WorldWideScience

Sample records for oxygen metallicity determinations

  1. The determination of oxygen in metals using an impulse heating furnace with a simple transfer lock

    Dale, L.S.; de Jong, S.; Kelly, J.W.; Whittem, R.N.

    1975-05-01

    An impulse heating furnace has been constructed for the determination of low levels of oxygen down to 100 μg g -1 in metals. The furnace is equipped with a sample transfer lock which permits samples to be loaded into outgassed crucibles in a helium atmosphere. As a result, blank levels in the range 2 to 3 μg oxygen are obtained; the modification also results in shorter sample processing time. The apparatus is described, and its suitability for oxygen determinations at these levels has been verified by comparison of results obtained on reference and analysed materials. (author)

  2. A new immersion sensor for rapid electrochemical determination of dissolved oxygen in liquid metals

    Janke, D.; Schwerdtfeger, K.

    1978-01-01

    Development of a new solid electrolyte 'needle sensor' with ZrO 2 or ThO 2 electrolyte and metal-metal oxide reference mixture for the rapid determination of oxygen in steel melts. Details of the manufacture of the layer-structured, miniaturized probe. Test results of simultaneous measurements performed with the newly developed ZrO 2 needle sensor and the hitherto usual tubular sensor in iron melts at oxygen activities between 0.00005 and 0.030. (orig.) [de

  3. OXYGEN METALLICITY DETERMINATIONS FROM OPTICAL EMISSION LINES IN EARLY-TYPE GALAXIES

    Athey, Alex E.; Bregman, Joel N.

    2009-01-01

    We measured the oxygen abundances of the warm (T ∼ 10 4 K) phase of gas in seven early-type galaxies through long-slit observations. A template spectra was constructed from galaxies void of warm gas and subtracted from the emission-line galaxies, allowing for a clean measurement of the nebular lines. The ratios of the emission lines are consistent with photoionization, which likely originates from the ultraviolet flux of postasymototic giant branch stars. We employ H II region photoionization models to determine a mean oxygen metallicity of 1.01 ± 0.50 solar for the warm interstellar medium (ISM) in this sample. This warm ISM 0.5-1.5 solar metallicity is consistent with modern determinations of the metallicity in the hot (T ∼ 10 6 -10 7 K) ISM and the upper range of this warm ISM metallicity is consistent with stellar population metallicity determinations. A solar metallicity of the warm ISM favors an internal origin for the warm ISM such as asymptotic giant branch mass loss within the galaxy.

  4. Determination of the oxygen-metal-ratio of uranium-americium mixed oxides

    Bartscher, W.

    1982-01-01

    During the dissolution of uranium-americium mixed oxides in phosphoric acid under nitrogen tetravalent uranium is oxidized by tetravalent americium. The obtained hexavalent uranium is determined by constant potential coulometry. The coulombs measured are equivalent to the oxygen in excess of the minimum composition of UO 2 x AmO 1 . 5 . The total uranium content of the sample is determined in a subsequent coulometric titration. The oxygen-metal ratio of the sample can be calculated for a given uranium-americium ratio. An excess of uranium dioxide is necessary in order to suppress the oxidation of water by tetravalent americium. The standard deviation of the method is 0.0017 O/M units. (orig.) [de

  5. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    Mozetic, Miran; Cvelbar, Uros

    2009-08-01

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 × 1021 m-3. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O2 molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  6. Measuring probe and method for determining the oxygen content in gases, vapors, and liquids, especially in liquid metals

    Sundermann, H.; Andrae, U.

    1978-01-01

    The invention is concerned with the improvement of the measuring probe described in the main patent no. 1798002 with which the oxygen content in liquid metals, e.g. Na, is to be determined. In order to avoid the glass stopper shutting off the reference space having to be ground out it is proposed to connect the solid electrolyte firmly and hermetically with a metallic mounting support (e.g. Fe-Co-Ni alloy), having got the same thermal coefficient of expansion as the solid electrolyte (e.g. zirconium dioxide stabilized with ythium oxide or thorium dioxide). Further details of the design are very explicitly described. (HP) [de

  7. The analysis of irradiated nuclear fuel and cladding materials, determination of carbon, hydrogen and oxygen/metal ratio

    Jones, I.G.

    1976-02-01

    Equipment has been developed for the determination of carbon, hydrogen and oxygen/metal ratio on irradiated fuels, of carbon in stainless steel cladding materials and in graphite rich deposits, and of hydrogen in zircaloy. Carbon is determined by combustion to carbon dioxide which is collected and measured manometrically, hydrogen by vacuum extraction followed by diffusion through a palladium thimble, and oxygen/metal ratio by CO/CO 2 equilibration. A single set of equipment was devised in order to minimise the time and work involved in changing to a different set of equipment in a separate box, for each type of analysis. For each kind of analysis, alterations to the apparatus are involved but these can be carried out with the basic set in position in a shielded cell, although to do so it is necessary to obtain access via the gloves on the fibre-glass inner glove box. This requires a removal of samples emitting radiation, by transfer to an adjoining cell. A single vacuum system is employed. This is connected through a plug in the lead wall of the shielded cell, and couplings in the glove box wall to the appropriate furnaces. Carbon may be determined, in stainless steel containing 400 to 800 ppm C, with a coefficient of variation of +- 2%. On deposits containing carbon, the coefficient of variation is better than +- 1% for 2 to 30 mg of carbon. Hydrogen, at levels between 30 and 200 ppm in titanium can be determined with a coefficient of variation of better than +- 5%. Titanium has been used in lieu of zircaloy since standardised zircaloy specimens are not available. The precision for oxygen/metal ratio is estimated to be +- 0.001 Atoms oxygen. Sample weights of 200 mg are adequate for most analyses. (author)

  8. Elimination of matrix effects in the determination of oxygen in some non-ferrous metals by activation with 14 MeV neutrons

    Szopa, Z.; Sterlinski, S.; Tetteh, G.

    1981-01-01

    It is shown that the lower limit of detection and specificity of oxygen determination in strongly activated non-ferrous metals can be improved by means of the optimization of Pb-absorber thickness, cooling time and cyclic activation analysis. Some mathematical predictions are verified by oxygen determination in copper and yttrium. (author)

  9. On metal-oxygen coordination. A statistical method to determine coordination number. Pt. 1

    Chiari, G.

    1990-01-01

    The environment around the Ca cation for compounds involving bonded oxygen has been studied for 254 inorganic structures containing a total of 368 polyhedra. Selection was made on the bases of the accuracy of the structural data. The coordination number (CN) was assigned using the criteria of maximum gap in the Ca-O distances and balanced bond-valence sums for Ca, but 32 cases were still difficult to assign unambiguously. A series of variables related to the Ca-O distances were calculated and averaged for each value of CN. The Gaussian curves representing the distribution of these variables for each CN overlap strongly. By way of contrast, the volume of the coordination polyhedra (Vol) showed well separated curves. Statistical analysis was applied to the set of structures with known CN, with seven variables and then with Vol alone, which seems to discriminate between the various CN groups equally well. A strong linear dependence was found for CN versus Vol. A method is proposed to assign CN in uncertain cases based on the equation: CN=0.197 (2)Vol+2.83 (5). Application of this equation to the unassigned cases compares favourably with discriminant analysis using the larger set of variables. (orig.)

  10. High temperature microcalorimetry. Study of metal-oxygen systems

    Tetot, R.; Picard, C.; Boureau, G.; Gerdanian, P.

    1981-01-01

    Determination of partial molar enthalpy in metal-oxygen systems at 1050 0 C. Three representative systems are studied: the solution of oxygen in titanium, the titanium-oxygen system and the uranium-oxygen system from UOsub(2.00) to UOsub(2.60) [fr

  11. Determination of non-metallic elements in actinide complexes by oxygen flask combustion (OFC): chlorine and fluorine

    Ruikar, P.B.; Nagar, M.S.; Subramanian, M.S.

    1989-01-01

    The oxygen flask combustion followed by ion selective electrode measurement has been found to be the most suitable from the point of view of elegance and simplicity for the determination of chlorine and fluorine in actinide complexes. The method has been found to be particularly suitable for glove box adaptation. This report describes the determination of chlorine and fluorine in several uranium complexes, some plutonium complexes and organic analytical standards by this method. The precision and accuracy of the measurements in the milligram level has been found to be quite satisfactory. (author). 16 refs., 11 tabs

  12. Determination of oxygen to metal ratio for varying UO2 content in sintered (U,Th)O2 pellet by oxidation-reduction method using thermo-gravimetric analyser

    Mahanty, B.N.; Khan, F.A.; Karande, A.P.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2009-01-01

    Experiments were carried out to determine oxygen to metal ratio in 4%, 6%, 10%, 20%, 50% and 80% UO 2 in sintered (U, Th) O 2 pellets by oxidation-reduction method using thermo gravimetric analyser. (author)

  13. Controlled Oxygen Chemisorption on an Alumina Supported Rhodium Catalyst. The Formation of a New Metal-Metal Oxide Interface Determined with EXAFS.

    Koningsberger, D.C.; Martens, J.H.A.; Prins, R.

    1989-01-01

    An alumina-supported rhodium catalyst has been studied with EXAFS. After reduction and evacuation, oxygen was admitted at 100 and 300 K. EXAFS spectra of the catalyst after oxygen admission at 100 K indicated the beginning of oxidation. At 300 K only a small part of the rhodium particles remained

  14. Formation and properties of metal-oxygen atomic chains

    Thijssen, W.H.A.; Strange, Mikkel; de Brugh, J.M.J.A.

    2008-01-01

    of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations......Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation...

  15. XPS analysis of UxCe1-xO2±δ and determination of oxygen to metal ratio

    Bera, Santanu; Mittal, V.K.; Venkata Krishnan, R.; Saravanan, T.; Velmurugan, S.; Nagarajan, K.; Narasimhan, S.V.

    2009-01-01

    The chemical states of U and Ce in the solid solutions of UO 2 and CeO 2 are studied using the X-ray photoelectron spectroscopy. A detailed analyses on U 4f and Ce 3d photoelectron peaks revealed the presence of Ce 3+ and U 5+ /U 6+ states in the mixed oxides. The oxygen to metal ratios in different compositions of mixed oxides were estimated from the quantity of different chemical states of U and Ce present in mixed oxides.

  16. Cathode architectures for alkali metal / oxygen batteries

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  17. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  18. Oxygen permeation through oxygen ion oxide-noble metal dual phase composites

    Chen, C.S.; Chen, C.S.; Kruidhof, H.; Bouwmeester, Henricus J.M.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1996-01-01

    Oxygen permeation behaviour of three composites, yttria-stabilized zirconia-palladium, erbia-stabilized bismuth oxidenoble metal (silver, gold) was studied. Oxygen permeation measurements were performed under controlled oxygen pressure gradients at elevated temperatures. Air was supplied at one side

  19. A Reaction Involving Oxygen and Metal Sulfides.

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  20. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  1. Production and use of metals and oxygen for lunar propulsion

    Hepp, Aloysius F.; Linne, Diane L.; Groth, Mary F.; Landis, Geoffrey A.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  2. Oxygen Switching of the Epitaxial Graphene-Metal Interaction

    Larciprete, Rosanna; Ulstrup, Søren; Lacovig, Paolo

    2012-01-01

    as on clean Ir(111), giving only a slightly higher oxygen coverage. Upon lifting, the C 1s signal shows a downshift in binding energy, due to the charge transfer to graphene from the oxygen-covered metal surface. Moreover, the characteristic spectral signatures of the graphenesubstrate interaction...... in the valence band are removed, and the spectrum of strongly hole-doped, quasi free-standing graphene with a single Dirac cone around the K point is observed. The oxygen can be deintercalated by annealing, and this process takes place at around T = 600 K, in a rather abrupt way. A small amount of carbon atoms...... demonstrate that oxygen intercalation is an efficient method for fully decoupling an extended layer of graphene from a metal substrate, such as Ir(111). They pave the way for the fundamental research on graphene, where extended, ordered layers of free-standing graphene are important and, due to the stability...

  3. Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    In this work, we extend the activity volcano for oxygen reduction from the face-centered cubic (fcc) metal (111) facet to the (100) facet. Using density functional theory calculations, we show that the recent findings of constant scaling between OOH* and OH* holds on the fcc metal (100) facet......, as well. Using this fact, we show the existence of a universal activity volcano to describe oxygen reduction electrocatalysis with a minimum overpotential, ηmin = 0.37 ± 0.1 V. Specifically, we find that the (100) facet of Pt is found to bind oxygen intermediates too strongly and is not active for oxygen...... reduction reaction (ORR). In contrast, Au(100) is predicted to be more active than Au(111) and comparable in activity to Pt alloys. Using this activity volcano, we further predict that Au alloys that bind OH more strongly could display improved ORR activity on the (100) facet. We carry out a computational...

  4. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  5. Development of oxygen sensors for use in liquid metal

    Van Nieuwenhove, Rudi; Ejenstam, Jesper; Szakalos, Peter

    2015-01-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  6. Development of oxygen sensors for use in liquid metal

    Van Nieuwenhove, Rudi [Institutt for Energiteknikk, Halden, (Norway); Ejenstam, Jesper; Szakalos, Peter [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Stockholm, (Sweden)

    2015-07-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  7. Determination of oxygen in liquid sodium

    Torre, M. de la; Lapena, J.; Galindo, F.; Couchoud, M.; Celis, B. de; Lopez-Araquistain, J.L.

    1976-01-01

    The behaviour is analysed of a device for 'in-line' sampling and vacuum distillation. With this procedure 95 results were obtained for the solubility of oxygen in liquid sodium at temperatures between 125 0 and 300 0 C. The correlation between the concentration of oxygen in a saturation state and the corresponding temperature is represented by: 1g C = 6,17 - 2398/T, where C expressed ppm of oxygen by weight and T is the saturation temperature in 0 K. Reference is also made to the first results obtained with the electrochemical oxygen meter and the system for taking and recording data. (author)

  8. Determination of Biological Oxygen Demand Rate Constant and ...

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  9. Oxidation of vanadium metal in oxygen plasma and their characterizations

    Sharma, Rabindar Kumar; Singh, Megha; Kumar, Prabhat; Reddy, G. B.

    2015-09-01

    In this report, the role of oxygen plasma on oxidation of vanadium (V) metal and the volatilization of its oxides has been studied as a function of source (V metal strip) temperature (Tss) and oxygen partial pressure (PO2). The presence of O2-plasma not only enhances the oxidation rate but also ficilitates in transport of oxide molecules from metal to substrate, as confirmed by the simultanous deposition of oxide film onto substrate. Both the oxidized metal strips and oxide films deposited on substrates are characterized separately. The structural and vibrational results evidence the presence of two different oxide phases (i.e. orthorhombic V2O5 and monocilinic V O2) in oxide layers formed on V metal strips, whereas the oxide films deposited on substrates exhibit only orthorhombic phase (i.e. V2O5). The decrease in peak intensities recorded from heated V metal strips on increasing Tss points out the increment in the rate of oxide volatilization, which also confirms by the oxide layer thickness measurements. The SEM results show the noticeable surface changes on V-strips as the function of Tss and PO2 and their optimum values are recorded to be 500 ˚ C and 7.5 × 10-2 Torr, respectively to deposit maximum thick oxide film on substrate. The formation of microcracks on oxidized V-strips, those responsible to countinue oxidation is also confirmed by SEM results. The compositional study of oxide layers formed on V-strips, corroborates their pureness and further assures about the existence of mixed oxide phases. The effect of oxygen partial pressure on oxidation of V-metal has also been discussed in the present report. All the results are well in agreement to each other.

  10. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.

    Lyons, Michael E G; Doyle, Richard L; Brandon, Michael P

    2011-12-28

    Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.

  11. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  13. Primordial helium abundance determination using sulphur as metallicity tracer

    Fernández, Vital; Terlevich, Elena; Díaz, Angeles I.; Terlevich, Roberto; Rosales-Ortega, F. F.

    2018-05-01

    The primordial helium abundance YP is calculated using sulphur as metallicity tracer in the classical methodology (with YP as an extrapolation of Y to zero metals). The calculated value, YP, S = 0.244 ± 0.006, is in good agreement with the estimate from the Planck experiment, as well as, determinations in the literature using oxygen as the metallicity tracer. The chemical analysis includes the sustraction of the nebular continuum and of the stellar continuum computed from simple stellar population synthesis grids. The S+2 content is measured from the near infrared [SIII]λλ9069Å, 9532Å lines, while an ICF(S3 +) is proposed based on the Ar3 +/Ar2 + fraction. Finally, we apply a multivariable linear regression using simultaneously oxygen, nitrogen and sulphur abundances for the same sample to determine the primordial helium abundance resulting in YP - O, N, S = 0.245 ± 0.007.

  14. Kinetic study of the alkaline metals oxidation by dry oxygen

    Touzain, Ph.

    1967-06-01

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [fr

  15. Oxygen and iron abundances in two metal-poor dwarfs

    Spiesman, William J.; Wallerstein, George

    1991-11-01

    Oxygen abundances from the O I line at 6300 A in two metal-poor K dwarfs, HD 25329 and HD 134440, are derived. The spectra were obtained with the KPNO 4-m echelle spectrograph and long camera, yielding a resolution of 32,000 and an S/N of about 125. Model atmospheres with Te of 4770 were appropriate to both stars, whose metallicities were found to be -1.74 and -1.43 for HD 25329 and HD 134440, respectively. These oxygen abundances are 0.3 and 0.4 for the two stars. From the resolution an S/N a 3(sigma) upper limit of 0.8 is derived for each star, which may be combined into an upper limit of O/Fe of 0.6 for a generic K dwarf with Fe/H of 1.6. These values are more in line with O/Fe as seen in similarly metal-poor red giant than those reported in metal-poor subdwarfs by Abia and Rebolo (1989).

  16. Oxygen abundances in unevolved metal-poor stars - Interpretation and consequences

    Abia, C.; Rebolo, R.

    1989-01-01

    The oxygen abundance has been determined by analysis of the O I infrared triplet in 30 unevolved field stars of metallicities in the range Fe/H abundance ratio between -0.2 and -3.5. The data show that the O/Fe abundance ratio increases monotonically as metallicity decreases from solar, reaching values in the range 1.0-1.2 at an Fe/H abundance ratio of about -2. The results, when compared with those already published for metal-deficient red giants, suggest that oxygen could have been depleted in the latter. A discussion of the O/Fe abundance ratios in connection with the chemical evolution of the Galaxy is also presented. 83 refs

  17. Proton RBS measurement of the oxygen in heavy-metal oxides

    Xie, T.; Ryan, S.R.; Fischbeck, H.J.

    1989-01-01

    Although the stoichoimetry of high-T c superconductors is often measured using alpha-particle RBS, the small Rutherford cross section for oxygen relative to the high-Z components makes a determination of the oxygen content difficult. Above 1 MeV, the cross section for proton backscattering from oxygen becomes significantly greater than the Rutherford cross section. Studies of proton backscattering in CuO between 0.6 and 2.0 MeV show that it is possible to measure the oxygen content of high-Z metal oxides. RBS simulations using the Bragg-rule stopping power consistently underestimate the low-energy yield. Scaling the stopping power by a linear function of energy to reduce loss at low energy improves the simulation in CuO, Cu and Au. This general result suggests that the standard RBS simulation procedure may omit some relevant physics. (orig.)

  18. Determination of Oxygen Production by Cyanobacteria in Desert Environment Soil

    Bueno Prieto, J. E.

    2009-12-01

    The cyanobacteria have been characterized for being precursor in the production of oxygen. By means of photosynthetic reactions, they provide oxygen to the environment that surrounds them and they capture part of surrounding dioxide of carbon. This way it happened since the primitive Earth until today. Besides, these microorganisms can support the harmful effects of ultraviolet radiation. The presence of cyanobacterias in an environment like a dry tropical bioma, such as the geographical location called Desert of The Tatacoa (Huila - Colombia), is determinant to establish parameters in the search of biological origin of atmospheric oxygen detected in Mars. In that case, I work with a random sample of not rhizospheric soil, taken to 15 cm of depth. After determining the presence of cyanobacterias in the sample, this one was in laboratory to stimulate the oxygen production. The presence of oxygen in Mars is very interesting. Since oxygen gas is very reactive, it disappear if it is not renewed; the possibility that this renovation of oxygen has a biological origin is encouraging, bearing in mind that in a dry environment and high radiation such as the studied one, the production of oxygen by cyanobacterias is notable. Also it is necessary to keep in mind that the existence of cyanobacterias would determine water presence in Mars subsoil and the nutrients cycles renovation. An interesting exploration possibility for some future space probe to Mars might be the study of worldwide distribution of oxygen concentration in this planet and this way, indentify zones suitable for microbian life.

  19. Apparatus for the automatic determination of oxygen consumption in ...

    An apparatus is described which permits the automatic determination of the oxygen consumption of three fish and a control for 24 hours per day. This is made possible by an electrical control system operating four three-way valves which allow water from one of four respiration chambers at a time to flow past an oxygen ...

  20. Determination of metals in atmospheric particulates using atomic absorption spectrometry

    Alduan, F.A.; Capdevila, C.

    1979-01-01

    Nineteen trace metals in atmospheric samples have been determined by atomic absorption spectrometry, using a graphite furnace for most elements. Paper filters have been used to collect air samples. The sample preparation procedure involves the removal of organic matter and the conversion of the metals to soluble salts by ashing the filters in an oxygen plasma at 125 deg C for 6 h. and by subsequent dissolution in HN0 3 HCl solution. The sensitivities achieved are in the range of 2,5.10 -5 and 6,3.10 -3 μg/m 3 , for an air volume of 2000 m 3 . (author)

  1. Development of thin film oxygen transport membranes on metallic supports

    Xing, Ye

    2012-04-25

    Asymmetric membrane structure has an attractive potential in the application of O{sub 2}/N{sub 2} gas separation membrane for the future membrane-based fossil fuel power plant using oxyfuel technology, which will reduce the carbon dioxide emission. The aim of this study is the development of a metal supported multi-layer membrane structure with a thin film top membrane layer and porous ceramic interlayers. Four perovskite materials were studied as candidate membrane materials. Material properties of these perovskite materials were investigated and compared. La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) showed sufficient oxygen permeability, an acceptable thermal expansion coefficient and a moderate sintering temperature. Alternatively, Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF5582) is considered obtaining very high oxygen permeability but a higher thermal expansion and a lower thermal stability than LSCF58428. Four different Ni-based alloys were studied as candidate substrate materials in the asymmetric membrane structure. The chromia-scale alloys (Hastelloy X, Inconel 600 and Haynes 214) caused Cr poisoning of the membrane layer material LSCF58428 during high-temperature co-firing in air. NiCoCrAlY with a high Al content (12.7 wt%) was found to be the most promising substrate material. It showed a good chemical compatibility with perovskite materials at high temperatures. In order to bridge the highly porous substrate and the thin top membrane layer interlayers were developed. Two interlayers were coated by screen printing on the porous NiCoCrAlY substrate which was sintered at 1225 C in flowing H{sub 2} atmosphere. Screen printing pastes were optimized by investigating various solvent and binder combinations and various ceramic powder contents. The first interlayer significantly improved the surface quality and the surface pore size has been reduced from 30-50{mu}m on the substrate to few {mu}m on the first

  2. Spectrophotometric Determination Of Heavy Metals In Cosmetics

    ISSN 1597-6343. Spectrophotometric Determination Of Heavy Metals In Cosmetics ... analysed using atomic absorption spectrophotometer – coupled with a hydride ... presence of arsenic (As), mercury (Hg), cadmium (Cd) and lead. (Pb) in ...

  3. Oxygen partial pressure: a key to alloying and discovery in metal oxide--metal eutectic systems

    Holder, J.D.; Clark, G.W.; Oliver, B.F.

    1978-01-01

    Control of oxygen partial pressure is essential in the directional solidification of oxide--metal eutectic composites by techniques involving gas-solid and gas-liquid interactions. The existence of end components in the eutectic composite is Po 2 sensitive as are melt stoichiometry, solid phase compositions, and vapor losses due to oxidation-volatilization. Simple criteria are postulated which can aid the experimentalist in selecting the proper gas mixture for oxide--metal eutectic composite growth. The Cr 2 O 3 --Mo--Cr systems was used to verify certain aspects of the proposed criteria

  4. Spectroscopic Determination of Trace Contaminants in High Purity Oxygen

    Hornung, Steven D.

    2011-01-01

    Oxygen used for extravehicular activities (EVA) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. Measurement of oxygen purity above 99.5% is problematic, and currently only complex instruments such as gas chromatographs or mass spectrometers are used for these determinations. Because liquid oxygen boil-off from the space shuttle will no longer be available to supply oxygen for EVA use, other concepts are being developed to produce and validate high purity oxygen from cabin air aboard the International Space Station. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen was developed at White Sands Test Facility. This instrument uses a glow discharge in reduced pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants and may lend itself to a device capable of on-orbit verification of oxygen purity. System design and optimized measurement parameters are presented.

  5. Quantitative determination of tritium in metals and oxides

    Vance, D.E.; Smith, M.E.; Waterbury, G.R.

    1979-04-01

    Metallic samples are analyzed for tritium by heating the sample at 1225 K in a moist oxygen stream. The volatile products are trapped and the tritium is quantitatively determined by scintillation spectroscopy. The method is used to determine less than 1 ppb of tritium in 100-mg samples of lithium, iron, nickel, cerium, plutonium, and plutonium dioxide. Analysis of 18 cuts of a tritium-zirconium, copper foil standard over a 3-yr period showed a tritium content of 45 ppM and a standard deviation of 6 ppM

  6. Determination of oxigen in non-ferrous metals by means of 14 MeV neutrons

    Ferster, Kh.

    1979-01-01

    Instruments have been described and possibilities of their application for determination of oxygen content in metals and metallurgic products without destruction of a sample have been listed. Sensitivity and accuracy of determination are given, gained by the precision analysis, analysis of volume and surface of a sample and in determination of the traces of additions. Methods of analysis and conducting of determinations have been described and discussed. Sources of errors are described as well as the results of oxygen determination in non-ferrous metals and metallurgic products [ru

  7. Photometric determination of traces of metals

    Onishi, H.

    1986-01-01

    The first three editions of this widely used classic were published under the title Colorimetric Determination of Traces of Metals, with E.B. Sandell as author. Part I (General Aspects) of the fourth edition was co-authored by E.B. Sandell and H. Onishi and published in 1978. After Sandell's death in 1984, Onishi assumed the monumental task of revising Part II. This book (Part IIA) consists of 21 chapters in which the photometric determinations of the individual metals, aluminium to lithium (including the lanthanoids), are described. Each chapter is divided into three sections: Separations, Methods of Determination, and Applications. The sections on Separations are of general interest and include methods based on precipitation, ion-exchange, chromatography, and liquid-liquid extraction. Molecular absorption and fluorescence techniques are described in the sections on determinations, and the emphasis is on the use of well-established reagents. Several reagents that have been recently introduced for the determination of trace levels of metals are also critically reviewed at the end of each section on methods of determination. Important applications of these methods to the determination of trace metals in complex organic and inorganic materials are described in detail at the end of each chapter

  8. Ab initio modeling of plasticity in HCP metals: pure zirconium and titanium and effect of oxygen

    Chaari, Nermine

    2015-01-01

    We performed atomistic simulations to determine screw dislocations properties in pure zirconium and titanium and to explain the hardening effect attributed to oxygen alloying in both hexagonal close-packed transition metals. We used two energetic models: ab initio calculations based on the density functional theory and calculations with an empirical potential. The complete energetic profile of the screw dislocation when gliding in the different slip planes is obtained in pure Zr. Our calculations reveal the existence of a metastable configuration of the screw dislocation partially spread in the first order pyramidal plane. This configuration is responsible for the cross slip of screw dislocations from prismatic planes, the easiest glide planes, to pyramidal or basal planes. This energy profile is affected by oxygen addition. Ab initio calculations reveal two main effects: oxygen enhances pyramidal cross slip by modifying the dislocation core structure, and pins the dislocation in its metastable sessile configuration. The same modeling approach is applied to titanium. In pure Ti, the same configurations of the screw dislocation in Zr are obtained, but with different energy levels. This leads to a different gliding mechanism. The same way as in Zr, oxygen enhances pyramidal glide in Ti by modifying the dislocation core structure. Besides, oxygen atom lowers the energy of the metastable configuration but not enough to pin the dislocation in this sessile configuration. (author) [fr

  9. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  10. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  11. A Universal Method to Engineer Metal Oxide-Metal-Carbon Interface for Highly Efficient Oxygen Reduction.

    Lv, Lin; Zha, Dace; Ruan, Yunjun; Li, Zhishan; Ao, Xiang; Zheng, Jie; Jiang, Jianjun; Chen, Hao Ming; Chiang, Wei-Hung; Chen, Jun; Wang, Chundong

    2018-03-27

    Oxygen is the most abundant element in the Earth's crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes and energy converting/storage systems. Developing techniques toward high-efficiency ORR remains highly desired and a challenge. Here, we report a N-doped carbon (NC) encapsulated CeO 2 /Co interfacial hollow structure (CeO 2 -Co-NC) via a generalized strategy for largely increased oxygen species adsorption and improved ORR activities. First, the metallic Co nanoparticles not only provide high conductivity but also serve as electron donors to largely create oxygen vacancies in CeO 2 . Second, the outer carbon layer can effectively protect cobalt from oxidation and dissociation in alkaline media and as well imparts its higher ORR activity. In the meanwhile, the electronic interactions between CeO 2 and Co in the CeO 2 /Co interface are unveiled theoretically by density functional theory calculations to justify the increased oxygen absorption for ORR activity improvement. The reported CeO 2 -Co-NC hollow nanospheres not only exhibit decent ORR performance with a high onset potential (922 mV vs RHE), half-wave potential (797 mV vs RHE), and small Tafel slope (60 mV dec -1 ) comparable to those of the state-of-the-art Pt/C catalysts but also possess long-term stability with a negative shift of only 7 mV of the half-wave potential after 2000 cycles and strong tolerance against methanol. This work represents a solid step toward high-efficient oxygen reduction.

  12. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  13. Determination of nonmetallic elements in actinide complexes by oxygen flask combustion (OFC) (Part 2). Sulphur

    Ruikar, P.B.; Nagar, M.S.; Subramanian, M.S.

    1989-01-01

    This report describes the determination of sulphur in metallic complexes by oxygen flask combustion followed by conductivity titration with standard barium acetate solution in alcoholic medium and lead electrode titration using a lead ion sensitive electrode. Various organic ligands and uranyl and plutonyl synergistic complexes have been analysed by both these methods and the precision and accuracy of the results have been found to be satisfactory. (author). 12 refs., 12 tabs

  14. Oxygen effect on the work function of electropositive metal films adsorbed on 4d and 5d-transition metals

    Kultashev, O.K.; Makarov, A.P.; Rozhkov, S.E.

    1976-01-01

    The thermionic emission method was used to study the effect of oxygen upon the work function of films of electropositive metals, Sc, Y, La and Ba on some monocrystal and polycrystalline specimens of 4d- and 5d-transition metals of groups 4-8 of the Periodic system. It was revealed that when the supports were polycrystalline and monocrystalline specimens of transition metals of Group 5 (niobium and tantalum), the work function phi of films of electropositive adsorbates dropped substantially as compared, e.g., to the phi values on the same faces of tungsten. When the concentration of the electropositive adsorbate exceeds the optimum value (in the absence of oxygen), oxygen exerts an appreciably activating action upon the work function phi of films of electropositive adsorbates on transition metals of the Groups 7 and 8. The activating action of oxygen is assumed to be due to a possibility of formation of surface interstitial structures

  15. "Tissue oxygen tension, a determinant of resistance to infection and ...

    "Tissue oxygen tension, a determinant of resistance to infection and healing" - An Inaugural Lecture. K Jönsson. Abstract. An Inaugural Lecture Given in the University of Zimbabwe on 21 June 2001. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  16. Improved sample capsule for determination of oxygen in hemolyzed blood

    Malik, W. M.

    1967-01-01

    Sample capsule for determination of oxygen in hemolyzed blood consists of a measured section of polytetrafluoroethylene tubing equipped at each end with a connector and a stopcock valve. This method eliminates errors from air entrainment or from the use of mercury or syringe lubricant.

  17. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2015-01-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a

  18. Determination of oxygen in uranium compounds using sulfur monochloride

    Baudin, G.; Besson, J.; Blum, P.L.; Tran-Van, Danh

    1964-01-01

    The authors have described in an other paper (Anal. Chim. Acta, in press) a method for oxygen determination in uranium compounds, in which the sample is attacked by sulfur monochloride. The present paper is concerned with the experimental aspects of the method: apparatus procedure. (authors) [fr

  19. Oxygen-assisted conversion of propane over metal and metal oxide catalysts

    Laate, Leiv

    2002-07-01

    An experimental set-up has been build and applied in activity/selectivity studies of the oxygen-assisted conversion of propane over metals and metal oxide catalysts. The apparatus has been used in order to achieve an improved understanding of the reactions between alkanes/alkenes and oxygen. Processes that have been studied arc the oxidative dehydrogenation of propane over a VMgO catalyst and the selective combustion of hydrogen in the presence of hydrocarbons over Pt-based catalysts and metal oxide catalysts. From the experiments, the following conclusions are drawn: A study of the oxidative dehydrogenation of propane over a vanadium-magnesium-oxide catalyst confirmed that the main problem with this system is the lack of selectivity due to complete combustion. Selectivity to propene up to about 60% was obtained at 10% conversion at 500{sup o}C, but the selectivity decreased with increasing conversion. No oxygenates were detected, the only by- products were CO and CO{sub 2}. The selectivity to propene is a strong function of the conversion of propane. The reaction rate of propane was found to be 1.0 {+-} 0.1 order in propane and 0.07 {+-} 0.02 order in oxygen. The kinetic results are in agreement with a Mars van Krevelen mechanism with the activation of the hydrocarbons as the slow step. The rate of propene oxidation to CO{sub 2} was studied and found to be significantly higher than that of propane. Another possible process involves the simultaneous equilibrium dehydrogenation of alkanes to alkenes and combustion of the hydrogen formed to shift the equilibrium dehydrogenation reaction further to the product alkenes. A study of the selective combustion of hydrogen in the presence of propane/propene was found to be possible under certain reaction conditions over some metal oxide catalysts. In{sub 2}O{sub 3}/SiO{sub 2}, unsupported Bi{sub 2}O{sub 3} and ZSM-5 show the ability to combust hydrogen in a gas mixture with propane and oxygen with good selectivity. Bi{sub 2

  20. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent

    2010-01-01

    When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.

  1. Oxygen abundance in metal-poor dwarfs, derived from the forbidden line

    Spite, M.; Spite, F.

    1991-12-01

    The oxygen abundance is redetermined in a few metal-poor dwarfs, using the oxygen forbidden line at 630 nm rather than the oxygen triplet at 777 nm previously used by Abia and Rebolo (1989). The ratios form O/Fe are clearly lower than the previous ones and are in agreement with the ratios found in the metal-poor red giants, suggesting that no real difference exists between dwarfs and giants. Finally, it can be argued that, pending the acquisition of additional information, the oxygen abundances derived from the forbidden line are more reliable than the abundances found from the triplet.

  2. The surface chemistry of metal-oxygen interactions

    Stokbro, Kurt; Baroni, Stefano

    1997-01-01

    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium...... structure, surface energy and surface stress of the unreconstructed and (1 x 2) reconstructed structures. For the oxygen-covered surface we have performed a geometry optimization at 0.5, 1, and 2 monolayer oxygen coverages, and we present results for the equilibrium configurations, workfunctions and oxygen...

  3. Direct atomic absorption determination of silicon in metallic niobium

    Blinova, Eh.S.; Guzeev, I.D.; Nedler, V.V.; Khokhrin, V.M.

    1984-01-01

    Consideration is being given to realization of the basic advantage of non-flame atomizer-analysis of directly solid samples-for silicon determination in niobium for the content of the first one of less than 1x10 -3 mass %. Analysis technique is described. Diagrams of the dependences of atomic silicon absorption in graphite cells of usual type as well as lined by tungsten carbide and atomic silicon absorption on the value of niobium weighed amount are presented. It is shown that Si determination in metallic niobium according to aqueous reference solutions results in understatement of results 2.4 times. The optimal conditions for Si determination in niobium are the following: 2400 deg C temperature, absence of carbon and oxygen. Different niobium specimens with the known silicon content were used as reference samples

  4. Determination of rate constants for the oxygen reduction reaction

    Racz, A.; Walter, T.; Stimming, U. [Munich Technical Univ., Garching (Germany). Dept. of Physics

    2008-07-01

    The oxygen reduction reaction (ORR) in fuel cells is a complex and fundamental electrochemical reaction. However, greater insight is needed into this multi-electron reaction in order to develop efficient and innovative catalysts. The rotating ring disc electrode (RRDE) is a useful tool for studying reaction intermediates of the ORR and to better understand the reaction pathway. Carbon materials such as carbon nanofilaments-platelets (CNF-PL) have high electrical conductivity and may be considered for fuel cells. In particular Pt and RuSe{sub x}, deposited on CNF-PL materials could act as efficient catalysts in fuel cells. This study used the RRDE to evaluate the oxygen reduction kinetics of these catalysts in oxygen-saturated, diluted sulphuric acid at room temperature. Kinetic data and hydrogen peroxide formation were determined by depositing a thin-film of the catalyst on the Au disc. The values for the constants k1, k2 and k3 were obtained using diagnostic criteria and expressions to calculate the rate constants of the cathodic oxygen reduction reaction for RuSe on new carbon supports. A potential dependency of the constants k1 and k2 for RuSe{sub x}/CNF-PL was observed. The transition of the Tafel slopes for this catalyst was obtained. 4 refs., 1 fig.

  5. Selective conversion of synthesis gas into C2-oxygenated products using mixed-metal homogeneous catalysts

    Whyman, R.

    1986-01-01

    A feature which is a key to any wider utilization of chemistry based on synthesis gas is an understanding of, and more particularly, an ability to control, those factors which determine the selectivity of the C 1 to C 2 transformation during the hydrogenation of carbon monoxide. With the exception of the rhodium-catalyzed conversion of carbon monoxide and hydrogen into ethylene glycol and methanol, in which molar ethylene glycol/methanol selectivities of ca 2/1 may be achieved, other catalyst systems containing metals such as cobalt or ruthenium exhibit only poor selectivities to ethylene glycol. The initial studies in this area were based on the reasoning that, since the reduction of carbon monoxide to C 2 products is a complex, multi-step process, the use of appropriate combinations of metals could generate synergistic effects which might prove more effective (in terms of both catalytic activity and selectivity) than simply the sum of the individual metal components. In particular, the concept of the combination of a good hydrogenation catalyst with a good carbonylation, or ''CO insertion'', catalyst seemed particularly germane. As a result of this approach the authors discovered an unprecedented example of the effect of catalyst promoters, particularly in the enhancement of C 2 /C 1 selectivity, and one which has led to the development of composite mixed-metal homogeneous catalyst systems for the conversion of CO/H 2 into C 2 -oxygenate esters

  6. Determination of helium and oxygen abundances in gaseous nebulae

    Pronik, V.I.

    1975-01-01

    A new method of determining the abudance of helium and oxygen is proposed. It is based on the statement that functions of atomic distribution with states of ionization may be determined to the sufficient precision by the amount of atoms in two states of ionization. The abudance of helium atoms in nebulae is determined with most probability, since of three possible states of ionization two states with the overwhelming majority atoms may be directly observed. The amount of He++ ions is determined from He 2 recombination lines, and the amount of He+ ions is from He1 lines. The total abudance of He atoms can be found from the observed ratios of I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) at any degree of ionization. These ratios slightly depend on the electron temperature. For oxygen, unlike helium, the observed ratios depend on the electron temperature of gas, and at high densities they also depend on the density of electrons (it is necessary to take account of deactivation of the excited level by electron impacts). Constructed are curves of equal abundance He/H=const for determining He/H according to the ratios observed I(4686)/I(Hsub(β)) and I(4471)/I(Hsub(β)) and curves of equal abudance O/H=const for determining O/H according to the ratios observed I(3727)/I(Hsub(/b)) and I(Nsub(1)+Nsub(2))/I(Hsub(β)), corrected preliminarily for density and temperature

  7. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  8. Glove box adaptation of oxygen, nitrogen and hydrogen determinator

    Ramanjaneyulu, P.S.; Phanindra Kumar, M.; Kulkarni, A.S.; Revathi, R.; Saxena, M.K.; Tomar, B.S.

    2017-01-01

    Radioanalytical Chemistry Division (RACD) is involved in chemical quality assurance (CQA) of various nuclear fuels and materials related to various DAE projects including FBTR and PFBR. Determination of oxygen, nitrogen and hydrogen in these fuels is one of the important steps in the CQA of material. For this purpose, O, N and H determinator was indigenously designed, fabricated and commissioned with the help of M/s Chromatography and Instruments Company Ltd., Vadodara, India. The present article describes about glove box adaptation of this instrument and various safety features incorporated in the glove box and instrument at Lab. C-25, RACD, as per the recommendations of the plant level safety committee

  9. Structure and catalytic properties of metal β-diketonate complexes with oxygen-containing compounds

    Nizel'skij, Yu.N.; Ishchenko, S.S.; Lipatova, T.Eh.

    1985-01-01

    The results of researches published in recent 15-20 years of complexes of metal β-diketonates (including Cr 3+ , VO 2+ , MoOΛ2 2+ , Co 3+ , Mn 3+ , Ni 2+ , Fe 3+ ) with oxygen-containing compounds (alcohols, glycols, phenols, hydroperoxides, aldehydes, esters, etc.) playing an important role in catalytic processes of oxidation, addition, polymerization and copolymerization are reviewed. Data on the nature of chemical bond of oxygen-containing reacting agents with metal β-diketonates, on structure of metal β-diketonate complexes with oxygen-containing reacting agents and thermodynamics of complexing as well as on activation of reacting agents in complexes and catalytic properties of metal β-diketonates are discussed. Stored materials make it possible to exercise directed control of metal β-diketonate activity

  10. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels

    Wei, Chao; Feng, Zhenxing; Scherer, Günther G.; Barber, James; Shao-Horn, Yang; Xu, Zhichuan J. (Nanyang); (ICL); (Oregon State U.); (TUM-CREATE); (MIT)

    2017-04-10

    Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal–air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2O4, the Mn in octahedral sites is identified as an active site. This finding is then applied to successfully explain the ORR/OER activities of other transition-metal spinels, including MnxCo3-xO4 (x = 2, 2.5, 3), LixMn2O4 (x = 0.7, 1), XCo2O4 (X = Co, Ni, Zn), and XFe2O4 (X = Mn, Co, Ni). A general principle is concluded that the eg occupancy of the active cation in the octahedral site is the activity descriptor for the ORR/OER of spinels, consolidating the role of electron orbital filling in metal oxide catalysis.

  11. Photoreactivity of Metal-Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production.

    Liu, Kai; Gao, Yanxin; Liu, Jing; Wen, Yifan; Zhao, Yingcan; Zhang, Kunyang; Yu, Gang

    2016-04-05

    Promising applications of metal-organic frameworks (MOFs) in various fields have raised concern over their environmental fate and safety upon inevitable discharge into aqueous environments. Currently, no information regarding the transformation processes of MOFs is available. Due to the presence of repetitive π-bond structure and semiconductive property, photochemical transformations are an important fate process that affects the performance of MOFs in practical applications. In the current study, the generation of reactive oxygen species (ROS) in isoreticular MIL-53s was studied. Scavengers were employed to probe the production of (1)O2, O2(•-), and •OH, respectively. In general, MIL-53(Cr) and MIL-53(Fe) are dominated by type I and II photosensitization reactions, respectively, and MIL-53(Al) appears to be less photoreactive. The generation of ROS in MIL-53(Fe) may be underestimated due to dismutation. Further investigation of MIL-53(Fe) encapsulated diclofenac transformation revealed that diclofenac can be easily transformed by MIL-53(Fe) generated ROS. However, the cytotoxicity results implied that the ROS generated from MIL-53s have little effect on the viability of the human hepatocyte (HepG2) cell line. These results suggest that the photogeneration of ROS by MOFs may be metal-node dependent, and the application of MIL-53s as drug carriers needs to be carefully considered due to their high photoreactivity.

  12. On the determination of various metallic and nonmetallic impurities in sodium metal

    Schneider, H.; Gruenhaeuser, M.; Nagel, G.; Nold, E.; Schaefer, A.; Schumann, H.

    1976-04-01

    Methods for the determination of various metallic and nonmetallic impurities in sodium metal were developed or tested. Detection limits, reproducibilities and results of analyses are reported. (orig.) [de

  13. Spectrophotometric methods for determining noble metals

    Gur'eva, R.F.; Savvin, S.B.

    2002-01-01

    The main trends of the development of spectrophotometric methods for determining noble metals (NMs) including ruthenium are considered. One of these trends is the synthesis and study of new, highly sensitive and selective organic reagents for determining NMs in solutions and solid phase. Another trend is the search for and developing of new methodological approaches (techniques) and color reactions, including those that involve modified and immobilized reagents. The third trend includes the improvement of equipment and automation. It is shown that the present-day spectrophotometry can provide the determination of NMs in samples with concentrations from several to 10 -4 % (photometry and differential photometry) and down to 10 -7 % (test and sorption-spectroscopic methods based on photometry and diffuse-reflectance spectroscopy, including the use of chromaticity functions) [ru

  14. Spectrographic determination of impurities in magnesium metal

    Capdevila, C.; Diaz-Guerra, J. P.

    1979-01-01

    The spectrographic determination of trace quantities of Al, B, Cd, Co, Cr, Cu, Fe, Li, Hn, Mo, Ni and Si in magnesium metal is described. Samples are dissolved with HNO 3 and calcinate into MgO. In order to avoid losses of boron NH 4 OH is added to the nitric solution. Except for aluminium and chromium the analysis is performed through the use of the carrier distillation technique. These two impurities are determined by burning to completion the MgO. Among the compounds studied as carriers (AgCl, AgF, CsCl, CuF 2 , KCl and SrF 2 ) AgCl allows, In general, the best volatilization efficiency. Lithium determination is achieved by using KC1 or CsCl. Detection limits, on the basis of MgO, are in the range 0,1 to 30 ppm, depending on the element. (Author) 8 refs

  15. Heavy metals determination in the Medellin River

    Casta, S; H, B.

    1998-01-01

    During the last years the Medellin River has been a constant preoccupation for the inhabitants of the Aburra Valley. When the city began to grow took the river as its shaft and all the tailing produced by the domestic action, commercial and industrial were begun to pour of continuous way to its waters, what has caused the degradation that today is observed. Various industries established to what is long of the Medellin River, as are the metal mechanics, those of tanneries, of photographs, paintings and nutritional products, between other. These industries unload its effluents, without no type of treatment, to the river and to its affluent, became these water bodies in receiving of the industrial and domestic liquids effluents of the city. In the present study was sought to determine the presence of some metals in the water bulk and in the sediments of the Medellin River, such as the cadmium, chrome, copper and zinc. The content of these metals plays a role very important in the pollution of the water bodies, upon causing great impact by its toxicity and bio - accumulation. The investigation was accomplished in the section located between the municipalities of Caldas and Copacabana, in four sampling stations during a period of four months, from August until November of 1996

  16. Determination of heavy metals in the stream of Sunter river

    Las, Thamsil; Suwirma, S.; Surtipanti, S.

    1980-01-01

    An environmental pollution study was made on four locations of waste water along the stream of Sunter river during the period of June 1978 to March 1979. Trace heavy metals could be separated by chelation with sodium diethyl dithiocarbamate (NaDDC) extracted into methyl isobuthyl ketone (MIBK) and determined by atomic absorption spectrophotometer (AAS) except mercury which was determined flamelessly. Physical parameters including pH, temperature, turbidity and dissolved oxygen (D.O) were also determined by water checker. The results obtained were as follows: Hg 1.2 to 20.6 ppb; Cd 0.03 to 0.24 ppm; Zn 0.10 to 0.31 ppm; Pb 0.06 to 0.30 ppm; Ni 0.05 to 0.25 ppm; Co 0.05 to 0.20 ppm and Fe 0.27 to 0.76 ppm. The physical parameters were: pH 6.4 to 7.6; temperature 27.6 to 31.1 deg C; turbidity 126 to 328 ppm and dissolved oxygen 2.8 to 7.3 ppm. Data obtained showed that especially mercury and lead were high in concentration, i.e. Hg: 20.6 ppb at location 4 in December 1978 and Pb: 0.30 ppm at location 3 in July 1978. (author)

  17. Effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts

    Satsuma, Atsushi; Maeshima, Hajime; Watanabe, Kiyoshi; Hattori, Tadashi

    2001-01-01

    The inhibitory effect of oxygen on decomposition of nitrous oxide over various metal oxide catalysts was investigated. The activity of nitrous oxide decomposition significantly decreased over CuO, Co 3 O 4 , NiO, Fe 2 O 3 , SnO 2 , In 2 O 3 and Cr 2 O 3 by reversible adsorption of oxygen onto the active sites. On the contrary to this, there was no or small change in the activity of TiO 2 , Al 2 O 3 , MgO, La 2 O 3 and CaO. A good correlation was observed between the degree of inhibition and the heat of formation of metal oxides. On the basis of kinetic model, the reduction of catalytic activity in the presence of oxygen was rationalized with the strength of oxygen adsorption on the metal oxide surface. (author)

  18. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  19. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  20. Determination of oxygen in ternary uranium oxides by a gravimetric alkaline earth addition method

    Fujino, T.; Tagawa, H.

    1979-01-01

    The applicability of a gravimetric method based on alkaline earth metal addition for the determination of oxygen in ternary uranium oxides of the tupe M-U-O (M=La, Ce and Th) is described. The oxide sample is mixed with MgO or Basub(2.8)UOsub(5.8) and heated in air under suitable conditions. Because uranium is completely oxidized to the hexavalent state during the reaction, oxygen can be determined from the weight change. Oxygen in Lasub(y)Usub(1-y)Osub(2+x) is determined up to y = 0.8 with a standard deviation for x of +- 0.006 with MgO. For Thsub(y)Usub(1-y)Osub(2+x) the value of x is determined with Basub(2.8)UOsub(5.8) with a standard deviation of +- 0.01 at y = 0.8. For Cesub(y)Usub(1-y)Osub(2+x), the method can be applied only for low cerium concentrations where y = 0-0.2; the value for x with Basub(2.8)UOsub(5.8) at y = 0.2 showed a standard deviation of +- 0.002. (Auth.)

  1. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  2. Determination of hydrogen in metals and alloys

    Sayi, Y.S.; Ramanjaneyulu, P.S.; Ramakumar, K.L.

    2008-01-01

    Hydrogen will be invariably present in all materials. Its presence in excess is harmful and sometimes calamitous. Hydrogen embrittlement can occur quite readily in most high strength materials, irrespective of their composition or structure. It is therefore essential to maintain low levels of hydrogen. To know the amount of hydrogen present in the materials, it is essential to determine it with high degree of precision and accuracy. It is required to give the uncertainty associated with the measurement to increase the confidence on measurements. Several methodologies are available for the determination of hydrogen. It its isotope, deuterium, also co-exists it becomes all the more difficult to determine these individually. Hot vacuum extraction cum quadrupole mass spectrometry (HVE-QMS) developed in our laboratory to determine hydrogen and deuterium is routinely employed for the determination of hydrogen and deuterium in metals and alloys. The present paper deals in detail about our experiences with HVE-QMS and estimation of uncertainty associated in this methodology. (author)

  3. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  4. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  5. Oxygen reduction and evolution at single-metal active sites

    Calle-Vallejo, F.; Martínez, J.I.; García Lastra, Juan Maria

    2013-01-01

    A worldwide spread of clean technologies such as low-temperature fuel cells and electrolyzers depends strictly on their technical reliability and economic affordability. Currently, both conditions are hardly fulfilled mainly due to the same reason: the oxygen electrode, which has large overpotent...

  6. Determination of oxygen potentials and O/M ratios of oxide nuclear reactor fuels by means of an automated solid state galvanic cell

    Toci, F.; Cambini, M.

    1987-01-01

    An automated version of the electromotive force (emf) cell for the determination of oxygen activities and oxygen to metal ratios of oxide nuclear reactor fuel, irradiated or not, is reported together with some measurements. 9 figs., 17 refs. In appendix a method is described for preparing suitable electrolyte crucibles

  7. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  8. Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua.

    Kiyamu, Melisa; León-Velarde, Fabiola; Rivera-Chira, María; Elías, Gianpietro; Brutsaert, Tom D

    2015-06-01

    Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138-146, 2015.--Andean high altitude natives show higher arterial oxygen saturation (Sao(2)) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao(2), we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18-35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio(2)=0.12), in order to measure Sao(2) (%), ventilation (VE L/min) and oxygen consumption (Vo(2), L/min). Repeated-measures ANOVA, controlling for VE/VO(2) (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao(2) (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao(2) (%) (p<0.001), as workload increased. Resting Sao(2) levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao(2) levels during submaximal exercise at hypoxia.

  9. Determination of microdistribution of boron in metals

    Illic, R; Najzer, M; Rant, J [J. Stefan Institute, Ljubljana (Yugoslavia)

    1976-07-01

    A neutron induced autoradiographic technique was used for the determination of the boron microdistribution in metals. The specimens, which were in close contact with a LR 115 SSTD, were irradiated in the exposure room of the TRIGA Mark II reactor in Ljubljana. The spatial resolution of the autoradiographic image recorded by the LR 115 detector was found to be influenced mainly by the size of the reaction product tracks. The track diameter of a normally etched detector was about 7 {mu}m. An appreciable reduction of track size was achieved by pre-etching the detector foil before neutron irradiation. By this procedure it was possible to obtain a track diameter as small as 1 {mu}m and correspondingly to improve the spatial resolution of the autoradiographs of type EC 80 steel and Al Mg 3 alloy which contain 30 and 2 ppm of boron respectively. (author)

  10. Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study

    Orellana, Walter

    2012-07-01

    The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.

  11. The gamma-ray induced chemisorption of oxygen on perovskite type catalysts: determination by reduction with hydrazine sulphate/hydroxylamine hydrochloride

    Srinivas, B.; Rao, V.R.S.; Kuriacose, J.C.

    1986-01-01

    Chemisorbed oxygen can be determined quantitatively by the measurement of gaseous N 2 /N 2 O liberated by treatment with hydrazine sulfate/hydroxylamine hydrochloride. The amount of chemisorbed oxygen depends on the degree of dispersion during irradiation and also on the γ-dose. The chemisorption is enhanced in the presence of moisture. The partial reduction of the transition metal ion favours the formation of chemisorbed oxygen. (author)

  12. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    Tritsaris, Georgios A.; Norskov, Jens K.; Rossmeisl, Jan

    2011-01-01

    Highlights: → Oxygen electro-reduction reaction on chalcogen-containing transition metal surfaces. → Evaluation of catalytic performance with density functional theory. → Ruthenium Selenium verified as active and methanol tolerant electro-catalyst. → Water boils at -10000 K. - Abstract: We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated.

  13. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  14. Determination of active oxygen content in rare earth peroxides

    Queiroz, Carlos A.S.; Abrao, Alcidio

    1993-01-01

    The content of active oxygen in rare earth peroxides have been determined after the dissolution of the samples with hydrocloridic acid in the presence of potassium iodide. The free generated iodine is titrated with sodium thiosulfate using starch as indicator. The oxidation of iodide to the free iodine indicates the presence of a higher valence state rare earth oxide, until now specifically recognized for the oxides of cerium (Ce O 2 ), praseodymium (Pr 6 O 1 1) and terbium (TB 4 O 7 ). recently the authors synthesized a new series of rare earth compounds, the peroxides. These new compounds were prepared by precipitating the rare earth elements complexed with carbonate ion by addition of hydrogen peroxide. the authors demonstrated that all rare earth elements, once solubilized by complexing with carbonate ion, are quantitatively precipitated as peroxide by addition of hydrogen peroxide. (author)

  15. The characterisation of vapour-phase alkali metal-tellurium-oxygen species

    Gomme, R.A.; Ogden, J.S.; Bowsher, B.R.

    1986-10-01

    Detailed assessments of hypothetical severe accidents in light water reactors require the identification of the chemical forms of the radionuclides in order to determine their transport characteristics. Caesium and tellurium are important volatile fission products in accident scenarios. This report describes detailed studies to characterise the chemical species that vaporise from heated mixtures of various alkali metal-tellurium-oxygen systems. The molecular species were characterised by a combination of quadrupole mass spectrometry and matrix isolation-infrared spectroscopy undertaken in conjunction with experiments involving oxygen-18 substitution. The resulting spectra were interpreted in terms of a vapour-phase molecule with the stoichiometry M 2 TeO 3 (M = K,Rb,Cs) for M/Te molecular ratios of ∼ 2, and polymeric species for ratios < 2. This work has demonstrated the stability of caesium tellurite. The formation of this relatively low-volatility, water-soluble species could significantly modify the transport and release of caesium and tellurium. The data presented in this report should allow more comprehensive thermodynamic calculations to be undertaken that assist in the quantification of fission product behaviour during severe reactor accidents. (author)

  16. Determination and fractionation of metals in beer – a review

    Pohl , Pawel

    2008-01-01

    Abstract Major, minor and trace metals are important in beer fermentation since they supply the appropriate environment for yeast growth and have the influence on yeast metabolism. A real concern is the content of Cu and Fe, which are involved in beer conditioning and ageing through reactions resulting in formation of reactive oxygen species. The reactive oxygen species readily oxidize organic compounds present in beer, changing the quality of foaming and the flavor stability of be...

  17. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  18. Simultaneous determination of oxygen and cadmium in cadmium and cadmium compounds

    Imaeda, K.; Kuriki, T.; Ohsawa, K.; Ishii, Y.

    1977-01-01

    Cadmium and its compounds were analysed for oxygen and cadmium by a modification of the Schutze-Unterzaucher method. Oxygen in some compounds such as cadmium oxide, nitrate and sulphate could not be determined by the usual method. The method of adding carbon was employed for the determination of total oxygen. Total oxygen could be determined by the addition of 5 mg of carbon to a sample boat and heating at 950 0 . The determination was also carried out by addition of naphthalene (2 mg). It was found that the cadmium powder and cadmium flake used contained ca. 1 and 0.15% oxygen, respectively. Oxygen and cadmium in cadmium and its compounds were simultaneously determined by the addition of 2 mg of naphthalene. Cadmium was determined colorimetrically by use of glyoxal-bis-(2-hydroxyanil). Oxygen and cadmium in the samples could be determined simultaneously with an average error of -0.02 and -0.22%, respectively. (author)

  19. Electrochemical transformations of oxygen and the defect structure of solid solutions on the basis of alkaline earth metal ortho-vanadates

    Khodos, M.Ya.; Belysheva, G.M.; Brajnina, Kh.Z.

    1986-01-01

    Effect of iso- and heterovalent substitution in the structure of alkaline earth metal ortho-vanadates and synthesis conditions, simulating the definite type of their crystal lattice disordering, on the character of potentiodynamic anodic-cathodic curves has been investigated by the method of cyclic voltammetry. Correlation between signals observed and the defect structure of oxide compounds is refined. Oxygen chemisorption is shown to be determined by concentration of nonequilibrium oxygen vacancies, which formation is accompanied by appearance of quasi-free electrons

  20. Thermodynamic driving force effects in the oxygen reduction catalyzed by a metal-free porphyrin

    Trojánek, Antonín; Langmaier, Jan; Samec, Zdeněk

    2012-01-01

    Roč. 82, SI (2012), s. 457-462 ISSN 0013-4686 R&D Projects: GA ČR GAP208/11/0697 Institutional research plan: CEZ:AV0Z40400503 Keywords : oxygen reduction * metal-free porphyrin * electrocatalysis Subject RIV: CG - Electrochemistry Impact factor: 3.777, year: 2012

  1. Determination of fluoride in spices using microwave induced oxygen combustion

    Emanuel Šucman

    2012-01-01

    Full Text Available Fluorine is essential in human and/or animal nutrition; therefore, so it is important to know its concentration in a diet. One of the possible sources of fluorine for humans is spice, containing various amounts of this trace element. This work describes the method for fluoride determination in various kinds ofspices using microwave-supported sample preparation in high pressure oxygen atmosphere followed by potentiometry with a fluoride ion-selective electrode. Parameters of the microwave device for combustion procedure were checked and optimized in order to find settings ensuring complete sample combustion and/or absorption of the analyte in the absorption solution. For the ion-selective electrode measurement, the technique of standard straight line was chosen. Concentrations of fluorides in spices and spice blends under investigation ranged from 3.15 mg·kg-1 to 26.08 mg·kg-1. In order to check the accuracy of the method Certified Reference Material Fluoride in Vegetation NIST 2695 was used and a good agreement between certified and found values was found. The precision expressed as the relative standard deviation ranged from 0.6% to 5.0%. The method is fast, accurate and reliable for this kind of analysis. In recent literature data on fluoride concentrations in spices and/or spice blends have not been found.

  2. Method and apparatus for determining weldability of thin sheet metal

    Goodwin, Gene M.; Hudson, Joseph D.

    1988-01-01

    A fixture is provided for testing thin sheet metal specimens to evaluate hot-cracking sensitivity for determining metal weldability on a heat-to-heat basis or through varying welding parameters. A test specimen is stressed in a first direction with a load selectively adjustable over a wide range and then a weldment is passed along over the specimen in a direction transverse to the direction of strain to evaluate the hot-cracking characteristics of the sheet metal which are indicative of the weldability of the metal. The fixture provides evaluations of hot-cracking sensitivity for determining metal weldability in a highly reproducible manner with minimum human error.

  3. Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation

    Nagasako, Naoyuki; Asahi, Ryoji; Isheim, Dieter; Seidman, David N.; Kuramoto, Shigeru; Furuta, Tadahiko

    2016-01-01

    A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations.

  4. SPECIATION AND DETERMINATION OF PRIORITY METALS IN ...

    metals in sediments of Oyun River, Sango, Ilorin, Nigeria. The river sediments ... The river sediments existing at the bottom of the water table plays an important ..... inhabitants and visitors to avoid dumping of waste in River Oyun catchment.

  5. Evaluation of Additively Manufactured Metals for Use in Oxygen Systems Project

    Tylka, Jonathan; Cooper, Ken; Peralta, Stephen; Wilcutt, Terrence; Hughitt, Brian; Generazio, Edward

    2016-01-01

    Space Launch System, Commercial Resupply, and Commercial Crew programs have published intent to use additively manufactured (AM) components in propulsion systems and are likely to include various life support systems in the future. Parts produced by these types of additive manufacturing techniques have not been fully evaluated for use in oxygen systems and the inherent risks have not been fully identified. Some areas of primary concern in the SLS process with respect to oxygen compatibility may be the porosity of the printed parts, fundamental differences in microstructure of an AM part as compared to traditional materials, or increased risk of shed metal particulate into an oxygen system. If an ignition were to occur the printed material could be more flammable than components manufactured from a traditional billet of raw material and/or present a significant hazards if not identified and rigorously studied in advance of implementation into an oxygen system.

  6. Zirconium metal-water oxidation kinetics. III. Oxygen diffusion in oxide and alpha Zircaloy phases

    Pawel, R.E.

    1976-10-01

    The reaction of Zircaloy in steam at elevated temperature involves the growth of discrete layers of oxide and oxygen-rich alpha Zircaloy from the parent beta phase. The multiphase, moving boundary diffusion problem involved is encountered in a number of important reaction schemes in addition to that of Zircaloy-oxygen and can be completely (albeitly ideally) characterized through an appropriate model in terms of oxygen diffusion coefficients and equilibrium concentrations for the various phases. Conversely, kinetic data for phase growth and total oxygen consumption rates can be used to compute diffusion coefficients. Equations are developed that express the oxygen diffusion coefficients in the oxide and alpha phases in terms of the reaction rate constants and equilibrium solubility values. These equations were applied to recent experimental kinetic data on the steam oxidation of Zircaloy-4 to determine the effective oxygen diffusion coefficients in these phases over the temperature range 1000--1500 0 C

  7. Oxygen potential of uranium--plutonium oxide as determined by controlled-atmosphere thermogravimetry

    Swanson, G.C.

    1975-10-01

    The oxygen-to-metal atom ratio, or O/M, of solid solution uranium-plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide crucible at 1200 0 C and oxidizing with moist He at 250 0 C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300 0 C and the equilibrated O/M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations. (auth)

  8. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Rapid determination of oxygen saturation and vascularity for cancer detection.

    Fangyao Hu

    Full Text Available A rapid heuristic ratiometric analysis for estimating tissue hemoglobin concentration and oxygen saturation from measured tissue diffuse reflectance spectra is presented. The analysis was validated in tissue-mimicking phantoms and applied to clinical measurements in head and neck, cervical and breast tissues. The analysis works in two steps. First, a linear equation that translates the ratio of the diffuse reflectance at 584 nm and 545 nm to estimate the tissue hemoglobin concentration using a Monte Carlo-based lookup table was developed. This equation is independent of tissue scattering and oxygen saturation. Second, the oxygen saturation was estimated using non-linear logistic equations that translate the ratio of the diffuse reflectance spectra at 539 nm to 545 nm into the tissue oxygen saturation. Correlations coefficients of 0.89 (0.86, 0.77 (0.71 and 0.69 (0.43 were obtained for the tissue hemoglobin concentration (oxygen saturation values extracted using the full spectral Monte Carlo and the ratiometric analysis, for clinical measurements in head and neck, breast and cervical tissues, respectively. The ratiometric analysis was more than 4000 times faster than the inverse Monte Carlo analysis for estimating tissue hemoglobin concentration and oxygen saturation in simulated phantom experiments. In addition, the discriminatory power of the two analyses was similar. These results show the potential of such empirical tools to rapidly estimate tissue hemoglobin in real-time spectral imaging applications.

  10. Speciation and determination of priority metals in sediments of Oyun ...

    This work was carried out to determine the concentrations, bioavailability and mobility of priority metals in sediments of Oyun River, Sango, Ilorin, Nigeria. The river sediments were sampled at six selected locations and the samples were analyzed for some certain priority metals to determine the concentration, speciation and ...

  11. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  12. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    Allen, G.C.; Tucker, P.M.; Lewis, R.A. (Central Electricity Generating Board, Berkeley (UK). Berkeley Nuclear Labs.)

    1984-08-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH/sup -/ is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface.

  13. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    Allen, G.C.; Tucker, P.M.; Lewis, R.A.

    1984-01-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH - is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface. (author)

  14. Oxygen sensors for Heavy Liquid Metal coolants: Calibration and assessment of the minimum reading temperature

    Bassini, S., E-mail: serena.bassini@enea.it; Antonelli, A.; Di Piazza, I.; Tarantino, M.

    2017-04-01

    Oxygen sensors for Heavy Liquid Metals (HLMs) such as lead and LBE (lead-bismuth eutectic) will be essential devices in future Lead Fast Reactor (LFR) and Accelerator Driven System (ADS). Potentiometric sensors based on solid electrolytes were developed in recent years to this purpose. Internal reference electrodes such as Pt-air and Bi/Bi{sub 2}O{sub 3} liquid metal/metal-oxide are among the most used but they both have a weak point: Pt-air sensor has a high minimum reading temperature around 400 °C whereas Bi/Bi{sub 2}O{sub 3} suffers from internal stresses induced by Bi volume variations with temperature, which may lead to the sensor failure in the long-term. The present work describes the performance of standard Pt-air and Bi/Bi{sub 2}O{sub 3} sensors and compares them with recent Cu/Cu{sub 2}O sensor. Sensors with Yttria Partially Stabilized Zirconia (YPSZ) electrolyte were calibrated in oxygen-saturated HLM between 160 and 550 °C and the electric potential compared to the theoretical one to define the accuracy and the minimum reading temperature. Standard Pt-air sensor were also tested using Yttria Totally Stabilized Zirconia (YTSZ) to assess the effect of a different electrolyte on the minimum reading temperature. The performance of Pt-air and Cu/Cu{sub 2}O sensors with YPSZ electrolyte were then tested together in low-oxygen HLM between 200 and 450 °C. The results showed that Pt-air, Bi/Bi{sub 2}O{sub 3} and Cu/Cu{sub 2}O sensors with YPSZ measured oxygen in HLMs down to 400 °C, 290 °C and 200 °C respectively. When the YTSZ electrolyte was used in place of the YPSZ, the Pt-air sensor measured correctly down to at least 350 °C thanks to the superior ionic conductivity of the YTSZ. When Cu/Cu{sub 2}O and Pt-air sensors were tested together in the same low-oxygen HLM between 200 and 450 °C, Cu/Cu{sub 2}O sensor worked predictably in the whole temperature range whereas Pt-air sensor exhibited a correct output only above 400 °C. - Highlights: •Oxygen

  15. Determination of reduction yield of lithium metal reduction process

    Choi, In Kyu; Cho, Young Hwan; Kim, Taek Jin; Jee, Kwang Young

    2004-01-01

    Metal reduction of spent oxide fuel is the first step for the effective storage of spent fuel in Korea as well as transmutation purpose of long-lived radio-nuclides. During the reduction of uranium oxide by lithium metal to uranium metal, lithium oxide is stoichiometrically produced. By determining the concentration of lithium oxide in lithium chloride, we can estimate that how much uranium oxide is converted to uranium metal. Previous method to determine the lithium oxide concentration in lithium chloride is tedious and timing consuming. This paper describe the on-line monitoring method of lithium oxide during the reduction process

  16. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Solubility of metallic elements in LBE under extra low oxygen potential. JFY2003 joint research report

    Sano, Hiroyuki; Fujisawa, Toshiharu; Furukawa, Tomohiro; Aoto, Kazumi

    2004-03-01

    Lead-Bismuth eutectic alloy (LBE) has been considered as a prospective coolant for a fast-breeder reactor. However a corrosion of cooling pipe is anticipated when it is used at the similar temperature as sodium coolant. In this study, solubility of major metallic elements in LBE was measured under extra low oxygen potential. The interactive effect of those elements on the solubility was also to be examined. (1) The solubility of oxygen in LBE was measured by the gas equilibrium method (1223 k-1323 K). The standard Gibbs free energy change of oxygen solution reaction and the self-interaction parameter of oxygen in LBE were calculated, respectively. (2) The solubility of iron in LBE was measured by both the gas equilibrium method and the oxide equilibrium method (873 K-1323 K). The standard Gibbs free energy change of iron solution reaction, interaction parameter of oxygen on iron and self-interaction parameter of iron in LBE were calculated, respectively. (3) The interactive effect of iron and oxygen on the solubility in LBE was considered thermodynamically. (4) The solubility of chromium and nickel in LBE were measured under Ar-H 2 atmosphere. (author)

  18. Investigation of the electrocatalytic activity for oxygen reduction of sputter deposited mixed metal films

    Schumacher, L.C.; Holzheuter, I.B.; Nucara, M.C.; Dignam, M.J.

    1989-01-01

    Sputter-deposited films of silver with lead, manganese and nickel have been studied as possible oxygen reduction electrocatalysts using cyclic voltammetry, rotating disc studies, steady-state polarization and Auger analysis. In general, the Ag-Pb and Ag-Mn films display superior electrocatalytic activity for O 2 reduction, while the Ag-Ni films' performance is inferior to that of pure Ag. For the Ag-Pb films, which show the highest electrocatalytic activity, the mixed metal films display oxidation-reduction behavior which is not simply a superposition of that of the separate metals, and suggests a mechanism for the improved behavior

  19. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration

    Lankhorst, M.H.R.; Lankhorst, Martijn H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    Oxygen coulometric titration has been applied to measure chemical diffusion in La0.8Sr0.2CoO3-δ between 700 and 1000°C. The transient current response to a potentiostatic step has been transformed from the time domain to the frequency domain. The equivalent circuit used to fit the resulting

  20. Luminometric determination of antioxidant capacity towards individual reactive oxygen species

    Komrsková, D.; Lojek, Antonín; Hrbáč, J.; Číž, Milan

    2005-01-01

    Roč. 3, č. 1 (2005), S25 [Cells VI - Biological Days /18./. 24.10.2005-26.10.2005, České Budějovice] R&D Projects: GA ČR(CZ) GA524/01/1219 Institutional research plan: CEZ:AV0Z50040507 Keywords : chemiluminescence * reactive oxygen species * scavenger Subject RIV: BO - Biophysics

  1. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-01-01

    Highlights: • The screened M-G structures are very thermodynamically stable, and the stability is even higher than that of the corresponding bulk metal surfaces. • The binding energies of ORR intermediates suggest that they are not linear dependence, which are different form the cases found on some metal-based catalysts. • The Au-, Co-, and Ag-G structures could be used as the ORR catalysts. - Abstract: Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  2. The Role of Reactive Oxygen Species (ROS in the Biological Activities of Metallic Nanoparticles

    Ahmed Abdal Dayem

    2017-01-01

    Full Text Available Nanoparticles (NPs possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS. The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

  3. Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen

    Hornung, Steven

    2013-01-01

    Oxygen used for extravehicular activities (EVAs) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen has been developed. This instrument uses a glow discharge in reduced-pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete, and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants, and may lend itself to a device capable of on-orbit verification of oxygen purity. A glow discharge is a plasma formed in a low-pressure (1 to 10 Torr) gas cell between two electrodes. Depending on the configuration, voltages ranging from 200 V and above are required to sustain the discharge. In the discharge region, the gas is ionized and a certain population is in the excited state. Light is produced by the transitions from the excited states formed in the plasma to the ground state. The spectrum consists of discrete, narrow emission lines for the atomic species, and broader peaks that may appear as a manifold for molecular species such as O2 and N2, the wavelengths and intensities of which are a characteristic of each atom. The oxygen emission is dominated by two peaks at 777 and 844 nm.

  4. Effect of oxygen partial pressure on oxidation of Mo-metal

    Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.

    2018-05-01

    This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.

  5. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  6. Determination of in vitro oxygen consumption rates for tumor cells

    Cardenas-Navia, L.I.; Moeller, B.J.; Kirkpatrick, J.P.; Laursen, T.A.; Dewhirst, M.W.

    2003-01-01

    To determine pO 2 at the surface of a monolayer of confluent HCT 116 cells, and to then determine consumption rate in vitro by examining the pO 2 profile in media above the cells. Materials and Methods: A recessed-tip polarographic oxygen microelectrode (diameter ∼10μm) was used to measure pO 2 profiles of media above a confluent monolayer of HCT 116 human colon adenocarcinoma cells in a T25 flask exposed to a 95% air, 5% CO 2 mixture. A two-dimensional finite element analysis of the diffusion equation was used to fit the data, thereby extracting a steady-state O 2 consumption rate. The diffusion equation was solved for zeroth and first-order expressions. No-flux boundary conditions were imposed on its bottom and side boundaries and experimental data was used for boundary conditions at the gas-media boundary. All flasks show an O 2 gradient in the media, with a mean (SE) media layer of 1677 (147) μm and a mean pO 2 at the cell layer/media interface of 44 (8) mm Hg (n=9). pO 2 gradient over the entire media layer is 630 (90) mm Hg/cm, equivalent to a consumption rate of 6.3 x 10 -4 (9.0 x 10 -5 ) mm Hg/s. The mean values for the zeroth and first order rate constants are 8.1 x 10 -9 (1.3 x 10 -9 ) g mol O 2 /cm 3 s and 1.0 x 10 3 (0.46 x 10 3 ) /s, respectively. Control experiments in flasks containing no cells show slight gradients in pO 2 of 38 (12) mm Hg/cm, resulting from some O 2 diffusion through the flask into the surrounding water bath. An addition of 10 -3 M NaCN to the media results in a dramatic increase in pO 2 at the cell layer, consistent with a shut-down in respiration. Under normal cell culture conditions there is an O 2 gradient present in the media of cull culture systems, resulting in physiologic O 2 concentrations at the cell layer, despite the non-physiologic O 2 concentration of the gas mixture to which the cell culture system is exposed. This significant (p -6 ) O 2 gradient in the media of cell culture systems is a result of cell O 2

  7. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  8. X-ray fluorescence spectroscopic determination of heavy metals and ...

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  9. Determination of Levels of Essential and Toxic Heavy Metals in ...

    The concentrations of trace essential metals (Co, Cu, Fe, Mn, Ni and Zn) and toxic heavy metals (Cd and Pb) in lentil samples collected from Dejen (East Gojjam), Boset (East Shewa) and Molale (North Shewa), Ethiopia, were determined by flame atomic absorption spectrometry. A wet digestion procedure, using mixtures of ...

  10. Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.

    Jiang, Hao; Stewart, Derek A

    2017-05-17

    Introducing dopants is an important way to tailor and improve electronic properties of transition metal oxides used as high-k dielectric thin films and resistance switching layers in leading memory technologies, such as dynamic and resistive random access memory (ReRAM). Ta 2 O 5 has recently received increasing interest because Ta 2 O 5 -based ReRAM demonstrates high switching speed, long endurance, and low operating voltage. However, advances in optimizing device characteristics with dopants have been hindered by limited and contradictory experiments in this field. We report on a systematic study on how various metal dopants affect oxygen vacancy formation in crystalline and amorphous Ta 2 O 5 from first principles. We find that isoelectronic dopants and weak n-type dopants have little impact on neutral vacancy formation energy and that p-type dopants can lower the formation energy significantly by introducing holes into the system. In contrast, n-type dopants have a deleterious effect and actually increase the formation energy for charged oxygen vacancies. Given the similar doping trend reported for other binary transition metal oxides, this doping trend should be universally valid for typical binary transition metal oxides. Based on this guideline, we propose that p-type dopants (Al, Hf, Zr, and Ti) can lower the forming/set voltage and improve retention properties of Ta 2 O 5 ReRAM.

  11. Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction

    Mingyan Wang

    2017-07-01

    Full Text Available In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin –MtTMPyP (Mt= Cobalt (II, Manganese (III, or Iron (III; TMPyP = 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl porphyrin intercalated into the layer of graphene oxide (GO by the cooperative effects of electrostatic and π–π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2D MtTMPyP/rGOn were fabricated. The as-prepared 2D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction (ORR in an alkaline medium. The MtTMPyP/rGOn hybrids, especially CoTMPyP/rGO5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries. Keywords: Metal porphyrin, Reduced graphene oxide, Intercalation, Oxygen reduction reaction, Catalyst

  12. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  13. Solubility of metallic elements in LBE under extra low oxygen potential. JFY2001 joint research report

    Sano, Hiroyuki; Fujisawa, Toshiharu

    2002-03-01

    Lead-Bismuth eutectic alloy (LBE) has been considered as a prospective coolant for a fast-breeder reactor. However a corrosion of cooling pipe is anticipated when it is used at the similar temperature as sodium coolant. In this study, solubility of major metallic elements in LBE is to be measured under extra low oxygen potential. The interactive effect of those elements on the solubility is also to be examined. As a first step, measurements of the solubility of iron in LBE at 673 K were conducted where the partial pressure of oxygen was controlled by using equilibrium between iron and its oxide. Several experimental runs were conducted. But relationship between iron content and oxygen content in LBE could not be defined precisely, because chemical reactions proceeded very slowly at such a low temperature and reliable enough data have not been obtained yet until now. Based on the above results, following subjects were extracted for JFY2002 study. (1) To establish the method of quantitative analysis of oxygen content in LBE. (2) To obtain the solubility data at elevated temperature, then approach to lower temperature. (3) To control the oxygen partial pressure in LBE by CO-CO 2 mixed gases supply. (author)

  14. Potential barrier heights at metal on oxygen-terminated diamond interfaces

    Muret, P., E-mail: pierre.muret@neel.cnrs.fr; Traoré, A.; Maréchal, A.; Eon, D. [Inst. NEEL, Univ. Grenoble Alpes, F-38042 Grenoble, France and CNRS, Inst. NEEL, F-38042 Grenoble (France); Pernot, J. [Univ. Grenoble Alpes, Inst. NEEL, F-38042 Grenoble, (France); CNRS, Inst. NEEL, F-38042 Grenoble, (France); Institut Universitaire de France, 103 Boulevard Saint-Michel, F-75005 Paris (France); Pinero, J. C.; Villar, M. P.; Araujo, D., E-mail: daniel.araujo@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510 Puerto Real (Cádiz) (Spain)

    2015-11-28

    Electrical properties of metal-semiconductor (M/SC) and metal/oxide/SC structures built with Zr or ZrO{sub 2} deposited on oxygen-terminated surfaces of (001)-oriented diamond films, comprised of a stack of lightly p-doped diamond on a heavily doped layer itself homoepitaxially grown on an Ib substrate, are investigated experimentally and compared to different models. In Schottky barrier diodes, the interfacial oxide layer evidenced by high resolution transmission electron microscopy and electron energy losses spectroscopy before and after annealing, and barrier height inhomogeneities accounts for the measured electrical characteristics until flat bands are reached, in accordance with a model which generalizes that by Tung [Phys. Rev. B 45, 13509 (1992)] and permits to extract physically meaningful parameters of the three kinds of interface: (a) unannealed ones, (b) annealed at 350 °C, (c) annealed at 450 °C with the characteristic barrier heights of 2.2–2.5 V in case (a) while as low as 0.96 V in case (c). Possible models of potential barriers for several metals deposited on well defined oxygen-terminated diamond surfaces are discussed and compared to experimental data. It is concluded that interface dipoles of several kinds present at these compound interfaces and their chemical evolution due to annealing are the suitable ingredients that are able to account for the Mott-Schottky behavior when the effect of the metal work function is ignored, and to justify the reverted slope observed regarding metal work function, in contrast to the trend always reported for all other metal-semiconductor interfaces.

  15. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  16. Determination of heavy metals and genotoxicity of water from an ...

    Determination of heavy metals and genotoxicity of water from an artesian well ... do Amaral, Vanessa Marques de Oliveira Moraes, Luciana Pereira Silva ... environmental interest because it is the most important zinc producer district of Brazil.

  17. metal content determination of some sexual dysfunction medicine

    userpc

    METAL CONTENT DETERMINATION OF SOME SEXUAL DYSFUNCTION. MEDICINE ... motivation for sexual desire, functioning and response .... generated and optimization of the equipment ... by the users' have to be moderate otherwise it.

  18. Determination of Heavy Metals in Leaves of Mangifera Indica ...

    Mango), Psidium guajava L. (Guava) and Anacardium occidentale L. (Cashew) grown in Trikania around the industrial area, were determined by atomic absorption spectrophotometry. The differences in the bioaccumulation of the metals varied.

  19. Determinants of maximal oxygen uptake in severe acute hypoxia

    Calbet, J A L; Boushel, Robert Christopher; Rådegran, G

    2003-01-01

    To unravel the mechanisms by which maximal oxygen uptake (VO2 max) is reduced with severe acute hypoxia in humans, nine Danish lowlanders performed incremental cycle ergometer exercise to exhaustion, while breathing room air (normoxia) or 10.5% O2 in N2 (hypoxia, approximately 5,300 m above sea......: 1) reduction of PiO2, 2) impairment of pulmonary gas exchange, and 3) reduction of maximal cardiac output and peak leg blood flow, each explaining about one-third of the loss in VO2 max....

  20. Determination of Sugar and Some Trace Metals Content in Selected ...

    Ten brands of commercial fruit juices were analyzed for pH, specific gravity, total solids, reducing sugar and total sugar trace metals contents. The pH was determined using a Hanna pH meter. Sugar content was determined using the Lane and Eynon method. Sodium and potassium were determined by flame photometry ...

  1. Determination of accurate metal silicide layer thickness by RBS

    Kirchhoff, J.F.; Baumann, S.M.; Evans, C.; Ward, I.; Coveney, P.

    1995-01-01

    Rutherford Backscattering Spectrometry (RBS) is a proven useful analytical tool for determining compositional information of a wide variety of materials. One of the most widely utilized applications of RBS is the study of the composition of metal silicides (MSi x ), also referred to as polycides. A key quantity obtained from an analysis of a metal silicide is the ratio of silicon to metal (Si/M). Although compositional information is very reliable in these applications, determination of metal silicide layer thickness by RBS techniques can differ from true layer thicknesses by more than 40%. The cause of these differences lies in how the densities utilized in the RBS analysis are calculated. The standard RBS analysis software packages calculate layer densities by assuming each element's bulk densities weighted by the fractional atomic presence. This calculation causes large thickness discrepancies in metal silicide thicknesses because most films form into crystal structures with distinct densities. Assuming a constant layer density for a full spectrum of Si/M values for metal silicide samples improves layer thickness determination but ignores the underlying physics of the films. We will present results of RBS determination of the thickness various metal silicide films with a range of Si/M values using a physically accurate model for the calculation of layer densities. The thicknesses are compared to scanning electron microscopy (SEM) cross-section micrographs. We have also developed supporting software that incorporates these calculations into routine analyses. (orig.)

  2. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    Silva, J.R.M. da.

    1978-01-01

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O 16 than the patterns from marine environments. The C 12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.) [pt

  3. Thermodynamic Considerations of Direct Oxygen Removal from Titanium by Utilizing the Deoxidation Capability of Rare Earth Metals

    Okabe, Toru H.; Zheng, Chenyi; Taninouchi, Yu-ki

    2018-06-01

    Oxygen removal from metallic Ti is extremely difficult and, currently, there is no commercial process for effectively deoxidizing Ti or its alloys. The oxygen concentration in Ti scraps is normally higher than that in virgin metals such as in Ti sponges produced by the Kroll process. When scraps are remelted with virgin metals for producing primary ingots of Ti or its alloys, the amount of scrap that can be used is limited owing to the accumulation of oxygen impurities. Future demands of an increase in Ti production and of mitigating environmental impacts require that the amount of scrap recycled as a feed material of Ti ingots should also increase. Therefore, it is important to develop methods for removing oxygen directly from Ti scraps. In this study, we evaluated the deoxidation limit for β-Ti using Y or light rare earth metals (La, Ce, Pr, or Nd) as a deoxidant. Thermodynamic considerations suggest that extra-low-oxygen Ti, with an oxygen concentration of 100 mass ppm or less can be obtained using a molten salt equilibrating with rare earth metals. The results presented herein also indicate that methods based on molten salt electrolysis for producing rare earth metals can be utilized for effectively and directly deoxidizing Ti scraps.

  4. Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome.

    Park, Marcelo; Costa, Eduardo Leite Vieira; Maciel, Alexandre Toledo; Silva, Débora Prudêncio E; Friedrich, Natalia; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Schettino, Guilherme; Azevedo, Luciano Cesar Pontes

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) has gained renewed interest in the treatment of respiratory failure since the advent of the modern polymethylpentene membranes. Limited information exists, however, on the performance of these membranes in terms of gas transfers during multiple organ failure (MOF). We investigated determinants of oxygen and carbon dioxide transfer as well as biochemical alterations after the circulation of blood through the circuit in a pig model under ECMO support before and after induction of MOF. A predefined sequence of blood and sweep flows was tested before and after the induction of MOF with fecal peritonitis and saline lavage lung injury. In the multivariate analysis, oxygen transfer had a positive association with blood flow (slope = 66, Pmembrane PaCO(2) (slope = -0.96, P = 0.001) and SatO(2) (slope = -1.7, Ptransfer had a positive association with blood flow (slope = 17, Pmembrane PaCO(2) (slope = 1.2, Ptransfers were significantly determined by blood flow. Oxygen transfer was modulated by the pre-membrane SatO(2) and CO(2), while carbon dioxide transfer was affected by the gas flow, pre-membrane CO(2) and hemoglobin.

  5. DETERMINATION OF METAL IONS RELEASED BY STAINLESS ...

    The amounts of cobalt, iron, manganese, nickel and chromium ions released from new and reused stainless steel arch bar used for maxillomandibular fixation was determined in Hank's solutions of different hydrogen and chloride ions concentrations, whole blood serum and phosphate buffered saline (PBS) in vitro, over a ...

  6. Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium–Oxygen Batteries

    Liu, Bin; Yan, Pengfei; Xu, Wu; Zheng, Jianming; He, Yang; Luo, Langli; Bowden, Mark E.; Wang, Chong-Min; Zhang, Ji-Guang

    2016-08-10

    Lithium-oxygen (Li-O2) battery has an extremely high theoretical specific energy density as compared with conventional energy storage systems. However, practical application of Li-O2 battery system still faces significant challenges, especially its poor cyclability. In this work, we report a new approach to synthesis ultrafine metal oxide nanocatalysts through an electrochemical pre-lithiation process. This process reduces the size of NiCo2O4 (NCO) particles from 20~30 nm to a uniformly distributed domain of ~ 2 nm and largely improved their catalytic activity. Structurally, the pre-lithiated NCO NWs are featured by ultrafine NiO/CoO nanoparticles, which show high stability during prolonged cycles in terms of morphology and the particle size, therefore maintaining an excellent catalytic effect to oxygen reduction and evolution reactions. Li-O2 battery using this catalyst has demonstrated an initial capacity of 29,280 mAh g-1 and has retained a stable capacity of over 1,000 mAh g-1 after 100 cycles based on the weight of NCO active material. Direct in-situ TEM observation conclusively reveals the lithiation/delithiation process of as-prepared NCO NWs, clarifying the NCO/Li electrochemical reaction mechanism that can be extended to other transition-metal oxides and providing the in depth understandings on the catalysts and battery chemistries of other ternary transition-metal oxides.

  7. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    Dong, Qiang, E-mail: dong@tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan); Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro [Department of Research Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae cho-7, Kofu 400-8511 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577 (Japan)

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  8. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  9. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration. II. Oxygen nonstoichiometry and defect model for La0.8Sr0.2CoO3-d

    Lankhorst, M.H.R.; Lankhorst, M.H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    The oxygen nonstoichiometry of La0.8Sr0.2CoO3-delta has been determined as a function of oxygen partial pressure and temperature using a high-temperature coulometric titration cell. For each measured value of the oxygen chemical potential, the oxygen nonstoichiometry is found to be nearly

  10. Determination of carbon in uranium and its compounds; Determinacion de carbono en uranio metal y sus compuestos

    Perez-Garcia, M M

    1972-07-01

    This paper collects the analytical methods used our laboratories for the determination of carbon in uranium metal, uranate salts and the oxides, fluorides and carbides of uranium. The carbon is usually burned off in a induction or resistance oven under oxygen flow. The CO{sub 2} is collected in barite solution. Where it is backtitrated with potassium biphthalate. (Author)

  11. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  12. Neutron activation determination of oxygen in ceramic materials on the basis of yttrium, barium and copper

    Goldshtein, M.M.; Yudelevich, I.G.

    1991-01-01

    A procedure of determining oxygen in superconducting materials on the basis of yttrium, barium and copper oxides with the application of 14 MeV-neutron activation was developed. The method is based on determining the relation between oxygen and yttrium in the compounds investigated. In order to minimize systematic errors, expressions accounting for spectrometer dead time under conditions of varying component activity are proposed. The procedure ensures determination of the relation between oxygen and yttrium with a relative error of 0.4% with NAA using a neutron generator. (author) 4 refs.; 1 fig

  13. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  14. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  15. Experience of the use of γ photon activation analysis for the determination of oxygen in sodium

    Hislop, J.S.; Wood, D.A.; Thompson, R.

    1981-01-01

    The use of γ photon activation analysis for determination of the oxygen content of sodium in an experimental rig used for evaluation of electrochemical oxygen meters is described. A sampling procedure has been developed, using a thin walled nickel tube to act both as the sample collector and irradiation container, which does not require the sophisticated sampling facilities necessary when using more conventional methods of analysis. Results have been obtained for oxygen content of sodium over the nominal temperature range 125-250 0 C and the resulting oxygen solubility relationship compared with literature values. Good agreement has been obtained with previous UK vacuum distillation data. (orig.)

  16. Determination of Toxic Metals in Indian Smokeless Tobacco Products

    Dhanashri Dhaware

    2009-01-01

    Full Text Available This study targets the lesser-known ingredients of smokeless tobacco products, i.e., the toxic metals, in Indian brands. The metals selected in the study included lead (Pb, cadmium (Cd, arsenic (As, copper (Cu, mercury (Hg, and selenium (Se. The differential pulse anodic stripping voltammetry (DPASV technique was used for estimating the metals Pb, Cd, and Cu; square wave voltammetry for As; and the cold vapor atomic absorption technique for Hg. The resulting levels of the metals were compared to the daily consumption of the smokeless tobacco products. It was observed that almost 30% of gutkha brand samples exceeded the permissible levels of metals Pb and Cu, when compared to the provisional tolerable intake limits determined by the FAO/WHO. The reliability of data was assured by analyzing standard reference materials.

  17. Improvements in or relating to processes for reducing the oxygen content of metal oxides

    James, R.H.; Spooner, J.A.

    1980-01-01

    A process is described for reducing the oxygen content of a metal oxide material (such as an intimate mixture of uranium and plutonium oxides or a mixed oxide of uranium and plutonium) by contacting the material with a hydrogen-containing gas at an elevated temperature, wherein the material is contained in a plurality of carbon crucibles, each crucible having apertured ends and being otherwise a closed vessel, the crucibles being moved through a heated zone in end-to-end contact and thereby forming a duct through which the gas is passed counter-current to the direction of movement of the crucibles. (author)

  18. Gas chromatographic method fr determination of carbon in metallic uranium

    Nikol'skij, V.A.; Markov, V.K.; Evseeva, T.I.; Cherstvenkova, E.P.

    1983-01-01

    Gas chromatographic device to determine carbon in metal uranium is developed. Burnout unite, permitting to load in the burnout tube simultaneously quite a few (up to 20) weight amounts of materials to be burned is a characteristic feature of the device. As a result amendments for control experiment and determination limit are decreased. The time of a single determination is also reduced. Conditions of carbon burn out from metal uranium are studied and temperature and time of complete extraction of carbon in the form of dioxide from weight amount into gaseous phase are established

  19. Pressure-induced magnetic collapse and metallization of molecular oxygen: The ζ-O2 phase

    Serra, S.; Chiarotti, G.; Scandolo, S.; Tosatti, E.

    1998-01-01

    The behavior of solid oxygen in the pressure range between 5-116 GPa is studied by ab-initio simulations, showing a spontaneous phase transformation from the antiferromagnetic insulating δ-O 2 phase to a non-magnetic, metallic molecular phase. The calculated static structure factor of this phase is in excellent agreement with X-ray diffraction data in the metallic ζ-O 2 phase above 96 GPa. We thus propose that ζ-O 2 should be base centered monoclinic with space group C2/m and 4 molecules per cell, suggesting a re-indexing of the experimental diffraction peaks. Physical constraints on the intermediate-pressure ε - O 2 phase are also obtained. (author)

  20. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  1. Spectrochemical determination of impurities and noble metal traces in carnallite

    Goldbart, Z.; Carmi, U.; Harrel, A.

    1978-02-01

    A spectrochemical method was developed for the determination of impurities and noble metal traces in carnallite by DC arc excitation. The investigated sample is brought to a standard form of potassium-magnesium sulphate mixed with graphite. Detection limits of 1-10 ppm were determined for 27 elements; the dynamical detection range is 1-400 ppm

  2. Determination of trace metals in river sediment

    Smith, R.

    1984-01-01

    This study forms part of the NIWR's series of interlaboratory comparison studies involving southern African laboratories engaged in water and wastewater analysis, and is concerned with the analysis by 21 laboratories of a standard reference sample of river sediment for arsenic, cadmium, cobalt, copper, lead, manganese, mercury, nickel and zinc. The results obtained are evaluated and discussed, along with some of the advantages and disadvantages of various sample pretreatment techniques. The mean values of the results obtained for Cu, Hg, Pb, Ni and Zn were found to be in good agreement with the certified values for the standard reference sample, but those for Cd and Mn were considerably lower than the corresponding certified values. A fairly wide range of acid extraction or digestion procedures for pretreatment of the sample was used by the participating laboratories, most of whom employed direct flame atomic absorption spectrophotometry for the measurement of Cd, Co, Cu, Pb, Mn, Ni, and Zn. The few laboratories who determined As and Hg did so mainly by means of vapour generation/atomic absorption techniques

  3. Activation autoradiography: imaging and quantitative determination of endogenous and exogenous oxygen in the rat brain

    Kawashima, K.; Iwata, R.; Kogure, K.; Ohtomo, H.; Orihara, H.; Ido, T.

    1987-01-01

    Endogenous and exogenous oxygen in the rat brain were quantitatively determined using an autoradiographic technique. The oxygen images of frozen and dried rat brain sections were obtained as 18 F images by using the 16 O ( 3 He,p) 18 F reaction for endogenous 16 O images and the 18 O(p,n) 18 F reaction for endogenous and exogenous 18 O images. These autoradiograms demonstrated the different distribution of oxygen between gray and white matter. These images also allowed differentiation of the individual structures of hippocampal formation, owing to the differing water content of the various structures. Local oxygen contents were quantitatively determined from autoradiograms of brain sections and standard sections with known oxygen contents. The estimated values were 75.6 +/- 4.6 wt% in gray matter and 72.2 +/- 4.0 wt% in white matter. The systematic error in the present method was estimated to be 4.9%

  4. Isolation Of PS II Nanoparticles And Oxygen Evolution Studies In Synechococcus Spp. PCC 7942 Under Heavy Metal Stress

    Ahmad, Iffat Zareen; Sundaram, Shanthy; Tripathi, Ashutosh; Soumya, K. K.

    2009-06-01

    The effect of heavy metals was seen on the oxygen evolution pattern of a unicellular, non-heterocystous cyanobacterial strain of Synechococcus spp. PCC 7942. It was grown in a BG-11 medium supplemented with heavy metals, namely, nickel, copper, cadmium and mercury. Final concentrations of the heavy metal solution used in the culture were 0.1, 0.4 and 1 μM. All the experiments were performed in the exponential phase of the culture. Oxygen-evolving photosystem II (PS II) particles were purified from Synechococcus spp. PCC 7942 by a single-step Ni2+-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. Oxygen evolution was measured with Clark type oxygen electrode fitted with a circulating water jacket. The light on the surface of the vessel was 10 w/m2. The cultures were incubated in light for 15 minutes prior to the measurement of oxygen evolution. Oxygen evolution was measured in assay mixture containing phosphate buffer (pH-7.5, 0.1 M) in the presence of potassium ferricyanide as the electron acceptor. The preparation from the control showed a high oxygen-evolving activity of 2, 300-2, 500 pmol O2 (mg Chl)-1 h-1 while the activity was decreased in the cultures grown with heavy metals. The inhibition of oxygen evolution shown by the organism in the presence of different metals was in the order Hg>Ni>Cd>Cu. Such heavy metal resistant strains will find application in the construction of PS II- based biosensors for the monitoring of pollutants.

  5. Blood oxygen saturation determined by transmission spectrophotometry of hemolyzed blood samples

    Malik, W. M.

    1967-01-01

    Use of the Lambert-Beer Transmission Law determines blood oxygen saturation of hemolyzed blood samples. This simplified method is based on the difference in optical absorption properties of hemoglobin and oxyhemoglobin.

  6. Control and monitoring of oxygen content in molten metals. Application to lead and lead-bismuth melts

    Ghetta, V.; Fouletier, J.; Henault, M.; Le Moulec, A.

    2002-01-01

    The sources of error in potentiometric measurements of the oxygen activity in molten metals and the methods proposed to reduce these measurements errors are described. Specific constraints related to low temperature measurements are emphasized. Two set-ups for control of the oxygen activity in molten lead and lead-bismuth were developed. They involve zirconia-based cells, i.e., an oxygen pump and an oxygen probe. The performance of the set-ups was characterized attempts to reduce the working temperature (T<450 deg C) are discussed. (authors)

  7. Determination of occluded helium and oxygen in irradiated borosilicate glass samples

    Ramanjaneyulu, P.S.; Kulkarni, A.S.; Shrivastava, K.C.; Yadav, C.S.; Saxena, M.K.; Tomar, B.S.; Ramakumar, K.L.; Shah, J.G.

    2015-01-01

    Occluded gases in irradiated borosilicate glass were determined at 573, 873 and 1273 K for understanding the radiation damage in glass matrix. Hot vacuum extraction coupled with a quadrupole mass spectrometer technique was employed for the measurements. Relative sensitivity factors of various gases in QMS system were also determined and used for gas composition calculations. At 573 K only helium was found to get released whereas at 873 and 1273 K both helium and oxygen were released with major fraction of oxygen. (author)

  8. Wüstite in the fusion crust of Almahata Sitta sulfide-metal assemblage MS-166: Evidence for oxygen in metallic melts

    Horstmann, Marian; Humayun, Munir; Harries, Dennis; Langenhorst, Falko; Chabot, Nancy L.; Bischoff, Addi; Zolensky, Michael E.

    2013-05-01

    Meteorite fusion crusts form during the passage of a meteoroid through the Earth's atmosphere and are highly oxidized intergrowths as documented by the presence of e.g., oxides. The porous and irregular fusion crust surrounding the Almahata Sitta sulfide-metal assemblage MS-166 was found highly enriched in wüstite (Fe1-xO). Frictional heating of the outer portions of the assemblage caused partial melting of predominantly the Fe-sulfide and minor amounts of the outer Ni-rich portions of the originally zoned metal in MS-166. Along with melting significant amounts of oxygen were incorporated into the molten fusion crust and mainly FeS was oxidized and desulfurized to form wüstite. Considerable amounts of FeS were lost due to ablation, whereas the cores of the large metal grains appear largely unmelted leaving behind metal grains and surrounding wüstite-rich material (matte). Metal grains along with the surrounding matte typically form an often highly porous framework of globules interconnected with the matte. Although textures and chemical composition suggest that melting of Fe,Ni metal occurred only partially (Ni-rich rims), there is a trace elemental imprint of siderophile element partitioning influenced by oxygen in the metallic melt as indicated by the behavior of W and Ga, the two elements significantly affected by oxygen in a metallic melt. It is remarkable that MS-166 survived the atmospheric passage as troilite inclusions in iron meteorites are preferentially destroyed.

  9. Electrochemical determination of oxygen stoichiometry and entropy in oxides

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Skaarup, Steen

    1996-01-01

    in the temperature range 800-1000 degrees C. With scan rates of 2 mu V/s potential sweeps on CeO2 are reversible. The change in entropy is determined by either subtraction of e.m.f. curves obtained by potential sweeps of different temperatures or by measuring the e.m.f. during a temperature scan. The latter method...

  10. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  11. Determination of the Minimal Fresh Gas Flow to Maintain a Therapeutic Inspired Oxygen Concentration in a Semi-Closed Anesthesia Circle System Using an Oxygen Concentrator as the Oxygen Source

    Grano, Joan

    2001-01-01

    The purpose of this study was to determine the rate of oxygen dilution, resulting from argon accumulation, using 3 low fresh gas flow rates using an oxygen concentrator in a semi-closed anesthesia circle system...

  12. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  13. Gravimetric determination of beryllium in the presence of transition metals

    Morozova, S.S.; Nikitina, L.V.; Dyatlova, N.M.; Serebryakova, G.V.; Vol'nyagina, A.N.

    1976-01-01

    A new organic reagent, nitrolotrimethylphosphonic acid (H 6 L), is proposed for gravimetric determination of beryllium. This complexone forms with Be hardly soluble complexes in a wide pH range. The separated complex has a composition Be 5 (HL) 2 x10H 2 O. To elucidate the possibility of determining Be in the presence of transition metals, often accompanying beryllium in alloys, interaction of cations of these metals with H 6 L at different pH has been studied potentiometrically. It has been established that at pH=1.1 in the presence of masking reagent (diethylentriaminopentacetic acid) Be can be determined when zinc, copper, chromium, cobalt, nickel, iron, manganese and cadmium are present. Gravimetric method of determining Be with the help of H 6 L has been developed. The weight form is obtained by drying the precipitate which reduces considerably the time of analysis and the error of determination

  14. Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

    Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola

    2018-05-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

  15. A highly accurate method for determination of dissolved oxygen: Gravimetric Winkler method

    Helm, Irja; Jalukse, Lauri; Leito, Ivo

    2012-01-01

    Highlights: ► Probably the most accurate method available for dissolved oxygen concentration measurement was developed. ► Careful analysis of uncertainty sources was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. ► This development enables more accurate calibration of dissolved oxygen sensors for routine analysis than has been possible before. - Abstract: A high-accuracy Winkler titration method has been developed for determination of dissolved oxygen concentration. Careful analysis of uncertainty sources relevant to the Winkler method was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. The most important improvements were: gravimetric measurement of all solutions, pre-titration to minimize the effect of iodine volatilization, accurate amperometric end point detection and careful accounting for dissolved oxygen in the reagents. As a result, the developed method is possibly the most accurate method of determination of dissolved oxygen available. Depending on measurement conditions and on the dissolved oxygen concentration the combined standard uncertainties of the method are in the range of 0.012–0.018 mg dm −3 corresponding to the k = 2 expanded uncertainty in the range of 0.023–0.035 mg dm −3 (0.27–0.38%, relative). This development enables more accurate calibration of electrochemical and optical dissolved oxygen sensors for routine analysis than has been possible before.

  16. Determination of some heavy metals concentration in the tissues of ...

    Lead (Pb), Cobalt (Co), and Copper (Cu) concentrations were determined in bone, muscle and gill of two fish species (tilapia fish and cat-fish) collected from Tiga dam Kano, Nigeria during October, 2010. The mean concentrations of the heavy metals varied depending on the type of the tissue and fish species. Generally ...

  17. Determination of liquid metal density using X-radiography

    Mel'nik, B.A.

    1978-01-01

    A method for measuring molten metal densities based on the determination of the critical angle of complete external X-ray reflection angle is proposed. A good agreement between the experimental and reported data is exemplified by density measurements of liquid Ga, In and Hg at different temperatures. The theoretical method accuracy is 0.2%

  18. Determination of Heavy Metal Ions in Tobacco and Tobacco Additives

    NJD

    This paper describes a new method for the simultaneous determination of heavy metal ions in tobacco and tobacco additives by ... The HPLC system consisted of a Waters 2690 Alliance separation ..... 1 Z.H. Shi and C.G. Fu, Talanta, 1997, 44, 593. ... 5 Q.F. Hu, G.Y. Yang, J.Y. Yin and Y. Yao, Talanta, 2002, 57, 751.

  19. Photon Doppler Velocimeter to Measure Entrained Additive Manufactured Bulk Metal Powders in Hot Subsonic and Supersonic Oxygen Gas

    Tylka, Jonathan

    2016-01-01

    Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.

  20. Determination of the levels of heavy metals in cocoa products

    Dankyi Enock

    2009-06-01

    Fermented and dried cocoa beans from all the major cocoa-producing regions in Ghana were analyzed for levels of the following heavy metals: arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel and zinc. The shells of the beans which usually do not form a part of the edible portion of the beans were removed and analyzed separately from the cocoa nibs (de-shelled beans) for all the elements above. To determine the distribution of metals during processing of the beans soxhlet extractions of fat from pulverised cocoa nibs was performed and cocoa powders obtained analyzed for their levels of heavy metals. Three commercial brands of 'natural' cocoa powders on the local market were also analyzed to determine the levels of these metals. The analyses were performed using an inductively coupled plasma - optical emission spectrophotometer (ICP-OES) following a microwave-assisted digestion process. The levels of toxic metals lead, cadmium and arsenic were found to be low (≤ 0.020 μg/g, ≤ 0.087 μg/g, < 0.001 μg/g, respectively) and well within the acceptable limits set by the WHO (0.100 μg/g, 0.100 μg/g, and 0.010 μg/g respectively). However, the levels of zinc copper, iron and manganese were however quite high. With a high fat content of the cocoa beans (approximately 50%) and greater portioning of metals into the non-fat portions of the beans, metals levels were considerably higher (almost double) in processed cocoa than in the cocoa itself. (au)

  1. Magnetism and metal-insulator transition in oxygen deficient SrTiO3

    Lopez-Bezanilla, Alejandro; Ganesh, P.; Littlewood, Peter

    2015-03-01

    We report new findings in the electronic structure and magnetism of oxygen vacancies in SrTiO3. By means of first-principles calculations we show that the appearance of magnetism in oxygen-deficient SrTiO3 is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. While an isolated vacancy behaves as a non-magnetic double donor, manipulation of the doping conditions allows the stability of a single donor state with emergent local moments. Strong local lattice distortions enhance the binding of this state. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient SrTiO3, which may have important implications in the design of switchable magneto-optic devices. AL-B and PBL were supported by DOE-BES under Contract No. DE-AC02-06CH11357. PG was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT- Battelle, LLC, for the US Department of Energy.

  2. Spectrophotometric determination of some metal ions using hydrazones

    Mohammed, M. S.

    2000-05-01

    In this research many starting materials were prepared, like methyl salicylate and salicylic acid hydrazide from which different derivatives of hydrazones were synthesized by coupling with carbonyl compounds like benzil monoxime and benzil mono hydrazone which are prepared and others like salicylaldehyde and benzoin. The hydrazones that were synthesized are salicylaldehyde salicylic acid hydrazone, benzoin salicylic acid hydrazone, benzil mono hydrazone salicylic acid hydrazone and benzil monoxime salicylic acid hydrazone. These reagents were determined by different methods, IR spectrophotometric determination, the nitrogen content method and melting point determination. These hydrazones act as ligands for determination of some metal ions by making different coloured complexes that were prepared for eight hydrazones with eight metal ions U (VI), Fe (II), Fe (III), Co (II), V (II), Mo (VI), Ni (II) and Cu (II). These complexes were determined by ultraviolet and visible spectrophotometer (UV/VIS) to detect their absorbance and wavelengths (λ max). The two hydrazones salicylaldehyde salicylic acid-hydrazone and benzoin salicylic acid hydrazone, were selected for determination of five metal ions (Fe (II), Fe (III), U (VI), Ni (II) and Cu (II)), using two micelles sodium n-dodecyl sulphate and pyridinium hexa decyl bromide mono hydrate. Their absorbance and wavelengths were detected using UV/VIS spectrophotometer. (Author)

  3. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.

    Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan

    2017-08-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Dual Nature of Metallothioneins in the Metabolism of Heavy Metals and Reactive Oxygen Species in Aquatic Organisms: Implications of Use as a Biomarker of Heavy-Metal Effects in Field Investigations

    F. Gagné

    2008-01-01

    Full Text Available The purpose of this study was to examine the function of metallothioneins (MT in respect to the mobilization of heavy metals and superoxide anion (O 2 – scavenging in aquatic organisms. Using an O 2 – generating system, liberation of free zinc from native and zinc MT (Zn-MT was measured in vitro. Addition of the O 2 – generating system and H 2 O 2 readily increased the di- and trimeric forms of MT as determined by gel electrophoresis analysis. To determine whether the proportion of oxidized MT could change in contaminated environments, metal-contaminated Mya arenaria clams were collected from a harbour in the St. Lawrence Estuary. The levels of labile zinc, superoxide dismutase (O 2 – scavenging enzyme, lipid peroxidation (LPO and the oxidized/metallic form of MT were determined in the digestive gland. The results revealed that the induction of total MT levels was the result of increased oxidized MT at the expense of the reduced or metallic form of MT. Both superoxide dismutase (SOD and labile zinc (Zn levels were induced and they were significantly correlated with the oxidized form of MT, but not the metallic form, in feral clam populations. We concluded that the level of total MT was related to Zn mobility and the activation of antioxidant mechanisms such as SOD, and corresponded to the levels of oxidized MT. The metallic form of MT was negatively associated with Zn mobility but positively associated with oxidative damage such as LPO. Overall, the oxidized fraction of MT appeared to be more closely related to detoxification, while the metallic form of MT was associated with metal mobility and toxicity via oxidative damage. The protective effect of MT during heavy-metal contamination depends on the availability of metals and on its capacity to sequester reactive oxygen species.

  5. Role of oxygen in surface segregation of metal impurities in silicon poly- and bicrystals

    Amarray, E.; Deville, J.P.

    1987-07-01

    Metal impurities at surfaces of polycrystalline silicon ribbons have been characterized by surface sensitive methods. Oxygen and heat treatments were found to be a driving force for surface segregation of these impurities. To better analyse their influence and their possible incidence in gettering, model studies were undertaken on Czochralski grown silicon bicrystals. Two main factors of surface segregation have been studied: the role of an ultra-thin oxide layer and the effect of heat treatments. The best surface purification was obtained after an annealing process at 750/sup 0/C of a previously oxidized surface at 450/sup 0/C. This was related to the formation of SiO clusters, followed by a coalescence of SiO/sub 4/ units leading to the subsequent injection of silicon self-interstitials in the lattice.

  6. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    Andrews, Mark

    1997-01-08

    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  7. Ground state oxygen holes and the metal-insulator transition in rare earth nickelates

    Schmitt, Thorsten; Bisogni, Valentina; Huang, Yaobo; Strocov, Vladimir [Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Catalano, Sara; Gibert, Marta; Scherwitzl, Raoul; Zubko, Pavlo; Triscone, Jean-Marc [Departement de Physique de la Matiere Condensee, University of Geneva (Switzerland); Green, Robert J.; Balandeh, Shadi; Sawatzky, George [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada)

    2015-07-01

    Perovskite rare-earth (Re) nickelates ReNiO{sub 3} continue to attract a lot of interest owing to their intriguing properties like a sharp metal to insulator transition (MIT), unusual magnetic order and expected superconductivity in specifically tuned super-lattices. Full understanding of these materials, however, is hampered by the difficulties in describing their electronic ground state (GS). From X-ray absorption (XAS) at the Ni 2p{sub 3/2} edge of thin films of NdNiO{sub 3} and corresponding RIXS maps vs. incident and transferred photon energies we reveal that the electronic GS configuration of NdNiO{sub 3} is composed of delocalized and localized components. Our study conveys that a Ni 3d{sup 8}-like configuration with holes at oxygen takes on the leading role in the GS and the MIT of ReNiO{sub 3} as proposed by recent model theories.

  8. Oxygen-to-metal ratio control during fabrication of mixed oxide fast breeder reactor fuel pellets

    Rasmussen, D.E.; Benecke, M.W.; Jentzen, W.R.; McCord, R.B.

    1979-05-01

    Oxygen-to-metal ratio (O/M) of mixed oxide fuel pellets can be controlled during fabrication by proper selection of binder (type and content) and sintering conditions. Sintering condition adjustments involved the passing of Ar--8% H 2 sintering gas across a cryostat ice bath controlled to temperatures ranging from -5 to -60 0 C to control as-sintered pellet O/M ratio. As-sintered fuel pellet O/M decreased with increasing Sterotex binder and PuO 2 concentrations, increasing sintering temperature, and decreasing sintering gas dew point. Approximate relationships between Sterotex binder level and O/M were established for PuO 2 --UO 2 and PuO 2 --ThO 2 fuels. O/M was relatively insensitive to Carbowax binder concentration. Several methods of increasing O/M using post-sintering pellet heat treatments were demonstrated, with the most reliable being a two-step process of first raising the O/M to 2.00 (stoichiometric) at 650 0 C in Ar--8% H 2 bubbled through H 2 O, followed by hydrogen reduction to specification O/M in oxygen-gettered Ar-8% H 2 at temperatures ranging from 1200 to 1690 0 C

  9. A neutronic method to determine low hydrogen concentrations in metals

    Bennun, Leonardo; Santisteban, Javier; Diaz-Valdes, J.; Granada, J.R.; Mayer, R.E.

    2007-01-01

    We propose a method for the non-destructive determination of low hydrogen content in metals. The method is based on measurements of neutron inelastic scattering combined with cadmium filters. Determination is simple and the method would allow to construct a mobile device, to perform the analysis 'in situ'. We give a brief description of the usual methods to determine low hydrogen contents in solids, paying special attention to those methods supported by neutron techniques. We describe the proposed method, calculations to achieve a better sensitivity, and experimental results

  10. Comparison of digestion methods to determine heavy metals in fertilizers

    Ygor Jacques Agra Bezerra da Silva

    2014-04-01

    Full Text Available The lack of a standard method to regulate heavy metal determination in Brazilian fertilizers and the subsequent use of several digestion methods have produced variations in the results, hampering interpretation. Thus, the aim of this study was to compare the effectiveness of three digestion methods for determination of metals such as Cd, Ni, Pb, and Cr in fertilizers. Samples of 45 fertilizers marketed in northeastern Brazil were used. A fertilizer sample with heavy metal contents certified by the US National Institute of Standards and Technology (NIST was used as control. The following fertilizers were tested: rock phosphate; organo-mineral fertilizer with rock phosphate; single superphosphate; triple superphosphate; mixed N-P-K fertilizer; and fertilizer with micronutrients. The substances were digested according to the method recommended by the Ministry for Agriculture, Livestock and Supply of Brazil (MAPA and by the two methods 3051A and 3052 of the United States Environmental Protection Agency (USEPA. By the USEPA method 3052, higher portions of the less soluble metals such as Ni and Pb were recovered, indicating that the conventional digestion methods for fertilizers underestimate the total amount of these elements. The results of the USEPA method 3051A were very similar to those of the method currently used in Brazil (Brasil, 2006. The latter is preferable, in view of the lower cost requirement for acids, a shorter digestion period and greater reproducibility.

  11. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.; Bankston, C.P.; Thakoor, A.P.; Cole, T.

    1986-01-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/sub 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell

  12. SnO2 promoted by alkali metal oxides for soot combustion: The effects of surface oxygen mobility and abundance on the activity

    Rao, Cheng; Shen, Jiating; Wang, Fumin; Peng, Honggen; Xu, Xianglan; Zhan, Hangping; Fang, Xiuzhong; Liu, Jianjun; Liu, Wenming; Wang, Xiang

    2018-03-01

    In this study, SnO2-based catalysts promoted by different alkali metal oxides with a Sn/M (M = Li, Na, K, Cs) molar ratio of 9/1 have been prepared for soot combustion. In comparison with the un-modified SnO2 support, the activity of the modified catalysts has been evidently enhanced, following the sequence of CsSn1-9 > KSn1-9 > NaSn1-9 > LiSn1-9 > SnO2. As testified by Raman, H2-TPR, soot-TPR-MS, XPS and O2-TPD results, the incorporation of various alkali metal oxides can induce the formation of more abundant and mobile oxygen species on the surface of the catalysts. Moreover, quantified results have proved that the amount of the surface active oxygen species is nearly proportional to the activity of the catalysts. CsSn1-9, the catalyst promoted by cesium oxide, owns the largest amount of surface mobile oxygen species, thus having the highest activity among all the studied catalysts. It is concluded that the amount of surface active and mobile oxygen species is the major factor determining the activity of the catalysts for soot combustion.

  13. On the guanidine hydrochloride method for determination of oxygen-18 content in orthophosphate

    Li Wenjun; Gu Zhennan

    1985-01-01

    The guanidine hydrochloride method is an accurate and simple procedure for oxygen-18 determination in KH 2 PO 4 and Ba 3 (PO 4 ) 2 . The method is based on heating the samples with guanidine hydrochloride at 300 deg C. Two Oxygen atoms per molecule of KH 2 PO 4 or Ba 3 (PO 4 ) 2 are converted into CO 2 which is then analysed by a mass spectrometer of model MAT-CH5. Only 5 mg of KH 2 PO 4 or Ba 3 (PO 4 ) 2 is required for each determination and reproducibility of assays is better than +-1%. (Author)

  14. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  15. Geochemistry of trace metals in shelf sediments affected by seasonal and permanent low oxygen conditions off central Chile, SE Pacific (˜36°S)

    Muñoz, Praxedes; Dezileau, Laurent; Cardenas, Lissette; Sellanes, Javier; Lange, Carina B.; Inostroza, Jorge; Muratli, Jesse; Salamanca, Marco A.

    2012-02-01

    Trace metals (Cd, U, Co, Ni, Cu, Ba, Fe, Mn), total organic carbon (TOC) and C and N stable isotope signatures (δ 13C and δ 15N) were determined in short sediments cores from the inner and outer shelf off Concepción, Chile (˜36°S). The objectives were to establish the effect of environmental conditions on trace metal distributions at two shelf sites, one affected by seasonal oxygenation and the other by permanent low oxygen conditions due to the presence of the oxygen minimum zone (OMZ). We evaluate trace metals as proxies of past changes in primary productivity and the bottom water oxygen regime. Concentrations of pore water sulfides and NH4+ were also measured as indicators of the main diagenetic pathways at each site. Our results for the inner shelf (seasonal suboxia) suggest that the oxidative state of the sediments responds to seasonal pulses of organic matter and that seasonal oxygenation develops during high and low primary productivity in the water column. Here, positive fluxes (to the water column) estimated from pore water concentrations of several elements were observed (Ba, Co, Ni, Fe and Mn). The less reduced environment at this site produces authigenic enrichment of Cu associated with the formation of oxides in the oxic surface sediment layer, and the reduction of U within deeper sediment sections occur consistently with negative estimated pore water fluxes. In the outer shelf sediments (permanent suboxia, OMZ site), negative fluxes (to the sediment) were estimated for all elements, but these sediments showed authigenic enrichments only for Cd, Cu and U. The short oxygenation period during the winter season did not affect the accumulation of these metals on the shelf. The distribution of Cu, Cd and U have been preserved within the sediments and the authigenic accumulation rates estimated showed a decrease from the deep sections of the core to the surface sediments. This could be explained by a gradual decrease in the strength of the OMZ in the

  16. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions

    Spaan, J. A.; Kreuzer, F.; van Wely, F. K.

    1980-01-01

    The oxygenation of layers of deoxygenated hemoglobin solutions after a sudden exposure to a gas containing oxygen at a partial pressure P1 has been studied by a photometric method. Layer thicknesses varied between 50 and 250 micron, hemoglobin concentrations between 0.1 and 0.34kg/l, and oxygen

  17. Introducing Barium in Transition Metal Oxide Frameworks: Impact upon Superconductivity, Magnetism, Multiferroism and Oxygen Diffusion and Storage.

    Raveau, Bernard

    2017-06-01

    The role of barium in the structural chemistry of some transition metal oxides of the series "Cu, Mn, Fe,Co" is reviewed, based on its size effect and its particular chemical bonding. Its impact upon various properties, superconductivity, magnetism, multiferroism, oxygen storage is emphasized. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Textural properties of chars as determined by petrographic analysis: comparison between air-blown, oxygen-blown and oxygen-enriched gasification

    Oboirien, BO

    2012-11-01

    Full Text Available In this study, the textural properties of chars generated from a vitrinite, high ash coal in a fluidised bed gasifier under air-blown, oxygen-blown and oxygen-enriched conditions were determined by detailed petrographic analysis. The char samples...

  19. Determination of oxygen content in high Tc superconductors by deuteron particle activation analysis

    Tao Zhenlan; Yao, Y.D.; Kao, Y.H.

    1993-01-01

    The experimental method for determining the oxygen content in high T c superconductors is described in detail. This method is applied to determination of oxygen content in high T c Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O samples in which the stoichiometry is varied by reducing the copper and bismuth concentrations. The oxygen concentration is found to vary linearly with Cu(x = 0-0.2) and Bi (x = 0-0.4) deficiencies in YBa 2 Cu 3(1-x )O y and Bi 2(1-x) Sr 2 CaCu 2 O y respectively. X-ray powder diffraction measurements show that the compound of YBa 2 Cu 3(1-x) O y is orthorhombic in the variation range of x = 0-0.2

  20. Study of the corrosion of metallic coatings and alloys containing aluminum in a mixed atmosphere - sulphur, oxygen - at high temperatures

    Fellmann, Daniel

    1982-01-01

    The objective of this research thesis is the development of materials for a sulphur experimental loop allowing the thermodynamic properties of such an energy cycle to be checked. As solutions must comply with industrial methods, rare materials are excluded as they are too expensive or difficult to implement. Iron-based materials have been tested but could not have at the same time a good corrosion resistance and high temperature forming and mechanical toughness properties. Therefore, metallic coatings have been chosen, specifically alumina. After having reported a bibliographical study on corrosion by sulphur vapour and by oxygen and by sulphur-oxygen, the author presents the experimental materials and methods. Then, the author reports the study of mixed corrosion (by sulphur and oxygen together) of metallic alloys (ferritic and austeno-ferritic alloys, aluminium and titanium alloys), and of the corrosion of FeAlx coatings, of AlTix alloys [fr

  1. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    Bates, Michael

    electrolyte. The HER kinetics of numerous binary & ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. Furthermore a model of the double layer interface is proposed, which helps explain the observed ensemble effect in the presence of AEI. In Chapter 3, Ni-Fe and Ni-Fe-Co mixed-metal-oxide (MMO) films were investigated for oxygen evolution reaction (OER) activity in 0.1M KOH on high surface area Raney-Nickel supports. During investigations of MMO activity, aniline was identified as a useful "capping agent" for synthesis of high-surface area MMO-polyaniline (PANI) composite materials. A Ni-Fe-Co/PANI-Raney-Ni catalyst was developed which exhibits enhanced mass-activity compared to state-of-the-art Ni-Fe OER electrocatalysts reported to date. The morphology of the MMO catalyst film on PANI/Raney-Ni support provides excellent dispersion of active-sites and should maintain high active-site utilization for catalyst loading on gas-diffusion electrodes. In Chapter 4, the de-activation of reversible-hydrogen electrode catalysts was investigated and the development of a Pt-Ir-Nx/C catalyst is reported, which exhibits significantly increased stability in the HBr/Br 2 electrolyte. In contrast a Pt-Ir/C catalyst exhibited increased tolerance to high-voltage cycling and in particular showed recovery of electrocatalytic activity after reversible de-activation (presumably from bromide adsorption and subsequent oxidative bromide stripping). Under the harshest testing conditions of high-voltage cycling or exposure to Br2 the Pt-based catalyst showed a trend in stability: Pt < Pt-Ir < Pt-Ir-Nx. (Abstract shortened by UMI.).

  2. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  3. Amperometric and coulometric methods of platinum metal determination. (Review)

    Ezerskaya, N.A.

    1981-01-01

    Reviewed are works published in the period from 1957-1979, on amperometric and coulometric (potentiostatistic and amperostatistic variant) determination of platinum metals, Ru in particular. During amperometric titration of Ru the following titrantes are used: hydroquinone, thioxne thiourea, Na 2 S 2 O 3 . It is proposed to titrate Ru in the form of ruthenate-ion with hydrazine sulphate in alkal: medium according to the current of reagent oxidation. During coulometric determination of Ru the electrogenerating titrant TiCl 3 or Ti 2 (SO 4 ) 3 (for initial form of Ru [RuCl 6 ] 2- ) is used [ru

  4. Conductometric determination of solvation numbers of alkali metal cations

    Fialkov, Yu.Ya.; Gorbachev, V.Yu.; Chumak, V.L.

    1997-01-01

    Theories describing the interrelation of ion mobility with their effective radii in solutions are considered. Possibility of using these theories for determination the solvation numbers n s of some ions is estimated. According to conductometric data values of n s are calculated for alkali metal ions in propylene carbonate. The data obtained are compared with solvation numbers determined with the use of entropies of ions solvation. Change of n s values within temperature range 273.15-323.15 K is considered. Using literature data the effect of crystallographic radii of cations and medium permittivity on the the values of solvation numbers of cations are analyzed. (author)

  5. From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction

    Xu, Jingjing; Li, Bin; Li, Songmei; Liu, Jianhua

    2017-07-01

    Development of new and efficient metal-free electrocatalysts for replacing Pt to improve the sluggish kinetics of oxygen reduction reaction (ORR) is of great importance to emerging renewable energy technologies such as metal-air batteries and polymer electrolyte fuel cells. Herein, 3D sulfur-doping carbon nitride (S-CN) as a novel metal-free ORR electrocatalyst was synthesized by exploiting commercial melamine sponge as raw material. The sulfur atoms were doping on CN networks uniformly through numerous S-C bonds which can provide additional active sites. And it was found that the S-CN exhibited high catalytic activity for ORR in term of more positive onset potential, higher electron transfer number and higher cathodic density. This work provides a novel choice of metal-free ORR electrocatalysts and highlights the importance of sulfur-doping CN in metal-free ORR electrocatalysts.

  6. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  7. O2 supplementation to secure the near-infrared spectroscopy determined brain and muscle oxygenation in vascular surgical patients

    Rokamp, Kim Z; Secher, Niels H; Eiberg, Jonas

    2014-01-01

    This study addresses three questions for securing tissue oxygenation in brain (rScO2) and muscle (SmO2) for 100 patients (age 71 ± 6 years; mean ± SD) undergoing vascular surgery: (i) Does preoxygenation (inhaling 100% oxygen before anesthesia) increase tissue oxygenation, (ii) Does inhalation...... of 70% oxygen during surgery prevent a critical reduction in rScO2 (patients and the intraoperative inspired oxygen fraction was set to 0.70 while tissue...... oxygenation was determined by INVOS 5100C. Preoxygenation increased rScO2 (from 65 ± 8 to 72 ± 9%; P patients. Following anesthesia and tracheal intubation an eventual change...

  8. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Handheld colorimeter for determination of heavy metal concentrations

    López Ruiz, N.; Ariza, M.; Martínez Olmos, A.; Vukovic, J.; Palma, A. J.; Capitan-Vallvey, L. F.

    2011-08-01

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  10. Handheld colorimeter for determination of heavy metal concentrations

    Lopez Ruiz, N; Martinez Olmos, A; Palma, A J; Ariza, M; Capitan-Vallvey, L F; Vukovic, J

    2011-01-01

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  11. Handheld colorimeter for determination of heavy metal concentrations

    Lopez Ruiz, N; Martinez Olmos, A; Palma, A J [ECSens ETSIIT, Departamento de Electronica, Universidad de Granada. C/ Periodista Daniel Saucedo s/n 18071 Granada (Spain); Ariza, M; Capitan-Vallvey, L F [Department of Analytical Chemistry. Faculty of Sciences. University of Granada, E-18071 Granada (Spain); Vukovic, J, E-mail: nurilr@ugr.es [Department of Analytics and Control of Medicines, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1,HR-10000 Zagreb (Croatia)

    2011-08-17

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  12. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  13. Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers

    Sørensen, Henrik; Rasmussen, Peter; Siebenmann, Christoph

    2015-01-01

    INTRODUCTION: Frontal lobe oxygenation (Sc O2 ) is assessed by spatially resolved near-infrared spectroscopy (SR-NIRS) although it seems influenced by extra-cerebral oxygenation. We aimed to quantify the impact of extra-cerebral oxygenation on two SR-NIRS derived Sc O2 . METHODS: Multiple...... regression analysis estimated the influence of extra-cerebral oxygenation as exemplified by skin oxygenation (Sskin O2 ) on Sc O2 in 21 healthy subjects exposed to whole-body exercise in hypoxia (Fi O2 = 12%; n = 10) and normoxia (n = 12), whole-body heating, hyperventilation (n = 21), administration...... of norepinephrine with and without petCO2 -correction (n = 15), phenylephrine and head-up tilt (n = 7). Sc O2 was assessed simultaneously by NIRO-200NX (Sniro O2 ) and INVOS-4100 (Sinvos O2 ). Arterial (Sa O2 ) and jugular bulb oxygen saturations (Sj O2 ) were obtained. RESULTS: The regression analysis indicated...

  14. Determination of oxygen and nitrogen in coal by instrumental neutron activation analysis

    Hamrin, C.E. Jr.; Johannes, A.H.; James, W.D. Jr.; Sun, G.H.; Ehmann, W.D.

    1979-01-01

    The purpose of this study was to measure oxygen and nitrogen in coals using instrumental neutron activation analysis. For six U.S. coals total oxygen ranged from 9.4 to 28.7% and total nitrogen varied from 0.72 to 1.61%. To obtain values of organic oxygen and nitrogen either a low-temperature-ashing (LTA) method or an acid-treatment (AT) method was suitable for bituminous coals. The mean difference of the experimentally determined values (Osub(dmmf))sub(LTA) - (Osub(dmmf))sub(AT) = -0.82, s = 0.51, [dmmf = dry, mineral-matter-free basis], was found to be statistically significant at the 95% confidence level, but the comparable difference for nitrogen was not. By the LTA method oxygen and nitrogen on the dmmf basis for bituminous coals showed no statistically significant difference with calculated dmmf values. Nitrogen was detected in all the LTAs varying from 0.38 to 1.67%. Formation of insoluble CaF 2 in the acid-treatment method caused an interference in the nitrogen determination due to the 19 F (n, 2n) 18 F reaction but was correctable. In addition, recoil proton reactions on C and O leading to the formation of 13 N must be accounted for in all nitrogen determinations in the coal matrix. (author)

  15. Electrochemical study on determination of diffusivity, activity and solubility of oxygen in liquid bismuth

    Ganesan, Rajesh [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gnanasekaran, T. [Liquid Metals and Structural Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: gnani@igcar.ernet.in; Srinivasa, Raman S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2006-06-15

    Diffusivity of oxygen in liquid bismuth was measured by potentiostatic method and is given bylg(D{sub O}{sup Bi}/cm{sup 2}.s{sup -1})(+/-0.042)=-3.706-1377/(TK{sup -1})(804oxygen in bismuth was determined by coulometric titrations and using the measured data standard free energy of dissolution of oxygen in liquid bismuth was derived for the reaction:1/2O{sub 2}(g)=[O]{sub Bi}(at.%)and is given by{delta}G{sub O(Bi)}{sup o}/(J.g-atomO{sup -1})(+/-720)=-108784+20.356TK{sup -1}(753oxygen in liquid bismuth was derived as a function of temperature and is given by the following expressions:lg(S/at%O)(+/-0.05)=-4476/TK{sup -1}+4.05(753oxygen in liquid bismuth is compared with the literature data.

  16. Influence of oxygen-metal ratio on mixed-oxide fuel performance

    Lawrence, L.A.; Leggett, R.D.

    1979-04-01

    The fuel oxygen-to-metal ratio (O/M) is recognized as an important consideration for performance of uranium--plutonium oxide fuels. An overview of the effects of differing O/M's on the irradiation performance of reference design mixed-oxide fuel in the areas of chemical and mechanical behavior, thermal performance, and fission gas behavior is presented. The pellet fuel has a nominal composition of 75 wt% UO 2 + 25 wt% PuO 2 at a pellet density of approx. 90% TD. for nominal conditions this results in a smeared density of approx. 85%. The cladding in all cases is 20% CW type 316 stainless steel with an outer diameter of 5.84 to 6.35 mm. O/M has been found to significantly influence fuel pin chemistry, mainly FCCI and fission product and fuel migration. It has little effect on thermal performance and overall mechanical behavior or fission gas release. The effects of O/M (ranging from 1.938 to 1.984) in the areas of fuel pin chemistry, to date, have not resulted in any reduction in fuel pin performance capability to goal burnups of approx. 8 atom% or more

  17. Controlled temperature expansion in oxygen production by molten alkali metal salts

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  18. Determination of metals in water from Billings dam, Sao Paulo

    Oliveira, Talita; Sarkis, Jorge E.S.; Ulrich, Joao C.; Yamaguishi, Renata Bazante, E-mail: taoliveira@ipen.br, E-mail: jesarkis@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Menezes, Luciana Carvalho Bezerra de; Castro, Paula Maria Genova de; Monteiro Junior, Adalberto Jose; Maruyama, Lidia Sumile, E-mail: lcbm@usp.br [Instituto de Pesca, (IP/SAA-SP), Sao Paulo, SP (Brazil). Secretaria da Agricultura e Abastecimento do Estado de Sao Paulo

    2013-07-01

    The Billings reservoir, located in Sao Paulo, Brazil, is used for several purposes such as: water supply, electric generation, fishing and leisure. Although considered an area of environmental protection, in recent years the dam has suffered diverse environmental aggressions including the release of toxic metals. This study presents a recent evaluation of metal contents along the Dam. Samples were collected every three months during the period of winter 2009 to summer 2010. Samples were collected in thirteen points along of the dam, as follows: Rio dos Porcos (Point 1), Summit Control (Point 2), Ilha do Bigua (Point 3), Casa Caida (Point 4), Barragem (Point 5), Foz de Taquacetuba (Point 6), Braco Borore (Point 7), Foz de Borore (Point 8), Alvarenga (Point 9), Pedreira (Point 10), Borore's Margin (Point 11), Capivari I's Margin (Point 12) and Capivari II's Margin (Point 13). The determination of Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn was performed by using high resolution inductively coupled plasma mass spectrometer (HR-ICPMS). The methodology has been validated using certified reference material Riverine Water Reference Material for Trace Metals provided by National Research Council Canada (NRCC). The sampling points located in the Pedreira, Borore's Margin, Alvarenga, Barragem Taquacetuba, Casa Caida e Ilha do Bigua presented the highest concentrations. The level for Fe, Cu and Ni were higher than the ones reported in the literature and above the limit set by CONAMA 2914/201. (author)

  19. Determination of metals in water from Billings dam, Sao Paulo

    Oliveira, Talita; Sarkis, Jorge E.S.; Ulrich, Joao C.; Yamaguishi, Renata Bazante; Menezes, Luciana Carvalho Bezerra de; Castro, Paula Maria Genova de; Monteiro Junior, Adalberto Jose; Maruyama, Lidia Sumile

    2013-01-01

    The Billings reservoir, located in Sao Paulo, Brazil, is used for several purposes such as: water supply, electric generation, fishing and leisure. Although considered an area of environmental protection, in recent years the dam has suffered diverse environmental aggressions including the release of toxic metals. This study presents a recent evaluation of metal contents along the Dam. Samples were collected every three months during the period of winter 2009 to summer 2010. Samples were collected in thirteen points along of the dam, as follows: Rio dos Porcos (Point 1), Summit Control (Point 2), Ilha do Bigua (Point 3), Casa Caida (Point 4), Barragem (Point 5), Foz de Taquacetuba (Point 6), Braco Borore (Point 7), Foz de Borore (Point 8), Alvarenga (Point 9), Pedreira (Point 10), Borore's Margin (Point 11), Capivari I's Margin (Point 12) and Capivari II's Margin (Point 13). The determination of Al, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn was performed by using high resolution inductively coupled plasma mass spectrometer (HR-ICPMS). The methodology has been validated using certified reference material Riverine Water Reference Material for Trace Metals provided by National Research Council Canada (NRCC). The sampling points located in the Pedreira, Borore's Margin, Alvarenga, Barragem Taquacetuba, Casa Caida e Ilha do Bigua presented the highest concentrations. The level for Fe, Cu and Ni were higher than the ones reported in the literature and above the limit set by CONAMA 2914/201. (author)

  20. Bioleaching of heavy metal polluted sediment: influence of temperature and oxygen. Pt. 1

    Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebensmittel- und Bioverfahrenstechnik, Bergstrasse 120, 01062 Dresden (Germany); Zehnsdorf, A. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Umwelt- und Biotechnologisches Zentrum, Permoserstrasse 15, 04318 Leipzig (Germany); Goersch, K.; Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, 04318 Leipzig (Germany)

    2006-08-15

    A remediation process for heavy metal polluted sediment has previously been developed in which the heavy metals are removed from the sediment by solid-bed bioleaching using elemental sulfur (S{sup 0}): the added S{sup 0} is oxidized by the indigenous microbes to sulfuric acid that dissolves the heavy metals which are finally extracted by percolating water. In this process, the temperature is a factor crucially affecting the rate of S{sup 0} oxidation and metal solubilization. Here, the effect of temperature on the kinetics of S{sup 0} oxidation has been studied: oxidized Weisse Elster River sediment (dredged near Leipzig, Germany) was mixed with 2 % S{sup 0}, suspended in water and then leached at various temperatures. The higher the temperature was, the faster the S{sup 0} oxidized, and the more rapid the pH decreased. But temperatures above 35 C slowed down S{sup 0} oxidation, and temperatures above 45 C let the process - after a short period of acidification to pH 4.5 - stagnate. The latter may be explained by the presence of both neutrophilic to less acidophilic thermotolerant bacteria and acidophilic thermosensitive bacteria. Within 42 days, nearly complete S{sup 0} oxidation and maximum heavy metal solubilization only occurred at 30 to 45 C. The measured pH(t) courses were used to model the rate of S{sup 0} oxidation depending on the temperature using an extended Arrhenius equation. Since molecular oxygen is another factor highly influencing the activity of S{sup 0}-oxidizing bacteria, the effect of dissolved O{sub 2} (controlled by the O{sub 2} content in the gas supplied) on S{sup 0} oxidation was studied in suspension: the indigenous S{sup 0}-oxidizing bacteria reacted quite tolerant to low O{sub 2} concentrations; the rate of S{sup 0} oxidation - measured as the specific O{sub 2} consumption - was not affected until the O{sub 2} content of the suspension was below 0.05 mg/L, i.e., the S{sup 0}-oxidizing bacteria showed a high affinity to O{sub 2} with a

  1. Metal-free and Oxygen-free Graphene as Oxygen Reduction Catalysts for Highly Efficient Fuel Cells

    2013-06-30

    analysis was carried out by a TA instrument with a heating rate of 10 °C in N2. The Raman spectra were collected on a Raman spectrometer (Renishaw...kinematics viscosity for KOH (v = 0.01 cm 2 s -1 ) and CO2 is concentration of O2 in the solution (CO2 = 1.2 × 10 -6 mol cm -3 ). The constant 0.2 is...functionalizing graphene to impart electrocatalytic activity for oxygen reduction reaction (ORR) in fuel cells. Raman and X-ray photoelectron spectroscopic

  2. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  3. Successive determinations of metals and boron in metal borides by chelatometric and alkalimetric titrations

    Takahashi, Yasuo; Higashi, Iwami; Atoda, Tetzuzo

    1976-01-01

    Based on the investigation of chemical reactivities of metal borides and of the metal chelate effects on the alkalimetric titration of boron, a method of successive determinations of metals and boron of Mn-, Fe-, Cu- and Al-borides has been developed. The procedure is as follows: (1) Mn-, Fe- and Cu-borides: Dissolve 10 to 30 mg of a sample in a mixture of 3 ml of 3N HNO 3 , 3 ml of 3N H 2 SO 4 and 0.3 ml of 10% H 2 O 2 by heating in a quartz flask equipped with a reflux condenser. Cool the solution obtained, add 0.02M CyDTA solution in excess and neutralize to pH 3 with 2N NaOH solution. Boil the solution for several minutes to ensure the formation of the metal chelate. After cooling, adjust the pH exactly to 6.7 with 0.5 M NaHCO 3 solution, and then determine the metal concentration by back-titrating the excess CyDTA with 0.01M ZnSO 4 solution using MTB as an indicator. After the titration is over, make the solution to pH 3 with 2N H 2 SO 4 and boil for several minutes to expel CO 2 . Cool the solution, adjust the pH exactly to 7.0 with 0.1N CO 2 -free NaOH solution and add 5 g of mannite and ten drops of 0.1% phenolphthalein solution. Finally, titrate the mannite-boric acid complex with 0.05N NaOH solution until the pink tinge is observed (pH 8.2). (2) Al-boride: Fuse 10 to 30 mg of a sample with a mixture of 1.5 g of Na 2 CO 3 and 0.3 g of KNO 3 in a nickel crucible. Digest the melt with water and filter off the residue (nickel oxide). Add 0.01 M EDTA solution in excess to the filterate and make it to pH 3 with 2N H 2 SO 4 . Analytical Results obtained by the present method agree well with those by other methods. The present method takes only 40 minutes, whereas several hours are required to determine metal and boron by other methods. (auth.)

  4. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  5. Determination of Heavy Metal Levels in Various Industrial Waste Waters

    Mustafa Şahin Dündar

    2012-06-01

    Full Text Available Important part of the environmetal pollution consists of waste water and water pollution. The water polluted by anthropogenical, industrial, and agricultural originated sources are defined as waste waters which are the main pollution sources for reservoirs, rivers, lakes, and seas. In this work, waste waters of leather, textile, automotive side, and metal plating industries were used to determine the levels of Cu, Zn, Cr, Pb and Ni by using Flame Atomic Absorption Spectrometer. As a result, highest mean levels of copper in supernatants of plating and textile industries were observed as 377,18 ng ml-1, respectively 103 ng ml-1 lead and 963,6 ng ml-1 nickel in plating industry, 1068,2 ng ml-1 zinc and 14557,1 ng ml-1 chromium in plating and leather industries were determined.

  6. Determination of fluorine trace amounts in metallic uranium

    Kukisheva, T N; Bolshakova, A S; Yefimova, N S

    1976-05-01

    A simple and rapid method was proposed for the determination of fluorine in metallic uranium without the removal of the latter. The method is based on the weakening of the color intensity of a complex of zirconium with xylenol orange in the presence of fluorine in a 1 N solution with respect to hydrochloric acid. For preparation for photometry, the solution to be analyzed is neutralized with ammonia to a pH of approximately 3. It is suggested that a complex of sulfosalicylic acid with uranium (VI) be used as the indicator in neutralization. The required acidity in the solution subjected to photometry is provided by the addition of a 5 N hydrochloric acid solution of zirconium. The coefficient of variation V/sub 15/ (at a fluorine content 3x10/sup -3/%) is 10%. In 7 h, 15-20 determinations can be performed.

  7. Tracers application method for the quantitative determination of the source of oxygenic inclusions in steel

    Rewienska-Kosciukowa, B.; Dalecki, W.; Michalik, J.S.

    1976-01-01

    The sense and the possibility of radioactive and nonradioactive isotopic tracers application in investigations of the origin of oxygenic nonmetalic inclusions is presented. The discussed methods touch the investigations such as the origin of egzogenic inclusions which passed from external sources (fireproof lining, slag) to the steel or as the endogenic ones formed during the process of steel deoxidisation. The question of the tracers choice for refractory material and the further investigations concerned the determination of the origin of nonmetallic inclusions are discussed. The question of so called isotopic replacement tracers for the main steel deoxidizing agents is considered. The criterion of determination of oxygenic inclusions formed during the process of steel deoxidization is also discussed. Several results of laboratory and industrial investigations and also the examples of application of the discussed methods in the industrial scale are presented. (author)

  8. Determination of oxygen impurity in high purity materials by charged particle activation analysis using alpha projectiles

    Chowdhury, D.P.; Pal, S.; Arunachalam, J.; Verma R.; Gangadharan, S.

    1992-01-01

    40 MeV α-particles have been used to determine oxygen impurity at ppm levels in silicon, copper, and stainless steel, through the radiochemical separation of 18 F from the matrix. The separation of 18 F has been carried out by two techniques, viz. distillation of H 2 SiF 6 and precipitation of KBF 4 and some modification has been applied in the separation, depending on the nature of interferences from the matrix. Instrumental approach was also carried out to determine the oxygen impurity at ≥ 100 ppm in Si matrix because this approach is not possible in Cu and stainless steel samples due to matrix activity. (author) 10 refs.; 1 fig.; 5 tabs

  9. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8?keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79???0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result ...

  10. Isotopic-spectral determination of hydrogen, nitrogen, oxygen and carbon in semiconductor materials

    Dudich, G.K.; Eremeev, V.A.; Li, V.N.; Nemets, V.M.

    1981-01-01

    Techniques of low-temperature isotopic-spectral determination of impurities of hydrogen, nitrogen, oxygen and carbon in semiconductor materials Bi, Ge, Pb tellurides are developed. The techniques include selection into special vessel with the known volume (exchanger) of sample analyzed, dosed introduction into exchanger of rare isotope of the element determined ( 2 H, 15 N, 18 O, 13 C) in the form of isotope-containing gas, balancing of the determined element isotopes in the system sample-isotope, containing gas, spectroscopic, determination of its isotope composition in gaseous phase of the system and calculation of the amount of the element determined in the sample. The lower boundaries of the amounts determined constitute 10 -7 , 10 -7 , 10 -6 and 10 -5 mass % respectively when sample of 20 g are used [ru

  11. Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers

    Croteau, Marie-Noele; Luoma, Samuel N.; Pellet, Bastien

    2007-01-01

    We employ a novel approach that combines pulse-chase feeding and multi-labelled stable isotopes to determine gut passage time (GPT), gut retention time (GRT), food ingestion rate (IR) and assimilation efficiency (AE) of three trace elements for a freshwater gastropod. Lettuce isotopically enriched in 53 Cr, 65 Cu and 106 Cd was fed for 2 h to Lymnaea stagnalis. The release of tracers in feces and water was monitored for 48 h, during which unlabelled lettuce was provided ad libidum. The first defecation of 53 Cr occurred after 5 h of depuration (GPT), whereas 90% of the ingested 53 Cr was recovered in the feces after 22.5 h of depuration (GRT). 53 Chromium was not significantly accumulated in the soft tissues upon exposure. In contrast, 65 Cu and 106 Cd assimilation was detectable for most experimental snails, i.e., 65/63 Cu and 106/114 Cd ratios in exposed snails were higher than those for controls. Food IR during the labelled feeding phase was 0.16 ± 0.07 g g -1 d -1 . IR was inferred from the amount of 53 Cr egested in the feces during depuration and the concentration of 53 Cr in the labelled lettuce. Assimilation efficiencies (±95% CI) determined using mass balance calculations were 84 ± 4% for Cu and 85 ± 3% for Cd. The ratio method yields similar AE estimates. Expanding the application of this novel stable isotope tracer technique to other metals in a wide variety of species will provide unique opportunities to evaluate the interplay between digestive processes and dietary influx of metals. Understanding the biological processes that modulate dietborne metal uptake is crucial to assess the toxicity of dietborne metals

  12. Determination of some heavy metals in wetlands by PIXE

    Ramirez O, J.; Rios M, C.

    2008-01-01

    In this work the results of the analysis are presented, using the PIXE technique (Proton Induced X-ray Emission), in soil samples of the El Bordo, Vetagrande, Zacatecas, before and after subjecting them to a lixiviation process for the recovering of gold, silver and mercury. This community is part of the mining region nearer to the Zacatecas city municipality, region in which the mining exploitation dates from the colonial time. During almost 350 years the 'yard benefit' method was used or amalgamation with mercury, process that besides having used big quantities of mercury, generated a great quantity of mineral waste calls 'mine wetlands', those that were accumulating, crawled by the rains, toward the streams that end in the prey 'The Pedernalillo'. The dispersion of wetlands them it has extended from the prey until the communities of Tacoaleche, Zoquite, Lampotal and El Bordo, embracing an approximate area of 16 x 2 Km 2 and forming with the course of the time an accumulated of several millions of tons. In order to determining if the process of recovery of gold, silver and mercury make soluble to other contained metals in these wastes, samples were gathered in an area of 600 m 2 in the community of The Border, Vetagrande, Zacatecas. Half of the samples were subjected to the lixiviation process in a local metal recovery plant and the other part was analyzed without processing. The analysis of both types of samples by means of the PIXE was carried out in the University of Arizona in Tucson. (Author)

  13. Analytical techniques for determination of framework oxygen isotope ratio of wairakite

    Noto, Masami; Kusakabe, Minoru; Uchida, Tetsuo.

    1990-01-01

    Dehydration techniques were developed for the analysis of isotopic ratios of framework oxygen of wairakite, one of calcium zeolites often encountered in geothermal systems. Channel water in wairakite were separated from aluminosilicate framework by dehydration in vacuum at 300 deg, 400 deg, 450 deg, 500 deg, 550 deg, 650 deg, 750 deg, 850 deg, and 950 degC, and by stepwise heating at temperatures from 300 deg to 700 degC. The oxygen isotopic analyses of the separated channel water and the residual aluminosilicate framework of wairakite indicated that dehydration at temperatures higher than 400 degC is accompanied by isotopic exchang between the framework oxygen and dehydrating water vapor. The isotopic exchange during the high temperature dehydration makes the δ 18 O of framework oxygen lower and that of channel water higher than those obtained by dehydration at 300 degC. These results are consistent with dehydration behavior of wairakite under vacuum that the maximum rate of dehydration of channel water is attained at about 400 degC. Consequently it is recommended to dehydrate wairakite at a temperature as low as possible in order to avoid the effect of the isotopic exchange. Time required to attain complete dehydration becomes longer with lowering the temperature of dehydration. To compromise these conflicting effects, the optimum conditions of dehydration have been found that most of the channel water is dehydrated at 300 degC for 24 hours, followed by stepwise heating for additional 17 hours up to 700 degC. We obtained a better than ± 0.1 reproducibility for the framework oxygen isotopic determinations with this technique. (author)

  14. Carbon and oxygen abundances in cool metal-rich exoplanet hosts: A case study of the C/O ratio of 55 Cancri

    Teske, Johanna K.; Cunha, Katia; Schuler, Simon C.; Griffith, Caitlin A.; Smith, Verne V.

    2013-01-01

    The super-Earth exoplanet 55 Cnc e, the smallest member of a five-planet system, has recently been observed to transit its host star. The radius estimates from transit observations, coupled with spectroscopic determinations of mass, provide constraints on its interior composition. The composition of exoplanetary interiors and atmospheres are particularly sensitive to elemental C/O ratio, which to first order can be estimated from the host stars. Results from a recent spectroscopic study analyzing the 6300 Å [O I] line and two C I lines suggest that 55 Cnc has a carbon-rich composition (C/O = 1.12 ± 0.09). However, oxygen abundances derived using the 6300 Å [O I] line are highly sensitive to a Ni I blend, particularly in metal-rich stars such as 55 Cnc ([Fe/H] =0.34 ± 0.18). Here, we further investigate 55 Cnc's composition by deriving the carbon and oxygen abundances from these and additional C and O absorption features. We find that the measured C/O ratio depends on the oxygen lines used. The C/O ratio that we derive based on the 6300 Å [O I] line alone is consistent with the previous value. Yet, our investigation of additional abundance indicators results in a mean C/O ratio of 0.78 ± 0.08. The lower C/O ratio of 55 Cnc determined here may place this system at the sensitive boundary between protoplanetary disk compositions giving rise to planets with high (>0.8) versus low (<0.8) C/O ratios. This study illustrates the caution that must applied when determining planet host star C/O ratios, particularly in cool, metal-rich stars.

  15. Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon

    Sibille, Laurent; Sadoway, Donald; Tripathy, Prabhat; Standish, Evan; Sirk, Aislinn; Melendez, Orlando; Stefanescu, Doru

    2010-01-01

    Previously, we have demonstrated the production of oxygen by electrolysis of molten regolith simulants at temperatures near 1600 C. Using an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in the production of molten metallic products at the cathode and oxygen gas at the anode. Initial direct measurements of current efficiency have confirmed that the process offer potential advantages of high oxygen production rates in a smaller footprint facility landed on the moon, with a minimum of consumables brought from Earth. We now report the results of a scale-up effort toward the goal of achieving production rates equivalent to 1 metric ton O2/year, a benchmark established for the support of a lunar base. We previously reported on the electrochemical behavior of the molten electrolyte as dependent on anode material, sweep rate and electrolyte composition in batches of 20-200g and at currents of less than 0.5 A. In this paper, we present the results of experiments performed at currents up to 10 Amperes) and in larger volumes of regolith simulant (500 g - 1 kg) for longer durations of electrolysis. The technical development of critical design components is described, including: inert anodes capable of passing continuous currents of several Amperes, container materials selection, direct gas analysis capability to determine the gas components co-evolving with oxygen. To allow a continuous process, a system has been designed and tested to enable the withdrawal of cathodically-reduced molten metals and spent molten oxide electrolyte. The performance of the withdrawal system is presented and critiqued. The design of the electrolytic cell and the configuration of the furnace were supported by modeling the thermal environment of the system in an effort to realize a balance between external heating and internal joule heating. We will discuss the impact these simulations and experimental findings have

  16. Determination of metallic iron in sponge-iron

    Mueller, C.S.

    1974-01-01

    The amount of metallic iron in sponge-iron is a parameter of major interest in the evaluation of the performance of the ore-reduction process and in the determination of the composition of the load of the electric furnace used to produce the steel. Moessbauer effect offers the promise of a simple and elegant analysis method, capable of competing directly with the usually time-consuming chemical procedures. The applicability of the method is considered and the possible sources of error are analyzed, resulting in the design of an instrument that is reasonably accurate and simple to use. Detailed electronic circuity required to produce a direct-reading digital instrument is shown [pt

  17. Anodic stripping voltammetry – ASV for determination of heavy metals

    Barón-Jaimez, J; Joya, M R; Barba-Ortega, J

    2013-01-01

    Although voltammetric methods presented a number of difficulties in its early stages, nowadays ''ASV'' anodic stripping voltammetry is considered one of the most sensitive electro-analytical and suitable for trace-level determination of many metals and compounds in environmental samples, clinical and industrial. Its sensitivity is attributed to the combination of a step of pre-concentration effective together with an electrochemical advanced measurement of accumulated analyte. This paper presents an overview of the voltammetry, which includes a group of electro-analytical methods, in them the information about analyte is obtained from measurements of the current flowing in an electrochemical cell when applied a potential difference to an suitable electrode system

  18. Determination of metals in medicinal plants highly consumed in Brazil

    Alexandre Soares Leal

    2013-09-01

    Full Text Available In this work, samples of the medicinal plants: Boldo (Peumus boldus, Castanha da Índia (Aesculus hippocastanum, Chá Verde (Camelia sinensis, Erva Cidreira (Melissa officinalis, Espinheira Santa (Maytenus ilicifolia, Guaraná (Paullinia cupana, Maracujá (Passiflora sp., Mulungu (Erythrina velutina, Sene (Cassia angustifolia and Valeriana (Valeriana officinalis were evaluated BY using the Neutron Activation Analysis technique (NAA- k0 in order to determine the levels of metals and other chemical contaminants. The results showed the presence of non essential elements to the human body. The diversity of chemical impurities found even at low concentration levels, considering the potential for chronic toxicity of these elements, reinforces the need to improve the implementation of good practices by growers and traders, and the hypothesis of lack of quality control in plant products.

  19. Oxidation of sulfur (IV by oxygen in aqueous solution: role of some metal ions

    Martins Claudia R.

    1999-01-01

    Full Text Available Catalytic effect of metal ions: Cr(VI, Cr(III, Cd(II, V(V and chloride anion, on the oxidation of S(IV in aqueous solution, at concentrations of metal ions and S(IV usually found in urban atmospheres, were studied under controlled experimental conditions (pH (2.1 - 4,5, T (25.0 - 35.0 °C, air flow rate, concentration of reactants, etc.... The kinetic constant determined at 25.0 °C and pH range (2.1 - 4.5, using ultra pure water was 8.0 ± 0.5 x 10-4 s-1. This value was considered as a reference for the oxidation reaction rate. The kinetic constants determined in the presence of Cr(VI revealed that the oxidation reaction of S(IV is quite influenced by the acidity. At pH = 2.1 (K = 2.3 x 10-2 mg-1 L s-1 the reaction is carried out with a rate five times greater when compared to pH = 2.6 (K = 4.3 x 10-3 mg-1 L s-1 and thirty times greater when compared to pH = 3.4 (K= 8.0 x 10 -4 mg-1 L s-1. The following rate expression was obtained at pH = 2.6: -r(S(IV =K [Cr(VI] [S(IV] and the activation energy found was: Ea =70.3KJ/mol. No catalytic effects were observed for Cd(II or chloride ion, while inhibitory effects were observed for Cr(III and V(V ions.

  20. Preparation of americium metal of high purity and determination of the heat of formation of the hydrated trivalent americium ion

    Spirlet, J.C.

    1975-10-01

    In order to redetermine some physical and chemical properties of americium metal, several grams of Am-241 have been prepared by two independent methods: lanthanum reduction of the oxide and thermal dissociation of the intermetallic compound Pt 5 Am. After its separation from excess lanthanum or alloy constituent by evaporation, americium metal was further purified by sublimation at 1100 deg C and 10 -6 Torr. Irrespective of the method of preparation, the americium samples displayed the same d.h.c.p. crystal structure. As determined by vacuum hot extraction, the oxygen, nitrogen and hydrogen contents are equal to or smaller than 250, 50 and 20 ppm, respectively. The heats of solution of americium metal (d.c.h.p. structure) in aqueous hydrochloric acid solutions have been measured at 298.15+-0.05K. The standard enthalpy of formation of Am 3+ (aq) is obtained as -616.7+-1.2 kJ mol -1 [fr

  1. The role of oxygen in the deposition of copper–calcium thin film as diffusion barrier for copper metallization

    Yu, Zhinong, E-mail: znyu@bit.edu.cn [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China); Ren, Ruihuang [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China); Xue, Jianshe; Yao, Qi; Li, Zhengliang; Hui, Guanbao [Beijing BOE Optoelectronics Technology Co., Ltd, Beijing 100176 (China); Xue, Wei [School of Optoelectronics and Beijing Engineering Research Center of Mixed Reality and Advanced Display, Beijing Institute of Technology, Beijing 100081 (China)

    2015-02-15

    Highlights: • The CuCa film as the diffusion barrier of Cu film improves the adhesion of Cu film. • The introduction of oxygen into the deposition of CuCa film is necessary to improve the adhesion of Cu film. • The CuCa alloy barrier layer deposited at oxygen atmosphere has perfect anti-diffusion between Cu film and substrate. - Abstract: The properties of copper (Cu) metallization based on copper–calcium (CuCa) diffusion barrier as a function of oxygen flux in the CuCa film deposition were investigated in view of adhesion, diffusion and electronic properties. The CuCa film as the diffusion barrier of Cu film improves the adhesion of Cu film, however, and increases the resistance of Cu film. The introduction of oxygen into the deposition of CuCa film induces the improvement of adhesion and crystallinity of Cu film, but produces a slight increase of resistance. The increased resistance results from the partial oxidation of Cu film. The annealing process in vacuum further improves the adhesion, crystallinity and conductivity of Cu film. X-ray diffraction (XRD) and Auger electron spectroscopy (AES) show that the CuCa alloy barrier layer deposited at oxygen atmosphere has perfect anti-diffusion between Cu film and substrate due to the formation of Ca oxide in the interface of CuCa/substrate.

  2. Determination of oxygen in coals by activation analysis with 14 MeV neutrons

    Arbildo, A.; Espinosa, R; Poma, C.; Eyzaguirre, J.; Hinostroza, H.

    1989-01-01

    A method for non-destructive oxygen determination in coals was developed. It is based on O-16(n,p)N-16 nuclear reaction with 14 MeV neutrons produced in an AID-J 25 neutron generator. This analysis was possible because of the interface development to control the whole irradiation process and subsequent measures of N-16 produced activity from a microcomputer this method was additionally automated by the software development to treat the recorded spectrum in a multiscalimeter analyser. It is described our computer programs and it is shown the results for coal samples from different origins. It is estimated the organic carbon coal in samples from the oxygen analysis. And it is suggested a correlatian between such content and volatile material. Irradiating, decreasing and counting time added up 45 seconds, giving a fast analysis and obtaining accuracy between 1 and 3

  3. Determination of selected heavy metals in inland fresh water of ...

    Agadaga

    Key words: Heavy metals, freshwater, concentrations, quality, variation, distribution. ... prevalence of heavy metals in inland water of lower River. Niger drain are scarce ..... Niger waters at Ajaokuta were found to be low and within guideline.

  4. Kinetic study of the alkaline metals oxidation by dry oxygen; Etude cinetique de l'oxydation des metaux alcalins par l'oxygene sec

    Touzain, Ph. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-15

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [French] L'oxydation du lithium, du sodium, du potassium, du rubidium, du cesium et des alliages sodium-potassium par l'oxygene sec est etudiee a diverses temperatures et a des pressions comprises entre 40 et 400 mmHg d'oxygene. On distingue trois processus d'oxydation differents (l'inflammation, l'ignition et la combustion lente) dont les domaines en fonction de la temperature sont precises. Les lois cinetiques d'oxydation lente, la nature des oxydes formes ainsi que les causes des colorations de ces oxydes sont determinees. Enfin les resultats obtenus sont interpretes theoriquement. (auteur)

  5. Kinetic study of the alkaline metals oxidation by dry oxygen; Etude cinetique de l'oxydation des metaux alcalins par l'oxygene sec

    Touzain, Ph [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-06-15

    The oxidation of lithium, sodium, potassium, rubidium, cesium and sodium-potassium alloys by dry oxygen is studied at several temperatures and in the oxygen pressure range 40 to 400 mmHg. One distinguishes three different oxidation behaviours (inflammation, ignition and slow combustion) whose zones are precised in function of the temperature. The slow oxidation kinetic laws, the composition of oxides and the motive of oxides colorations are determined. At least, the experimental data are construed theoretically. (author) [French] L'oxydation du lithium, du sodium, du potassium, du rubidium, du cesium et des alliages sodium-potassium par l'oxygene sec est etudiee a diverses temperatures et a des pressions comprises entre 40 et 400 mmHg d'oxygene. On distingue trois processus d'oxydation differents (l'inflammation, l'ignition et la combustion lente) dont les domaines en fonction de la temperature sont precises. Les lois cinetiques d'oxydation lente, la nature des oxydes formes ainsi que les causes des colorations de ces oxydes sont determinees. Enfin les resultats obtenus sont interpretes theoriquement. (auteur)

  6. Oxygen abundances in halo giants. I - Giants in the very metal-poor globular clusters M92 and M15 and the metal-poor halo field

    Sneden, Christopher; Kraft, Robert P.; Prosser, Charles F.; Langer, G. E.

    1991-12-01

    Oxygen, iron, vanadium, and scandium abundances are derived for very metal-poor giants in the globular clusters M92 and M15, and giants of comparable metallicity in the local halo field. The forbidden O I line dublet (6300, 6363) and nearby metallic lines in spectra are analyzed using line analysis and spectral synthesis codes. The Fe/H abundance for M92 is estimated at -2.25 +/-0.02 based on nine giants with a range of 500 K in effective temperature. No evidence for star-to-star variations in the Fe/H abundance was found. O-rich and O-poor stars appear intermixed in the H-R diagram. O - N nuclear synthesis and mixing to the surface are proposed as the best explanation for the low-oxygen giants. The nitrogen abundances obtained earlier for nine of the ten halo field giants in this sample are incompatible with the very large nitrogen abundances expected of the O/Fe abundance of about + 1.2 in halo field subdwarfs, as found by Abia and Rebolo (1989), and not more than 0.6 in halo giants, as found in this and other studies.

  7. The determination of trace oxygen in aluminium and aluminium-silicon alloy by helium-3 activation analysis

    Vandecasteele, C.; Goethals, P.; Kieffer, R.; Hoste, J.

    1975-01-01

    The determination of oxygen in aluminium and aluminium-silicon alloy by helium-3 activation is studied. The 18 F formed from oxygen is separated by distillation followed by precipitation of leadfluorochloride. The chemical yield is determined by activation in an isotopic neutron source. Concentrations of resp. 27 and 64 ng.g -1 with a precision for a single determination of resp. 30 and 13% are found in 99.5% aluminium and in aluminium-silicon (3%) alloy. (author)

  8. Determination of Oxygen in Zircaloy Surfaces by Means of Charged Particle Activation Analysis

    Lorenzen, J; Brune, D

    1973-01-15

    Oxygen in zircaloy surfaces has been determined by means of charged particle activation analysis employing the following two reactions I. 16O (d, n) 17F ->(beta+decay) 17O Q = - 1.63 MeV; II. 16O (d, pgamma) 17O Q = + 1.05 MeV. The detection limits for oxygen in such surfaces has been investigated by measuring the promptly emitted 0.87 MeV gamma rays (reaction II) and also the 511 keV annihilation radiation which arises from beta-decay of 17F (reaction I). The correlation between the detection limit for oxygen in zircaloy, the particle energy and the surface thickness analyzed has been evaluated. At a deuteron energy of 3 MeV a detection limit of 0.7 x 10-7 g/cm2 was obtained from the measurement of the prompt gamma radiation arising from the second of these reactions. The analysis carried out by means of this technique is characterized by a high rapidity

  9. Oxygen evolution reaction catalysis

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  10. Using 3.05 MeV resonance for determination of oxygen impurities

    Burkova, I.E.; Polyanskij, V.N.; Yatis, A.A.

    1983-01-01

    The method of determining oxygen impurities behind thin films using the isolated resonance in the 16 O(α, α) 16 O reaction at E=3.048 MeV with the width GITA approximately 20 keV, is considered. Cross section in resonance is σsUb(R) = 0.95 b apd it increases cross section of Rutherford scattering by the factor of 25. The conclusion is made on the possibility of using 3.048 MeV resonance when investigating Me-Si film structures

  11. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  12. Locations of oxygen, nitrogen and carbon atoms in vanadium determined by neutron diffraction

    Hiraga, K.; Onozuka, T.; Hirabayashi, M.

    1977-01-01

    The occupation sites of oxygen, nitrogen, and carbon atoms dissolved interstitially in vanadium have been determined by means of neutron diffraction with use of single crystals of VOsub(0.032), VNsub(0.013) and VCsub(0.006). It is revealed that the interstitial atoms occupy, randomly, the octahedral sites in the b.c.c. host lattice of the three crystals. Neutron diffraction is advantageous for the present purpose, since the coherent scattering amplitudes of the solute atoms are much larger than that of the vanadium atom. (Auth.)

  13. Effect of oxygen on tuning the TiNx metal gate work function on LaLuO3

    Mitrovic, I.Z.; Przewlocki, H.M.; Piskorski, K.; Simutis, G.; Dhanak, V.R.; Sedghi, N.; Hall, S.

    2012-01-01

    This paper presents experimental evidence on effective work function tuning due to the presence of oxygen at the TiNx/LaLuO 3 interface. Two complementary techniques, internal photoemission and X-ray photoelectron spectroscopy, show good agreement on the position of the metal gate Fermi level to conduction (2.79 ± 0.25 eV) and valence (2.65 ± 0.08 eV) band edge for TiNx/bulk LaLuO 3 gate stacks. The chemical shifts of Ti2p and N1s core levels and different degree in ionicity of TiNx metal gates correlate with the observed valence band offset shifts. The results have significance for setting the band edge work function and resulting low threshold voltage for ultimately scaled LaLuO 3 -based p-metal oxide semiconductor field effect transistor devices. - Highlights: ► The conduction band offset measured by internal photoemission. ► The valence band offset (VBO) measured by X-ray photoelectron spectroscopy. ► Different degree in ionicity of TiNx correlates with the VBO shifts. ► The effective work function of the gate stacks varies from 4.6 to 5.2 eV. ► Oxygen at the TiNx/LaLuO 3 interface increases effective work function.

  14. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

    Jiashen Meng; Chaojiang Niu; Xiong Liu; Ziang Liu; Hongliang Chen; Xuanpeng Wang; Jiantao Li

    2016-01-01

    Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis,chemical sensing,drug delivery,and energy storage.However,the controlled synthesis of multilevel nanotubes remains a great challenge.Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment.This versatile strategy can be effectively applied to fabricate wire-in-tube and tubein-tube nanotubes of various metal oxides.These multilevel nanotubes possess a large specific surface area,fast mass transport,good strain accommodation,and high packing density,which are advantageous for lithium-ion batteries (LIBs)and the oxygen reduction reaction (ORR).Specifically,shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh.g-1 at a high rate of 2 A.g-1,maintaining 89% of the latter after 500 cycles.Further,as an oxygen reduction reaction catalyst,these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s,which is higher than that of commercial Pt/C (81%).Therefore,this feasible method may push the rapid development of one-dimensional (1D) nanomaterials.These multifunctional nanotubes have great potential in many frontier fields.

  15. Update on the use of dissolved oxygen addition to monitor the effectiveness of noble metal applications in external manifolds

    Varela, J.A.; Huie, H.H.; Seeman, R.A.; Bourne, C.M.; Odell, A.D.

    2014-01-01

    Electrochemical corrosion potential (ECP) measurements in a Mitigation Monitoring System (MMS) ECP manifold have historically been a primary indicator of the effectiveness of an On-Line NobleChem™ (OLNC) application, with the MMS ECP intended to measure the catalytic effect of noble metal deposited on the ECP manifold surface. In some plants ECP measurements made on untreated surfaces prior to an OLNC application were significantly lower than what would be expected for stainless steel under reactor bulk chemistry conditions. This is due to the consumption and depletion of bulk liquid dissolved oxygen (DO) in the lines supplying reactor water to these external ECP measurement locations. This phenomenon degrades the ability to use these external manifolds to confirm noble metal deposition. Previous papers have described how the injection of an oxygen-rich stream to the MMS supply stream (DO Addition) can be used to re-establish the capability of external ECP measurements to monitor the catalytic behavior of platinum deposited during an OLNC injection. This paper will provide an update of how this method is being successfully used in operating BWRs to monitor OLNC injections. The paper will outline the overall approach used to characterize the catalytic behavior of external ECP manifolds before and after the noble metal application and present plant data collected during DO Additions performed under various conditions. (author)

  16. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    López-Moreno, S., E-mail: sinlopez@uacam.mx [Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari 480, Campeche, Campeche 24029 (Mexico); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  17. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  18. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    López-Moreno, S.; Romero, A. H.

    2015-01-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O 2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered

  19. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-05-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for creatine and PCr for phosphocreatine) and in glycolytic ATP supply lengthen the half-transition time, whereas increase in mitochondrial content, in parallel activation of ATP supply and ATP usage, in oxygen concentration, in proton leak, in resting energy demand, in resting cytosolic pH and in initial alkalization decrease this parameter. Theoretical studies show that a decrease in the activity of creatine kinase (CK) [displacement of this enzyme from equilibrium during on-transient (rest-to-work transition)] accelerates the first stage of the VO2 on-transient, but slows down the second stage of this transient. It is also demonstrated that a prior exercise terminated a few minutes before the principal exercise shortens the transition time. Finally, it is shown that at a given ATP demand, and under conditions where CK works near the thermodynamic equilibrium, the half-transition time of VO2 kinetics is determined by the amount of PCr that has to be transformed into Cr during rest-to-work transition; therefore any factor that diminishes the difference in [PCr] between rest and work at a given energy demand will accelerate the VO2 on-kinetics. Our conclusions agree with the general idea formulated originally by Easterby [(1981) Biochem. J. 199, 155-161] that changes in metabolite concentrations determine the transition times between different steady states in metabolic systems.

  1. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    Perdomo, Camilo [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia); Pérez, Alejandro [Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá D.C (Colombia); Molina, Rafael [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia); Moreno, Sonia, E-mail: smorenog@unal.edu.co [Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 45-03, Bogotá (Colombia)

    2016-10-15

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O{sub 2} mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, {sup 18}O{sub 2} isotopic exchange and O{sub 2}-H{sub 2} titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  2. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-01-01

    Highlights: • Ce addition to the catalysts improves the availability of oxygen in the materials. • Mixed oxide with Co and Cu exhibits the best oxygen transport properties. • Co presence improves O 2 mobility in the catalysts. • The presence of Cu in the solids improves redox properties. - Abstract: The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce–MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18 O 2 isotopic exchange and O 2 -H 2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  3. Neutron scattering lengths of molten metals determined by gravity refractometry

    Reiner, G.; Waschkowski, W.; Koester, L.

    1990-01-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532±0.002 fm, b(Pb)=9.405±0.003 fm, b(Tl)=8.776±0.005 fm, b(Sn)=6.225±0.002 fm and b(Ga)=7.288±0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.)

  4. Neutron scattering lengths of molten metals determined by gravity refractometry

    Reiner, G; Waschkowski, W; Koester, L [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1990-10-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532{plus minus}0.002 fm, b(Pb)=9.405{plus minus}0.003 fm, b(Tl)=8.776{plus minus}0.005 fm, b(Sn)=6.225{plus minus}0.002 fm and b(Ga)=7.288{plus minus}0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.).

  5. Neutron scattering lengths of molten metals determined by gravity refractometry

    Reiner, G.; Waschkowski, W.; Koester, L. (Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik)

    1990-10-01

    Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532{plus minus}0.002 fm, b(Pb)=9.405{plus minus}0.003 fm, b(Tl)=8.776{plus minus}0.005 fm, b(Sn)=6.225{plus minus}0.002 fm and b(Ga)=7.288{plus minus}0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.).

  6. Determination of oxygen in uranium compounds using sulfur monochloride; Dosage de l'oxygene dans les composes de l'uranium par la methode au monochlorure de soufre

    Baudin, G; Besson, J; Blum, P L; Tran-Van, Danh [Commisariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    The authors have described in an other paper (Anal. Chim. Acta, in press) a method for oxygen determination in uranium compounds, in which the sample is attacked by sulfur monochloride. The present paper is concerned with the experimental aspects of the method: apparatus procedure. (authors) [French] Les auteurs ont decrit dans une autre publication (Anal. Chim. Acta) a paraitre, une methode de dosage de l'oxygene dans les composes de l'uranium par attaque par le monochlorure de soufre, La presente note a pour but d'en preciser les techniques experimentale: appareillage, mode operatoire. (auteurs)

  7. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  8. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  9. Determination of Some Heavy Metals in Selected Beauty and ...

    Several epidemiologic studies have investigated the potential carcinogenicity of human exposure to heavy metals from diverse sources but few or none was on African black and beauty soaps. Hence, this study examines the presence of some heavy metals in selected African black and beauty soaps commonly used in ...

  10. Determination of oxygen content in high T/sub c/ superconductors by a charged particle activation method

    Tao, Z.; Alburger, D.E.; Jones, K.W.; Yao, Y.D.; Kao, Y.H.

    1988-01-01

    A new method for determining the oxygen content in high T/sub c/ superconductors has been demonstrated using a charged particle activation technique. This method allows a measurement of the concentration of 16 O atoms in the superconducting material by detection of the 17 F produced with the 16 O(d,n) 17 F nuclear reaction. By way of example, this technique is applied to the determination of oxygen content in a series of high T/sub c/ Y-Ba-Cu-O samples in which the stoichiometry is varied by reducing the copper concentration. The stabilized oxygen content shows a nonlinear dependence on the copper deficiency in these specimens

  11. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Sibille, Laurent; Dominguez, Jesus A.

    2012-01-01

    The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca. 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a Joule-heated (sometimes called 'self-heating') reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. Solutions obtained by multiphysics modeling allow the identification of the critical dimensions of concept reactors.

  12. Oxygen uptake by excised gills of Procambarus clarkii (Girard) from Albufera Lake of Valencia, Spain, under heavy metal treatments

    Diaz-Mayans, J.; Torreblanca, A.; Del Ramo, J.; Nunez, A.

    1986-06-01

    The American red crayfish Procambarus clarkii, originally from Louisiana (USA) was introduced in Spain in the 70's in the Guadalquivir River swamps. It appeared first randomly and in a more regular basis afterwards since 1978 in the Albufera Lake south of Valencia and in the surrounding rice fields. Albufera lake and surrounding rice fields waters are being subject since the last three decades to very heavy load of sewage, toxic industrial residues including heavy metals and pesticides from the many urban and industrial settlements in the zone. In the present study, the authors have investigated the effect that heavy metals (Chromium, Cadmium and Mercury) have on the oxygen uptake by excised bills of Procambarus clarkii (Girard) coming from the Albufera Lake (Valencia).

  13. Incorporation of transition metal ions and oxygen generation during anodizing of aluminium alloys

    Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G.E.

    2004-01-01

    Enrichment of nickel at the alloy/film interface and incorporation of nickel species into the anodic film have been examined for a sputtering-deposited Al-1.2at.%Ni alloy in order to assist understanding of oxygen generation in barrier anodic alumina films. Anodizing of the alloy proceeds in two stages similarly to other dilute aluminium alloys, for example Al-Cr and Al-Cu alloys, where the Gibbs free energies per equivalent for formation of alloying element oxide exceeds the value for alumina. In the first stage, a nickel-free alumina film is formed, with nickel enriching in an alloy layer, 2 nm thick, immediately beneath the anodic oxide film. In the second stage, nickel atoms are oxidized together with aluminium, with oxygen generation forming gas bubbles within the anodic oxide film. This stage commences after accumulation of about 5.4 x 10 15 nickel atoms cm -2 in the enriched alloy layer. Oxygen generation also occurs when a thin layer of the alloy, containing about 2.0 x 10 19 nickel atoms m -2 , on electropolished aluminium, is completely anodized, contrasting with thin Al-Cr and Al-Cu alloy layers on electropolished aluminium, for which oxygen generation is essentially absent. A mechanism of oxygen generation, based on electron impurity levels of amorphous alumina and local oxide compositions, is discussed in order to explain the observations

  14. Determination of oxygen effective diffusivity in porous gas diffusion layer using a three-dimensional pore network model

    Wu Rui; Zhu Xun; Liao Qiang; Wang Hong; Ding Yudong; Li Jun; Ye Dingding

    2010-01-01

    In proton exchange membrane fuel cell (PEMFC) models, oxygen effective diffusivity is the most important parameter to characterize the oxygen transport in the gas diffusion layer (GDL). However, its determination is a challenge due to its complex dependency on GDL structure. In the present study, a three-dimensional network consisting of spherical pores and cylindrical throats is developed and used to investigate the effects of GDL structural parameters on oxygen effective diffusivity under the condition with/without water invasion process. Oxygen transport in the throat is described by Fick's law and water invasion process in the network is simulated using the invasion percolation with trapping algorithm. The simulation results reveal that oxygen effective diffusivity is slightly affected by network size but increases with decreasing the network heterogeneity and with increasing the pore connectivity. Impacts of network anisotropy on oxygen transport are also investigated in this paper. The anisotropic network is constructed by constricting the throats in the through-plane direction with a constriction factor. It is found that water invasion has a more severe negative influence on oxygen transport in an anisotropic network. Finally, two new correlations are introduced to determine the oxygen effective diffusivity for the Toray carbon paper GDLs.

  15. A new method to synthesize sulfur-doped graphene as effective metal-free electrocatalyst for oxygen reduction reaction

    Zhai, Chunyang; Sun, Mingjuan [School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhu, Mingshan, E-mail: mingshanzhu@yahoo.com [School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Song, Shaoqing [School of Chemistry, Biology and Materials Science, East China Institute of Technology, Nanchang 330013 (China); Jiang, Shujuan, E-mail: sjjiang@ecit.edu.cn [School of Chemistry, Biology and Materials Science, East China Institute of Technology, Nanchang 330013 (China)

    2017-06-15

    Highlights: • S doped graphene was facile synthesized by one-pot solvothermal method. • DMSO acted as S source as well as reaction solvent. • S-RGO worked as an efficient metal-free electrocatalyst for ORR. • S-RGO acted as a promising candidate instead of Pt-based catalyst. - Abstract: The exploration of a metal-free catalyst with highly efficient yet low-cost for the oxygen-reduction reaction (ORR) is under wide spread investigation. In this paper, by using dimethyl sulfoxide (DMSO) as S source as well as solvent, we report a new, low-cost, and facile solvothermal route to synthesize S-doped reduced graphene oxide (S-RGO). The existence of S element in the framework of RGO was solidly confirmed by energy-dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The as-synthesized S-RGO can be worked as an efficient metal-free electrocatalyst for ORR. Moreover, compared to commercial Pt/C electrocatalyst, the S-RGO displays superior resistance to crossover effect and stability by evaluating the addition of methanol and CO poisoning experiment. This result not only shows S-RGO as a promising candidate instead of Pt-based catalyst for ORR, but also provides a new approach for the preparation of metal-free electrocatalyst in future.

  16. Determination of the PO2 temperature blood factor from oxygen dissociation curves.

    Hérigault, R A; Soulard, C D; Teisseire, B P; Laurent, D N

    1983-01-01

    The variation with saturation of the temperature coefficient of PO2 in human blood (delta log PO2/delta T) was determined by continuous recording of the oxygen dissociation curve (ODC), at 37 degrees C and 25 degrees C, on the same blood samples. PCO2 and pH were held constant through an ODC run, and PCO2 was reduced at 25 degrees C to the value measured by anaerobic cooling of the same sample. delta log PO2/delta T was calculated from isosaturation points on the 37 and 25 degrees C curves. The temperature coefficient was also computed as an independent check on this method by determination of the effects of temperature (25, 30, 37 and 40 degrees C) on hemoglobin ligand interaction: fixed acid Bohr effect (delta log PO2/delta pH), carbamino-formation (delta log PO2/delta log PCO2) and hemoglobin oxygen affinity. The values of delta log PO2/delta T ratio obtained from the two different approaches were found to be in good agreement. The coefficient decreased when [H+] concentration was increased. A linear relationship between the Bohr factor and the temperature was found: delta log PO2/delta pH = 0.00267 T-0.520 (r = 0.85; n = 40) At 25 degrees C, the carbamino-formation was one order of magnitude lower than at 37 degrees C. Acid-base state and saturation value appeared to be major determinant factors for the temperature correction coefficient to be applied to blood PO2 values measured at standard (37 degrees C) temperature.

  17. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  18. Transition metal complexes with oxygen donor ligands: a synthesis, spectral, thermal and antimicrobial study

    VAIBHAV N. PATANGE

    2008-10-01

    Full Text Available Transition metal complexes of chalcones derived from the conden¬sation of 3-acetyl-6-methyl-2H-pyran-2,4(3H-dione (dehydroacetic acid and p-methoxybenzaldehyde (HL1 or p-nitrobenzaldehyde (HL2 were synthesized and characterized by elemental analysis, conductometry, thermal analysis, magnetic measurements, IR, 1H-NMR, UV–Vis spectroscopy and a microbial study. From the analytical and thermal data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand. The molar conductance data revealed that all the metal chelates were non-electrolytes. The thermal stability of the complexes was studied by thermogravimetry and the decomposition schemes of the complexes are given. The ligands and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli, and fungicidal activity against Aspergillus flavus, Curvularia lunata and Penicillium notatum.

  19. An evaluation of back stress determination techniques in metals

    Jones, W.B.; Rohde, R.W.

    1983-01-01

    The desire to develop unified creep-plasticity (UCP) models come from the necessity to design advanced nuclear reactor components for service under conditions which include combined creep and low cycle fatigue. These models should also be physically based since they would be used to extrapolate from laboratory data to predict long service lives. An approach to UCP modelling centers on the hypothesis that the inelastic strain rate is determined by a balance between the competing processes of work hardening and recovery. One class of UCP models is characterized by a power law relationship between strain rate and stress. A state variable common to these models characterizes the isotropic hardening and is allowed to evolve with history according to simultaneous work hardening and recovery. In order to treat behaviours unique to unloading or reverse loading conditions, several models also include a kinematic hardening variable which is also allowed to evolve according to a balance of work hardening and recovery. Such a treatment of inelastic deformation can mathematically treat a wide variety of behaviors. The measured response of 316SS and A800 indicates that the kinematic variable must, in steady state, be taken as a constant fraction (about 0.8) of the applied stress. This experimental result makes it impossible for the simple power law type expression to properly predict the commonly observed power law breakdown behavior in most metals and alloys. It is proposed that an expression for total inelastic strain rate involving the sum of two separate strain rate contributions is more appropriate. Acknowledging that separate expressions and separate mechanisms dominate low stress (engineering service) conditions and high stress (laboratory test) conditions requires that more emphasis be placed on long time, low stress laboratory testing. (orig.)

  20. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn2O5+δ (Ln=Gd, Pr)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J.

    2016-07-01

    The A-site ordered double-perovskite oxides, LnBaMn2O5+δ (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn2O5+δ. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn2O5+δ. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln3+ ions larger than Y3+. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn2O5 and fully-oxidized LnBaMn2O6 during changes of the oxygen partial pressure between air and 1.99% H2/Ar. In addition, the oxygen non-stoichiometries of GdBaMn2O5+δ and PrBaMn2O5+δ were determined as a function of pO2 at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching 6. The stabilities of the LnBaMn2O5+δ phases extend over a wide range of oxygen partial pressures (∼10-25≤pO2 (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln3+ cation the lower pO2 for phase conversion. At some temperatures and pO2 conditions, the LnBaMn2O5+δ compounds are unstable with respect to decomposition to BaMnO3-δ and LnMnO3. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions.

  1. Preparation of Oxygen Meter Based Biosensor for Determination of Triglyceride in Serum

    M. BHAMBI

    2006-05-01

    Full Text Available A method is described for preparation of a dissolved oxygen meter (make Aqualytic, Germany based triglyceride biosensor employing a polyvinyl chloride (PVC membrane bound lipase, glycerol kinase (GK and glycerol-3-phosphate oxidase The biosensor measures dissolved O2 utilized in the oxidation of triglyceride (TG by membrane bound lipase, glycerol kinase (GK and glycerol-3-phosphate oxidase (GPO, which is directly proportional to (TG concentration. The biosensor showed optimum response within 10-15 sec at pH 7.5 and 39.5 ºC. A linear relationship was obtained between the (TG concentration from 5mM to 20mM and oxygen consumed (mg/L. The biosensor was employed for determination of triglyceride in serum. The within and between batch coefficient of variation (CV were < 2.18 % and < 1.7% respectively. The minimum detection limit of the biosensor was 0.35 mM. A study of interference revealed that ascorbic acid, cholesterol and bilirubin caused 13%, 15%, and 12% interference, respectively.The biosensor is portable and can be used outside the laboratory.

  2. DETERMINATION OF TRACE HEAVY METALS IN SOME TEXTILE ...

    a

    the environmental and industrial samples including textile products [1-5]. Textile is one of the ... Toxic and allergic metals including cadmium, copper, nickel, zinc, and chemicals like formaldehyde and chlorinated hydrocarbons can exist in ...

  3. Determination of some heavy metals concentration in the tissues of ...

    Jen

    Department of Pure and Industrial Chemistry, Bayero University, Kano, P.M.B. 3011, Kano, Nigeria ... contamination (e.g. lead pipes), high ambient air concentrations near emission ... Thus heavy metals acquired through the food chain as a.

  4. Determination of heavy metals in chinese prickly ash from different ...

    digestion, and the contents of copper (Cu), nickel (Ni), chromium (Cr), lead (Pb), cadmium ... concentrations of heavy metals in these CPA samples mean they are safe for human consumption. ... poisoning, including Pb, Cd, As, Hg, Sn, and Sb.

  5. Simultaneous Determination of Metals in Coal with Low-Resolution ...

    NICO

    Calibration was performed using carbon slurry impregnated by the analyte metals as well as with ... plasma atomic emission (ICP AES) that permits characterization of number ..... chosen in such a way to restrict Al absorption on the level below.

  6. Reaction pathways of biomass-derived oxygenates on noble metal surfaces

    McManus, Jesse R.

    As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway

  7. Oxygen release technique as a method for the determination of "δ-pO2-T" diagrams for MIEC oxides.

    Starkov, Ilya; Bychkov, Sergey; Matvienko, Alexander; Nemudry, Alexander

    2014-03-28

    A new approach to the determination of oxygen nonstoichiometry (δ) of MIEC oxides as a continuous function of pO2 at high temperatures was developed. The description of the model allowing one to distinguish the contribution of oxygen released from the samples to the partial pressure of oxygen at the outlet of the continuous-flow fixed-bed reactor after the stepwise change of the oxygen partial pressure of inlet gas from 0.2 to 10(-5) atm and to calculate the dependence of δ on pO2 is presented. The criterion for assessing the achievement of quasi equilibrium release of oxygen from the MIEC oxides is proposed. The adequacy of the method was confirmed by comparing the obtained and published data for well-studied SrCo0.8Fe0.2O3-δ and SrFeO3-δ MIEC oxides.

  8. Steam reforming of biomass derived oxygenates to hydrogen : Importance of metal-support boundary

    Takanabe, K.; Aika, Ken-ichi; Seshan, Kulathu Iyer; Lefferts, L.

    2006-01-01

    Steam reforming of acetic acid over Pt/ZrO2 catalysts was studied as a model reaction of steam reforming of biomass derived oxygenates. Pt/ZrO2 catalysts were very active; however, the catalyst deactivated in time by formation of oligomers which block the active sites for steam reforming.

  9. Modelling of the heat transfer during oxygen atoms recombination on metallic surfaces in a plasma reactor

    Cavadias, S; Cauquot, P; Amouroux, J

    1997-01-01

    Space shuttle overheating during the re-entry phase, due to catalytic oxygen recombination on the thermal protection system, is a problem of practical and theoretical interest. The energy transfer is characterised by the product of the accommodation and the recombination coefficients. Previous

  10. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-06

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).

  11. Role of metal ion impurities in generation of oxygen gas within anodic alumina

    Shimizu, K. [Keio Univ., Yokohama (Japan). Chemical Lab.; Habazaki, H. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering; Skeldon, P.; Thompson, G.E.; Wood, G.C. [University of Manchester Inst. of Science and Technology (United Kingdom). Corrosion and Protection Centre

    2002-07-01

    The generation of oxygen gas within an amorphous anodic alumina film is reported. The film was formed by anodizing aluminum, which was first electropolished and then chemically polished in CrO{sub 3}-H{sub 3}PO{sub 4} solution, in sodium tungstate electrolyte. The procedure results in incorporation of mobile Cr{sup 3+} species, from the chemical polishing film, and mobile W{sup 6+} species, from the electrolyte, into the amorphous structure. The tungsten species are present in the outer 27% of the film thickness, while Cr{sup 6+} species occupy a thin layer within the tungsten-containing region. Above the Cr{sup 3+} containing layer, a band develops that contains oxygen bubbles of a few nanometres size. The oxygen is generated by oxidation of O{sup 2-} ions of the alumina. A mechanism of oxygen generation within the alumina is proposed based on the electronic band structure of the oxide, modified by the Cr{sup 3+} and W{sup 6+} species, and on the ionic transport processes during oxide growth. (author)

  12. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions

    Vallejo, Federico Calle; Martinez, Jose Ignacio; Rossmeisl, Jan

    2011-01-01

    Low-temperature fuel cells are appealing alternatives to the conventional internal combustion engines for transportation applications. However, in order for them to be commercially viable, effective, stable and low-cost electrocatalysts are needed for the Oxygen Reduction Reaction (ORR) at the ca...

  13. Determination of oxygen content in steel using activation analysis with 14 MeV neutron

    Calado, C.E.

    1978-01-01

    In the quantitative analysis of oxygen in steel by fast neutron activation analysis the oxygen content is evaluated from the measured activity of 16 N produced. Steel s mples are irradiated in 14 MeV neutron flux. After irradiation the samples are pneumatically transfered to the counting terminal where activity is measured. Oxygen concentrations, are obtained by comparison with standards of specified oxygen content [pt

  14. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  15. 14 MeV neutron activation analysis for oxygen determination in silicon single-crystals

    Timus, D.M.; Galatanu, V.; Catana, D.

    1985-01-01

    The nondestructive fast neutron activation method has been applied for the total oxygen content determination with regards to the correlation of this content with the material properties of the silicon. The nuclear reaction used is: 16 O (n,p) 16 N, (Tsub(1/2)=7,4 s). The equipment and experimental set-up of the analytical system contained fast neutron generator GENEDAC, gamma scintillation detector (NaI crystal), a photomultiplier, a preamplifier, a linear amplifier with variable energy discrimination thresholds and a pneumatic conveyor system. The method proposed is rapid (total analysis time is less than 60 s), specific (allows a good energetic discrimination in relation to other elements) and precise, being able to characterize nondestructively the whole volume of the analysed sample

  16. Pedaling rate is an important determinant of human oxygen uptake during exercise on the cycle ergometer.

    Formenti, Federico; Minetti, Alberto E; Borrani, Fabio

    2015-09-01

    Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery

    Henning Bay Nielsen

    2014-03-01

    Full Text Available Near-infrared spectroscopy (NIRS is used to monitor regional cerebral oxygenation (rScO2 during cardiac surgery but is less established during non-cardiac surgery. This systematic review aimed i to determine the non-cardiac surgical procedures that provoke a reduction in rScO2 and ii to evaluate whether an intraoperative reduction in rScO2 influences postoperative outcome. The PubMed and Embase database were searched from inception until April 30, 2013 and inclusion criteria were intraoperative NIRS determined rScO2 in adult patients undergoing non-cardiac surgery. The type of surgery and number of patients included were recorded. There was included 113 articles and evidence suggests that rScO2 is reduced during thoracic surgery involving single lung ventilation, major abdominal surgery, hip surgery, and laparascopic surgery with the patient placed in anti-Tredelenburg’s position. Shoulder arthroscopy in the beach chair and carotid endarterectomy with clamped internal carotid artery also cause pronounced cerebral desaturation. A >20% reduction in rScO2 coincides with indices of regional and global cerebral ischemia during carotid endarterectomy. Following thoracic surgery, major orthopedic and abdominal surgery the occurrence of postoperative cognitive dysfunction might be related to intraoperative cerebral desaturation. In conclusion, certain non-cardiac surgical procedures is associated with an increased risk for the occurrence of regional cerebral oxygenation. Evidence for an association between cerebral desaturation and postoperative outcome parameters other than cognitive dysfunction needs to be established.

  18. Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction

    Yan, Kai-Li; Shang, Xiao; Li, Zhen; Dong, Bin; Li, Xiao; Gao, Wen-Kun; Chi, Jing-Qi; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Designing mixed metal oxides with unique nanostructures as efficient electrocatalysts for water electrolysis has been an attractive approach for the storage of renewable energies. The ternary mixed metal spinel oxides FexNi1-xCo2O4 (x = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1) have been synthesized by a facile hydrothermal approach and calcination treatment using nickel foam as substrate. Fe/Ni ratios have been proved to affect the nanostructures of FexNi1-xCo2O, which imply different intrinsic activity for oxygen evolution reaction (OER). SEM images show that Fe0.5Ni0.5Co2O4 has the uniform nanowires morphology with about 30 nm of the diameter and 200-300 nm of the length. The OER measurements show that Fe0.5Ni0.5Co2O4 exhibits the better electrocatalytic performances with lower overpotential of 350 mV at J = 10 mA cm-2. In addition, the smaller Tafel slope of 27 mV dec-1 than other samples with different Fe/Ni ratios for Fe0.5Ni0.5Co2O4 is obtained. The improved OER activity of Fe0.5Ni0.5Co2O4 may be attributed to the synergistic effects from ternary mixed metals especially Fe-doping and the uniform nanowires supported on NF. Therefore, synthesizing Fe-doped multi-metal oxides with novel nanostructures may be a promising strategy for excellent OER electrocatalysts and it also provides a facile way for the fabrication of high-activity ternary mixed metal oxides electrocatalysts.

  19. An X-ray fluorescence method for the determination of metals thicknesses

    Vazquez, Cristina; Leyt, D.V. de; Riveros, J.A.

    1987-01-01

    An absolute method for the determination of the thickness of a metal film deposited on a metallic substrate is described. The method is based on the measurement of fluorescent intensity ratios for two lines from the substrate element. Additionally, the proposed method can be employed to determine the density of the deposited material or the incident angle of primary radiation and take off angle, if the metal film thickness is known. (Author) [es

  20. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Steinberger, R., E-mail: roland.steinberger@jku.at [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Celedón, C.E., E-mail: carlos.celedon@usm.cl [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Departamento de Física, Universidad Técnica Federico Santa María, Valaparaíso, Casilla 110-V (Chile); Bruckner, B., E-mail: barbara.bruckner@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Roth, D., E-mail: dietmar.roth@jku.at [Institut für Experimentalphysik, Abteilung für Atom- und Oberflächenphysik, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Duchoslav, J., E-mail: jiri.duchoslav@jku.at [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Arndt, M., E-mail: martin.arndt@voestalpine.com [voestalpine Stahl GmbH, voestalpine-Straße 3, 4031 Linz (Austria); Kürnsteiner, P., E-mail: p.kuernsteiner@mpie.de [Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); and others

    2017-07-31

    Highlights: • Investigation on the impact of residual gas prevailing in UHV chambers. • For some metals detrimental oxygen uptake could be observed within shortest time. • Totally different behavior was found: no changes, solely adsorption and oxidation. • The UHV residual gas may severely corrupt results obtained from depth profiling. • A well-considered data acquisition sequence is the key for reliable depth profiles. - Abstract: Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  1. Application of Volta potential mapping to determine metal surface defects

    Nazarov, A.; Thierry, D.

    2007-01-01

    As a rule, stress or fatigue cracks originate from various surface imperfections, such as pits, inclusions or locations showing a residual stress. It would be very helpful for material selection to be able to predict the likelihood of environment-assisted cracking or pitting corrosion. By using Scanning Kelvin Probe (the vibrating capacitor with a spatial resolution of 80 μm) the profiling of metal electron work function (Volta potential) in air is applied to the metal surfaces showing residual stress, MnS inclusions and wearing. The Volta potential is influenced by the energy of electrons at the Fermi level and drops generally across the metal/oxide/air interfaces. Inclusions (e.g. MnS) impair continuity of the passive film that locally decreases Volta potential. The stress applied gives rise to dislocations, microcracks and vacancies in the metal and the surface oxide. The defects decrease Volta and corrosion potentials; reduce the overvoltage for processes of passivity breakdown and anodic metal dissolution. These 'anodic' defects can be visualized in potential mapping that can help us to predict locations with higher risk of pitting corrosion or cracking

  2. Determination of diffusion coefficients of oxygen atoms in ZrO2 using first-principles calculations

    Segi, Takashi; Okuda, Takanari

    2014-01-01

    Density functional theory and nudged elastic band calculations were performed in order to determine the diffusion coefficient for oxygen from monoclinic ZrO 2 . The calculated values for monoclinic ZrO 2 at 1000 K and 1500 K were 5.88 × 10 -16 cm 2 s -1 and 2.91 × 10 -11 cm 2 s -1 , respectively, and agreed with previously determined experimental values. In addition, the results of the nudged elastic band calculations suggest that interstitial oxygen sites exist between stable oxygen sites, and if oxygen atoms occupy these sites, stable structures with values for the lattice angle β of greater than 80.53° may be obtained. (author)

  3. Ferromagnetism and half metallicity induced by oxygen vacancies in the double perovskite BaSrNiWO{sub 6}: DFT study

    Aharbil, Y. [Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M' Sik, Casablanca (Morocco); Labrim, H. [Unité Science de la Matière/DERS/Centre National de l’Energie, des Sciences et des Techniques Nucléaires (CNESTEN), Rabat (Morocco); Benmokhtar, S.; Haddouch, M. Ait [Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M' Sik, Casablanca (Morocco); Bahmad, L., E-mail: bahmad@fsr.ac.ma [Mohammed V University in Rabat, Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E. URAC-12, B.P. 1014, Rabat (Morocco); Belhaj, A. [LIRST, Département de Physique, Faculté Poly-disciplinaire, Université Sultan Moulay Slimane, Béni Mellal (Morocco); Ez-Zahraouy, H.; Benyoussef, A. [Mohammed V University in Rabat, Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E. URAC-12, B.P. 1014, Rabat (Morocco)

    2016-11-01

    Using the spin polarized density functional theory (DFT) and exploring the Plane-Wave Self-Consistent Field (PWscf) code implemented in Quantum-ESPRESSO package, we investigate the effect of the Oxygen vacancies (V{sub O}) and the Oxygen interstitial (O{sub i}) on the double perovskite BaSrNiWO{sub 6}. This deals with the magnetic ordering and the electronic structure in such a pure sample exhibiting the insulating anti-ferromagnetic (AFM) state. This study shows that the presence of oxygen deficient defects converts the insulating to half metal with ferromagnetic or anti-ferromagnetic states. The magnetic ordering in BaSrNiWO{sub 6−δ} depends on the position of the Oxygen vacancy in the unit cell. However, it has been shown that the Oxygen interstitial preserves the anti-ferromagnetic propriety. We have computed the formation energies of different positions of the Oxygen vacancy (V{sub O}) and the Oxygen interstitial (O{sub i}) in the BaSrNiWO{sub 6} compound. We showed that the formation of V{sub O} is easier and vice versa for the O{sub i} formation. The obtained results reveal(V{sub O}) and the Oxygen interstitial (O{sub i}) that the anti-ferromagnetic can be converted to ferromagnetic in the double perovskite BaSrNiWO{sub 6} induced by Oxygen vacancies V{sub O}. - Highlights: • We have studied the ferromagnetism and Half Metallicity in Double Perovskite BaSrNiWO{sub 6}. • We have applied the Ab-inito calculations using the DFT approach. • We showed the effects induced by Oxygen Vacancies and Oxygen interstitial. • We found that the magnetic ordering in BaSrNiWO{sub 6−δ} depends on the position of the Oxygen vacancy in the unit cell.

  4. Determination of Surface Properties of Liquid Transition Metals

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  5. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (Δ cueO ) and three mutants that were both Cu and Zn sensitive (Δ yedYZ , Δ cusA -like, and Δ fixH -like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the Δ cueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the Δ yedYZ and Δ fixH -like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the Δ cusA -like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis. IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy

  6. NMR determination of chemically related metals in solution as a new method of inorganic analysis

    Fedorov, L.A.

    1989-01-01

    An NMR spectroscopic method for the determination of chemically related metals in solution is suggested. The metals are determined in complexes with specially selected polydentate ligands. Structural requirements to ligands, analytical properties and general limits of the application of the method are discussed. (orig.)

  7. Oxygen hole mechanism of superconductivity in cuprates and other metal oxides

    Rao, C.N.R.

    1989-01-01

    Several theoretical models have been proposed to explain high-temperature superconductivity in cuprates. An issue that is central to any model is the nature of copper and oxygen species in the cuprates since superconductivity clearly owes its origin to the Cu-O sheets universally present in all the cuprate families. Thus, the five families of cuprate superconductors, La 2 - x M x CuO 4 (M = Ca, Sr or Ba) of the K 2 NiF 4 structure, LnBa 2 Cu 3 O 7 - δ (Ln = Y or rare earth), Bi 2 (Ca, Sr) n + 1 Cu n O 2n + 4 , Tl 2 (Ca, Ba) n + 1 Cu n O 2n + 4 and Tl (Ca, Ba) n + 1 Cu n O 2n + 3 , all contain two-dimensional Cu-O sheets. The Cu-O chains additionally present in the 123 compounds do not seem to play any crucial role. It has been generally believed that magnetic, superconducting and related properties of cuprates have some thing to do with the mixed valency of copper. For example, the resonating valence bond (RVB) model requires the presence of holes on Cu sites (Cu 3 + species). There are also a few models, however, based on the presence of holes on oxygen sites (O - species); dimerization of oxygen holes has also been suggested to occur by a few workers. It is the purpose of this article to briefly present the available experimental evidence for the presence of oxygen holes and to discuss their role in high-temperature conductivity. It will be shown that these holes play a role in other oxide materials as well as including the Cu-free Ba 1 - x K x BiO 3 superconductor

  8. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of metal contamination in situ on osmoregulation and oxygen consumption in the mudflat fiddler crab Uca rapax (Ocypodidae, Brachyura).

    Capparelli, Mariana V; Abessa, Denis M; McNamara, John C

    2016-01-01

    The contamination of estuaries by metals can impose additional stresses on estuarine species, which may exhibit a limited capability to adjust their regulatory processes and maintain physiological homeostasis. The mudflat fiddler crab Uca rapax is a typical estuarine crab, abundant in both pristine and contaminated areas along the Atlantic coast of Brazil. This study evaluates osmotic and ionic regulatory ability and gill Na(+)/K(+)-ATPase activity in different salinities (Rio Itapanhaú, Bertioga>Picinguaba, Ubatuba [pristine reference site]). Our findings show that the contamination of U. rapax by metals in situ leads to bioaccumulation and induces biochemical and physiological changes compared to crabs from the pristine locality. U. rapax from the contaminated sites exhibit stronger hyper- and hypo-osmotic regulatory abilities and show greater gill Na(+)/K(+)-ATPase activities than crabs from the pristine site, revealing that the underlying biochemical machinery can maintain systemic physiological processes functioning well. However, oxygen consumption, particularly at elevated temperatures, decreases in crabs showing high bioaccumulation titers but increases in crabs with low/moderate bioaccumulation levels. These data show that U. rapax chronically contaminated in situ exhibits compensatory biochemical and physiological adjustments, and reveal the importance of studies on organisms exposed to metals in situ, particularly estuarine invertebrates subject to frequent changes in natural environmental parameters like salinity and temperature. Copyright © 2016. Published by Elsevier Inc.

  10. Competitive inhibition of a metal-free porphyrin oxygen-reduction catalyst by water

    Trojánek, Antonín; Langmaier, Jan; Záliš, Stanislav; Samec, Zdeněk

    2012-01-01

    Roč. 48, č. 34 (2012), s. 4094-4096 ISSN 1359-7345 R&D Projects: GA ČR GAP208/11/0697 Institutional research plan: CEZ:AV0Z40400503 Keywords : metal -free porphyrin * competitive inhibition * liquid-liquid interfaces Subject RIV: CG - Electrochemistry Impact factor: 6.378, year: 2012

  11. Oxygen tension is a determinant of the matrix-forming phenotype of cultured human meniscal fibrochondrocytes.

    Adetola B Adesida

    Full Text Available BACKGROUND: Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. METHODOLOGY/PRINCIPAL FINDINGS: MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2 mediated cell expansion in monolayer culture under normoxia (21%O(2 or hypoxia (3%O(2. Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001 of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05. However, both constructs had the same capacity to produce a glycosaminoglycan (GAG -specific extracellular matrix. CONCLUSIONS: Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo

  12. Determination of Heavy Metals in Leaves of Mangifera Indica ...

    USER PC

    ABSTRACT. Concentrations of cadmium, chromium and zinc in leaves of Mangifera indica (Mango), Psidium ... alarm, in some cases, trace heavy metals may accumulate to an ... leaves when released can lead to serious ... shown that it can interact with different hormonal .... 17, 2012. Cadmium Exposure and Bone Mineral.

  13. Determination of toxic metals in salt deposits in Bormanda, Nigeria ...

    lawal

    3,12,13,14,15,16 . Chromium and Arsenic were not detected in any salt sample. Generally, the results of this study revealed the occurrence of some toxic metals in association with the soil salt deposits. Therefore, it is important to undertake Hazard Analysis and Critical Control. Point (HACCP) studies to identify and integrate.

  14. Determination of Some Heavy Metals in Selected Poultry Feeds ...

    MBI

    2014-04-22

    Apr 22, 2014 ... Copper, Iron, Manganese, Nickel, Lead, Chromium and Zinc detected in all samples. ... on human health (SCAN, 2003). The risk of heavy metals contamination in meat is of great concern for both food safety and human health because of the toxic nature of ..... assessment of zinc, cadmium, lead and copper.

  15. Determination of Heavy Metal Genotoxicity and their Accumulation ...

    ADOWIE PERE

    Johannesburg, P.O. Box 17011, Doornfontein 2028, Johannesburg, Republic of South Africa. ... effects that could result from exposure of fish to heavy metals in the Asa River, Ilorin, Nigeria. ... through food chains and this creates public health ...... cultivated in sewage-fed fish farms. Food Chem. Toxicol. 45. (2),. 210-215.

  16. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana; Jacobson, Allan J., E-mail: ajjacob@uh.edu

    2016-07-15

    The A-site ordered double-perovskite oxides, LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn{sub 2}O{sub 5+δ}. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn{sub 2}O{sub 5+δ}. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln{sup 3+} ions larger than Y{sup 3+}. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn{sub 2}O{sub 5} and fully-oxidized LnBaMn{sub 2}O{sub 6} during changes of the oxygen partial pressure between air and 1.99% H{sub 2}/Ar. In addition, the oxygen non-stoichiometries of GdBaMn{sub 2}O{sub 5+δ} and PrBaMn{sub 2}O{sub 5+δ} were determined as a function of pO{sub 2} at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching ~6. The stabilities of the LnBaMn{sub 2}O{sub 5+δ} phases extend over a wide range of oxygen partial pressures (∼10{sup −25}≤pO{sub 2} (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln{sup 3+} cation the lower pO{sub 2} for phase conversion. At some temperatures and pO{sub 2} conditions, the LnBaMn{sub 2}O{sub 5+δ} compounds are unstable with respect to decomposition to BaMnO{sub 3−δ} and LnMnO{sub 3}. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions. - Graphical abstract: Structure of Ln

  17. Improved oxygen-activation method for determining water flow behind casing

    McKeon, D.C.; Scott, H.D.; Olesen, J.R.; Patton, G.L.; Mitchell, R.J.

    1991-01-01

    This paper reports on impulse activation which is a new oxygen-activation technique developed to detect vertical water flow and to provide a quantitative measure of water flow velocity and flow rate. Flow-loop measurements made over a wide range of water velocities are in good agreement with theoretical predictions. Measurements of up- and downward channel flow were made at the U.S. Environmental Protection Agency (EPA) leak test well in Ada, OK, to demonstrate the technique in a controlled environment and to confirm that EPA requirements have been met. A major advantage of this method over previous procedures is that a measurement is a known zero-flow zone is not required. The impulse-activation technique has improved sensitivity to both low and high flow rates. In the EPA leak test well, the technique successfully discriminated between 0- and 1.4 ft/min flow conditions. The lowest quantified velocity was 1.8 ft/min or 10 BWPD, significantly below the EPA requirement of 3 ft/min. The upper limit of detection has not been determined by exceeds 137 ft/min. The water flow log (WFL SM ) measurement uses the impulse-activation technique and a Dual-Bust SM , thermal-decay-time (TDT SM ) tool to detect water flow behind casing. An important application of this measurement is testing for fluid migration in the wellbore as part of the mechanical integrity testing process for Class I and II disposal wells. The new oxygen-activation measurement was used in numerous production wells to identify the presence of water flow behind casing. Additional applications include the identification of open fractures in horizontal wells and the quantification of water flow in the tubing/casing annulus in injection and production wells

  18. Determination of Oxygen in Aluminum by Means of 14 MeV Neutrons with an Account of Flux Attenuation in the Sample

    Brune, D; Jirlow, K

    1967-11-15

    This study concerns the determination of oxygen present at low levels in aluminum using the 14 MeV neutron activation technique. The sensitivity obtained amounted to 0.2 mg oxygen. Various nuclear methods for the oxygen determination have been briefly reviewed. The attenuation of fast neutrons inside the aluminum samples has been calculated.

  19. Preparation of 147Pm metal and the determination of the melting point and phase transformation temperatures

    Angelini, P.; Adair, H.L.

    1976-07-01

    The promethium metal used in the determination of the melting point and phase transformation temperatures was prepared by reduction of promethium oxide with thorium metal at 1600 0 C and distilling the promethium metal into a quartz dome. The melting point and phase transformation temperatures of promethium metal were found to be 1042 +- 5 0 C and 890 +- 5 0 C, respectively. The ratio for the heat of the high-temperature transformation to the heat of fusion was determined to be 0.415

  20. Determination of heavy metals in soil and different parts of Diplazium esculentum (medicinal fern)

    Jasim, Hind S.; Idris, Mushrifah; Abdullah, Aminah; Kadhum, A. A. H.

    2014-09-01

    Diplazium esculentum is a widely used medicinal fern in Malaysia and other regions worldwide. Heavy metals in plants should be determined because prolonged human intake of toxic trace elements, even at low doses, results in organ malfunction and causes chronic toxicity. Hence, substantial information should be obtained from plants that grow on soils containing high concentrations of heavy metals. This study aimed to determine the physicochemical characteristics of soil and heavy metal concentrations (Pb, Cr, Mn, Cu, and Zn) in different parts of D. esculentum and soil, which were collected from the fern garden of Universiti Kebangsaan Malaysia. Results showed that heavy metals were highly accumulated in D. esculentum roots.

  1. Possible Roles of Plant Sulfurtransferases in Detoxification of Cyanide, Reactive Oxygen Species, Selected Heavy Metals and Arsenate

    Parvin Most

    2015-01-01

    Full Text Available Plants and animals have evolved various potential mechanisms to surmount the adverse effects of heavy metal toxicity. Plants possess low molecular weight compounds containing sulfhydryl groups (-SH that actively react with toxic metals. For instance, glutathione (γ-Glu-Cys-Gly is a sulfur-containing tripeptide thiol and a substrate of cysteine-rich phytochelatins (γ-Glu-Cys2–11-Gly (PCs. Phytochelatins react with heavy metal ions by glutathione S-transferase in the cytosol and afterwards they are sequestered into the vacuole for degradation. Furthermore, heavy metals induce reactive oxygen species (ROS, which directly or indirectly influence metabolic processes. Reduced glutathione (GSH attributes as an antioxidant and participates to control ROS during stress. Maintenance of the GSH/GSSG ratio is important for cellular redox balance, which is crucial for the survival of the plants. In this context, sulfurtransferases (Str, also called rhodaneses, comprise a group of enzymes widely distributed in all phyla, paving the way for the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors, at least in vitro. The best characterized in vitro reaction is the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms have multi-protein families (MPF of Str. Despite the presence of Str activities in many living organisms, their physiological role has not been clarified unambiguously. In mammals, these proteins are involved in the elimination of cyanide released from cyanogenic compounds. However, their ubiquity suggests additional physiological functions. Furthermore, it is speculated that a member of the Str family acts as arsenate reductase (AR and is involved in arsenate detoxification. In summary, the role of Str in detoxification processes is still not well understood but seems to be a major function in the organism.

  2. Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones

    Jennifer B. Glass

    2015-09-01

    Full Text Available Iron (Fe and copper (Cu are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO3-, NO2-, Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8 occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.

  3. Metallic substrate materials for thin film oxygen transport membranes for application in a fossil power plant

    Xing, Y.; Baumann, S.; Sebold, D.; Meulenberg, W.A.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF) - IEF-1 Materials Synthesis and Processing

    2010-07-01

    La{sub 0.58}Sr{sub 0.4}CO{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) and Ba{sub 0.5}Sr{sub 0.5}CO{sub 0.8}Fe{sub 3-{delta}} (BSCF5582) exhibit high oxygen permeability due to their high ionic and electronic conductivity. For this reason they are under discussion for application in oxygen transport membranes (OTMs) in zero-emission power plants using oxyfuel technology. A thin film membrane which can increase the oxygen flux is beneficial and a structural substrate is required. Two types of Ni-base alloys were studied as substrate material candidates with a number of advantages, such as high strength, high temperature stability, easy joining and similar thermal expansion coefficient to the selected perovskite materials. Chemical compositions and thermal expansion coefficients of Ni-base alloys were measured in this study. LSCF58428 and BSCF5582 layers were screen printed on Ni-based alloys and co-fired at high temperature in air. The microstructure and element analysis of samples were characterized by scanning electron microscopy (SEM and EDX). A Ni-base alloy, MCrAlY, with a high Al content was the most suitable substrate material, and showed better chemical compatibility with perovskite materials at high temperature than Hastelloy X, which is a chromia-forming Ni-base alloy. A reaction occurred between Sr in the perovskite and the alumina surface layers on MCr-AlY. However, the reaction zone did not increase in thickness during medium-term annealing at 800 C in air. Hence, it is expected that this reaction will not prevent the application of MCr-AlY as a substrate material. (orig.)

  4. Direct determination of the resonance properties of metallic conical nanoantennas

    Tuccio, Salvatore; Razzari, Luca; Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; De Angelis, Francesco De; Candeloro, Patrizio; Das, Gobind; Giugni, Andrea; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo

    2014-01-01

    We present a simple method that is able to predict the resonant frequencies of a metallic conical nanoantenna. The alculation is based on an integral relation that takes into account the dependence of the effective refractive index of the plasmonic mode on the cone radius. Numerical simulations retrieving the near field properties of nanocones with different lengths are also performed for comparison. The fine agreement between the two approaches demonstrates the validity of our method. © 2014 Optical Society of America.

  5. Pollution assessment and heavy metal determination by AAS in ...

    Furthermore, the hardness was 848 to 485 mg/l as CaCO3. Besides, at 20°C, the BOD values were evaluated from 57 to 88 ppm. The COD values retained were from 150 to 108 ppm. In contrast, heavy metals (Pb, Cd, Cr, Cu and Mn) were analyzed and compared with standards of drinking water. The results indicate that ...

  6. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    Sibille, Laurent; Dominques, Jesus A.

    2012-01-01

    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.

  7. Influence of pH and oxygen content of buffer solutions on the corrosion behaviour of metallic materials

    Wiedemann, K.H.

    1977-05-01

    The application of solutions to the decontamination of materials in nuclear installations is based on the condition that their corrosion behaviour is clearly understood. Since electrochemical corrosion is due to cathodic and anodic partial reactions which are influenced in different ways by the pH of the solution and the oxygen content it is suggested that the results of electrochemical experiments with buffer solutions be used as a model for predicting the corrosion behaviour of materials in other solutions. In the tests described here potentio-kinetic current-potential-curves have been traced and galvanic corrosion tests have been made. The results obtained in ascorbic acid, potassium hydrogen phthalate, ammonium citrate and acetate, sodium and potassium tartrate, ammonium hydrogen phosphate, sodium carbonate, hexamethylene tetramin, ethylene diamine enable - on the basis of summarized current-potential-curves - the metals studied to be classified in four groups characterized by clear differences concerning the influence of pH on the corrosion behaviour. (Auth.)

  8. Determination of some trace metals in elsaraf dam (GEDAREF)

    Yagoob, T. I.

    2001-07-01

    In this study the part of the plant analyzed was the root, while by the soil we mean the soil which is in direct contact with the plant root. This analysis was carried to find the relation between the concentrations of the free ions in water, the mobile ions in the soil in contact with the root of the plant and the ions uptake by the plant as well as the movement of these ions between different reservoirs. The nutrient elements, (Fe, Mn, Zn, Cu, Co) showed higher concentrations than toxic elements (Cr, Ni, Cd). Because of its natural abundance, iron has the highest concentration (54900/56600, 33580/36800), manganese has shown the second highest concentration, followed by nickel and zinc. Copper, cobalt and chromium have shown relatively similar concentrations, while cadmium has shown the lowest concentration. In general, almost for all elements the soils have shown higher concentration followed by the plant and then water. Cyperus rotandus has shown high affinity towards most of the metal ions, while the rest of plants have shown almost similar affinity. Because of the generally low concentration of metal ions in water, preconcentration was used using 8-hydroxyquinoline (oxine) and ammonium pyrolidine dithiocarbamate APDC to extract (pre concentrate) the metal ions at the optimum parameters before measurement in AAS.(Author)

  9. Recent progress in the determination of gases in metals by emission spectrography (1963)

    Rossi, G.; Melamed, J.

    1963-01-01

    The Fassel method for analysis of bases in metals was used. By employing a smaller, completely cooled chamber greater sensitivity and lover blank values were obtained. A straight calibration curve, independent of the sample nature was established for oxygen using graphite pellets containing known amounts of ZnO and SnO 2 . The calibration curve for hydrogen was obtained from previously analysed Zircaloy samples. In bath cases a lower limit of sensitivity of 15 μg was attained. (authors) [fr

  10. Determining Permissible Oxygen and Water Vapor Transmission Rate for Non-Retort Military Ration Packaging

    2011-11-01

    OXYGEN AND WATER VAPOR TRANSMISSION RATE FOR NON- RETORT MILITARY RATION PACKAGING by Danielle Froio Alan Wright Nicole Favreau and Sarah...ANSI Std. Z39.18 RETORT STORAGE SHELF LIFE RETORT POUCHES SENSORY ANALYSIS OXYGEN CRACKERS PACKAGING SENSORY... Packaging for MRE. (a) MRE Retort Pouch Quad-Laminate Structure; (b) MRE Non- retort Pouch Tri-Laminate Structure

  11. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments. Final report

    Pfiffner, Susan

    2010-01-01

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  12. Autoradiographic techniques to determine noble metal distribution in automotive catalyst substrates

    Lange, W.H.

    1976-01-01

    The distribution of noble metals in the ceramic substrates of automotive catalytic converter systems is important to the functional characteristics of the systems. A radiotracer technique involving microtomy of bead substrate samples and autoradiography using the resultant thin sections was developed to produce detailed images of the metal distributions. The method is particularly valuable to determine the distribution of one metal in the presence of another to aid in the development of more efficient systems

  13. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  14. Contamination of magnetron sputtered metallic films by oxygen from residual atmosphere in deposition chamber

    Pokorný, Petr; Musil, Jindřich; Fitl, Přemysl; Novotný, Michal; Lančok, Ján; Bulíř, Jiří

    2015-01-01

    Roč. 12, č. 5 (2015), s. 416-421 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GAP108/11/1298; GA ČR(CZ) GAP108/11/1312; GA ČR(CZ) GAP108/11/0958; GA ČR(CZ) GA14-10279S Institutional support: RVO:68378271 Keywords : contamination * low-pressure discharges * magnetron * metallic films * sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.713, year: 2015

  15. Lunar oxygen and metal for use in near-earth space - Magma electrolysis

    Colson, Russell O.; Haskin, Larry A.

    1990-01-01

    The unique conditions on the moon, such as vacuum, absence of many reagents common on the earth, and presence of very nontraditional 'ores', suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. An investigation has begun into unfluxed silicate electrolysis as a method for extracting oxygen, Fe, and Si from lunar regolith. The advantages of the process include simplicity of concept, absence of need to supply reagents from the earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts, which has made identifying suitable electrode and container materials difficult.

  16. Lunar oxygen and metal for use in near-Earth space: Magma electrolysis

    Colson, Russell O.; Haskin, Larry A.

    1990-01-01

    Because it is energetically easier to get material from the Moon to Earth orbit than from the Earth itself, the Moon is a potentially valuable source of materials for use in space. The unique conditions on the Moon, such as vacuum, absence of many reagents common on the Earth, and the presence of very nontraditional ores suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. With this in mind, an investigation of unfluxed silicate electrolysis as a method for extracting oxygen, iron, and silicon from lunar regolith was initiated and is discussed. The advantages of the process include simplicity of concept, absence of need to supply reagents from Earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts which has made identifying suitable electrode and container materials difficult.

  17. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent.

    Chen, Honglei; Chen, Yuancai; Zhan, Huaiyu; Fu, Shiyu

    2011-04-01

    A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02-2.45 mg/L (model 1) and 2.13-2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.

  18. Voltammetric determination of metal impurities on semiconductor surface

    Knyazeva, E.P.; Mokrousov, G.M.; Volkova, V.N.

    1995-01-01

    A modification of voltamperometric method used for analysis of semiconductor surfaces which make it possible to exclude a contact between surface and background solution. This technique is based on solubility of elemental metal forms in low melting electroconductor systems (e.g., in mercury. The voltampere characteristics of amalgams formed are then studied. The suggested method is simple, rapid, and makes it possible to perform a nondestructive qualitative analysis of the sample surface area measuring about 10 -3 cm -2 and more. 4 refs.; 2 figs

  19. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  20. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction

    Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang

    2018-07-01

    High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.

  1. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics

    Stegemann, J.

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  2. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  3. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    Jianqiao Liu

    2017-08-01

    Full Text Available The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  4. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  5. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-d transition metals

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV. (author)

  6. Nitrogen oxidative activation in the radiolysis process of dioxide hydrocarbon composition, oxygen-nitrogen over 3-D transition metals

    Rustamov, V.R.; Garibov, A.A.; Kerimov, V.K.; Aliyev, S.M.; Nasirova, Kh.Y.

    2004-01-01

    Full text: The radiochemical process of nitrogen fixation in carbon dioxide, oxygen-nitrogen composition in 3-d metal (iron, nickel) was studied. Bifunctional character of surface's role in the generation of radiolysis products was postulated: a) Chemisorption's of molecular ions (N 2 + , CO 2 + , O 2 + ) on the surface of metal and their dissociative neutralization. b) Coordination of nitrogen and carbon oxide being generated in nitrosyl and carbonyl-nitrosyl complex of iron and nickel. Total yield of the products is over the rang 6,4†7,5, to explain radiolysis' what contribution of only neutral products is impossible. Evidently in the generation of final products, defined contribution brings in molecular ions N 2 + (N + ) and CO 2 + . Interaction character of these ions with nickel proposes the formation of the relation between unpaired electrons N 2 + and CO 2 + with unfilled d-sub level of this metals with the nickel nitride generation [N i -N=N + ] and binding energy in ion diazotate decreases to twice. The yield of nitrogen dioxide on radiolysis of the air gave G NO2 =0,8±0,2 molecule/100eV which is proper to the date in the literature. Kinetic curve appears rapidly in the saturation. Air radiolysis over iron gave the following results: G NO 2 = 2,75 ± 0,25, G N 2 O = 9,0 ± 1,0 molecule/100eV. Thus total yield of radiolysis products is Σ G = 10,5 ± 12,0 molecule/100eV

  7. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Yin, Jun-Jie [Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740 (United States); Zheng, Zhi, E-mail: zhengzhi99999@gmail.com [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  8. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-01-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors

  9. Use of X-ray fluorescence for metal determination in polymers

    Guidorizzi, Lorenza

    1996-01-01

    X-Ray fluorescence spectrometry was used to determine metals and non-metals in polyester polymers. The greatest advantage of this technique over others like Atomic Absorption or Plasma Emission is that no sample previous treatment (like calcination or acid digestion) is required. Other advantage of this method is its fastness allowing a complete analysis in just few minutes. On the other hand, this method requires metals higher than 15 ppm. Below those values there is a loss of the analysis' precision. Another advantage of this technique is the possibility of making qualitative metal analysis, scanning unknown samples and identifying the found peaks automatically. (author)

  10. Production of hydrogen bromide and oxygen from water and bromine using a metal oxide

    Ishikawa, Hiroshi; Nakane, Masanori; Ishii, Eiichi; Uehara, Itsuki; Miyake, Yoshizo

    1978-01-01

    In order to produce hydrogen by the thermochemical water splitting cycle, the following two-step reactions have been investigated. M.O + Br 2 → M.Br 2 + 1/2O 2 (1) M.Br 2 + H 2 O → M.O + 2HBr (2) At first, indium, zinc, cobalt, manganese and nickel were picked up as suitable elements based on ΔG 0 -T diagram of the reactions. Then, each fundamental reaction was checked experimentally. In the case of cobalt, manganese and nickel, reaction (1) hardly proceeded below 900 0 C under atmospheric pressure of Br 2 . Therefore, detailed experiments were carried out on zinc and indium. In the case of zinc, the equilibrium conversion of Br 2 for reaction (1) was estimated to be 37% at 900 0 C and that of ZnBr 2 (g) for reaction (2) was estimated to be 5% at the same temperature. Also in the case of indium, both the equilibrium conversions of Br 2 and of InBr 3 (g) turned out 10% under the same conditions. As the rate of conversion was rather low, large amounts of unreacted substances should be recycled to proceed these reactions. In the hydrolysis of both ZnBr 2 and InBr 3 , the use of five and ten times larger amount of H 2 O could reduce the amounts of unreacted metal bromides to about a half and one third of the values mentioned above, respectively. Under the present conditions the two-step sub-cycle using the metal oxide is considered to be difficult to realize from technical points of view. (author)

  11. Unifying the 2eand 4e Reduction of Oxygen on Metal Surfaces

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    Understanding trends in selectivity is of paramount importance for multi-electron electrochemical reactions. The goal of this work is to address the issue of 2e– versus 4e– reduction of oxygen on metal surfaces. Using a detailed thermodynamic analysis based on density functional theory calculatio...

  12. Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor

    Hu, Yang; Zhao, Xiao; Huang, Yunjie

    2013-01-01

    Non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) are an active subject of recent research on proton exchange membrane fuel cells. In this study, we report a new approach to preparation of self-supported and nano-structured NPMCs using pre-prepared polyaniline (PANI...

  13. Mechanistic model of the oxygen reduction catalyzed by a metal-free porphyrin in one- and two-phase liquid systems

    Trojánek, Antonín; Langmaier, Jan; Záliš, Stanislav; Samec, Zdeněk

    2013-01-01

    Roč. 110, NOV 2013 (2013), s. 816-821 ISSN 0013-4686 R&D Projects: GA ČR GAP208/11/0697 Institutional support: RVO:61388955 Keywords : oxygen reduction * metal -free porphyrin * catalysis Subject RIV: CG - Electrochemistry Impact factor: 4.086, year: 2013

  14. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies

  15. Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements

    Mik, Egbert G.; van Leeuwen, Ton G.; Raat, Nicolaas J.; Ince, Can

    2004-01-01

    This study describes the use of two-photon excitation phosphorescence lifetime measurements for quantitative oxygen determination in vivo. Doubling the excitation wavelength of Pd-porphyrin from visible light to the infrared allows for deeper tissue penetration and a more precise and confined

  16. Organodioxygen complexes of some heavy metal ions and their oxygen transfer reactions

    Tarafder, M.T.H.; Mei Ling; Gino Mariotto

    2003-09-01

    Several novel organodioxygen complexes of lanthanide ions, viz., lanthanum(m) and cerium(IV) have been synthesized containing a number of organic co- ligands. The complexes characterized were, [La(0 2 )(det)(N0 3 ) 2 ] (1), [La(O 2 )(tet)(NO 3 ) 2 ] (2), [La(O 2 )(C 5 H 5 N)2NO 3 ] (3), [La(O 2 )(C 6 H 18 N 3 PO) 2 (NO 3 ) 2 ] (4), [La(0 2 )(OPPh 3 ) 2 (N0 3 ) 2 ] (5), [La(O 2 ) 2 (NH 2 CH 2 CH 2 NH 2 ) 2 NO 3 ] (6), [La(O 2 )(PPh 3 ) 2 (NO 3 ) 2 ] (7) and [Ce(O 2 )(C 6 H 18 N 3 PO) 2 (NO 3 ) 3 ] (8). IR and Raman spectra revealed that (3) was a peroxo complex while the others were, in particular, superoxo type. The IR spectrum of (3) gives V 1 (O-O) at 851 cm -1 while the Raman spectra of (4), (5), (7) and (8) give V 1 (O 2 ) bands at 1046 cm -1 , 1032 cm 1 , 1100 cm -1 and 1046 cm -1 , respectively. The oxygen transfer reactions of two selected complexes were carried out under stoichiometric conditions. The complex containing a bidentate ligand, (6), was found to oxidize triphenylphosphine and trans-stilbene to their oxides while the complex containing tridentate ligand (1) was stable and inert towards oxidation. (author)

  17. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  18. The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension

    Vink, E.E.; Boer, A.; Blankestijn, P.J. [University Medical Center Utrecht, Department of Nephrology, P.O. Box 85500, GA, Utrecht (Netherlands); Verloop, W.L.; Voskuil, M. [University Medical Center Utrecht, Department of Cardiology, Utrecht (Netherlands); Spiering, W.; Leiner, T. [University Medical Center Utrecht, Department of Vascular Medicine, Utrecht (Netherlands); Vonken, E.; Hoogduin, J.M. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Bots, M.L. [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2015-07-15

    Renal denervation (RDN) is a promising therapy for resistant hypertension. RDN is assumed to decrease sympathetic activity. Consequently, RDN can potentially increase renal oxygenation. Blood oxygen level-dependent MRI (BOLD-MRI) provides a non-invasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the effect of RDN on renal oxygenation as determined by BOLD-MRI. Patients with resistant hypertension or the inability to follow a stable drug regimen due to unacceptable side effects were included. BOLD-MRI was performed before and 12 months after RDN. Twenty-seven patients were imaged on 3 T and 19 on 1.5 T clinical MRI systems. Fifty-four patients were included, 46 patients (23 men, mean age 57 years) completed the study. Mean 24-h BP changed from 163(±20)/98(±14) mmHg to 154(±22)/92(±13) mmHg (p = 0.001 and p < 0.001). eGFR did not change after RDN [77(±18) vs. 79(±20) mL/min/1.73 m{sup 2}; p = 0.13]. RDN did not affect renal oxygenation [1.5 T: cortical R2*: 12.5(±0.9) vs. 12.5(±0.9), p = 0.94; medullary R2*: 19.6(±1.7) vs. 19.3(1.4), p = 0.40; 3 T: cortical R2*: 18.1(±0.8) vs. 17.8(±1.2), p = 0.47; medullary R2*: 27.4(±1.9) vs. 26.7(±1.8), p = 0.19]. The current study shows that RDN does not lead to changes in renal oxygenation 1 year after RDN as determined by BOLD-MRI. (orig.)

  19. Application of liquid column chromatography to preconcentration, separation and determination of platinum metals

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1986-01-01

    Separation and determination of platimum metals using the methods of adsorption, ion-pair, ion-exchange, distributing and sieve chromatography are discussed in the review of literature in 1971-1984. Separation and determination of metals as chelates using the method of adsorption and ion-pair chromatograpy are noted to be most perspective directions of developing highly effective liquid chromatography of inorganic systems

  20. Solid oxide fuel cell cathode infiltrate particle size control and oxygen surface exchange resistance determination

    Burye, Theodore E.

    Over the past decade, nano-sized Mixed Ionic Electronic Conducting (MIEC) -- micro-sized Ionic Conducting (IC) composite cathodes produced by the infiltration method have received much attention in the literature due to their low polarization resistance (RP) at intermediate (500-700°C) operating temperatures. Small infiltrated MIEC oxide nano-particle size and low intrinsic MIEC oxygen surface exchange resistance (Rs) have been two critical factors allowing these Nano-Micro-Composite Cathodes (NMCCs) to achieve high performance and/or low temperature operation. Unfortunately, previous studies have not found a reliable method to control or reduce infiltrated nano-particle size. In addition, controversy exists on the best MIEC infiltrate composition because: 1) Rs measurements on infiltrated MIEC particles are presently unavailable in the literature, and 2) bulk and thin film Rs measurements on nominally identical MIEC compositions often vary by up to 3 orders of magnitude. Here, two processing techniques, precursor nitrate solution desiccation and ceria oxide pre-infiltration, were developed to systematically produce a reduction in the average La0.6Sr0.4Co0.8Fe 0.2O3-delta (LSCF) infiltrated nano-particle size from 50 nm to 22 nm. This particle size reduction reduced the SOFC operating temperature, (defined as the temperature where RP=0.1 Ocm 2) from 650°C to 540°C. In addition, Rs values for infiltrated MIEC particles were determined for the first time through finite element modeling calculations on 3D Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) reconstructions of electrochemically characterized infiltrated electrodes.

  1. Flotation atomic absorption determination of bismuth in nonferrous metal alloys

    Ososkov, V.K.; Plintus, A.M.; Kornelli, M.Eh.; Zakhariya, A.N.; Lozanova, E.V.

    1986-01-01

    Technique of flotation concentration and atomic absorption determination of bismuth microquantities in alloys on the basis of copper and zinc has been developed. Fine-dispersed EhDEh-10P anionite was used as a carrier in flotation concentration. State standard samples (SSS) of brasses and German silver were used as analysed objects. Effect of macrocomponents on the results of bismuth content determination has been studied. Satisfactory coincidence of the results obtained and SSS certificates is shown

  2. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  3. The W-W02 Oxygen Fugacity Buffer at High Pressures and Temperatures: Implications for f02 Buffering and Metal-silicate Partitioning

    Shofner, G. A.; Campbell, A. J.; Danielson, L.; Righter, K.

    2013-01-01

    Oxygen fugacity (fO2) controls multivalent phase equilibria and partitioning of redox-sensitive elements, and it is important to understand this thermodynamic parameter in experimental and natural systems. The coexistence of a metal and its oxide at equilibrium constitutes an oxygen buffer which can be used to control or calculate fO2 in high pressure experiments. Application of 1-bar buffers to high pressure conditions can lead to inaccuracies in fO2 calculations because of unconstrained pressure dependencies. Extending fO2 buffers to pressures and temperatures corresponding to the Earth's deep interior requires precise determinations of the difference in volume (Delta) V) between the buffer phases. Synchrotron x-ray diffraction data were obtained using diamond anvil cells (DAC) and a multi anvil press (MAP) to measure unit cell volumes of W and WO2 at pressures and temperatures up to 70 GPa and 2300 K. These data were fitted to Birch-Murnaghan 3rd-order thermal equations of state using a thermal pressure approach; parameters for W are KT = 306 GPa, KT' = 4.06, and aKT = 0.00417 GPa K-1. Two structural phase transitions were observed for WO2 at 4 and 32 GPa with structures in P21/c, Pnma and C2/c space groups. Equations of state were fitted for these phases over their respective pressure ranges yielding the parameters KT = 190, 213, 300 GPa, KT' = 4.24, 5.17, 4 (fixed), and aKT = 0.00506, 0.00419, 0.00467 GPa K-1 for the P21/c, Pnma and C2/c phases, respectively. The W-WO2 buffer (WWO) was extended to high pressure by inverting the W and WO2 equations of state to obtain phase volumes at discrete pressures (1-bar to 100 GPa, 1 GPa increments) along isotherms (300 to 3000K, 100 K increments). The slope of the absolute fO2 of the WWO buffer is positive with increasing temperature up to approximately 70 GPa and is negative above this pressure. The slope is positive along isotherms from 1000 to 3000K with increasing pressure up to at least 100 GPa. The WWO buffer is at

  4. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  5. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates

    Chadderdon, Xiaotong H.; Chadderdon, David J.; Matthiesen, John E.

    2017-01-01

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. Understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. Here, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. By understanding the underlying mechanisms it enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  6. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates.

    Chadderdon, Xiaotong H; Chadderdon, David J; Matthiesen, John E; Qiu, Yang; Carraher, Jack M; Tessonnier, Jean-Philippe; Li, Wenzhen

    2017-10-11

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. However, understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. In this work, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  7. Tuning metal–graphene interaction by non-metal intercalation: a case study of the graphene/oxygen/Ni (1 1 1) system

    Zhang, Wei-Bing; Chen, Chuan

    2015-01-01

    Epitaxial growth of graphene on transition metal surfaces has been proposed as one of the most promising methods for large-scale preparation of high-quality graphene. However, the presence of the substrate could significantly affect the intrinsic electronic structure of graphene and intercalation of metals is an established route for decoupling the graphene from the substrate. Taking a graphene/Ni(1 1 1) surface as an example, we suggest reactive oxygen as an effective intercalation element to recover the linear dispersion of graphene based on density functional theory calculation, in which vdW interactions are treated using the optB88-vdW functional. The possible intercalation configurations at different coverage are considered and the geometry and electronic structure are analyzed in detail. Our results indicate that the energy favorable structures change from top-fcc to bridge-top configuration after oxygen intercalation and the binding between the graphene and the O/Ni(1 1 1) substrate becomes stronger at high oxygen coverage even than pure Ni(1 1 1) substrate. Most interestingly, the electronic structure of pristine graphene is found to be almost restored, especially for the bridge-top configuration after oxygen intercalation, and the Dirac points move towards the high energy region relative to the Fermi level. A graphene/oxygen/Ni (1 1 1) system is thus suggested as a p-type doped strongly bound Dirac system. Detailed analysis using projected energy band and differential charge density indicates that the intercalated oxygen atoms react with the Ni (1 1 1) surface strongly, which not only blocks the strong interaction between Ni and graphene but also passivates oxygen 2p states. The intercalation mechanisms distinguished from the conventional metal intercalation will be useful to understand other complex intercalation systems. (paper)

  8. An integrated approach to determine phenomenological equations in metallic systems

    Ghamarian, Iman

    It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.

  9. 99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.

    Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E

    2018-03-01

    99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Determination of oxygen content and carbonate impurity in YBa2Cu3O7-x by diffuse reflectance infrared spectroscopy

    Merzbacher, C.I.; Bonner, B.P.

    1991-01-01

    Samples of YBa 2 Cu 3 O 7-x with x ranging from ∼0 to 0.65 have been analyzed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in the midinfrared region (400--6000 cm -1 ). Spectral line shapes vary gradually as a function of oxygen stoichiometry, and the reflectance at 400 and 1000 cm -1 decreases linearly with decreasing oxygen content. Spectra of samples that were incompletely synthesized or exposed to a 4% CO 2 atmosphere at 650 degree C clearly indicated the presence of carbonate. DRIFTS is therefore a quick, nondestructive method for determining oxygen content in YBa 2 Cu 3 O 7-x powders, and for detecting carbonate species due to synthesis error or reaction with CO 2 -bearing atmosphere

  11. Oxygen enhancement ratios for glutathione-deficient human fibroblasts determined from the frequency of radiation induced micronuclei

    Midander, J.

    1982-01-01

    The yield of micronuclei (MN) was determined to study the radiosensitizing effect of oxygen on three human fibroblast strains, characterized by genetically defined differences in their glutathione (GSH) level. Cells were irradiated in paired experiments with x-ray doses of 2.66 and 6.65 gy in their exponential growth phase in a monolayer under oxic and anoxic conditions. Results indicated a reduced oxygen effect for the GSH deficient cells, the reduction of o.e.r. being most pronounced in the case of GSHsup(-/-) cells, when it was close to unity. The o.e.r. value was intermediate for the GSHsup(+/-) in comparison with the two other cell strains. It is concluded that the data indicate a correlation between the cellular content of GSH and the oxygen enhancement of the formation of micronuclei after irradiation. (U.K.)

  12. Oxygen pressure manipulations on the metal-insulator transition characteristics of highly (011)-oriented vanadium dioxide films grown by magnetron sputtering

    Yu Qian; Li Wenwu; Duan Zhihua; Hu Zhigao; Chu Junhao; Liang Jiran; Chen Hongda; Liu Jian

    2013-01-01

    The metal-insulator transition behaviour of vanadium dioxide (VO 2 ) films grown at different oxygen pressures is investigated. With the aid of temperature-dependent electrical and infrared transmittance experiments, it is found that the transition temperature in the heating process goes up with increasing argon-oxygen ratio, whereas the one in the cooling process shows an inverse variation trend. It is found that the hysteresis width of the phase transition is narrowed at a lower argon-oxygen ratio because the defects introduced by excess oxygen lower the energy requirement of transformation. Furthermore, the defects reduce the forbidden gap of the VO 2 system due to the generation of a V 5+ ion. The present results are valuable for the achievement of VO 2 -based optoelectronic devices.

  13. First-principles simulations of the leakage current in metal-oxide-semiconductor structures caused by oxygen vacancies in HfO2 high-K gate dielectric

    Mao, L.F.; Wang, Z.O.

    2008-01-01

    HfO 2 high-K gate dielectric has been used as a new gate dielectric in metal-oxide-semiconductor structures. First-principles simulations are used to study the effects of oxygen vacancies on the tunneling current through the oxide. A level which is nearly 1.25 eV from the bottom of the conduction band is introduced into the bandgap due to the oxygen vacancies. The tunneling current calculations show that the tunneling currents through the gate oxide with different defect density possess the typical characteristic of stress-induced leakage current. Further analysis shows that the location of oxygen vacancies will have a marked effect on the tunneling current. The largest increase in the tunneling current caused by oxygen vacancies comes about at the middle oxide field when defects are located at the middle of the oxide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Column liquid chromatography applied to concentrating, separating, and determining platinum metals

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1986-01-01

    The present survey deals with high-performance liquid chromatography (HPLC) in relation to the chromatographic behavior of the platinum metals, including separation and determination. The data shows that HPLC is the most promising and effective method of separating metals, including platinum ones. The method provides efficient separation of microgram amoounts of mixtures with a resolving power 3-20 times that of thin-layer chromatography. It is shown that the most promising line of advance in HPLC for inorganic systems lies in the separation and determination of metals as chelates by absorption or ion-pair chromatography. Examples of using HPLC for determining noble metals in particular cases indicate that the metrological characteristics are favorable

  15. Determination of stability constants of aminoglycoside antibiotics with their metal complexes

    Tiwow, Vanny M. A.

    2014-03-01

    One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.

  16. Determination of heavy metals in chinese prickly ash from different ...

    Methods: CPA samples collected from different production areas in China were subjected to microwave digestion, and the contents of copper (Cu), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), tin (Sn), and antimony (Sb) were determined by inductively coupled plasma-mass spectrometry ...

  17. Determination of essential and heavy metals in Kenyan honey by ...

    The samples were analysed using flame atomic absorption spectroscopy (FAAS) and flame atomic emission spectroscopy (FAES). Hydride generation -atomic absorption spectroscopy (HG - AAS) was used to determine arsenic. Results obtained from this study showed that K, Na, Ca and Mg had mean values ranged from ...

  18. Simultaneous Determination of Metals in Coal with Low-Resolution ...

    The setup including low-resolution spectrometer with the charge-coupled device (CCD) detector, continuum radiation source and filter furnace (FF) atomizer was employed for direct simultaneous determination of Al, Fe, Mg, Cu and Mn in coal slurry. In the FF, sample vapour entered absorption volume by filtering through ...

  19. Determining the metallicity of the solar envelope using seismic inversion techniques

    Buldgen, G.; Salmon, S. J. A. J.; Noels, A.; Scuflaire, R.; Dupret, M. A.; Reese, D. R.

    2017-11-01

    The solar metallicity issue is a long-lasting problem of astrophysics, impacting multiple fields and still subject to debate and uncertainties. While spectroscopy has mostly been used to determine the solar heavy elements abundance, helioseismologists attempted providing a seismic determination of the metallicity in the solar convective envelope. However, the puzzle remains since two independent groups provided two radically different values for this crucial astrophysical parameter. We aim at providing an independent seismic measurement of the solar metallicity in the convective envelope. Our main goal is to help provide new information to break the current stalemate amongst seismic determinations of the solar heavy element abundance. We start by presenting the kernels, the inversion technique and the target function of the inversion we have developed. We then test our approach in multiple hare-and-hounds exercises to assess its reliability and accuracy. We then apply our technique to solar data using calibrated solar models and determine an interval of seismic measurements for the solar metallicity. We show that our inversion can indeed be used to estimate the solar metallicity thanks to our hare-and-hounds exercises. However, we also show that further dependencies in the physical ingredients of solar models lead to a low accuracy. Nevertheless, using various physical ingredients for our solar models, we determine metallicity values between 0.008 and 0.014.

  20. 3D graphene preparation via covalent amide functionalization for efficient metal-free electrocatalysis in oxygen reduction

    Ahmed, Mohammad Shamsuddin; Kim, Young-Bae

    2017-02-01

    3D and porous reduced graphene oxide (rGO) catalysts have been prepared with sp3-hybridized 1,4-diaminobutane (sp3-DABu, rGO-sp3-rGO) and sp2-hybridized 1,4-diaminobenzene (sp2-DABe, rGO-sp2-rGO) through a covalent amidation and have employed as a metal-free electrocatalyst for oxygen reduction reaction (ORR) in alkaline media. Both compounds have used as a junction between functionalized rGO layers to improve electrical conductivity and impart electrocatalytic activity to the ORR resulting from the interlayer charge transfer. The successful amidation and the subsequent reduction in the process of catalyst preparation have confirmed by X-ray photoelectron spectroscopy. A hierarchical porous structure is also confirmed by surface morphological analysis. Specific surface area and thermal stability have increased after successful the amidation by sp3-DABu. The investigated ORR mechanism reveals that both functionalized rGO is better ORR active than nonfunctionalized rGO due to pyridinic-like N content and rGO-sp3-rGO is better ORR active than rGO-sp2-rGO due to higher pyridinic-like N content and π-electron interaction-free interlayer charge transfer. Thus, the rGO-sp3-rGO has proven as an efficient metal-free electrocatalyst with better electrocatalytic activity, stability, and tolerance to the crossover effect than the commercially available Pt/C for ORR.

  1. Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae

    Peter J. Rogers

    2011-11-01

    Full Text Available Elemental uptake and export of the cell are tightly regulated thereby maintaining the ionomic homeostasis. This equilibrium can be disrupted upon exposure to exogenous reactive oxygen species (ROS, leading to reduction or elevation of the intracellular metal ions. In this study, the ionomic composition in the eukaryotic model organism Saccharomyces cerevisiae was profiled using the inductively-coupled plasma optical emission spectrometer (ICP-OES following the treatment with individual ROS, including hydrogen peroxide, cumen hydroperoxide, linoleic acid hydroperoxide (LAH, the superoxide-generating agent menadione, the thiol-oxidising agent diamide [diazine-dicarboxylic acid-bis(dimethylamide], dimedone and peroxynitrite. The findings demonstrated that different ROS resulted in distinct changes in cellular metal ions. Aluminium (Al3+ level rose up to 50-fold after the diamide treatment. Cellular potassium (K+ in LAH-treated cells was 26-fold less compared to the non-treated controls. The diamide-induced Al3+ accumulation was further validated by the enhanced Al3+ uptake along the time course and diamide doses. Pre-incubation of yeast with individual elements including iron, copper, manganese and magnesium failed to block diamide-induced Al3+ uptake, suggesting Al3+-specific transporters could be involved in Al3+ uptake. Furthermore, LAH-induced potassium depletion was validated by a rescue experiment in which addition of potassium increased yeast growth in LAH-containing media by 26% compared to LAH alone. Taken together, the data, for the first time, demonstrated the linkage between ionomic profiles and individual oxidative conditions.

  2. Determination of the interchangeable heavy-metal fraction in soils by isotope dilution mass spectrometry

    Gaebler, H.E.; Bahr, A.; Mieke, B.

    1999-01-01

    An isotope dilution technique using enriched stable isotopes is applied to determine the interchangeable heavy-metal fraction in soils. Metals in two soil samples are extracted at constant pH, with water, NH 4 NO 3 , and EDTA. A spike of enriched stable isotopes is added to the suspension of sample and eluant at the beginning of the extraction. The heavy-metal fraction which exchanges with the added spike during the extraction is called the interchangeable fraction. The extractable heavy-metal fractions are obtained from the heavy-metal concentrations in the eluates. Isotope ratios and concentrations are determined by HR-ICP-MS. The isotope dilution technique described enables both the extractable and the interchangeable heavy-metal fractions to be determined in the same experiment. The combination of both results gives additional information on elemental availability under different conditions that cannot be obtained by analyzing the extractable heavy-metal fractions alone. It is demonstrated that in some cases different eluants just shift the distribution of the interchangeable fraction of an element between the solid and liquid phases (e.g., Pb and Cd in a topsoil sample) while the amount of the interchangeable fraction itself remains constant. For other elements, as Ni, Zn, and Cr, the use of different eluants (different pH, complexing agents) sometimes enlarges the interchangeable fraction. (orig.)

  3. Determination of halogens by flame emission of metal halogenides

    Henrion, G.; Marquardt, D.; Stoecker, B.

    1979-01-01

    The A-B systems InF, InCl, InBr, and InI have been excited by laminar H 2 -N 2 flames in order to dermine individual halogens or their mixtures qualitatively or quantitatively. In optimizing the fuel gas composition two different behavior patterns have been found for band intensities, which are correlated with binding energies of InX (X = halogen). The low temperature of the flame leads to complicated matrix effects which first of all result from effects on excitation and from competitive reactions. In general, cations cause a decreased intensity. Therefore, salts have to be converted into hydrohalide acids by ion exchange. Qualitative determinations of individual halogens are possible at a 500 to 50,000fold excess of the others, whereas quantitative determinations can be performed at a 100 to 5,000fold excess in 10 -4 molar solutions with errors of 2 to 10 per cent. (author)

  4. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-01-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for c...

  5. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  6. Determination of trace metals in natural fresh waters

    Holm, K.; Borg, H.; Korhonen, M.

    1989-06-01

    The determination method still most widely used is atomic absorption spectrometry with graphite furnace. The natural levels of several elements are however too low to be accurately determined without any preconcentration. Besides, in sea water, the high salt content causes matric effects, which require time consuming separation steps as solvent extraction or ion exchange. The report describes two procedures for preconcentration of fresh water samples, freeze-drying and replicate injections in the furnace, respectively. The procedures are designed to be used on a routine basis. All water samples are collected in polypropylene bottles which are soaked before use in HCl 1+1, rinsed and allowed to stand until use filled with 0.1 M HNO 3 . The samples are preserved by addition of conc. HNO 3 (2 ml/l, sub boiling distilled). In the freeze-drying procedure, the samples are weighed and frozen in the pre-weighed polypropylene sampling bottles and evaporated to about one tenth of the original volume in the vaccum chamber of a freeze dryer. The samples are then weighed again for determination of the concentration factor and alayzed by graphite furnace AAS. When using the other procedure, the water samples are directly injected into the frunace for several times (2-8) before atomization and measurement of the absorption signal. The drying and ashing step is allowed to proceed after every injection. Comparisons of the two procedures have shown good agreement. The advantage of the replicate injection technique is primarily that the concentration factor is more esily controlled and repeated than by the freeze drying procedure. Further, the latter procedure sometimes suffers from precipitates being formed during the evaporation,especially in humic waters rich in iron. (12 figs., 7 tabs., 14 refs.)

  7. On the determination of metals in municipal solid waste

    Grazman, B.L.

    1991-01-01

    The analytical capability to determine the elemental composition of a compost made from municipal solid waste (MSW) has been developed and successfully demonstrated. Prompt Gamma Neutron Activation Analysis (PGNAA) was used for the determination of cadmium via the 113 Cd(n,γ) 114 Cd reaction. Using a small, portable neutron source, an untreated 2.5 kg sample of a MSW compost was found to contain 25 ppm ± 16% (relative counting error) Cd, in good agreement with the determination of Cd in three 100 gram samples of ashed compost. The results of the analysis of the ashed compost was 30 ppm ± 20% (relative standard deviation) Cd. The limit of detection for the technique was 5 ppm in a 2.5 kg sample; calculations indicate that the use of a larger neutron source or more than one detector would decrease this. Treated and untreated samples of compost ranging from 0.1 to 100 grams were analyzed for a number of other elements at trace to percent levels by instrumental neutron activation analysis (INAA). The analysis of treated samples (ashed or ashed and digested) showed that the elemental composition of treated samples statistically differed depending on sample size. 27% of the weight of the compost was made up of insoluble solids, possibly accounting for some of the differences seen. The untreated samples were shown to have consistent mean concentrations regardless of sample size. The differences between the results for treated and untreated samples show some of the potential problems of sample treatment. The accuracy of analytical techniques that require treated samples is limited by the integrity of the sample treatment. INAA and PGNAA, on the other hand, require no sample treatment and are therefore free from these problems

  8. Determination and partitioning of metals in sediments along the Suez Canal by sequential extraction

    Abd El-Azim, H.; El-Moselhy, Kh. M.

    2005-06-01

    The application of sequential extraction technique was used to determine the chemical association of heavy metals in five different chemical phases (exchangeable F1, bound to carbonate F2, bound to Fe-Mn oxides F3, bound to organic matter F4 and residual F5) for sediment samples collected from the Suez Canal. From the obtained data, it can be seen that the surplus of metal contaminants introduced into the sediment from sources usually exists in relatively unstable chemical forms. A high proportion of the studied metals remained in the residual fraction. Most of remaining portion of metals was bound to ferromanganese oxides fraction. The low concentrations of metals in the exchangeable fraction indicated that the sediments of Suez Canal were relatively unpolluted.

  9. Heavy metals determination in aquatic species for food purposes

    Locatelli, C.; Torsi, G. [Bologna Univ., Bologna (Italy). Dept. of Chemistry G. Ciamician

    2001-02-01

    New analytical procedures and sample mineralizations are proposed regarding the determination of arsenic, selenium, copper, lead, cadmium, zinc and mercury in matrices involved in food chain as mussel, clams and fishes. As regards As, Se, Cu, Pb, Cd and Zn determinations. H{sub 2}SO{sub 4}-HNO{sub 3} acidic mixture is used for the digestion is performed using a concentrated supra pure H{sub 2}SO{sub 4}-K{sub 2}Cr{sub 2}O{sub 7} mixture and the results are compared with those from other conventional methods (DPASV) are employed for determining simultaneously selenium, arsenic and copper, lead, cadmium, zinc, respectively, while mercury determination is carried out by the cold vapour atomic absorption spectrometry (CV-AAS) with reduction with SnCl{sub 2}. The voltammetric measurements were performed using a conventional three-electrode cell and the ammonia-ammonium chloride buffer (ph 9.3) as supporting electrolyte. For all the elements, in addition to the detection limits, precision and accuracy data are also reported: the former, expressed as relative standard deviation (S{sub r}), and the latter, expressed as relative error (e), are in all cases between 3 to 6%. [Italian] Viene proposta una nuova procedura analitica ed una nuova mineralizzazione del campione per la determinazione di arsenico, selenio, rame, piombo, cadmio, zinco e mercurio in matrici coinvolte nella catena alimentare come mitili e pesci. Per la determinazione di As, Se, Cu, Pb, Cd, Zn, le matrici sono state mineralizzate con una miscela acida H{sub 2}SO{sub 4}-HNO{sub 3}. Nel caso del Hg, la mineralizzazione del campione e' stata effettuata mediante una miscela H{sub 2}SO{sub 4}-K{sub 2}Cr{sub 2}O{sub 7} ed i risultati confrontati con quelli ottenuti impiegando altri metodi convenzionali. Per la simultanea determinazione di arsenico, selenio, rame, piombo, cadmio, zinco, sono state impiegate la voltammetria differenziale pulsata catodica (DPCSV) ed anodica (DPASV), mentre il mercurio e

  10. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR).

    Gao, Min-Rui; Jiang, Jun; Yu, Shu-Hong

    2012-01-09

    Late transition metal chalcogenide (LTMC) nanomaterials have been introduced as a promising Pt-free oxygen reduction reaction (ORR) electrocatalysts because of their low cost, good ORR activity, high methanol tolerance, and facile synthesis. Herein, an overview on the design and synthesis of LTMC nanomaterials by solution-based strategies is presented along with their ORR performances. Current solution-based synthetic approaches towards LTMC nanomaterials include a hydrothermal/solvothermal approach, single-source precursor approach, hot-injection approach, template-directed soft synthesis, and Kirkendall-effect-induced soft synthesis. Although the ORR activity and stability of LTMC nanomaterials are still far from what is needed for practical fuel-cell applications, much enhanced electrocatalytic performance can be expected. Recent advances have emphasized that decorating the surface of the LTMC nanostructures with other functional nanoparticles can lead to much better ORR catalytic activity. It is believed that new synthesis approaches to LTMCs, modification techniques of LTMCs, and LTMCs with desirable morphology, size, composition, and structures are expected to be developed in the future to satisfy the requirements of commercial fuel cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metal-free oxygen reduction reaction

    Begum, Halima; Ahmed, Mohammad Shamsuddin; Cho, Sung; Jeon, Seungwon

    2017-12-01

    Inspire by the vision of finding a simple and green method for simultaneous reduction and nitrogen (N)-functionalization of graphene oxide (GO), a N-rich reduced graphene oxide (rGO) has been synthesized through a facile and ecofriendly hydrothermal strategy while most of the existing methods are involving with multiple steps and highly toxic reducing agents that are harmful to human health and environment. In this paper, the simultaneous reduction and N-functionalization of GO using as available lemon juice (denoted as Lem-rGO) for metal-free electrocatalysis towards oxygen reduction reaction (ORR) is described. The proposed method is based on the reduction of GO using of the reducing and the N-precursor capability of ascorbic acid and citric acid as well as the nitrogenous compounds, respectively, that containing in lemon juice. The resultant Lem-rGO has higher reduction degree, higher specific surface area and better crystalline nature with N-incorporation than that of well investigated ascorbic acid and citric acid treated rGO. As a result, it shows better ORR electrocatalytic activity in respect to the improved onset potential, electron transfer rate and kinetics than those typical rGO catalysts. Moreover, it shows a significant tolerance to the anodic fuels and durability than the Pt/C during ORR.

  12. Can Electron-Rich Oxygen (O2-) Withdraw Electrons from Metal Centers? A DFT Study on Oxoanion-Caged Polyoxometalates.

    Takazaki, Aki; Eda, Kazuo; Osakai, Toshiyuki; Nakajima, Takahito

    2017-10-12

    The answer to the question "Can electron-rich oxygen (O 2- ) withdraw electrons from metal centers?" is seemingly simple, but how the electron population on the M atom behaves when the O-M distance changes is a matter of controversy. A case study has been conducted for Keggin-type polyoxometalate (POM) complexes, and the first-principles electronic structure calculations were carried out not only for real POM species but also for "hypothetical" ones whose heteroatom was replaced with a point charge. From the results of natural population analysis, it was proven that even an electron-rich O 2- , owing to its larger electronegativity as a neutral atom, withdraws electrons when electron redistribution occurs by the change of the bond length. In the case where O 2- coexists with a cation having a large positive charge (e.g., P 5+ (O 2- ) 4 = [PO 4 ] 3- ), the gross electron population (GEP) on the M atom seemingly increases as the O atom comes closer, but this increment in GEP is not due to the role of the O atom but due to a Coulombic effect of the positive charge located on the cation. Furthermore, it was suggested that not GEP but net electron population (NEP) should be responsible for the redox properties.

  13. An oxygen-insensitive degradable resist for fabricating metallic patterns on highly curved surfaces by UV-nanoimprint lithography.

    Hu, Xin; Huang, Shisong; Gu, Ronghua; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2014-10-01

    In this paper, an oxygen-insensitive degradable resist for UV-nanoimprint is designed, com-prising a polycyclic degradable acrylate monomer, 2,10-diacryloyloxymethyl-1,4,9,12-tetraoxa-spiro [4.2.4.2] tetradecane (DAMTT), and a multifunctional thiol monomer pentaerythritol tetra(3-mercaptopropionate) (PETMP). The resist can be quickly UV-cured in the air atmosphere and achieve a high monomer conversion of over 98%, which greatly reduce the adhesion force between the resist and the soft mold. High conversion, in company with an adequate Young's modulus (about 1 GPa) and an extremely low shrinkage (1.34%), promises high nanoimprint resolution of sub-50 nm. The cross-linked resist is able to break into linear molecules in a hot acid solvent. As a result, metallic patterns are fabricated on highly curved surfaces via the lift off process without the assistance of a thermoplastic polymer layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen.

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Pickup, David M; Liu, Yi-Sheng; Edström, Kristina; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G

    2016-07-01

    During the charging and discharging of lithium-ion-battery cathodes through the de- and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of (18)O-labelled Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2, which demonstrates that oxygen is extracted from the lattice on charging a Li1.2[Ni0.13(2+)Co0.13(3+)Mn0.54(4+)]O2 cathode, although we detected no O2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li(+) removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn(4+) and Li(+) ions, which serve to promote the localization, and not the formation, of true O2(2-) (peroxide, O-O ~1.45 Å) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates.

  15. DFT Calculations using WIEN2K to determine oxygen defect structure of rare earth doped ceria

    Khalife, Ali Rida

    2014-01-01

    We perform density functional calculations using the program WIEN2K in order to study oxygen vacancies in rare earth doped ceria. The calculation for all rare earth elements were prepared, however only those foe Cadmium and Europium were performed due to lack of time. Also a short description of my stay at CERN was presented

  16. Development of a model to determine mass transfer coefficient and oxygen solubility in bioreactors

    Johnny Lee

    2017-02-01

    where T is in degree Kelvin, and the subscripts refer to degree Celsius; E, ρ, σ are properties of water. Furthermore, using data from published data on oxygen solubility in water, it was found that solubility bears a linear and inverse relationship with the mass transfer coefficient.

  17. Determination of the diffusion coefficient of oxygen in sodium chloride solutions with a transient pulse technique

    van Stroe, A.J.; Janssen, L.J.J.

    1993-01-01

    An accurate and rapid method for detg. the diffusion coeffs. of electrochem. active gases in electrolytes is described. The technique is based on chronoamperometry where transient currents are measured and interpreted with a Cottrell-related equation. The diffusion coeffs. of oxygen were detd. for

  18. Respirometric oxygen demand determinations of laboratory- and field-scale biofilters

    Rho, D.; Mercier, P.; Jette, J.F.

    1995-01-01

    A biofiltration experiment operated at three inlet concentrations (425, 830, and 1,450 mg m -3 ), showed that the specific oxygen consumption rate was highly correlated (R = 0.938, n = 23) with the toluene elimination capacity. A radiorespirometric test was found to be more sensitive and appropriate for the field-scale biofilter treating gasoline vapors

  19. Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males

    Hirasawa, Ai; Kaneko, Takahito; Tanaka, Naoki

    2016-01-01

    We estimated cerebral oxygenation during handgrip exercise and a cognitive task using an algorithm that eliminates the influence of skin blood flow (SkBF) on the near-infrared spectroscopy (NIRS) signal. The algorithm involves a subtraction method to develop a correction factor for each subject. ...

  20. Utilization of ICP/OES for the determination of trace metal binding to different humic fractions.

    de la Rosa, G; Peralta-Videa, J R; Gardea-Torresdey, J L

    2003-02-28

    In this study, the use of inductively coupled plasma/optical emission spectrometry (ICP/OES) to determine multi-metal binding to three biomasses, Sphagnum peat moss, humin and humic acids is reported. All the investigations were performed under part per billion (ppb) concentrations. Batch pH profile experiments were performed using multi-metal solutions of Cd(II), Cu(II), Pb(II), Ni(II), Cr(III) and Cr(VI). The results showed that at pH 2 and 3, the metal affinity of the three biomasses exposed to the multi-metal solution that included Cr(III) presented the following order: Cu(II), Pb(II)>Ni(II)>Cr(III)>Cd(II). On the other hand, when Cr(VI) was in the heavy metal mixture, Sphagnum peat moss and humin showed the following affinity: Cu(II), Pb(II)>Ni(II)>Cr(VI)>Cd(II); however, the affinity of the humic acids was: Cu(II)>Pb(II), Cr(VI)>Ni(II)>Cd(II). The results demonstrated that pH values of 4 and 5 were the most favorable for the heavy metal binding process. At pH 5, all the metals, except for Cr(VI), were bound between 90 and 100% to the three biomasses. However, the binding capacity of humic acids decreased at pH 6 in the presence of Cr(VI). The results showed that the ICP/OES permits the determination of heavy metal binding to organic matter at ppb concentration. These results will be very useful in understanding the role of humic substances in the fate and transport of heavy metals, and thus could provide information to develop new methodologies for the removal of low concentrations of toxic heavy metals from contaminated waters.

  1. New titrimetric method for oxygen to metal ratio in uranium oxide powders

    Ray, Vinod Kumar; Brahmananda Reddy, G.; Balaji Rao, Y.; Subba Rao, Y.

    2015-01-01

    O/U ratio is of high importance to both U 3 O 8 and UO 2 powders for different reasons. In UO 2 powder it is a guiding parameter for sintering process where as for U 3 O 8 , it indicates efficiency of ammonium di-uranate (ADU) to U 3 O 8 conversion process. In the present method for O/U determination, UO 2 and U 3 O 8 powders are dissolved in 4.5 M sulphuric acid and little HF by heating on hot plate. Subsequently, optimized quantity of phosphoric acid is added on cooling, for getting sharp end point. The resultant solution is titrated with standard potassium dichromate using barium diphenylamine sulphonate (BDS) as an indicator. The expanded uncertainties calculated for UO 2 and U 3 O 8 powders are ±0.004 and ±0.006 O/U ratio units respectively at 95 % confidence level. (author)

  2. Complexonometric determination of metals using mixture of chromazurol S and cetyltrimethylammonium as indicator

    Tikhonov, V.N.

    1980-01-01

    A method of EDTA-titration of metals using chromazurol S as an indicator in the presence of cetyltrimethylammonium considerably increasing contrast of colour transition at the end-point has been developed. Cu(2), Ga, In, Sc, Y, and Fe(3) can be determined by direct titration with the indicator. Other metals can be determined by back titration of an EDTA excess with copper (2), iron(3), or scandium salt solutions. The selectivity of the method can be improved by using sodium diethyldithiocarbamate. Fe(3), Sc, or Ga solutions can be used as titrants in this case. The method devised was applied to determination of aluminium in copper alloys

  3. Determination of elemental composition of metals using ambient organic mass spectrometry

    Shiea, Christopher [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Cheng, Sy-Chyi; Chen, Yi-Lun [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Shiea, Jentaie, E-mail: jetea@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China)

    2017-05-22

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  4. Determination of elemental composition of metals using ambient organic mass spectrometry

    Shiea, Christopher; Huang, Yeou-Lih; Cheng, Sy-Chyi; Chen, Yi-Lun; Shiea, Jentaie

    2017-01-01

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  5. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions

    Zhou, Dan; Fu, Yurong; Lai, Weiyong; Zhang, Junqing

    2016-01-01

    20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost...

  6. Accurate determination of non-metallic impurities in high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry

    Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing

    2018-06-01

    The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).

  7. Determination of heavy metals in polar snow and ice by laser-excited atomic fluorescence spectrometry

    Bolshov, M.A.; Boutron, C.F.

    1994-01-01

    The new laser-excited atomic fluorescence spectrometry technique offers unrivalled sensitivity for the determination of trace metals in a wide variety of samples. This has allowed the direct determination of Pb, Cd and Bi in Antarctic and Greenland snow and ice down to the sub pg/g level. (authors). 11 refs., 2 figs

  8. Oxygen permeability of transition metal-containing La(Sr,PrGa(MgO3-δ ceramic membranes

    Frade, J. R.

    2004-08-01

    Full Text Available Acceptor-type doping of perovskite-type La1-xSrxGa0.80-yMgyM0.20O3-δ (x = 0-0.20, y = 0.15-0.20, M = Fe, Co, Ni leads to significant enhancement of ionic conductivity and oxygen permeability due to increasing oxygen vacancy concentration. The increase in strontium and magnesium content is accompanied, however, with increasing role of surface exchange kinetics as permeation-limiting factor. At temperatures below 1223 K, the oxygen permeation fluxes through La(SrGa(Mg,MO3-δ membranes with thickness less than 1.5 mm are predominantly limited by the exchange rates at membrane surface. The oxygen transport in transition metal-containing La(SrGa(MgO3-δ ceramics increase in the sequence Co El dopado aceptor de cerámicas tipo perovskita La1-xSrxGa0.80-yMgyM0.20O3-δ (x = 0-0.20, y = 0.15-0.20, M = Fe, Co, Ni da lugar a una mejora significativa de la conductividad iónica y de la permeabilidad al oxígeno debido al aumento de la concentración de vacantes de oxígeno. Sin embargo, el aumento de la cantidad de estroncio y magnesio viene acompañado de un aumento de la participación de las cinéticas de intercambio superficial como factor limitante de la permeabilidad. A temperaturas por debajo de 1223 K la permeabilidad al flujo de oxígeno a través de las membranas de La(SrGa(Mg,MO3-δ con espesor menor de 1.5 mm está limitado principalmente por las velocidades de intercambio en la superficie de la membrana. El transporte de oxígeno en las cerámicas La(SrGa(MgO3-δ que contienen M aumenta en la secuencia Co < Fe < Ni. La conductividad iónica en estas fases es, sin embargo, menor que en la de los compuestos La1-xSrxGa1-yMgyO3-δ. El mayor nivel de permeabilidad de oxígeno, comparable a la de las fases basadas en La(SrFe(CoO3 y La2NiO4, se observa para las membranas de La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3-δ. Los coeficientes de dilatación térmica medios de las cerámicas La(SrGa(Mg,MO3-δ en aire son del orden de (11.6–18.4 × 10-6 K-1 a 373

  9. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  10. A Pooled Data Analysis to Determine the Relationship between Selected Metals and Arsenic Bioavailability in Soil

    Kaihong Yan; Ravi Naidu; Yanju Liu; Ayanka Wijayawardena; Luchun Duan; Zhaomin Dong

    2018-01-01

    Chronic exposure to arsenic (As) is a global concern due to worldwide exposure and adverse effects, and the importance of incorporating bioavailability in the exposure assessment and risk assessment of As is increasing acknowledged. The bioavailability of As is impacted by a number of soil properties, such as pH, clay and metal concentrations. By retrieving 485 data from 32 publications, the aim of this study was to determine the relationship between selected metals (Fe and Al) and As bioavai...

  11. The determination of radionuclides and heavy metals in the phosphogypsum

    Rajkovic, M. B.; Markovic, M.; Vladisavljevic, G. T.; Stevanovic, R.

    1999-01-01

    Phosphogypsum is a waste product in phosphoric acid production using dihydrate wet phosphoric process. The radioactivity of the phosphogypsum is a consequence of the presence of radionuclides resulting from uranium radioactive decay. Presence of uranium in some phosphorites and its concentration depend on their source and variety whether they are primary or secondary can be 10-400 ppm. Radioactivity determined for phosphogypsum confirmed the presence of radionuclides U and 226 Ra. For this reason the methods of purification of raw phosphogypsum have been developed. An aqueous sulfuric acid solution having a concentration of 28 percent was admixed with a concentrated sulfuric acid solutions containing dissolved therein of barium sulfate at the temperature of 105 0 C, the slurry was cooled at a temperature of 30 0 C-35 0 C and then filtered. This purified phosphogypsum can be used independently, as a substitute for natural gypsum, or mixed with the natural gypsum. The consideration of the phosphogypsum is necessary because of the removal (or at least the reducing) of the enormous spoil areas of phosphogypsum and the diminution of the pollution. (author)

  12. Determination of magnetic properties of multilayer metallic thin films

    Birlikseven, C.

    2000-01-01

    In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the experimental results to the theoretical models, effective magnetization and angles between the ferromagnetic layers were calculated. The correspondence between magnetization and magnetoresistance was evaluated. To see the effect of anisotropic magnetoresistance in the magnetoresistance measurements, a new experimental set-up was build and measurements were taken in this set-up. A series of soft permalloy thin films were made, and temperature dependent resistivity, magnetoresistance, anisotropic magnetoresistance and magnetization measurements were taken

  13. Main alloy elements in covered electrodes in terms of the amount of oxygen in weld metal deposits (WMD

    T. Węgrzyn

    2012-04-01

    Full Text Available There were investigated properties of WMD, especially metallographic structure, toughness and fatigue strength of welds with various oxygen amount. The connection between the properties of welds with the content of oxygen in WMD were carried out. The research results indicate that it should be limited oxygen content in steel welds. Subsequent researchers could find more precisely the most beneficial oxygen amount in the welds in terms of the amount of acicular ferrite in welds.

  14. Optimization of Glucose oxidase towards oxygen independency and high mediator activity for amperometric glucose determination in diabetes analytics

    Arango Gutierrez, Erik Uwe

    2015-01-01

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies, and one simultaneous site saturation library (OmniC...

  15. Determination of the Number of Fixture Locating Points for Sheet Metal By Grey Model

    Yang Bo

    2017-01-01

    Full Text Available In the process of the traditional fixture design for sheet metal part based on the "N-2-1" locating principle, the number of fixture locating points is determined by trial and error or the experience of the designer. To that end, a new design method based on grey theory is proposed to determine the number of sheet metal fixture locating points in this paper. Firstly, the training sample set is generated by Latin hypercube sampling (LHS and finite element analysis (FEA. Secondly, the GM(1, 1 grey model is constructed based on the established training sample set to approximate the mapping relationship between the number of fixture locating points and the concerned sheet metal maximum deformation. Thirdly, the final number of fixture locating points for sheet metal can be inversely calculated under the allowable maximum deformation. Finally, a sheet metal case is conducted and the results indicate that the proposed approach is effective and efficient in determining the number of fixture locating points for sheet metal.

  16. Facile and cost-effective preparation of PVA/modified calcium carbonate nanocomposites via ultrasonic irradiation: Application in adsorption of heavy metal and oxygen permeation property.

    Mallakpour, Shadpour; Khadem, Elham

    2017-11-01

    This work is focused on the fabrication and determination of physicochemical behaviors of new poly(vinyl alcohol) (PVA) nanocomposites (NCs) containing various contents of calcium carbonate (CC) nanoparticles modified with γ-aminopropyl triethoxy silane (ATS) (henceforth designated as CC-ATS) which could be a crucial treatment for their application as gas barrier to O 2 gas and uptake of metal ions in waste waters. Samples were produced through the solution casting method under ultrasound irradiation. Thermal and mechanical performances were also evaluated for all ultrasonically synthesized nanocomposites and the results indicated that thermal and mechanical stability are dramatically enhanced by addition of a small amount of modified CC-ATS within PVA up to 5wt% and higher amounts has low effect on the composite properties. The result of oxygen gas permeability of PVA showed a 25.44% reduction by adding of 5wt% of CC-ATS into polymer matrix. Experimental adsorption isotherm data indicated that PVA NC has more efficiency for Cu(II) adsorption relative to pure PVA and well simulated by Langmuir model with maximum adsorption capacity of 45.45mgg -1 . Moreover, study of sorption kinetic indicated that the solute adsorption on PVA/CC-ATS NC 5wt% was well modeled using the pseudo-second-order. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Automated Determination of Oxygen-Dependent Enzyme Kinetics in a Tube-in-Tube Flow Reactor.

    Ringborg, Rolf H; Toftgaard Pedersen, Asbjørn; Woodley, John M

    2017-09-08

    Enzyme-mediated oxidation is of particular interest to synthetic organic chemists. However, the implementation of such systems demands knowledge of enzyme kinetics. Conventionally collecting kinetic data for biocatalytic oxidations is fraught with difficulties such as low oxygen solubility in water and limited oxygen supply. Here, we present a novel method for the collection of such kinetic data using a pressurized tube-in-tube reactor, operated in the low-dispersed flow regime to generate time-series data, with minimal material consumption. Experimental development and validation of the instrument revealed not only the high degree of accuracy of the kinetic data obtained, but also the necessity of making measurements in this way to enable the accurate evaluation of high K MO enzyme systems. For the first time, this paves the way to integrate kinetic data into the protein engineering cycle.

  18. Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids

    Mueller-Klieser, W.

    1984-01-01

    A method has been developed for the quantitative evaluation of oxygen tension (PO2) distributions in multicellular spheroids measured with O2-sensitive microelectrodes. The experimental data showed that multicellular tumor spheroids in stirred growth media were characterized by a diffusion-depleted zone surrounding the spheroids. This zone was elicited by an unstirred layer of medium next to the spheroid leading to a continuous decrease in the PO2 values from the bulk medium towards the spher...

  19. Incremental rate of prefrontal oxygenation determines performance speed during cognitive Stroop test: the effect of ageing.

    Endo, Kana; Liang, Nan; Idesako, Mitsuhiro; Ishii, Kei; Matsukawa, Kanji

    2018-02-19

    Cognitive function declines with age. The underlying mechanisms responsible for the deterioration of cognitive performance, however, remain poorly understood. We hypothesized that an incremental rate of prefrontal oxygenation during a cognitive Stroop test decreases in progress of ageing, resulting in a slowdown of cognitive performance. To test this hypothesis, we identified, using multichannel near-infrared spectroscopy, the characteristics of the oxygenated-hemoglobin concentration (Oxy-Hb) responses of the prefrontal cortex to both incongruent Stroop and congruent word-reading test. Spatial distributions of the significant changes in the three components (initial slope, peak amplitude, and area under the curve) of the Oxy-Hb response were compared between young and elderly subjects. The Stroop interference time (as a difference in total periods for executing Stroop and word-reading test, respectively) approximately doubled in elderly as compared to young subjects. The Oxy-Hb in the rostrolateral, but not caudal, prefrontal cortex increased during the Stroop test in both age groups. The initial slope of the Oxy-Hb response, rather than the peak and area under the curve, had a strong correlation with cognitive performance speed. Taken together, it is likely that the incremental rate of prefrontal oxygenation may decrease in progress of ageing, resulting in a decline in cognitive performance.

  20. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  1. Quality assurance in the determination of metals in clinical chemistry and toxicology: the METOS project. Metalli Tossici.

    Patriarca, M; Menditto, A; Morisi, G

    1995-01-01

    National external quality assessment schemes (EQAS) for the determination of trace elements in blood (Al, Cd, Cu, Pb, Zn) have been promoted in Italy since 1983. They were organized by a working group of the Istituto Superiore di Sanità and known as "METOS (Metalli Tossici, toxic metals) project". The organization of the schemes included the preparation of suitable control materials by the promoting centre and the elaboration of valuable strategies of sample distribution, treatment of data and evaluation of results, that could be applied even to a small number of participants. The procedures used and the results obtained in ten years of activity of the METOS project are reported. Within the framework of the programme some information has been obtained, confirming the validity of the procedures used for sample preparation, sample distribution and evaluation of laboratories performance.

  2. Some metals determination in beers by atomic emission spectrometry of induced argon plasma

    Matsushige, I.

    1990-01-01

    It was made the identification and determination of metals in brazilian bottled and canned beer, using atomic emission spectrometry with d.c. are and argon coupled plasma excitation sources. The elements Co, Cr, Cu, Fe, Pb and Zn were determined in beer samples, after treatment with HNO sub(3) conc. /H sub(2) O sub(2) (30%). In the determination of Co, Cr, Cu, Pb and Zn and alternative method using HNO sub(3) conc. /O sub(3) was proved be useful. The results obtained for Co, Cr, Cu, Fe, Pb and Zn were below the limits established by brazilian legislation, showing the good quality of the beer concerning the metals. The results of this work were requested by the previous Ministerio do Meio Ambiente e Urbanismo in order to contribute to review the brazilian legislation in foods and beverages about metals contents. (author)

  3. The Determination of Uranium and Trace Metal Impurities in Yellow Cake Sample by Chemical Method

    Busamongkol, Arporn; Rodthongkom, Chouvana

    1999-01-01

    The purity of uranium cake is very critical in nuclear-grade uranium (UO 2 ) and uranium hexafluoride (UF 6 ) production. The major element in yellow cake is uranium and trace metal impurities. The objective of this study is to determine uranium and 25 trace metal impurities; Aluminum, Barium, Bismuth, Calcium, Cadmium, Cobalt, Chromium, Copper, Iron, Potassium, Iithium, Magnesium, Manganese, Molybdenum, Sodium, Niobium, Nickel, Lead, Antimony, Tin, Strontium, Titanium, Vanadium, Zinc and Zirconium, Uranium is determined by Potassium dichromate titration, after solvent extraction with Cupferon in Chloroform, Trace metal impurities are determined by solvent extraction with Tributyl Phosphate in Carbon-tetrachloride ( for first 23 elements) and N-Benzoyl-N-Phenylhydroxylamine in Chloroform ( for last 2 elements), then analyzed by Atomic Absorption Spectrophotometer (AAS) compared with Inductively Couple Plasma Spectrophotometers (ICP). The accuracy and precision are studied with standard uranium octaoxide

  4. Determination of heavy metals contamination using a silicon sensor with extended responsive to the UV

    Aceves-Mijares, M; Ramírez, J M; Pedraza, J; Román-López, S; Chávez, C

    2013-01-01

    Due to its potential risk to human health and ecology, the presence of heavy metals in water demands of techniques to determine them in a simple and economical way. Currently, new developments of light emitters and detectors open a window of opportunities to use optical properties to analyze contaminated water. In this paper, a silicon sensor developed to extend its sensitivity up to the UV range is used to determine heavy metals in water. Cadmium, Zinc, Lead, Copper and Manganese mixed in pure water at different concentrations were used as test samples. The photocurrent obtained by the light that passes through the samples was used to determine the optical transmittance of pure and contaminated water. Preliminary results show a good separability between samples, which can be used for qualitative and quantitative detection of such heavy metals in water.

  5. The application of the inductively coupled plasma system to the simultaneous determination of precious metals

    Watson, A.E.; Russell, G.M.; Middleton, H.R.; Davenport, F.F.

    1983-01-01

    This report describes the development of a spectrochemical technique using excitation by an inducticely coupled plasma (ICP) source for the simultaneous determination of the precious metals (defined here as gold, silver, and all the platinum-group metals except osmium) in a wide variety of samples from a plant for the extraction and refining of platinum metal. The limits of detection for the analytes were determined in various acid and salt media and, under the conditions used, ranged from 20 to 100ng/l. The analytes were determined in the presence of a thousandfold excess of each of the other precious metals used as a matrix element. Some severe interferences were noted but were ascribed to spectral-line overlap or to contamination of the matrix material. Various dissolution techniques, based upon standard procedures applied in the precious-metals industry, were used, depending on the particular type of material treated. The spectrometer was calibrated by the use of solutions containing the analytes, sodium chloride, and acid, with scandium as the internal standard. The accuracy and precision of the technique, established by the analysis of many samples of each type, were found to be satisfactory when close attention was paid to detail in the preparation of the analytical solution. The relative standard deviation of the method ranges from 0,005 to 0,05, depending on the element being determined

  6. Method to determine the contents of economically interesting metals in manganese nodules

    Michaelis, W.; Fanger, U.; Pepelnik, R.; Mueller, A.

    1977-01-01

    Metals which are economically important (as copper, nickel) can be determined in manganese nodules by analysing the activating gamma spectra which are measured after neutron irradiation of the samples. Irradiating the samples with fast neutrons and analysing the activity thus reduced with the help of a gamma detector is expected to improve the method. This serves to obtain the ratio of the radiation intensities of two main components (Mu, Fe) and using this, the percental metal content can be determined through known geo-chemical correlation tables and curves. The method is described in detail. (RB) [de

  7. Determination of Focal Laws for Ultrasonic Phased Array Testing of Dissimilar Metal Welds

    Jing, Ye; Kim, Hak Joon; Song, Sung Jin; Song, Myung Ho; Kang, Suk Chull; Kang, Sung Sik; Kim, Kyung Cho

    2008-01-01

    Inspection of dissimilar metal welds using phased array ultrasound is not easy at all, because crystalline structure of dissimilar metal welds cause deviation and splitting of the ultrasonic beams. Thus, in order to have focusing and/or steering phased array beams in dissimilar metal welds, proper time delays should be determined by ray tracing. In this paper, we proposed an effective approach to solve this difficult problem. Specifically, we modify the Oglivy's model parameters to describe the crystalline structure of real dissimilar metal welds in a fabricated specimen. And then, we calculate the proper time delay and incident angle of linear phased array transducer in the anisotropic and inhomogeneous material for focusing and/or steering phased array ultrasonic beams on the desired position

  8. Surface treatment of non-ferrous metal samples to be certified for their oxygen, nitrogen and carbon content

    Weber, G.Y.; Quaglia, L.; David, D.; Pauwels, J.; Vanaudenhove, J.

    1977-01-01

    Surface treatment on non-ferrous metals is proposed in order to minimize or determine quantitatively the interference of gaseous contamination. Two types of surface treatment have been applied to the specimens; mechanical treatment (sawing, turning, polishing); chemical treatment (etching). Three main conditions govern the choice of treatment: it must give a minimum surface content of the elements to be determined; it must exhibit the reproducibility of the treatment; it must be easy to perform with the normal equipment in the analytical laboratories concerned. A table corresponding to each element gives the range of surface content liable to be used for corrections of determination in the mass, a mechanical treatment, a chemical etching. The elements concerned are: Ta, Mo, W, Ti, Zr, Nb, Cu, Cu/Zn, Al, Al/Mg, Al/Si, Pb, Pb/Sb, Si, Ge, GaAs. The proposals result from a large number of determinations of superficial contamination on several materials using microanalysis by nuclear reactions. (T.G.)

  9. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production

    Quinlan, Casey L; Perevoschikova, Irina V; Goncalves, Renata L S

    2013-01-01

    Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS...... production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from...

  10. Comparison of NO titration and fiber optics catalytic probes for determination of neutral oxygen atom concentration in plasmas and postglows

    Mozetic, Miran; Ricard, Andre; Babic, Dusan; Poberaj, Igor; Levaton, Jacque; Monna, Virginie; Cvelbar, Uros

    2003-01-01

    A comparative study of two different absolute methods NO titration and fiber optics catalytic probe (FOCP) for determination of neutral oxygen atom density is presented. Both methods were simultaneously applied for measurements of O density in a postglow of an Ar/O 2 plasma created by a surfatron microwave generator with the frequency of 2.45 GHz an adjustable output power between 30 and 160 W. It was found that the two methods gave similar results. The advantages of FOCP were found to be as follows: it is a nondestructive method, it enables real time measuring of the O density, it does not require any toxic gas, and it is much faster than NO titration. The advantage of NO titration was found to be the ability to measure O density in a large range of dissociation of oxygen molecules

  11. Determination of blood oxygenation in the brain by time-resolved reflectance spectroscopy: influence of the skin, skull, and meninges

    Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.

    1994-07-01

    Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.

  12. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species.

    Felipe A Arenas

    2011-01-01

    Full Text Available This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS. Cells lacking btuE (ΔbtuE displayed higher sensitivity to K(2TeO(3 and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2O(2 did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(- resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.

  13. Interlaboratory determinations of isotopically enriched metals by field desorption mass spectroscopy

    Bahr, U.; Schulten, H.R.; Achenbach, C.; Ziskoven, R.

    1982-01-01

    The isotopic distribution of stable isotopes in six enriched metals (calcium, copper, barium, rubidium, strontium and thallium) has been determined by field desorption mass spectrometry. A first evaluation of the interlaboratory reproducibility of the application of this method for trace determination of metals was made using three different types of mass spectrometers in three different laboratories. The standard deviations for the most abundant isotopes of the metals investigated are between +-0.1 and +-0.5%. Within these standard deviations, the values obtained by the three mass spectrometry groups are the same. To support the accuracy of our quantification, thermal ionization mass spectrometry has been employed and confirms the results of the field desorption method. (orig.) [de

  14. Standard practice for determining cracking susceptibility of metals exposed under stress to a hot salt environment

    American Society for Testing and Materials. Philadelphia

    1990-01-01

    1.1 This practice covers procedures for testing metals for embrittlement and cracking susceptibility when exposed under stress to a hot salt environment. This practice can be used for testing all metals for which service conditions dictate the need for such information. The test procedures described herein are generally applicable to all metal alloys; required adjustments in environmental variables (temperature, stress) to characterize a given materials system should be made. This practice describes the environmental conditions and degree of control required, and suggests means for obtaining this desired control. 1.2 This practice can be used both for alloy screening for determination of relative susceptibility to embrittlement and cracking, and for the determination of time-temperature-stress threshold levels for onset of embrittlement and cracking. However, certain specimen types are more suitable for each of these two types of characterizations. Note 1 This practice relates solely to the performance of ...

  15. Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions

    Zheng, Yao

    2017-02-21

    Organometallic complexes with metal-nitrogen/carbon (M-N/C) coordination are the most important alternatives to precious metal catalysts for oxygen reduction and evolution reactions (ORR and OER) in energy conversion devices. Here, we designed and developed a range of molecule-level graphitic carbon nitride (g-C3N4) coordinated transition metals (M-C3N4) as a new generation of M-N/C catalysts for these oxygen electrode reactions. As a proof-of-concept example, we conducted theoretical evaluation and experimental validation on a cobalt-C3N4 catalyst with a desired molecular configuration, which possesses comparable electrocatalytic activity to that of precious metal benchmarks for the ORR and OER in alkaline media. The correlation of experimental and computational results confirms that this high activity originates from the precise M-N2 coordination in the g-C3N4 matrix. Moreover, the reversible ORR/OER activity trend for a wide variety of M-C3N4 complexes has been constructed to provide guidance for the molecular design of this promising class of catalysts.

  16. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system

    Silvestre, Cristina I.C.; Frigerio, Christian [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Santos, Joao L.M., E-mail: joaolms@ff.up.pt [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Lima, Jose L.F.C. [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal)

    2011-08-12

    Highlights: {yields} A novel flow method for the determination of chemical oxygen demand is proposed. {yields} CdTe nanocrystals are irradiated with UV light to generate strong oxidizing species. {yields} Reactive species promote a fast catalytic degradation of organic matter. {yields} Luminol is used as a chemiluminescence probe for indirect COD assessment. {yields} A single interface flow system was implemented to automate the assays. - Abstract: A novel flow method for the determination of chemical oxygen demand (COD) is proposed in this work. It relies on the combination of a fully automated single interface flow system, an on-line UV photocatalytic unit and quantum dot (QD) nanotechnology. The developed approach takes advantage of CdTe nanocrystals capacity to generate strong oxidizing species upon irradiation with UV light, which fostered a fast catalytic degradation of the organic compounds. Luminol was used as a chemiluminescence (CL) probe for indirect COD assessment, since it is easily oxidized by the QD generated species yielding a strong CL emission that is quenched in the presence of the organic matter. The proposed methodology allowed the determination of COD concentrations between 1 and 35 mg L{sup -1}, with good precision (R.S.D. < 1.1%, n = 3) and a sampling frequency of about 33 h{sup -1}. The procedure was applied to the determination of COD in wastewater certified reference materials and the obtained results showed an excellent agreement with the certified values.

  17. Quantification of the effect of in-situ generated uranium metal on the experimentally determined O/U ratio of a sintered uranium dioxide fuel pellet

    Narasimha Murty, B.; Bharati Misra, U.; Yadav, R.B.; Srivastava, R.K.

    2005-01-01

    This paper describes quantitatively the effect of in-situ generated uranium metal (that could be formed due to the conducive manufacturing conditions) in a sintered uranium dioxide fuel pellet on the experimentally determined O/U ratio using analytical methods involving dissolution of the pellet material. To quantify the effect of in-situ generated uranium metal in the fuel pellet, a mathematical expression is derived for the actual O/U ratio in terms of the O/U ratio as determined by an experiment involving dissolution of the material and the quantity of uranium metal present in the uranium dioxide pellet. The utility of this derived mathematical expression is demonstrated by tabulating the calculated actual O/U ratios for varying amounts of uranium metal (from 5 to 95% in 5% intervals) and different O/U ratio values (from 2.001 to 2.015 in 0.001 intervals). This paper brings out the necessity of care to be exercised while interpreting the experimentally determined O/U ratio and emphasizes the fact that it is always safer to produce the nuclear fuel with oxygen to uranium ratios well below the specified maximum limit of 2.015. (author)

  18. DETERMINING THE LARGE-SCALE ENVIRONMENTAL DEPENDENCE OF GAS-PHASE METALLICITY IN DWARF GALAXIES

    Douglass, Kelly A.; Vogeley, Michael S.

    2017-01-01

    We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [O iii] and [S ii] transitions, provide estimates of a region’s electron temperature and number density. From these two quantities and the emission line fluxes [O ii] λ 3727, [O iii] λ 4363, and [O iii] λλ 4959, 5007, we estimate the abundance of oxygen with the direct T e  method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.

  19. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  20. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Zhang, Yuxiao; Zhang, Jianming; Liu, Yang; Huang, Hui; Kang, Zhenhui

    2012-01-01

    Highlights: ► Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. ► MPCS was covalently modified by cysteine (MPCS–CO–Cys). ► MPCS–CO–Cys was first time used in electrochemical detection of heavy metal ions. ► Heavy metal ions such as Pb 2+ and Cd 2+ can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  1. Determination of heavy metals in soils from dump site of tanneries ...

    Heavy metals were determined in soil samples at the dump site, Challawa town, Karfi Irrigation site and farmlands near the dump site by flame Atomic Absorption Spectrophotometer (AAS). The results showed that soil at the dump site contains significant amount of toxic elements. Hence remediation processes were ...

  2. An electrochemical method for determining hydrogen concentrations in metals and some applications

    Danford, M. D.

    1983-01-01

    An electrochemical method was developed for the determination of hydrogen in metals using the EG&G-PARC Model 350A Corrosion Measurement Console. The method was applied to hydrogen uptake, both during electrolysis and electroplating, and to studies of hydrogen elimination and the effect of heat treatment on elimination times. Results from these studies are presented.

  3. Residual stress determination of direct metal laser sintered (DMLS) inconel specimens and parts

    Watkins, Thomas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Maziasz, Philip J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bunn, Jeffrey R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fancher, Christopher M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peralta, Alonso [Honeywell Aerospace, Phoenix, AZ (United States); Sundarraj, Suresh [Honeywell Aerospace, Phoenix, AZ (United States); Neumann, James [Honeywell Aerospace, Phoenix, AZ (United States)

    2018-01-01

    Residual stress determinations and microstructural studies were performed on a series of Inconel 718Plus prisms built using Direct Metal Laser Sintering (DMLS) at Honeywell Aerospace (hereafter also referred to as Honeywell). The results are being used to validate and improve existing models at Honeywell, and ultimately will expedite the implementation of DMLS throughout various industrial sectors (automotive, biomedical, etc.).

  4. Determination of selected metals in coal samples from Lafia-Obi and ...

    coal samples were determined using atomic absorption spectroscopy (AAS). All the samples have comparable chromium and copper contents, while iron, aluminum, magnesium and potassium content vary to some extent. Metals concentrations in both Lafia-Obi and Chikila coal samples are within the limits allowed by the ...

  5. Determination of size and shape distributions of metal and ceramic powders

    Jovanovic, DI.

    1961-01-01

    For testing the size and shape distributions of metal and ceramic uranium oxide powders the following method for analysing the grain size of powders were developed and implemented: microscopic analysis and sedimentation method. A gravimetry absorption device was constructed for determining the specific surfaces of powders

  6. A laboratory manual for the determination of metals in water and wastewater by atomic absorption spectrophotometry

    Smith, R.

    1983-01-01

    This guide presents, in addition to a brief discussion of the basic principles and practical aspects of atomic absorption spectrophotometry, a scheme of analysis for the determination of 19 metals in water and wastewater, 16 by flame atomic absorption and 3 by vapour generation techniques. Simplicity, speed and accuracy were the main criteria considered in the selection of the various methods

  7. Timescales for determining temperature and dissolved oxygen trends in the Long Island Sound (LIS) estuary

    Staniec, Allison; Vlahos, Penny

    2017-12-01

    Long-term time series represent a critical part of the oceanographic community's efforts to discern natural and anthropogenically forced variations in the environment. They provide regular measurements of climate relevant indicators including temperature, oxygen concentrations, and salinity. When evaluating time series, it is essential to isolate long-term trends from autocorrelation in data and noise due to natural variability. Herein we apply a statistical approach, well-established in atmospheric time series, to key parameters in the U.S. east coast's Long Island Sound estuary (LIS). Analysis shows that the LIS time series (established in the early 1990s) is sufficiently long to detect significant trends in physical-chemical parameters including temperature (T) and dissolved oxygen (DO). Over the last two decades, overall (combined surface and deep) LIS T has increased at an average rate of 0.08 ± 0.03 °C yr-1 while overall DO has dropped at an average rate of 0.03 ± 0.01 mg L-1yr-1 since 1994 at the 95% confidence level. This trend is notably faster than the global open ocean T trend (0.01 °C yr-1), as might be expected for a shallower estuarine system. T and DO trends were always significant for the existing time series using four month data increments. Rates of change of DO and T in LIS are strongly correlated and the rate of decrease of DO concentrations is consistent with the expected reduced solubility of DO at these higher temperatures. Thus, changes in T alone, across decadal timescales can account for between 33 and 100% of the observed decrease in DO. This has significant implications for other dissolved gases and the long-term management of LIS hypoxia.

  8. Determination of Heavy Metals in Freshwater Fishes of the Tigris River in Baghdad

    Montazer Mensoor

    2018-06-01

    Full Text Available The presence of heavy metals in freshwater fish represents a global public health issue. The current study aimed to determine the heavy metal concentration and toxicity in some freshwater fish species collected from the Tigris River in Baghdad. Out of the many fish species in Iraq, the current study selected the Genus Barbus as it represents the most popular fish food in Iraq. The sample included twenty fishes and the selected sample locations covered two industrial areas in Baghdad (one north of Baghdad and one south of Baghdad. The levels of heavy metals were determined by using an atomic absorption spectrophotometer (AAS. The results showed that concentrations of heavy metals in the sampled fishes exceeded the acceptable levels for food sources for human consumption. The results of this study showed high levels of cadmium and chromium levels in the tissues of the selected fish sample. Cd and Cr were among the highest concentrations and both exceeded the World Health Organization and Food and Agriculture Organization of the United Nations acceptable levels for heavy metals in fishes.

  9. Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    Worsfold, P. J.; Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.

    2002-01-01

    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each mainfold and results are presented for the determination of the four trace metals i...

  10. The Gellyfish: an in-situ equilibrium-based sampler for determining multiple free metal ion concentrations in marine ecosystems

    Free metal ions are usually the most bioavailable and toxic metal species to aquatic organisms, but they are difficult to measure because of their extremely low concentrations in the marine environment. Many of the current methods for determining free metal ions are complicated a...

  11. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    A KALANTARI

    2001-06-01

    Full Text Available Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales from solid samples as airborne particulates matter on the paper filter samples. Five stages in the sequential extraction procedure developed by Tessier, et al, was first used for extraction and determination of the concentration and percentages of heavy metals which could be released in each stage. In the 1st stage, exchangable metals were released. The sample was extracted with 10 ml of ammonium acetat, pH=7 for 1h. Then the sample was centrifuged at 2000 rpm. The solution of extraction, was analysed for Zn, Pb, Cd, Cu, Fe, Ni and Cr. In the 2nd stage, heavy metals bound to carbonates which were sensitive to pH were extracted. The residue from stage 1, with 10 ml of sodium acetate 1 M the pH was adjusted to 5 with acetic acid. Then the sample was centrifuged as stage 1. In the third stage heavy metals bound to iron and manganese oxides were extracted. The residue from stage 2 was reacted with 10 ml hydroxyl amine hydrochloride at 25% v/v. In the 4th stage metals bound to sulfides and organic compounds were extracted. The residue from stage 3 with 5 ml nitric acid and 5 ml hydrogen peroxide 30% and heated at 85° C. Finally in the 5th stage residual heavy metals were extracted. the residue from fraction 4 with 10 ml nitric acid and 3 ml hydroflouric acid were extracted. The concentrations of Pb and Cd in some fractions of sequential extraction were too low, so, we carried out preconcentration method for these two elements. Results and Discussion: The results

  12. Extracorporeal Membrane Oxygenation for the Support of a Potential Organ Donor with a Fatal Brain Injury before Brain Death Determination

    Sung Wook Chang

    2016-05-01

    Full Text Available The shortage of available organ donors is a significant problem and various efforts have been made to avoid the loss of organ donors. Among these, extracorporeal membrane oxygenation (ECMO has been introduced to help support and manage potential donors. Many traumatic brain injury patients have healthy organs that might be eligible for donation for transplantation. However, the condition of a donor with a fatal brain injury may rapidly deteriorate prior to brain death determination; this frequently results in the loss of eligible donors. Here, we report the use of venoarterial ECMO to support a potential donor with a fatal brain injury before brain death determination, and thereby preserve donor organs. The patient successfully donated his liver and kidneys after brain death determination.

  13. DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY FOR DETERMINATION OF SOME HEAVY METALS IN URANIUM

    Saryati Saryati

    2010-06-01

    Full Text Available The direct determination of some metals impurity in uranium by using differential pulse anodic stripping voltammetry (DPASV method at a hanging mercury drop electrode and in a carbonate buffer media was developed. It was found that the carbonate buffer show the strongest affinity for uranium and gives the best separation between the DPASV peaks of heavy metals impurities. The carbonate concentration markedly affects the oxidation and reduction the major and the minor constituents of the uranium samples. In 0.1 M carbonate buffer solution pH 10, copper, bismuth, thalium, lead, cadmium, zinc, could be determined without the removal of the uranium matrix. Recovery and relative standard deviation (RSD of this method was in the range of 174% - 85.2% for recovery and 36.8% - 1.2% for RSD. The larger error of analytical result was obtained for Zn at low concentration. In general, the analytic results error and RSD decreased with increasing metals concentration.   Keywords: heavy metal determination, differential pulse anodic stripping voltammetry, uranium

  14. Hypothermic Oxygenated Machine Perfusion in Porcine Donation After Circulatory Determination of Death Liver Transplant

    Fondevila, Constantino; Hessheimer, Amelia J.; Maathuis, Mark-Hugo J.; Munoz, Javier; Taura, Pilar; Calatayud, David; Leuvenink, Henri; Rimola, Antoni; Garcia-Valdecasas, Juan C.; Ploeg, Rutger J.

    2012-01-01

    Background. Livers from donation after circulatory determination-of-death (DCD) donors suffer ischemic injury during a preextraction period of cardiac arrest and are infrequently used for transplantation; they have the potential, however, to considerably expand the donor pool. We aimed to determine

  15. Determination of heavy metal pollution in soils from selected potentially contaminated sites in Tema

    Nyaaba, A.K.L.

    2011-01-01

    The objective of the study was to assess the concentration and determine the level of pollution by harmful heavy metals in soils from selected potentially contaminated sites in Tema. The metals of interest include; mercury, lead, cadmium, cobalt zinc, arsenic, nickel, copper and chromium. A total of forty seven (47) samples comprising thirty eight sub-samples (38) and nine (9) composite samples were collected from nine (9) different locations. These included playgrounds, steel processing factories, used Lead Acid Battery (ULAB) recycling plant, mechanic workshops and the municipal waste disposal site. The samples were prepared after which the elemental concentrations were determined using energy dispersive X-ray fluorescence (EDXRF) with a secondary target excitation arrangement (5.9 keV). The analysis of the samples yielded the following mean heavy metal concentrations in mg/kg: 424.38 (Cr); 408.68 (Ni); 14427 (Cu); 4129.87 (Zn); 1580.68 (As); 647.48 (Hg); 73361.51 (Pb) and 1176.16 (Co). The mean concentrations of heavy metals in the soils were in the following order Pb>Zn>As>Co>Cu>Hg>Cr>Ni. Mercury was detected at only two of the sites. The average heavy metals in the soils from the sites were generally high since most of them exceeded the optimum and action values of the New Dutch List. The Enrichment Factor (EF) ratios show that the enrichment of the elements in the soils ranged from deficiently to extremely highly enriched. The contamination factor show that the contamination by the heavy metals were low at some of the sites and very high at others. The geoaccumulation indices indicated that the playground (PG) has not been contaminated by any of the metals, C8 is contaminated strongly by mercury only and the contamination at the remaining sites varied from moderately contaminated to extremely contaminated by the metals. The Igeo also indicated that the elements accounting for extreme contamination are lead, arsenic, copper, zinc mercury and chromium. Lead

  16. Determination of heat transfer coefficient for an interaction of sub-cooled gas and metal

    Sidek, Mohd Zaidi; Kamarudin, Muhammad Syahidan

    2016-01-01

    Heat transfer coefficient (HTC) for a hot metal surface and their surrounding is one of the need be defined parameter in hot forming process. This study has been conducted to determine the HTC for an interaction between sub-cooled gas sprayed on a hot metal surface. Both experiments and finite element have been adopted in this work. Initially, the designated experiment was conducted to obtain temperature history of spray cooling process. Then, an inverse method was adopted to calculate the HTC value before we validate in a finite element simulation model. The result shows that the heat transfer coefficient for interaction of subcooled gas and hot metal surface is 1000 W/m 2 K. (paper)

  17. Studies and determination of heavy metals in waste tyres and their impacts on the environment

    Shakya, P.R.; Shrestha, P.; Tamrakar, C.S.; Bhattarai, P.

    2006-01-01

    Uncontrolled burning of waste vehicle tyres causing environmental pollution has become a popular practice in developing countries like Nepal. Such activities were banned in many countries considering the environment and public health hazards but the official ban was ignored in many countries like Nepal. An experiment was conducted in a laboratory scale in an attempt to understand the potential discharge of trace metals content in Kathmandu Valley due to scrap tyre fires. For this purpose, four tyre types viz., CYCN, CSKR, BTIN and BBJP were collected representing the first two categories from passenger car and the last two from motorbike. An Atomic Absorption Spectrophotometer (AAS) was used for determination of metal concentration. Among the five heavy metals determined, Zn was detected in significantly high levels in all the tested tyre samples whereas Cd and Cr were found significantly less in many of them. The concentrations of Cd, Cr, Fe, Pb and Zn ranged from 0.020 - 27.1 micro g/g, 0.14 - 1.18 micro g/g, 17.8 - 381 micro g/g, 0.96 - 458 micro g/g and 3.95 - 8.21 micro g/g respectively. It was found that the metal concentration also varied with the tyre types and qualities. The potential discharge of the metals per representative scrap tyre mass was also estimated. Results indicate that the metal pollutants due to the uncontrolled burning of the scrap tyres could significantly contribute to deteriorate the environmental condition of the Valley. (author)

  18. Porous Fe21Cr7Al1Mo0.5Y metal supports for oxygen transport membranes: Thermo-mechanical properties, sintering and corrosion behaviour

    Glasscock, Julie; Mikkelsen, Lars; Persson, Åsa Helen

    2013-01-01

    and creep rates are sufficiently low. Ceramic interlayers with graded porosity and pore-size were applied and co-fired with the metal supports, producing substrates that were shown to be viable for a 3 μm dense Ce 0.8Gd0.2O1.9 - δ oxygen transport membrane deposited using sputtering. © 2013 Elsevier B.V....... are optimised simultaneously in-situ during sintering by controlling the growth rate of the oxide scale. Oxidation of metal supports with 20-40% porosity at 850 C and oxygen partial pressure of 10- 11 kPa showed sub-parabolic kinetics and stability over 3000 h. The FeCrAl steel shows vastly superior oxidation...... resistance compared with an FeCr steel of similar composition and porosity. Modelling of the alloy lifetime as a function of surface area and Al-content was performed, and lifetimes over 30 000 h are predicted for a metal support with 30% porosity operating at a temperature of 750 C, where the oxidation...

  19. Colorimetric determination of the fluoride ion - application to uranium metal and to uranous fluoride

    Hering, H.; Hure, J.; Legrand, S.

    1949-12-01

    In the determination described for fluoride in U metal, the U is brought into H 2 SO 4 solution by anodic oxidation, the fluo-silicic acid is distilled by entrainment in water vapor, and the F ion is determined in the distillate by using the fact that it complexes Zr and thus prevents the formation of the Zr-alizarin S lake. For F ion in UF 4 , the compound is dissolved in a Na 2 CO 3 -H 2 O 2 mixture, and F is determined in the solution by the colorimetric method described. (author)

  20. Oxygen and minority carrier lifetimes in N-and P-type AL0.2GA0.8AS grown by metal organics vapor phase epitaxy

    Zahraman, Khaled; Leroux, M.; Gibart, P.; Zaidi, M.A.; Bremond, G.; Guillot, G.

    2000-01-01

    author.The minority carrier lifetimes in Al x Ga 1-x As grown by Metal-Organics Vapor Phase Epitaxy (MOVPE) is generally lower than in GaAs. This is believed to be due to oxygen incorporation in the layers. We describe a study of radiative and non radiative minority carriers lifetimes in n-and p-type Al 0.2 Ga 0.8 As as a function of growth parameters, in correlation with oxygen concentration measurements and deep level transient spectroscopy (DLTS) studies. Long non radiative lifetimes and low oxygen contents are achieved using temperature growth. A main minority hole lifetime killer appears to be 0.4 eV deep O related electron trap detected by DLTS at concentrations three orders of magnitude lower than the atomic oxygen one. Record lifetimes in MOVPE grown n-and p-type Al 0.2 Ga 0.8 As are obtained. An Al 0.85 Ga 0.15 As/Al 0.2 Ga 0.8 As surface recombination velocity lower than 4.5x10 3 cm.s -1 is measured

  1. Determination of Heavy Metals Concentration in Traditional Herbs Commonly Consumed in the United Arab Emirates

    Rania Dghaim

    2015-01-01

    Full Text Available Herbs are extensively consumed in the United Arab Emirates for their flavoring and medicinal properties. This study aimed at determining the concentration of heavy metals in selected traditional herbs consumed in the United Arab Emirates (UAE. A total of 81 samples of seven herbs, parsley (Petroselinum crispum, basil (Ocimum basilicum, sage (Salvia officinalis, oregano (Origanum vulgare, mint (Mentha spicata, thyme (Thymus vulgaris, and chamomile (Matricaria chamomilla, were purchased from the local market in Dubai and analyzed for their cadmium, lead, copper, iron, and zinc contents. Microwave-assisted digestion was applied for the dissolution of the samples and heavy metals concentration was determined using Atomic Absorption Spectrometry (AAS. Metals were found to be present in varied concentrations in the herb samples. The concentration ranges were found as follows: less than 0.1–1.11 mg·kg−1 for cadmium, less than 1.0–23.52 mg·kg−1 for lead, 1.44–156.24 mg·kg−1 for copper, 12.65–146.67 mg·kg−1 for zinc, and 81.25–1101.22 mg·kg−1 for iron. The findings of the study suggest that most of the analyzed herbs contained unsafe levels of heavy metals that exceeded the World Health Organization (WHO permissible limits (PL.

  2. Determination of trace amounts of metals in saline water by energy-dispersive XRF (with the Na-DDTC preconcentration)

    Holynska, B.; Bisiniek, K.

    1975-01-01

    A simple method for the determination of trace concentrations of metals in saline water is described. The analytical procedure involves the separation of metal ions of Cu(2), Zn(2), Hg(2) and Fe(3) by precipitation with diethyldithiocarbamate (DDTC). The radioisotope X-ray fluorescence method using Si/Li detector has been applied for the determination of metal ions closed in the DDTC deposition. (author)

  3. Standard test method for determining the orientation of a metal crystal

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the back-reflection Laue procedure for determining the orientation of a metal crystal. The back-reflection Laue method for determining crystal orientation (1, 2) may be applied to macrograins (3) (0.5-mm diameter or larger) within polycrystalline aggregates, as well as to single crystals of any size. The method is described with reference to cubic crystals; it can be applied equally well to hexagonal, tetragonal, or orthorhombic crystals. 1.2 Most natural crystals have well developed external faces, and the orientation of such crystals can usually be determined from inspection. The orientation of a crystal having poorly developed faces, or no faces at all (for example, a metal crystal prepared in the laboratory) must be determined by more elaborate methods. The most convenient and accurate of these involves the use of X-ray diffraction. The “orientation of a metal crystal” is known when the positions in space of the crystallographic axes of the unit cell have been located with...

  4. Determination of Oxygen - to - Uranium Ratio in Hyperstoichio - Metric Uranium Dioxide. RCN Report

    Tolk, A.; Lingerak, W.A.

    1970-09-01

    For the determination of the O/U ratio in hyperstoichiometric uranium dioxide we prefer the following chemical procedure. The sample is dissolved in concentrated phosphoric acid without change in valence of the uranium. Then the amount of U (VI) present in the solution is titrated with a Fe (II) - standard solution in phosphoric acid. The titrimetric end-point is detected following the ''dead-stop-end-point'' procedure. When special precautions are made the O/U value can be determined with an accuracy and precision of + 0.0001 0/U units when 500 mg sample aliquots are used. (author)

  5. O2 supplementation to secure the near-infrared spectroscopy determined brain and muscle oxygenation in vascular surgical patients: a presentation of 100 cases

    Kim Zillo Rokamp

    2014-02-01

    Full Text Available This study addresses three questions for securing tissue oxygenation in brain (rScO2 and muscle (SmO2 for 100 patients (age 71 ± 6 yrs; mean ± SD undergoing vascular surgery: i Does preoxygenation (inhaling 100% oxygen before anesthesia increase tissue oxygenation, ii Does inhalation of 70% oxygen during surgery prevent a critical reduction in rScO2 (< 50%, and iii is a decrease in rScO2 and/or SmO2 related to reduced blood pressure and/or cardiac output? Intravenous anesthesia was provided to all patients and the intraoperative inspired oxygen fraction was set to 0.70 while tissue oxygenation was determined by INVOS 5100C. Preoxygenation increased rScO2 (from 65 ± 8% to 72 ± 9%; P < 0.05 and SmO2 (from 75 ± 9% to 78 ± 9%; P < 0.05 and during surgery rScO2 and SmO2 were maintained at the baseline level in most patients. Following anesthesia and tracheal intubation an eventual change in rScO2 correlated to cardiac output and cardiac stroke volume (coefficient of contingence=0.36; P=0.0003 rather to a change in mean arterial pressure and for five patients rScO2 was reduced to below 50%. We conclude that i increased oxygen delivery enhances tissue oxygenation, ii oxygen supports tissue oxygenation but does not prevent a critical reduction in cerebral oxygenation sufficiently, and iii an eventual decrease in tissue oxygenation seems related to a reduction in cardiac output rather than to hypotension.

  6. Methodologies for hydrogen determination in metal oxides by prompt gamma activation analysis

    Alvarez, E.; Biegalski, S.R.; Landsberger, S.

    2007-01-01

    Prompt gamma activation analysis (PGAA), available at University of Texas at Austin (UT), has been employed for the direct determination of hydrogen content in a series of metal oxide materials typically used as cathodes in lithium ion battery systems. Special attention was given to the experimental setup including potential sources of error and system calibration for the detection of hydrogen. Spectral interference with hydrogen arising from cobalt was identified and corrected for. Limits of detection as a function of cobalt mass present in a given sample are also discussed. PGAA has proven to be a novel and precise technique for the determination of hydrogen in metal oxides. This type of investigation could provide valuable insight regarding the factors that limit the practical capacities of lithium ion oxide cathodes

  7. Determination of toxic metals in different brand of chocolates and candies, marketed in Pakistan

    Jalbani, N.; Kazi, T.G.; Afridi, H.I.; Arain, M.B.

    2009-01-01

    In present study three toxic metals, cadmium (Cd), nickel (Ni) and lead (Pb) were determined in chocolates and candy samples available in local markets of Hyderabad, Pakistan. Concentrations of understudy toxic metals (TMs) were determined by electro thermal atomic absorption spectrometry (ETAAS) prior to microwave assisted acid digestion. Validation of the methodology was performed by standard addition method and conventional acid digestion on electric hot plate to obtained TMs concentration, for comparative purpose to obtain results within the 95% confidence level. No significant differences were observed for TMs obtained from both methods (P 0.05). The concentration of Cd, Ni and Pb were observed in chocolates and candy samples is ranged as of 0.099 - 0.353, 1.45 - 4.33 and 1.11 - 2.48 mu g/g, respectively. The results indicated that cocoa-based chocolates have higher contents of TMs than milk- based chocolates and candies. (author)

  8. Determination of uranium and plutonium in metal conversion products from electrolytic reduction process

    Lee, Chang Heon; Suh, Moo Yul; Joe, Kih Soo; Sohn, Se Chul; Jee, Kwang Young; Kim, Won Ho

    2005-01-01

    Chemical characterization of process materials is required for the optimization of an electrolytic reduction process in which uranium dioxide, a matrix of spent PWR fuels, is electrolytically reduced to uranium metal in a medium of LiCl-Li 2 O molten at 650 .deg. C. A study on the determination of fissile materials in the uranium metal products containing corrosion products, fission products and residual process materials has been performed by controlled-potential coulometric titration which is well known in the field of nuclear science and technology. Interference of Fe, Ni, Cr and Mg (corrosion products), Nd (fission product) and LiCl molten salt (residual process material) on the determination of uranium and plutonium, and the necessity of plutonium separation prior to the titration are discussed in detail. Under the analytical condition established already, their recovery yields are evaluated along with analytical reliability

  9. Impurities determination in precious metals like rhodium, palladium and platinum by neutron activation without separation

    May, S.; Piccot, D.; Pinte, G.

    1978-01-01

    The possibilities of the method explored using an installation of gamma or X ray spectrometry of good performance. The irradiations were realized in the reactors EL.3 (flux approximately 6.10 12 n.cm -2 .s -1 ) and Osiris (flux > 10 14 n.cm -2 .s -1 ) of the CEN Saclay. In rhodium the presence of iridium limits the analysis possibilities. However gold, silver and platinum are easily determined, just as the other elements (As, Br, Cl, Co, Mn, Na, Sb). In platinum it is possible to determine the elements of long period, especially antimony, silver, cobalt, iridium, tantalum and zinc. As for palladium the principal impurities are gold, silver and ruthenium for what is of precious metals and particularly zinc among the other metals. For the three matrices considered the detection limits of a certain number of elements are indicated [fr

  10. Spatial structure of transition metal complexes in solution determined by EXAFS spectroscopy

    Erenburg, S.B. E-mail: simon@che.nsk.su; Bausk, N.V.; Zemskova, S.M.; Mazalov, L.N

    2000-06-21

    CdK EXAFS, ZnK and CuK EXAFS and XANES spectra were measured for solutions of cadmium, zinc and copper dialkyldithiocarbamates in organic solvents with varying donating abilities: tributylphosphine, methylene chloride, benzene, dibutylsulfide, pyridine, dimethylsulfoxide and for some model compounds. The parameters of the local surroundings of the Cd, Zn and Cu atoms for complex forms in solutions were determined using EXAFS spectroscopy. Spatial structure models of the complex forms in a metal chelate - nonaqueous solvent system are suggested.

  11. Spatial structure of transition metal complexes in solution determined by EXAFS spectroscopy

    Erenburg, S.B.; Bausk, N.V.; Zemskova, S.M.; Mazalov, L.N.

    2000-01-01

    CdK EXAFS, ZnK and CuK EXAFS and XANES spectra were measured for solutions of cadmium, zinc and copper dialkyldithiocarbamates in organic solvents with varying donating abilities: tributylphosphine, methylene chloride, benzene, dibutylsulfide, pyridine, dimethylsulfoxide and for some model compounds. The parameters of the local surroundings of the Cd, Zn and Cu atoms for complex forms in solutions were determined using EXAFS spectroscopy. Spatial structure models of the complex forms in a metal chelate - nonaqueous solvent system are suggested

  12. Glovebox enclosed dc plasma source for the determination of metals in plutonium

    Morris, W.F.

    1986-01-01

    The direct current plasma source of a Beckman Spectraspan IIIB emission spectrometer was enclosed in a glovebox at Lawrence Livermore National Laboratory in December 1982. Since that time, the system has been used for the routine determination of alloy and impurity metals in plutonium. This paper presents the systematic steps involved in developing the glovebox and gives information regarding performance of the plasma in the glovebox and the effectiveness of containment of plutonium. 8 refs., 9 figs., 3 tabs

  13. Spectrographic determination of metallic impurities in organic coolants for nuclear reactors

    Martin Munoz, M.; Alvarez Gonzalez, F.

    1969-01-01

    A spectrochemical method for determining metallic impurities in organic coolants for nuclear reactors is given. The organic matter in solid samples is eliminated by controlled distillation and dry ashing in the presence of magnesium oxide as carrier. Liquid, samples are vacuum distillated. The residue is analyzed by carrier distillation and by total burning techniques. The analytical results are discussed and compared with those obtained destroying the organic matter without carrier and using the copper spark technique. (Author) 12 refs

  14. Determination of noble metals in geological materials by radiochemical neutron-activation analysis

    Ahmad, I.; Ahmad, S.; Morris, D.F.C.

    1977-01-01

    A method for the determination of platinum, palladium, gold and iridium in geological materials following activation with thermal neutrons is described. Radionuclides formed from the elements are separated by a scheme based largely on liquid-liquid extractions. The procedure has been applied to the analysis of US Geological Survey standard rocks and to studies of the distribution of the noble metals in lateritic nickel ores. (author)

  15. Determination of trace metals in Cladophora glomerata: C. glomerata as a potential biological monitor

    Keeny, W.L.; Breck, W.G.; Vanloon, G.W.; Page, J.A.

    1976-01-01

    A differential pulse anodic stripping voltammetry method has been developed for the determination of Zn, Cd, Pb and Cu in Cladophora glomerata. The method has been applied to samples taken in August from a remote island in Lake Ontario (Main Duck) and a shore site near Kingston, Ontario (Deadman Bay). It is postulated that C. glomerata can act as a biological monitor, concentrating the trace metals present in the aqueous environment with a reasonably constant CF for each element.

  16. Determining site-specific background level with geostatistics for remediation of heavy metals in neighborhood soils

    Tammy M. Milillo; Gaurav Sinha; Joseph A. Gardella Jr.

    2017-01-01

    The choice of a relevant, uncontaminated site for the determination of site-specific background concentrations for pollutants is critical for planning remediation of a contaminated site. The guidelines used to arrive at concentration levels vary from state to state, complicating this process. The residential neighborhood of Hickory Woods in Buffalo, NY is an area where heavy metal concentrations and spatial distributions were measured to plan remediation. A novel geostatistics based decision ...

  17. A method for determining the critical strain for recrystallisation in metals

    Morais, G.A. de; Pagnano, C.A.G.; Gouvea, J.A.

    1975-01-01

    A rapid method of determining the critical strain for recrystallisation is metals is described, the results having been verified in the case of rolled pure titanium sheet. Using experimentally checked hypotheses, the plastic strain in a tensile test piece of varying cross-section could be calculated. After straining, the test piece was annealed isothermically at various temperatures, thus showing the variation of grain size with strain [pt

  18. Determination of natural occurring radionuclide and heavy metals in drinking water in Malaysia

    Nur Suraya Ahmad

    2012-01-01

    The objective of this study is to ascertain the activity concentration of naturally occurring radionuclide and selected heavy metals selected mineral and drinking waters sample in Malaysia. The activity concentration of natural radionuclide (mBq/ L) was determined by Gamma Spectroscopy Systems while the concentration of heavy metal (mg/ L) was determined by the Induces Couple Plasma Mass Spectrometry (ICP-MS). The mineral and drinking water samples used in this study were Segar UKM, Giant, Ice Mountain (600 ml), Ice Mountain (1600 ml), Spritzer, Reverse Osmosis, and fresh tap water. The results of the study found 3 natural occurring radioactive materials (NORM) found for example - U-238, Ra-226 and Ra-228. The activity concentration determined was 0.00 mBq/ L to 1.71 mBq/ L for U-238, 0.00 - 32.46 mBq/ L for Ra-226 and 0.00 - 12.01 mBq/ L for Ra-228 respectively. The concentration of heavy metals Zn, Fe, As, Cl, Mn, Cu and Pb determined in this study were in the range of 0.000 - 0.003 mg/ L, 0.002-0.018 mg/ L, 0.000 - 0.007 mg/ L, 6.152 - 57.724 mg/ L, 0.000 - 0.016 μg/ L, 0.058 - 0.766 μg/ L and 0.000 - 0.380 μg/ L respectively. In general, the result of this study indicate that the activity concentration NORM and selected heavy metals in the studied mineral and drinking water samples were low and not exceed the limit set by World Organization (WHO) and Malaysian Food Regulations 1985. Thus, all the studied water samples complying the Malaysian drinking standard and safe to be consumed. (author)

  19. Automated installation for atomic emission determination of gold, silver and platinum group metals

    Zayakina, S.B.; Anoshin, G.N.; Gerasimov, P.A.; Smirnov, A.V.

    1999-01-01

    An automated installation for the direct atomic emission determination of silver, gold and platinum-group metals (Ru) in geological and geochemical materials with software for automated data acquisition and handling is designed and developed. The installation consists of a DFS-458 diffraction spectrograph, a MAES-10 multichannel analyzer of emission spectra, and a dual-jet plasmatron. A library of spectral lines of almost all elements excited in the dual-jet plasmatron is complied [ru

  20. Determination of biological transport of oxygen-15 and carbon-11 generated in rats

    Archambeau, B.; Bennett, G.W.; Archambeau, J.O.

    1976-02-01

    The distribution of induced 15 O and 11 C activity in live and dead rats was determined following local irradiation with a 32 MeV proton beam. Results indicate that rapid biological redistribution of some of the induced activity occurs within a minute following irradiation. Sufficient activity remains, bound in the intracellular water, to define the proton beam in tissue. Thus, mapping of the induced 15 O activity proves to be a valid means of beam localization

  1. Direct observation of both contact and remote oxygen scavenging of GeO2 in a metal-oxide-semiconductor stack

    Fadida, S.; Shekhter, P.; Eizenberg, M.; Cvetko, D.; Floreano, L.; Verdini, A.; Nyns, L.; Van Elshocht, S.; Kymissis, I.

    2014-01-01

    In the path to incorporating Ge based metal-oxide-semiconductor into modern nano-electronics, one of the main issues is the oxide-semiconductor interface quality. Here, the reactivity of Ti on Ge stacks and the scavenging effect of Ti were studied using synchrotron X-ray photoelectron spectroscopy measurements, with an in-situ metal deposition and high resolution transmission electron microscopy imaging. Oxygen removal from the Ge surface was observed both in direct contact as well as remotely through an Al 2 O 3 layer. The scavenging effect was studied in situ at room temperature and after annealing. We find that the reactivity of Ti can be utilized for improved scaling of Ge based devices.

  2. Invited: Tailoring Platinum Group Metals Towards Optimal Activity for Oxygen Electroreduction to H2o and H2O2: From Extended Surfaces to Nanoparticles

    Stephens, Ifan

    2014-01-01

    ). The figure shows transmission electron miscroscopy images of 9 nm diameter PtxY nanoparticles, based on high angle annular dark field –scanning transmission electron microscopy (left) and Y, Pt and combined Pt+Y X-ray energy dispersive X-ray spectroscopy elemental maps. (a) as-prepared catalyst and (b) after......The slow kinetics of the 4-electron reduction of oxygen to H2O imposes a bottleneck against the widespread uptake of low temperature fuel cells in automotive vehicles. High loadings of platinum are required to drive the reaction; the limited supply of this precious metal limits the extent to which...... fuel cell technology could be scaled up.(1) The most widely used strategy towards decreasing the Pt loading is to alloy Pt with other late transition metals, in particular Ni or Co. (2-5) However, when tested in a fuel cell, these alloys are often susceptible towards degradation via dealloying.(6, 7...

  3. Oxygen determination in materials by {sup 18}O(p,αγ){sup 15}N nuclear reaction

    Kumar, Sanjiv, E-mail: sanjucccm@rediffmail.com [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India); Sunitha, Y.; Reddy, G.L.N.; Sukumar, A.A.; Ramana, J.V.; Sarkar, A. [National Centre for Compositional Characterization of Materials, BARC, ECIL Post, Hyderabad 500062 (India); Verma, Rakesh [Analytical Chemistry Division, BARC, Mumbai 400085 (India)

    2016-07-01

    The paper presents a proton induced γ-ray emission method based on {sup 18}O(p,αγ){sup 15}N nuclear reaction to determine bulk oxygen in materials. The determination involves the measurement of 5.27 MeV γ-rays emitted following the de-excitation of {sup 15}N nuclei. A description of the energetics of the reaction is given to provide an insight into the origin of 5.27 MeV γ-rays. In addition, thick target γ-ray yields and the limits of detection are measured to ascertain the analytical potential of the reaction. The thick-target γ-ray yields are measured with a high purity germanium detector and a bismuth germanate detector at 0° as well as 90° angles in 3.0–4.2 MeV proton energy region. The best limit of detection of about 1.3 at.% is achieved at 4.2 MeV proton energy for measurements at 0° as well 90° angles with the bismuth germanate detector while the uncertainty in quantitative analysis is <8%. The reaction has a probing depth of several tens of microns. Interferences can arise from fluorine due to the occurrence of {sup 19}F(p,αγ){sup 16}O reaction that emits 6–7 MeV γ-rays. The analytical potential of the methodology is demonstrated by determining oxygen in several oxide as well as non-oxide materials.

  4. Isotopic determinations of carbon and oxygen in the metasedimentary rocks of the Rio Pardo group-Bahia State, Brazil

    Costa Pinto, N.M.A.C.

    1977-01-01

    Determination of the carbon and oxygen isotopic compositions were made on approximately 100 samples of Late Precambrian metasedimentary rocks of the Rio Pardo Group from Southern Bahia. The results obtained show that carbon varies from δ 13 =C=5,73 per mille to δ 13 C=+9,00 per mille, and oxygen from δ 18 O=-1,87 per mille to δ 18 O=-19,67 per mille relative to PBD. The interpretations lead to some conclusions which confirm the validity the isotopic technique as auxiliary instrument in the study of geological problems. These include: 1) the evidence of a marine transgression during the Camaca sedimentation; 2) the probability that the dolomitic metalimestones of the Agua Preta formation belong to the Serra do Paraiso formation; 3) the assignment of the dolomitic metalismestones, which occur in Itiroro and which had been previously grouped with the crystalline basement rocks, to the Serra do Paraiso formation; 4) the removal of the marble from Serra do Paraiso formation and re-signment to the basement rocks, and finally; 5) the sedimentary evolution of the Rio Pardo Group from a typical fresh-water to a marine environment. (Author) [pt

  5. Experimental determination of plume properties in full-scale hydrogen-oxygen rockets

    Brown, D. G.; Limbaugh, C. C.; Zaccardi, V. A.; Eskridge, R.

    1989-01-01

    An IR emission/absorption technique for determining radial profiles of static temperature and species partial pressure for cylindrically symmetric combustion gases typical of the effluent of turbine engines and liquid-propellant rockets is described. In the technique, the IR plume radiance and absorption is measured using a 1 x 256-element platinum silicide detector array which is filtered to obtain plume emission measurements in the H2O band near 3.0 microns. A minicomputer is employed to control data acquisition and reduction.

  6. Determination of some heavy metals in wetlands by PIXE; Determinacion de algunos metales pesados en jales por medio de PIXE

    Ramirez O, J.; Rios M, C. [UAZ, 98160 Zacatecas (Mexico)

    2008-07-01

    In this work the results of the analysis are presented, using the PIXE technique (Proton Induced X-ray Emission), in soil samples of the El Bordo, Vetagrande, Zacatecas, before and after subjecting them to a lixiviation process for the recovering of gold, silver and mercury. This community is part of the mining region nearer to the Zacatecas city municipality, region in which the mining exploitation dates from the colonial time. During almost 350 years the 'yard benefit' method was used or amalgamation with mercury, process that besides having used big quantities of mercury, generated a great quantity of mineral waste calls 'mine wetlands', those that were accumulating, crawled by the rains, toward the streams that end in the prey 'The Pedernalillo'. The dispersion of wetlands them it has extended from the prey until the communities of Tacoaleche, Zoquite, Lampotal and El Bordo, embracing an approximate area of 16 x 2 Km{sup 2} and forming with the course of the time an accumulated of several millions of tons. In order to determining if the process of recovery of gold, silver and mercury make soluble to other contained metals in these wastes, samples were gathered in an area of 600 m{sup 2} in the community of The Border, Vetagrande, Zacatecas. Half of the samples were subjected to the lixiviation process in a local metal recovery plant and the other part was analyzed without processing. The analysis of both types of samples by means of the PIXE was carried out in the University of Arizona in Tucson. (Author)

  7. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    Luis F. Del Castillo

    2015-01-01

    Conclusion: Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility.

  8. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.

  9. Determination of metals in air samples using X-Ray fluorescence associated the APDC preconcentration technique

    Nardes, Raysa C.; Santos, Ramon S.; Sanches, Francis A.C.R.A.; Gama Filho, Hamilton S.; Oliveira, Davi F.; Anjos, Marcelino J., E-mail: rc.nardes@gmail.com, E-mail: ramonziosp@yahoo.com.br, E-mail: francissanches@gmail.com, E-mail: hamiltongamafilho@hotmail.com, E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica. Departamento de Fisica Aplicada e Termodinamica

    2015-07-01

    Air pollution has become one of the leading quality degradation factors of life for people in large urban centers. Studies indicate that the suspended particulate matter in the atmosphere is directly associated with risks to public health, in addition, it can cause damage to fauna, flora and public / cultural patrimonies. The inhalable particulate materials can cause the emergence and / or worsening of chronic diseases related to respiratory system and other diseases, such as reduced physical strength. In this study, we propose a new method to measure the concentration of total suspended particulate matter (TSP) in the air using an impinger as an air cleaning apparatus, preconcentration with APDC and Total Reflection X-ray Fluorescence technique (TXRF) to analyze the heavy metals present in the air. The samples were collected from five random points in the city of Rio de Janeiro/Brazil. Analyses of TXRF were performed at the Brazilian Synchrotron Light Laboratory (LNLS). The technique proved viable because it was able to detect five important metallic elements to environmental studies: Cr, Fe, Ni, Cu and Zn. This technique presented substantial efficiency in determining the elementary concentration of air pollutants, in addition to low cost. It can be concluded that the metals analysis technique in air samples using an impinger as sample collection instrument associated with a complexing agent (APDC) was viable because it is a low-cost technique, moreover, it was possible the detection of five important metal elements in environmental studies associated with industrial emissions and urban traffic. (author)

  10. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions

    Dan Zhou

    2016-01-01

    Full Text Available 20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As, mercury (Hg, lead (Pb, cadmium (Cd, and copper (Cu in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost all the samples were in accordance with The Green Trade Standards. The contents of Cu were higher than the criteria for heavy metals except the samples from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. The best cultivation regions of Alpinia oxyphylla Miq. were from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. This research would provide the scientific basis for quality control and standardization of Alpinia oxyphylla Miq.

  11. Analytical method for heavy metal determination in algae and turtle eggs from Guanahacabibes Protected Sea Park

    Abel I. Balbín Tamayo

    2014-12-01

    Full Text Available A standard digestion method coupled to electrochemical detection for the monitoring of heavy metals in biological samples has been used for the simultaneous analysis of the target analytes. Square wave anodic stripping voltammetry (SWASV coupled to disposable screen-printed electrodes (SPEs was employed as a fast and sensitive electroanalytical method for the detection of heavy metals. The aim of our study was to determine Cd, Pb and Cu by SWASV in brown algae (Sargasum natan and green turtle eggs (Chelonia mydas using screen-printed electrodes. The method proved useful for the simultaneous analysis of these metals by comparison between two different procedures for preparing the samples. Two different approaches in digestion protocols were assessed. The study was focused on Guanahacabibes brown algae and green turtle eggs because the metal concentrations recorded in this area may be used for intraspecific comparison within the Guanahacabibes Protected Sea Park area, a body of water for which information is still very scarce. The best results were obtained by digesting biological samples with the EPA 3050B method. This treatment allowed the fast and quantitative extraction from brown algae and green turtle eggs of the target analytes, with high sensitivity and avoiding organic residues, eventually affecting electrochemical measurements.

  12. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions.

    Zhou, Dan; Fu, Yurong; Lai, Weiyong; Zhang, Junqing

    2016-01-01

    20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost all the samples were in accordance with The Green Trade Standards. The contents of Cu were higher than the criteria for heavy metals except the samples from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. The best cultivation regions of Alpinia oxyphylla Miq. were from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. This research would provide the scientific basis for quality control and standardization of Alpinia oxyphylla Miq.

  13. Determination of metals in air samples using X-Ray fluorescence associated the APDC preconcentration technique

    Nardes, Raysa C.; Santos, Ramon S.; Sanches, Francis A.C.R.A.; Gama Filho, Hamilton S.; Oliveira, Davi F.; Anjos, Marcelino J.

    2015-01-01

    Air pollution has become one of the leading quality degradation factors of life for people in large urban centers. Studies indicate that the suspended particulate matter in the atmosphere is directly associated with risks to public health, in addition, it can cause damage to fauna, flora and public / cultural patrimonies. The inhalable particulate materials can cause the emergence and / or worsening of chronic diseases related to respiratory system and other diseases, such as reduced physical strength. In this study, we propose a new method to measure the concentration of total suspended particulate matter (TSP) in the air using an impinger as an air cleaning apparatus, preconcentration with APDC and Total Reflection X-ray Fluorescence technique (TXRF) to analyze the heavy metals present in the air. The samples were collected from five random points in the city of Rio de Janeiro/Brazil. Analyses of TXRF were performed at the Brazilian Synchrotron Light Laboratory (LNLS). The technique proved viable because it was able to detect five important metallic elements to environmental studies: Cr, Fe, Ni, Cu and Zn. This technique presented substantial efficiency in determining the elementary concentration of air pollutants, in addition to low cost. It can be concluded that the metals analysis technique in air samples using an impinger as sample collection instrument associated with a complexing agent (APDC) was viable because it is a low-cost technique, moreover, it was possible the detection of five important metal elements in environmental studies associated with industrial emissions and urban traffic. (author)

  14. Determination of the total concentration and speciation of metal ions in river, estuarine and seawater samples.

    Alberti, Giancarla; Biesuz, Raffaela; Pesavento, Maria

    2008-12-01

    Different natural water samples were investigated to determine the total concentration and the distribution of species for Cu(II), Pb(II), Al(III) and U(VI). The proposed method, named resin titration (RT), was developed in our laboratory to investigate the distribution of species for metal ions in complex matrices. It is a competition method, in which a complexing resin competes with natural ligands present in the sample to combine with the metal ions. In the present paper, river, estuarine and seawater samples, collected during a cruise in Adriatic Sea, were investigated. For each sample, two RTs were performed, using different complexing resins: the iminodiacetic Chelex 100 and the carboxylic Amberlite CG50. In this way, it was possible to detect different class of ligands. Satisfactory results have been obtained and are commented on critically. They were summarized by principal component analysis (PCA) and the correlations with physicochemical parameters allowed one to follow the evolution of the metals along the considered transect. It should be pointed out that, according to our findings, the ligands responsible for metal ions complexation are not the major components of the water system, since they form considerably weaker complexes.

  15. An optical biosensing film for biochemical oxygen demand determination in seawater with an automatic flow sampling system

    Xin, Lingling; Wang, Xudong; Guo, Guangmei; Wang, Xiaoru; Chen, Xi

    2007-09-01

    An on-line roboticized apparatus, including an optical biosensing film with an automatic flow sampling system, has been developed for biochemical oxygen demand (BOD) determination of seawater. The sensing film employed in the apparatus consisted of an organically modified silicate (ORMOSIL) film embedded with tri(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) perchlorate. Three species of microorganism cultivated from seawater were immobilized in an ORMOSIL-polyvinyl alcohol matrix. Possible factors affecting BOD determination were studied, including sampling frequency, temperature, pH and sodium chloride concentration. Based on measurements of the linear fluctuant coefficients and the reproducibility of its response to seawater, the BOD apparatus showed the advantages of high veracity and short response time. Generally, the linear fluctuant coefficient (R2) in the BOD range 0.2-40 mg l-1 was 0.9945 when using a glucose/glutamate (GGA) BOD standard solution. A reproducible response for the BOD sensing film of within ±2.8% could be obtained in the 2 mg l-1 GGA solution. The BOD apparatus was applied to the BOD determination of seawater, and the values estimated by this biosensing apparatus correlated well with those determined by the conventional 5 day BOD (BOD5) test.

  16. Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha. 1. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen

    Raje, A.P.; Liaw, S.-J.; Srinivasan, R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-03-13

    Naphtha derived from an Illinois No. 6 coal contains appreciable quantities of sulfur-, nitrogen- and oxygen-containing compounds. The hydrotreatment of this naphtha was evaluated over unsupported transition metal sulfide catalysts (Ru, Rh, Mo, Pd, Zr, Mb). The catalysts were prepared by a room temperature precipitation reaction. Surface areas, crystalline phase and particle size distributions were determined by Brunauer-Emmet-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. A comparison of average particle sizes calculated from these three techniques has enable the understanding of the morphology of the transition metal sulfides. The catalysts exhibit a so-called volcano plot for the HDS of dibenzothiophene. Similar so-called volcano plots are also exhibited for the simultaneous hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and the hydrodeoxygenation (HDO) of the coal-derived naphtha containing a mixture of heteroatoms. The order of reactivity of the transition metal catalysts is the same for all three of the processes. Ruthenium sulfide is the most active catalyst for HDS, HDN and HDO of the coal-derived naphtha. 22 refs., 3 figs., 4 tabs.

  17. External carotid artery flow maintains near infrared spectroscopy-determined frontal lobe oxygenation during ephedrine administration

    Sørensen, H; Rasmussen, P; Sato, K

    2014-01-01

    O₂ by 10.5 (8.2-12.9%; Padministration of ephedrine while SinvosO₂ and SavO₂ decreased [by 3.1 (0.7-4.5%; P=0.017) and 2.1 (0.5-3.3%; P=0.......012)] as arterial carbon dioxide pressure decreased (P=0.003). ICAf was stable and ECAf increased by 11 (4-18%; P=0.005) with administration of ephedrine while SskinO₂ did not change. CONCLUSIONS: The effect of phenylephrine on ScO₂ is governed by a decrease in external carotid blood flow since it increases...... cerebral blood flow as determined by flow in the internal carotid artery. In contrast, ScO₂ is largely maintained with administration of ephedrine because blood flow to extracerebral tissue increases....

  18. Methods for oxygen/uranium ratio determination in substoichiometric uranium dioxide

    Baranov, V.G.; Godin, Yu.G.; S'edin, Yu.D.; Kosykh, V.G.; Nepryakhin, A.M.; Komarenko, F.F.; Kutyreva, G.A.

    1994-01-01

    Investigations are performed into a possibility to use the methods of thermal gravimetric analysis, gas chromatography, hydration-dehydration, and e.m.f. of high-temperature solid-electrode galvanic cell for determining O-U atomic ratio in UO 2-x . It is shown that the investigated methods have an analysis error of ± 0.001 O/U units. However, the e.m.f. method, which feature a high accuracy near stoichiometry can be applied only within the limits of UO 2-x homogeneity. A possibility is shown to expend the area of e.m.f. method application during the analysis of substoichiometric uranium dioxide. 9 refs.; 1 tab

  19. Facet Engineered Interface Design of Plasmonic Metal and Cocatalyst on BiOCl Nanoplates for Enhanced Visible Photocatalytic Oxygen Evolution.

    Bai, Lijie; Ye, Fan; Li, Luna; Lu, Jingjing; Zhong, Shuxian; Bai, Song

    2017-10-01

    Integration of plasmonic metal and cocatalyst with semiconductor is a promising approach to simultaneously optimize the generation, transfer, and consumption of photoinduced charge carriers for high-performance photocatalysis. The photocatalytic activities of the designed hybrid structures are greatly determined by the efficiencies of charge transfer across the interfaces between different components. In this paper, interface design of Ag-BiOCl-PdO x hybrid photocatalysts is demonstrated based on the choice of suitable BiOCl facets in depositing plasmonic Ag and PdO x cocatalyst, respectively. It is found that the selective deposition of Ag and PdO x on BiOCl(110) planes realizes the superior photocatalytic activity in O 2 evolution compared with the samples with other Ag and PdO x deposition locations. The reason was the superior hole transfer abilities of Ag-(110)BiOCl and BiOCl(110)-PdO x interfaces in comparison with those of Ag-(001)BiOCl and BiOCl(001)-PdO x interfaces. Two effects are proposed to contribute to this enhancement: (1) stronger electronic coupling at the BiOCl(110)-based interfaces resulted from the thinner contact barrier layer and (2) the shortest average hole diffuse distance realized by Ag and PdO x on BiOCl(110) planes. This work represents a step toward the interface design of high-performance photocatalyst through facet engineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Estimation of Viable Biomass In Wastewater And Activated Sludge By Determination of ATP, Oxygen Utilization Rate And FDA Hydrolysis

    Jørgensen, Poul-Erik; Eriksen, T.; Jensen, B.K.

    1992-01-01

    ATP content, oxygen utilization rate (OUR) and fluorescein diacetate (FDA) hydrolysis were tested for the ability to express the amount of viable biomass in wastewater and activated sludge. The relationship between biomass and these activity parameters was established in growth cultures made...... with biomass, while FDA hydrolysis in the sludge failed to show any such correlation. Conversion factors of 3 mg ATP/g dw, 300 mg O2/h g dw and 0.4 A/h (mg dw/ml) for ATP, OUR and FDA methods, respectively, were calculated. When the methods were applied for in situ determinations in four different wastewater...... plants, it was found that ATP content and respiration rate estimated viable biomass to range from 81 to 293 mg dw/g SS for raw wastewater and from 67 to 187 mg dw/g SS for activated sludge with a rather weak correlation between ATP and respiration measurements. The FDA hydrolysis estimated viable biomass...