes (OLED) with precise deposition of organic layers. We demonstrate in this study high efficiency green and blue phosphorescent OLED devices by employing 3-[bis(9-ethylcarbazol-3-yl)methyl]-9-hexylcarbazole based host material. By doping a typical green emitter of fac tris(2-phenylpyridine)iridium (Ir (ppy)3) in the compound the resultant dry-processed green device exhibited superior performance with low turn on voltage of 3.0 V and with peak efficiencies of 11.4%, 39.9 cd/A and 41.8 lm/W. When blue emitter of bis [2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium (III) was used, the resultant blue device showed turn on voltage of 2.9 V and peak efficiencies of 9.4%, 21.4 cd/A and 21.7 lm/W. The high efficiencies may be attributed to the host possessing high triplet energy level, effective host-to-guest energy transfer and effective carrier injection balance.

  3. Interrogation of metabolic and oxygen states of tumors with fiber-based luminescence lifetime spectroscopy.

    Lukina, Maria; Orlova, Anna; Shirmanova, Marina; Shirokov, Daniil; Pavlikov, Anton; Neubauer, Antje; Studier, Hauke; Becker, Wolfgang; Zagaynova, Elena; Yoshihara, Toshitada; Tobita, Seiji; Shcheslavskiy, Vladislav

    2017-02-15

    The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optic probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of a nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on an iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions and in living mice.

  4. Oxygen Transport: A Simple Model for Study and Examination.

    Gaar, Kermit A., Jr.

    1985-01-01

    Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…

  5. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  6. Studies of MHD generator performance with oxygen enriched coal combustion

    Wormhoudt, J.; Yousefian, V.; Kolb, C. E.; Martinez-Sanchez, M.

    1980-07-01

    This paper presents calculations made using the Aerodyne PACKAGE (Plasma Analysis, Chemical Kinetics, and Generator Efficiency) computer code which bear on two questions which arise in connection with choices between oxygen enrichment and air preheating to attain the high combustion temperatures needed for open-cycle, coal-fired MHD power generation. The first question is which method produces the highest enthalpy extraction per unit channel length. The second is, in test facilities intended to study tradeoffs between oxygen enrichment and preheated air, can good generator performance be obtained from the same physical channel for different combustor compositions. The answer to the first question is found to depend on what combustor conditions are taken to be comparable. As for the second question, it is found that operation with channel input from off-design combustor conditions can cause serious problems, which can be partially alleviated by changing the channel load factors.

  7. A potentiodynamic study of the reduction of oxygen on copper

    King, F.; Litke, C.D.

    1994-07-01

    The reduction of oxygen on copper has been studied in 0.1 mol·dm -3 NaCl solutions using potentiodynamic techniques. Experiments were carried out in unbuffered and phosphate-buffered solutions at pH 7. Additional experiments in NaCl solution were performed at pH 10, with the bulk pH adjusted by adding NaOH. Some voltammetric studies in deaerated electrolytes were carried out to examine the nature of the surface films formed on the electrode. The reduction of oxygen on copper is dominated by the 4-electron reduction to OH - . Limited quantities of peroxide were detected by the ring electrode at disc potentials in the joint- and kinetic-control regions. No peroxide was detected in the transport-limiting region. The rate of reduction of oxygen is influenced by the nature of the surface film on the electrode. At interfacial pH values of ∼10, a catalytic surface film forms, thought to be submonolayer Cu(OH) ads or submonolayer Cu 2 O. simultaneously, a peak is observed on the current-potential curve. This peak is observed in neutral solutions with atmospheres of 50% O 2 /N 2 and 100% O 2 and in pH 10 solution with atmospheres >∼10% O 2 /N 2 . The peak is not observed in phosphate-buffered solution because of the buffering action on the interfacial pH. At potentials positive of the peak potential, a thin Cu 2 O layer forms in unbuffered solutions on which the rate of oxygen reduction is partially inhibited. (author). 44 refs., 17 figs

  8. Oxygen diffusion in bilayer polymer films

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  9. PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification.

    Golub, Aleksander S; Pittman, Roland N

    2008-06-01

    In phosphorescence quenching microscopy (PQM), the multiple excitation of a reference volume produces the integration of oxygen consumption artifacts caused by individual flashes. We analyzed the performance of two types of PQM instruments to explain reported data on Po2 in the microcirculation. The combination of a large excitation area (LEA) and high flash rate produces a large oxygen photoconsumption artifact manifested differently in stationary and flowing fluids. A LEA instrument strongly depresses Po2 in a motionless tissue, but less in flowing blood, creating an apparent transmural Po2 drop in arterioles. The proposed model explains the mechanisms responsible for producing apparent transmural and longitudinal Po2 gradients in arterioles, a Po2 rise in venules, a hypothetical high respiration rate in the arteriolar wall and mesenteric tissue, a low Po2 in lymphatic microvessels, and both low and uniform tissue Po2. This alternative explanation for reported paradoxical results of Po2 distribution in the microcirculation obviates the need to revise the dominant role of capillaries in oxygen transport to tissue. Finding a way to eliminate the photoconsumption artifact is crucial for accurate microscopic oxygen measurements in microvascular networks and tissue. The PQM technique that employs a small excitation area (SEA) together with a low flash rate was specially designed to avoid accumulated oxygen photoconsumption in flowing blood and lymph. The related scanning SEA instrument provides artifact-free Po2 measurements in stationary tissue and motionless fluids. Thus the SEA technique significantly improves the accuracy of microscopic Po2 measurements in the microcirculation using the PQM.

  10. Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor.

    Shu, Tong; Su, Lei; Wang, Jianxing; Lu, Xin; Liang, Feng; Li, Chenzhong; Zhang, Xueji

    2016-06-07

    Chemical etching of gold by thiols has been known to be capable of generating nonluminescent gold(I) complexes, e.g., in size-focusing synthesis of atomically precise gold nanoclusters (GNCs). These nonluminescent gold(I) complexes have usually been considered as useless or worthless byproducts. This study shows a promising potential of thiol etching of GNCs to prepare novel water-soluble and phosphorescent gold(I) materials for sensing application. First, cysteamine-induced etching of GNCs is used to produce nonluminescent oligomeric gold(I)-thiolate complexes. Then, cadmium ion induces the aggregation of these oligomeric complexes to produce highly water-soluble ultrasmall intra-aggregates. These intra-aggregates can phosphoresce both in dilute aqueous solutions and in the solid phase. Studies on the effect of pH on their phosphorescent emission reveal the importance of the interaction between the amino groups of the ligands and cadmium ion for their phosphorescent emission property. Furthermore, Cu(2+) ion is found to quickly quench the phosphorescent emission of the intra-aggregates and simultaneously cause a Cu(2+)-concentration-dependent peak wavelength shift, enabling the establishment of a novel colorimetric sensor for sensitive and selective visual sensing of Cu(2+).

  11. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope.

    Shonat, R D; Wachman, E S; Niu, W; Koretsky, A P; Farkas, D L

    1997-09-01

    A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues.

  12. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies

    Sgouralis, Ioannis; Kett, Michelle M.; Ow, Connie P. C.; Abdelkader, Amany; Layton, Anita T.; Gardiner, Bruce S.; Smith, David W.; Lankadeva, Yugeesh R.; Evans, Roger G.

    2016-01-01

    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2. Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2. Both intravenous infusion of [Phe2,Ile3,Orn8]-vasopressin and infusion of NG-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8–1...

  13. Transient electroluminescence on pristine and degraded phosphorescent blue OLEDs

    Niu, Quan; Blom, Paul W. M.; May, Falk; Heimel, Paul; Zhang, Minlu; Eickhoff, Christian; Heinemeyer, Ute; Lennartz, Christian; Crǎciun, N. Irina

    2017-11-01

    In state-of-the-art blue phosphorescent organic light-emitting diode (PHOLED) device architectures, electrons and holes are injected into the emissive layer, where they are carried by the emitting and hole transporting units, respectively. Using transient electroluminescence measurements, we disentangle the contribution of the electrons and holes on the transport and efficiency of both pristine and degraded PHOLEDs. By varying the concentration of hole transporting units, we show that for pristine PHOLEDs, the transport is electron dominated. Furthermore, degradation of the PHOLEDs upon electrical aging is not related to the hole transport but is governed by a decrease in the electron transport due to the formation of electron traps.

  14. A precision synchrotron radiation detector using phosphorescent screens

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Butler, J.; Wormser, G.

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 μm on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab

  15. Improvements of phosphorescent white OLEDs performance for lighting application.

    Lee, Jonghee; Chu, Hye Yong; Lee, Jeong-Ik; Song, Ki-Im; Lee, Su Jin

    2008-10-01

    We developed white OLED device with high power efficiency, in which blue and orange phosphorescent emitters were used. By introduction of multi-functional interlayer which has partial doping of orange dopant inside EBL, we report WOLEDs with peak external efficiencies up to (14.1% EQE, 31.3 Im/W) without light out-coupling technique. At 1000 cd/m2, the performance achieved was 11.9% EQE, 18.7 Im/W with CIE = (0.39, 0.44). We also found that WOLED performances are related with doping ratio of the orange dopant that was inserted inside EBL.

  16. Pilot study of a new device to titrate oxygen flow in hypoxic patients on long-term oxygen therapy.

    Cirio, Serena; Nava, Stefano

    2011-04-01

    The O(2) Flow Regulator (Dima, Bologna, Italy) is a new automated oxygen regulator that titrates the oxygen flow based on a pulse-oximetry signal to maintain a target S(pO(2)). We tested the device's safety and efficacy. We enrolled 18 subjects with chronic lung disease, exercise-induced desaturation, and on long-term oxygen therapy, in a randomized crossover study with 2 constant-work-load 15-min cycling exercise tests, starting with the patient's previously prescribed usual oxygen flow. In one test the oxygen flow was titrated manually by the respiratory therapist, and in the other test the oxygen flow was titrated by the O(2) Flow Regulator, to maintain an S(pO(2)) of 94%. We measured S(pO(2)) throughout each test, the time spent by the respiratory therapist to set the device or to manually regulate the oxygen flow, and the total number of respiratory-therapist titration interventions during the trial. There were no differences in symptoms or heart rate between the exercise tests. Compared to the respiratory-therapist-controlled tests, during the O(2) Flow Regulator tests S(pO(2)) was significantly higher (95 ± 2% vs 93 ± 3%, P = .04), significantly less time was spent below the target S(pO(2)) (171 ± 187 s vs 340 ± 220 s, P less respiratory therapist time (5.6 ± 3.7 min vs 2.0 ± 0.1 min, P = .005). The O(2) Flow Regulator may be a safe and effective alternative to manual oxygen titration during exercise in hypoxic patients. It provided stable S(pO(2)) and avoided desaturations in our subjects.

  17. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies

    Skolimowski, Maciej; Weiss Nielsen, Martin; Emnéus, Jenny

    2010-01-01

    . The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used...... for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions....

  18. Voluntary exercise confers protection against age-related deficits in brain oxygenation in awake mice model of Alzheimer's disease

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by short-term memory loss and cognitive inabilities. This work seeks to study the effects of voluntary exercise on the change in oxygen delivery in awake mice models of Alzheimer's disease by monitoring brain tissue oxygenation. Experiments were performed on Young (AD_Y, 3-4 months, n=8), Old (AD_O, 6-7 months, n=8), and Old with exercise (AD_OEX, 6-7 months, n=8) transgenic APPPS1 mice and their controls. Brain tissue oxygenation was measured by two photon phosphorescence lifetime microscopy on the left sensory motor cortex. We found that the average tissue PO2 decreased with age but were regulated by exercise. The results suggest a potential for exercise to improve brain function with age and AD.

  19. Efficiency optimization of green phosphorescent organic light-emitting device

    Park, Jung Soo; Jeon, Woo Sik; Yu, Jae Hyung [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Pode, Ramchandra, E-mail: rbpode@khu.ac.k [Department of Physics, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Kwon, Jang Hyuk, E-mail: jhkwon@khu.ac.k [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of)

    2011-03-01

    Using a narrow band gap host of bis[2-(2-hydroxyphenyl)-pyridine]beryllium (Bepp{sub 2}) and green phosphorescent Ir(ppy){sub 3} [fac-tris(2-phenylpyridine) iridium III] guest concentration as low as 2%, high efficiency phosphorescent organic light-emitting diode (PHOLED) is realized. Current and power efficiencies of 62.5 cd/A (max.), 51.0 lm/W (max.), and external quantum efficiency (max.) of 19.8% are reported in this green PHOLED. A low current efficiency roll-off value of 10% over the brightness of 10,000 cd/m{sup 2} is noticed in this Bepp{sub 2} single host device. Such a high efficiency is obtained by the optimization of the doping concentration with the knowledge of the hole trapping and the emission zone situations in this host-guest system. It is suggested that the reported device performance is suitable for applications in high brightness displays and lighting.

  20. A Quantitative Study of Oxygen as a Metabolic Regulator

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabrera, Marco E.

    1999-01-01

    An acute reduction in oxygen (O2) delivery to a tissue is generally associated with a decrease in phosphocreatine, increases in ADP, NADH/NAD, and inorganic phosphate, increased rates of glycolysis and lactate production, and reduced rates of pyruvate and fatty acid oxidation. However, given the complexity of the human bioenergetic system and its components, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in tissue O2 availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study, we extend a previously developed mathematical model of human bioenergetics to provide a physicochemical framework that permits quantitative understanding of O2 as a metabolic regulator. Specifically, the enhancement permits studying the effects of variations in tissue oxygenation and in parameters controlling the rate of cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The whole body is described as a bioenergetic system consisting of metabolically distinct tissue/organ subsystems that exchange materials with the blood. In order to study the dynamic response of each subsystem to stimuli, we solve the ordinary differential equations describing the temporal evolution of metabolite levels, given the initial concentrations. The solver used in the present study is the packaged code LSODE, as implemented in the NASA Lewis kinetics and sensitivity analysis code, LSENS. A major advantage of LSENS is the efficient procedures supporting systematic sensitivity analysis, which provides the basic methods for studying parameter sensitivities (i.e., changes in model behavior due to parameter variation

  1. Electron stimulated desorption study of oxygen adsorption on tungsten

    Prince, R.H.; Floyd, G.R.

    1978-01-01

    The adsorption of oxygen on a polycrystalline tungsten surface at approximately 800 K has been studied by means of electron stimulated desorption (ESD). Although precision gas dosing was not employed, the initial sticking probability for dissociative adsorption appears to be essentially unity, while the variation with coverage suggests that a high degree of order exists and that precursor state kinetics are significant. A most noticeable and reproducible discontinuity in ESD parameters occurs at a fractional coverage theta approximately 0.8 (exposure approximately 1.4 X 10 15 molecules/cm 2 incident) which is interpreted as an order-disorder transition within a single (β 1 ) chemisorption state, and results in an increase in the ionic desorption cross-section by a factor of approximately 1.26. A discussion of the adsorption kinetics and the disorder transition is given in terms of current models of dissociative adsoption which include the effects of nearest neighbour lateral interactions. (Auth.)

  2. Strong ligand field effects of blue phosphorescent mono-cyclometalated iridium(III) complexes

    Ham, Ho Wan; Jung, Kyung Yoon; Kim, Young Sik

    2010-01-01

    A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(Cl), [Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(NCMe)] + and Ir(F 2 Meppy)(PPhMe 2 ) 2 -(H)(CN), [F 2 Meppy = 2-(2',4'-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe 2 leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)(Cl), [Ir(F 2 Meppy)(PPhMe 2 ) 2 (H)-(NCMe)] + and Ir(F 2 Meppy)(PPh-Me 2 ) 2 (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.

  3. Strong ligand field effects of blue phosphorescent mono-cyclometalated iridium(III) complexes

    Ham, Ho Wan [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Jung, Kyung Yoon [International Design School for Advanced Studies, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Sik, E-mail: youngkim@hongik.ac.k [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of)

    2010-09-01

    A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(Cl), [Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(NCMe)]{sup +} and Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}-(H)(CN), [F{sub 2}Meppy = 2-(2',4'-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe{sub 2} leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)(Cl), [Ir(F{sub 2}Meppy)(PPhMe{sub 2}){sub 2}(H)-(NCMe)]{sup +} and Ir(F{sub 2}Meppy)(PPh-Me{sub 2}){sub 2} (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.

  4. Strong ligand field effects of blue phosphorescent Ir(III) complexes with phenylpyrazole and phosphines.

    Park, Se Won; Ham, Ho Wan; Kim, Young Sik

    2012-04-01

    In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.

  5. In situ coral reef oxygen metabolism: an eddy correlation study.

    Matthew H Long

    Full Text Available Quantitative studies of coral reefs are challenged by the three-dimensional hard structure of reefs and the high spatial variability and temporal dynamics of their metabolism. We used the non-invasive eddy correlation technique to examine respiration and photosynthesis rates, through O2 fluxes, from reef crests and reef slopes in the Florida Keys, USA. We assessed how the photosynthesis and respiration of different reef habitats is controlled by light and hydrodynamics. Numerous fluxes (over a 0.25 h period were as high as 4500 mmol O2 m(-2 d(-1, which can only be explained by efficient light utilization by the phototrophic community and the complex canopy structure of the reef, having a many-fold larger surface area than its horizontal projection. Over diel cycles, the reef crest was net autotrophic, whereas on the reef slope oxygen production and respiration were balanced. The autotrophic nature of the shallow reef crests implies that the export of organics is an important source of primary production for the larger area. Net oxygen production on the reef crest was proportional to the light intensity, up to 1750 µmol photons m(-2 s(-1 and decreased thereafter as respiration was stimulated by high current velocities coincident with peak light levels. Nighttime respiration rates were also stimulated by the current velocity, through enhanced ventilation of the porous framework of the reef. Respiration rates were the highest directly after sunset, and then decreased during the night suggesting that highly labile photosynthates produced during the day fueled early-night respiration. The reef framework was also important to the acquisition of nutrients as the ambient nitrogen stock in the water had sufficient capacity to support these high production rates across the entire reef width. These direct measurements of complex reefs systems yielded high metabolic rates and dynamics that can only be determined through in situ, high temporal resolution

  6. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies

    Sgouralis, Ioannis; Kett, Michelle M.; Ow, Connie P. C.; Abdelkader, Amany; Layton, Anita T.; Gardiner, Bruce S.; Smith, David W.; Lankadeva, Yugeesh R.

    2016-01-01

    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2. Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2. Both intravenous infusion of [Phe2,Ile3,Orn8]-vasopressin and infusion of NG-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8–17%), yet had opposite effects on renal blood flow and urine flow. Changes in bladder urine Po2 during these stimuli correlated strongly with changes in medullary Po2 (within-rabbit r2 = 0.87–0.90). Differences in the Po2 of saline infused into the ureter close to the kidney could be detected in the bladder, although this was diminished at lesser ureteric flow. Diffusion of oxygen across the wall of the bladder was very slow, so it was not considered in the computational model. The model predicts Po2 in the pelvic ureter (presumed to reflect medullary Po2) from known values of bladder urine Po2, urine flow, and arterial Po2. Simulations suggest that, across a physiological range of urine flow in anesthetized rabbits (0.1–0.5 ml/min for a single kidney), a change in bladder urine Po2 explains 10–50% of the change in pelvic urine/medullary Po2. Thus, it is possible to infer changes in medullary Po2 from changes in urinary Po2, so urinary Po2 may have utility as a real-time biomarker of risk of acute kidney injury. PMID:27385734

  7. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

    1997-12-01

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO 3 before measurement. Concentrations were determined on a mass basis (microg U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same density

  8. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    Emil J. W. List

    2008-08-01

    Full Text Available Even though organic light-emitting device (OLED technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs, further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers.

  9. Study of oxygen inhibition effect on radiation curing

    Xiao Bin; Yang Xuemei; Zhao Pengji; Zeng Shuqing; Jiang Bo; Zhou Yong; Huang Wei; Zhou Youyi

    1995-01-01

    Michacl addition reaction product was used in the research of oxygen inhibition effect of radiation curing. The experimental results was measured by the content of gel and percentage of double bonds. It was proved that 9% of Michacl addition product could speed up 1.2 times of the radiation curing rate at 30 kGy of EB irradiation. This kind of formulation can withstand oxygen inhibition effect obviously, so it was the foundation of application for radiation curing in atmospheric condition

  10. Laser-induced down-conversion and infrared phosphorescence emissivity of novel ligand-free perovskite nanomaterials

    Ahmed, M. A.; Khafagy, Rasha M.; El-sayed, O.

    2014-03-01

    For the first time, standalone and ligand-free series of novel rare-earth-based perovskite nanomaterials are used as near infrared (NIR) and mid infrared (MIR) emitters. Nano-sized La0.7Sr0.3M0.1Fe0.9O3; where M = 0, Mn2+, Co2+ or Ni2+ were synthesized using the flash auto-combustion method and characterized using FTIR, FT-Raman, SEM and EDX. Photoluminescence spectra were spontaneously recorded during pumping the samples with 0.5 mW of green laser emitting continuously at 532 nm. La0.7Sr0.3FeO3 (where M = 0) did not result in any infrared emissivity, while intense near and mid infrared down-converted phosphorescence was released from the M-doped samples. The released phosphorescence greatly shifted among the infrared spectral region with changing the doping cation. Ni2+-doped perovskite emitted at the short-wavelength near-infrared region, while Mn2+ and Co2+-doped perovskites emitted at the mid-wavelength infrared region. The detected laser-induced spontaneous parametric down-conversion phosphorescence (SPDC) occurred through a two-photon process by emitting two NIR or MIR photons among a cooperative energy transfer between the La3+ cations and the M2+ cations. Combining SrFeO3 ceramic with both a rare earth cation (RE3+) and a transition metal cation (Mn2+, Co2+ or Ni2+), rather than introducing merely RE3+ cations, greatly improved and controlled the infrared emissivity properties of synthesized perovskites through destroying their crystal symmetry and giving rise to asymmetrical lattice vibration and the nonlinear optical character. The existence of SPDC in the M2+-doped samples verifies their nonlinear character after the absence of this character in La0.7Sr0.3FeO3. Obtained results verify that, for the first time, perovskite nanomaterials are considered as nonlinear optical crystals with intense infrared emissivity at low pumping power of visible wavelengths, which nominates them for photonic applications and requires further studies regarding their lasing

  11. Spin coherence in phosphorescent triplet states

    Hof, C.A. van 't

    1977-01-01

    The electron spin echo is studied on the dephasing mechanism in the photo-excited triplet state of quinoline in a durene host. First, a comparative investigation of the merits of the different spin echo techniques is presented. It turns out that the rotary echo generally yields a longer phase memory time than the two-pulse echo, whereas in the Carr-Purcell experiment, the dephasing can even be largely suppressed. Secondly, it is shown that the dephasing mechanism is determined by the nuclear spins of the guest molecules as well as those in the host material. A theoretical basis for interpreting the effect of vibronic relaxation on the decay rate of the rotary echo, as observed in parabenzoquinone, is given. Similar experiments in aniline reveal also that in this molecule, two close-lying triplet states exist, which is attributed to an inversion vibration analogous to the well-known example in ammonia

  12. Experimental studies on radiation effects under high pressure oxygen

    Fujimura, E [Osaka Univ. (Japan). School of Dentistry

    1974-06-01

    The effect of oxygen tension on the radiosensitivity of tumor cells is well known, but its clinical application for radiotherapy is not yet established. Rabbits with V x 2 carcinoma in the maxilla were irradiated by /sup 60/Co under high pressure oxygen (experimental group), and compared with those treated in air (control group). For the purpose of examining the clinical effects of high pressure oxygen, an experiment was made in vivo. The following items were compared respectively: a) Tumor regression effect b) Tumor clearance rate c) Survival days d) Half size reduction time e) Inhibition of DNA synthesis in the tumor tissue. Results obtained were as follows: a) 56 per cent of animals showed tumor regression in the experimental group, whereas it occured 26 per cent in the control group. b) 53 per cent of animals showed tumor disappearance in the experimental group, while it was observed only in 13 per cent in the control group. c) Only 2 of 30 rabbits irradiated in air survived over 180 days, whereas 11 of 30 rabbits survived meanwhile in the group irradiated under high pressure oxygen. d) About 11 days were necessary to reduce the tumor size by half after irradiation in the group under high pressure oxygen, while it took 17 days in the group treated in normal air. e) DNA synthesis was inhibited more prominently in the group irradiated under high pressure oxygen in normal air.

  13. Highly phosphorescent hollow fibers inner-coated with tungstate nanocrystals

    Ng, Pui Fai; Bai, Gongxun; Si, Liping; Lee, Ka I.; Hao, Jianhua; Xin, John H.; Fei, Bin

    2017-12-01

    In order to develop luminescent microtubes from natural fibers, a facile biomimetic mineralization method was designed to introduce the CaWO4-based nanocrystals into kapok lumens. The structure, composition, and luminescence properties of resultant fibers were investigated with microscopes, x-ray diffraction, thermogravimetric analysis, and fluorescence spectrometry. The yield of tungstate crystals inside kapok was significantly promoted with a process at high temperature and pressure—the hydrothermal treatment. The tungstate crystals grown on the inner wall of kapok fibers showed the same crystal structure with those naked powders, but smaller in crystal size. The resultant fiber assemblies demonstrated reduced phosphorescence intensity in comparison to the naked tungstate powders. However, the fibers gave more stable luminescence than the naked powders in wet condition. This approach explored the possibility of decorating natural fibers with high load of nanocrystals, hinting potential applications in anti-counterfeit labels, security textiles, and even flexible and soft optical devices.

  14. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  15. Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching

    Zokaei-Kadijani, S.; Safdari, J.; Mousavian, M.A.; Rashidi, A.

    2013-01-01

    Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor

  16. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.

    Nardi, Giacomo; Manet, Ilse; Monti, Sandra; Miranda, Miguel A; Lhiaubet-Vallet, Virginie

    2014-12-01

    For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe. This is based on the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has been widely employed, it can produce misleading data. This is demonstrated by the present study, in which the quantum yields of singlet oxygen formation obtained by TRNIR emission and by the TEMPO/EPR method are compared for a set of well-known photosensitizers. The results reveal that the TEMPO/EPR method leads to significant overestimation of singlet oxygen yield when the singlet or triplet excited state of the photosensitizer is efficiently quenched by TEMP, acting as electron donor. In such case, generation of the TEMP(+) radical cation, followed by deprotonation and reaction with molecular oxygen, gives rise to an EPR-detectable TEMPO signal that is not associated with singlet oxygen production. This knowledge is essential for an appropriate and error-free application of the TEMPO/EPR method in chemical, biological, and medical studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Luminescence materials for pH and oxygen sensing in microbial cells - structures, optical properties, and biological applications.

    Zou, Xianshao; Pan, Tingting; Chen, Lei; Tian, Yanqing; Zhang, Weiwen

    2017-09-01

    Luminescence including fluorescence and phosphorescence sensors have been demonstrated to be important for studying cell metabolism, and diagnosing diseases and cancer. Various design principles have been employed for the development of sensors in different formats, such as organic molecules, polymers, polymeric hydrogels, and nanoparticles. The integration of the sensing with fluorescence imaging provides valuable tools for biomedical research and applications at not only bulk-cell level but also at single-cell level. In this article, we critically reviewed recent progresses on pH, oxygen, and dual pH and oxygen sensors specifically for their application in microbial cells. In addition, we focused not only on sensor materials with different chemical structures, but also on design and applications of sensors for better understanding cellular metabolism of microbial cells. Finally, we also provided an outlook for future materials design and key challenges in reaching broad applications in microbial cells.

  19. Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves

    尹则高; 梁丙臣; 王乐

    2013-01-01

    The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.

  20. High-Pressure Oxygen Generation for Outpost EVA Study

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  1. Novel Smart Windows Based on Transparent Phosphorescent OLEDs

    Brian D' Andrade; Stephen Forest

    2006-09-15

    In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents

  2. Oxygen isotope studies of the Salton Sea geothermal field

    Olson, E.R.

    1978-01-01

    Interbedded shales and sandstones were drilled to a depth of 1588 metres in Sinclair Number Four Well, Salton Sea Geothermal Field. Bottom hole temperatures are approximately 290 0 C. The oxygen dels of hydrothermal and detrital calcite have a systematic relationship at any depth in the geothermal reservoir. Typical values are: vein calcite, +6 0 / 00 ; calcite in white sandstone, +10 0 / 00 ; calcite in dark gray shale, +11 0 / 00 ; calcite in light gray shale, +17 0 / 00 ; calcite in red-brown shale, +20 0 / 00 . This succession represents decreasing water-rock interaction that is also indicated by the clay mineralogy of the shales. Permeability has a marked effect on the equilibration of water and rocks at any given temperature. Original differences in permeability have resulted in partial preservation of original detrital sedimentary compositions. The fluids in the Salton Sea Geothermal Field are probabaly partially evaporated Colorado River water, and their oxygen del values vary as much as 4 0 / 00 throughout the field. Truesdell's (1974) data suggest that dissolved salts may make the water oxygen activity del as much as 6 0 / 00 greater than the concentration del in the geothermal reservoir. Such an uncertainty is a serious impediment to precise isotope geothermometry in this system.(auth.)

  3. Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon

    Cleland, J.W.; Fukuoka, N.

    1980-10-01

    Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of 31 P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and 31 P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 500 0 C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 750 0 C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 750 0 C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 1200 0 C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 750 0 C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 750 0 C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included

  4. A method for volumetric retinal tissue oxygen tension imaging.

    Felder, Anthony E; Wanek, Justin; Teng, Pang-Yu; Blair, Norman P; Shahidi, Mahnaz

    2018-01-01

    Inadequate retinal oxygenation occurs in many vision-threatening retinal diseases, including diabetic retinopathy, retinal vascular occlusions, and age-related macular degeneration. Therefore, techniques that assess retinal oxygenation are necessary to understand retinal physiology in health and disease. The purpose of the current study is to report a method for the three-dimensional (3D) imaging of retinal tissue oxygen tension (tPO 2 ) in rats. Imaging was performed in Long Evans pigmented rats under systemic normoxia (N = 6) or hypoxia (N = 3). A vertical laser line was horizontally scanned on the retina and a series of optical section phase-delayed phosphorescence images were acquired. From these images, phosphorescence volumes at each phase delay were constructed and a 3D retinal tPO 2 volume was generated. Retinal tPO 2 volumes were quantitatively analyzed by generating retinal depth profiles of mean tPO 2 (M tPO2 ) and the spatial variation of tPO 2 (SV tPO2 ). The effects of systemic condition (normoxia/hypoxia) and retinal depth on M tPO2 and SV tPO2 were determined by mixed linear model. Each 3D retinal tPO 2 volume was approximately 500 × 750 × 200 μm (horizontal × vertical × depth) and consisted of 45 en face tPO 2 images through the retinal depth. M tPO2 at the chorioretinal interface was significantly correlated with systemic arterial oxygen tension (P = 0.007; N = 9). There were significant effects of both systemic condition and retinal depth on M tPO2 and SV tPO2 , such that both were lower under hypoxia than normoxia and higher in the outer retina than inner retina (P < 0.001). For the first time, 3D imaging of retinal tPO 2 was demonstrated, with potential future application for assessment of physiological alterations in animal models of retinal diseases.

  5. Primary study of ethyl cellulose nanofiber for oxygen-enrichment membrane

    Shen Jing

    2016-01-01

    Full Text Available Ethyl cellulose is widely used for oxygen-enrichment membrane, however, its nanofiber membrane was rarely developed though it behaves more excellent performance. This paper gives a preliminary study to produce oxygen-enrichment membrane by bubbfil spinning.

  6. Oxygen evolution studies on perovskite films in alkaline media

    Hermann, V; Comninellis, Ch [Swiss Federal Inst. of Technology, Lausanne (Switzerland); Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Thin films of La{sub 0.6}Ca{sub 0.4}CoO{sub 3} perovskite were deposited on nickel plates by thermal decomposition of the metal nitrates. The electrochemical activity of the films for oxygen evolution in KOH solutions (0.1-1 M) was investigated. The reaction order with respect to OH{sup -} ion was found to be around 0.7. The results correlate fairly well with a mechanism in which breaking of the intermediate metal-peroxide bond at the Co ion is the rate-determining step. (author) 4 figs., 4 refs.

  7. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  8. A 15oxygen positron study of relative local perfusion and oxygen extraction of the brain in lacunar hemiparesis

    Rougemont, D.; Baron, J.C.; Lebrun-Grandie, P.; Comar, D.; Bousser, M.G.; Soisson, T.

    1982-01-01

    The oxygen-15 non invasive continuous inhalation technique coupled with positron emission tomography (PET) allows the local study of cerebral blood flow and oxygen metabolism. Recent PET studies have demonstrated the frequent occurrence of widespread metabolic depression remote from the site of middle cerebral artery territory infarct per se, especially over the cortical mantle and thalamus ipsilaterally, and over the cerebellar hemisphere contralaterally. We thought interesting to study the possible occurrence of such abnormalities in patients with lacunar syndromes. We have applied the 15 O technique to seven patients in whom no large causal ischemic lesion could be demonstrated on CT Scans; in only one patient was a lacunar lesion, presumably responsable for the clinical deficit, evidenced. Compared to a set of 19 patients without brain disease, the semi-quantitative results (analyzed in terms of asymmetry indices between homologous brain regions) in our patients did not disclose any pathophysiologically significant abnormality. More specifically no evidence of physiological dysfunction similar to that reported in internal carotid artery territory infarcts, was detected over the cerebral or the cerebellar cortices. These original findings are commented upon in view of the presumably small size and the uncertain topography of the causal lesion [fr

  9. A mitochondrial targeted two-photon iridium(III) phosphorescent probe for selective detection of hypochlorite in live cells and in vivo.

    Li, Guanying; Lin, Qian; Sun, Lingli; Feng, Changsheng; Zhang, Pingyu; Yu, Bole; Chen, Yu; Wen, Ya; Wang, Hui; Ji, Liangnian; Chao, Hui

    2015-01-01

    Endogenous hypochlorite ion (ClO(-)) is a highly reactive oxygen species (ROS) that is produced from hydrogen peroxide and chloride ions catalyzed by myeloperoxidase (MPO). And mitochondrion is one of the major sources of ROS including ClO(-). In the present work, a two-photon phosphorescent probe for ClO(-) in mitochondria was developed. An iridium(III) complex bearing a diaminomaleonitrile group as ClO(-) reactive moiety specifically responded to ClO(-) over other ions and ROSs. When the probe was reacted with ClO(-) to form an oxidized carboxylate product, a significant enhancement in phosphorescence intensity was observed under one-photon (402 nm) and two-photon (750 nm) excitation, with a two-photon absorption cross-section of 78.1 GM at 750 nm. More importantly, ICP-MS results and cellular images co-stained with Mito-tracker Green demonstrated that this probe possessed high specificity for mitochondria. This probe was applied in the one- and two-photon imaging of ClO(-) in vitro and in vivo. The results suggested endotoxin lipopolysaccharide (LPS) induced ClO(-) mostly generated in the liver of zebrafish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ambulatory oxygen: why do COPD patients not use their portable systems as prescribed? A qualitative study

    Fenwick Angela

    2011-02-01

    Full Text Available Abstract Background Patients with COPD on long term oxygen therapy frequently do not adhere to their prescription, and they frequently do not use their ambulatory oxygen systems as intended. Reasons for this lack of adherence are not known. The aim of this study was to obtain in-depth information about perceptions and use of prescribed ambulatory oxygen systems from patients with COPD to inform ambulatory oxygen design, prescription and management. Methods A qualitative design was used, involving semi-structured face-to-face interviews informed by a grounded theory approach. Twenty-seven UK community-dwelling COPD patients using NHS prescribed ambulatory systems were recruited. Ambulatory oxygen systems comprised cylinders weighing 3.4 kg, a shoulder bag and nasal cannulae. Results Participants reported that they: received no instruction on how to use ambulatory oxygen; were uncertain of the benefits; were afraid the system would run out while they were using it (due to lack of confidence in the cylinder gauge; were embarrassed at being seen with the system in public; and were unable to carry the system because of the cylinder weight. The essential role of carers was also highlighted, as participants with no immediate carers did not use ambulatory oxygen outside the house. Conclusions These participants highlighted previously unreported problems that prevented them from using ambulatory oxygen as prescribed. Our novel findings point to: concerns with the lack of specific information provision; the perceived unreliability of the oxygen system; important carer issues surrounding managing and using ambulatory oxygen equipment. All of these issues, as well as previously reported problems with system weight and patient embarrassment, should be addressed to improve adherence to ambulatory oxygen prescription and enhance the physical and social benefits of maintaining mobility in this patient group. Increased user involvement in both system development

  11. Singlet oxygen produced by quasi-continuous photo-excitation of hypericin in dimethyl-sulfoxide

    Varchola, J.; Želonková, K. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Chorvat Jr, D. [International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Jancura, D. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Miskovsky, P. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); and others

    2016-09-15

    Singlet oxygen (O{sub 2}({sup 1}Δ{sub g})) production by photo-excited hypericin (Hyp) dissolved in dimethyl-sulfoxide (DMSO) was studied by means of time-resolved phosphorescence measurements. In order to minimize photo-bleaching, the samples were excited in quasi-continuous mode using long-pulse (35 μs) laser excitation. The measured lifetime of singlet oxygen is τ{sub Δ}=5.5±0.3 μs. This result helps to resolve the discrepancy existing in the literature concerning singlet oxygen lifetime in DMSO. The obtained quantum yield of singlet oxygen photosensitized by Hyp in air-saturated DMSO is Φ{sub Δ}=0.4±0.03. The rate constant for Hyp triplet state depopulation in reaction with ground state molecular oxygen is measured to be k{sub q}=1.6±0.3×10{sup 9} M{sup −1} s{sup −1}.

  12. Preliminary Clinical Study On Ms Treatment With Hyperbaric Oxygenation

    Ulewicz Kazimierz

    2015-06-01

    Full Text Available The authors conducted the preliminary clinical investigation on 16 multiple sclerosis (Sclerosis multiplex patients of median disease duration 9.33 years and symptoms evaluated on Kurtzke’s scale. The patients underwent between 25 and 30 hyperbaric oxygen exposures at a pressure of 2 ata in intervals spread over a few days. The patients were qualified and classified to the treatment symptomatologically according to Fisher but the obtained results were evaluated according to the standardised Disability Status Scale by Kurtzke. During the investigations the authors carried out additional quantitative immunoglobulin and complement activity determination, lymphocyte T and B determinations as well as the usually applied clinical and laboratory investigations. Evident clinical improvement was observed in 14 patients, but in the case of one patient a deterioration was observed after 15 hyperbaric expositions (resulting in the hyperbaric oxygen treatment being stopped, whilst in another case no curative effect could be observed. By utilising the 50% haemolysis method, within the examined immunological parameters the authors observed an increase of complement fractions and its activity, white lymphocytes T and B examined qualitatively did not maintain the characteristic shift. The authors are still discussing the obtained results.

  13. Significance of myoglobin as an oxygen store and oxygen transporter in the intermittently perfused human heart: a model study.

    Endeward, Volker; Gros, Gerolf; Jürgens, Klaus D

    2010-07-01

    The mechanisms by which the left ventricular wall escapes anoxia during the systolic phase of low blood perfusion are investigated, especially the role of myoglobin (Mb), which can (i) store oxygen and (ii) facilitate intracellular oxygen transport. The quantitative role of these two Mb functions is studied in the maximally working human heart. Because discrimination between Mb functions has not been achieved experimentally, we use a Krogh cylinder model here. At a heart rate of 200 beats/min and a 1:1 ratio of diastole/systole, the systole lasts for 150 ms. The basic model assumption is that, with mobile Mb, the oxygen stored in the end-diastolic left ventricle wall exactly meets the demand during the 150 ms of systolic cessation of blood flow. The coronary blood flow necessary to achieve this agrees with literature data. By considering Mb immobile or setting its concentration to zero, respectively, we find that, depending on Mb concentration, Mb-facilitated O(2) transport maintains O(2) supply to the left ventricle wall during 22-34 of the 150 ms, while Mb storage function accounts for a further 12-17 ms. When Mb is completely absent, anoxia begins to develop after 116-99 ms. While Mb plays no significant role during diastole, it supplies O(2) to the left ventricular wall for < or = 50 ms of the 150 ms systole, whereas capillary haemoglobin is responsible for approximately 80 ms. Slight increases in haemoglobin concentration, blood flow, or capillary density can compensate the absence of Mb, a finding which agrees well with the observations using Mb knockout mice.

  14. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  15. Host-free, yellow phosphorescent material in white organic light-emitting diodes

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng, E-mail: osolomio.ac89g@nctu.edu.t [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan 310 (China)

    2010-11-10

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W{sup -1} at a practical brightness of 1000 cd m{sup -2} with Commission Internationale d'Echariage coordinates (CIE{sub x,y}) of (0.37, 0.47) was achieved. (fast track communication)

  16. White organic light emitting devices with hybrid emissive layers combining phosphorescence and fluorescence

    Lei Gangtie; Chen Xiaolan; Wang Lei; Zhu Meixiang; Zhu Weiguo [Key Lab of Environmental-friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Wang Liduo; Qiu Yong [Key Lab of Organic-Optoelectronics and Molecular Sciences of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: lgt@xtu.edu.cn

    2008-05-21

    We fabricated a white organic light-emitting diode (WOLED) by hybrid emissive layers which combined phosphorescence with fluorescence. In this device, the thin layer of 4-(dicyanomethylene)-2-(t-butyl)-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran played the role of undoped red emissive layer which was inserted between two blue phosphorescence emissive layers. The blue phosphorescent dye was bis[(4, 6-difluorophenyl)-pyridinato-N, C{sup 2}] (picolinato) Ir(III), which was doped in the host material, N, N'-dicarbazolyl-1, 4-dimethene-benzene. The WOLED showed stable Commission Internationale de L'Eclairage coordinates and a high efficency of 9.6 cd A{sup -1} when the current density was 1.8 A m{sup -2}. The maximum luminance of the device achieved was 17 400 cd m{sup -2} when the current density was 3000 A m{sup -2}.

  17. Willamette Hatchery Oxygen Supplementation Studies : Annual Report 1993.

    Ewing, R.D.; Ewing, S.K.; Sheahan, J.E.

    1993-11-01

    Hydropower development and operations in the Columbia River basin have caused the loss of 5 million to 11 million salmonids. An interim goal of the Northwest Power Planning Council is to reestablish these historical numbers by doubling the present adult runs from 2.5 million to 5.0 million fish. This increase in production will be accomplished through comprehensive management of both wild and hatchery fish, but artificial propagation will play a major role in the augmentation process. The current husbandry techniques in existing hatcheries require improvements that may include changes in rearing densities, addition of oxygen, removal of excess nitrogen, and improvement in raceway design. Emphasis will be placed on the ability to increase the number of fish released from hatcheries that survive to return as adults.

  18. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  19. SIMS study of oxygen diffusion in monoclinic HfO2

    Mueller, Michael P.; De Souza, Roger A.

    2018-01-01

    The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .

  20. Percutaneous treatment of lumbar disc herniation by oxygen-ozone injection -clinical study with indication

    Wang Zhuying; Jiang Caimei; Wang Zhimin

    2006-01-01

    Objective: To study the clinical effect and the range of indications of oxygen-ozone treatment for lumber disc herniation. Methods: 6-15 ml of oxygen-ozone (35-45 μg/ml) were injected percutaneously into lumbar disc. In case of multiple disc herniations, the procedure could be taken with two discs for once. Results: 323 patients with 433 discs were treated by oxygen-ozone injection procedure. Total effective rate was 77.7%. Conclusions: The treatment of lumber disc herniation by oxygen-ozone injection is simple, safe and effective with mild trauma. Oxygen-ozone not only can oxidize the proteoglycan in the nucleus leading to the contraction of nucleus, but also provide anti-inflammation effect with pain relief and without complication yet. (authors)

  1. First-in-human pilot study of a spatial frequency domain oxygenation imaging system

    Gioux, Sylvain; Mazhar, Amaan; Lee, Bernard T.; Lin, Samuel J.; Tobias, Adam M.; Cuccia, David J.; Stockdale, Alan; Oketokoun, Rafiou; Ashitate, Yoshitomo; Kelly, Edward; Weinmann, Maxwell; Durr, Nicholas J.; Moffitt, Lorissa A.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

    2011-08-01

    Oxygenation measurements are widely used in patient care. However, most clinically available instruments currently consist of contact probes that only provide global monitoring of the patient (e.g., pulse oximetry probes) or local monitoring of small areas (e.g., spectroscopy-based probes). Visualization of oxygenation over large areas of tissue, without a priori knowledge of the location of defects, has the potential to improve patient management in many surgical and critical care applications. In this study, we present a clinically compatible multispectral spatial frequency domain imaging (SFDI) system optimized for surgical oxygenation imaging. This system was used to image tissue oxygenation over a large area (16×12 cm) and was validated during preclinical studies by comparing results obtained with an FDA-approved clinical oxygenation probe. Skin flap, bowel, and liver vascular occlusion experiments were performed on Yorkshire pigs and demonstrated that over the course of the experiment, relative changes in oxygen saturation measured using SFDI had an accuracy within 10% of those made using the FDA-approved device. Finally, the new SFDI system was translated to the clinic in a first-in-human pilot study that imaged skin flap oxygenation during reconstructive breast surgery. Overall, this study lays the foundation for clinical translation of endogenous contrast imaging using SFDI.

  2. A first-principles study of oxygen adsorption on Ir(111) surface

    Gao, Hengjiao, E-mail: gaohengjiao@163.com; Xiong, Yuqing, E-mail: xiongyq@hotmail.com; Liu, Xiaoli, E-mail: shantianzi@126.com; Zhao, Dongcai, E-mail: zhaodongc@163.com; Feng, Yudong, E-mail: yudong_feng@sina.com; Wang, Lanxi, E-mail: wanglanxi@live.com; Wang, Jinxiao, E-mail: coldwind716@gmail.com

    2016-12-15

    Highlights: • Adsorption of oxygen on Ir(111) surface was studied by density functional theory. • The most stable adsorption site was determined by adsorption energy calculation. • Adsorption of oxygen at bridge and top site on Ir surface was the most stable ones. • Interaction of O 2p and Ir 5d orbits is relatively strong and formed hybridization. - Abstract: In order to understand deposition mechanism of iridium thin film by atomic layer deposition, the adsorption of oxygen on Ir(111) surface was studied by use of density functional theory and a periodical slab model. By calculating the adsorption energy and structure of oxygen at four adsorption sites (top, bridge, fcc-hollow and hcp-hollow) on Ir(111) surface, the most stable adsorption site was determined. On this basis, the banding mechanism of O and Ir atoms was studied by density of states of oxygen and iridium atoms. Oxygen adsorbed at hcp(parallel) site on Ir(111) surface was the most stable one according to the adsorption energy calculation results. Orbital charge analysis indicate that charge transferred from 5p and 5d orbit to 2p orbit of adsorbed O atoms, and 6s orbit of iridium atoms. Meanwhile, density of state study indicated that adsorption of oxygen on Ir(111) surface is mainly due to the interaction between 2p orbit of O atoms and 5d orbit of iridium atoms.

  3. Enhancement of efficiency and stability of phosphorescent OLEDs based on heterostructured light-emitting layers

    Chin, Byung Doo, E-mail: bdchin@dankook.ac.kr [Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2011-03-23

    The light-emitting efficiency and stability of a phosphorescent organic light-emitting device (OLED), whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping influenced by heterostructured emissive layers, are studied. The variation of the material combination of the heterostructured emitter, both for mixed and double layer configuration, affects the charge injection behaviour, luminous efficiency and stability. Both double and mixed emitter configurations yield low-voltage and high-efficiency behaviour (51 lm W{sup -1} at 1000 cd m{sup -2}; 30 lm W{sup -1} at 10 000 cd m{sup -2}). Such an improvement in power efficiency at elevated brightness is sufficiently universal, while the enhancement of device half-lifetime is rather sensitive to the circumstantial layout of heterostructural emitters. With an optimal mixture of hole-transport type and electron-transport type, a half-lifetime of more than 2500 h at 4000 cd m{sup -2} is obtained, which is 8 times the half-lifetime of control devices with a single emitter structure. The origin and criterion for enhancement of efficiency and lifetime are discussed in terms of the carrier transport behaviour with a specific device architecture.

  4. Molecular Self-Assembly of Group 11 Pyrazolate Complexes as Phosphorescent Chemosensors for Detection of Benzene

    Ghazalli, N. F.; Yuliati, L.; Lintang, H. O.

    2018-01-01

    We highlight the systematic study on vapochromic sensing of aromatic vapors such as benzene using phosphorescent trinuclear pyrazolate complexes (2) with supramolecular assembly of a weak intermolecular metal-metal interaction consisting of 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). The resulting chemosensor 2(Cu) revealed positive response to benzene vapors in 5 mins by blue-shifting its emission band in 44 nm (from 616 to 572 nm) and emitted bright orange to green, where this change cannot be recovered even with external stimuli. Comparing to 2(Ag) with longer metal-metal distance (473 nm) with same sensing time and quenching in 37%, 2(Au) gave quenching in 81% from its original intensity at 612 nm with reusability in 82% without external stimuli and emitted less emissive of red-orange from its original color. The shifting phenomenon in 2(Cu) suggests diffusion of benzene vapors to inside molecules for formation of intermolecular interaction with Cu(I)-Cu(I) interaction while quenching phenomenon in 2(Au) suggests diffusion of benzene vapors to between the Au(I)-Au(I) interaction. These results indicate that suitable molecular structure of ligand and metal ion in pyrazolate complex is important for designing chemosensor in the detection of benzene vapors.

  5. Design Efficient and Ultralong Pure Organic Room-Temperature Phosphorescent Materials by Structural Isomerism.

    Xiong, Yu; Zhao, Zheng; Zhao, Wei Jun; Ma, Hui Li; Peng, Qian; He, Zi Kai; Zhang, Xue Peng; Chen, Yun Cong; He, Xue Wen; Lam, Jacky; Tang, Ben Zhong

    2018-05-08

    Pure organic materials with ultralong room temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, without heavy atoms and carbonyl or heteroatomic groups, they generally show inefficient intersystem crossing (ISC) due to the weak spin-orbit coupling (SOC). Many efforts have been made to enhance SOC but examples in realizing both efficient and ultralong RTP have been limited. Here we present a novel design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST) and pure ππ* configuration of the lowest triplet state (T1) via structural isomerism to obtain efficient and ultralong RTP materials. The meta-isomer of carbazole-substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1%, whose performance is among the best RTP materials reported so far. Study on the structure-property relationship demonstrates that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1. This rational design will open a new avenue for exploring novel pure organic RTP materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Supramolecular assembly of group 11 phosphorescent metal complexes for chemosensors of alcohol derivatives

    Lintang, H. O.; Ghazalli, N. F.; Yuliati, L.

    2018-04-01

    We report on systematic study on vapochromic sensing of ethanol by using phosphorescent trinuclear metal pyrazolate complexes with supramolecular assembly of weak intermolecular metal-metal interactions using 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). Upon excitation at 284, the resulting complexes showed emission bands with a peak centered at 616, 473 and 612 nm for 2(Cu), 2(Ag) and 2(Au), respectively. Chemosensor 2(Cu) showed positive response to ethanol vapors in 5 mins by blue-shifting its emission band from 616 to 555 nm and emitting bright orange to green. Otherwise 2(Au) gave shifting from its emission band centered at 612 to 587 nm with Δλ of 25 nm (41%) and color changes from red-orange to light green-orange while 2(Ag) showed quenching in its original emission intensity at 473 nm in 40% with color changes from dark green to less emissive. These results demonstrate that sensing capability of chemosensor 2(Cu) with suitable molecular design of ligand and metal ion in the complex is due to the formation of a weak intermolecular hydrogen bonding interaction of O atom at the methoxy of the benzyl ring with the OH of the vapors at the outside of the molecules.

  7. Density functional study the interaction of oxygen molecule with defect sites of graphene

    Qi Xuejun [State Key Laboratory of Coal Combustion, Wuhan 430074 (China); Guo Xin, E-mail: guoxin@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Wuhan 430074 (China); Zheng Chuguang [State Key Laboratory of Coal Combustion, Wuhan 430074 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The defect sites existed on the graphite surface create active sites and enhance the reactivity of carbonaceous material. Black-Right-Pointing-Pointer Oxygen molecule more favor chemisorbed on the graphene surface contains defect sites than the perfect surface. Black-Right-Pointing-Pointer The single active oxygen atom adsorbed on the defect surfaces, it completely insert into the surface. - Abstract: The present article reports a theoretical study of oxygen interacted with graphene surface containing defect sites on the atomic level by employing the density functional theory combined with the graphene cluster model. It was founded that oxygen molecule prefers to be chemisorbed on the graphene surface containing defect sites compared to the perfect surface. The adsorption energy of O{sub 2} on the double defect site is about 2.5 times as large as that on the perfect graphene surface. Moreover, the oxygen molecule interacts with S-W defect site gives rise to stable epoxy structure, which pulling the carbon atom outward from the original site in the direction perpendicular to the surface. If the oxygen molecule is adsorbed on the single vacancy site, two C-O bonds are formed on the graphene surface. However, when the oxygen molecule is chemisorbed on the double vacancy site, the oxygen atoms substitute the missing carbon atom's position in the carbon plane and form a hexagonal structure on the graphene network. The results indicate that single active oxygen atom approaches the defect site, it's completely adsorbed in the plane and high energy is released. In all cases, the interaction of an oxygen atom with defect surface involves an exothermic process. The defect site creates active sites on the surface of graphene and produces catalytic effects during the process of oxidation of carbonaceous materials.

  8. MICROBIAL DEGRADATION OF NITROGEN, OXYGEN AND SULFUR HETEROCYCLIC COMPOUNDS UNDER ANAEROBIC CONDITIONS: STUDIES WITH AQUIFER SAMPLES

    The potential for anaerobic biodegradation of 12 heterocyclic model compounds was studied. Nine of the model compounds were biotransformed in aquifer slurries under sulfate-reducing or methanogenic conditions. The nitrogen and oxygen heterocyclic compounds were more susceptible t...

  9. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process

    Silva, Elsa; Pedersen, Brian Wett; Breitenbach, Thomas

    2012-01-01

    Singlet oxygen, O2(a1Δg), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O2(a1Δg) →O2(X3Σg-) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian...

  10. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach

    Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2014-01-01

    end, due to anoxia, but smaller tumors showed undisturbed oxygen distributions. The six different models with correlated parameters generated three classes of oxygen distributions. The first was a hypothetical, negative covariance between vessel proximity and pO 2 (VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and pO 2 (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity and pO 2 (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC model, and the larger the tumor, the greater the similarity between the two models. For all simulations, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed by the UP and VPO-C scenarios. Conclusions: A novel MC algorithm was presented which simulated oxygen distributions and radiation response for various biological parameter values. The analysis showed that the VPO-C scenario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhibited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach might be valuable for qualitative analyses of factors that affect oxygen distribution as well as analyses of specific experimental and clinical situations

  11. Irradiation- and Sensitizer-Dependent Changes in the Lifetime of Intracellular Singlet Oxygen Produced in a Photosensitized Process

    Silva, Elsa; Pedersen, Brian Wett; Breitenbach, Thomas

    2012-01-01

    Singlet oxygen, O2(a1Δg), was produced upon pulsed-laser irradiation of an intracellular photosensitizer and detected by its 1275 nm O2(a1Δg) →O2(X3Σg-) phosphorescence in time-resolved experiments using (1) individual mammalian cells on the stage of a microscope and (2) suspensions of mammalian...... cells in a 1 cm cuvette. Data were recorded using hydrophilic and, independently, hydrophobic sensitizers. The microscope-based single cell results are consistent with a model in which the behavior of singlet oxygen reflects the environment in which it is produced; nevertheless, the data also indicate...... that a significant fraction of a given singlet oxygen population readily crosses barriers between phase-separated intracellular domains. The singlet oxygen phosphorescence signals reflect the effects of singlet-oxygen-mediated damage on cell components which, at the limit, mean that data were collected from dead...

  12. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  13. Numerical analysis of the electrical and the optical properties of green phosphorescent organic light-emitting diodes

    Hwang, Young Wook; Lee, Hyeon Gi; Won, Tae Young

    2014-01-01

    In this paper, we report a theoretical study on the electrical-optical properties of phosphorescent organic light-emitting diodes (PHOLEDs). Our simulation reveals that the refractive index of each material plays a crucial role in the emission characteristics and that the barrier height at the interface significantly influences the behavior of charge transport as well as the generation of excitons. The calculated transient profiles indicate that the carrier recombination in the PHOLEDs takes place mainly at the interface between the emitting layer and the hole transport layer after 8 μs. In the case of high index of refraction, the simulation result via modal analysis implies a possibility for improving the light extraction by increasing the substrate mode. As the thickness of each layer has been altered, we observe that the chromaticity of the device changes periodically.

  14. Copolymers containing phosphorescent iridium(III) complexes obtained by free and controlled radical polymerization techniques

    Ulbricht, C.; Becer, C.R.; Winter, A.; Veldman, D.; Schubert, U.S.

    2008-01-01

    A methacrylate-functionalized phosphorescent Ir(III)-complex has been synthesized, characterized, and applied as a monomer in radical copolymerizations. Together with methyl methacrylate, the complex has been copolymerized under free radical polymerization conditions. Aiming for host-guest-systems,

  15. Efficient white organic light-emitting diodes based on an orange iridium phosphorescent complex

    Chen Ping; Zhao Li; Duan Yu; Zhao Yi; Xie Wenfa; Xie Guohua; Liu Shiyong; Zhang Liying; Li Bin

    2011-01-01

    Stable and efficient white light emission is obtained by mixing blue fluorescence and orange phosphorescence. The introduction of double exciton blocking layers brings about well confinement of both charge-carriers and excitons in the emission layer. By systematically adjusting blue fluorescent and orange phosphorescent emission layers thickness, carriers in emission zone are balanced, and electrically generated excitons can be efficiently utilized. One white device with power efficiency of 14.4 lm/W at 100 cd/m 2 has excellently stable spectra. The improvement of performance is attributed to efficient utilization of the excitons and more balance of charge-carriers in emission layer. - Highlights: → Stable and efficient white light emission is obtained by mixing blue fluorescence and orange phosphorescence. → White device has power efficiency of 14.4 and 10.1 lm/W obtained at 100 and 1000 cd/m 2 , respectively. → White device has excellently stable spectra over a wide range of luminance. → Singlet and triplet excitons are sufficiently utilized by fluorescent and phosphorescent materials.

  16. Wireless high-speed data transmission with phosphorescent white-light LEDs

    Grubor, J.; Lee, S.C.J.; Langer, K-D.; Koonen, A.M.J.; Walewski, J.

    2007-01-01

    Wireless transmission exceeding 100 Mbit/s is demonstrated using a phosphorescent white-light LED in a lighting-like scenario. The data rate was achieved by detecting the blue part of the optical spectrum and applying discrete multi-tone modulation.

  17. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  18. Single-dose relative biological effectiveness and toxicity studies under conditions of hypothermia and hyperbaric oxygen

    Hering, E.R.; Blekkenhorst, G.; Harrison, G.G.; Morrell, D.; Korrubel, J.; Gregory, A.; Phillips, J.; Manca, V.; Sealy, R.; Cape Town Univ.

    1986-01-01

    An approach to using hyperbaric oxygen with radiation in a clinical situation has been described in the preceding paper in this issue. To ascertain whether there might be a change in the relative biological effectiveness of radiation on normal mammalian tissue treated under conditions of hypothermia and hyperbaric oxygen, the acute reaction to radiation of pig skin was studied. A single dose enhancement ratio at the erythema reaction level of 1.4+-0.08 was obtained when compared with irradiation at normal body temperature in air. The authors studied also a series of antioxidant enzymes in rat liver and lung after exposure to hypothermia and hyperbaric oxygen. Enzyme changes were such as to combat oxygen toxicity which might develop as a result of the pre-treatment. (author)

  19. Experimental and analytical study of oxygen depletion in stirred cell suspensions

    Whillans, D.W.; Rauth, A.M.

    1980-01-01

    The determination and maintenance of constant low but non-zero levels of oxygen is critical in the study of the radiation chemical interactions of nitroimidazoles in mammalian cells in vitro. As well, many of these chemicals have increased toxicity toward hypoxic compared to aerobic cells, although absolute hypoxia probably is not required. Both of these phenomena must be investigated in systems where significant consumption of oxygen takes place, either through radiation depletion or by cellular metabolism. In this paper an analysis has been made of the form of oxygen depletion in stirred cell suspensions with overlying gas phase, and it has been found to conform to the relationship (C[t] - C/sub infinity/) = (C[0] - C/sub infinity/) exp(-k 1 t), where C/sub infinity/ = C/sub g/ - R/k 1 . Here C[t] is the oxygen tension throughout the solution; C/sub g/, the equivalent level in the overlying gas phase; R (concentration units per sec), the depletion rate; k 1 (sec/sup -1/), a physical constant independent of oxygen concentration and depletion rate; and C/sub infinity/, the oxygen level in solution approached at long times. This relationship has been confirmed in detail using a Clark-type oxygen sensor and a high-stability amplifier design due to Koch. Since oxygen levels down to a few hundred parts per million can be determined with accuracy, it has been possible to measure precisely the oxygen levels present in our experimental systems. Implications of these results for the interpretation of data obtained in stirred cell suspension with overlying gas phase under conditions of consumption are discussed

  20. Characterization of reaction products in sodium-oxygen batteries : An electrolyte concentration study

    Hedman, Jonas

    2017-01-01

    In this thesis, the discharge products formed at the cathode and the performance and cell chemistry of sodium-oxygen batteries have been studied. This was carried out using different NaOTf salt concentrations. The influence of different salt concentrations on sodium-oxygen batteries was investigated since it has been shown that increasing the salt concentration beyond conventional concentrations could result in advantages such as increased stability of the electrolytes towards decomposition, ...

  1. Study and development of a hydrogen/oxygen fuel cell in solid polymer electrolyte technology

    Mosdale, R

    1992-10-29

    The hydrogen/oxygen fuel cell appears today as the best candidate to the replacing of the internal combustion engine for automobile traction. This system uses the non explosive electrochemical recombination of hydrogen and oxygen. It is a clean generator whom only reactive product is water. This thesis shows a theoretical study of this system, the synthesis of different kinds of used electrodes and finally an analysis of water movements in polymer electrolyte by different original technologies. 70 refs., 73 figs., 15 tabs.

  2. Study of oxygen scavenging PET-based films activated by water

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy)

    2016-05-18

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  3. Study of oxygen scavenging PET-based films activated by water

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2016-05-01

    In this work an active barrier system consisting of a thin and transparent film based on polyethylene terephthalate (PET) was studied. Dynamic oxygen absorption measurements were performed at different values of relative humidity and temperature, pointing out that humidity is a key factor in activating the oxidation of the polymer sample. Moreover, the thermal and optical properties of the films were investigated and a good correlation was found between the crystallinity increase and the consequent transparency reduction occurring after the oxygen absorption.

  4. Oxygen enriched combustion system performance study. Phase 2: 100 percent oxygen enriched combustion in regenerative glass melters, Final report

    Tuson, G.B.; Kobayashi, H.; Campbell, M.J.

    1994-08-01

    The field test project described in this report was conducted to evaluate the energy and environmental performance of 100% oxygen enriched combustion (100% OEC) in regenerative glass melters. Additional objectives were to determine other impacts of 100% OEC on melter operation and glass quality, and to verify on a commercial scale that an on-site Pressure Swing Adsorption oxygen plant can reliably supply oxygen for glass melting with low electrical power consumption. The tests constituted Phase 2 of a cooperative project between the United States Department of Energy, and Praxair, Inc. Phase 1 of the project involved market and technical feasibility assessments of oxygen enriched combustion for a range of high temperature industrial heating applications. An assessment of oxygen supply options for these applications was also performed during Phase 1, which included performance evaluation of a pilot scale 1 ton per day PSA oxygen plant. Two regenerative container glass melters were converted to 100% OEC operation and served as host sites for Phase 2. A 75 ton per day end-fired melter at Carr-Lowrey Glass Company in Baltimore, Maryland, was temporarily converted to 100% OEC in mid- 1990. A 350 tpd cross-fired melter at Gallo Glass Company in Modesto, California was rebuilt for permanent commercial operation with 100% OEC in mid-1991. Initially, both of these melters were supplied with oxygen from liquid storage. Subsequently, in late 1992, a Pressure Swing Adsorption oxygen plant was installed at Gallo to supply oxygen for 100% OEC glass melting. The particular PSA plant design used at Gallo achieves maximum efficiency by cycling the adsorbent beds between pressurized and evacuated states, and is therefore referred to as a Vacuum/Pressure Swing Adsorption (VPSA) plant.

  5. Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage.

    Li, Zongxi; Roussakis, Emmanuel; Koolen, Pieter G L; Ibrahim, Ahmed M S; Kim, Kuylhee; Rose, Lloyd F; Wu, Jesse; Nichols, Alexander J; Baek, Yunjung; Birngruber, Reginald; Apiou-Sbirlea, Gabriela; Matyal, Robina; Huang, Thomas; Chan, Rodney; Lin, Samuel J; Evans, Conor L

    2014-11-01

    Oxygen plays an important role in wound healing, as it is essential to biological functions such as cell proliferation, immune responses and collagen synthesis. Poor oxygenation is directly associated with the development of chronic ischemic wounds, which affect more than 6 million people each year in the United States alone at an estimated cost of $25 billion. Knowledge of oxygenation status is also important in the management of burns and skin grafts, as well as in a wide range of skin conditions. Despite the importance of the clinical determination of tissue oxygenation, there is a lack of rapid, user-friendly and quantitative diagnostic tools that allow for non-disruptive, continuous monitoring of oxygen content across large areas of skin and wounds to guide care and therapeutic decisions. In this work, we describe a sensitive, colorimetric, oxygen-sensing paint-on bandage for two-dimensional mapping of tissue oxygenation in skin, burns, and skin grafts. By embedding both an oxygen-sensing porphyrin-dendrimer phosphor and a reference dye in a liquid bandage matrix, we have created a liquid bandage that can be painted onto the skin surface and dries into a thin film that adheres tightly to the skin or wound topology. When captured by a camera-based imaging device, the oxygen-dependent phosphorescence emission of the bandage can be used to quantify and map both the pO2 and oxygen consumption of the underlying tissue. In this proof-of-principle study, we first demonstrate our system on a rat ischemic limb model to show its capabilities in sensing tissue ischemia. It is then tested on both ex vivo and in vivo porcine burn models to monitor the progression of burn injuries. Lastly, the bandage is applied to an in vivo porcine graft model for monitoring the integration of full- and partial-thickness skin grafts.

  6. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  7. Oxygen defects in amorphous Al{sub 2}O{sub 3}: A hybrid functional study

    Guo, Zhendong, E-mail: zhendong.guo@epfl.ch; Ambrosio, Francesco; Pasquarello, Alfredo [Chaire de Simulation à l' Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-08-08

    The electronic properties of the oxygen vacancy and interstitial in amorphous Al{sub 2}O{sub 3} are studied via ab initio molecular dynamics simulations and hybrid functional calculations. Our results indicate that these defects do not occur in amorphous Al{sub 2}O{sub 3}, due to structural rearrangements which assimilate the defect structure and cause a delocalization of the associated defect levels. The imbalance of oxygen leads to a nonstoichiometric compound in which the oxygen occurs in the form of O{sup 2–} ions. Intrinsic oxygen defects are found to be unable to trap excess electrons. For low Fermi energies, the formation of peroxy linkages is found to be favored leading to the capture of holes. The relative +2/0 defect levels occur at 2.5 eV from the valence band.

  8. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  9. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport.

    Goldman, D; Popel, A S

    2000-09-21

    The objective of this study was to investigate the effects of capillary network anastomoses and tortuosity on oxygen transport in skeletal muscle, as well as the importance of muscle fibers in determining the arrangement of parallel capillaries. Countercurrent flow and random capillary blockage (e.g. by white blood cells) were also studied. A general computational model was constructed to simulate oxygen transport from a network of blood vessels within a rectangular volume of tissue. A geometric model of the capillary network structure, based on hexagonally packed muscle fibers, was constructed to produce networks of straight unbranched capillaries, capillaries with anastomoses, and capillaries with tortuosity, in order to examine the effects of these geometric properties. Quantities examined included the tissue oxygen tension and the capillary oxyhemoglobin saturation. The computational model included a two-phase simulation of blood flow. Appropriate parameters were chosen for working hamster cheek-pouch retractor muscle. Our calculations showed that the muscle-fiber geometry was important in reducing oxygen transport heterogeneity, as was countercurrent flow. Tortuosity was found to increase tissue oxygenation, especially when combined with anastomoses. In the absence of tortuosity, anastomoses had little effect on oxygen transport under normal conditions, but significantly improved transport when vessel blockages were present. Copyright 2000 Academic Press.

  10. Pulse radiolysis study of reaction of bull serum albumin electron adduct with oxygen. Polychromatic kinetics of reaction with adsorbed oxygen

    Pribush, A.G.

    1986-01-01

    By the method of pulse radiolysis the reaction of bull serum albumin electron adduct with oxygen is investigated. As pulsed radiation source electron linear accelerators with particle energy of 8.0 and 4.5 MeV and pulse time of 40 ns and 2.2 μs, respectively have been used. It is assumed that the disappearance of protein electron adduct occurs in the course of its interaction with oxygen adsorbed on protein globular molecule

  11. Kinetics of oxygen exchange between bisulfite ion and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy

    Horner, D.A.

    1984-08-01

    The nuclear magnetic relaxation times of oxygen-17 have been measured in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 as a function of temperature, pH, and S(IV) concentration, at an ionic strength of 1.0 m. The rate law for oxygen exchange between bisulfite ion and water was obtained from an analysis of the data, and is consistent with oxygen exchange occurring via the reaction SO 2 + H 2 O right reversible H + + SHO 3 - . The value of k/sub -1/ is in agreement with relaxation measurements. Direct spectroscopic evidence was found for the existence of two isomers of bisulfite ion: one with the proton bonded to the sulfur (HSO 3 - ) and the other with the proton bonded to an oxygen (SO 3 H - ). (The symbol SHO 3 - in the above chemical equation refers to both isomeric forms of bisulfite ion.) The relative amounts of the two isomers were determined as a function of temperature, and the rate and mechanism of oxygen exchange between the two was investigated. One of the two isomers, presumably SO 3 H - , exchanges oxygens with water much more rapidly than does the other. A two-pulse sequence was developed which greatly diminished the solvent peak in the NMR spectrum

  12. Study on oxygen transfer by solid jet aerator with multiple openings

    B.K. Shukla

    2018-04-01

    Full Text Available In the current study, two different sets of solid jet aerators having area of openings equal to 594.96 mm2 and 246.30 mm2 with rectangular nozzles having rounded ends were studied. Each set consisted of aerators having one, two, four and eight openings. The oxygenation performance of every model was studied for five different discharges of 1.11 l/s, 2.10 l/s, 2.96 l/s, 3.83 l/s and 4.69 l/s were studied. At low discharges, the aerator having lesser number of openings demonstrated more oxygen-transfer efficiency whereas at higher discharges, the aerator having more number of openings yielded more oxygenation-efficiency. Maximum value of oxygen-transfer efficiency of 21.53 kg-O2/kW-hr was obtained for the discharge of 1.11 l/s for single nozzle aerator; however the maximum oxygen-transfer factor of 2.0 × 10−2 s−1 was obtained at discharge of 4.69 l/s for aerator having eight numbers of openings having area of 594.96 mm2. On the other hand, maximum oxygen transfer efficiency of 10.93 kg-O2/kW-hr was demonstrated by aerator with single opening at a discharge of 1.11 l/s and maximum oxygen transfer factor of 7.83 × 10−3 s−1 was obtained from aerator with eight openings at a discharge of 4.69 l/s corresponding to set of aerators with area of openings equal to 246.30 mm2. Multiple non-linear regression modelling was applied to predict oxygen transfer of the aerators for different combinations of input parameters. At the end, the models were compared with conventional methods of aeration and were found to be competitive with traditional devices. Keywords: Plunging jet, Jet aerator, Oxygen transfer, Aeration, Dissolved oxygen

  13. OXYGEN TRANSFER STUDIES AT THE MADISON METROPOLITAN SEWERAGE DISTRICT FACILITIES

    Field studies at the Madison Metropolitan Sewerage District facilities were conducted over a 3-year period to obtain long-term data on the performance of fine pore aeration equipment in municipal wastewater. The studies were conducted on several basins in the East Plant containi...

  14. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  15. Electron attachment to oxygen, ozone and other compounds of atmospheric relevance as studied with ultra-high energy resolution

    Maerk, T.D.; Matejcik, S.; Kiendler, A.; Cicman, P.; Senn, G.; Skalny, J.; Stampfli, P.; Illenberger, E.; Chu, Y.; Stamatovic, A.

    1996-01-01

    The processes of electron attachment to oxygen, ozone, ozone/oxygen cluster and oxygen cluster as well as other compounds of atmospheric relevance (CF 2 Cl 2 , CHCl 3 and CCl 3 Br) were studied with ultra-high energy resolution crossed beam technique

  16. High-performance hybrid white organic light-emitting devices without interlayer between fluorescent and phosphorescent emissive regions.

    Sun, Ning; Wang, Qi; Zhao, Yongbiao; Chen, Yonghua; Yang, Dezhi; Zhao, Fangchao; Chen, Jiangshan; Ma, Dongge

    2014-03-12

    By using mixed hosts with bipolar transport properties for blue emissive layers, a novel phosphorescence/fluorescence hybrid white OLED without using an interlayer between the fluorescent and phosphorescent regions is demonstrated. The peak EQE of the device is 19.0% and remains as high as 17.0% at the practical brightness of 1000 cd m(-2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Oxidative degradation of alternative gasoline oxygenates in aqueous solution by ultrasonic irradiation: Mechanistic study

    Kim, Duk Kyung, E-mail: dkim@aum.edu [Department of Physical Science, Auburn University Montgomery, Montgomery, AL 36117 (United States); O' Shea, Kevin E., E-mail: osheak@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33199 (United States); Cooper, William J. [Department of Civil and Environmental Engineering, Urban Water Research Center, University of California Irvine, Irvine, CA 92697-2175 (United States)

    2012-07-15

    Widespread pollution has been associated with gasoline oxygenates of branched ethers methyl tert-butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and tert-amyl ether (TAME) which enter groundwater. The contaminated plume develops rapidly and treatment for the removal/destruction of these ethers is difficult when using conventional methods. Degradation of MTBE, with biological methods and advanced oxidation processes, are rather well known; however, fewer studies have been reported for degradation of alternative oxygenates. Degradation of alternative gasoline oxygenates (DIPE, ETBE, and TAME) by ultrasonic irradiation in aqueous oxygen saturation was investigated to elucidate degradation pathways. Detailed degradation mechanisms are proposed for each gasoline oxygenate. The common major degradation pathways are proposed to involve abstraction of {alpha}-hydrogen atoms by hydroxyl radicals generated during ultrasound cavitation and low temperature pyrolytic degradation of ETBE and TAME. Even some of the products from {beta}-H abstraction overlap with those from high temperature pyrolysis, the effect of {beta}-H abstraction was not shown clearly from product study because of possible 1,5 H-transfer inside cavitating bubbles. Formation of hydrogen peroxide and organic peroxides was also determined during sonolysis. These data provide a better understanding of the degradation pathways of gasoline oxygenates by sonolysis in aqueous solutions. The approach may also serve as a model for others interested in the details of sonolysis. - Highlights: Black-Right-Pointing-Pointer Gasoline oxygenates (ETBE, TAME, DIPE) were completely degraded after 6 hours under ultrasonic irradiation in O{sub 2} saturation. Black-Right-Pointing-Pointer The major degradation pathways were proposed to involve abstraction of {alpha}-hydrogen atoms by hydroxyl radicals and low temperature pyrolytic degradation. Black-Right-Pointing-Pointer The effect of {beta

  18. Oxygen ingress study of 3D printed gaseous radiation detector enclosures

    Steer, Christopher A.; Durose, Aaron [AWE, Alderrnaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2015-07-01

    As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasing as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)

  19. Oxygen ingress study of 3D printed gaseous radiation detector enclosures

    Steer, Christopher A.; Durose, Aaron

    2015-01-01

    As part of our ongoing studies into the potential application of 3D printing techniques to gaseous radiation detectors, we have studied the ability of 3D printed enclosures to resist environmental oxygen ingress. A set of cuboid and hexagonal prism shaped enclosures with wall thicknesses of 4 mm, 6 mm, 8 mm and 10 mm were designed and printed in nylon using a EOSINT P 730 Selective Laser Sintering 3D printer system These test enclosures provide a comparison of different environmental gas ingress for different 3D printing techniques. The rate of change of oxygen concentration was found to be linear, decreasing as the wall thickness increases. It was also found that the hexagonal prism geometry produced a lower rate of change of oxygen concentration compared with the cuboid shaped enclosures. Possible reasons as to why these results were obtained are discussed The implications for the this study for deployable systems are also discussed (authors)

  20. Manganese in photosynthetic oxygen evolution: An edge and EXAFS study

    Yachandra, V.K.; Guiles, R.D.; McDermott, A.; Britt, R.D.; Dexheimer, S.L.; Saver, K.; Klein, M.P.

    1985-01-01

    The authors edge studies have previously shown that the Mn edges in photosynthetic samples in the S 1 and S 2 states fall into the range for Mn III and Mn IV complexes, and that the K-edge energy increases appreciably on advancing S 1 to S 2 . This was the first evidence that manganese is directly involved in the storage of oxidizing equivalents. More recently, they have extended this result with better quality data from both spinach and a thermophilic cyanobacterium. The newer results show an interesting structure to the edges, including a 1s to 3d transition. The EXAFS results for spinach membranes show that the salient features of the Mn structure are the same in the S 1 and S 2 states. These features are a Mn neighbor at approx. =2.7 A and O or N neighbors at approx. =1.75 A and approx. =2.0 A. The EXAFS spectrum of the S 1 state of the thermophilic blue green algae are strikingly similar to that of spinach

  1. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or

  2. Oxygen vacancies in oxides studied by annihilation of mono-energetic positrons

    Hugenschmidt, Christoph; Pikart, Philip [ZWE FRM II, Technische Universitaet Muenchen, Lichtenbergstrasse 1, 85747 Garching (Germany); Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Schreckenbach, Klaus [Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2009-07-01

    Oxygen vacancies play a fundamental role for the material properties of various oxides, e.g. charge carrier density in high-Tc superconductors, magnetic properties of diluted magnetic semiconductors or paramagnetic properties of SiO{sub 2}. In this study, open volume defects in (metal) oxides are investigated by Doppler-broadening spectroscopy (DBS) of the positron annihilation. More detailed information about the chemical surrounding at the positron annihilation site is gained by additional coincident DBS experiments, where a signature of positrons annihilating with electrons from oxygen is observed. The mono-energetic positron beam at NEPOMUC was used which allows depth dependent measurements, and hence the investigation of thin oxide layers. Recent results for metallic oxides such as ZnO are presented and compared with various non-metallic oxides such as amorphous and crystalline SiO{sub 2}, oxygen terminated Si-surface, and ice. The role of neutral and charged oxygen vacancies and the application of the positron annihilation technique to study oxygen vacancies will be discussed.

  3. Clinical studies with high flow nasal cannula oxygen delivery in 2015

    David Sotello

    2016-04-01

    Full Text Available HFNC devices can provide humidified oxygen at high flow rates with high FiO2s.  This method of oxygen delivery appears to be more comfortable than using noninvasive ventilation, and it does improve oxygenation, reduce respiratory rates, and reduce the sense of dyspnea.  This modality has been studied most in patients with acute hypoxemic respiratory failure. The study reported by Frat et al provides good evidence that patients with moderate to severe respiratory failure (PaO2/FiO2 < 200 may benefit the most. The more complex the patient’s underlying medical problems are the more likely HFNC therapy to fail

  4. Stability and electronic properties of oxygen-doped ZnS polytypes: DFTB study

    Popov, Ilya S.; Vorokh, Andrey S.; Enyashin, Andrey N.

    2018-06-01

    Synthesis from aqueous solutions is an affordable method for fabrication of II-VI semiconductors. However, application of this method often imposes a disorder of crystal lattice, manifesting as a rich variety of polytypes arising from wurtzite and zinc blende phases. The origin of this disordering still remains debatable. Here, the influence of the most likely impurity at water environment - substitutional oxygen - on the polytypic equilibrium of zinc sulphide is studied by means of density-functional tight-binding method. According to calculations, the inclusion of such oxygen does not affect the polytypic equilibrium. Apart of thermodynamic stability, the electronic and elastic properties of ZnS polytypes are studied as the function of oxygen distribution.

  5. Experimental study of negative corona discharge in pure carbon dioxide and its mixtures with oxygen

    Mikoviny, T; Kocan, M; Matejcik, S; Mason, N J; Skalny, J D

    2004-01-01

    The products of a negative corona discharge in both pure CO 2 and mixtures of CO 2 + O 2 have been studied using a coaxial cylindrical electrode geometry with particular emphasis on the production of ozone. The discharge current in pure CO 2 was found to be highly sensitive to the presence of trace concentrations of molecular oxygen and to changes in the flow speed through the discharge. The effect of dissociative electron attachment to ozone on the discharge current was studied by measurements of ozone and CO production. The ozone concentration increases monotonically with increasing content of oxygen in the mixture with carbon dioxide, whereas the CO concentration exhibits a flat maximum for oxygen concentrations of around 4%. A simple kinetic model of the dominant chemical processes is described and compared with the experimental results

  6. First principles study of dissolved oxygen water adsorption on Fe (001 surfaces

    Dong ZHANG

    2018-02-01

    Full Text Available In order to study the mechanism of dissolved oxygen content on the surface corrosion behavior of Fe-based heat transfer, the first principle is used to study the adsorption of O2 monomolecular, H2O monolayer and dissolved oxygen system on Fe-based heat transfer surface. The GGA/PBE approximation is used to calculate the adsorption energy, state density and population change during the adsorption process. Calculations prove that when the dissolved oxygen is adsorbed on the Fe-based surface, the water molecule tends to adsorb at the top sites, and the oxygen molecule tends to adsorb at Griffiths. When the H2O molecule adsorbs and interacts on the Fe (001 surface, the charge distribution of the interfacial double electric layer changes to cause the Fe atoms to lose electrons, resulting in the change of the surface potential. When the O2 molecule adsorbs on the Fe (001 crystal surfaces, the electrons on the Fe (001 surface are lost and the surface potential increases. O2 molecule and the surface of the Fe atoms are prone to electron transfer, in which O atom's 2p orbit for the adsorption of O2 molecule on Fe (001 crystal surface play a major role. With the increase of the proportion of O2 molecule in the dissolved oxygen water, the absolute value of the adsorption energy increases, and the interaction of the Fe-based heat transfer surface is stronger. This study explores the influence law of different dissolved oxygen on the Fe base heat exchange surface corrosion, and the base metal corrosion mechanism for experimental study provides a theoretical reference.

  7. Determination of DNA by solid substrate room temperature phosphorescence enhancing method based on the Morin.SiO2 luminescent nanoparticles-Pd system as a phosphorescence probe

    Liu Jiaming; Yang Tianlong; Gao Fei; Hu Lixiang; He Hangxia; Liu Qinying; Liu Zhenbo; Huang Xiaomei; Zhu Guohui

    2006-01-01

    Sodium carbonate (Na 2 SiO 3 ) as the precursor, was mixed with Morin organic dye to synthesize silicon dioxide luminescent nanoparticles containing Morin (Morin.SiO 2 ) by sol-gel method. The particle sizes of SiO 2 .nH 2 O and Morin.SiO 2 were both 50 nm, measured with TEM (transmission electron microscope). Morin.SiO 2 modified by HS-CH 2 COOH could be dissolved by water. In the HMTA (hexamethylenetetramine)-HCl buffer solution, Pd 2+ could coordinate with Morin in Morin.SiO 2 to form complex Pd 2+ -Morin.SiO 2 , which could emit phosphorescence on polyamide membrane. And DNA (deoxyribonucleic acid) could cause a sharp enhancement of the room temperature phosphorescence (RTP) intensity of complex Pd 2+ -Morin.SiO 2 . Thus a new method of solid substrate room temperature phosphorescence (SS-RTP) enhancing for the determination of DNA was established based on the Morin.SiO 2 luminescent nanoparticles-Pd system as a phosphorescence probe. The ΔIp is directly proportional to the content of DNA in the range of 4.00-1000.0 fg spot -1 (corresponding concentration: 0.010-2.50 ng ml -1 ). The regression equation of working curve was ΔIp = 21.13 + 0.2076m DNA (fg spot -1 ) (r = 0.9990) and the detection limit was 0.61 fg spot -1 (corresponding concentration: 1.5 pg ml -1 ). This method had a wide linear range, high sensitivity, convenience, rapidity and only a little sample was needed. Samples containing 0.10 and 25.0 ng ml -1 DNA were measured repeatedly for 11 times and RSDs were 3.2 and 4.1% (n = 11), respectively, which indicated that the method had a good repeatability. Disturbance of common ions, such as Mg 2+ , K + , and Ca 2+ , was small, and there was no disturbance in the presence of protein and RNA. This method has been applied to the determination of DNA in nectar successfully

  8. Oxygen diffusion-concentration in phospholipidic model membranes. An ESR-saturation study

    Vachon, A.; Lecomte, C.; Berleur, F.

    1986-04-01

    Fully hydrated liposomes of dipalmitoyl-phosphatidylcholine were labelled with 5 (or 7, 10, 12, 16)-doxyl stearic acid at pH 6 and 8, and studied by the continuous wave ESR-saturation technique. The ESR spectral magnitude depends on the hyperfrequency power P and on both T 1 and T 2 relaxation times. Saturation, i.e. the non linearity of the spectral magnitude plotted versus √P can be quantified by a P1/2 parameter (power at which the signal is half as great as it would be without saturation). If we assume T 2 weakly modified by spin exchange between paramagnetic spin probe and oxygen in triplet state, P1/2 is inversely proportional to T 1 , and becomes a sensitive parameter to appreciate the oxygen transport (oxygen diffusion-concentration product) inside the bilayers. According to the DPPC bilayer phase transition diagrams, P1/2 (oxygen diffusion-concentration) is related to the thermodynamic state of the membrane. This technique provides further informations on a particular property of a radioprotective agent, cysteamine, which seems to inhibit spin-triplet exchange and hence maximizes T 1 (minimizes P1/2). Since radioprotective agents are known to act by scavenging radiation-induced free radicals and by inhibiting oxygen-dependent free radical processes, such a result may contribute to elucidate radioprotecting mechanisms

  9. A metabolomic approach to the study of wine micro-oxygenation.

    Panagiotis Arapitsas

    Full Text Available Wine micro-oxygenation is a globally used treatment and its effects were studied here by analysing by untargeted LC-MS the wine metabolomic fingerprint. Eight different procedural variations, marked by the addition of oxygen (four levels and iron (two levels were applied to Sangiovese wine, before and after malolactic fermentation. Data analysis using supervised and unsupervised multivariate methods highlighted some known candidate biomarkers, together with a number of metabolites which had never previously been considered as possible biomarkers for wine micro-oxygenation. Various pigments and tannins were identified among the known candidate biomarkers. Additional new information was obtained suggesting a correlation between oxygen doses and metal contents and changes in the concentration of primary metabolites such as arginine, proline, tryptophan and raffinose, and secondary metabolites such as succinic acid and xanthine. Based on these findings, new hypotheses regarding the formation and reactivity of wine pigment during micro-oxygenation have been proposed. This experiment highlights the feasibility of using unbiased, untargeted metabolomic fingerprinting to improve our understanding of wine chemistry.

  10. A Metabolomic Approach to the Study of Wine Micro-Oxygenation

    Arapitsas, Panagiotis; Scholz, Matthias; Vrhovsek, Urska; Di Blasi, Stefano; Biondi Bartolini, Alessandra; Masuero, Domenico; Perenzoni, Daniele; Rigo, Adelio; Mattivi, Fulvio

    2012-01-01

    Wine micro-oxygenation is a globally used treatment and its effects were studied here by analysing by untargeted LC-MS the wine metabolomic fingerprint. Eight different procedural variations, marked by the addition of oxygen (four levels) and iron (two levels) were applied to Sangiovese wine, before and after malolactic fermentation. Data analysis using supervised and unsupervised multivariate methods highlighted some known candidate biomarkers, together with a number of metabolites which had never previously been considered as possible biomarkers for wine micro-oxygenation. Various pigments and tannins were identified among the known candidate biomarkers. Additional new information was obtained suggesting a correlation between oxygen doses and metal contents and changes in the concentration of primary metabolites such as arginine, proline, tryptophan and raffinose, and secondary metabolites such as succinic acid and xanthine. Based on these findings, new hypotheses regarding the formation and reactivity of wine pigment during micro-oxygenation have been proposed. This experiment highlights the feasibility of using unbiased, untargeted metabolomic fingerprinting to improve our understanding of wine chemistry. PMID:22662221

  11. Effect of high hydrostatic pressure on small oxygen-related clusters in silicon: LVM studies

    Murin, L.I.; Lindstroem, J.L.; Misiuk, A.

    2003-01-01

    Local vibrational mode (LVM) spectroscopy is used to explore the effect of high hydrostatic pressure (HP) on the formation of small oxygen-related clusters (dimers, trimers, thermal donors, and C-O complexes) at 450 deg. C and 650 deg. C in Cz-Si crystals with different impurity content and prehistory. It is found, in agreement with previous studies, that HP enhances the oxygen clustering in Cz-Si at elevated temperatures. The effect of HP is related mainly to enhancement in the diffusivity of single oxygen atoms and small oxygen aggregates. HP does not noticeably increase the binding energies of the most simple oxygen related complexes like O 2i , C s O ni . The biggest HP effect on the thermal double donor (TDDs) generation is revealed in hydrogenated samples. Heat-treatment of such samples at 450 deg. C under HP results in extremely high TDD introduction rates as well as in a strong increase in the concentration of the first TDD species

  12. Marked reduction of cerebral oxygen metabolism in patients with advanced cirrhosis; A positron emission tomography study

    Kawatoko, Toshiharu; Murai, Koichiro; Ibayashi, Setsurou; Tsuji, Hiroshi; Nomiyama, Kensuke; Sadoshima, Seizo; Eujishima, Masatoshi; Kuwabara, Yasuo; Ichiya, Yuichi (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-01-01

    Regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (rCMRO{sub 2}), and oxygen extraction fraction (rOEF) were measured using positron emission tomography (PET) in four patients with cirrhosis (two males and two females, aged 57 to 69 years) in comparison with those in five age matched controls with previous transient global amnesia. PET studies were carried out when the patients were fully alert and oriented after the episodes of encephalopathy. In the patients, rCBF tended to be lower, while rCMRO{sub 2} was significantly lowered in almost all hemisphere cortices, more markedly in the frontal cortex. Our results suggest that the brain oxygen metabolism is diffusely impaired in patients with advanced cirrhosis, and the frontal cortex seems to be more susceptible to the systemic metabolic derangements induced by chronic liver disease. (author).

  13. Study of atomic excitations in sputtering with targets partially covered with oxygen

    Weng, J.; Veje, E.

    1984-01-01

    We have bombarded pure, elemental targets of Be, B, Mg, Al, Si, Ti, and Au with 80 keV Ar + ions and studied excitation of sputtered atoms or ions under UHV conditions as well as with oxygen present at the target surface. The measurements on Mg, Al, Si, and Ti have been done at projectile incidence angles from 0 0 to 85 0 . Excitation probabilities for gold were found to be only very little influenced by oxygen, but for Be, B, Mg, Al, Si, and Ti, the excitation probabilities were in many, but not all, cases found to depend strongly on the oxygen pressure as well as on the beam current density. This indicates that the excitation mechanism is strongly dependent on the initial electronic conditions of the solid. (orig.)

  14. Experimental and theoretical studies of nuclear generation of ozone and its photolysis into singlet delta oxygen

    Elsayed-Ali, H.E.

    1985-01-01

    The radiation chemistry of oxygen discharges is better-studied system. The discharges were made by irradiation with high energy helium and lithium ions created by a neutron-induced reaction in boron (10). A detailed numerical model and a simplified analytical model of oxygen radiolysis have been developed to interpret the data. A summary of the data on the ozone yield from irradiation of He-O2, Ne-O2 and Ar-O2 is presented. Dose rates are also indicated. The present work appears to be the first to measure the steady state ozone concentration in noble gas-oxygen discharges and the effect of SF6 on this steady state concentration. 106 refs

  15. FTIR studies of swift silicon and oxygen ion irradiated porous silicon

    Bhave, Tejashree M.; Hullavarad, S.S.; Bhoraskar, S.V.; Hegde, S.G.; Kanjilal, D.

    1999-01-01

    Fourier Transform Infrared Spectroscopy has been used to study the bond restructuring in silicon and oxygen irradiated porous silicon. Boron doped p-type (1 1 1) porous silicon was irradiated with 10 MeV silicon and a 14 MeV oxygen ions at different doses ranging between 10 12 and 10 14 ions cm -2 . The yield of PL in porous silicon irradiated samples was observed to increase considerably while in oxygen irradiated samples it was seen to improve only by a small extent for lower doses whereas it decreased for higher doses. The results were interpreted in view of the relative intensities of the absorption peaks associated with O-Si-H and Si-H stretch bonds

  16. Study of reactions between nuclear fuel and cladding (316 stainless steel) in reactors. Influence of oxygen

    Otter, Monique.

    1980-12-01

    We have studied oxidation of 316 steel in close contact with oxides (Usub(0,74)Pusub(0,26)O 2 or UO 2 ), the stoichiometry of oxygen ranging from 2.00 to 2.5. Experiments are carried out either in a closed isothermal system or in an opened isothermal system with a fixed oxygen potential of uranium oxide. We have realized a potentiostatic device using a solid state electrotyte galvanic cell. In a closed system, the sensitized austenitic steel shows intergranular and volume oxidation probably enhanced by migration of steel components towards the fuel. Evidence of the usefulness of passivation have been obtained. We conclude that in a fast reactor sensitized cladding steel is oxydized by the constant potential of oxygen of UPuO 2 . Deposits observed in fuel can be explain by evaporation and cyclic transport phenomena that can be differents from VAN-ARKEL mechanism taking place through fission products [fr

  17. Triphenylsilane-substituted arenes as host materials for use in green phosphorescent organic light emitting diodes

    Kim, Jwajin; Lee, Kum Hee; Kim, Young Seok; Lee, Hyun Woo [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-03-15

    We demonstrated triphenylsilane-substituted arenes (1–4) as host materials for green phosphorescent organic light-emitting diodes. Particularly, a device using 9,9-dimethyl-2-(triphenylsilyl)-7-[4-(triphenylsilyl)phenyl]-9H-fluorene (compound 4) as the host material with the green phosphorescence dopant bis[2-(1,1′,2′,1′′-terphen-3-yl)pyridinato-C,N]iridium(III) (acetylacetonate) showed the efficient green emission with an external quantum efficiency of 4.64%, a power efficiency of 7.2 lm/W and luminous efficiency of 16.6 cd/A at 20 mA/cm{sup 2}, respectively, with the Commission International de L’Eclairage chromaticity coordinates of (0.33, 0.59) at 8.0 V.

  18. Efficient red phosphorescent organic light emitting diodes with double emission layers

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G

    2008-01-01

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A -1 at 10 mA cm -2 is achieved in the D-EML device compared with 3.7 cd A -1 in the single-EML device

  19. Efficient red phosphorescent organic light emitting diodes with double emission layers

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G [NNL, National Nanotechnology Laboratory of CNR-INFM, Distretto tecnologico ISUFI, Universita del Salento, Italy, Via per Arnesano, Km.5, 73100 Lecce (Italy)], E-mail: mohamed.benkhalifa@unile.it

    2008-08-07

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A{sup -1} at 10 mA cm{sup -2} is achieved in the D-EML device compared with 3.7 cd A{sup -1} in the single-EML device.

  20. Mixing of phosphorescent and exciplex emission in efficient organic electroluminescent devices.

    Cherpak, Vladyslav; Stakhira, Pavlo; Minaev, Boris; Baryshnikov, Gleb; Stromylo, Evgeniy; Helzhynskyy, Igor; Chapran, Marian; Volyniuk, Dmytro; Hotra, Zenon; Dabuliene, Asta; Tomkeviciene, Ausra; Voznyak, Lesya; Grazulevicius, Juozas Vidas

    2015-01-21

    We fabricated a yellow organic light-emitting diode (OLED) based on the star-shaped donor compound tri(9-hexylcarbazol-3-yl)amine, which provides formation of the interface exciplexes with the iridium(III) bis[4,6-difluorophenyl]-pyridinato-N,C2']picolinate (FIrpic). The exciplex emission is characterized by a broad band and provides a condition to realize the highly effective white OLED. It consists of a combination of the blue phosphorescent emission from the FIrpic complex and a broad efficient delayed fluorescence induced by thermal activation with additional direct phosphorescence from the triplet exciplex formed at the interface. The fabricated exciplex-type device exhibits a high brightness of 38 000 cd/m(2) and a high external quantum efficiency.

  1. Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

    Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.

    2011-04-01

    The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

  2. Radiation dosimetry by optically stimulated phosphorescence of CaF2:Mn

    Bernhardt, R.

    1974-01-01

    In addition to the light emission which occurs in TL, trapped electrons in CaF 2 :Mn can also be released by stimulation with visible and UV light. The measurement of stimulated light emission is disturbed by illumination. But there is an optically-stimulated phosphorescence, which permits to separate measurement of stimulated light emission and illumination. A theory is given. During illumination a part of the released electrons are captured by flat traps, which are emptied at room temperature. A dose dependent signal can be measured at a defined time after the stimulating pulse of visible light. Dosimeters (CaF 2 :Mn teflon disks) were illuminated by the light of a tungsten lamp. The dose response curve was found to be linear from 1 to 10 5 rads. The response curve obtained for optical stimulation was similar to the TL-response curve. Fading of the optically-stimulated signal was higher than TL-fading. Repeated readings of a single sample are possible. The number of readings is dependent on illumination conditions. Accuracy of sample to sample was about 3.5% (standard deviation). There are two background signals. (1) Post-irradiation phosphorescence occurs. Flat traps are also filled after 60 Co gamma excitation. The measurement of the signal is possible after decay of post-irradiation phosphorescence. (2) There is an optically-excited phosphorescence, which also occurs if all trapped electrons are released. The lower limit of dose measurements is given by deviations of optically-excited emission and the dark-current of the photomultiplier tube. (author)

  3. Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    Worsfold, P. J.; Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.

    2002-01-01

    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each mainfold and results are presented for the determination of the four trace metals i...

  4. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    Salert, Beatrice Ch. D.; Wedel, Armin; Grubert, Lutz; Eberle, Thomas; Anémian, Rémi; Krueger, Hartmut

    2012-01-01

    This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obta...

  5. Effect of mixed hole transporting host on the mobility, Gaussian density of states and efficiencies of a heterojunction phosphorescent organic light emitting diode

    Talik, N A; Woon, K L; Yap, B K

    2016-01-01

    We present an in-depth study of the hole transport in poly(vinylcarbazole) PVK films blended with small molecule tris(4-carbazoyl-9-ylphenyl)amine (TcTa). Doping TcTa in PVK introduces shallow hole traps when the doping concentration is lower than 20 wt%. It becomes percolative at higher concentrations. The energetic disorder σ of the blended system reduces from ∼72 meV at 0 wt% TcTa to ∼41 meV at 50 wt% TcTa. A correlation between σ and the film morphologies suggests that the blending of TcTa molecules in the film does not only change the film homogeneity and roughness but also the energetic disorder. In addition to the mobility study, we fabricated a red phosphorescent organic light emitting diode with the same blending system. By doping merely 5 wt% of TcTa into PVK as mixed hole-transporting hosts, the efficiency of the deep red heterojunction phosphorescent organic light emitting diode increased from 2 cd A −1 to 4 cd A −1 , suggesting that TcTa molecules assist in hole injection. (paper)

  6. Study by photoluminescence of centers associated to oxygen and carbon in silicon

    Lazrak, A.

    1984-12-01

    Results on analysis of luminescence of impurities in silicon are examined. Then in chapter 5, p. 76 to 91, irradiation of silicon by electrons is studied, interaction of defects created and diffusion, influence of carbon, oxygen and doping materials, annealing at 450 0 C, photoluminescence spectra are investigated [fr

  7. Preliminary oxygen-18 and deuterium study of the dynamics of Lake Titicaca

    Fontes, J.C.; Boulange, B.; Carmouze, J.P.; Florkowski, T.

    1979-01-01

    An oxygen-18 study of Lake Titicaca indicates good mixing from the surface down to 250 m. An attempt was made to assess the isotope mass balance which suggests that up to 7% of inflow is lost by leakage and surface outflow. Further measurements are needed for final checking of the isotope balance model. (author)

  8. A study of oxygen isotopic fractionation during bio-induced calcite precipitation in eutrophic Baldeggersee, Switzerland

    Teranes, J.L.; McKenzie, J.A.; Bernasconi, S.M.; Lotter, A.F.; Sturm, M.

    1999-01-01

    Abstract—In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in

  9. Measurement of oxygen consumption with the Cosmed K2: a comparative study

    Forkink, A.; Frings-Dresen, M. H.

    1994-01-01

    An instrument that accurately measures oxygen consumption (VO2) during field performance is valuable for investigations of physiological workload. Cosmed (Rome, Italy) has introduced such an instrument, the Cosmed K2. In this study the Cosmed K2 was compared with the Oxyconbeta (Jaeger, Breda, The

  10. Effect of spatiotemporal variation of rainfall on dissolved oxygen depletion in integrated catchment studies

    Moreno Rodenas, A.M.; Cecinati, F.; ten Veldhuis, J.A.E.; Langeveld, J.G.; Clemens, F.H.L.R.

    2016-01-01

    This study addresses the effect of spatial and temporal resolution of rainfall fields on the performance of a simplified integrated catchment model for predicting dissolved oxygen concentrations in a river. For that purpose we propose a procedure to generate rainfall products with increasing spatial

  11. Positron lifetime studies of 100-MeV oxygen irradiated Pb-doped Bi-2223 superconductors

    Banerjee, T.; Viswanath, R.N.; Kanjilal, D.; Kumar, R.; Ramasamy, S.

    2000-01-01

    Positron lifetime studies have been carried out for unirradiated and 100-MeV oxygen ion irradiated Pb-doped Bi-2223 superconductors. The analysis of positron lifetime spectra revealed three lifetime components: a short lifetime, τ1 = 153–196 ps; an intermediate lifetime, τ2 = 269–339 ps; and a long

  12. Oxygen-18 as a tool for studying photorespiration. Oxygen uptake and incorporation into glycolate, glycine and serine

    Gerster, R.; Dimon, B.; Tournier, P.; Peybernes, A.

    1977-01-01

    The intensity of photosynthesis and photorespiration has been determined by measuring 16 O 2 evolvement and 18 O 2 uptake on algae and leaves. In the case of algae, there is still an important oxygen uptake even when ribulose diphosphate oxygenase is inhibited by 10 -3 M cyanide. Oxygen-18 incorporation into glycolate, glycine and serine of photorespiring algae and leaves exposed to atmospheres containing 18 O 2 has also been measured. Only one of the two atoms present in molecular oxygen was incorporated into the carboxyl group of the glycolate excreted from algae; the rate of 18 O incorporation was important (65 to 80% according to experimental conditions), even in the presence of 10 -3 M cyanide. Thus, oxidation of ribulose diphosphate is not the sole reaction leading to 18 O glycolate synthesis. In the case of maize, there was a rapid and important 18 O incorporation into the carboxyl group of glycine and serine, the kinetics of which was determined as a function of CO 2 presence in the atmosphere. These results suggest that photorespiration is also operating in C 4 species. Furthermore, in vitro experiments showed that phosphorylated ceto-acids of the Calvin cycle were very sensitive to H 2 O 2 ; the corresponding reaction can explain O 2 uptake and 18 O labelling of glycolate. (author)

  13. Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes

    Chen Ping; Duan Yu; Xie Wenfa; Zhao Yi; Hou Jingying; Liu Shiyong; Zhang Liying; Li Bin

    2009-01-01

    We demonstrate efficient white organic light-emitting devices (WOLEDs) based on an orange phosphorescent iridium complex bis(2-(2-fluorphenyl)-1,3-benzothiozolato-N, C 2' )iridium(acetylacetonate) in combination with blue phosphorescent dye bis[(4, 6-difluorophenyl)-pyridinato-N,C 2 )](picolinato) Ir(III) and red phosphorescent dye bis[1-(phenyl)isoquinoline] iridium (III) acetylanetonate. By introducing a thin layer of 4, 7-diphenyl-1,10-phenanthroline between blue and red emission layers, the diffusion of excitons is confined and white light can be obtained. WOLEDs with the interlayer all have a higher colour rendering index (>82) than the device without it (76). One device has the maximum current efficiency of 17.6 cd A -1 and a maximum luminance of 39 050 cd m -2 . The power efficiency is 8.7 lm W -1 at 100 cd m -2 . Furthermore, the device has good colour stability and the CIE coordinates just change from (0.394, 0.425) to (0.390, 0.426) with the luminance increasing from 630 to 4200 cd m -2 .

  14. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-01

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  15. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

    Bělohradský, Petr; Skryja, Pavel; Hudák, Igor

    2014-01-01

    This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NO x type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NO x ) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NO x emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NO x emission was below 120 mg/Nm 3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO 2 and H 2 O. The available heat at 46% O 2 was higher by 20% compared with that at 21% O 2 . - Highlights: • Premix-enrichment and air-oxy/fuel combustion methods were experimentally studied. • NO x increased sharply as oxygen concentration increased during PE tests. • NO x was below 120 mg/Nm 3 for all investigated oxygen flow rates in AO tests. • Radiative heat transfer was enhanced ca. 20% as O 2 concentration was increased. • OEC flames were observed stable, more luminous and

  16. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.

    Bódis, Emöke; Strambini, Giovanni B; Gonnelli, Margherita; Málnási-Csizmadia, András; Somogyi, Béla

    2004-08-01

    The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.

  17. Degradation of phosphorescent blue organic light-emitting diodes (OLED); Degradation der phosphoreszenten blauen organischen Leuchtdioden

    Chiu, Chien-Shu

    2011-07-01

    Phosphorescent organic materials harvest singlet and triplet excitons through inter-system crossing and improve the efficiency of organic light-emitting diodes (OLEDs). This improvement increases the potential of OLEDs, particularly white phosphorescent OLEDs (PHOLEDs), for lighting application. Although much progress has been made in the development of white PHOLEDs, the lifetime of phosphorescent emitters, especially the blue emitter, still needs to be improved. This thesis discusses the developments of blue PHOLEDs and investigations of degradation mechanisms. For development of blue PHOLEDs, two phosphorescent blue emitters were investigated: commercially available FIrpic and B1 provided by BASF. By varying the matrix and blocker materials, diode efficiency and lifetime have been investigated and improved. Blue PHOLEDs with emitter B1 show better efficiency and lifetime than devices with FIrpic. From lifetime measurement with constant DC current density, intrinsic degradation including luminance loss and voltage increase on both FIrpic and B1 PHOLEDs was observed. Photoluminescence measurement shows degradation in the emitting layers. To investigate the degradation of emitter layers, single-carrier devices with emitter systems or pure matrix materials were fabricated. Degradation on these devices was investigated by applying constant DC current, UV-irradiation and combination of both. We found that due to excited states (excitons), FIrpic molecules become unstable and polarons would enhance the degradation of FIrpic during DC operation and UV-excitation. To investigate the impact the exciton formation and exciton decay have on the degradation of FIrpic molecules, red phosphorescent emitter Ir(MDQ){sub 2}(acac) was doped in blue emitter layer TCTA:20% FIrpic. The doping concentration of Ir(MDQ){sub 2}(acac) was much lower than FIrpic to ensure that most of the exciton formation occurred on FIrpic molecules. Lower triplet energy of Ir(MDQ){sub 2}(acac) molecules

  18. The use of oxygen-enriched air for biomass gasification: initial scoping study

    NONE

    1997-07-01

    The article reports an initial scoping study which is aimed at assessing the potential impact of using non-cryogenic oxygen, or oxygen-enriched air, for biomass gasification with respect to cost, design and operation of stationary biomass-fuelled generators in the range 5 to 15 MW(e). The study is expected to lead to identification of options worthy of more detailed study. The format of the scoping study is as follows: (i) using data on performance and cost from the manufacturers, minimum cost-saving potential is assessed; (ii) the performance and component costs of various gasifier types and engine types are reviewed to identify possible savings in monetary cost; (iii) an assessment of the likely impact of low-cost fuels is made and (iv) areas for detailed investigation are highlighted.

  19. Optimization measurement of muscle oxygen saturation under isometric studies using FNIRS

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to investigate hemodynamic response in human muscle. These non-invasive technologies have been widely used to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to quantify the oxygenation level of haemoglobin and myoglobin in human muscle. The goal of this paper is to optimize the measurement of muscle oxygen saturation during isometric exercise using functional near infrared spectroscopy (fNIRS). The experiment was carried out on 15 sedentary healthy male volunteers. All volunteers are required to perform an isometric exercise at three assessment of muscular fatigue's level on flexor digitalis (FDS) muscle in the human forearm using fNIRS. The slopes of the signals have been highlighted to evaluate the muscle oxygen saturation of regional muscle fatigue. As a result, oxygen saturation slope from 10% exercise showed steeper than the first assessment at 30%-50% of fatigues level. The hemodynamic signal response showed significant value (p=0.04) at all three assessment of muscular fatigue's level which produce a p-value (p<0.05) measured by fNIRS. Thus, this highlighted parameter could be used to estimate fatigue's level of human and could open other possibilities to study muscle performance diagnosis.

  20. Study on the preparation of boron-rich film by magnetron sputtering in oxygen atmosphere

    Pan, Zhangmin; Yang, Yiming; Huang, Jian; Ren, Bing; Yu, Hongze; Xu, Run; Ji, Huanhuan; Wang, Lin; Wang, Linjun, E-mail: ljwang@shu.edu.cn

    2016-12-01

    Highlights: • Boron ({sup 10}B) oxide films were successfully grown using RF magnetron sputtering. • Effects of oxygen partial pressure on the property of the films were studied. • Substrates were covered with B-rich film and film surface was covered with B{sub 2}O{sub 3}. • The growth mechanism of films in oxygen atmosphere was analyzed using XPS. - Abstract: In this paper, the growth of boron ({sup 10}B) oxide films on (1 0 0) silicon substrate were achieved by radio frequency (r.f.) magnetron sputtering under the different oxygen partial pressure with a target of boron and boron oxide. The structure and properties of deposited films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), respectively. The results showed that the substrate was covered with boron-rich films tightly and the surface of films was covered with B{sub 2}O{sub 3}. And the growth mechanism of boron-rich film in oxygen atmosphere was also analyzed.

  1. Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies.

    Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Jekel, Martin; Ruhl, Aki Sebastian

    2018-07-01

    Degradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Experimental and theoretical studies of nuclear generation of ozone from oxygen and oxygen--sulfur hexafluoride mixtures

    Elsayed-Ali, H.E.; Miley, G.H.

    1986-01-01

    A series of experimental measurements of the yield of O 3 in nuclear-induced O 2 and O 2 -SF 6 discharges are reported. The discharges were created by bombardment with energetic particles from the 10 B(n,α) 7 Li reaction. Continuous irradiation at dose rates of 10 15 --10 17 eV cm -3 s -1 and pulsed irradiation (--10 ms FWHM) at a peak dose rate of --10 20 eV cm -3 s -1 were conducted. At the lower dose rates, the addition of SF 6 generally increased the ozone yield due to the slowing of ozone destruction by negative oxygen and ozone ions. In contrast, at the high dose rates, the ozone concentration decreased due to SF 6 suppression of atomic oxygen formation by ion--ion recombination. A numerical model was developed and tested against experimental conditions. This model indicates that the steady-state ozone concentration was limited by the reaction O - 3 +O 3 →2O 2 +O - 2 with a rate coefficient of --1 x 10 -12 cm 3 s -1 . In addition to dose rate effects, pressure and temperature effects on ozone production are discussed and methods for increasing the ozone yield are suggested

  3. Experimental and theoretical studies of nuclear generation of ozone from oxygen and oxygen-sulfur hexafluoride mixtures

    Elsayed-Ali, H. E.; Miley, G. H.

    1986-08-01

    A series of experimental measurements of the yield of O3 in nuclear-induced O2 and O2-SF6 discharges are reported. The discharges were created by bombardment with energetic particles from the 10B(n,α)7Li reaction. Continuous irradiation at dose rates of 1015-1017 eV cm-3 s-1 and pulsed irradiation (˜10 ms FWHM) at a peak dose rate of ˜1020 eV cm-3 s-1 were conducted. At the lower dose rates, the addition of SF6 generally increased the ozone yield due to the slowing of ozone destruction by negative oxygen and ozone ions. In contrast, at the high dose rates, the ozone concentration decreased due to SF6 suppression of atomic oxygen formation by ion-ion recombination. A numerical model was developed and tested against experimental conditions. This model indicates that the steady-state ozone concentration was limited by the reaction O-3+O3→2O2+O-2 with a rate coefficient of ˜1×10-12 cm3 s-1. In addition to dose rate effects, pressure and temperature effects on ozone production are discussed and methods for increasing the ozone yield are suggested.

  4. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  5. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    microcopy (STEM) to measure size and structure, energy dispersive X-ray spectroscopy (EDS) to measure atomic composition, X-ray absorption spectroscopy (XAS) to measure oxidation state and metal coordination, Fourier transform infrared spectroscopy (FTIR) to study adsorbed species, laser Raman spectroscopy to probe metal oxide promoters, and temperature programmed reaction/desorption to study the energetics of adsorption and desorption processes. We have studied our bimetallic catalysts for the selective cleavage of carbon-oxygen bonds, and we have studied the effects of adding metal oxide promoters to supported platinum and gold catalysts for water-gas shift (i.e., the production of hydrogen by reaction of carbon monoxide with water). We anticipate that the knowledge obtained from our studies will allow us to identify promising directions for new catalysts that show high activity, selectivity, and stability for important reactions, such as the conversion of biomass-derived oxygenated hydrocarbons to fuels and chemicals.

  6. In vivo near real time imaging of oxygen partial pressures in the glass catfish (Kryptopterus bichirris)

    Steffensen, John Fleng

    2012-01-01

    of the transparent glass catfish (Kryptopterus bichirris), it is possible to measure near realtime oxygen partial pressure in vivo. We used a commercially-available digital single-lens reflex camera mounted with an optical long pass filter (II = 490 nm) and excited the phosphorescent dye in the microspheres inside...... the fish with externally-mounted blue light emitting diodes (lip = 470 nm) to image the oxygen partial pressure. This method makes it possible to investigate oxygen partial pressures in the vascular system and different tissues of fish without having to insert any probes into the animal. After injection...

  7. Oxygen optical gas sensing by reversible fluorescence quenching in photo-oxidized poly(9,9-dioctylfluorene) thin films.

    Anni, M; Rella, R

    2010-02-04

    We investigated the fluorescence (FL) dependence on the environment oxygen content of poly(9,9-dioctylfluorene) (PF8) thin films. We show that the PF8 interactions with oxygen are not limited to the known irreversible photo-oxidation, resulting in the formation of Keto defects, but also reversible FL quenching is observed. This effect, which is stronger for the Keto defects than for the PF8, has been exploited for the realization of a prototype oxygen sensor based on FL quenching. The sensing sensitivity of Keto defects is comparable with the state of the art organic oxygen sensors based on phosphorescence quenching.

  8. The study on compatibility of polymer matrix resins with liquid oxygen

    Wang Ge; Li Xiaodong; Yan Rui; Xing Suli

    2006-01-01

    Liquid oxygen (LOX) polymer composite tank is very important in the development of next generation of launch vehicles. To study LOX compatible polymeric matrix resins, three kinds of epoxy resins were studied. LOX impact test was used to evaluate polymers' compatibility with LOX. Thermogravimetric analysis was used to analyze polymers' oxidation. It seemed that polymers with better anti-oxidation properties, characterized by lower oxidation weight gain, lower weight loss and lower flash point, behaved better LOX compatibility. Fourier transform infrared attenuated total reflection spectroscopy confirmed the chemical reactions during the LOX impact process on the surface of polymers were similar to the oxidation reaction in gaseous oxygen (GOX) at high temperatures, which indicated the chemical mechanism of LOX compatibility of polymers was just oxidation reaction. In this way, two new epoxy resins with desirable LOX compatibility were acquired by modification

  9. Application of carbon and oxygen stable isotopes to the study of Brazilian precambrian

    Torquato, J.R.F.

    1980-01-01

    Samples of carbonated rocks of precambrian age are studied. The stable carbon and oxygen isotopes are applied to the study of terrestrial materials considering the variations of some element isotopic composition in function of the environment of sedimentation. The isotopic analysis was done using mass spectrometers. The analytical results and the description of region geology of the site of each sample are presented. The isotopic data are interpreted aiming to the environment of sedimentation. New techniques for better improvement of carbon and oxygen ratios, are proposed, such as: to use the analysis of surface trend and the isotopic logging in mapping of surface and subsurface. A new method for approximated determination of the ages of precambrian carbonated rocks, considering the limitations of their new technique, is also presented. (M.C.K.) [pt

  10. Oxygen-vacancy defects on BaTiO3 (001) surface: a quantum chemical study

    Duque, Carlos; Stashans, Arvids

    2003-01-01

    A quantum-chemical study of technologically important BaTiO 3 crystal and oxygen-vacancy defects on its (001) surface is reported in the present work. The computations are made using a quantum-chemical method developed for periodic systems (crystals), which is based on the Hartree-Fock theory. The atomic rearrangement due to the surface creation is obtained for a pure BaTiO 3 by means of the periodic large unit cell (LUC) model and using an automated geometry optimisation procedure. The same technique is employed to study the electronic and structural properties of the material due to the presence of an O vacancy and F centre (two electrons trapped in an oxygen vacancy). The computations are carried out for both cubic and tetragonal lattices

  11. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  12. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  13. Kinetic study of the alkaline metals oxidation by dry oxygen; Etude cinetique de l'oxydation des metaux alcalins par l'oxygene sec

    Touzain, Ph. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-15

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [French] L'oxydation du lithium, du sodium, du potassium, du rubidium, du cesium et des alliages sodium-potassium par l'oxygene sec est etudiee a diverses temperatures et a des pressions comprises entre 40 et 400 mmHg d'oxygene. On distingue trois processus d'oxydation differents (l'inflammation, l'ignition et la combustion lente) dont les domaines en fonction de la temperature sont precises. Les lois cinetiques d'oxydation lente, la nature des oxydes formes ainsi que les causes des colorations de ces oxydes sont determinees. Enfin les resultats obtenus sont interpretes theoriquement. (auteur)

  14. Kinetic study of the alkaline metals oxidation by dry oxygen; Etude cinetique de l'oxydation des metaux alcalins par l'oxygene sec

    Touzain, Ph [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-15

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [French] L'oxydation du lithium, du sodium, du potassium, du rubidium, du cesium et des alliages sodium-potassium par l'oxygene sec est etudiee a diverses temperatures et a des pressions comprises entre 40 et 400 mmHg d'oxygene. On distingue trois processus d'oxydation differents (l'inflammation, l'ignition et la combustion lente) dont les domaines en fonction de la temperature sont precises. Les lois cinetiques d'oxydation lente, la nature des oxydes formes ainsi que les causes des colorations de ces oxydes sont determinees. Enfin les resultats obtenus sont interpretes theoriquement. (auteur)

  15. Study of oxygen diluted silane plasmas applied for the deposition of silicium oxyde

    Magni, D.

    2001-09-01

    Plasma enhanced chemical vapour deposition of thin films such as silicon dioxide is used in many applications such as the insulator production in semiconductor technology or anticorrosion coating in packaging industry as a substitute for aluminium which is less ecological. Oxygen diluted silane plasmas are often utilized to produce SiO 2 film, but the tendency is to work with organosilicon precursors such as HMDSO (hexamethyldisiloxane ) described as non-toxic and requiring less stringent safety and costly installation. In this study, the species in gaseous phase and the powder produced in oxygen-diluted HMDSO plasmas were experimentally characterized in a radiofrequency (RF) capacitively-coupled reactor at 13.56 MHz. Some aspects of plasma enhanced deposition of SiO 2 were studied in a RF magnetron reactor . The gaseous phase of the oxygen-diluted plasmas were studied by infrared absorption spectroscopy and mass spectrometry .The complementarity of these diagnostics allowed to show that the dominant species in gaseous phase come from the homogeneous reaction between oxygen and the radical CH x (with x 1,2 and 3), abundantly produced in the plasma. Two principal pathways were shown to occur. A first way leads to hydrocarbon formation such as methane (CH 4 ) and acetylene (C 2 H 2 ), whose partial pressures are close to 2 %. A second way leads to the formation of molecules from the combustion of CH x , such as formaldehyde (CH 2 O), formic acid (CH 2 O 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and water. Moreover it is shown that the CO 2 results from a heterogeneous reaction between the carbon on the surfaces and the oxygen coming from the plasma. At low dilution conditions, the partial pressures of CO and CO 2 were estimated at 25 and 10 % of the total pressure respectively. In argon or helium diluted HMDSO plasmas, methane, acetylene and hydrogen are the main stable molecules produced in the gaseous phase. Particle formation in oxygen-diluted HMDSO

  16. Efficiency improvement of flexible fluorescent and phosphorescent organic light emitting diodes by inserting a spin-coating buffer layer

    Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Shen-Yaur; Su, Shin-Yuan; Juang, Fuh-Shyang

    2009-01-01

    We dissolved hole transport materials α-NPD and NPB in THF solvent, and spin-coated the α-NPD + THF or NPB + THF solution onto ITO anode surface to improve the luminance efficiency and lifetime of flexible fluorescent and phosphorescent organic light emitting diodes. Then the BCP and TPBi were employed as hole blocking layer (HBL) of phosphorescent device and its thickness was optimized. From the experimental results, the maximum luminance efficiency is 4.4 cd/A at 9 V of fluorescent device and 24.4 cd/A of phosphorescent device, respectively. Such an improvement in the device performance was attributed to the smoother surface and good contact between the interface of spin-coated HTL/ITO, the hole were effectively injected from the anode into the organic layer. And the deposited HTL can block excitons from diffusing into the anode to quench, thus improving the luminance efficiency and lifetime greatly.

  17. Oxygen adsorption on Cu-9 at. %Al(111) studied by low energy electron diffraction and Auger electron spectroscopy

    Yoshitake, Michiko; Bera, Santanu; Yamauchi, Yasuhiro; Song, Weijie

    2003-07-01

    Cu-based alloys have been used for electric cables for long time. In the field of microelectronics, Al had been used for electrical wiring. However, it became clear that electromigration occurs in Al that causes breaking of wires in minute wirings. Due to this problem, Cu wiring is used in most advanced microprocessors. Cu metal is more corrosive than Al and Cu-based alloys with a small amount of Al is expected to solve problems both on electromigration and corrosion. The initial stage of corrosion is oxygen adsorption. We studied surface segregation of Al on Cu-9% Al(111) and oxygen adsorption on the surface with/without Al segregation in ultrahigh vacuum by low energy electron diffraction (LEED) and Auger electron spectroscopy. It was found that Al segregates on the surface to form (√3×√3)R30° structure and the structure vanishes above 595 K to give (1×1) structure while Al still segregates. The specimen was exposed to oxygen at different temperatures. The amount of oxygen uptake was not structure dependent but temperature dependent. Below 595 K, only a small amount of oxygen adsorbed. Between 595 and 870 K, oxygen adsorbed surface showed amorphous LEED pattern. The specimen was annealed at 1070 K after oxygen exposure. When the specimen was exposed oxygen below 870 K, the oxygen Auger intensity decreased significantly by annealing and the annealed surface showed (√3×√3)R30° structure at room temperature. When the specimen was exposed to oxygen at 870 K, diffused spots developed newly in LEED pattern but the pattern disappeared after 1070 K annealing while oxygen Auger intensity remained almost constant. Exposing the specimen to oxygen at 995 K resulted in clear spots in the LEED pattern, which were attributed to the (7/√3×7√3)R30° structure.

  18. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence, and NMR) analyses

    Lerman, S.

    1987-01-01

    In vitro [UV absorption, fluorescence, phosphorescence, and nuclear magnetic resonance (NMR)] spectroscopic studies on the normal human lens demonstrate age-related changes which can be correlated with biochemical and photobiologic mechanisms occurring during our lifetime. Chronic cumulative UV exposure results in an age-related increase of photochemically induced chromophores and in color of the lens nucleus. This enables the lens to filter the incident UV radiation, thereby protecting the underlying aging retina from UV photodamage. We have measured the age-related increase in lens fluorescence in vivo on more than 300 normal subjects (1st to 9th decade) by UV slitlamp densitography. These data show a good correlation with the in vitro lens fluorescence studies reported previously and demonstrate that molecular photodamage can be monitored in the lens. In vitro NMR (human and animal lenses) and in vivo experiments currently in progress are rapidly elucidating the physicochemical basis for transparency and the development of light scattering areas. Surface scanning NMR can monitor organophosphate metabolism in the ocular lens in vivo as well as in vitro. These studies demonstrate the feasibility of using biophysical methods (optical spectroscopy and NMR analyses) to delineate age-related parameters in the lens, in vivo as well as in vitro. 46 references

  19. Study of Al-Si Alloy Oxygen Saturation on Its Microstructure and Mechanical Properties

    Arkady Finkelstein

    2017-07-01

    Full Text Available One of the main goals of modern materials research is obtaining different microstructures and studying their influence on the mechanical properties of metals; aluminum alloys are particularly of interest due to their advanced performance. Traditionally, their required properties are obtained by alloying process, modification, or physical influence during solidification. The present work describes a saturation of the overheated AlSi7Fe1 casting alloy by oxides using oxygen blowing approach in overheated alloy. Changes in metals’ microstructural and mechanical properties are also described in the work. An Al10SiFe intermetallic complex compound was obtained as a preferable component to Al2O3 precipitation on it, and its morphology was investigated by scanning electron microscopy. The mechanical properties of the alloy after the oxygen blowing treatment are discussed in this work.

  20. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single...... photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami....

  1. Oxygen tension and prediction of the radiation response. Polarographic study in human breast cancer

    Pappova, N.; Siracka, E.

    1982-01-01

    Serial polarographic measurement of the tissue oxygen tension (pO 2 ) was made in the course of fractionated irradiation (preoperative or sole treatment) of advanced breast cancer in 24 patients. In responsive tumors an increase in pO 2 appeared sooner before expressive tumor size reduction became noticeable. Repeated recording of unchanged pO 2 values proved to be a good prognostic indicator of local failure. The study made on this tumor model showed that serial polarographic pO 2 determinations with suitable electrodes causing minimal trauma and providing consistent and reproductive data about changes in tumor microcirculation and oxygenation may enlarge the scale of indicators of radiation response. (author)

  2. Study of the Quantum Efficiency of CsI Photocathodes Exposed to Oxygen and Water Vapour

    Di Mauro, A; Piuz, François; Schyns, E M; Van Beelen, J B; Williams, T D

    2000-01-01

    The operation of CsI photocathodes in gaseous detectors requires special attention to the purity of the applied gas mixtures.We have studied the influence of oxygen and water vapour contaminations on the performance of CsI photocathodes for theALICE HMPID RICH prototype. Measurements were done through comparison of Cherenkov rings obtained from beamtests. Increased levels of oxygen and water vapour did not show any effect on the performance. The results of this studyfound a direct application in the way of storing CsI photocathodes over long periods nad in particular in the shipment of theHMPID prototype from CERN to the STAR experiment at BNL. (Abstract only available,full text to follow)

  3. [Study on three kinds of gasoline oxygenates-induced DNA damage in mice fibroblasts].

    Song, Chonglin; Zhang, Zhifu; Chen, Xue; Zhang, Yanfeng; Wang, Chunhua; Liu, Keming

    2002-10-01

    To study DNA damage of three kinds of gasoline oxygenates. Single cell gel electrophoresis assay(Comet assay) was used to detect the damage effects of three gasoline oxygenates[methyl tertiary butyl ether(MTBE), ethanol anhydrous(EA) and dimethyl carbonate(DMC)] on DNA in L-929 mice fibroblasts. In certain concentation(37.500-150.000 mg/ml), MTBE could directly cause DNA damage of L-929 mice fibroblasts. There was obvious dose-effect relationship, i.e. when the concentration of MTBE was increased from 9.375 to 150.000 mg/ml, the comet rate also increased from 4% to 85%, and the length of comet tail changed correspondingly. The results of EA and DMC were negative. Under the condition of this experiment(150.000 mg/ml), MTBE could directly cause DNA damage while the effect of EA and DMC on DNA damage was not found.

  4. Study of Al-Si Alloy Oxygen Saturation on Its Microstructure and Mechanical Properties.

    Finkelstein, Arkady; Schaefer, Arseny; Chikova, Оlga; Borodianskiy, Konstantin

    2017-07-11

    One of the main goals of modern materials research is obtaining different microstructures and studying their influence on the mechanical properties of metals; aluminum alloys are particularly of interest due to their advanced performance. Traditionally, their required properties are obtained by alloying process, modification, or physical influence during solidification. The present work describes a saturation of the overheated AlSi₇Fe₁ casting alloy by oxides using oxygen blowing approach in overheated alloy. Changes in metals' microstructural and mechanical properties are also described in the work. An Al 10 SiFe intermetallic complex compound was obtained as a preferable component to Al₂O₃ precipitation on it, and its morphology was investigated by scanning electron microscopy. The mechanical properties of the alloy after the oxygen blowing treatment are discussed in this work.

  5. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  6. Action of some herbicides in photosynthesis of Scenedesmus as studied by their effects on oxygen evolution and cyclic photophosphorylation

    Rensen, van J.J.S.

    1971-01-01

    The mode of action of some herbicides, viz., DCMU, simetone, and diquat, was investigated by studying their effects upon oxygen evolution and cyclic photophosphorylation in the unicellular green alga, Scenedesmus spec.

    Oxygen evolution was measured with the aid of the WARBURG

  7. Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies.

    Liguzinski, Piotr; Korzeniewski, Bernard

    2006-12-01

    It has been postulated previously that a direct activation of all oxidative phosphorylation complexes in parallel with the activation of ATP usage and substrate dehydrogenation (the so-called each-step activation) is the main mechanism responsible for adjusting the rate of ATP production by mitochondria to the current energy demand during rest-to-work transition in intact skeletal muscle in vivo. The present in silico study, using a computer model of oxidative phosphorylation developed previously, analyzes the impact of the each-step-activation mechanism on the distribution of control (defined within Metabolic Control Analysis) over the oxygen consumption flux among the components of the bioenergetic system in intact oxidative skeletal muscle at different energy demands. It is demonstrated that in the absence of each-step activation, the oxidative phosphorylation complexes take over from ATP usage most of the control over the respiration rate and oxidative ATP production at higher (but still physiological) energy demands. This leads to a saturation of oxidative phosphorylation, impossibility of a further acceleration of oxidative ATP synthesis, and dramatic drop in the phosphorylation potential. On the other hand, the each-step-activation mechanism allows maintenance of a high degree of the control exerted by ATP usage over the ATP turnover and oxygen consumption flux even at high energy demands and thus enables a potentially very large increase in ATP turnover. It is also shown that low oxygen concentration shifts the metabolic control from ATP usage to cytochrome oxidase and thus limits the oxidative ATP production.

  8. Laser photochemical studies on di-isopropyl ether for oxygen-18 enrichment

    Mathi, P.; Kumar, Awadhesh; Ghosh, Ayan; Nayak, A.K.; Parthasarathy, V.; Nataraju, V.; Jadhav, K.A.; Babu, K.Rajendra; Sarkar, S.K.

    2013-05-01

    Oxygen-18 is needed for the production of Fluorine-18 in medical cyclotron for use in positron emission tomography. This report deals with our work on Oxygen-18 selective photo dissociation of natural di-isopropyl ether under various conditions leading to various oxygen bearing products having different levels of 18 O enrichment. Apart from obtaining 18 O enrichment in products 2-propanol and acetaldehyde, we have observed unusually high enrichment (about 39%) in another photoproduct, acetone, as measured by mass spectrometry. This new finding is attributed to 18 O selective secondary reaction channels which is supported by molecular orbital calculations. The investigation required characterization and quantitative estimation of various chemical species, viz., di-isopropyl ether, acetaldehyde, acetone and isopropanol by various instrumental methods of analysis. These methods include gas chromatography, Fourier transform infrared spectrometry and quadrupole mass spectrometry. Detailed Gas Chromatographic (GC) studies summarize the interference problems encountered for quantitatively identifying different photo-products and establish the right experimental conditions for optimum separation. This exercise is extremely useful for an isotope enrichment scheme as it generates a valuable database to understand the processes involved for both selectivity enhancement and degradation. (author)

  9. Study of the Dissociative Processes in O_2 Discharges. Development of an Atomic Oxygen Beam Source

    Pagnon, Daniel

    1992-01-01

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [fr

  10. High-performance blue phosphorescent OLEDs using energy transfer from exciplex.

    Seino, Yuki; Sasabe, Hisahiro; Pu, Yong-Jin; Kido, Junji

    2014-03-12

    An efficient energy transfer from an exciplex between a sulfone and an arylamine derivatives to a blue phosphorescent emitter enables OLED performances among the best, of over 50 lm W(-1) at 100 cd m(-2) . The formation of the exciplex realizes a barrier-free hole-electron recombination pathway, thereby leading to high OLED performances with an extremely low driving voltage of 2.9 V at 100 cd m(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A prospective population study of resting heart rate and peak oxygen uptake (the HUNT Study, Norway.

    Javaid Nauman

    Full Text Available OBJECTIVES: We assessed the prospective association of resting heart rate (RHR at baseline with peak oxygen uptake (VO(2peak 23 years later, and evaluated whether physical activity (PA could modify this association. BACKGROUND: Both RHR and VO(2peak are strong and independent predictors of cardiovascular morbidity and mortality. However, the association of RHR with VO(2peak and modifying effect of PA have not been prospectively assessed in population studies. METHODS: In 807 men and 810 women free from cardiovascular disease both at baseline (1984-86 and follow-up 23 years later, RHR was recorded at both occasions, and VO(2peak was measured by ergospirometry at follow-up. We used Generalized Linear Models to assess the association of baseline RHR with VO(2peak, and to study combined effects of RHR and self-reported PA on later VO(2peak. RESULTS: There was an inverse association of RHR at baseline with VO(2peak (p<0.01. Men and women with baseline RHR greater than 80 bpm had 4.6 mL.kg(-1.min(-1 (95% confidence interval [CI], 2.8 to 6.3 and 1.4 mL.kg(-1.min(-1 (95% CI, -0.4 to 3.1 lower VO(2peak at follow-up compared with men and women with RHR below 60 bpm at baseline. We found a linear association of change in RHR with VO(2peak (p=0.03, suggesting that a decrease in RHR over time is likely to be beneficial for cardiovascular fitness. Participants with low RHR and high PA at baseline had higher VO(2peak than inactive people with relatively high RHR. However, among participants with relatively high RHR and high PA at baseline, VO(2peak was similar to inactive people with relatively low RHR. CONCLUSION: RHR is an important predictor of VO(2peak, and serial assessments of RHR may provide useful and inexpensive information on cardiovascular fitness. The results suggest that high levels of PA may compensate for the lower VO(2peak associated with a high RHR.

  12. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    Whited, Matthew T.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (k ST(1BDP→1Por) = 7.8×1011 s-1, kTT(3Por→3BDP) = 1.0×1010 s-1, kTT(3BDP→ 3Por) = 1.6×1010 s-1), leading to a long-lived equilibrated [3BDP][Por]=[BDP][3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λem = 772 nm, φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae. © 2010 American Chemical Society.

  13. Red phosphorescent organic light-emitting diodes (PhOLEDs) based on a heteroleptic cyclometalated Iridium (III) complex

    Lepeltier, Marc [Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Dumur, Frédéric, E-mail: frederic.dumur@univ-amu.fr [Aix-Marseille Université, CNRS, ICR, UMR 7273, F-13397 Marseille (France); Wantz, Guillaume, E-mail: guillaume.wantz@ims-bordeaux.fr [University of Bordeaux, IMS, UMR 5218, F-33400 Talence (France); CNRS, IMS, UMR 5218, F-33400 Talence (France); Vila, Neus; Mbomekallé, Israel [Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin en Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France); Bertin, Denis; Gigmes, Didier [Aix-Marseille Université, CNRS, ICR, UMR 7273, F-13397 Marseille (France); Mayer, Cédric R., E-mail: cmayer@lisv.uvsq.fr [Laboratoire d’Ingénierie des Systèmes de Versailles LISV – EA 4048, Université de Versailles Saint Quentin en Yvelines, 10/12 avenue de l’Europe, 78140 Vélizy (France)

    2013-11-15

    Highly efficient red-emitting Phosphorescent Organic Light-Emitting Diodes (PhOLEDs) based on a neutral vacuum-sublimatable heteroleptic iridium (III) complex have been designed and studied. Heteroleptic complex Ir(piq){sub 2}(acac) was prepared in one step with acetylacetone (acac) as the ancillary ligand. Electronic and spectroscopic properties of Ir(piq){sub 2}(acac) were investigated by UV–visible absorption, fluorescence spectroscopy and cyclic voltammetry. Electrophosphorescent devices comprising Ir(piq){sub 2}(acac) as dopant of TCTA exhibited outstanding electroluminescence performance with a current efficiency of 10.0 cd A{sup −1}, a maximum power efficiency of 7.2 lm W{sup −1} and a maximal brightness of 3540 cd m{sup −2} was reached at 8.0 V. CIE coordinates close to the standard red of the national television system committee were obtained (0.67, 0.33). -- Highlights: • A saturated red OLED has been prepared. • High power efficiency and brightness were obtained. • Thickness of the device was determined as a parameter determining the overall performance. • CIE coordinates close to the standard red of the national television system committee were obtained.

  14. A theoretical investigation on the neutral Cu(I) phosphorescent complexes with azole-based and phosphine mixed ligand

    Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min

    2018-04-01

    A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.

  15. Electroluminescence of organic light-emitting diodes consisting of an undoped (pbi)2Ir(acac) phosphorescent layer

    Lei, Xia; Yu, Junsheng; Zhao, Juan; Jiang, Yadong

    2011-11-01

    The electroluminescence (EL) characteristics of phosphorescent organic light-emitting diodes (OLEDs) with an undoped bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] emissive layer (EML) of various film thicknesses were studied. The results showed that the intensity of green light emission decreased rapidly with the increasing thickness of (pbi)2Ir(acac), which was relevant to the triplet excimer emission. It suggested that the concentration quenching of monomer emission in the undoped (pbi)2Ir(acac) film was mainly due to the formation of triplet excimer and partly due to the triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). A green OLED with a maximum luminance of 26,531 cd/m2, a current efficiency of 36.2 cd/A, and a power efficiency of 32.4 lm/W was obtained, when the triplet excimer emission was eliminated. Moreover, the white OLED with low efficiency roll-off was realized due to the broadened recombination zone and reduced quenching effects in the EML when no electron blocking layer was employed.

  16. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  17. Study on combustion characteristics of dimethyl ether under the moderate or intense low-oxygen dilution condition

    Kang, Yinhu; Lu, Tianfeng; Lu, Xiaofeng; Wang, Quanhai; Huang, Xiaomei; Peng, Shini; Yang, Dong; Ji, Xuanyu; Song, Yangfan

    2016-01-01

    Highlights: • Oxygen content in the flame base increased due to the prolonged ignition delay time. • Flow field in the furnace affected thermal/chemical structure of the flame partially. • Preheating and dilution facilitated moderate or intense low-oxygen dilution regime. • Dominant pollutant formation ways of dimethyl ether in hot dilution were clarified. • Preheating and dilution reduced nitrogen oxide emission of dimethyl ether. - Abstract: Experiments and numerical simulations were conducted in this paper to study the combustion behavior of dimethyl ether in the moderate or intense low-oxygen dilution regime, in terms of thermal/chemical structure and chemical kinetics associated with nitrogen oxide and carbon monoxide emissions. Several co-flow temperatures and oxygen concentrations were involved in the experiments to investigate their impacts on the flame behavior systematically. The results show that in the moderate or intense low-oxygen dilution regime, oxygen concentrations in the flame base slightly increased because of the prolonged ignition delay time of the reactant mixture due to oxidizer dilution, which changed the local combustion process and composition considerably. The oxidation rates of hydrocarbons were significantly depressed in the moderate or intense low-oxygen dilution regime, such that a fraction of unburned hydrocarbons at the furnace outlet were recirculated into the outer annulus of the furnace, which changed the local radial profiles of carbon monoxide, methane, and hydrogen partially. Moreover, with the increment in co-flow temperature or oxygen mole fraction, flame temperature, and hydroxyl radical, carbon monoxide, and hydrogen mole fractions across the reaction zone increased gradually. For the dimethyl ether-moderate or intense low-oxygen dilution flame, temperature homogeneity was improved at higher co-flow temperature or lower oxygen mole fraction. The carbon monoxide emission depended on the levels of temperature and

  18. An equivalence study comparing nitrous oxide and oxygen with low-dose sevoflurane and oxygen as inhalation sedation agents in dentistry for adults.

    Allen, M; Thompson, S

    2014-11-01

    The aim of this study was to examine whether sevoflurane in oxygen was equivalent to near equipotent concentrations of nitrous oxide in oxygen when used as an inhalation sedation agent in terms of patient and user acceptability. Forty anxious dental patients referred to the sedation suite at Cardiff University School of Dentistry received either nitrous oxide to a maximum concentration of 40% or sevoflurane to a maximum concentration of 0.3% for a routine maxillary plastic restoration with articaine infiltration local analgesia. The inhalation sedation agent to be administered was chosen by a random number allocator. Measurements of blood pressure, oxygen saturation, heart rate, respiratory rate and bispectral index were recorded every 5 minutes. At the end of the treatment episode the patient, the operator and an observer who was unaware of the agent used, recorded their impressions about the episode by completing questionnaires. In the doses used in this study, sevoflurane was found to be as effective as an inhalation sedation agent as the standard dose of nitrous oxide used in normal inhalation sedation in the treatment of adult anxious dental patients. Sevoflurane in low concentrations is equivalent in effect to near equipotent concentrations of nitrous oxide. This would suggest that further research, perhaps with slightly higher concentrations of sevoflurane, is needed. If sevoflurane was shown to be acceptable at slightly higher concentrations, there is scope to explore the development of equipment specifically designed to deliver sevoflurane as an inhalation sedation agent in future.

  19. An fMRI study on variation of visuospatial cognitive performance of young male due to highly concentrated oxygen administration

    Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.

  20. Contribution to the study of hydrogenated and oxygenated impurities in liquid sodium

    Naud, G.

    1964-07-01

    This study is made up essentially of two parts. The first is devoted to the development of dosage methods for selectively determining the oxygenated and hydrogenated impurities present in sodium, that is the oxide, the hydride and the hydroxide. The second makes use of these methods for a study of the Na-H 2 -O 2 system, as well as of the related problem of the attack of pyrex glass by molten sodium. The conventional method for dosing oxygen by amalgamation was first adapted to the simultaneous measurement of the hydride. We then developed a method for dosing the total hydrogen by measuring successively the concentrations of gas present in the hydride and hydroxide form. This method is based on the thermal decomposition of the hydride and the reaction between sodium and the hydroxide. Our contribution to the study of the Na-H 2 -O 2 System consists first of all in the study of the reaction between hydrogen and sodium in the temperature range from 150 to 250 deg C and at a pressure of about 150 mm of mercury. The study of the thermal decomposition of the hydride in sodium was then studied. It was possible to make some qualitative observations concerning the reaction between sodium and sodium hydroxide. Finally some complementary tests made it possible to define the nature of the phenomena occurring during the attack of pyrex glass by sodium. (author) [fr

  1. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  2. Effects of hyperbaric, normobaric and hypobaric oxygen supplementation on retinal vessels in newborn rats: a preliminary study.

    Ricci, B

    1987-03-01

    An experimental study was conducted on eight litters of newborn rats to evaluate the effects of supplemental oxygen administration on the retinal vasculature. The animals and their mothers were kept inside a pressure chamber and treated for the first 5 days of life. On the sixth day, they were removed and kept for five more days under room air and normobaric conditions. Three litters received continuous flow oxygen at 80% at a compression pressure of +81 kPa, one litter oxygen at 80% at a pressure of -39.5 kPa atms and three other litters received oxygen at 80% under normobaric conditions. The eighth litter was treated with room air oxygen at a compression pressure of +81 kPa. A severe retinopathy with marked retinal neovascularization was seen only in the newborn animals of the litters that received oxygen supplementation under normobaric or hypobaric conditions. Retinal vessels showed no pathological changes in the litters treated with hyperbaric normoxia or hyperoxia. It is possible to hypothesize that the prolonged period of oxygen supplementation failed to produce harmful effects on the retinal vasculature because the moderate hyperbarism caused mild retinal and choroidal vasoconstriction thus preventing excessive oxygen transport to the inner retina from the choroid during hyperoxia without inducing structural damage to the retinal tissue.

  3. Local cerebral blood flow (1CBF) and oxygen consumption (1CMRO2) in evolving irreversible ischemic infarction: a study with positron tomography and oxygen-15

    Baron, J.C.; Rougemont, D.; Lebrun-Grandie, P.; Comar, D.; Bousser, M.G.; Bories, J.; Castaigne, P.; Cabanis, E.

    1982-09-01

    In 25 patients suffering from cerebral ischemia set up in the area of the internal carotid artery the local cerebral blood flow (lCBF) and local cerebral oxygen consumption (lCMRO 2 ) were measured by the method of continuous inhalation of oxygen 15-labelled gas combined with positron emission tomography. These two local parameters and their ratio, the local oxygen extraction rate (lO 2 E), were studied inside the brain region tending spontaneously towards ischemic necrosis, a zone defined by means of repeated tomodensitometric examinations. The essential facts observed are the variability of the lCBF and the lO 2 E values, from extremely low to extremely high, whereas the collapse of the lCMRO 2 is constant. Consequently this last parameter alone would be a good prognostic index, an lCMRO 2 decrease to a level below about 70% of the controlateral value indicating that the necrosis is spontaneously irreparable. These results are discussed in the light of published data

  4. Contribution to the study of iron-manganese alloy oxidation in oxygen at high temperatures

    Olivier, Francoise

    1972-01-01

    This research thesis reports a systematic investigation of the oxidation of three relatively pure iron-manganese alloys in oxygen, under atmospheric pressure, and between 400 and 1000 C, these alloys being annealed as well as work-hardened. It also compares their behaviour with that of non-alloyed iron oxidized under the same conditions. The author describes the experimental techniques and installations, discusses the morphology of oxide films formed under the experimental conditions, discusses the film growth kinetics which is studied by thermogravimetry, proposes interpretations of results, and outlines the influence of manganese addition to iron on iron oxidation

  5. XPS studies of water and oxygen on iron-sputtered natural ilmenite

    Schulze, P. D.; Neil, T. E.; Shaffer, S. L.; Smith, R. W.; Mckay, D. S.

    1985-01-01

    The adsorption of D2O and O2 on polycrystalline FeTiO3 (natural ilmenite) has been studied by X-ray photoelectron spectroscopy. Oxygen was found to absorb reactively with Fe(0) on Ar(+)-sputtered surfaces at and above 150 K while D2O was found to adsorb molecularly or in ice layers below 170 K on both Ar(+) and O2(+) ion-bombarded ilmenite. The D2O desorbs at 170 K with either the formation of an OD complex or a strongly bound molecular layer of water.

  6. Study of the decarburization of 18-8 stainless steel by oxygen at low pressure

    Armand, G.; Lapujoulade, J.

    1964-01-01

    The kinetic of the decarburization of a 18-8 stainless-steel by oxygen at low pressure has been studied between 1050 and 1200 C. The measurement of the carbon content of the sample is carried out by chemical analysis. Three mechanisms take place in that decarburization: diffusion of carbon in the steel; velocity at the superficial reaction C + 1/2 O 2 ↔ CO; pumping out of CO. The second mechanism seems to govern the overall kinetic. The activation energy of the phenomenon is 108 ± 24 Kcal/mole. (authors) [fr

  7. Room temperature phosphorescence in the liquid state as a tool in analytical chemistry

    Kuijt, Jacobus; Ariese, Freek; Brinkman, Udo A.Th.; Gooijer, Cees

    2003-01-01

    A wide-ranging overview of room temperature phosphorescence in the liquid state (RTPL ) is presented, with a focus on recent developments. RTPL techniques like micelle-stabilized (MS)-RTP, cyclodextrin-induced (CD)-RTP, and heavy atom-induced (HAI)-RTP are discussed. These techniques are mainly applied in the stand-alone format, but coupling with some separation techniques appears to be feasible. Applications of direct, sensitized and quenched phosphorescence are also discussed. As regards sensitized and quenched RTP, emphasis is on the coupling with liquid chromatography (LC) and capillary electrophoresis (CE), but stand-alone applications are also reported. Further, the application of RTPL in immunoassays and in RTP optosensing - the optical sensing of analytes based on RTP - is reviewed. Next to the application of RTPL in quantitative analysis, its use for the structural probing of protein conformations and for time-resolved microscopy of labelled biomolecules is discussed. Finally, an overview is presented of the various analytical techniques which are based on the closely related phenomenon of long-lived lanthanide luminescence. The paper closes with a short evaluation of the state-of-the-art in RTP and a discussion on future perspectives

  8. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China)

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  9. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  10. Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer

    Yoo, Seung Il; Yoon, Ju An; Kim, Nam Ho; Kim, Jin Wook; Kang, Jin Sung; Moon, Chang-Bum [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Kim, Woo Young, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-04-15

    Blue phosphorescent organic light-emitting diodes (PHOLEDs) were fabricated using double dopants FIrpic and FIr6 in emissive layer (EML) with structure of ITO/NPB (700 Å)/mCP:FIrpic-8%:FIr6-x% (300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (1200 Å). We optimized concentration of the second dopant FIr6 in the presence of a fixed FIrpic to observe its effect on electrical performance of PHOLED device. 24.8 cd/A of luminous efficiency was achieved by the device with dopant ratio of 8%FIrpic:4%FIr6 in EML. Efficiency roll-off was also improved 20% compared to the PHOLED device singly dopped with FIrpic or FIr6 only. Second doping proved its effect in stabilizing charge balance in EML and enhancing energy transfer of triplet excitons between two dopants. - Highlights: • We fabricated blue PHOLED with double blue phosphorescent dopants in single EML. • Efficiency roll-off was improved by using double dopant in single EML. • The host–dopant transfer is discussed by analyzing the photo-absorption and photoluminescence. • The spectroscopic analysis using multi-peak fits with a Gaussian function.

  11. Effect of Doping Phosphorescent Material and Annealing Treatment on the Performance of Polymer Solar Cells

    Zixuan Wang

    2013-01-01

    Full Text Available A series of polymer solar cells (PSCs with P3HT:PCBM or P3HT:PCBM:Ir(btpy3 blend films as the active layer were fabricated under the same conditions. Effects of phosphorescent material Ir(btpy3 doping concentration and annealing temperature on the performance of PSCs were investigated. The short-circuit current density (Jsc and open-circuit voltage (Voc are increased by adopting P3HT:PCBM:Ir(btpy3 blend films as the active layer when the cells do not undergo annealing treatment. The increased Jsc should be attributed to the increase of photon harvesting induced by doping phosphorescent material Ir(btpy3 and the effective energy transfer from Ir(btpy3 to P3HT. The effective energy transfer from Ir(btpy3 to P3HT was demonstrated by time-resolved photoluminescence (PL spectra. The increased Voc is due to the photovoltaic effect between Ir(btpy3 and PCBM. The power conversion efficiency (PCE of PSCs with P3HT:PCBM as the active layer is increased from 0.19% to 1.49% by annealing treatment at 140°C for 10 minutes. The PCE of PSCs with P3HT:PCBM:Ir(btpy3 as the active layer is increased from 0.49% to 0.95% by annealing treatment at lower temperature at 100°C for 10 minutes.

  12. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  13. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.

    Fercher, Andreas; Borisov, Sergey M; Zhdanov, Alexander V; Klimant, Ingo; Papkovsky, Dmitri B

    2011-07-26

    A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.

  14. Cerebral oxygen saturation and cardiac output during anaesthesia in sitting position for neurosurgical procedures: a prospective observational study.

    Schramm, P; Tzanova, I; Hagen, F; Berres, M; Closhen, D; Pestel, G; Engelhard, K

    2016-10-01

    Neurosurgical operations in the dorsal cranium often require the patient to be positioned in a sitting position. This can be associated with decreased cardiac output and cerebral hypoperfusion, and possibly, inadequate cerebral oxygenation. In the present study, cerebral oxygen saturation was measured during neurosurgery in the sitting position and correlated with cardiac output. Perioperative cerebral oxygen saturation was measured continuously with two different monitors, INVOS ® and FORE-SIGHT ® . Cardiac output was measured at eight predefined time points using transoesophageal echocardiography. Forty patients were enrolled, but only 35 (20 female) were eventually operated on in the sitting position. At the first time point, the regional cerebral oxygen saturation measured with INVOS ® was 70 (sd 9)%; thereafter, it increased by 0.0187% min -1 (P<0.01). The cerebral tissue oxygen saturation measured with FORE-SIGHT ® started at 68 (sd 13)% and increased by 0.0142% min -1 (P<0.01). The mean arterial blood pressure did not change. Cardiac output was between 6.3 (sd 1.3) and 7.2 (1.8) litre min -1 at the predefined time points. Cardiac output, but not mean arterial blood pressure, showed a positive and significant correlation with cerebral oxygen saturation. During neurosurgery in the sitting position, the cerebral oxygen saturation slowly increases and, therefore, this position seems to be safe with regard to cerebral oxygen saturation. Cerebral oxygen saturation is stable because of constant CO and MAP, while the influence of CO on cerebral oxygen saturation seems to be more relevant. NCT01275898. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The interaction of oxygen with TiC(001): Photoemission and first-principles studies

    Rodriguez, J.A.; Liu, P.; Dvorak, J.; Jirsak, T.; Gomes, J.; Takahashi, Y.; Nakamura, K.

    2004-01-01

    High-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of oxygen with a TiC(001) surface. Atomic oxygen is present on the TiC(001) substrate after small doses of O 2 at room temperature. A big positive shift (1.5-1.8 eV) was detected for the C 1s core level. These photoemission studies suggest the existence of strong O↔C interactions. A phenomenon corroborated by the results of first-principles calculations, which show a CTiTi hollow as the most stable site for the adsorption of O. Ti and C atoms are involved in the adsorption and dissociation of the O 2 molecule. In general, the bond between O and the TiC(001) surface contains a large degree of ionic character. The carbide→O charge transfer is substantial even at high coverages (>0.5 ML) of oxygen. At 500 K and large doses of O 2 , oxidation of the carbide surface occurs with the removal of C and formation of titanium oxides. There is an activation barrier for the exchange of Ti-C and Ti-O bonds which is overcome only by the formation of C-C or C-O bonds on the surface. The mechanism for the removal of a C atom as CO gas involves a minimum of two O adatoms, and three O adatoms are required for the formation of CO 2 gas. Due to the high stability of TiC, an O adatom alone cannot induce the generation of a C vacancy in a flat TiC(001) surface

  16. Experimental study of the hollow cathode radio-frequency plasma mixture: Argon-Oxygen

    Saloum, S.; Naddaf, M.

    2008-01-01

    This study presents experimental results of plasma gas mixture Ar-O 2 for different mixing ratios in radio-frequency hollow cathode plasma. The following plasma parameters have been investigated: The electronic temperature, plasma potential, floating potential, emission atomic lines intensities, as a function of some variables, where the effect of power has been studied in the range [100-300 W], and the effect of pressure has been studied in the range [0.05-0.3 mbar]. The effect of relative composition has been studied for a fixed power and pressure. Two diagnostic techniques have been employed: Optical emission spectroscopy and langmuir probe. The most important result of this study is the ability to measure the relative atomic density of oxygen by optical emission spectroscopy, where the maximum of this density is obtained for the mixture 40% Ar - 60% O 2 . (author)

  17. Study of defects created in silicon during thermal annealings - Correlation with the presence of oxygen

    Olivier, Michel

    1975-01-01

    Defects generation and precipitation phenomena in Czochralski silicon crystals annealed ten of hours at 1000 C have been observed. The defects (perfect dislocation loops emitted by semi-coherent precipitates, Frank loops in correlation with coherent precipitates) are studied by Transmission Electron Microscopy, X-Ray Topography and chemical etching. The generation of defects is connected to the precipitation of interstitial oxygen as it is shown by studying the infrared absorption at 9 μm. We present a lot of experimental results which indicates that the precipitates are SiO 2 clusters; in particular, we show that this hypothesis can explain the presence, after annealing, of an infrared absorption band at 8,2 μm. Some results on Czochralski silicon crystals annealed at 1150 deg. C and 1250 deg. C are then presented. In particular, X-Ray Topography studies show the presence of large (∼100 μm) Frank loops which seem connected to oxygen precipitation. (author) [fr

  18. The underestimated role of temperature-oxygen relationship in large-scale studies on size-to-temperature response.

    Walczyńska, Aleksandra; Sobczyk, Łukasz

    2017-09-01

    The observation that ectotherm size decreases with increasing temperature (temperature-size rule; TSR) has been widely supported. This phenomenon intrigues researchers because neither its adaptive role nor the conditions under which it is realized are well defined. In light of recent theoretical and empirical studies, oxygen availability is an important candidate for understanding the adaptive role behind TSR. However, this hypothesis is still undervalued in TSR studies at the geographical level. We reanalyzed previously published data about the TSR pattern in diatoms sampled from Icelandic geothermal streams, which concluded that diatoms were an exception to the TSR. Our goal was to incorporate oxygen as a factor in the analysis and to examine whether this approach would change the results. Specifically, we expected that the strength of size response to cold temperatures would be different than the strength of response to hot temperatures, where the oxygen limitation is strongest. By conducting a regression analysis for size response at the community level, we found that diatoms from cold, well-oxygenated streams showed no size-to-temperature response, those from intermediate temperature and oxygen conditions showed reverse TSR, and diatoms from warm, poorly oxygenated streams showed significant TSR. We also distinguished the roles of oxygen and nutrition in TSR. Oxygen is a driving factor, while nutrition is an important factor that should be controlled for. Our results show that if the geographical or global patterns of TSR are to be understood, oxygen should be included in the studies. This argument is important especially for predicting the size response of ectotherms facing climate warming.

  19. Variation of oxygen enhancement ratio with radiation dose studies using 8 MeV electron beam

    Yerol, Narayana; Nairy, Rajesha K.; Sanjeev, Ganesh

    2014-01-01

    The radiobiological effects can be modified by physical, chemical and biological factors. Oxygen is one of the best known modifiers, and the biological effects are greater in the presence of oxygen. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells; therefore clarifying the mechanism of the oxygen effect is important. In the present study, an attempt was made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52 and 8 MeV electron beam from Microtron accelerator. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1%:2%:2%) medium for several generations in stationary phase to a density of approximately 3 x 10 8 cells mL -1 . Cells were washed thrice by centrifugation and re-suspended to a cell concentration of 1 x 10 8 cells mL -1 in a sterile polypropylene vial for irradiation. Hypoxic conditions were achieved by incubating the samples in air tight vials at 30℃ for 30 min prior to irradiation. For euoxic samples, a cell suspension of 1 x 10 6 cells mL -1 was prepared and was thoroughly aerated by mixing before irradiation. Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30℃ in dark and normal atmospheric conditions and the colonies were counted. The study confirmed that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. For repair proficient cells OER value has been found to increase with dose, while remain constant for repair deficient cell lines. A theoretical model has been formulated to estimate OER values. The OER value varies from 1.51 to 2.53 for D7, 2.02 to 2.98 for X2180, and 2.58 for rad 52. (author)

  20. Inner Retinal Oxygen Delivery, Metabolism, and Extraction Fraction in Ins2Akita Diabetic Mice.

    Blair, Norman P; Wanek, Justin; Felder, Anthony E; Brewer, Katherine C; Joslin, Charlotte E; Shahidi, Mahnaz

    2016-11-01

    Retinal nonperfusion and hypoxia are important factors in human diabetic retinopathy, and these presumably inhibit energy production and lead to cell death. The purpose of this study was to elucidate the effect of diabetes on inner retinal oxygen delivery and metabolism in a mouse model of diabetes. Phosphorescence lifetime and blood flow imaging were performed in spontaneously diabetic Ins2Akita (n = 22) and nondiabetic (n = 22) mice at 12 and 24 weeks of age to measure retinal arterial (O2A) and venous (O2V) oxygen contents and total retinal blood flow (F). Inner retinal oxygen delivery (DO2) and metabolism (MO2) were calculated as F ∗ O2A and F ∗ (O2A - O2V), respectively. Oxygen extraction fraction (OEF), which equals MO2/DO2, was calculated. DO2 at 12 weeks were 112 ± 40 and 97 ± 29 nL O2/min in nondiabetic and diabetic mice, respectively (NS), and 148 ± 31 and 85 ± 37 nL O2/min at 24 weeks, respectively (P < 0.001). MO2 were 65 ± 31 and 66 ± 27 nL O2/min in nondiabetic and diabetic mice at 12 weeks, respectively, and 79 ± 14 and 54 ± 28 nL O2/min at 24 weeks, respectively (main effects = NS). At 12 weeks OEF were 0.57 ± 0.17 and 0.67 ± 0.09 in nondiabetic and diabetic mice, respectively, and 0.54 ± 0.07 and 0.63 ± 0.08 at 24 weeks, respectively (main effect of diabetes: P < 0.01). Inner retinal MO2 was maintained in diabetic Akita mice indicating that elevation of the OEF adequately compensated for reduced DO2 and prevented oxidative metabolism from being limited by hypoxia.

  1. Study of silicon doped with zinc ions and annealed in oxygen

    Privezentsev, V. V., E-mail: v.privezentsev@mail.ru [Russian Academy of Sciences, Institute of Physics and Technology (Russian Federation); Kirilenko, E. P.; Goryachev, A. N. [Zelenograd, National Research University of Electronic Technology “MIET” (Russian Federation); Batrakov, A. A. [National Research University “MEI” (Russian Federation)

    2017-02-15

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-ray photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.

  2. Study of silicon doped with zinc ions and annealed in oxygen

    Privezentsev, V. V.; Kirilenko, E. P.; Goryachev, A. N.; Batrakov, A. A.

    2017-01-01

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with "6"4Zn"+ ions with an energy of 50 keV and a dose of 5 × 10"1"6 cm"–"2 at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-ray photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn_2SiO_4 and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.

  3. Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect.

    Weusthuis, R A; Visser, W; Pronk, J T; Scheffers, W A; van Dijken, J P

    1994-04-01

    Growth and metabolite formation were studied in oxygen-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 growing on glucose or maltose at a dilution rate of 0.1 h-1. With either glucose or maltose S. cerevisiae could be grown under dual limitation of oxygen and sugar. Respiration and alcoholic fermentation occurred simultaneously and the catabolite fluxes through these processes were dependent on the magnitude of the oxygen feed. C. utilis could also be grown under dual limitation of glucose and oxygen. However, at very low oxygen feed rates (i.e. below 4 mmol l-1 h-1) growth was limited by oxygen only, as indicated by the high residual glucose concentration in the culture. In contrast to S. cerevisiae, C. utilis could not be grown anaerobically at a dilution rate of 0.1 h-1. With C. utilis absence of oxygen resulted in wash-out, despite the presence of ergosterol and Tween-80 in the growth medium. The behaviour of C. utilis with respect to maltose utilization in oxygen-limited cultures was remarkable: alcoholic fermentation did not occur and the amount of maltose metabolized was dependent on the oxygen supply. Oxygen-limited cultures of C. utilis growing on maltose always contained high residual sugar concentrations. These observations throw new light on the so-called Kluyver effect. Apparently, maltose is a non-fermentable sugar for C. utilis CBS 621, despite the fact that it can serve as a substrate for growth of this facultatively fermentative yeast. This is not due to the absence of key enzymes of alcoholic fermentation. Pyruvate decarboxylase and alcohol dehydrogenase were present at high levels in maltose-utilizing cells of C. utilis grown under oxygen limitation. It is concluded that the Kluyver effect, in C. utilis growing on maltose, results from a regulatory mechanism that prevents the sugar from being fermented. Oxygen is not a key factor in this phenomenon since under oxygen limitation alcoholic fermentation of

  4. The effect of electromagnetic radiation emitted by display screens on cell oxygen metabolism - in vitro studies.

    Lewicka, Małgorzata; Henrykowska, Gabriela A; Pacholski, Krzysztof; Śmigielski, Janusz; Rutkowski, Maciej; Dziedziczak-Buczyńska, Maria; Buczyński, Andrzej

    2015-12-10

    Research studies carried out for decades have not solved the problem of the effect of electromagnetic radiation of various frequency and strength on the human organism. Due to this fact, we decided to investigate the changes taking place in human blood platelets under the effect of electromagnetic radiation (EMR) emitted by LCD monitors. The changes of selected parameters of oxygen metabolism were measured, i.e. reactive oxygen species concentration, enzymatic activity of antioxidant defence proteins - superoxide dismutase (SOD-1) and catalase (CAT) - and malondialdehyde concentration (MDA). A suspension of human blood platelets was exposed to electromagnetic radiation of 1 kHz frequency and 150 V/m and 220 V/m intensity for 30 and 60 min. The level of changes of the selected parameters of oxidative stress was determined after the exposure and compared to the control samples (not exposed). The measurements revealed an increase of the concentration of reactive oxygen species. The largest increase of ROS concentration vs. the control sample was observed after exposure to EMF of 220 V/m intensity for 60 min (from x = 54.64 to x = 72.92). The measurement of MDA concentration demonstrated a statistically significant increase after 30-min exposure to an EMF of 220 V/m intensity in relation to the initial values (from x = 3.18 to x = 4.41). The enzymatic activity of SOD-1 decreased after exposure (the most prominent change was observed after 60-min and 220 V/m intensity from x = 3556.41 to x = 1084.83). The most significant change in activity of catalase was observed after 60 min and 220 v/m exposure (from x = 6.28 to x = 4.15). The findings indicate that exposure to electromagnetic radiation of 1 kHz frequency and 150 V/m and 220 V/m intensity may cause adverse effects within blood platelets' oxygen metabolism and thus may lead to physiological dysfunction of the organism.

  5. Phosphorescence Control Mediated by Molecular Rotation and Aurophilic Interactions in Amphidynamic Crystals of 1,4-Bis[tri-(p-fluorophenyl)phosphane-gold(I)-ethynyl]benzene.

    Jin, Mingoo; Chung, Tim S; Seki, Tomohiro; Ito, Hajime; Garcia-Garibay, Miguel A

    2017-12-13

    Here we present a structural design aimed at the control of phosphorescence emission as the result of changes in molecular rotation in a crystalline material. The proposed strategy includes the use of aurophilic interactions, both as a crystal engineering tool and as a sensitive emission probe, and the use of a dumbbell-shaped architecture intended to create a low packing density region that permits the rotation of a central phenylene. Molecular rotor 1, with a central 1,4-diethynylphenylene rotator linked to two gold(I) triphenylphosphane complexes, was prepared and its structure confirmed by single-crystal X-ray diffraction, which revealed chains mediated by dimeric aurophilic interactions. We showed that green-emitting crystals exhibit reversible luminescent color changes between 298 and 193 K, which correlate with changes in rotational motion determined by variable-temperature solid-state 2 H NMR spin-echo experiments. Fast two-fold rotation with a frequency of ca. 4.00 MHz (τ = 0.25 μs) at 298 K becomes essentially static below 193 K as emission steadily changes from green to yellow in this temperature interval. A correlation between phosphorescence lifetimes and rotational frequencies is interpreted in terms of conformational changes arising from rotation of the central phenylene, which causes a change in electronic communication between the gold-linked rotors, as suggested by DFT studies. These results and control experiments with analogue 2, possessing a hindered tetramethylphenylene that is unable to rotate in the crystal, suggest that the molecular rotation can be a useful tool for controlling luminescence in the crystalline state.

  6. Oxygen sensor development and low temperature corrosion study in lead-alloy coolant loop

    Hwang, Il Soon; Bahn, Chi Bum; Lee, Seung Gi; Jeong, Seung Ho; Nam, Hyo On; Lim, Jun

    2007-07-01

    Oxygen sensor to measure dissolved oxygen concentration at liquid lead-bismuth eutectic environments have been developed. Developed oxygen sensor for application in lead-bismuth eutectic (LBE) system was based on the oxygen ion conductor made of YSZ ceramic having Bi/Bi2O3 reference joined by electro-magnetic swaging. Leakage problem, which was major problem of existing sensors, can be solved by using electro-magnetic swaging method. A new calibration strategy combining the oxygen titration with electrochemical impedance spectroscopy (EIS) was performed to increase the reliability of sensor. Another calibration was also conducted by controlling the oxygen concentration using OCS (oxygen control system). Materials corrosion tests of various metals (SS316, EP823, T91 and HT9) were conducted for up to 1,000 hours with specimen inspection after every 333hours at 450 .deg. C in HELIOS. Oxygen concentration was controlled at 10 -6 wt% by using the direct gas bubbling of Ar+4%H 2 , Ar+5%O 2 and pure Ar. The dissolved oxygen concentration in LBE was also monitored by two calibrated YSZ oxygen sensors located at different places under different temperatures within HELIOS. It shows a good performance during 1000 hours. Liquid metal embrittlement (LME) test of SS316L specimen in the LBE was performed at various temperature and strain rate. The result shows that the liquid metal embrittlement effect is not crucial at tested conditions

  7. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation.

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-09-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C.Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland-Altman method was used to assess agreement between them.The devices showed agreement in overall tracking of changes in SO2. Test-retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range.Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative.

  8. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  9. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-01-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C. Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland–Altman method was used to assess agreement between them. The devices showed agreement in overall tracking of changes in SO2. Test–retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range. Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative. (paper)

  10. Computational study of sheath structure in oxygen containing plasmas at medium pressures

    Hrach, Rudolf; Novak, Stanislav; Ibehej, Tomas; Hrachova, Vera

    2016-09-01

    Plasma mixtures containing active species are used in many plasma-assisted material treatment technologies. The analysis of such systems is rather difficult, as both physical and chemical processes affect plasma properties. A combination of experimental and computational approaches is the best suited, especially at higher pressures and/or in chemically active plasmas. The first part of our study of argon-oxygen mixtures was based on experimental results obtained in the positive column of DC glow discharge. The plasma was analysed by the macroscopic kinetic approach which is based on the set of chemical reactions in the discharge. The result of this model is a time evolution of the number densities of each species. In the second part of contribution the detailed analysis of processes taking place during the interaction of oxygen containing plasma with immersed substrates was performed, the results of the first model being the input parameters. The used method was the particle simulation technique applied to multicomponent plasma. The sheath structure and fluxes of charged particles to substrates were analysed in the dependence on plasma pressure, plasma composition and surface geometry.

  11. A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching

    Siró, Istvan; Plackett, David; Sommer-Larsen, Peter

    2010-01-01

    Information on oxygen permeability through polymer films is essential for some applications, especially in food packaging where the control of oxygen levels can be critical in avoiding food spoilage. A permeability testing device using fluorescence-based optical oxygen sensing was developed...... as a potential new instrument for measuring the oxygen permeability of packaging films. The fluorescence-based permeability tester was validated against two existing commercial oxygen permeability measuring devices, the Mocon Ox-Tran 2/20 and PBI-Dansensor OPT-5000. Oxygen transmission rates (OTR) of polylactide...... (PLA) and nanoclay-reinforced PLA films, as well as polyethylene/poly(ethylene terephthalate) (PE/PET) and polypropylene/poly(ethylene terephthalate) (PP/PET) laminated films were determined at 23°C and 50% relative humidity using each of these instruments. No significant differences were observed...

  12. Retinopathy of prematurity and induced changes in arterial oxygen saturation with near infrared spectrophotometry: a retrospective cohort study

    von Siebenthal, K.; Keel, M.; Dietz, V.; Fauchere, J. C.; Martin, X.; Wolf, Martin; Duc, G.; Bucher, H. U.

    1996-10-01

    Near-infrared spectrophotometry (NIRS) is a noninvasive method for measuring oxygenated and deoxygenated hemoglobin in the neonatal brain. Using oxygen as a tracer, it is possible to calculate cerebral blood flow (cbf) and hemoglobin concentration (cHbc), which corresponds to cerebral blood volume, by inducing small changes in arterial oxygen saturation. Variability of tcpO2 is considered to be associated with severe retinopathy of prematurity (ROP). A preliminary analysis without control found a 51 percent incidence of ROP in infants subjected to NIRS measurements whereas among infants who were not exposed to oxygen changes, only 29 percent developed ROP. A controlled study with matched pairs was performed. Thirty-nine premature newborns who had received NIRS recordings were matched with 39 out of 172 infants who had not received NIRS. Using this controlled study design there was no difference in the incidence and severity of ROP between the two groups. The conclusions are that: 1) small changes in oxygen saturation of 3 to 10 percent to measure cbf and cHbc did not increase the incidence or the degree of severity of ROP. 2) A controlled study design is important. Analyses of uncontrolled data would have led to the conclusion that oxygen changes as used with NIRS increase the risk of ROP.

  13. Optoacoustic measurement of central venous oxygenation for assessment of circulatory shock: clinical study in cardiac surgery patients

    Petrov, Irene Y.; Prough, Donald S.; Kinsky, Michael; Petrov, Yuriy; Petrov, Andrey; Henkel, S. Nan; Seeton, Roger; Salter, Michael G.; Esenaliev, Rinat O.

    2014-03-01

    Circulatory shock is a dangerous medical condition, in which blood flow cannot provide the necessary amount of oxygen to organs and tissues. Currently, its diagnosis and therapy decisions are based on hemodynamic parameters (heart rate, blood pressure, blood gases) and mental status of a patient, which all have low specificity. Measurement of mixed or central venous blood oxygenation via catheters is more reliable, but highly invasive and associated with complications. Our previous studies in healthy volunteers demonstrated that optoacoustic systems provide non-invasive measurement of blood oxygenation in specific vessels, including central veins. Here we report our first results of a clinical study in coronary artery bypass graft (CABG) surgery patients. We used a medical-grade OPO-based optoacoustic system developed in our laboratory to measure in real time blood oxygenation in the internal jugular vein (IJV) of these patients. A clinical ultrasound imaging system (GE Vivid e) was used for IJV localization. Catheters were placed in the IJV as part of routine care and blood samples taken via the catheters were processed with a CO-oximeter. The optoacoustic oxygenation data were compared to the CO-oximeter readings. Good correlation between the noninvasive and invasive measurements was obtained. The results of these studies suggest that the optoacoustic system can provide accurate, noninvasive measurements of central venous oxygenation that can be used for patients with circulatory shock.

  14. An oxygen isotope study on hydrothermal sources of granite-type uranium deposits in South China

    Yongfei, Z.

    1987-01-01

    The usefulness of oxygen isotope measurements in solving problems of hydrothermal sources has been demonstrated in a number of detailed studies of the granite type uranium deposits in this paper. Remarkly the granite-type uranium deposits in Southr China have been shown to have formed from magmatic water, meteoric water, of mixtures of both the above, and origin of waters in the ore-forming fluid may be different for differing uranium deposits ore differing stages of the mineralization. Consequences obtained in this study for typical uranium deposits of different age and geologic sitting agree well with that obtained by other geologic-geochemical investigation. Furthermore, not only meteoric water is of importance to origin and evolution of the ore-forming fluid, but also mixing of waters from different sources is considered to be one of the most characteristic features of many hydrothermal uranium deposits related to granitoids or volcanics. (C.D.G.) [pt

  15. Transient behaviour of the mechanoluminescence induced by impulsive deformation of fluorescent and phosphorescent crystals

    Chandra, B.P.; Mahobia, S.K.; Jha, P.; Kuraria, R.K.; Kuraria, S.R.; Baghel, R.N.; Thaker, S.

    2008-01-01

    When a crystal is fractured impulsively by the impact of a moving piston, then initially the mechanoluminescence (ML) intensity increases quadratically with time, attains a peak value and later on it decreases with time. Considering that the solid state ML and gas discharge ML are excited due to the charging and subsequent production of electric field near the tip of moving cracks, expressions are derived for the transient ML intensity I, time t m and intensity I m corresponding to the peak of ML intensity versus time curve, respectively, the total ML intensity I T , and for fast and slow decays of the ML intensity. It is shown that the decay time for the fast decrease of the ML intensity after t m , is related to the decay time of the strain rate of crystals, and the decay time of slow decay of ML, only observed in phosphorescent crystals, is equal to the decay time of phosphorescence. The value of t m decreases with the increasing impact velocity, I m increases with the increasing impact velocity, and I T initially increases and then it tends to attain a saturation value for higher values of the impact velocity. The values of t m , I m and I T increase linearly with the thickness, area of cross-section and volume of the crystals, respectively. So far as the rise, attainment of ML peak, and fast decay of ML are concerned, there is no any significant difference in the time-evolution of solid state ML, gas discharge ML, and the ML emission consisting of both the solid state ML and gas discharge ML. From the time-dependence of ML, the values of the time-constant for decrease of the surface area created by the movement of a single crack, the time-constant for the decrease of strain rate of crystals, and the decay time of phosphorescence of crystals can be determined. A good agreement is found between the theoretical and experimental results. The importance of fracto ML induced by impulsive deformation of crystals is discussed

  16. Direct screening of tetracyclines in water and bovine milk using room temperature phosphorescence detection

    Traviesa-Alvarez, J.M.; Costa-Fernandez, J.M.; Pereiro, R.; Sanz-Medel, A.

    2007-01-01

    A fast and simple flow-through optosensor was designed and characterized for the direct screening of four tetracycline (TCC) antibiotics (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in water and bovine milk samples. The proposed optosensor provides rapid binary yes/no overall responses, being appropriate for the screening of this family of antibiotics above or below a pre-set concentration threshold. The experimental set-up is based on a flow-injection manifold coupled on-line to a phosphorescence detector. Aliquots of the samples are pretreated with Eu(III) to form room temperature phosphorescent metal chelates and injected in the flow manifold. Those chelates are then on-line retained on a conventional flow-cell (packed with polymeric Amberlite XAD-4 particles) which is placed inside the cell holder of the phosphorimeter. After the emission is registered, the antibiotic-metal complexes are eluted from the packed resin with 1 M HCl (for milk samples a second regeneration step, using methanol, should be performed). A sample throughput of about 20 samples per hour was obtained. Optimum experimental conditions include a pH 9, a Eu(III) concentration of 2 x 10 -4 M and 8 mM sodium sulphite as chemical deoxygenant. The phosphorescence emitted by the europium-TCC complexes was measured at 394 and 617 nm for excitation and emission wavelengths, respectively. The unreliability region, given by the probability of false positives and false negatives, respectively (set at 5% in both cases) was in the range between 0.2 and 11.6 nM for detection of tetracyclines in water samples (at a cut-off level of 4 nM) and in the range between 165 and 238 nM for detection of tetracyclines in milk (cut-off level fixed at the normative EU level of 200 nM). Finally, the applicability of the proposed screening optosensor was tested for the reliable control of tetracyclines in contaminated and uncontaminated water and milk samples

  17. Direct screening of tetracyclines in water and bovine milk using room temperature phosphorescence detection

    Traviesa-Alvarez, J M [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Costa-Fernandez, J M [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Pereiro, R [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain); Sanz-Medel, A [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, c/Julian Claveria 8, 33006 Oviedo (Spain)

    2007-04-18

    A fast and simple flow-through optosensor was designed and characterized for the direct screening of four tetracycline (TCC) antibiotics (tetracycline, oxytetracycline, chlortetracycline and doxycycline) in water and bovine milk samples. The proposed optosensor provides rapid binary yes/no overall responses, being appropriate for the screening of this family of antibiotics above or below a pre-set concentration threshold. The experimental set-up is based on a flow-injection manifold coupled on-line to a phosphorescence detector. Aliquots of the samples are pretreated with Eu(III) to form room temperature phosphorescent metal chelates and injected in the flow manifold. Those chelates are then on-line retained on a conventional flow-cell (packed with polymeric Amberlite XAD-4 particles) which is placed inside the cell holder of the phosphorimeter. After the emission is registered, the antibiotic-metal complexes are eluted from the packed resin with 1 M HCl (for milk samples a second regeneration step, using methanol, should be performed). A sample throughput of about 20 samples per hour was obtained. Optimum experimental conditions include a pH 9, a Eu(III) concentration of 2 x 10{sup -4} M and 8 mM sodium sulphite as chemical deoxygenant. The phosphorescence emitted by the europium-TCC complexes was measured at 394 and 617 nm for excitation and emission wavelengths, respectively. The unreliability region, given by the probability of false positives and false negatives, respectively (set at 5% in both cases) was in the range between 0.2 and 11.6 nM for detection of tetracyclines in water samples (at a cut-off level of 4 nM) and in the range between 165 and 238 nM for detection of tetracyclines in milk (cut-off level fixed at the normative EU level of 200 nM). Finally, the applicability of the proposed screening optosensor was tested for the reliable control of tetracyclines in contaminated and uncontaminated water and milk samples.

  18. Combined application of XANES and XPS to study oxygen species adsorbed on Ag foil

    Bukhtiyarov, V I; Kaichev, V V; Knop-Gericke, A; Mayer, R W; Schloegl, R

    2001-01-01

    Adsorbed oxygen species realized in the course of ethylene epoxidation over polycrystalline silver have been characterized by X-ray absorption near the edge structure and X-ray photoelectron spectroscopy. Namely, the combined application of XANES and XPS in similar UHV conditions using the same sample allowed us to assign an XAS feature to the nucleophilic and electrophilic oxygen. This is of great significance, since these species are suggested to be included into the active center for ethylene epoxidation. The differences in the oxygen-silver bonding of these oxygen species are discussed.

  19. 18O isotopic tracer studies of silicon oxidation in dry oxygen

    Han, C.J.

    1986-01-01

    Oxidation of silicon in dry oxygen has been an important process in the integrated circuit industry for making gate insulators on metal-oxide-semiconductory (MOS) devices. This work examines this process using isotopic tracers of oxygen to determine the transport mechanisms of oxygen through silicon dioxide. Oxides were grown sequentially using mass-16 and mass-18 oxygen gas sources to label the oxygen molecules from each step. The resulting oxides are analyzed using secondary ion mass spectrometry (SIMS). The results of these analyses suggest two oxidant species are present during the oxidation, each diffuses and oxidizes separately during the process. A model from this finding using a sum of two linear-parabolic growth rates, each representing the growth rate from one of the oxidants, describes the reported oxidation kinetics in the literature closely. A fit of this relationship reveals excellent fits to the data for oxide thicknesses ranging from 30 A to 1 μm and for temperatures ranging from 800 to 1200 0 C. The mass-18 oxygen tracers also enable a direct observation of the oxygen solubility in the silicon dioxide during a dry oxidation process. The SIMS profiles establish a maximum solubility for interstitial oxygen at 1000 0 C at 2 x 10 20 cm -3 . Furthermore, the mass-18 oxygen profiles show negligible network diffusion during an 1000 0 C oxidation

  20. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project.

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-04-07

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery.

  1. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery. PMID:29642468

  2. Radiobiological studies on the importance of tumor oxygenation for anti-neoplastic therapy

    Grau, C.

    1994-01-01

    The aim of the twelve studies included in the present thesis was to determine the importance of hypoxia for various anti-neoplastic treatment modalities, and to evaluate possible ways of overcoming the hypoxia problem by combined modality therapy. The murine tumor systems were the C3H mammary carcinoma with 5-12% hypoxic cells, and the SCCVII squamous cell carcinoma with 2% hypoxic cells. The radiation response was significantly improved by the use of hypoxic cell radiosensitizers such as nimorazole or misonidazole, or by allowing the mice to breathe oxygen or carbogen during irradiation. In contrast, the radiation response was significantly impaired by carbon monoxide breathing at a level comparable to what has been observed in heavy smokers. The clamped TCD 50 assay was used to classify cancer chemotherapeutic drugs according to their preferential cytotoxicity towards the different tumor subpopulations. Methotrexate had no effect on hypoxic cells and was only borderline toxic towards aerobic cells. Three drugs had significant effect against oxic cells only (5-fluorouracil, bleomycin and cisplatin). Similarly, three drugs were toxic towards hypoxic cells only (etoposide, carmustine, and mitomycin c). Three drugs were effective towards both cell types (vincristine, adriamycin, cyclophosphamide). Hypoxic cells in areas with insufficient blood supply, poor nutrition and increased acidity is known to be highly sensitive to hyperthermia. In a study where cisplatin, heat and x-rays were given together, the local tumor control was not improved when compared to radiation + heat, apparently due to a lack of enhancement in the killing of hypoxic cells. These studies have demonstrated the influence of tumor oxygenation on tumor response to treatment with drugs, hyperthermia and irradiation. New strategies targeted also against perfusion-limited hypoxia is needed. One of the most important conclusions from the present thesis can be implemented without expensive trials or

  3. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    Clanet, M

    1987-06-18

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO/sub 2/), oxygen extraction (EO/sub 2/) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO/sub 2/ and often a decrease in CMRO/sub 2/, whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO/sub 2/, EO/sub 2/ and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis.

  4. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    Clanet, M.

    1987-01-01

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO 2 ), oxygen extraction (EO 2 ) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO 2 and often a decrease in CMRO 2 , whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO 2 , EO 2 and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis [fr

  5. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Opitz, N; Lübbers, D W

    1987-01-01

    range of PO2 values, resulting in a higher resolution. Use of suitable polymer alloys as indicator matrices can even enhance oxygen sensitivity; therefore, the application of optodes for trace analysis of oxygen might be possible, especially with regard to the application of highly oxygen-sensitive phosphorescent indicators. Finally, owing to the reversibility of fluorescence quenching, monitoring of oxygen by fluorescence optical sensors allows a continuous and remote control of biomedical parameters as well as regulation of biotechnological processes.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Oxygen toxicity

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  7. Study of Oxidizing Agents for Tritium Removal in ITER -Compatible Conditions: Alternatives to Oxygen and Ozone

    Tabares, F. L.; Tafalla, D.; Ferreira, J. A.; Gomez-Aleixandre, C.; Maria Albella, J.; Soria, J.; Rodriguez-Ramos, I.

    2007-01-01

    In the present report, the studies of tritiated carbon-film removal by oxidizing agents other than Oxygen and Ozone in ITER are described. Exposure of laboratory produced a-C:H/D films and tokamak flakes (Asdex Upgrade and Textor) to nitric oxide, water and hydrogen peroxide has been carried out. Temperatures of exposure up to 350 degree centigree were used, and thermal desorption of the samples at temperatures up to 750 degree centigree was performed for sample characterization prior to and after the treatment. Elastic Recoil Detection Analysis (ERDA), Infrared Spectroscopy, XPS and Nano indentation hardness analysis were applied to the characterization of the physical and chemical changes of the samples. This work was done under the EFDA Task 04-1175. (Author) 8 refs

  8. An Oxygen Reduction Study of Graphene-Based Nanomaterials of Different Origin

    Jaana Lilloja

    2016-07-01

    Full Text Available The aim of this study is to compare the electrochemical behaviour of graphene-based materials of different origin, e.g., commercially available graphene nanosheets from two producers and reduced graphene oxide (rGO towards the oxygen reduction reaction (ORR using linear sweep voltammetry, rotating disc electrode and rotating ring-disc electrode methods. We also investigate the effect of catalyst ink preparation using two different solvents (2-propanol containing OH− ionomer or N,N-dimethylformamide on the ORR. The graphene-based materials are characterised by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Clearly, the catalytic effect depends on the origin of graphene material and, interestingly, the electrocatalytic activity of the catalyst material for ORR is lower when using the OH− ionomer in electrode modification. The graphene electrodes fabricated with commercial graphene show better ORR performance than rGO in alkaline solution.

  9. Study of Oxidizing Agents for Tritium Removal in ITER -Compatible Conditions: Alternatives to Oxygen and Ozone

    Tabares, F. L.; Tafalla, D.; Ferreira, J. A.; Gomez-Aleixandre, C.; Maria Albella, J.; Soria, J.; Rodriguez-Ramos, I.

    2007-07-20

    In the present report, the studies of tritiated carbon-film removal by oxidizing agents other than Oxygen and Ozone in ITER are described. Exposure of laboratory produced a-C:H/D films and tokamak flakes (Asdex Upgrade and Textor) to nitric oxide, water and hydrogen peroxide has been carried out. Temperatures of exposure up to 350 degree centigree were used, and thermal desorption of the samples at temperatures up to 750 degree centigree was performed for sample characterization prior to and after the treatment. Elastic Recoil Detection Analysis (ERDA), Infrared Spectroscopy, XPS and Nano indentation hardness analysis were applied to the characterization of the physical and chemical changes of the samples. This work was done under the EFDA Task 04-1175. (Author) 8 refs.

  10. Spirobifluorene Core-Based Novel Hole Transporting Materials for Red Phosphorescence OLEDs

    Ramanaskanda Braveenth

    2017-03-01

    Full Text Available Two new hole transporting materials, named HTM 1A and HTM 1B, were designed and synthesized in significant yields using the well-known Buchwald Hartwig and Suzuki cross- coupling reactions. Both materials showed higher decomposition temperatures (over 450 °C at 5% weight reduction and HTM 1B exhibited a higher glass transition temperature of 180 °C. Red phosphorescence-based OLED devices were fabricated to analyze the device performances compared to Spiro-NPB and NPB as reference hole transporting materials. Devices consist of hole transporting material as HTM 1B showed better maximum current and power efficiencies of 16.16 cd/A and 11.17 lm/W, at the same time it revealed an improved external quantum efficiency of 13.64%. This efficiency is considerably higher than that of Spiro-NPB and NPB-based reference devices.

  11. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    Beatrice Ch. D. Salert

    2012-01-01

    Full Text Available This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obtained electron-transporting polymers as the emissive layer material in blend systems together with a green iridium-based emitter 13 and a small molecule as an additional cohost with wideband gap characteristics (CoH-001. The performance of the OLEDs was characterized and discussed in regard to the chemical structure of the new electron-transporting polymers.

  12. Precise Design of Phosphorescent Molecular Butterflies with Tunable Photoinduced Structural Change and Dual Emission.

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Han, Mingu; Wang, Jamie; Zhu, Lei; Tameh, Maliheh Shaban; Huang, Chen; Ma, Biwu

    2015-08-10

    Photoinduced structural change (PSC) is a fundamental excited-state dynamic process in chemical and biological systems. However, precise control of PSC processes is very challenging, owing to the lack of guidelines for designing excited-state potential energy surfaces (PESs). A series of rationally designed butterfly-like phosphorescent binuclear platinum complexes that undergo controlled PSC by Pt-Pt distance shortening and exhibit tunable dual (greenish-blue and red) emission are herein reported. Based on the Bell-Evans-Polanyi principle, it is demonstrated how the energy barrier of the PSC, which can be described as a chemical-reaction-like process between the two energy minima on the first triplet excited-state PES, can be controlled by synthetic means. These results reveal a simple method to engineer the dual emission of molecular systems by manipulating PES to control PSC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes.

    Lim, Hyoungcheol; Shin, Hyun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Huh, Jin-Suk; Kim, Jang-Joo

    2017-11-01

    The use of exciplex hosts is attractive for high-performance phosphorescent organic light-emitting diodes (PhOLEDs) and thermally activated delayed fluorescence OLEDs, which have high external quantum efficiency, low driving voltage, and low efficiency roll-off. However, exciplex hosts for deep-blue OLEDs have not yet been reported because of the difficulties in identifying suitable molecules. Here, we report a deep-blue-emitting exciplex system with an exciplex energy of 3.0 eV. It is composed of a carbazole-based hole-transporting material (mCP) and a phosphine-oxide-based electron-transporting material (BM-A10). The blue PhOLEDs exhibited maximum external quantum efficiency of 24% with CIE coordinates of (0.15, 0.21) and longer lifetime than the single host devices.

  14. A Multifunctional Biomaterial with NIR Long Persistent Phosphorescence, Photothermal Response and Magnetism.

    Wu, Yiling; Li, Yang; Qin, Xixi; Qiu, Jianrong

    2016-09-20

    There are many reports on long persistent phosphors (LPPs) applied in bioimaging. However, there are few reports on LPPs applied in photothermal therapy (PTT), and an integrated system with multiple functions of diagnosis and therapy. In this work, we fabricate effective multifunctional phosphors Zn3 Ga2 SnO8 : Cr(3+) , Nd(3+) , Gd(3+) with NIR persistent phosphorescence, photothermal response and magnetism. Such featured materials can act as NIR optical biolabels and magnetic resonance imaging (MRI) contrast agents for tracking the early cancer cells, but also as photothermal therapeutic agent for killing the cancer cells. This new multifunctional biomaterial is expected to open a new possibility of setting up an advanced imaging-guided therapy system featuring a high resolution for bioimaging and low side effects for the photothermal ablation of tumors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mechanical ventilation management during extracorporeal membrane oxygenation for acute respiratory distress syndrome: a retrospective international multicenter study.

    Schmidt, Matthieu; Stewart, Claire; Bailey, Michael; Nieszkowska, Ania; Kelly, Joshua; Murphy, Lorna; Pilcher, David; Cooper, D James; Scheinkestel, Carlos; Pellegrino, Vincent; Forrest, Paul; Combes, Alain; Hodgson, Carol

    2015-03-01

    To describe mechanical ventilation settings in adult patients treated for an acute respiratory distress syndrome with extracorporeal membrane oxygenation and assess the potential impact of mechanical ventilation settings on ICU mortality. Retrospective observational study. Three international high-volume extracorporeal membrane oxygenation centers. A total of 168 patients treated with extracorporeal membrane oxygenation for severe acute respiratory distress syndrome from January 2007 to January 2013. We analyzed the association between mechanical ventilation settings (i.e. plateau pressure, tidal volume, and positive end-expiratory pressure) on ICU mortality using multivariable logistic regression model and Cox-proportional hazards model. We obtained detailed demographic, clinical, daily mechanical ventilation settings and ICU outcome data. One hundred sixty-eight patients (41 ± 14 years old; PaO2/FIO2 67 ± 19 mm Hg) fulfilled our inclusion criteria. Median duration of extracorporeal membrane oxygenation and ICU stay were 10 days (6-18 d) and 28 days (16-42 d), respectively. Lower positive end-expiratory pressure levels and significantly lower plateau pressures during extracorporeal membrane oxygenation were used in the French center than in both Australian centers (23.9 ± 1.4 vs 27.6 ± 3.7 and 27.8 ± 3.6; p Protective mechanical ventilation strategies were routinely used in high-volume extracorporeal membrane oxygenation centers. However, higher positive end-expiratory pressure levels during the first 3 days on extracorporeal membrane oxygenation support were independently associated with improved survival. Further prospective trials on the optimal mechanical ventilation strategy during extracorporeal membrane oxygenation support are warranted.

  16. Oxygen stoichiometry of LaTiO{sub 3} thin films studied by in-situ photoemission

    Scheiderer, Philipp; Goessmann, Alex; Sing, Michael; Claessen, Ralph [Universitaet Wuerzburg, Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), 97074 Wuerzburg (Germany)

    2015-07-01

    As in the famous oxide heterostructure LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) a two dimensional electron system is found at the interface between the strongly correlated Mott insulator LaTi{sup 3+}O{sub 3} and the band insulator STO. The stabilization of LaTi{sup 3+}O{sub 3} requires strong reducing growth conditions since the thermodynamically stable bulk phase is the oxygen rich La{sub 2}Ti{sup 4+}{sub 2}O{sub 7}. Therefore, we have systematically studied the impact of the oxygen background atmosphere on LaTi{sup 3+}O{sub 3} thin film growth by PLD. Reflection high-energy diffraction intensity oscillations of the specular spot indicate a layer by layer growth mode for thin films, which merges into the formation of islands for thicker films. In-situ photoemission measurements enables us to determine the oxidation state of Ti indicating excess or lack of oxygen present in the prepared samples. Our experiments show that even for films grown in vacuum, strong oxygen excess is present probably due to oxygen out-diffusion from the STO substrate. We find that an LAO buffer layer serves as an effective barrier for this process. The spectral weight of the lower Hubbard band, being a characteristic feature for the Mott insulating phase, is found to scale inversely with the amount of excess oxygen.

  17. Influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. An XPS and CL study

    Guzmán, G; Herrera, M; Silva, R; Vásquez, G C; Maestre, D

    2016-01-01

    We report a cathodoluminescence (CL) and x-ray photoelectron spectroscopy (XPS) study of the influence of oxygen incorporation on the defect structure of GaN microrods and nanowires. The micro- and nanostructures were synthesized by a thermal evaporation method, which enables us to incorporate oxygen at different concentrations by varying the growth temperature. HR-TEM measurements revealed that oxygen generates stacking fault defects and edge dislocations along the GaN nanowires. Amorphous GaO x N y compounds were segregated on the surface of the nanowires. XPS, XRD and CL measurements suggests that the microrods and nanowires were composed of amorphous oxynitride compounds at their surface and GaN at their inner region. CL measurements revealed that the nanostructures generated an emission of 2.68 eV that increased in intensity proportionally to their oxygen content. We have attributed this emission to electronic transitions between donor substitutional-oxygen (O N ) and acceptor interstitial-oxygen (O i ) state levels. (paper)

  18. Reductive tetrachloroethene dehalogenation in the presence of oxygen by Sulfurospirillum multivorans: physiological studies and proteome analysis.

    Gadkari, Jennifer; Goris, Tobias; Schiffmann, Christian L; Rubick, Raffael; Adrian, Lorenz; Schubert, Torsten; Diekert, Gabriele

    2018-01-01

    Reductive dehalogenation of organohalides is carried out by organohalide-respiring bacteria (OHRB) in anoxic environments. The tetrachloroethene (PCE)-respiring Epsilonproteobacterium Sulfurospirillum multivorans is one of few OHRB able to respire oxygen. Therefore, we investigated the organism's capacity to dehalogenate PCE in the presence of oxygen, which would broaden the applicability to use S. multivorans, unlike other commonly oxygen-sensitive OHRB, for bioremediation, e.g. at oxic/anoxic interphases. Additionally, this has an impact on our understanding of the global halogen cycle. Sulfurospirillum multivorans performs dehalogenation of PCE to cis-1,2-dichloroethene at oxygen concentrations below 0.19 mg/L. The redox potential of the medium electrochemically adjusted up to +400 mV had no influence on reductive dehalogenation by S. multivorans in our experiments, suggesting that higher levels of oxygen impair PCE dechlorination by inhibiting or inactivating involved enzymes. The PCE reductive dehalogenase remained active in cell extracts of S. multivorans exposed to 0.37 mg/L oxygen for more than 96 h. Analysis of the proteome revealed that superoxide reductase and cytochrome peroxidase amounts increased with 5% oxygen in the gas phase, while the response to atmospheric oxygen concentrations involved catalase and hydrogen peroxide reductase. Taken together, our results demonstrate that reductive dehalogenation by OHRB is not limited to anoxic conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  20. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...

  1. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  2. Recombination region improvement for reduced efficiency roll-off in phosphorescent OLEDs with dual emissive layers

    Ma, Zhu; Zhou, Shunliang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Hu, Song [Chengdu Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-10-15

    High-performance phosphorescent organic light-emitting diodes (PhOLEDs) by using dual-emissive-layer (DEL) structure to reduce efficiency roll-off were fabricated. The DEL was comprised of a hole-transport-type host of N, N′-bis(naphthalen-1-yl)-N, N′-bis(phenyl)-benzidine (NPB) and a bipolar host of 4,4′-bis(carbazol-9-yl)biphenyl (CBP), which were both doped with an orange phosphorescent dopant of bis[2-(4-tert-butylphenyl)-benzothiazolato-N,C2′]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)]. After the optimization of doping concentration of the first emissive layer (FEL), the device with DEL exhibited 11% lower roll-off power efficiency than single emissive layer devices (SED) when the luminance increased from 1000 cd/m{sup 2} to 10,000 cd/m{sup 2}. The hole–electron recombination zone in DEL was illuminated by inserting an ultrathin fluorescent probe of 4-(dicyanomethylene)-2-tert-butyl-6 (1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) in different emissive regions. The performance improvement was attributed to the optimization of energy barrier and the expansion of exciton formation zone within the DEL. - Highlights: • PhOLEDs by using a dual-emissive-layer structure to reduce efficiency roll-off were fabricated. • The DED exhibited 11% lower efficiency roll-off, 57% lower turn-on voltage, and 174% higher brightness than SED. • A DCJTB fluorescent probe was inserted at different positions of DED to investigate the expansion of exciton formation zone.

  3. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan, E-mail: twk@hanayng.ac.kr

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  4. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study

    Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.

    2002-08-01

    Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.

  5. Measuring oxygen tension modulation, induced by a new pre-radiotherapy therapeutic, in a mammary window chamber mouse model

    Schafer, Rachel; Gmitro, Arthur F.

    2015-03-01

    Tumor regions under hypoxic or low oxygen conditions respond less effectively to many treatment strategies, including radiation therapy. A novel investigational therapeutic, NVX-108 (NuvOx Pharma), has been developed to increase delivery of oxygen through the use of a nano-emulsion of dodecofluoropentane. By raising pO2 levels prior to delivering radiation, treatment efficacy may be improved. To aid in evaluating the novel drug, oxygen tension was quantitatively measured, spatially and temporally, to record the effect of administrating NVX-108 in an orthotopic mammary window chamber mouse model of breast cancer. The oxygen tension was measured through the use of an oxygen-sensitive coating, comprised of phosphorescent platinum porphyrin dye embedded in a polystyrene matrix. The coating, applied to the surface of the coverslip of the window chamber through spin coating, is placed in contact with the mammary fat pad to record the oxygenation status of the surface tissue layer. Prior to implantation of the window chamber, a tumor is grown in the SCID mouse model by injection of MCF-7 cells into the mammary fat pad. Two-dimensional spatial distributions of the pO2 levels were obtained through conversion of measured maps of phosphorescent lifetime. The resulting information on the spatial and temporal variation of the induced oxygen modulation could provide valuable insight into the optimal timing between administration of NVX-108 and radiation treatment to provide the most effective treatment outcome.

  6. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    Jaime M Beecroft

    2006-01-01

    Full Text Available BACKGROUND: The OxyMask (Southmedic Inc, Canada is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA in patients with chronic hypoxemia.

  7. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  8. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  9. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia.METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a ra...

  10. Reservoir Cannulas for Pediatric Oxygen Therapy: A Proof-of-Concept Study

    Grace Wu

    2016-01-01

    Full Text Available Hypoxemia is a complication of pneumonia—the leading infectious cause of death in children worldwide. Treatment generally requires oxygen-enriched air, but access in low-resource settings is expensive and unreliable. We explored use of reservoir cannulas (RCs, which yield oxygen savings in adults but have not been examined in children. Toddler, small child, and adolescent breathing profiles were simulated with artificial lung and airway models. An oxygen concentrator provided flow rates of 0 to 5 L/min via a standard nasal cannula (NC or RC, and delivered oxygen fraction (FdO2 was measured. The oxygen savings ratio (SR and absolute flow savings (AFS were calculated, comparing NC and RC. We demonstrated proof-of-concept that pendant RCs could conserve oxygen during pediatric therapy. SR mean and standard deviation were 1.1±0.2 to 1.4±0.4, 1.1±0.1 to 1.7±0.3, and 1.3±0.1 to 2.4±0.3 for toddler, small child, and adolescent models, respectively. Maximum AFS observed were 0.3±0.3, 0.2±0.1, and 1.4±0.3 L/min for the same models. RCs have the potential to reduce oxygen consumption during treatment of hypoxemia in children; however, further evaluation of products is needed, followed by clinical analysis in patients.

  11. Reservoir Cannulas for Pediatric Oxygen Therapy: A Proof-of-Concept Study

    Wu, Grace; DiBlasi, Robert M.; Saxon, Eugene; Austin, Glenn; Ginsburg, Amy Sarah

    2016-01-01

    Hypoxemia is a complication of pneumonia—the leading infectious cause of death in children worldwide. Treatment generally requires oxygen-enriched air, but access in low-resource settings is expensive and unreliable. We explored use of reservoir cannulas (RCs), which yield oxygen savings in adults but have not been examined in children. Toddler, small child, and adolescent breathing profiles were simulated with artificial lung and airway models. An oxygen concentrator provided flow rates of 0 to 5 L/min via a standard nasal cannula (NC) or RC, and delivered oxygen fraction (FdO2) was measured. The oxygen savings ratio (SR) and absolute flow savings (AFS) were calculated, comparing NC and RC. We demonstrated proof-of-concept that pendant RCs could conserve oxygen during pediatric therapy. SR mean and standard deviation were 1.1 ± 0.2 to 1.4 ± 0.4, 1.1 ± 0.1 to 1.7 ± 0.3, and 1.3 ± 0.1 to 2.4 ± 0.3 for toddler, small child, and adolescent models, respectively. Maximum AFS observed were 0.3 ± 0.3, 0.2 ± 0.1, and 1.4 ± 0.3 L/min for the same models. RCs have the potential to reduce oxygen consumption during treatment of hypoxemia in children; however, further evaluation of products is needed, followed by clinical analysis in patients. PMID:27999601

  12. Studies on the oxygen precipitation in highly boron doped silicon; Untersuchungen zur Sauerstoffausscheidung in hoch bordotiertem Silicium

    Zschorsch, Markus

    2007-12-14

    The aim of this thesis was the getting of new knowledge on the elucidation of the oxygen precipitation in highly doped silicon. In the study of the early phases of the oxygen precipitation boron-oxygen complexes and their kinetics could be indirectly detected. These arise already during the cooling of the crystal and can be destroyed by subsequent temperature processes. The formation of the here as BO assumed species during the cooling after the silicon crystal fabrication could be numerically reproduced. Furthermore the study of early precipitation phases by means of neutron small angle scattering a maximum of the oxygen precipitation at {rho}=9 m{omega}cm. It could be shown that the decreasing of this at increasing boron concentration can be most probably reduced to boron precipitations. Furthermore it could be shown that after a tempering time of 24 hours at 700 C in silicon with {rho}=9 m{omega}cm platelet-shaped precipitates form. By the study of the precipitate growth could be shown that also in this phase the oxygen precipitation in silicon is strongest with a specific resistance of {rho}=9 m{omega}cm. By means of FTIR spectroscopy a new absorption band at a wave number of 1038 cm{sup -1} was found, which could be assigned to a boron species. By different experiments it is considered as probable that at this species it deals with BI respectively B{sub 2}I complexes.

  13. Carbon, hydrogen oxygen isotope studies on imbedded old tree ring and paleoclimate reconstruction

    Sun Yanrong; Mu Zhiguo; Cui Haiting

    2002-01-01

    Tree ring is a kind of natural archives, on which the isotopic analysis is important to study global climate and environmental change. The authors mainly provide a comprehensive introduction to the fractionation models of carbon, hydrogen and oxygen isotope in plants, their research technique and the extract methods from cellulose. That results show isotopic tracer can record the message of climatic variation and has become a powerful tool for paleoclimate reconstruction and for the modern environment changing research. Especially studying on PAGES. the cellulose isotopic analyses of imbedded old tree ring have become the mainly quantitative means of environmental evolvement. In addition, China is a typical monsoon country, research in tree ring stable isotope seasonal variation can give a lot of important information on that. Up to now, the research techniques and works on tree ring in China are still in its earlier stage, and remain many limitations. It needs further accumulate basic research materials, intensity regional contrast and intercross studies on relative subjects

  14. Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons

    Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo

    2005-06-01

    We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.

  15. The use of room temperature phosphorescence for the determination of uranium in tin-tailings mineral samples

    Meor Yusof bin Meor Sulaiman

    1988-01-01

    The possibility of using phosphorescence technique in determining uranium in mineral samples and its comparison with that of fluorescence using high carbonate flux is presented. Samples used are tin-tailings mineral such as monazite, xenotime, ilmenite and zircon. The calibration graph obtained shows a linear relationship between the concentration range of 0-55 ppm U. From here, analysis of the standard showed that the result obtained and that of the certified value are consistent. HN0 3 :H 2 SO 4 (1:3) and phosphoric acid leaching methods are tried and the results show that phosphoric acid is the better method for phosphate mineral. Comparison of the results obtained from this technique and that of the direct and extraction methods of fluorimetry are also made. Phosphorescence is found to be a better method in determining uranium in this type of samples. (author)

  16. Numerical study on characteristics of radio-frequency discharge at atmospheric pressure in argon with small admixtures of oxygen

    Wang, Yinan; Liu, Yue

    2017-07-01

    In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to-argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.

  17. Long-term oxygen therapy in COPD patients: population-based cohort study on mortality

    Pavlov N

    2018-03-01

    Full Text Available Nikolay Pavlov,1 Alan Gary Haynes,2,3 Armin Stucki,4 Peter Jüni,5 Sebastian Robert Ott1 1Department of Pulmonary Medicine, University Hospital (Inselspital, University of Bern, Bern, Switzerland; 2CTU Bern, University of Bern, Bern, Switzerland; 3Institute of Social and Preventive Medicine (ISPM, University of Bern, Bern, Switzerland; 4Department of Internal Medicine, Spital Thun, Thun, Switzerland; 5Applied Health Research Centre, Li Ka Shing Knowledge Institute of St Michael’s Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada Purpose: Chronic obstructive pulmonary disease (COPD is the fourth leading cause of death worldwide and is associated with a growing and substantial socioeconomic burden. Long-term oxygen therapy (LTOT, recommended by current treatment guidelines for COPD patients with severe chronic hypoxemia, has shown to reduce mortality in this population. The aim of our study was to assess the standardized mortality ratios of incident and prevalent LTOT users and to identify predictors of mortality. Patients and methods: We conducted a 2-year follow-up population-based cohort study comprising all COPD patients receiving LTOT in the canton of Bern, Switzerland. Comparing age- and sex-adjusted standardized mortality ratios, we examined associations between all-cause mortality and patient characteristics at baseline. To avoid immortal time bias, data for incident (receiving LTOT <6 months and prevalent users were analyzed separately. Results: At baseline, 475 patients (20% incident users, n=93 were receiving LTOT because of COPD (48/100,000 inhabitants. Mortality of incident and prevalent LTOT users was 41% versus 27%, respectively, p<0.007, and standardized mortality ratios were 8.02 (95% CI: 5.64–11.41 versus 5.90 (95% CI: 4.79–7.25, respectively. Type 2 respiratory failure was associated with higher standardized mortality ratios among incident LTOT users (60.57, 95% CI: 11.82–310.45, p=0

  18. Accounting for oxygen in the renal cortex: a computational study of factors that predispose the cortex to hypoxia.

    Lee, Chang-Joon; Gardiner, Bruce S; Ngo, Jennifer P; Kar, Saptarshi; Evans, Roger G; Smith, David W

    2017-08-01

    We develop a pseudo-three-dimensional model of oxygen transport for the renal cortex of the rat, incorporating both the axial and radial geometry of the preglomerular circulation and quantitative information regarding the surface areas and transport from the vasculature and renal corpuscles. The computational model was validated by simulating four sets of published experimental studies of renal oxygenation in rats. Under the control conditions, the predicted cortical tissue oxygen tension ([Formula: see text]) or microvascular oxygen tension (µPo 2 ) were within ±1 SE of the mean value observed experimentally. The predicted [Formula: see text] or µPo 2 in response to ischemia-reperfusion injury, acute hemodilution, blockade of nitric oxide synthase, or uncoupling mitochondrial respiration, were within ±2 SE observed experimentally. We performed a sensitivity analysis of the key model parameters to assess their individual or combined impact on the predicted [Formula: see text] and µPo 2 The model parameters analyzed were as follows: 1 ) the major determinants of renal oxygen delivery ([Formula: see text]) (arterial blood Po 2 , hemoglobin concentration, and renal blood flow); 2 ) the major determinants of renal oxygen consumption (V̇o 2 ) [glomerular filtration rate (GFR) and the efficiency of oxygen utilization for sodium reabsorption (β)]; and 3) peritubular capillary surface area (PCSA). Reductions in PCSA by 50% were found to profoundly increase the sensitivity of [Formula: see text] and µPo 2 to the major the determinants of [Formula: see text] and V̇o 2 The increasing likelihood of hypoxia with decreasing PCSA provides a potential explanation for the increased risk of acute kidney injury in some experimental animals and for patients with chronic kidney disease. Copyright © 2017 the American Physiological Society.

  19. Myocardial Blood Volume Is Associated with Myocardial Oxygen Consumption: An Experimental Study with CMR in a Canine Model

    McCommis, Kyle S.; Zhang, Haosen; Goldstein, Thomas A.; Misselwitz, Bernd; Abendschein, Dana R.; Gropler, Robert J.; Zheng, Jie

    2009-01-01

    OBJECTIVES To evaluate the feasibility of cardiovascular MR (CMR) to determine regional myocardial perfusion and O2 metabolism, and assess the role of myocardial blood volume (MBV) on oxygen supply. BACKGROUND Coronary artery disease presents as an imbalance of myocardial oxygen supply and demand. We have developed relevant CMR methods to determine the relationship of myocardial blood flow (MBF) and MBV to oxygen consumption (MVO2) during pharmacologic hyperemia. METHODS Twenty-one mongrel dogs were studied with varying stenosis severities imposed on the proximal left anterior descending (LAD) coronary artery. MBF and MBV were determined by CMR first-pass perfusion, while the oxygen extraction fraction (OEF) and MVO2 were determined by the myocardial Blood-Oxygen-Level-Dependent (BOLD) effect and Fick’s law, respectively. MR imaging was performed at rest, and during either dipyridamole-induced vasodilation or dobutamine-induced hyperemia. Regional differences in myocardial perfusion and oxygenation were then evaluated. RESULTS Dipyridamole and dobutamine both led to 145–200% increases in MBF and 50–80% increases in MBV in normal perfused myocardium. As expected, MVO2 increased more significantly with dobutamine (~175%) than dipyridamole (~40%). Coronary stenosis resulted in an attenuation of MBF, MBV, and MVO2 in both the LAD-subtended stenosis region and the left circumflex subtended remote region. Liner regression analysis showed that MBV reserve appears to be more correlated with MVO2 reserve during dobutamine stress than MBF reserve, particularly in the stenotic regions. Conversely, MBF reserve appears to be more correlated with MVO2 reserve during dipyridamole, although neither of these differences was significant. CONCLUSIONS Noninvasive evaluation of both myocardial perfusion and oxygenation by CMR facilitates direct monitoring of regional myocardial ischemia and provides a valuable tool for better understanding microvascular pathophysiology. These

  20. Influence of oxygen in the cultivation of human mesenchymal stem cells in simulated microgravity: an explorative study

    Versari, S.; Klein-Nulend, J.; van Loon, J.; Bradamante, S.

    2013-01-01

    Previous studies indicated that human Adipose Tissue-derived Mesenchymal Stem Cells (AT-MSCs) cultured in simulated microgravity (sim-μg) in standard laboratory incubators alter their proliferation and differentiation. Recent studies on the stem cell (SC) niches and the influence of oxygen on SC

  1. Influence of Oxygen in the Cultivation of Human Mesenchymal Stem Cells in Simulated Microgravity: An Explorative Study

    Versari, S.; Klein-Nulend, J.; van Loon, J.J.W.A.; Bradamante, S.

    2013-01-01

    Previous studies indicated that human Adipose Tissue-derived Mesenchymal Stem Cells (AT-MSCs) cultured in simulated microgravity (sim-μg) in standard laboratory incubators alter their proliferation and differentiation. Recent studies on the stem cell (SC) niches and the influence of oxygen on SC

  2. Study of the corrosion of metallic coatings and alloys containing aluminum in a mixed atmosphere - sulphur, oxygen - at high temperatures

    Fellmann, Daniel

    1982-01-01

    The objective of this research thesis is the development of materials for a sulphur experimental loop allowing the thermodynamic properties of such an energy cycle to be checked. As solutions must comply with industrial methods, rare materials are excluded as they are too expensive or difficult to implement. Iron-based materials have been tested but could not have at the same time a good corrosion resistance and high temperature forming and mechanical toughness properties. Therefore, metallic coatings have been chosen, specifically alumina. After having reported a bibliographical study on corrosion by sulphur vapour and by oxygen and by sulphur-oxygen, the author presents the experimental materials and methods. Then, the author reports the study of mixed corrosion (by sulphur and oxygen together) of metallic alloys (ferritic and austeno-ferritic alloys, aluminium and titanium alloys), and of the corrosion of FeAlx coatings, of AlTix alloys [fr

  3. Microsensor Studies of Oxygen and Light-Distribution in the Green Macroalga Codium Fragile

    LASSEN, C.; BEBOUT, LE; PAERL, HW

    1994-01-01

    to multiple scattering in the medullary tissue. The constant intensity of visible light below 0.2 mm was thus a result of the combined effects of absorption and backscattering from the medulla. The oxygen exchange between the alga and the surrounding water was diffusion-limited with a steep O-2 gradient......Scalar irradiance, oxygen concentration, and oxygenic photosynthesis were measured at 0.1 mm spatial resolution within the tissue of the siphonous green macroalga Codium fragile subsp. tomentosoides (van Goer) Silva by fiber-optic scalar irradiance microsensors and oxygen microelectrodes......, The scalar irradiance of visible light was strongly attenuated in the outer 0.2 mm of the tissue but was nearly constant for the subsequent 1.0 mm of photosynthetic tissue. Far-red scalar irradiance at 750 nm increased below the tissue surface to a maximum of 200% of incident irradiance at 1.2 mm depth due...

  4. Preliminary Study on the Oxygen Consumption Dynamics During Brain Hypothermia Resuscitation

    Ji, Yan

    2001-01-01

    .... Two cooling approaches (the surface cooling and volumetric cooling are applied to analyze the effect of hypothermia on the transient temperature and the oxygen consumption rate in different regions of brain...

  5. Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies

    Rudraswami, N.G.; Ushikubo, T.; Nakashima, D.; Kita, N.T.

    grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The delta sup(17)O values of four barred olivine...

  6. Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency

    Wang, Shumeng; Wang, Xingdong; Yao, Bing; Zhang, Baohua; Ding, Junqiao; Xie, Zhiyuan; Wang, Lixiang

    2015-01-01

    To realize power efficient solution-processed phosphorescent organic light-emitting diodes (s-PhOLEDs), the corresponding high driving voltage issue should be well solved. To solve it, efforts have been devoted to the exploitation of novel host or interfacial materials. However, the issues of charge trapping of phosphor and/or charge injection barrier are still serious, largely restraining the power efficiency (PE) levels. Herein, with the utilization of an exciplex-forming couple 4, 4?, 4? -...

  7. Lipophilic phosphorescent gold(I) clusters as selective probes for visualization of lipid droplets by two-photon microscopy

    Koshel, E. I.; Cheluskin, P. S.; Melnikov, A. S.; Serdobintsev, P. Y.; Stolbovaia, A. Y.; Saifitdinova, A. F.; Scheslavskiy, V. I.; Chernyavskiy, Oleksandr; Gaginskaya, E. R.; Koshevoy, I. O.; Tunik, S. P.

    2017-01-01

    Roč. 332, Jan 1 (2017), s. 122-130 ISSN 1010-6030 R&D Projects: GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 Keywords : polynuclear gold-alkynyl cluster * lipophilic probe * phosphorescence * adipocyte * two-photon microscopy * PLIM Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Medical laboratory technology (including laboratory samples analysis Impact factor: 2.625, year: 2016

  8. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles.

    Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo

    2014-09-03

    Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxygen Therapy

    ... their breathing to dangerously low levels. Will I need oxygen when I sleep? Usually if you use supplemental oxygen during the ... your health care provider tells you you only need to use oxygen for exercise or sleep. Even if you feel “fine” off of your ...

  10. Effect of Stepwise Doping on Lifetime and Efficiency of Blue and White Phosphorescent Organic Light Emitting Diodes.

    Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-02-01

    We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.

  11. High-temperature equilibrium study of the oxygen-site occupancy in YBa2Cu3O7-δ by positron annihilation

    Hermes, H.; Forster, M.; Schaefer, H.

    1991-01-01

    Measurements of the positron lifetime and the Doppler broadening of the annihilation γ line were performed on sintered YBa 2 Cu 3 O 7-δ specimens between ambient temperature and 1140 K at oxygen partial pressures, p O2 , between 10 2 and 10 5 Pa in order to study the atomic processes of changes of the oxygen content in thermal equilibrium. Above 680 K the positron lifetime increases with increasing temperature and decreasing oxygen partial pressure. It is found that the normalized positron annihilation rate λ 1 * depends exclusively on the oxygen deficiency δ and decreases linearly with increasing δ. Our results demonstrate that the positrons are annihilated predominantly on the sites of the Cu(1)-O(1) chains where the oxygen atoms are removed (oxygen-deficient sites), as suggested by theoretical studies. A simple atomistic model of oxygen exchange is confirmed by the experimentally observed variation of the positron annihilation rate with (p O2 ) -0.27

  12. Oxygen adsorption on the Al9Co2(001) surface: first-principles and STM study

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Dubois, J-M; Gaudry, É; Gille, P

    2013-01-01

    Atomic oxygen adsorption on a pure aluminum terminated Al 9 Co 2 (001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a ‘bridge’ type site between the cluster entities exposed at the (001) surface termination. The Al–O bonding between the adsorbate and the substrate presents a covalent character, with s–p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al–O distances are in agreement with those reported in Al 2 O and Al 2 O 3 oxides and for oxygen adsorption on Al(111). (paper)

  13. A DLTS study of the evolution of oxygen precipitates in Si at high temperature and high pressure

    Antonova, I.V.; Popov, V.P.; Fedina, L.I.; Shaimeev, S.S.; Misiuk, A.

    1996-01-01

    The effect of high hydrostatic pressure on the dissolution of oxygen precipitates introduced beforehand into Si at temperatures of 920-1000 K (over period of 96 h) is investigated by the DLTS method. A measurement procedure, based on the formation of electrically active complexes (interstitial oxygen atom-vacancy) during electron irradiation of the samples, is proposed. It is shown that the precipitates do not decompose when point defects are introduced at room temperature. As the treatment temperature increases (to 1220-1650 K), for the same values of the hydrostatic pressure (up to 1.3 GPa) the intensity of the decomposition of oxygen precipitates increases and at 1650 K they are completely dissolved. Study of the decomposition kinetics showed that hydrostatic pressure raises the limit of solubility of the oxygen atoms Oi and slows down their diffusion. It is determined that the diffusion activation energy Ea, just as the preexponential factor D0, in the expression for the diffusion decrease with increasing hydrostatic pressure, resulting in a lower diffusion. Possible mechanisms for the effect of hydrostatic pressure on oxygen diffusion near a precipitate are discussed

  14. Thermodinamic study the uranium-oxygen system within the composition range 2,61 < O/U < 2,67

    Caneiro, Alberto.

    1983-01-01

    Oxygen partial pressures (Psub(O2)) as a function of composition and temperature were studied in order to determine the thermodynamic properties of the Uranium-Oxygen (U-O) system. To measure and control Psub(O2), an electrochemical system was used, consisting of an oxygen electrochemical pump and a zirconia gauge which allowed a very accurate determination of the CO + 1/2O 2 = CO 2 reaction. In order to determine oxygen composition, a symmetrical thermogravimetric system a Cahn 1000 electrobalance was constructed and coupled to the system for controlling and measuring Psub(O2) so as to constitute an experimental set-up, which is unique in its type at the present. This facility allowed to determine the thermodynamic properties of the (U-O) system within the composition-temperature range 2,61 3 O 8 ) and of a non-stoichiometric phase (U 8 Osub(21+x)), both being separated by a narrow region of coexistence. Analytical expressions were established for the oxygen chemical potential as a function of composition and temperature, for the stable equilibrium states of the U 8 Osub(21+x) phase and for the metastable ones obtained by oxidation of U 8 Osub(21+x). (M.E.L.) [es

  15. Electrospinning fabrication and oxygen sensing properties of Cu(I) complex-polystyrene composite microfibrous membranes

    Wang Liyan, E-mail: wanglykmmc@163.co [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, XiAn (China); Xu Yun [Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming (China); Lin Zhu [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, XiAn (China); Zhao Ning [Department of Orthodontics, School of Stomatology, West China College, SiChuan University, ChengDu (China); Xu Yanhua [Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming (China)

    2011-07-15

    In this paper, a phosphorescent Cu(I) complex of [Cu(POP)(ECI-Phen)]BF{sub 4}, where POP=bis[2-(diphenylphosphino)phenyl]ether, and ECI-Phen=1-ethyl-2-(N-ethyl-carbazole-yl-4-)imidazo[4,5-f]1,10-phenanthroline, is incorporated into a polystyrene matrix of polystyrene (PS) to form microfibers membranes. The possibility of using the resulted composite microfibrous membranes as an optical oxygen sensor is explored. Good linearity and short response time are obtained with a sensitivity of 9.8. These results suggest that phosphorescent [Cu(POP)(ECI-Phen)]BF{sub 4} is a promising candidate for oxygen-sensors and PS is an excellent matrix for oxygen sensing material because it owns a large surface-area-to-volume ratio and can supply a homogeneous matrix for probe molecules. Further analysis suggests that the molecular structure of diamine ligand in Cu(I) complexes is critical for sensitivity due to the characteristic electronic structure of excited state Cu(I) complexes. - Highlights: {yields} Cu(I) complex is incorporated into polystyrene matrix to form nanofibers. {yields} Resulted sample exhibit good linearity and short response time. {yields} PS is an excellent matrix for oxygen sensing material for probe molecules. {yields} Molecular structure of diamine ligand is critical for sensitivity.

  16. Oxygen sensing PLIM together with FLIM of intrinsic cellular fluorophores for metabolic mapping

    Kalinina, Sviatlana; Schaefer, Patrick; Breymayer, Jasmin; Bisinger, Dominik; Chakrabortty, Sabyasachi; Rueck, Angelika

    2018-02-01

    Otical imaging techniques based on time correlated single photon counting (TCSPC) has found wide applications in medicine and biology. Non-invasive and information-rich fluorescence lifetime imaging microscopy (FLIM) is successfully used for monitoring fluorescent intrinsic metabolic coenzymes as NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) and FAD+ (flavin adenine dinucleotide) in living cells and tissues. The ratio between proteinbound and free coenzymes gives an information about the balance between oxidative phosphorylation and glycolysis in the cells. The changes of the ratio reflects major cellular disorders. A correlation exists between metabolic activity, redox ratio and fluorescence lifetime during stem cell differentiation, neurodegenerative diseases, and carcinogenesis. A multichannel FLIM detection system was designed for monitoring the redox state of NAD(P)H and FAD+ and other intrinsic fluorophores as protoporphyrin IX. In addition, the unique upgrade is useful to perform FLIM and PLIM (phosphorescence lifetime imaging microscopy) simultaneously. PLIM is a promising method to investigate oxygen sensing in biomedical samples. In detail, the oxygen-dependent quenching of phosphorescence of some compounds as transition metal complexes enables measuring of oxygen partial pressure (pO2). Using a two-channel FLIM/PLIM system we monitored intrinsic pO2 by PLIM simultaneously with NAD(P)H by FLIM providing complex metabolic and redox imaging of living cells. Physico-chemical properties of oxygen sensitive probes define certain parameters including their localisation. We present results of some ruthenium based complexes including those specifically bound to mitochondria.

  17. Electrospinning fabrication and oxygen sensing properties of Cu(I) complex-polystyrene composite microfibrous membranes

    Wang Liyan; Xu Yun; Lin Zhu; Zhao Ning; Xu Yanhua

    2011-01-01

    In this paper, a phosphorescent Cu(I) complex of [Cu(POP)(ECI-Phen)]BF 4 , where POP=bis[2-(diphenylphosphino)phenyl]ether, and ECI-Phen=1-ethyl-2-(N-ethyl-carbazole-yl-4-)imidazo[4,5-f] 1,10-phenanthroline, is incorporated into a polystyrene matrix of polystyrene (PS) to form microfibers membranes. The possibility of using the resulted composite microfibrous membranes as an optical oxygen sensor is explored. Good linearity and short response time are obtained with a sensitivity of 9.8. These results suggest that phosphorescent [Cu(POP)(ECI-Phen)]BF 4 is a promising candidate for oxygen-sensors and PS is an excellent matrix for oxygen sensing material because it owns a large surface-area-to-volume ratio and can supply a homogeneous matrix for probe molecules. Further analysis suggests that the molecular structure of diamine ligand in Cu(I) complexes is critical for sensitivity due to the characteristic electronic structure of excited state Cu(I) complexes. - Highlights: → Cu(I) complex is incorporated into polystyrene matrix to form nanofibers. → Resulted sample exhibit good linearity and short response time. → PS is an excellent matrix for oxygen sensing material for probe molecules. → Molecular structure of diamine ligand is critical for sensitivity.

  18. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  19. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    Nilsson, H.; Waara, M.; Arvelius, S.; Yamauchi, M.; Lundin, R. [Inst. of Space Physics, Kiruna (Sweden); Marghitu, O. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); Inst. for Space Sciences, Bucharest (Romania); Bouhram, M. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); CETP-CNRS, Saint-Maur (France); Hobara, Y. [Inst. of Space Physics, Kiruna (Sweden); Univ. of Sheffield, Sheffield (United Kingdom); Reme, H.; Sauvaud, J.A.; Dandouras, I. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France); Balogh, A. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom); Kistler, L.M. [Univ. of New Hampshire, Durham (United States); Klecker, B. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); Carlson, C.W. [Space Science Lab., Univ. of California, Berkeley (United States); Bavassano-Cattaneo, M.B. [Ist. di Fisica dello Spazio Interplanetario, Roma (Italy); Korth, A. [Max-Planck-Inst. fuer Sonnensystemforschung, Katlenburg-Lindau (Germany)

    2006-07-01

    The results of a statistical study of oxygen ion outflow using cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H{sup +}) and oxygen ions (O{sup +}) from 3 years (2001-2003) of spring orbits (January to May) have been used. The altitudes covered were mainly in the range 5-12 R{sub E} geocentric distance. It was found that O{sup +} is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O{sup +} parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O{sup +} parallel bulk velocities in excess of 60 km s{sup -1} were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O{sup +} the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H{sup +} and O{sup +} was found to typically be close to the same throughout the observation interval when the H{sup +} bulk velocity was calculated for all pitch-angles. When the H{sup +} bulk velocity was calculated for upward moving particles only the H{sup +} parallel bulk velocity was typically higher than that of O{sup +}. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O{sup +} ions dominates. The thermal velocity of O{sup +} was always well below that of H{sup +}. Thus perpendicular energization that is more effective for O{sup +} takes place, but this is not enough to explain the close to similar parallel velocities. Further parallel acceleration must occur. The results presented constrain the models of perpendicular heating and parallel

  20. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    H. Nilsson

    2006-05-01

    Full Text Available The results of a statistical study of oxygen ion outflow using Cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H+ and oxygen ions (O+ from 3 years (2001-2003 of spring orbits (January to May have been used. The altitudes covered were mainly in the range 5–12 RE geocentric distance. It was found that O+ is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O+ parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O+ parallel bulk velocities in excess of 60 km s-1 were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O+ the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H+ and O+ was found to typically be close to the same throughout the observation interval when the H+ bulk velocity was calculated for all pitch-angles. When the H+ bulk velocity was calculated for upward moving particles only the H+ parallel bulk velocity was typically higher than that of O+. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O+ ions dominates. The thermal velocity of O+ was always well below that of H+. Thus perpendicular energization that is more effective for O+ takes place, but this is not enough to explain the close to similar parallel velocities. Further

  1. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    H. Nilsson

    2006-05-01

    Full Text Available The results of a statistical study of oxygen ion outflow using Cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H+ and oxygen ions (O+ from 3 years (2001-2003 of spring orbits (January to May have been used. The altitudes covered were mainly in the range 5–12 RE geocentric distance. It was found that O+ is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O+ parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O+ parallel bulk velocities in excess of 60 km s-1 were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O+ the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H+ and O+ was found to typically be close to the same throughout the observation interval when the H+ bulk velocity was calculated for all pitch-angles. When the H+ bulk velocity was calculated for upward moving particles only the H+ parallel bulk velocity was typically higher than that of O+. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O+ ions dominates. The thermal velocity of O+ was always well below that of H+. Thus perpendicular energization that is more effective for O+ takes place, but this is not enough to explain the close to similar parallel velocities. Further parallel acceleration must occur. The results presented constrain the models of perpendicular heating and parallel acceleration. In particular centrifugal acceleration of the outflowing ions, which may

  2. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.

    Kisku, Sudhir K; Dash, Satyabrata; Swain, Sarat K

    2014-01-01

    Cellulose/silicon carbide (cellulose/SiC) nanobiocomposites were prepared by solution technique. The interaction of SiC nanoparticles with cellulose were confirmed by Fourier transformed infrared (FTIR) spectroscopy. The structure of cellulose/SiC nanobiocomposites was investigated by X-ray diffraction (XRD), and transmission electron microscopy (TEM). The tensile properties of the nanobiocomposites were improved as compared with virgin cellulose. Thermal stabilities of cellulose/SiC nanobiocomposites were studied by thermogravimetric analysis (TGA). The cellulose/SiC nanobiocomposites were thermally more stable than the raw cellulose. It may be due to the delamination of SiC with cellulose matrix. The oxygen barrier properties of cellulose composites were measured using gas permeameter. A substantial reduction in oxygen permeability was obtained with increase in silicon carbide concentrations. The thermally resistant and oxygen barrier properties of the prepared nanobiocomposites may enable the materials for the packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A tale of two methods: combining near-infrared spectroscopy with MRI for studies of brain oxygenation and metabolism.

    Dunn, Jeff F; Nathoo, Nabeela; Yang, Runze

    2014-01-01

    Combining magnetic resonance imaging (MRI) with near-infrared spectroscopy (NIRS) leads to excellent synergies which can improve the interpretation of either method and can provide novel data with respect to measuring brain oxygenation and metabolism. MRI has good spatial resolution, can detect a range of physiological parameters and is sensitive to changes in deoxyhemoglobin content. NIRS has lower spatial resolution, but can detect, and with specific technologies, quantify, deoxyhemoglobin, oxyhemoglobin, total hemoglobin and cytochrome oxidase. This paper reviews the application of both methods, as a multimodal technology, for assessing changes in brain oxygenation that may occur with changes in functional activation state or metabolic rate. Examples of hypoxia and ischemia are shown. Data support the concept of reduced metabolic rate resulting from hypoxia/ischemia and that metabolic rate in brain is not close to oxygen limitation during normoxia. We show that multimodal MRI and NIRS can provide novel information for studies of brain metabolism.

  4. Preliminary study on the characteristics of carbon and oxygen isotopes in the Shiziping geothermal field groundwater in Emei Mountain

    Yu Xiujing; Jia Shuyuan

    2000-01-01

    Emei Mountain is a well-known scenic tourism spot in China. In order to promote the development of tourist trade, the authors have explored the hydrothermal water in Emei Mountain. At the beginning of 1998, the hydrothermal water was successfully drilled from the Shiziping geothermal field. In the process of prospecting the hydrothermal water, the authors adopted the geochemical method such as carbon and oxygen isotopes. The result indicates that the groundwater of different genetic types has different constitution characteristics of carbon and oxygen isotopes. This provides the important basis for finding out the forming conditions of underground hydrothermal water. So, it is prospective to study the growth characteristics of hydrothermal water with the carbon and oxygen isotopes of HCO 3 in groundwater

  5. Study of the metastable singlet of molecular nitrogen and of oxygen atoms in discharges and post-discharges

    Magne, Lionel

    1991-01-01

    Whereas discharges in nitrogen, in oxygen and in their mixtures are used in many different industrial processes (surface treatment, nitridation, oxidation, and so on), in order to get a better knowledge on nitrogen electronic states, this research thesis reports the study of the metastable singlet state of molecular nitrogen, and of oxygen atoms in their fundamental state. The molecular metastable has been observed by far-UV optical emission spectroscopy, in the positive column of a continuous discharge and in time post-discharge. As far as continuous discharge is concerned, the author measured the vibrational distribution of this state. A kinetic model has been developed, and calculated vibrational distributions are in good agreement with measurements. The density of oxygen atoms in fundamental state in time post-discharge has been measured by far-UV absorption optical spectroscopy. The probability of atom re-association of glass walls is deduced from the obtained results [fr

  6. A study on oxygen-deficient YBa2Cu3O7-δ superconductors by positron lifetime spectroscopy

    Zhang Jincang; Liu Fengqi; Liu Junzheng; Cao Shixun; Cheng Guosheng

    1995-01-01

    Positron lifetime spectroscopy has been used for studying various oxygen-deficient YBa 2 Cu 3 O 7 - δ (δ = 0.06-0.68) at normal state (300 K) and Superconducting state (77 K). Using the two-state trapping model, the experimental results were analysed and there exists a typical positron annihilation characteristics in this systems. The local electron density n e and vacancy concentration C v are calculated as a function of oxygen-deficiency δ. The mechanism of positron annihilation and the correlation with superconductivity are also discussed

  7. Trapping of oxygen vacancies on twin walls of CaTiO3: a computer simulation study

    Calleja, Mark; Dove, Martin T; Salje, Ekhard K H

    2003-01-01

    We have studied the atomic structure of [001] 90 deg. rotation twin walls in orthorhombic CaTiO 3 (symmetry Pbnm) at low temperature (10 K) and their effects on oxygen vacancies. The wall thickness was found to be 2.3 nm at T || T c and it was found that it is energetically favourable for such vacancies to reside in the wall, particularly when bridging titania ions in the (001) plane. The binding energy of an oxygen vacancy in the wall with respect to the bulk is calculated to be ≤ 1.2 eV

  8. Oxygen Therapy

    Bonnie Solmes

    2000-01-01

    Full Text Available LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood oxygen will often be able to accomplish more with less fatigue with the help of supplemental oxygen therapy. Shortness of breath is a mechanical problem resulting from the effects of chronic obstructive pulmonary disease. Oxygen therapy may or may not reduce shortness of breath, but it will help the lungs and heart to function with less stress.

  9. Contribution to the crystallographic study of the uranium-oxygenated system

    Perio, P.

    1955-04-01

    Three uranium oxides, UO 2 , U 3 O 8 and UO 3 are known since a long time. The existence of a fourth, U 2 O 5 , is discussed. The mechanisms of decomposition between UO 3 and U 3 O 8 have even some shadow zones. The aim of this report is the study of the phase relations in an uranium - oxygen system, from the metal until UO 3 . We considered, on the one hand, the equilibrium relations, what should result in a diagram of phases in pressures and temperatures, on the other hand, the transformations bringing one oxide to the other, often by a continuous way and through intermediate of metastable phases. The introduction of the temperature and the consideration of the kinetics effects have permitted to raise the ambiguities. We adopted, to facilitate the presentation of the results, a partition a few arbitrary but convenient, in three chapters,: I - experimental Techniques II - Crystallographic species between U and UO 3 . III - Kinetic of oxidisation of UO 2 . (M.B.) [fr

  10. Study on fine particles influence on sodium sulfite and oxygen gas-liquid reaction

    Tao, Shuchang; Zhao, Bo; Wang, Shujuan; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    Wet limestone scrubbing is the most common flue gas desulfurization process for control of sulfur dioxide emissions from the combustion of fossil fuels, and forced oxidation is a key part of the reaction. During the reaction which controlled by gas-liquid mass transfer, the fine particles' characteristic, size, solid loading and temperature has a great influence on gas-liquid mass transfer. In the present work is to explain how these factors influence the reaction between Na{sub 2}SO{sub 3} and O{sub 2} and find the best react conditions through experiment. The oxidation rate was experimentally studied by contacting pure oxygen with a sodium sulfite solution with active carbon particle in a stirred tank, and the system pressure drop was record by the pressure sensor. At the beginning the pressure is about 215 kPa and Na{sub 2}SO{sub 3} is about 0.5mol/L. The temperature is 40, 50, 60, 70, 80 C. Compare the results of no particles included, we can conclude that high temperature, proper loadings and smaller particles resulting in higher mass transfer coefficients k{sub L}.

  11. Experimental Study of RF Pulsed Heating on Oxygen Free Electronic Copper

    Pritzkau, David P.

    2003-02-10

    When the thermal stresses induced by RF pulsed heating are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Therefore, pulsed heating limits the maximum surface magnetic field and through it the maximum achievable accelerating gradient. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz was designed to study pulsed heating on Oxygen Free Electronic (OFE) copper. An X-band klystron delivered up to 10 MW to the cavities in 1.5 {micro}s pulses at 60 Hz repetition rate. One run was executed at a temperature rise of 120 K for 56 x 10{sup 6} pulses. Cracks at grain boundaries, slip bands and cracks associated with these slip bands were observed. The second run consisted of 86 x 10{sup 6} pulses with a temperature rise of 82 K, and cracks at grain boundaries and slip bands were seen. Additional information can be derived from the power-coupling iris, and we conclude that a pulsed temperature rise of 250 K for several million pulses leads to destruction of copper. These results can be applied to any mode of any OFE copper cavity.

  12. Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes

    El-Deab, Mohamed S.; Ohsaka, Takeo

    2002-01-01

    The electrocatalytic reduction of oxygen at Au nanoparticles-electrodeposited Au electrodes has been studied using rotating disk electrode (RDE) voltammetry in 0.5 M H 2 SO 4 . Upon analyzing and comparison of the limiting currents data obtained at various rotation speeds of this RDE with those obtained at the bulk Au electrode, an effective value of the number of electrons, n, involved in the electrochemical reduction of O 2 was estimated to be ca. 4 for the former electrode and ca. 3 for the bulk Au electrode at the same potential of -350 mV versus Ag/AgCl/KCl(sat.). This indicates the higher possibility of further reduction and decomposition of H 2 O 2 at Au nanoparticles-electrodeposited Au electrode in this acidic medium. The reductive desorption of the self-assembled monolayer of cysteine, which was formed on the Au nanoparticles-electrodeposited Au electrode, was used to monitor the change of the specific activity of the bulk Au electrode upon the electrodeposition of the Au nanoparticles

  13. A study on rare gas - oxygen reactions excited by low temperature plasma

    Ogawa, Hiroaki; Kiuchi, Kiyoshi; Saburi, Tei; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The concentration of radioactive rare gases like Xe and Kr in nuclear fuels on PWRs and BWRs increases promptly with dependent on the burn-up ratio. These gases are affect to the long performance of nuclear fuel elements due to accumulate in gap between cladding and fuel, because it has the low thermal conductivity. It is also required to develop the practical means to correct these gases including in the off-gas in nuclear plants for inhibiting the environmental pollution. On the present study, we carried out the fundamental research to evaluate the chemical reactivity of these gases under heavy irradiation. We proposed the new excitation mechanism of these gases by expecting the formation of low energy plasma under irradiation. The chemical reactivity on rare gas-oxygen system was examined by using the low energy plasma driven reaction apparatus installed the RF excitation source. The density of electrons and lower pressure limit for the RF excitation was depended on the ionization energy of each gas. It is clarified that Xe is easy to form gaseous oxide due to the high excitation efficiency in low energy plasma. (author)

  14. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.

    Richardson, Katherine; Bendtsen, Jørgen

    2017-09-13

    Photosynthetic O 2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O 2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O 2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O 2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q 10  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O 2 production in a warmer ocean.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  15. Phenobarbital and neonatal seizures affect cerebral oxygen metabolism: a near-infrared spectroscopy study.

    Sokoloff, Max D; Plegue, Melissa A; Chervin, Ronald D; Barks, John D E; Shellhaas, Renée A

    2015-07-01

    Near-infrared spectroscopy (NIRS) measures oxygen metabolism and is increasingly used for monitoring critically ill neonates. The implications of NIRS-recorded data in this population are poorly understood. We evaluated NIRS monitoring for neonates with seizures. In neonates monitored with video-electroencephalography, NIRS-measured cerebral regional oxygen saturation (rSO2) and systemic O2 saturation were recorded every 5 s. Mean rSO2 was extracted for 1-h blocks before, during, and after phenobarbital doses. For each electrographic seizure, mean rSO2 was extracted for a period of three times the duration of the seizure before and after the ictal pattern, as well as during the seizure. Linear mixed models were developed to assess the impact of phenobarbital administration and of seizures on rSO2 and fractional tissue oxygen extraction. For 20 neonates (estimated gestational age: 39.6 ± 1.5 wk), 61 phenobarbital doses and 40 seizures were analyzed. Cerebral rSO2 rose (P = 0.005), and fractional tissue oxygen extraction declined (P = 0.018) with increasing phenobarbital doses. rSO2 declined during seizures, compared with baseline and postictal phases (baseline 81.2 vs. ictal 77.7 vs. postictal 79.4; P = 0.004). Fractional tissue oxygen extraction was highest during seizures (P = 0.002). Cerebral oxygen metabolism decreases after phenobarbital administration and increases during seizures. These small, but clear, changes in cerebral oxygen metabolism merit assessment for potential clinical impact.

  16. Density functional theory study of oxygen and water adsorption on SrTiO{sub 3}(001)

    Guhl, Hannes

    2010-12-03

    Strontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded ''quasi-peroxide anion'' in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers. (orig.)

  17. Density functional theory study of oxygen and water adsorption on SrTiO3(001)

    Guhl, Hannes

    2010-01-01

    Strontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded ''quasi-peroxide anion'' in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers. (orig.)

  18. An exploratory study with an adaptive continuous intravenous furosemide regimen in neonates treated with extracorporeal membrane oxygenation

    M.M.J. van der Vorst (Maria); J. den Hartigh (Jan); E.D. Wildschut (Enno); D. Tibboel (Dick); J. Burggraaf (Jacobus)

    2007-01-01

    textabstractIntroduction: The objective of the present study was to explore a continuous intravenous furosemide regimen that adapts to urine output in neonates treated with extracorporeal membrane oxygenation (ECMO). Methods: Seven neonates admitted to a paediatric surgical intensive care unit for

  19. Resuscitation of asphyxiated newborn infants with room air or oxygen: an international controlled trial: the Resair 2 study.

    Saugstad, O D; Rootwelt, T; Aalen, O

    1998-07-01

    Birth asphyxia represents a serious problem worldwide, resulting in approximately 1 million deaths and an equal number of serious sequelae annually. It is therefore important to develop new and better ways to treat asphyxia. Resuscitation after birth asphyxia traditionally has been carried out with 100% oxygen, and most guidelines and textbooks recommend this; however, the scientific background for this has never been established. On the contrary, theoretic considerations indicate that resuscitation with high oxygen concentrations could have detrimental effects. We have performed a series of animal studies as well as one pilot study indicating that resuscitation can be performed with room air just as efficiently as with 100% oxygen. To test this more thoroughly, we organized a multicenter study and hypothesized that room air is superior to 100% oxygen when asphyxiated newborn infants are resuscitated. In a prospective, international, controlled multicenter study including 11 centers from six countries, asphyxiated newborn infants with birth weight >999 g were allocated to resuscitation with either room air or 100% oxygen. The study was not blinded, and the patients were allocated to one of the two treatment groups according to date of birth. Those born on even dates were resuscitated with room air and those born on odd dates with 100% oxygen. Informed consent was not obtained until after the initial resuscitation, an arrangement in agreement with the new proposal of the US Food and Drug Administration's rules governing investigational drugs and medical devices to permit clinical research on emergency care without the consent of subjects. The protocol was approved by the ethical committees at each participating center. Entry criterion was apnea or gasping with heart rate Apgar score at 5 minutes, heart rate at 90 seconds, time to first breath, time to first cry, duration of resuscitation, arterial blood gases and acid base status at 10 and 30 minutes of age, and

  20. The study of excited oxygen molecule gas species production and quenching on thermal protection system materials

    Nordine, Paul C.; Fujimoto, Gordon T.; Greene, Frank T.

    1987-01-01

    The detection of excited oxygen and ozone molecules formed by surface catalyzed oxygen atom recombination and reaction was investigated by laser induced fluorescence (LIF), molecular beam mass spectrometric (MBMS), and field ionization (FI) techniques. The experiment used partially dissociated oxygen flows from a microwave discharge at pressures in the range from 60 to 400 Pa or from an inductively coupled RF discharge at atmospheric pressure. The catalyst materials investigated were nickel and the reaction cured glass coating used for Space Shuttle reusable surface insulation tiles. Nonradiative loss processes for the laser excited states makes LIF detection of O2 difficult such that formation of excited oxygen molecules could not be detected in the flow from the microwave discharge or in the gaseous products of atom loss on nickel. MBMS experiments showed that ozone was a product of heterogeneous O atom loss on nickel and tile surfaces at low temperatures and that ozone is lost on these materials at elevated temperatures. FI was separately investigated as a method by which excited oxygen molecules may be conveniently detected. Partial O2 dissociation decreases the current produced by FI of the gas.

  1. Energy variable monoenergetic positron beam study of oxygen atoms in Czochralski grown Si

    Tanigawa, S.; Wei, L.; Tabuki, Y.; Nagai, R.; Takeda, E.

    1992-01-01

    A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski-grown Si with the coverage of SiO 2 (100 nm) and poly-Si (200 nm)/SiO 2 (100 nm), respectively. It was found that (i) the growth of SiO 2 gives rise to a strong Doppler broadening of positron annihilation radiations in the bulk of Si, (ii) such a broadening can be recovered to the original level by annealing at 450degC, by the removal of overlayers using chemical etching and long-term aging at room temperature, (iii) the film stress over the CZ-grown Si is responsible for the rearrangement of oxygen atoms in S and (iv) only tensile stress gives rise to the clustering of oxygen atoms. The observed broadening was assigned to arise from the positron trapping by oxygen interstitial clusters. It was concluded that film stress is responsible for the rearrangement of oxygen atoms in CZ-grown Si. (author)

  2. Electrochemical study on determination of diffusivity, activity and solubility of oxygen in liquid bismuth

    Ganesan, Rajesh [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gnanasekaran, T. [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: gnani@igcar.ernet.in; Srinivasa, Raman S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2006-06-15

    Diffusivity of oxygen in liquid bismuth was measured by potentiostatic method and is given bylg(D{sub O}{sup Bi}/cm{sup 2}.s{sup -1})(+/-0.042)=-3.706-1377/(TK{sup -1})(804oxygen in bismuth was determined by coulometric titrations and using the measured data standard free energy of dissolution of oxygen in liquid bismuth was derived for the reaction:1/2O{sub 2}(g)=[O]{sub Bi}(at.%)and is given by{delta}G{sub O(Bi)}{sup o}/(J.g-atomO{sup -1})(+/-720)=-108784+20.356TK{sup -1}(753oxygen in liquid bismuth was derived as a function of temperature and is given by the following expressions:lg(S/at%O)(+/-0.05)=-4476/TK{sup -1}+4.05(753oxygen in liquid bismuth is compared with the literature data.

  3. Long-term oxygen therapy in COPD patients: population-based cohort study on mortality.

    Pavlov, Nikolay; Haynes, Alan Gary; Stucki, Armin; Jüni, Peter; Ott, Sebastian Robert

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and is associated with a growing and substantial socioeconomic burden. Long-term oxygen therapy (LTOT), recommended by current treatment guidelines for COPD patients with severe chronic hypoxemia, has shown to reduce mortality in this population. The aim of our study was to assess the standardized mortality ratios of incident and prevalent LTOT users and to identify predictors of mortality. We conducted a 2-year follow-up population-based cohort study comprising all COPD patients receiving LTOT in the canton of Bern, Switzerland. Comparing age- and sex-adjusted standardized mortality ratios, we examined associations between all-cause mortality and patient characteristics at baseline. To avoid immortal time bias, data for incident (receiving LTOT <6 months) and prevalent users were analyzed separately. At baseline, 475 patients (20% incident users, n=93) were receiving LTOT because of COPD (48/100,000 inhabitants). Mortality of incident and prevalent LTOT users was 41% versus 27%, respectively, p <0.007, and standardized mortality ratios were 8.02 (95% CI: 5.64-11.41) versus 5.90 (95% CI: 4.79-7.25), respectively. Type 2 respiratory failure was associated with higher standardized mortality ratios among incident LTOT users (60.57, 95% CI: 11.82-310.45, p =0.038). Two-year mortality rate of COPD patients on incident LTOT was somewhat lower in our study than in older cohorts but remained high compared to the general population, especially in younger patients receiving LTOT <6 months. Type 2 respiratory failure was associated with mortality.

  4. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer

    Liu, Shengqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Ma, Zhu; Zhao, Juan [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2013-02-15

    High-efficiency white organic light-emitting devices (WOLEDs) based on an undoped ultrathin yellow light-emitting layer and a doped blue light-emitting layer were demonstrated. While the thickness of blue light-emitting layer, formed by doping a charge-trapping phosphor, iridium(III) bis(4 Prime ,6 Prime -difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) in a wide bandgap host, was kept constant, the thickness of neat yellow emissive layer of novel phosphorescent material, bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2 Prime }]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] was varied to optimize the device performance. The optimized device exhibited maximum luminance, current efficiency and power efficiency of 24,000 cd/m{sup 2} (at 15.2 V), 79.0 cd/A (at 1550 cd/m{sup 2}) and 40.5 lm/W (at 1000 cd/m{sup 2}), respectively. Besides, the white-light emission covered a wide range of visible spectrum, and the Commission Internationale de l'Eclairage coordinates were (0.32, 0.38) with a color temperature of 5800 K at 8 V. Moreover, high external quantum efficiency was also obtained in the high-efficiency WOLEDs. The performance enhancement was attributed to the proper thickness of (t-bt){sub 2}Ir(acac) layer that enabled adequate current density and enough phosphorescent dye to trap electrons. - Highlights: Black-Right-Pointing-Pointer Highly efficient WOLEDs based on two complementary layers were fabricated. Black-Right-Pointing-Pointer The yellow emissive layer was formed by utilizing undoping system. Black-Right-Pointing-Pointer The blue emissive layer was made by host-guest doping system. Black-Right-Pointing-Pointer The thickness of the yellow emissive layer was varied to make device optimization. Black-Right-Pointing-Pointer The optimized device achieved high power efficiency of 40.5 lm/W.

  5. Study of the pO2-sensitivity of the dendrimeric and free forms of Pd-meso-tetra(4-carboxyphenyl)porphyrin, incorporated or not in chitosan-based nanoparticles.

    Nowak-Sliwinska, Patrycja; Käuper, Peter; van den Bergh, Hubert; Wagnières, Georges

    2011-01-01

    The concentration of oxygen and its rate of consumption are important factors in certain medical treatments, such as radiotherapy and photodynamic therapy (PDT). Measuring the tissue concentration of oxygen or its partial pressure (pO2) can be achieved by taking advantage of the oxygen-dependent luminescence lifetime of certain molecules, including metallo-porphyrin derivatives, due to the oxygen-dependent quenching of their triplet state. Unfortunately, most of these porphyrin derivatives are phototoxic due to the O(2)1delta produced in the pO2 measurement procedure. The aim of this work was to characterize new nanoparticle oxygen sensors, where the palladium-porhyrin molecule (Pd-meso-tetra(4-carboxyphenyl)porphyrin) or its dendrimer form, is incorporated into an oxygen permeable matrix of chitosan-based colloidal particles. It was hypothesized that the reactive O(2)1delta produced during the pO2 measurement would react inside the particle thus reducing its toxicity for the surrounding tissue, whereas the 3sigma ground state of O2, that is to be measured, would diffuse freely in the peptide. We observed that the incorporation of the porphyrin in the nanoparticles resulted in a reduction of the phosphorescence lifetime sensitivity to pO2 by about one order of magnitude. Our studies of these new sensors indicate that the oxygen concentration can be measured in aqueous solutions with a precision of +/- 20% for oxygen concentrations ranging between 0% and 25%.

  6. Oxygen tracer studies of ferroelectric fatigue in Pb(Zr,Ti)O3 thin films

    Schloss, Lawrence F.; McIntyre, Paul C.; Hendrix, Bryan C.; Bilodeau, Steven M.; Roeder, Jeffrey F.; Gilbert, Stephen R.

    2002-01-01

    Long-range oxygen motion has been observed in Pt/Pb(Zr,Ti)O 3 /Ir thin-film structures after electrical fatigue cycling at room temperature. Through an exchange anneal, isotopic 18 O was incorporated as a tracer into bare Pb(Zr,Ti)O 3 (PZT) films, allowing secondary ion mass spectrometry measurements of the tracer profile evolution as a function of the number of polarization reversals. Observation of 18 O tracer redistribution during voltage cycling, which is presumably mediated by oxygen vacancy motion, was found to be strongly dependent upon the thermal history of the film. However, there was no strong correlation between the extent of 18 O tracer redistribution and the extent of polarization suppression induced by voltage cycling. Our results suggest that oxygen vacancy motion plays, at most, a secondary role in ferroelectric fatigue of PZT thin films

  7. Characterization of atomic oxygen in a Hollow Cathode Radio-Frequency Plasma and study its efficiency

    Naddaf, M.; Saloum, S.

    2011-01-01

    The atomic oxygen (AO) generated in the remote oxygen plasma of the HCD-L300 source, has been fully diagnosed by various conventional techniques. The density of AO was found to vary from (1-10)x10 1 9 m - 3 depending on the operating conditions and parameters. The interaction of the oxygen plasma with silver and gold thin films is investigated by gravimetric analysis, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. The effect of AO on surface wetting and energy of polymeric materials is also investigated by using contact angle measurements and analysis technique. From applied point of view, production of super hydrophobic Teflon surface and the significant enhancement in the surface free energy of polyimide and polyamide are considered the most important obtained results in the present work. (author)

  8. A study of the transient performance of annular hydrostatic journal bearings in liquid oxygen

    Scharrer, J. K.; Tellier, J. G.; Hibbs, R. I.

    1992-07-01

    A test apparatus was used to simulate a cryogenic turbopump start transient in order to determine the liftoff and touchdown speed and amount of wear of an annular hydrostatic bearing in liquid oxygen. The bearing was made of sterling silver and the journal made of Inconel 718. The target application of this configuration is the pump end bearing of the Space Shuttle Main Engine High Pressure Liquid Oxygen Turbopump. Sixty-one transient cycles were performed in liquid oxygen with an additional three tests in liquid nitrogen to certify the test facility and configuration. The bearing showed no appreciable wear during the testing, and the results indicate that the performance of the bearing was not significantly degraded during the testing.

  9. Surface activation of cyclo olefin polymer by oxygen plasma discharge: a molecular dynamics study

    Soberon, Felipe

    2014-01-01

    Thermoplastic substrates made of cyclo olefin polymer (COP) are treated with oxygen plasma discharges to introduce polar groups at the surface. This is the first step in the process of surface functionalization of COP substrates used in biosensor devices. A molecular dynamics model of basic COP structure is implemented using the second-generation reactive empirical bond order (REBO) potentials for hydrocarbon–oxygen interactions. The model includes covalent bond and Van der Waals interactions. The bombardment of a COP surface with mono-energetic atomic oxygen ions, energy in the range 1-35 eV, is simulated and reported here. The dynamics of the substrate modification reveals that the substrate top layer is de-hydrogenated and subsequently builds up an oxygen–carbon matrix layer, ∼10 Å thick. Analysis of the modified substrates indicates that surface yield is predominantly peroxide groups. (paper)

  10. Studies on the rheology and oxygen mass transfer in the clavulanic acid production by Streptomyces clavuligerus

    E. R. Gouveia

    2000-12-01

    Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.

  11. Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients: a pilot study.

    Drigny, Joffrey; Gremeaux, Vincent; Dupuy, Olivier; Gayda, Mathieu; Bherer, Louis; Juneau, Martin; Nigam, Anil

    2014-11-01

    To assess the effect of a 4-month high-intensity interval training programme on cognitive functioning, cerebral oxygenation, central haemodynamic and cardiometabolic parameters and aerobic capacity in obese patients. Cognitive functioning, cerebral oxygenation, central haemodynamic, cardiometabolic and exercise para-meters were measured before and after a 4-month high-intensity interval training programme in 6 obese patients (mean age 49 years (standard deviation 8), fat mass percentage 31 ± 7%). Body composition (body mass, total and trunk fat mass, waist circumference) and fasting insulin were improved after the programme (p attention and processing speed, was significantly improved after training (p training (p training programme in obese patients improved both cognitive functioning and cere-bral oxygen extraction, in association with improved exercise capacity and body composition.

  12. Study of the defects related to oxygen in Czochralski silicon destined to photovoltaic solar cells - Influence of isovalent impurities

    Tanay, Florent

    2013-01-01

    This study aims at understanding the effects of two main defects related to oxygen, the boron-oxygen complexes (responsible for light-induced degradation of the carrier lifetime) and the thermal donors (among other things, responsible for variations of the conductivity), on the electric and photovoltaic properties of silicon. More precisely, the interactions of isovalent impurities, known for modifying the oxygen spatial distribution, with these defects were studied. Two experimental protocols were first developed to evaluate the light-induced degradation of the carrier lifetime in iron-rich silicon. Then, the introduction in silicon of germanium and tin in high quantity were shown not to significantly influence the conversion efficiency of the cells. However, contrary to recent studies from the literature, no reduction due to germanium co-doping or to tin co-doping of the light-induced degradation of the photovoltaic performances was observed. However carbon was shown to lead to a slowdown of the degradation due to boron-oxygen complexes. Moreover contrary to tin which has no influence on the thermal donor generation, germanium slows down their formation. An empirical expression has been proposed to take into account this effect for a large range of germanium concentrations. Eventually in highly doped and compensated silicon, the thermal donor generation is identical as in conventional silicon, which experimentally confirms that the thermal donor formation is limited by the electron density. (author) [fr

  13. Physical activity as a long-term predictor of peak oxygen uptake: the HUNT Study.

    Aspenes, Stian Thoresen; Nauman, Javaid; Nilsen, Tom Ivar Lund; Vatten, Lars Johan; Wisløff, Ulrik

    2011-09-01

    A physically active lifestyle and a relatively high level of cardiorespiratory fitness are important for longevity and long-term health. No population-based study has prospectively assessed the association of physical activity levels with long-term peak oxygen uptake (VO(2peak)). 1843 individuals (906 women and 937 men) who were between 18 and 66 yr at baseline and were free from known lung or heart diseases at both baseline (1984-1986) and follow-up (2006-2008) were included in the study. Self-reported physical activity was recorded at both occasions, and VO(2peak) was measured at follow-up. The association of physical activity levels and VO(2peak) was adjusted for age, level of education, smoking status, and weight change from baseline to follow-up, using ANCOVA statistics. The level of physical activity at baseline was strongly associated with VO(2peak) at follow-up 23 yr later in both men and women (Ptrends active at baseline had higher (3.3 and 4.6 mL·kg(-1)·min(-1)) VO(2peak) at follow-up. Women who were inactive at baseline but highly active at follow-up had 3.7 mL·kg(-1)·min(-1) higher VO(2peak) compared with women who were inactive both at baseline and at follow-up. The corresponding comparison in men showed a difference of 5.2 mL·kg(-1)·min(-1) (95% confidence interval = 3.1-7.3) in VO(2peak). Physical activity level at baseline was positively associated with directly measured cardiorespiratory fitness (VO(2peak)) 23 yr later. People who changed from low to high activity during the observation period had substantially higher V˙O(2peak) at follow-up compared with people whose activity remained low.

  14. Experimental and theoretical studies of oxygen gradients in rat pial microvessels

    Sharan, Maithili; Vovenko, Eugene P; Vadapalli, Arjun; Popel, Aleksander S; Pittman, Roland N

    2008-01-01

    Using modified oxygen needle microelectrodes and intravital videomicroscopy, measurements were made of tissue oxygen tension (PO2) profiles near cortical arterioles and transmural PO2 gradients in the pial arterioles of the rat. Under control conditions, the transmural PO2 gradient averaged 1.17 ± 0.06 mm Hg/μm (mean ± s.e., n = 40). Local arteriolar dilation resulted in a marked decrease in the transmural PO2 gradient to 0.68 ± 0.04 mm Hg/μm (P < 0.001, n = 38). The major finding of this stu...

  15. A lattice location study of oxygen in vanadium by 1-MeV deuteron channeling

    Takahashi, Junzo; Koiwa, Masahiro; Hirabayashi, Makoto; Yamaguchi, Sadae; Fujino, Yutaka.

    1978-01-01

    A direct determination of the lattice location of oxygen in vanadium single crystals has been made by means of ion channeling and the ion-induced nuclear reaction, 16 O(d, p) 17 O*. Channeling angular distribution measurements along principal axial and planar directions indicate that oxygen atoms occupy the octahedral interstices in vanadium. The shapes of the flux peaks observed for the [100], [110] and [111] directions have been compared with those of the theoretical curves calculated on the multiple strings model assuming statistical equilibrium. (author)

  16. Study of magnetic field to promote oxygen transfer and its application in zinc–air fuel cells

    Shi, Jicheng; Xu, Hongfeng; Lu, Lu; Sun, Xin

    2013-01-01

    Highlights: ► High magnetic strength reduces R ct and increases C d in oxygen reduction reaction. ► Oxygen diffusion and transfer coefficient become large in high magnetic strength. ► The magnetic ZAFC discharge performance is better than the nonmagnetic ZAFC. ► Increased NdFeB/C load density improves the magnetic ZAFC discharge performance. ► Excess NdFeB/C load density decreases the magnetic ZAFC discharge performance. -- Abstract: This study investigates the effects of magnetic field on oxygen transfer and the correlations of electrochemical parameters in different magnetic strengths. The discharge performance of zinc–air fuel cell (ZAFC) was tested under magnetic and nonmagnetic conditions using neodymium–iron–boron/carbon (NdFeB/C) magnetic particles in ZAFC cathode. The results showed that the oxygen diffusion coefficient (D Oi ) and transfer coefficient (α i ) increased by 102.14% and 52.38% when the magnetic strength increased from 0 mT to 5.0 mT, respectively. In addition, the electric double-layer capacitance (C d ) increased from 8.16 to 22.46 μF cm −2 , the charge-transfer resistance (R ct ) decreased from 9.43 Ω cm 2 to 6.02 Ω cm 2 , and the oxygen reduction reaction (ORR) current was improved. With the NdFeB/C load density of 2.4 mg cm −2 in ZAFC cathode, the discharge current of magnetic ZAFC increased by 13.86% compared with the nonmagnetic ZAFC at the 0.80 V discharge voltage. These results indicate that magnetic strength has a positive correlation with D Oi , α i , and the ORR current. Under magnetic attractions, the oxygen transfer process is easier at the Pt/C catalytic surface, and the discharge performance of magnetic ZAFC is superior to the nonmagnetic ZAFC. At lower NdFeB/C load density, increasing the NdFeB/C load density facilitates oxygen transfer and improves the discharge performance of ZAFC. However, the magnetic ZAFC discharge performance decreases at a higher NdFeB/C load density because of the blocked oxygen

  17. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    2017-08-01

    were used for this study and were connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen...connected via a USB cable to allow communication. The ventilator was modified to allow closed loop control of oxygen based on the oxygen saturation...2017-4119, 28 Aug 2017. oximetry (SpO2) and intermittent arterial blood sampling for arterial oxygen tension (partial pressure of oxygen [PaO2]) and

  18. Contribution to the crystallographic study of the uranium-oxygenated system; Contribution a l'etude cristallographique du systeme uranium-oxygene

    Perio, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-04-15

    Three uranium oxides, UO{sub 2}, U{sub 3}O{sub 8} and UO{sub 3} are known since a long time. The existence of a fourth, U{sub 2}O{sub 5}, is discussed. The mechanisms of decomposition between UO{sub 3} and U{sub 3}O{sub 8} have even some shadow zones. The aim of this report is the study of the phase relations in an uranium - oxygen system, from the metal until UO{sub 3}. We considered, on the one hand, the equilibrium relations, what should result in a diagram of phases in pressures and temperatures, on the other hand, the transformations bringing one oxide to the other, often by a continuous way and through intermediate of metastable phases. The introduction of the temperature and the consideration of the kinetics effects have permitted to raise the ambiguities. We adopted, to facilitate the presentation of the results, a partition a few arbitrary but convenient, in three chapters,: I - experimental Techniques II - Crystallographic species between U and UO{sub 3}. III - Kinetic of oxidisation of UO{sub 2}. (M.B.) [French] Trois oxydes d'uranium, UO{sub 2}, U{sub 3}O{sub 8} et UO{sub 3} sont connus depuis longtemps. L'existence d'un quatrieme, U{sub 2}O{sub 5}, est en suspend. Les mecanismes de decomposition entre UO{sub 3} et U{sub 3}O{sub 8} possedent encore quelques zones d mbres. Le but propose dans ce memoire est l'etude des relations de phase dans le systeme uranium - oxygene, du metal jusqu'a UO{sub 3}. Nous avons ete amene a considerer, d'une part, les relations a l'equilibre, ce qui devrait se traduire par un diagramme de phases en pressions et temperatures, d'autre part, les transformations amenant, souvent d'une facon continue et par l'intermediaire de phases metastables, d'un oxyde a l'autre. L'introduction de la temperature et la consideration des effets de cinetique ont le plus souvent permis de lever les ambiguites rencontrees. Nous avons adopte, pour faciliter la presentation des resultats, une division un peu arbitraire mais commode, en trois

  19. Fullerol-fluorescein isothiocyanate-concanavalin agglutinin phosphorescent sensor for the detection of alpha-fetoprotein and forecast of human diseases

    Liu, Jia-ming; Lin, Li-ping; Jiang, Shu-Lian; Cui, Ma Lin; Jiao, Li; Zhang, Xiao Yang; Zhang, Li-hong; Zheng, Zhi Yong; Lin, Xuan; Lin, Shao-qin

    2013-11-01

    Based on the reaction of the active -OH group in fullerol (F) with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form an F-FITC and the enhanced effect of N, N-dimethylaniline (DMA) on phosphorescence signal of F-FITC, a new phosphorescent labeling reagent (DMA-F-FITC) was developed. What's more, a phosphorescent sensor for the determination of alpha-fetoprotein variant (AFP-V) has been designed via the coupling technique of the high sensitivity for affinity adsorption-solid substrate-room temperature phosphorimetry (AA-SS-RTP) with the strong specificity reaction between DMA-F-FITC-Con A and AFP-V. The DMA-F-FITC increased the number of luminescent molecules in the biological target which improved the sensitivity of phosphorescent sensor. The proposed sensor was responsive, simple, selective and sensitive, and it has been applied to the determination of trace AFP-V in human serum and the forecast of human diseases using phosphorescence emission wavelength of F or FITC, with the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Meanwhile, the mechanisms for the labeling reaction and the sensing detection of AFP-V were discussed.

  20. Intra-dialytic blood oxygen saturation (SO2): association with dialysis hypotension (the SOGLIA Study).

    Mancini, E; Perazzini, C; Gesualdo, L; Aucella, F; Limido, A; Scolari, F; Savoldi, S; Tramonti, M; Corazza, L; Atti, M; Severi, S; Bolasco, P; Santoro, A

    2017-12-01

    Intradialytic hypotension (IDH) has a dramatic impact on the main outcomes of dialysis patients. Early warning of hemodynamic worsening during dialysis would enable preventive measures to be taken. Blood oxygen saturation (SO 2 ) is used for hemodynamic monitoring in the critical care setting and may provide useful information about IDH onset. To evaluate whether short- and medium-term variations in the SO 2 signal (ST-SO 2var , MT-SO 2var ,) during dialysis are a predictor of IDH. In this 3-month observational cohort study, 51 hypotension-prone chronic hemodialysis (HD) patients, with vascular access by arteriovenous fistula (AVF) or central venous catheter (CVC), were enrolled. Continuous non-invasive blood SO 2 was monitored (fc = 0.2 Hz) by an optical sensor on the arterial line of the extracorporeal circulation; blood pressure (every 30 min), symptoms and their time of appearance were noted. Predictive power of IDH was expressed by the area under curve (AUC) sensitivity and specificity based on intradialytic variations in SO 2 . A total of 1290 HD sessions were analyzed. Overall, off-line ST-SO 2var analysis proved able to correctly predict IDH in 67 % of the sessions where IDH occurred. The best predictive performance was found in the presence of highly arterialized AVF (SO 2  > 95 %) (75 % sensitivity; AUC 0.825; p < 0.05). On the contrary, in sessions with CVC, IDH prediction proved more efficient by MT-SO 2var (AUC 0.575; p = 0.01). Intradialytic SO 2 variability could be a valid parameter to detect in advance the hemodynamic worsening that precedes IDH. Appropriate timely intervention could help prevent IDH onset.

  1. Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases

    Kanoun, Mohammed

    2012-01-01

    In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized gradient approximation and the density functional theory approaches, to explore the existence of a steric effect on the M site in these compounds. The elastic properties are also reported in order to assess the mechanical stability. The substitution of oxygen for carbon in Ti 2 SnC M n +1 AX n, forming Ti 2 SnC 1- x O x, is examined next, where we simulated the effect of oxygen incorporation on mechanical and electronic properties using projector augmented wave method. We show that oxygen has interesting effects on both of elastic and electronic properties, that the bulk modulus decreases when oxygen concentration increases. The bonding in Ti 2 SnC 1- x O x has a tendency to a covalent-ionic nature with the presence of metallic character. © 2012 Woodhead Publishing Limited.

  2. Comparative DFT+U and HSE Study of the Oxygen Evolution Electrocatalysis on Perovskite Oxides

    Tripkovic, Vladimir; Hansen, Heine Anton; García Lastra, Juan Maria

    2018-01-01

    +U functional and the amount of exact exchange, α, in the hybrid HSE functional on the structural stability, catalytic activity and electronic conductivity of pure and doped perovskite oxides, ABO3, (A = La, Ca, Sr and Ba, B = Cr, Mn, Fe, Co, Ni and Cu) for oxygen evolution electrocatalysis. We find a strong...

  3. Study of dimensional changes during redox cycling of oxygen carrier materials for chemical looping combustion

    Fossdal, A.; Darell, O.; Lambert, A.; Schols, E.; Comte, E.; Leenman, R.N.; Blom, R.

    2015-01-01

    Dimensional and phase changes of four candidate oxygen carrier materials for chemical looping combustion are investigated by dilatometry and high-temperature X-ray diffraction during four redox cycles. NiO/Ni2AlO4 does not exhibit significant dimensional changes during cycling, and it is shown that

  4. 127I Moessbauer study of some oxygen bonded iodine(I) and iodine(III) complexes

    Bardhan, M.; Birchall, T.; Frampton, C.; Kapoor, P.

    1988-01-01

    127 I Moessbauer spectra have been recorded at 4.2 0 K for a series of oxygen bonded iodine(I) and iodine(III) complexes. The sign of the quadrupole coupling constant is dependant only on the primary arrangement of ligands about the central iodine nucleus whereas the magnitude and the asymmetry parameter are more sensitive to ligand electronegativity and type. (orig.)

  5. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions

    Vallejo, Federico Calle; Martinez, Jose Ignacio; Rossmeisl, Jan

    2011-01-01

    Low-temperature fuel cells are appealing alternatives to the conventional internal combustion engines for transportation applications. However, in order for them to be commercially viable, effective, stable and low-cost electrocatalysts are needed for the Oxygen Reduction Reaction (ORR) at the ca...

  6. Motor performance in five-year-old extracorporeal membrane oxygenation survivors: A population-based study

    M.W.G. Nijhuis-van der Sanden (Maria); M.H.M. van der Cammen-van Zijp (Monique); A.J.W.M. Janssen (Anjo); J.J.C.M. Reuser (Jolanda); P. Mazer (Petra); A.F.J. van Heijst (Arno); S.J. Gischler (Saskia); D. Tibboel (Dick); L.A. Kollee

    2009-01-01

    textabstractIntroduction: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is a cardio-pulmonary bypass technique to provide life support in acute reversible cardio-respiratory failure when conventional management is not successful. Most neonates receiving ECMO suffer from meconium

  7. A comparative kinetic and mechanistic study between tetrahydrozoline and naphazoline toward photogenerated reactive oxygen species.

    Criado, Susana; García, Norman A

    2010-01-01

    Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet ((3)Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca. 5.0 mM and 0.02 mM Rf, (3)Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O(2)((1)Delta(g)), O(2)(*-), HO(*) and H(2)O(2), generated from (3)Rf* and Rf(*-), were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H(2)O(2) was involved in the photo-oxidation. In the case of THZ, O(2)(*-), HO(*) and H(2)O(2) were detected, whereas only HO(*) was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O(2)((1)Delta(g)), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.

  8. Economic outcomes in clinical studies assessing hyperbaric oxygen in the treatment of acute and chronic wounds

    Santema, Trientje B.; Stoekenbroek, Robert M.; van Steekelenburg, Koen C.; van Hulst, Rob A.; Koelemay, Mark Jw; Ubbink, Dirk T.

    2015-01-01

    Introduction: Hyperbaric oxygen treatment (HBOT) is used to treat acute and chronic wounds. This systematic review was conducted to summarise and evaluate existing evidence on the costs associated with HBOT in the treatment of wounds. Methods: We searched multiple electronic databases in March 2015

  9. Study of high energy ion implantation of boron and oxygen in silicon

    Thevenin, P.

    1991-06-01

    Three aspects of high energy (0.5-3 MeV) light ions ( 11 B + and 16 O + ) implantation in silicon are examined: (1)Spatial repartition; (2) Target damage and (3) Synthesis by oxygen implantation of a buried silicon oxide layer

  10. Oxygen therapy reduces postoperative tachycardia

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  11. Changes in tumor oxygenation during a combined treatment with fractionated irradiation and hyperthermia: an experimental study.

    Zywietz, F; Reeker, W; Kochs, E

    1997-01-01

    To determine the influence of adjuvant hyperthermia on the oxygenation status of fractionated irradiated tumors. Oxygen partial pressure (pO2) in rat rhabdomyosarcomas (R1H) was measured sequentially at weekly intervals during a fractionated irradiation with 60Co-gamma-rays (60 Gy/20f/4 weeks) in combination with local hyperthermia (8 f(HT) at 43 degrees C, 1 h/4 weeks). Tumors were heated twice weekly with a 2450 MHz microwave device at 43 degrees C, 1 h starting 10 min after irradiation. The pO2 measurements (pO2-histograph, Eppendorf, Germany) were performed in anesthetized animals during mechanical ventilation and in hemodynamic steady state. All tumor pO2 measurements were correlated to measurements of the arterial oxygen partial pressure (paO2) determined by a blood gas analyzer. The oxygenation status of R1H tumors decreased continuously from the start of the combined treatment, with increasing radiation dose and number of heat fractions. In untreated controls a median tumor pO2 of 23 +/- 2 mmHg (mean +/- SEM) was measured. Tumor pO2 decreased to 11 +/- 2 mmHg after 30 Gy + 4 HT (2 weeks), and to 6 +/- 2 mmHg after 60 Gy + 8HT (4 weeks). The increase in the frequency of pO2-values below 5 mmHg and the decrease in the range of the pO2 histograms [delta p(10/90)] further indicated that tumor hypoxia increased relatively rapidly from the start of combined treatment. After 60 Gy + 8HT 48 +/- 5% (mean +/- SEM) of the pO2-values recorded were below 5 mmHg. These findings suggest that adjuvant hyperthermia to radiotherapy induces greater changes in tumor oxygenation than radiation alone [cf. (39)]. This might be of importance for the temporary application of hyperthermia in the course of a conventional radiation treatment.

  12. Highly efficient phosphorescent blue and white organic light-emitting devices with simplified architectures

    Chang, Chih-Hao, E-mail: chc@saturn.yzu.edu.tw [Department of Photonics Engineering, Yuan Ze University, Chung-Li, Taiwan 32003 (China); Ding, Yong-Shung; Hsieh, Po-Wei; Chang, Chien-Ping; Lin, Wei-Chieh [Department of Photonics Engineering, Yuan Ze University, Chung-Li, Taiwan 32003 (China); Chang, Hsin-Hua, E-mail: hhua3@mail.vnu.edu.tw [Department of Electro-Optical Engineering, Vanung University, Chung-Li, Taiwan 32061 (China)

    2011-09-01

    Blue phosphorescent organic light-emitting devices (PhOLEDs) with quantum efficiency close to the theoretical maximum were achieved by utilizing a double-layer architecture. Two wide-triplet-gap materials, 1,3-bis(9-carbazolyl)benzene and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, were employed in the emitting and electron-transport layers respectively. The opposite carrier-transport characteristics of these two materials were leveraged to define the exciton formation zone and thus increase the probability of recombination. The efficiency at practical luminance (100 cd/m{sup 2}) was as high as 20.8%, 47.7 cd/A and 31.2 lm/W, respectively. Furthermore, based on the design concept of this simplified architecture, efficient warmish-white PhOLEDs were developed. Such two-component white organic light-emitting devices exhibited rather stable colors over a wide brightness range and yielded electroluminescence efficiencies of 15.3%, 33.3 cd/A, and 22.7 lm/W in the forward directions.

  13. Phosphorescent quantum dots/ethidium bromide nanohybrids based on photoinduced electron transfer for DNA detection.

    Bi, Lin; Yu, Yuan-Hua

    2015-04-05

    Mercaptopropionic acid-capped Mn-doped ZnS quantum dots/ethidium bromide (EB) nanohybrids were constructed for photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for DNA detection. EB could quench the RTP of Mn-doped ZnS QDs by PIET, thereby forming Mn-doped ZnS QDs/EB nanohybrids and storing RTP. Meanwhile, EB could be inserted into DNA and EB could be competitively desorbed from the surface of Mn-doped ZnS QDs by DNA, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this mechanism, a RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 0.045 mg L(-1), the relative standard deviation was 1.7%, and the method linear ranged from 0.2 to 20 mg L(-1). The proposed method was applied to biological fluids, in which satisfactory results were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Phosphorescent quantum dots/doxorubicin nanohybrids based on photoinduced electron transfer for detection of DNA.

    Miao, Yanming; Zhang, Zhifeng; Gong, Yan; Yan, Guiqin

    2014-09-15

    MPA-capped Mn-doped ZnS QDs/DXR nanohybrids (MPA: 3-mercaptopropionic acid; QDs: quantum dots; DXR: cetyltrimethyl ammonium bromide) were constructed via photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for detection of DNA. DXR as a quencher will quench the RTP of Mn-doped ZnS QDs via PIET, thereby forming Mn-doped ZnS QDs/DXR nanohybrids and storing RTP. With the addition of DNA, it will be inserted into DXR and thus DXR will be competitively desorbed from the surface of Mn-doped ZnS QDs, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this, a new method for DNA detection was built. The sensor for DNA has a detection limit of 0.039 mg L(-1) and a linear range from 0.1 to 14 mg L(-1). The present QDs-based RTP method does not need deoxidants or other inducers as required by conventional RTP detection methods, and avoids interference from autofluorescence and the scattering light of the matrix that are encountered in spectrofluorometry. Therefore, this method can be used to detect the DNA content in body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Characterisation of thin films of organic phosphorescent materials using synchrotron radiation

    Thompson, J.; Arima, V.; Matino, F.; Cingolani, R.; Blyth, R.I.R.

    2005-01-01

    Synchrotron radiation photoemission and X-ray absorption spectroscopy (NEXAFS) have been used to investigate the electronic structure of evaporated films of the phosphorescent organic iridium complexes iridium tris-(2-(4-totyl)pyridinato-N,C 2 ), iridium bis(2-(4,6-difluorophenyl)pyridinato-N,C 2 )picolinate, and iridium bis(2-(2'-benzothienyl)pyridinato-N,C 3 )-(acetylacetonate) and spin coated films of these materials in a polymer host. Resonant photoemission at the Ir N 6,7 edge indicates that the Ir 5d states are hybridised with the π orbitals of the organic ligands, in agreement with recent calculations. The nitrogen K-edge NEXAFS shows the difference in the unoccupied orbitals induced by the acetylacetonate group compared to those of the pyridinate ligands. Although the valence bands of the ex situ prepared films are not accessible to photoemission, the Ir 4f core levels remain visible, and demonstrate that the polymer host serves to lower the electron injection barrier in the iridium complexes in comparison to the pure films

  16. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  17. Optical properties of phosphorescent nano-silicon electrochemically doped with terbium

    Gelloz, Bernard [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mentek, Romain; Koshida, Nobuyoshi [Tokyo University A and T, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2012-12-15

    Hybrid thin films consisting of oxidized nano-silicon doped with terbium have been fabricated. Nano-silicon was formed by electrochemical etching of silicon wafers. Terbium was incorporated into nano-silicon pores by electrochemical deposition. Different oxidizing thermal treatments were applied to the films. The samples treated by high-pressure water vapor annealing (HWA) exhibited strong blue emission with a phosphorescent component, as previously reported by our group. The low temperature (260 C) HWA also led to strong emission from Tb{sup 3+} ions, whereas typical high temperature (900 C) treatment generally used to activate Tb{sup 3+} ions in silicon-based materials led to less luminescent samples. Spectroscopic and dynamic analyses suggest that terbium was incorporated as a separate oxide phase in the pores of the porous nano-silicon. The PL of the terbium phase and nano-silicon phase exhibit different temperature and excitation power dependences suggesting little optical or electronic interaction between the two phases. The luminescence of terbium is better activated at low temperature (260 C) than at high temperature (900 C). The hybrid material may find some applications in photonics, for instance as a display material. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  19. Efficient green phosphorescent tandem organic light emitting diodes with solution processable mixed hosts charge generating layer

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia); ItraMAS Corporation. Sdn. Bhd., 542A-B Mukim 1, Lorong Perusahaan Baru 2, Kawasan Perindustrian, Perai 13600, Penang (Malaysia); Yap, B.K. [Center of Microelectronic and Nanotechnology Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional, Jln. Uniten-Ikram, 4300 Kajang, Selangor (Malaysia); Woon, K.L., E-mail: ph7klw76@um.edu.my [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-10-15

    A novel solution processable charge generating layer (CGL) that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN{sub 6})/Poly(N-vinylcarbazole) (PVK): 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) for a tandem green phosphorescent organic light emitting diode (PHOLED) is demonstrated. The use of orthogonal solvent to dissolve HATCN{sub 6} and PVK:TAPC is the key to overcome the interface erosion problem for the solution processed CGL. The current efficiency of the 2 wt% TAPC mixed with PVK is the highest at 24.2 cd/A, which is more than three-folds higher than that of the single device at 1000 cd/m{sup 2}. - Highlights: • A solution processable tandem OLED is built using a novel charge generating layer. • HATCN{sub 6} and PVK:TAPC are shown to be effective charge generating layers. • The turn on voltages for tandem devices are almost similar to single unit. • 2 wt% TAPC blended with PVK exhibits three-folds increase in efficiency.

  20. Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host

    Tien-Lung Chiu

    2012-06-01

    Full Text Available In this paper, we investigate the carrier injection and transport characteristics in iridium(IIIbis[4,6-(di-fluorophenyl-pyridinato-N,C2']picolinate (FIrpic doped phosphorescent organic light-emitting devices (OLEDs with oxadiazole (OXD as the bipolar host material of the emitting layer (EML. When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD.

  1. 3,3′-Bicarbazole-Based Host Molecules for Solution-Processed Phosphorescent OLEDs

    Jungwoon Kim

    2018-04-01

    Full Text Available Solution-processed organic light-emitting diodes (OLEDs are attractive due to their low-cost, large area displays, and lighting features. Small molecules as well as polymers can be used as host materials within the solution-processed emitting layer. Herein, we report two 3,3′-bicarbazole-based host small molecules, which possess a structural isomer relationship. 9,9′-Di-4-n-butylphenyl-9H,9′H-3,3′-bicarbazole (BCz-nBuPh and 9,9′-di-4-t-butylphenyl-9H,9′H-3,3′-bicarbazole (BCz-tBuPh exhibited similar optical properties within solutions but different photoluminescence within films. A solution-processed green phosphorescent OLED with the BCz-tBuPh host exhibited a high maximum current efficiency and power efficiency of 43.1 cd/A and 40.0 lm/W, respectively, compared to the device with the BCz-nBuPh host.

  2. Characterisation of thin films of organic phosphorescent materials using synchrotron radiation

    Thompson, J. [Float-Lux srl., via Ravenna 14, 73100 Lecce (Italy); Arima, V. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Matino, F. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Cingolani, R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy); Blyth, R.I.R. [National Nanotechnology Laboratory of INFM, Distretto Tecnologico ISUFI, Universita di Lecce, via per Arnesano, 73100 Lecce (Italy)]. E-mail: rob.blyth@unile.it

    2005-07-30

    Synchrotron radiation photoemission and X-ray absorption spectroscopy (NEXAFS) have been used to investigate the electronic structure of evaporated films of the phosphorescent organic iridium complexes iridium tris-(2-(4-totyl)pyridinato-N,C{sup 2}), iridium bis(2-(4,6-difluorophenyl)pyridinato-N,C{sup 2})picolinate, and iridium bis(2-(2'-benzothienyl)pyridinato-N,C{sup 3})-(acetylacetonate) and spin coated films of these materials in a polymer host. Resonant photoemission at the Ir N{sub 6,7} edge indicates that the Ir 5d states are hybridised with the {pi} orbitals of the organic ligands, in agreement with recent calculations. The nitrogen K-edge NEXAFS shows the difference in the unoccupied orbitals induced by the acetylacetonate group compared to those of the pyridinate ligands. Although the valence bands of the ex situ prepared films are not accessible to photoemission, the Ir 4f core levels remain visible, and demonstrate that the polymer host serves to lower the electron injection barrier in the iridium complexes in comparison to the pure films.

  3. Arene-Inserted Extended Germa[n]pericyclynes: Synthesis, Structure, and Phosphorescence Properties.

    Tanimoto, Hiroki; Mori, Junta; Ito, Shunichiro; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Tanaka, Kazuo; Chujo, Yoshiki; Kakiuchi, Kiyomi

    2017-07-26

    This report describes the synthesis and characterization of arene-inserted extended (ArEx) germa[n]pericyclynes composed of germanium and 1,4-diethynylbenzene units. These novel cyclic germanium-π unit materials were synthesized with diethynylbenzene and germanium dichloride. X-ray crystallographic analysis revealed their structures, and the planar conformation of ArEx germa[4]pericyclyne along with the regular aromatic rings. UV/Vis absorption spectra and fluorescence emission spectra showed considerably unique and highly improved character compared to previously reported germa[n]pericyclynes. Even in the absence of transition metal components, phosphorescence emissions were observed, and the emission lifetimes were dramatically improved. ArEx germa[n]pericyclynes showed high photoluminescence quantum yields, whereas low photoluminescence quantum yields were observed for acyclic compounds. Density functional theory calculations show delocalized orbitals between skipped alkyne units through a germanium tether, and an increase in the HOMO energy level, leading to a small HOMO-LUMO energy gap. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes

    Boucar Diouf

    2012-01-01

    Full Text Available Key factors to control the efficiency in iridium doped red and green phosphorescent light emitting diodes (PhOLEDs are discussed in this review: exciton confinement, charge trapping, dopant concentration and dopant molecular structure. They are not independent from each other but we attempt to present each of them in a situation where its specific effects are predominant. A good efficiency in PhOLEDs requires the triplet energy of host molecules to be sufficiently high to confine the triplet excitons within the emitting layer (EML. Furthermore, triplet excitons must be retained within the EML and should not drift into the nonradiative levels of the electron or hole transport layer (resp., ETL or HTL; this is achieved by carefully choosing the EML’s adjacent layers. We prove how reducing charge trapping results in higher efficiency in PhOLEDs. We show that there is an ideal concentration for a maximum efficiency of PhOLEDs. Finally, we present the effects of molecular structure on the efficiency of PhOLEDs using red iridium complex dopant with different modifications on the ligand to tune its highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO energies.

  5. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  6. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  7. Highly efficient phosphorescent blue and white organic light-emitting devices with simplified architectures

    Chang, Chih-Hao; Ding, Yong-Shung; Hsieh, Po-Wei; Chang, Chien-Ping; Lin, Wei-Chieh; Chang, Hsin-Hua

    2011-01-01

    Blue phosphorescent organic light-emitting devices (PhOLEDs) with quantum efficiency close to the theoretical maximum were achieved by utilizing a double-layer architecture. Two wide-triplet-gap materials, 1,3-bis(9-carbazolyl)benzene and 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, were employed in the emitting and electron-transport layers respectively. The opposite carrier-transport characteristics of these two materials were leveraged to define the exciton formation zone and thus increase the probability of recombination. The efficiency at practical luminance (100 cd/m 2 ) was as high as 20.8%, 47.7 cd/A and 31.2 lm/W, respectively. Furthermore, based on the design concept of this simplified architecture, efficient warmish-white PhOLEDs were developed. Such two-component white organic light-emitting devices exhibited rather stable colors over a wide brightness range and yielded electroluminescence efficiencies of 15.3%, 33.3 cd/A, and 22.7 lm/W in the forward directions.

  8. Effects of carbon dioxide insufflation on regional cerebral oxygenation during laparoscopic surgery in children: a prospective study.

    Tuna, Ayca Tas; Akkoyun, Ibrahim; Darcin, Sevtap; Palabiyik, Onur

    2016-01-01

    Laparoscopic surgery has become a popular surgical tool when compared to traditional open surgery. There are limited data on pediatric patients regarding whether pneumoperitoneum affects cerebral oxygenation although end-tidal CO2 concentration remains normal. Therefore, this study was designed to evaluate the changes of cerebral oxygen saturation using near-infrared spectroscope during laparoscopic surgery in children. The study comprised forty children who were scheduled for laparoscopic (Group L, n=20) or open (Group O, n=20) appendectomy. Hemodynamic variables, right and left regional cerebral oxygen saturation (RrSO2 and LrSO2), fraction of inspired oxygen, end-tidal carbon dioxide pressure (PETCO2), peak inspiratory pressure (Ppeak), respiratory minute volume, inspiratory and end-tidal concentrations of sevoflurane and body temperature were recorded. All parameters were recorded after anesthesia induction and before start of surgery (T0, baseline), 15min after start of surgery (T1), 30min after start of surgery (T2), 45min after start of surgery (T3), 60min after start of surgery (T4) and end of the surgery (T5). There were progressive decreases in both RrSO2 and LrSO2 levels in both groups, which were not statistically significant at T1, T2, T3, T4. The RrSO2 levels of Group L at T5 were significantly lower than that of Group O. One patient in Group L had an rSO2 value <80% of the baseline value. Carbon dioxide insufflation during pneumoperitoneum in pediatric patients may not affect cerebral oxygenation under laparoscopic surgery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. [Effects of carbon dioxide insufflation on regional cerebral oxygenation during laparoscopic surgery in children: a prospective study].

    Tuna, Ayca Tas; Akkoyun, Ibrahim; Darcin, Sevtap; Palabiyik, Onur

    2016-01-01

    Laparoscopic surgery has become a popular surgical tool when compared to traditional open surgery. There are limited data on pediatric patients regarding whether pneumoperitoneum affects cerebral oxygenation although end-tidal CO2 concentration remains normal. Therefore, this study was designed to evaluate the changes of cerebral oxygen saturation using near-infrared spectroscope during laparoscopic surgery in children. The study comprised forty children who were scheduled for laparoscopic (Group L, n=20) or open (Group O, n=20) appendectomy. Hemodynamic variables, right and left regional cerebral oxygen saturation (RrSO2 and LrSO2), fraction of inspired oxygen, end-tidal carbon dioxide pressure (PETCO2), peak inspiratory pressure (Ppeak), respiratory minute volume, inspiratory and end-tidal concentrations of sevoflurane and body temperature were recorded. All parameters were recorded after anesthesia induction and before start of surgery (T0, baseline), 15min after start of surgery (T1), 30min after start of surgery (T2), 45min after start of surgery (T3), 60min after start of surgery (T4) and end of the surgery (T5). There were progressive decreases in both RrSO2 and LrSO2 levels in both groups, which were not statistically significant at T1, T2, T3, T4. The RrSO2 levels of Group L at T5 were significantly lower than that of Group O. One patient in Group L had an rSO2 value <80% of the baseline value. Carbon dioxide insufflation during pneumoperitoneum in pediatric patients may not affect cerebral oxygenation under laparoscopic surgery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Experimental and theoretical studies of nuclear generation of ozone and its photolysis into singlet delta oxygen

    Elsayed-Ali, H.E.

    1985-01-01

    A series of measurements of O 3 yield in nuclear induced O 2 and O 2 -SF 6 discharges created by bombardment with energetic particles from the 10 B(n,α) 7 Li reaction are reported. Continuous irradiation at dose ratios of 10 15 -10 17 eV.cm -3 .s -1 and pulsed irradiation (approx.10 ms FWHM) at a peak dose rate of approx.10 20 eV.cm -3 .s -1 were conducted. At the lower dose rates, SF 6 addition generally increased the ozone yield, which at the high dose rates, SF 6 addition decreased the observed ozone concentration. A numerical model was developed and applied to experimental conditions. The steady-state ozone concentration was found to be limited by the reaction O 3 - + O 3 → 2O 2 + O 2 - . A simplified analytical model of steady-state conditions was used to predict model sensitivity to various parameters. In addition to dose rate effects, pressure and temperature effect on ozone production were discussed. The present study was extended to noble gas (He, Ne, and Ar)-O 2 and noble gas - O 2 -SF 6 mixtures. Without SF 6 , steady-state ozone concentrations were found to be about an order of magnitude lower than that observed for oxygen at similar dose rates. Addition of SF 6 was found to significantly increase the steady-state ozone concentration (3-6 times) in noble gas-O 2 mixtures. The developed models were amended to study noble gas-O 2 discharges. A detailed computer model of ultraviolet irradiation of O 3 -O 2 -noble gas mixtures was presented. Dependence of O 2 (a 1 Δ/sub g/) yield on various parameters was investigated. Conditions needed to create O 2 (a 1 Δ/sub g/) concentrations sufficient for pumping an atomic iodine laser were identified. The model was tested by applying it to date on quantum yield of ozone decomposition for various mixtures and by observation of the absolute O 2 (a 1 Δ/sub g/) concentration generated under various conditions

  11. Impact of oxygen concentration on time to resolution of spontaneous pneumothorax in term infants: a population based cohort study

    2014-01-01

    Background Little evidence exists regarding the optimal concentration of oxygen to use in the treatment of term neonates with spontaneous pneumothorax (SP). The practice of using high oxygen concentrations to promote “nitrogen washout” still exists at many centers. The aim of this study was to identify the time to clinical resolution of SP in term neonates treated with high oxygen concentrations (HO: FiO2 ≥ 60%), moderate oxygen concentrations (MO: FiO2 pneumothorax admitted to all neonatal intensive care units in Calgary, Alberta, Canada, within 72 hours of birth between 2006 and 2010. Newborns with congenital and chromosomal anomalies, meconium aspiration, respiratory distress syndrome, and transient tachypnea of newborn, pneumonia, tension pneumothorax requiring thoracocentesis or chest tube drainage or mechanical ventilation before the diagnosis of pneumothorax were excluded. The primary outcome was time to clinical resolution (hours) of SP. A Cox proportional hazards model was developed to assess differences in time to resolution of SP between treatment groups. Results Neonates were classified into three groups based on the treatment received: HO (n = 27), MO (n = 35) and RA (n = 30). There was no significant difference in time to resolution of SP between the three groups, median (range 25th-75th percentile) for HO = 12 hr (8–27), MO = 12 hr (5–24) and RA = 11 hr (4–24) (p = 0.50). A significant difference in time to resolution of SP was also not observed after adjusting for inhaled oxygen concentration [MO (a HR = 1.13, 95% CI 0.54-2.37); RA (a HR = 1.19, 95% CI 0.69-2.05)], gender (a HR = 0.87, 95% CI 0.53-1.43) and ACoRN respiratory score (a HR = 0.7, 95% CI 0.41-1.34). Conclusions Supplemental oxygen use or nitrogen washout was not associated with faster resolution of SP. Infants treated with room air remained stable and did not require supplemental oxygen at any point of their admission. PMID

  12. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light-Emitting Diodes.

    Song, Wook; Lee, Jun Yeob; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2018-02-01

    A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light-emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole-type host and a triazine-type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light-emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light-emitting diodes.

  13. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

    Song, Wook; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2017-01-01

    Abstract A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light‐emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole‐type host and a triazine‐type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light‐emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light‐emitting diodes. PMID:29610726

  14. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal - Evidence for exciplex formation in the A 1Au and a 3Au states

    Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.

    1986-01-01

    Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.

  15. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d81

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-01-01

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new 3 B 1 /sub g/ → 1 A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced 3 A/sub u/- 3 B 1 /sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K

  16. Analytical study of ozone generation in a single discharge in oxygen

    Hernandez A, A.O.

    1995-01-01

    The present thesis work, in the case of the equations description the generation ozone process, an atomic oxygen it was described, in the first part, the analysis of perturbative method used in [1] to solve this kind of equations, so on the solutions in the stationary and temporal cases were rensed by means of a constant flux velocity. The second part present the solutions to the sat dy state equations for constant mean flux velocity (Poiseuille form) at low pressures. Finally, the resulting equations were compared with other authors reports. [1] C. Gutierrez-Tapia, E. Camps and O. Olea-Cardoso, Perturbative method for ozone synthesis from oxygen in a single discharge. IEEE Trans. on Plasma Sci. 22(5) 979-985, 1994. (Author)

  17. μ+ SR study of antiferromagnetism and superconductivity in oxygen deficient YBa2Cu3Ox

    Brewer, J.H.; Carolan, J.; Chaklader, A.C.D.; Hardy, W.N.; Hayden, M.; Kaplan, N.; Kempton, J.; Kiefl, R.F.; Kreitzman, S.R.; Kulpa, A.; Luke, G.M.; Riseman, T.M.; Roehmer, G.; Schleger, P.; Williams, D.L.; Ansaldo, E.J.; Kossler, W.J.; Watanabe, Y.; Yamazaki, T.

    1987-12-01

    Positive muon spin rotation and relaxation (μ + SR) measurements of the oxygen-deficient perovskite YBa 2 Cu 3 O x have revealed local antiferromagnetic (AFM) order for 6.0 ≤ ∼ x ≤ ∼ 6.4 with a Neel temperature T N that decreases rapidly with increasing oxygen content x. For carefully annealed samples with 6.35 ≤ ∼ x ≤ ∼ 6.5 the superconducting (SC) transition temperature T C increases smoothly with x from 25 K at x=6.348 to 60 K at x=6.507. Two such samples with x = 6.348 and x = 6.400 seem to 'switch' from SC to AFM at low temperatures. (Author) (10 refs., 3 figs.)

  18. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability of nanost...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  19. Study on low intensity aeration oxygenation model and optimization for shallow water

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  20. Time-resolved EPR study of singlet oxygen in the gas phase.

    Ruzzi, Marco; Sartori, Elena; Moscatelli, Alberto; Khudyakov, Igor V; Turro, Nicholas J

    2013-06-27

    X-band EPR spectra of singlet O2((1)Δg) and triplet O2((3)Σg(-)) were observed in the gas phase under low molecular-oxygen pressures PO2 = 0.175-0.625 Torr, T = 293-323 K. O2((1)Δg) was produced by quenching of photogenerated triplet sensitizers naphthalene C8H10, perdeuterated naphthalene, and perfluoronaphthalene in the gas phase. The EPR spectrum of O2((1)Δg) was also observed under microwave discharge. Integrated intensities and line widths of individual components of the EPR spectrum of O2((3)Σg(-)) were used as internal standards for estimating the concentration of O2 species and PO2 in the EPR cavity. Time-resolved (TR) EPR experiments of C8H10 were the main focus of this Article. Pulsed irradiation of C8H10 in the presence of O2((3)Σg(-)) allowed us to determine the kinetics of formation and decay for each of the four components of the O2((1)Δg) EPR signal, which lasted for only a few seconds. We found that the kinetics of EPR-component decay fit nicely to a biexponential kinetics law. The TR EPR 2D spectrum of the third component of the O2((1)Δg) EPR spectrum was examined in experiments using C8H10. This spectrum vividly presents the time evolution of an EPR component. The largest EPR signal and the longest lifetime of O2((1)Δg), τ = 0.4 s, were observed at medium pressure PO2 = 0.4 Torr, T = 293 K. The mechanism of O2((1)Δg) decay in the presence of photosensitizers is discussed. EPR spectra of O2((1)Δg) evidence that the spin-rotational states of O2((1)Δg) are populated according to Boltzmann distribution in the studied time range of 10-100 ms. We believe that this is the first report dealing with the dependence of O2((1)Δg) EPR line width on PO2 and T.

  1. Determination of DNA by solid substrate room temperature phosphorescence enhancing method based on the Morin.SiO{sub 2} luminescent nanoparticles-Pd system as a phosphorescence probe

    Liu Jiaming [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China)]. E-mail: zzsyliujiaming@163.com; Yang Tianlong [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Gao Fei [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Hu Lixiang [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); He Hangxia [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Liu Qinying [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Liu Zhenbo [Department of Orthopedics and Traumatology, Fujian College of Chinese Medicine, Fuzhou 350003 (China); Huang Xiaomei [Department of Food and Chemical Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China); Zhu Guohui [Department of Food and Chemical Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China)

    2006-03-02

    Sodium carbonate (Na{sub 2}SiO{sub 3}) as the precursor, was mixed with Morin organic dye to synthesize silicon dioxide luminescent nanoparticles containing Morin (Morin.SiO{sub 2}) by sol-gel method. The particle sizes of SiO{sub 2}.nH{sub 2}O and Morin.SiO{sub 2} were both 50 nm, measured with TEM (transmission electron microscope). Morin.SiO{sub 2} modified by HS-CH{sub 2}COOH could be dissolved by water. In the HMTA (hexamethylenetetramine)-HCl buffer solution, Pd{sup 2+} could coordinate with Morin in Morin.SiO{sub 2} to form complex Pd{sup 2+}-Morin.SiO{sub 2}, which could emit phosphorescence on polyamide membrane. And DNA (deoxyribonucleic acid) could cause a sharp enhancement of the room temperature phosphorescence (RTP) intensity of complex Pd{sup 2+}-Morin.SiO{sub 2}. Thus a new method of solid substrate room temperature phosphorescence (SS-RTP) enhancing for the determination of DNA was established based on the Morin.SiO{sub 2} luminescent nanoparticles-Pd system as a phosphorescence probe. The {delta}Ip is directly proportional to the content of DNA in the range of 4.00-1000.0 fg spot{sup -1} (corresponding concentration: 0.010-2.50 ng ml{sup -1}). The regression equation of working curve was {delta}Ip = 21.13 + 0.2076m{sub DNA} (fg spot{sup -1}) (r = 0.9990) and the detection limit was 0.61 fg spot{sup -1} (corresponding concentration: 1.5 pg ml{sup -1}). This method had a wide linear range, high sensitivity, convenience, rapidity and only a little sample was needed. Samples containing 0.10 and 25.0 ng ml{sup -1} DNA were measured repeatedly for 11 times and RSDs were 3.2 and 4.1% (n = 11), respectively, which indicated that the method had a good repeatability. Disturbance of common ions, such as Mg{sup 2+}, K{sup +}, and Ca{sup 2+}, was small, and there was no disturbance in the presence of protein and RNA. This method has been applied to the determination of DNA in nectar successfully.

  2. Fluorescent proteins as singlet oxygen photosensitizers: mechanistic studies in photodynamic inactivation of bacteria

    Ruiz-González, Rubén.; White, John H.; Cortajarena, Aitziber L.; Agut, Montserrat; Nonell, Santi; Flors, Cristina

    2013-02-01

    Antimicrobial photodynamic therapy (aPDT) combines a photosensitizer, light and oxygen to produce reactive oxygen species (ROS), mainly singlet oxygen (1O2), to photo-oxidize important biomolecules and induce cell death. aPDT is a promising alternative to standard antimicrobial strategies, but its mechanisms of action are not well understood. One of the reasons for that is the lack of control of the photosensitizing drugs location. Here we report the use of geneticallyencoded fluorescent proteins that are also 1O2 photosensitizers to address the latter issue. First, we have chosen the red fluorescent protein TagRFP as a photosensitizer, which unlike other fluorescent proteins such as KillerRed, is able to produce 1O2 but not other ROS. TagRFP photosensitizes 1O2 with a small, but not negligible, quantum yield. In addition, we have used miniSOG, a more efficient 1O2 photosensitizing fluorescent flavoprotein that has been recently engineered from phototropin 2. We have genetically incorporated these two photosensitizers into the cytosol of E. coli and demonstrated that intracellular 1O2 is sufficient to kill bacteria. Additional assays have provided further insight into the mechanism of cell death. Photodamage seems to occur primarily in the inner membrane, and extends to the outer membrane if the photosensitizer's efficiency is high enough. These observations are markedly different to those reported for external photosensitizers, suggesting that the site where 1O2 is primarily generated proves crucial for inflicting different types of cell damage.

  3. Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study

    Yuehua Dai

    2016-08-01

    Full Text Available The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.

  4. Contribution to the study of the pseudobinary Zr1Nb-Oxygen phase diagram by local oxygen measurements of Zr1Nb fuel cladding after high temperature oxidation

    Negyesi, M.; Burda, J.; Klouček, V.; Lorinčík, Jan; Sopoušek, J.; Kabátová, J.; Novotný, L.; Linhart, S.; Chmela, T.; Siegl, J.; Vrtílková, V.

    2012-01-01

    Roč. 420, 1-3 (2012), s. 314-319 ISSN 0022-3115 Institutional research plan: CEZ:AV0Z20670512 Keywords : Zr1Nb * oxygen * fuel cladding Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.211, year: 2012

  5. Thermodynamic study of the MWG system/components and measurement of the oxygen partial pressure in the heat source capsule

    David, D.J.

    1980-01-01

    A thermodynamic study of the Milliwatt Generator heat source capsule was performed to determine the effects of the oxide fuel on container materials at elevated temperatures in order to evaluate the factors affecting embrittlement of T-111 alloy. The study indicates that relatively slow oxidation of the T-111 of the capsule occurs during pretreatment. Yttrium added to the 238 PuO 2 fuel charge is functioning in its designed role as an oxygen getter and is stabilizing at an O/Pu ratio of 1.75. The free energy of formation of hafnium oxide has been measured and found to be -70632 cal/mole; this suggests that the ability of hafnium to strongly function as an oxygen getter may be largely determined by the kinetics, and the free energy may play a lesser role

  6. Dynamics of oxygen ordering in YBa2CU3O6+x studied by neutron and high-energy synchrotron x-ray diffiaction.

    Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.

    1997-08-01

    The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.

  7. Ferromagnetism and half metallicity induced by oxygen vacancies in the double perovskite BaSrNiWO{sub 6}: DFT study

    Aharbil, Y. [Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M' Sik, Casablanca (Morocco); Labrim, H. [Unité Science de la Matière/DERS/Centre National de l’Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat (Morocco); Benmokhtar, S.; Haddouch, M. Ait [Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M' Sik, Casablanca (Morocco); Bahmad, L., E-mail: bahmad@fsr.ac.ma [Mohammed V University in Rabat, Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E. URAC-12, B.P. 1014, Rabat (Morocco); Belhaj, A. [LIRST, Département de Physique, Faculté Poly-disciplinaire, Université Sultan Moulay Slimane, Béni Mellal (Morocco); Ez-Zahraouy, H.; Benyoussef, A. [Mohammed V University in Rabat, Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E. URAC-12, B.P. 1014, Rabat (Morocco)

    2016-11-01

    Using the spin polarized density functional theory (DFT) and exploring the Plane-Wave Self-Consistent Field (PWscf) code implemented in Quantum-ESPRESSO package, we investigate the effect of the Oxygen vacancies (V{sub O}) and the Oxygen interstitial (O{sub i}) on the double perovskite BaSrNiWO{sub 6}. This deals with the magnetic ordering and the electronic structure in such a pure sample exhibiting the insulating anti-ferromagnetic (AFM) state. This study shows that the presence of oxygen deficient defects converts the insulating to half metal with ferromagnetic or anti-ferromagnetic states. The magnetic ordering in BaSrNiWO{sub 6−δ} depends on the position of the Oxygen vacancy in the unit cell. However, it has been shown that the Oxygen interstitial preserves the anti-ferromagnetic propriety. We have computed the formation energies of different positions of the Oxygen vacancy (V{sub O}) and the Oxygen interstitial (O{sub i}) in the BaSrNiWO{sub 6} compound. We showed that the formation of V{sub O} is easier and vice versa for the O{sub i} formation. The obtained results reveal(V{sub O}) and the Oxygen interstitial (O{sub i}) that the anti-ferromagnetic can be converted to ferromagnetic in the double perovskite BaSrNiWO{sub 6} induced by Oxygen vacancies V{sub O}. - Highlights: • We have studied the ferromagnetism and Half Metallicity in Double Perovskite BaSrNiWO{sub 6}. • We have applied the Ab-inito calculations using the DFT approach. • We showed the effects induced by Oxygen Vacancies and Oxygen interstitial. • We found that the magnetic ordering in BaSrNiWO{sub 6−δ} depends on the position of the Oxygen vacancy in the unit cell.

  8. Oxygen titration after resuscitation from out-of-hospital cardiac arrest: a multi-centre, randomised controlled pilot study (the EXACT pilot trial).

    Bray, Janet E; Hein, Cindy; Smith, Karen; Stephenson, Michael; Grantham, Hugh; Finn, Judith; Stub, Dion; Cameron, Peter

    2018-04-20

    Recent studies suggest the administration of 100% oxygen to hyperoxic levels following return-of-spontaneous-circulation (ROSC) post-cardiac arrest may be harmful. However, the feasibility and safety of oxygen titration in the prehospital setting is unknown. We conducted a multi-centre, phase-2 study testing whether prehospital titration of oxygen results in an equivalent number of patients arriving at hospital with oxygen saturations SpO2 ≥ 94%. We enrolled unconscious adults with: sustained ROSC; initial shockable rhythm; an advanced airway; and an SpO2 ≥ 95%. Initially (Sept 2015-March 2016) patients were randomised 1:1 to either 2 litres/minute (L/min) oxygen (titrated) or >10 L/min oxygen (control) via a bag-valve reservoir. However, one site experienced a high number of desaturations (SpO2 titrated arm and this arm was changed (April 2016) to an initial reduction of oxygen to 4 L/min then, if tolerated, to 2 L/min, and the desaturation limit was decreased to titrated (n = 37: 2L/min = 20 and 2-4 L/min = 17) oxygen or control (n = 24). Patients allocated to titrated oxygen were more likely to desaturate compared to controls ((SpO2 titrated: 90% vs. control: 100%) and all patients had a SpO2 ≥ 90%. One patient (control) re-arrested. Survival to hospital discharge was similar. Oxygen titration post-ROSC is feasible in the prehospital environment, but incremental titration commencing at 4L/min oxygen flow may be needed to maintain an oxygen saturation >90% (NCT02499042). Copyright © 2018. Published by Elsevier B.V.

  9. Depressed cerebral oxygen metabolism in patients with chronic renal failure. A positron emission tomography study

    Hirakata, Hideki; Kanai, Hidetoshi; Nakane, Hiroshi; Fujii, Ken-ichiro; Hirakata, Eriko; Ibayashi, Setsuro; Kuwabara, Yasuo; Deenitchna, S.S.; Fujishima, Masatoshi

    2001-01-01

    In order to elucidate brain oxygen metabolism in uremic patients, the regional cerebral blood flow (rCBF), oxygen extraction (rOEF) and oxygen metabolism (rCMRO 2 ) were measured by positron emission tomography (PET) in both 10 hemodialysis patients (HD: male [m]/female [f]=2/8, age of 49±3 [SEM] years old, HD duration of 113±26 months) and 13 pre-dialysis renal failure patients (CRF: m/f=10/3, age of 61±2 years old, serum creatinine (SCr) of 6.3±1.0 mg/dl). Data were compared with 20 non-uremic subjects (Control: m/f=7/13, age of 62±2 years old, SCr of 0.9±0.1 mg/dl). They had no neurological abnormalities, congestive heart failure, history of cerebrovascular accident, diabetes mellitus, or symptomatic brain lesion on magnetic resonance imaging. The age of HD was significantly younger than the other groups (p 2 in both HD (1.82±0.10 ml/min/100 g) and CRF (1.95±0.09) showed significantly lower values as compared to Control (2.23±0.05) (p<0.01, respectively). Hemispheric rCBF in HD (35.6±2.1 ml/100 g/min) and in CRF (36.1±2.1) were not different from that in Control (31.8±1.4). Hemispheric rOEF in CRF (45.7±1.6%) was significantly higher than that in Control (40.5±1.2%) (p<0.02), but that in HD (43.7±1.9%) did not increase significantly. These tendencies were similar in all regions of interest, especially in the cerebral cortices, but not in the cerebellum. All PET parameters in the frontal cortices tended to show the lowest value in renal failure patients. For all HD patients, rCBF in both the frontal cortex and the white matter correlated inversely with HD duration (frontal cortex: r=-0.649, p<0.05; white matter: r=-0.706, p<0.02). Based on these data, it is concluded that brain oxygen metabolism is depressed in renal failure patients on or before hemodialysis treatment. The cause for the depressed brain oxygen metabolism is considered to be due either to the dysregulation of cerebral circulation or to lower brain cell activity. (author)

  10. Study on the mass transfer of oxygen in an electrolytic reduction process of ACP

    Park, Byung Heung; Park, Sung Bin; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a molten-salt-based back-end fuel cycle technology developed at KAERI. The target fuel type for the process is the oxide fuel unloaded from PWRs which are the main prototype reactor commercially operating in Korea. The volume and the radiotoxicity of the spent fuel decrease to quarters of the initial volume and radiotoxicity after being reduced to metal forms and removing some elements into a molten salt. The reduction of the two properties improves the convenience in managing the spent fuels and makes it possible for disposal sites to be made the best use of. Metallization of the spent oxide fuels is accomplished in an electrolytic reduction cell where a molten LiCl is adopted as an electric medium and Li 2 O is added to increase the activity of the oxygen ion in the system. A porous magnesia filter, a SUS solid conductor, and the metal oxides to be reduced constitute a cathode and anodes are made of platinum. The only cation in the liquid phase is lithium at the first stage and the ion diffuses through the pores of the magnesia filter and then receives electrons to become a metal. The reduced lithium metal snatches oxygen from the metal oxides in the filter and transforms into lithium oxide which diffuses back to the molten salt phase leaving the reduced metal at the inside of the filter. The lithium oxide is dissociated to lithium and oxygen ions once it dissolves in the molten salt if the concentration is within the solubility limit. Hence the actual diffusing element is oxygen in an ionic state rather than the lithium oxide since there is no concentration gradient for the lithium ion to move on - the lithium ion is the main cation in the system though some alkali and alkaline-earth metals dissolve in the molten salt phase to be cations. The analysis of the mass transfer of oxygen in the electrolytic reduction process is, thus, of importance for the metallization process to be completely interpreted

  11. A quantum-chemical study of oxygen-vacancy defects in PbTiO{sub 3} crystals

    Stashans, Arvids [Laboratorio de Fisica, Escuela de Electronica y Telecomunicaciones, Universidad Tecnica Particular de Loja, Apartado 11-01-608, Loja (Ecuador)]. E-mail: arvids@utpl.edu.ec; Serrano, Sheyla [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador); Escuela de Ingenierias, Universidad Politecnica Salesiana, Campus Sur, Rumichaca s/n y Moran Valverde, Apartado 17-12-536, Quito (Ecuador); Medina, Paul [Centro de Investigacion en Fisica de Materia Condensada, Corporacion de Fisica Fundamental y Aplicada, Apartado 17-12-637, Quito (Ecuador)

    2006-05-31

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO{sub 3} crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results.

  12. A quantum-chemical study of oxygen-vacancy defects in PbTiO3 crystals

    Stashans, Arvids; Serrano, Sheyla; Medina, Paul

    2006-01-01

    Investigation of an oxygen vacancy and F center in the cubic and tetragonal lattices of PbTiO 3 crystals is done by means of quantum-chemical simulations. Displacements of defect-surrounding atoms, electronic and optical properties, lattice relaxation energies and some new effects due to the defects presence are reported and analyzed. A comparison with similar studies is made and conclusions are drawn on the basis of the obtained results

  13. Fluorescence and room temperature phosphorescence of 6-bromo-2-naphthol in {beta}-cyclodextrin solution and its selective molecular recognition for cyclohexane

    Zhai Yanqiang; Zhang Shuzhen; Xie Jianwei; Liu Changsong

    2003-10-08

    The room temperature phosphorescence (RTP) and fluorescence behavior of 6-bromo-2-naphthol (BN) in water and {beta}-cyclodextrin ({beta}-CD) aerated aqueous solution was investigated. The study of fluorescence behavior at different pH values indicated that three kinds of species of BN (protonated, uncharged and anionic species) formed 1:1 inclusion complexes with {beta}-CD, and RTP and fluorescence emission depended on the pH of the solution. The inclusion complex constants were 430{+-}25 l mol{sup -1} (pH 1.80), 840{+-}25 l mol{sup -1} (pH 5.80), 1850{+-}75 l mol{sup -1} (pH 11.50), respectively. Experimental results elucidated that RTP of the BN/{beta}-CD/cyclohexane solution came from the protonated and uncharged species of BN, but not from the anionic species, though the inclusion constant of the anionic species of BN with {beta}-CD was larger than that of the other two species of BN Selective molecular recognition of BN/{beta}-CD as an RTP sensor for 28 small organic molecules was studied, it was shown that BN/{beta}-CD could be develop as a new RTP sensor with high selectivity molecular recognition ability for cyclohexane.

  14. Fluorescence and room temperature phosphorescence of 6-bromo-2-naphthol in β-cyclodextrin solution and its selective molecular recognition for cyclohexane

    Zhai Yanqiang; Zhang Shuzhen; Xie Jianwei; Liu Changsong

    2003-01-01

    The room temperature phosphorescence (RTP) and fluorescence behavior of 6-bromo-2-naphthol (BN) in water and β-cyclodextrin (β-CD) aerated aqueous solution was investigated. The study of fluorescence behavior at different pH values indicated that three kinds of species of BN (protonated, uncharged and anionic species) formed 1:1 inclusion complexes with β-CD, and RTP and fluorescence emission depended on the pH of the solution. The inclusion complex constants were 430±25 l mol -1 (pH 1.80), 840±25 l mol -1 (pH 5.80), 1850±75 l mol -1 (pH 11.50), respectively. Experimental results elucidated that RTP of the BN/β-CD/cyclohexane solution came from the protonated and uncharged species of BN, but not from the anionic species, though the inclusion constant of the anionic species of BN with β-CD was larger than that of the other two species of BN Selective molecular recognition of BN/β-CD as an RTP sensor for 28 small organic molecules was studied, it was shown that BN/β-CD could be develop as a new RTP sensor with high selectivity molecular recognition ability for cyclohexane

  15. Description of temperature dependence of phosphorescence attenuation kinetics of rose Bengal dye at presence of anthracene on the silica heterogeneous surface by the exponential regression method

    Karstina, S.G.; Markova, M.P.

    2002-01-01

    In the work rose Bengal dye (triplet energy donor) and aromatic hydrocarbon anthracene (triplet energy acceptor) were selected in the capacity of examined substances. The substances were sorption on the SiO 2 porous surface. Measurement have been conducted on the laser device allowing to register of examined composition phosphorescence with time resolution 300 ns at wave length 710 nm. In the result of attenuation kinetic analysis for rose Bengal phosphorescence the empiric formula allowing describing processes of luminescence damping on the heterogeneous surfaces with fractal structure was derived

  16. High-efficiency white organic light-emitting devices with a non-doped yellow phosphorescent emissive layer

    Zhao Juan; Yu Junsheng, E-mail: jsyu@uestc.edu.cn; Hu Xiao; Hou Menghan; Jiang Yadong

    2012-03-30

    Highly efficient phosphorescent white organic light-emitting devices (PHWOLEDs) with a simple structure of ITO/TAPC (40 nm)/mCP:FIrpic (20 nm, x wt.%)/bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2} Prime ] iridium (acetylacetonate) (tbt){sub 2}Ir(acac) (y nm)/Bphen (30 nm)/Mg:Ag (200 nm) have been developed, by inserting a thin layer of non-doped yellow phosphorescent (tbt){sub 2}Ir(acac) between doped blue emitting layer (EML) and electron transporting layer. By changing the doping concentration of the blue EML and the thickness of the non-doped yellow EML, a PHWOLED comprised of higher blue doping concentration and thinner yellow EML achieves a high current efficiency of 31.7 cd/A and Commission Internationale de l'Eclairage coordinates of (0.33, 0.41) at a luminance of 3000 cd/m{sup 2} could be observed. - Highlights: Black-Right-Pointing-Pointer We introduce a simplified architecture for phosphorescent white organic light-emitting device. Black-Right-Pointing-Pointer The key concept of device fabrication is combination of doped blue emissive layer (EML) with non-doped ultra-thin yellow EML. Black-Right-Pointing-Pointer Doping concentration of the blue EML and thickness of the yellow EML are sequentially adjusted. Black-Right-Pointing-Pointer High device performance is achieved due to improved charge carrier balance as well as two parallel emission mechanisms in the EMLs.

  17. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    Wu, Xiaoxiao; Li, Fushan, E-mail: fushanli@hotmail.com; Wu, Wei; Guo, Tailiang, E-mail: gtl_fzu@hotmail.com

    2014-03-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm.

  18. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    Wu, Xiaoxiao; Li, Fushan; Wu, Wei; Guo, Tailiang

    2014-01-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy) 3 ) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm

  19. Calcium manganese oxides as oxygen evolution catalysts: O2 formation pathways indicated by 18O-labelling studies.

    Shevela, Dmitriy; Koroidov, Sergey; Najafpour, M Mahdi; Messinger, Johannes; Kurz, Philipp

    2011-05-02

    Oxygen evolution catalysed by calcium manganese and manganese-only oxides was studied in (18)O-enriched water. Using membrane-inlet mass spectrometry, we monitored the formation of the different O(2) isotopologues (16)O(2), (16)O(18)O and (18)O(2) in such reactions simultaneously with good time resolution. From the analysis of the data, we conclude that entirely different pathways of dioxygen formation catalysis exist for reactions involving hydrogen peroxide (H(2)O(2)), hydrogen persulfate (HSO(5)(-)) or single-electron oxidants such as Ce(IV) and [Ru(III) (bipy)(3)](3+) . Like the studied oxide catalysts, the active sites of manganese catalase and the oxygen-evolving complex (OEC) of photosystem II (PSII) consist of μ-oxido manganese or μ-oxido calcium manganese sites. The studied processes show very similar (18)O-labelling behaviour to the natural enzymes and are therefore interesting model systems for in vivo oxygen formation by manganese metalloenzymes such as PSII. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.