WorldWideScience

Sample records for oxygen isotope signatures

  1. Oxygen isotopic signature of CO2 from combustion processes

    Directory of Open Access Journals (Sweden)

    W. A. Brand

    2011-02-01

    Full Text Available For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires, and human induced (fossil fuel combustion, biomass burning in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature, sample geometries (e.g. texture and surface-volume ratios and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio

  2. Using Oxygen and Carbon Isotopic Signatures in Order to Infer Climatic and Dietary Information in Roman Edessa, Greece

    Science.gov (United States)

    Michael, Dimitra-Ermioni; Dotsika, Elissavet

    2017-12-01

    Even though many isotopic studies have been conducted on ancient populations from Greece for the purpose of dietary reconstruction; mostly through carbon and nitrogen isotopic signals of bone collagen, less attention has been given to the utility of apatite signatures (oxygen and carbon) as dietary and palaeoenvironmental tools. Moreover, until recently the isotopic signal of tooth enamel for both the purposes of environmental and dietary reconstructions has been rarely assessed in ancient Greek societies. Therefore, the present study aims to provide with novel isotopic information regarding Edessa; a town in Northern Greece, during the Roman period. The current study primarily aims to explore the possible differentiation between the present climatic conditions in Edessa in relation to those occurring at the Roman period. Secondly, this study aims to reveal the significant utility of enamel isotopic signatures (carbon and oxygen) in palaeoenvironmental and palaeodietary studies regarding ancient human remains. The isotopic analyses have been conducted at the Stable Isotope and Radiocarbon Unit of INN, NCSR “Demokritos”. The population of Roman Edessa (2nd-4th c. AD) consists of 22 individuals, providing with 19 bone samples and 16 enamel ones. The mean enamel oxygen value is at -7.7 ±1.1 %0, the bone apatite mean oxygen value at -9.2 ±1.9 %0, and finally the mean carbon enamel value is at -11.7 ±1.2 %0. Oxygen values probably indicate that Edessa had a cooler climate during the Roman times in relation to present conditions, even though more research should be carried out in order to be more certain. In addition, the possible existence of non-local individuals has been revealed through the oxygen teeth enamel-bone apatite spacing. Finally, the carbon enamel signature has pointed out possible differentiations between the adult and the juvenile diet. Based on Edessa’s findings, the stated study strongly encourages the enamel oxygen and carbon isotopic signals

  3. Digesting the data - Effects of predator ingestion on the oxygen isotopic signature of micro-mammal teeth

    Science.gov (United States)

    Barham, Milo; Blyth, Alison J.; Wallwork, Melinda D.; Joachimski, Michael M.; Martin, Laure; Evans, Noreen J.; Laming, Belinda; McDonald, Bradley J.

    2017-11-01

    Biogenic minerals such as dental apatite have become commonly analysed archives preserving geochemical indicators of past environmental conditions and palaeoecologies. However, post-mortem, biogenic minerals are modified due to the alteration/replacement of labile components, and recent moves to utilise micro-mammal tooth δ18O signatures for refined Cenozoic terrestrial palaeoclimate reconstructions has lacked consideration of the chemical effects of predator digestion. Here, the physical and chemical condition of laboratory-raised mouse (Mus musculus) teeth have been investigated in conjunction with their bulk phosphate and tissue-specific δ18O values prior, and subsequent, to ingestion and excretion by various predator species (owls, mammals and a reptile). Substantial variability (up to 2‰) in the δ18O values of both undigested teeth and those ingested by specific predators suggests significant natural heterogeneity of individual prey δ18O. Statistically distinct, lower δ18O values (∼0.7‰) are apparent in teeth ingested by barn owls compared to undigested controls as a result of the chemically and enzymatically active digestive and waste-pellet environments. Overall, dentine tissues preserve lower δ18O values than enamel, while the greatest modification of oxygen isotope signals is exhibited in the basal enamel of ingested teeth as a result of its incompletely mineralised state. However, recognition of 18O-depletion in chemically purified phosphate analyses demonstrates that modification of original δ18O values is not restricted to labile oxygen-bearing carbonate and organic phases. The style and magnitude of digestive-alteration varies with predator species and no correlation was identified between specific physical or minor/trace-element (patterns or concentrations) modification of ingested teeth and disruption of their primary oxygen isotope values. Therefore, there is a current lack of any screening tool for oxygen isotope disruption as a result

  4. Charge state distribution studies of pure and oxygen mixed krypton ECR plasma - signature of isotope anomaly and gas mixing effect.

    Science.gov (United States)

    Kumar, Pravin; Mal, Kedar; Rodrigues, G

    2016-11-01

    We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82 Kr (~11.58%), 83 Kr (~11.49%), 84 Kr (~57%) and 86 Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82 Kr, 86 Kr and 83 Kr, 86 Kr is prominent, whereas the intensity ratio of 86 Kr to 84 Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  6. Rate of oxygen isotope exchange between selenate and water.

    Science.gov (United States)

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  7. Sources and Contributions of Oxygen During Microbial Pyrite Oxidation: the Triple Oxygen Isotopes of Sulfate

    Science.gov (United States)

    Ziegler, K.; Coleman, M. L.; Mielke, R. E.; Young, E. D.

    2008-12-01

    The triple isotopes of oxygen (Δ17O' = δ17O'-0.528 × δ18O' using logarithmic deltas) can trace the oxygen sources of sulfate produced during sulfide oxidation, an important biogeochemical process on Earth's surface and possibly also on Mars [1]. δ18OSO4 compositions are determined by the isotopic selectivity of the mechanism(s) responsible for their changes, and the δ18O value of the reactants (O2 vs. H2O). The relative proportional importance and contribution of each of those sources and mechanisms, as well as their associated isotopic fractionations, are not well understood. We are investigating the use of Δ 17O as a quantitative and qualitative tracer for the different processes and oxygen sources involved in sulfate production. Δ17O signatures are distinct fingerprints of these reservoirs, independent of fractionation factors that can be ambiguous. We conducted controlled abiotic and biotic (Acidithiobacillus ferrooxidans, A.f.) laboratory experiments in which water was spiked with 18O, allowing us to quantify the sources of sulfate oxygen and therefore the processes attending sulfate formation. Results of this Δ17O tracer study show that A.f. microbes initiate pyrite S-oxidation within hours of exposure, and that sulfate is produced from ~90% atmospheric oxygen. This initial lag-phase (behavior in the initial lag-phase will aid in the understanding of the ecological conditions required for microbial populations to establish and survive. An exponential phase of growth, facilitated by microbial Fe2+-oxidation, follows. The source of sulfate rapidly switches to abiotic sulfide oxidation during exponential growth and the source of oxygen switches from atmospheric O2 to nearly ~100% water. Pending acquisition of complimentary chemistry data (in progress), we interpret our isotope data to indicate that the biotic fractionation factor ɛ18OSO4-O2 of at least ~ -25 to - 35‰ is augmented by microbially induced kinetic fractionation; it is larger than

  8. Joint Application of Concentrations and Isotopic Signatures to Investigate the Global Atmospheric Carbon Monoxide Budget: Inverse Modeling Approach

    Science.gov (United States)

    Park, K.; Mak, J. E.; Emmons, L. K.

    2008-12-01

    Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year-simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers

  9. Non-mass-dependent fractionation of sulfur and oxygen isotopes during UV photolysis of sulfur dioxide

    Science.gov (United States)

    Pen, Aranh

    Since the discovery of anomalous sulfur isotope abundance in the geological record in sulfate and sulfide minerals (Farquhar et al., 2000), much effort has been put into understanding their origin to provide new insights into the environmental conditions on the early Earth (Farquhar et al., 2001; Pavlov and Kasting, 2002; Ono et al., 2003; Zahnle et al., 2006; Farquhar et al., 2007; Lyons, 2007; Lyons, 2008). This discovery gained immense interest because of its implications for both the lack of oxygen in the atmosphere during the Archean era 2.5-3.8 Gya (billion years ago), and for rise of oxygen, or the "Great Oxidation Event", that occurred 2.2-2.4 Gya (Holland, 2002). These signatures are believed to be produced in an anticorrelation to oxygen abundance in the early atmosphere, which will aid in quantifying the rate of oxygenation during the "Great Oxidation Event". According to Farquhar et al. (2000), the non-mass-dependent (NMD), or anomalous, fractionation signatures were produced by photochemical reactions of volcanic sulfur species in Earth's early atmosphere (> 2.3 Gya) due to the lack of an oxygen and ozone shield, resulting in an atmosphere transparent to solar ultraviolet (UV) radiation (Farquhar et al., 2001). Interpretation of the anomalous rock records, though, depends on the identification of (1) chemical reactions that can produce the NMD signature (Farquhar and Wing, 2003); and (2) conditions necessary for conversion of the gas-phase products into solid minerals (Pavlov and Kasting, 2002). The focus of my research addresses the first step, which is to determine whether the chemical reactions that occurred in Earth's early atmosphere, resulting in NMD fractionation of sulfur isotopes, were due to broadband UV photochemistry, and to test isotopic self-shielding as the possible underlying mechanism. In this project, our goals were to test isotopic self-shielding during UV photolysis as a possible underlying mechanism for anomalous sulfur isotopic

  10. Isotope anomalies in oxygen isotope exchange equilibrium systems

    International Nuclear Information System (INIS)

    Kotaka, M.

    1997-01-01

    The purpose of the present work is to elucidate the isotope anomalies in oxygen isotope exchange equilibrium systems, according to the calculations of the equilibrium constants for oxygen isotopic exchange reactions, and the calculations of the oxygen isotope separation factors between two phases. The equilibrium constants (K65, K67, K68 and K69) of 16 O- 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O exchange reactions between diatomic oxides were calculated in a wide temperature range on the basis of quantum statistical mechanics. Many equilibrium constants showed the anomalous mass effects, and then had the crossover temperatures and the mass independent fractionation (MIF) temperatures which held K67 = K65, K67 = K68, or K67 = K69, etc. For example, the equilibrium constants for the reactions between OH and the other diatomic oxides (MO) showed the anomalous mass effects, when M was Li, Na, Mg, K, Fe, Al, Ge, Zr, Pt, etc. The 16 O 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O oxygen isotope separation factors (S65, S67, S68 and S69) between two phases were calculated, when OH and CO were in the first phase, and SiO was in the second phase. Although the oxygen isotopic exchange equilibria in the two phases had no MIF and crossover temperatures, the separation factors showed the anomalous mass effects and had the temperatures. According to what is called the normal mass effects for the equilibrium constant of isotopic exchange reaction, the value of InK68/InK67 is 1.885. Therefore, the value of InS68/InS67 should be 1.885 too. The value calculated, however, widely changed. It can be concluded from the results obtained in the present work that some oxygen isotopic exchange equilibria cause the anomalous mass effects, the anomalous oxygen isotope separation factors, and then isotope anomalies

  11. Oxygen isotope signature of UV degradation of glyphosate and phosphonoacetate: Tracing sources and cycling of phosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Sandy, Edward H. [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); Department of Chemistry, University of Sierra Leone, Freetown (Sierra Leone); Blake, Ruth E., E-mail: ruth.blake@yale.edu [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China); Chang, Sae Jung [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); Jun, Yao, E-mail: yaojun@ustb.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China); Yu, Chan [Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109 (United States); School of Civil and Environmental Engineering, and National “International Cooperation Base on Environment and Energy”, University of Science and Technology Beijing, Beijing 100084 (China)

    2013-09-15

    Highlights: • Phosphonate (phon) hydrolysis by UVR (1.2 kW) attained ≥90% completion in 84 h. • Isotope study reveals both ambient H{sub 2}O and O{sub 2} involvements in phon C-P bond cleavage. • Mechanistic models proposed for phon C-P bond cleavage based on O-isotope analysis. • Model equations used to calculate δ{sup 18}O{sub P-org} of original phon P-moiety-useful as a tracer. • Study shows relevance in tracing phon sources and cycling in the environment. -- Abstract: The degradation of phosphonates in the natural environment constitutes a major route by which orthophosphate (Pi) is regenerated from organic phosphorus and recently implicated in marine methane production, with ramifications to environmental pollution issues and global climate change concerns. This work explores the application of stable oxygen isotope analysis in elucidating the C-P bond cleavage mechanism(s) of phosphonates by UV photo-oxidation and for tracing their sources in the environment. The two model phosphonates used, glyphosate and phosphonoacetic acid were effectively degraded after exposure to UV irradiation. The isotope results indicate the involvement of both ambient water and atmospheric oxygen in the C-P bond cleavage and generally consistent with previously posited mechanisms of UV-photon excitation reactions. A model developed to calculate the oxygen isotopic composition of the original phosphonate P-moiety, shows both synthetic phosphonates having distinctly lower values compared to naturally derived organophosphorus compounds. Such mechanistic models, based on O-isotope probing, are useful for tracing the sources and reactions of phosphonates in the environment.

  12. Organic and Isotopic Signatures of Life: Lessons from the Early Earth

    Science.gov (United States)

    Freeman, K. H.; Eigenbrode, J. L.; House, C. H.

    2002-12-01

    In the study of life on earth, isotopic analyses of organic biomarkers provide essential insight to their biological and environmental provenance. Isotopic analyses of organic materials on other planets present a number of challenges, both analytical and interpretive. Prebiotic planetary organic materials can derive from condensation reactions and by delivery through meteorites or interplanetary dust, with the relative importance of each influenced by the oxidation state of the atmosphere. Material delivered to planets can have an interstellar origin, although it is dominated by compounds influenced by the formation of the solar system. Each of these processes impact molecular isotopic signatures and must be considered in life-detection strategies. Pronounced effects are observed for hydrogen isotopes, with smaller fractionations observed for other elements. Theoretical, laboratory and observational studies of non-terrean materials are essential to further understand molecular isotopic heterogeneity associated with these exclusively abiotic processes. Studies of Archean-aged samples provide an important resource for interpreting molecular isotopic patterns as signatures of life processes. Carbon assimilation and biomass synthesis from simple precursor compounds typically discriminate against 13C. This generality, however, is complicated by the observations of a wide range of fractionation factors associated with important microbial carbon-uptake processes. Metabolic processes further distribute isotopic signatures, such that wide isotopic heterogeneity is observed among cellular biochemical constituents. In addition, preservation/contamination concerns dominate studies of very ancient organic matter, as they likely will in life-detection studies. However, both biochemical heterogeneity and sample integrity can be addressed by considering patterns from different paleoenvironments. Molecular results demonstrate that Late Archean microbial life on this planet was

  13. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  14. Stable isotope signatures of gases liberated from fluid inclusions in bedrock at Olkiluoto

    International Nuclear Information System (INIS)

    Eichinger, F.; Meier, D.; Haemmerli, J.; Diamond, L.

    2010-12-01

    Fluid inclusions in quartzes of the Olkiluoto bedrock contain gaseous N 2 , CO 2 , H 2 , CH 4 , and higher hydrocarbons in varying proportions. Stable carbon and hydrogen isotope signatures of the gas phases give valuable information on their origin and the formation conditions. In previous studies, a method to liberate and quantify the gases trapped in fluid inclusions was developed. It allowed determining the carbon isotope signatures of liberated CO 2 , CH 4 and higher hydrocarbons (HHC), but no hydrogen isotope data were acquired. The method was advanced and, in this study, also stable hydrogen isotopes of CH 4 and H 2 liberated from fluid inclusions could be analysed. The stable carbon signatures of methane and higher hydrocarbons, as well as the hydrogen isotope signatures of methane indicate a predominant thermogenic provenance for those gases. (orig.)

  15. Analysis of Atmospheric Nitrate Deposition in Lake Tahoe Using Multiple Oxygen Isotopes

    Science.gov (United States)

    McCabe, J. R.; Michalski, G. M.; Hernandez, L. P.; Thiemens, M. H.; Taylor, K.; Kendall, C.; Wankel, S. D.

    2002-12-01

    Lake Tahoe in the Sierra Nevada Mountain Range is world renown for its depth and water clarity bringing 2.2 million visitors per year resulting in annual revenue of \\1.6 billion from tourism. In past decades the lake has suffered from decreased water clarity (from 32 m plate depth to less than 20), which is believed to be largely the result of algae growth initiated by increased nutrient loading. Lake nutrients have also seen a shift from a nitrogen limited to a phosphorous limited system indicating a large increase in the flux of fixed nitrogen. Several sources of fixed nitrogen of have been suggested including surface runoff, septic tank seepage from ground water and deposition from the atmosphere. Bio-available nitrogen in the form of nitrate (NO_{3}$-) is a main component of this system. Recent studies have estimated that approximately 50% of the nitrogen input into the lake is of atmospheric origin (Allison et al. 2000). However, the impact and magnitude of atmospheric deposition is still one of the least understood aspects of the relationship between air and water quality in the Basin (TRPA Threshold Assessment 2002). The utility of stable isotopes as tracers of nitrate reservoirs has been shown in several studies (Bohlke et al. 1997, Kendall and McDonnell 1998, Durka et al. 1994). Stable nitrogen (δ15N) and oxygen (δ18O) isotopes have been implemented in a dual isotope approach to characterize the various nitrate sources to an ecosystem. While δ18O distinguishes between atmospheric and soil sources of nitrate, processes such as denitrification can enrich the residual nitrate in δ18O leaving a misleading atmospheric signature. The benefit of δ15N as a tracer for NO3- sources is the ability to differentiate natural soil, fertilizer, and animal or septic waste, which contain equivalent δ18O values. The recent implementation of multiple oxygen isotopes to measure Δ17O in nitrate has proven to be a more sensitive tracer of atmospheric deposition. The

  16. Isotopic source signatures: Impact of regional variability on the δ13CH4 trend and spatial distribution

    Science.gov (United States)

    Feinberg, Aryeh I.; Coulon, Ancelin; Stenke, Andrea; Schwietzke, Stefan; Peter, Thomas

    2018-02-01

    The atmospheric methane growth rate has fluctuated over the past three decades, signifying variations in methane sources and sinks. Methane isotopic ratios (δ13CH4) differ between emission categories, and can therefore be used to distinguish which methane sources have changed. However, isotopic modelling studies have mainly focused on uncertainties in methane emissions rather than uncertainties in isotopic source signatures. We simulated atmospheric δ13CH4 for the period 1990-2010 using the global chemistry-climate model SOCOL. Empirically-derived regional variability in the isotopic signatures was introduced in a suite of sensitivity simulations. These simulations were compared to a baseline simulation with commonly used global mean isotopic signatures. We investigated coal, natural gas/oil, wetland, livestock, and biomass burning source signatures to determine whether regional variations impact the observed isotopic trend and spatial distribution. Based on recently published source signature datasets, our calculated global mean isotopic signatures are in general lighter than the commonly used values. Trends in several isotopic signatures were also apparent during the period 1990-2010. Tropical livestock emissions grew during the 2000s, introducing isotopically heavier livestock emissions since tropical livestock consume more C4 vegetation than midlatitude livestock. Chinese coal emissions, which are isotopically heavy compared to other coals, increase during the 2000s leading to higher global values of δ13CH4 for coal emissions. EDGAR v4.2 emissions disagree with the observed atmospheric isotopic trend for almost all simulations, confirming past doubts about this emissions inventory. The agreement between the modelled and observed δ13CH4 interhemispheric differences improves when regional source signatures are used. Even though the simulated results are highly dependent on the choice of methane emission inventories, they emphasize that the commonly used

  17. Reconsideration of methane isotope signature as a criterion for the genesis of natural gas: influence of migration on isotopic signatures

    International Nuclear Information System (INIS)

    Pernaton, E.; Prinzhofer, A.; Schneider, F.

    1996-01-01

    Experiments were performed in the purpose of studying the isotopic consequences of the diffusional transport of hydrocarbon gases through sediment rocks. Linked to a numerical model, these gas diffusion experiments through as shale porous plug allowed us to correlate porosity and diffusivity of the migration medium. Significant isotopic fractionations (carbon and hydrogen) of methane, and ethane at a lesser degree were observed. This is in contradiction with the actual dogma of isotope geochemistry of natural gases which claims that no fractionation occurs during gas migration. The genetic characterization of natural gases by using the isotopic signature of methane appears as an ambiguous method. (author)

  18. Dual temperature effects on oxygen isotopic ratio of shallow-water coral skeleton: Consequences on seasonal and interannual records

    Science.gov (United States)

    Juillet-Leclerc, A.; Reynaud, S.

    2009-04-01

    Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.

  19. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study

    Science.gov (United States)

    Warwick, Peter D.; Ruppert, Leslie F.

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2

  20. Oxygen isotopic fractionation during bacterial sulfate reduction

    Science.gov (United States)

    Balci, N.; Turchyn, A. V.; Lyons, T.; Bruchert, V.; Schrag, D. P.; Wall, J.

    2006-12-01

    Sulfur isotope fractionation during bacterial sulfate reduction (BSR) is understood to depend on a variety of environmental parameters, such as sulfate concentration, temperature, cell specific sulfate reduction rates, and the carbon substrate. What controls oxygen isotope fractionation during BSR is less well understood. Some studies have suggested that carbon substrate is important, whereas others concluded that there is a stoichiometric relationship between the fractionations of sulfur and oxygen during BSR. Studies of oxygen fractionation are complicated by isotopic equilibration between sulfur intermediates, particularly sulfite, and water. This process can modify the isotopic composition of the extracellular sulfate pool (δ18OSO4 ). Given this, the challenge is to distinguish between this isotopic equilibration and fractionations linked to the kinetic effects of the intercellular enzymes and the incorporation of sulfate into the bacterial cell. The δ18OSO4 , in concert with the sulfur isotope composition of sulfate (δ34SSO4), could be a powerful tool for understanding the pathways and environmental controls of BSR in natural systems. We will present δ18OSO4 data measured from batch culture growth of 14 different species of sulfate reducing bacteria for which sulfur isotope data were previously published. A general observation is that δ18OSO4 shows little isotopic change (kinetic effect during BSR and/or equilibration between sulfur intermediates and the isotopically light water (~-5‰) of the growth medium. Our present batch culture data do not allow us to convincingly isolate the magnitude and the controlling parameters of the kinetic isotope effect for oxygen. However, ongoing growth of mutant bacteria missing enzymes critical in the different steps of BSR may assist in this mission.

  1. Theory of oxygen isotope exchange

    NARCIS (Netherlands)

    den Otter, M.W.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.

    2001-01-01

    Transients for oxygen molecular mass numbers 32, 34 and 36 are derived which can be used for the interpretation of oxygen isotope exchange data based on measurement of concentrations of 16O2, 16O18O and 18O2 in the gas phase. Key parameters in the theory are the rate at which oxygen molecules are

  2. The Oxygen Isotopic Composition of Phosphate: A Tracer for Phosphate Sources and Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, University of California, CA (United States); Young, M. B.; Paytan, A.; Kendall, C. [U.S. Geological Survey, University of California, CA (United States)

    2013-05-15

    Phosphorus (P) is a limiting macro-nutrient for primary productivity and anthropogenic P-loading to aquatic ecosystems is one of the leading causes of eutrophication in many ecosystems throughout the world. Because P has only one stable isotope, traditional isotope techniques are not possible for tracing sources and cycling of P in aquatic systems. However, much of the P in nature is bonded to four oxygen (O) atoms as orthophosphate (PO{sub 4}{sup 3-}). The P-O bonds in orthophosphate are strongly resistant to inorganic hydrolysis and do not exchange oxygen with water without biological mediation (enzyme-mediated recycling). Thus, the oxygen isotopic composition of dissolved inorganic phosphate ({delta}{sup 18}O{sub p}) may be used as a tracer for phosphate sources and cycling in aquatic ecosystems. Recently, several studies have been conducted utilizing {delta}{sup 18}O{sub p} as a tracer for phosphate sources and cycling in various aquatic environments. Specifically, work to date indicates that {delta}{sup 18}O{sub p} is useful for determining sources of phosphate to aquatic systems if these sources have unique isotopic signatures and phosphate cycling within the system is limited compared to input fluxes. In addition, because various processes imprint specific fractionation effects, the {delta}{sup 18}O{sub p} tracer can be utilized to determine the degree of phosphorous cycling and processing through the biomass. This chapter reviews several of these studies and discusses the potential to utilize the {delta}{sup 18}O{sub p} of phosphate in rivers and streams. (author)

  3. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  4. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    International Nuclear Information System (INIS)

    Aleon, J; McKeegan, K D; Leshin, L

    2006-01-01

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An 16 O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an 16 O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a 16 O-rich nebula/presolr cloud resulting in a 16 O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to ∼ 3 (micro)m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs

  5. A latitudinal study of oxygen isotopes within horsehair

    Science.gov (United States)

    Thompson, E.; Bronk Ramsey, C.; McConnell, J. R.

    2016-12-01

    This study aims to explore the hypothesis that 'if oxygen isotope ratios deplete with decreasing temperature then a study of oxygen isotope ratios within horsehair from Oxfordshire to Iceland will show a latitudinal depletion gradient'. By looking at oxygen isotope values at different geographical positions, we can track the relationship with latitude and with different regional climate features. This will provide a firmer understanding of how to compare climate records from different locations. Additionally, a comparison of the horse breeds from this study to those analysed within previous studies will create an even better understanding of the intra-species variation within the δ18O values of horsehair. A total of 24 horses were sampled on the 7th March from Thordale Stud in Shetland, the Icelandic Food And Veterinary Authority in Iceland, the Exmoor Pony Centre in Exmoor and the Pigeon House Equestrian Centre in Oxfordshire. By starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. The samples were analysed for oxygen isotope values using an IRMS coupled within a Sercon HTEA. Preliminary results show a latitudinal gradient is evident on comparison between the locations, consistent with the findings of Darling and Talbot's study of fresh water isotopes in the British Isles (2003). These results support the hypothesis, showing that a study of oxygen isotope ratios within horse hair from Oxfordshire to Iceland showing a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures. Darling, W. and Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth System Science, 7(2), pp.163-181.

  6. The transport of oxygen isotopes in hydrothermal systems

    International Nuclear Information System (INIS)

    McKibbin, R.; Absar, A.; Blattner, P.

    1986-01-01

    As groundwater passes through porous rocks, exchange of oxygen between the fluid and the solid matrix causes a change in the oxygen isotope concentrations in both water and rock. If the rate at which the exchange takes place can be estimated (as a function of the isotope concentrations and temperature) then the time taken for a rock/water system to come to equilibrium with respect to isotope concentration might be calculated. In this paper, the equation for isotope transport is derived using conservation laws, and a simple equation to describe the rate of isotope exchange is proposed. These are combined with the equations for fluid flow in a porous medium, to produce a general set of equations describing isotope transport in a hydrothermal system. These equations are solved numerically, using typical parameters, for the one-dimensional case. Oxygen isotope data from the basement rocks underlying Kawerau geothermal field are modelled. The results indicate that the time taken for exchange of 18 O to present-day values is less than the postulated age of hydrothermal alteration in that field. This suggests that, although controlled by similar parameters, oxygen isotope exchange, in felsic rocks at least, is much faster than hydrothermal alteration. This conclusion is consistent with the petrographic observations from the Kawerau system as well as other geothermal fields

  7. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  8. Oxygen isotope exchange between refractory inclusion in allende and solar nebula Gas

    Science.gov (United States)

    Yurimoto; Ito; Nagasawa

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope compositions ( approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  9. Stable isotope signatures reflect dietary diversity in European forest moths.

    Science.gov (United States)

    Adams, Marc-Oliver; Seifert, Carlo Lutz; Lehner, Lisamarie; Truxa, Christine; Wanek, Wolfgang; Fiedler, Konrad

    2016-01-01

    Information on larval diet of many holometabolous insects remains incomplete. Carbon (C) and nitrogen (N) stable isotope analysis in adult wing tissue can provide an efficient tool to infer such trophic relationships. The present study examines whether moth feeding guild affiliations taken from literature are reflected in isotopic signatures. Non-metric multidimensional scaling and permutational analysis of variance indicate that centroids of dietary groups differ significantly. In particular, species whose larvae feed on mosses or aquatic plants deviated from those that consumed vascular land plants. Moth δ(15)N signatures spanned a broader range, and were less dependent on species identity than δ(13)C values. Comparison between moth samples and ostensible food sources revealed heterogeneity in the lichenivorous guild, indicating only Lithosia quadra as an obligate lichen feeder. Among root-feeding Agrotis segetum, some specimens appear to have developed on crop plants in forest-adjacent farm land. Reed-feeding stem-borers may partially rely on intermediary trophic levels such as fungal or bacterial growth. Diagnostic partitioning of moth dietary guilds based on isotopic signatures alone could not be achieved, but hypotheses on trophic relationships based on often vague literature records could be assessed with high resolution. Hence, the approach is well suited for basic categorization of moths where diet is unknown or notoriously difficult to observe (i.e. Microlepidoptera, lichen-feeders).

  10. Oxygen isotopic anomalies in Allende inclusion HAL

    International Nuclear Information System (INIS)

    Lee, T.; Mayeda, T.K.; Clayton, R.N.

    1980-01-01

    The oxygen isotopic composition has been measured on the constituent phases of Allende inclusion HAL, which has unusual mineralogical, chemical, and calcium isotopic compositions. The oxygen in HAL is heterogeneous, with the rim showing more ''normal'' composition and the hibonite core showing large deviation from both the terrestrial material and the usual inclusions. The observed pattern indicates that HAL is a bona fide and more devious member of the rare ''FUN'' family, whose isotopic composition is characterized by correlated nuclear effects and extreme mass fractionation. The data imply that HAL has suffered a large oxygen mass fractionation of 25% 0 per mass unit, followed by exchange with oxygen in a second reservoir. The present experiment supports the identification of two distinct reservoirs from which all refractory inclusions in carbonaceous meteorites derived their oxygen. The required fractionation process seems to operate according to the volatility of various elements and could have been caused by evaporation during a heating event. Nuclear anomalies can be produced in the same heating event if the progenitors of the refractory inclusions were macroscopic aggregates of tiny pre-solar interstellar dust grains and if these grains were destroyed differentially during the evaporation

  11. Triple oxygen isotopes in biogenic and sedimentary carbonates

    Science.gov (United States)

    Passey, Benjamin H.; Hu, Huanting; Ji, Haoyuan; Montanari, Shaena; Li, Shuning; Henkes, Gregory A.; Levin, Naomi E.

    2014-09-01

    The 17O anomaly (Δ17O) of natural waters has been shown to be sensitive to evaporation in a way analogous to deuterium excess, with evaporated bodies of water (e.g., leaf waters, lake waters, animal body waters) tending to have lower Δ17O than primary meteoric waters. In animal body water, Δ17O relates to the intake of evaporated waters, evaporative effluxes of water, and the Δ17O value of atmospheric O2, which itself carries signatures of global carbon cycling and photochemical reactions in the stratosphere. Carbonates have the potential to record the triple oxygen isotope compositions of parent waters, allowing reconstruction of past water compositions, but such investigations have awaited development of methods for high-precision measurement of Δ17O of carbonate. We describe optimized methods based on a sequential acid digestion/reduction/fluorination approach that yield Δ17O data with the high precision (∼0.010‰, 1σ) needed to resolve subtle environmental signals. We report the first high-precision Δ17O dataset for terrestrial carbonates, focusing on vertebrate biogenic carbonates and soil carbonates, but also including marine invertebrates and high-temperature carbonates. We determine apparent three-isotope fractionation factors between the O2 analyte derived from carbonate and the parent waters of the carbonate. These in combination with appropriate temperature estimates (from clumped isotope thermometry, or known or estimated body temperatures) are used to calculate the δ18O and Δ17O of parent waters. The clearest pattern to emerge is the strong 17O-depletion in avian, dinosaurian, and mammalian body water (from analyses of eggshell and tooth enamel) relative to meteoric waters, following expected influences of evaporated water (e.g., leaf water) and atmospheric O2 on vertebrate body water. Parent waters of the soil carbonates studied here have Δ17O values that are similar to or slightly lower than global precipitation. Our results suggest

  12. Carbon and Oxygen isotopic composition in paleoenvironmental determination

    International Nuclear Information System (INIS)

    Silva, J.R.M. da.

    1978-01-01

    This work reports that the carbon and oxygen isotopic composition separate the mollusks from marine environment of the mollusks from continental environment in two groups isotopically different, making the biological control outdone by environment control, in the isotopic fragmentation mechanisms. The patterns from the continental environment are more rich in O 16 than the patterns from marine environments. The C 12 is also more frequent in the mollusks from continental environments. The carbon isotopic composition in paterns from continental environments is situated betwen - 10.31 and - 4,05% and the oxygen isotopic composition is situated between - 6,95 and - 2,41%. To the marine environment patterns the carbon isotopic composition is between - 2,08 and + 2,65% and the oxigen isotopic composition is between - 2,08 and + 0,45%. Was also analysed fossil marine mollusks shells and their isotopic composition permit the formulation of hypothesis about the environment which they lived. (C.D.G.) [pt

  13. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    Science.gov (United States)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  14. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    Science.gov (United States)

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  15. Major events in Neogene oxygen isotopic records

    International Nuclear Information System (INIS)

    Kennett, J.P.; Hodell, D.A.

    1986-01-01

    Changes in oxygen isotopic ratios of foraminiferal calcite during the cainozoic have been one of the primary tools for investigating the history of Arctic and Antarctic glaciation, although interpretations of the oxygen isotopic record differ markedly. The ambiguity in interpretation results mainly from the partitioning of temperature from ice volume effects in delta 18 O changes. Oxygen isotopic records for the Cainozoic show an increase in delta 18 O values towards the present, reflecting gradual cooling and increased glaciation of the Earth's climate since the late Cretaceous. A variety of core material from the South Atlantic and South-west Pacific oceans are investigated. This composite data represents one of the most complete available with which to evaluate the evolution of glaciation during the Neogene. Expansion of ice shelves in Antarctica undoubtedly accompanied the increased glaciation of the northern hemisphere, since eustatic sea-level lowering would positively reinforce ice growth on Antarctica

  16. Using Oxygen Isotopic Values in Order to Infer Palaeoclimatic Differences between Northern and Central-Southern Greece

    Science.gov (United States)

    Michael, Dimitra-Ermioni; Dotsika, Elissavet

    2017-12-01

    Even though isotopic analyses have been extensively implemented on human skeletal remains for the purpose of dietary reconstruction, less attention has been given to the ingested water and thus to the investigation of palaeoclimatic conditions. In particular, oxygen isotopic fingerprinting has never been applied on human skeletal remains from Greece for the abovementioned purpose before. The basic aim of the present study is to compare climatic conditions from two ancient populations, deriving from two different ecological locations; Edessa (Greek Macedonia; 2nd-4th c. AD) and Thebes (Sterea Hellas, 13th-14th c. AD). Oxygen values in Edessa are at -7.69 ±1.13 ‰ and -9.18 ±1.88 ‰ for tooth enamel and bone apatite respectively. On the other hand, oxygen signals in Thebes are at -5.8 ±2.16 ‰ and -9.23 ±1.3 % for the enamel and bone apatite respectively. The utility of oxygen isotopic signatures for the purpose of palaeoclimatic investigation lies on the fact that the ratio of 18 to 16O of meteoric precipitation, expressed as δ18O per mill (‰), relative to the international standard (vSMOW) varies geographically by temperature, humidity, evaporation, distance to the sea, altitude and latitude. Therefore, results as expected, point out that Edessa do presents more negative enamel isotopic values in relation to Thebes, however the noted difference is not observed for the bone apatite samples. The lack of bone apatite differentiation between sites could be attributed to cultural diversity (particularly in Thebes), shift in dietary habits due to migration or social status, climatic fluctuations within each site or to possible diagenetic alteration of bone apatite samples.

  17. Carbon and oxygen isotope signatures in conifers from the Swiss National Park

    Science.gov (United States)

    Churakova (Sidorova), Olga; Saurer, Matthias; Siegwolf, Rolf; Bryukhanova, Marina; Bigler, Christof

    2015-04-01

    Our study investigates the physiological response and plasticity of trees under climatic changes for larch (Larix decidua) and mountain pine (Pinus mugo var. uncinata) in the Swiss National Park.This research was done in the context of investigation tree mortality and their potential to survive under the harsh mountainous conditions. For the stable isotope analysis we selected four mountain pine and four larch trees from each a south- and north-facing slope. Oxygen isotope ratios can give insight into water sources and evaporative processes. To understand the differential response of mountain pine and larch to short-term climatic changes we measured 18O/16O in water extracted from twigs and needles as well as soil samples for each species at both sites. The seasonal variabilities in 18O/16O needles and twigs of mountain pine and larch trees as well as soil samples were related to changes in climate conditions from end of May until middle of October. To reveal the main climatic factors driving tree growth of pine and larch trees in the long-term, tree-ring width chronologies were built and bulk 18O/16O, 13C/12C wood chronologies were analyzed and correlated with climatic parameters over the last 100 years. The results indicate a strong influence of spring and summer temperatures for larch trees, while variation of spring and summer precipitations is more relevant for mountain pine trees. This work is supported by the Swiss National Science Foundation, Marie-Heim Vögtlin Program PMPDP-2 145507

  18. Oxygen Isotopes Archived in Subfossil Chironomids: Advancing a Promising Proxy for Lake Water Isotopes

    Science.gov (United States)

    Lasher, G. E.; Axford, Y.; Blair, N. E.

    2017-12-01

    Oxygen isotopes measured in subfossil chironomid head capsules (aquatic insect remains) in lake sediments are beginning to offer paleoclimate insights from previously under-studied areas of the world. Since the first published pilot study demonstrated the potential of chironomid δ18O to record lake water δ18O (Wooller et al., 2004), subsequent work has refined our understanding of this proxy: confirming via lab cultures that growth water controls head capsule δ18O (Wang et al., 2009), refining laboratory pretreatment protocols, and further validating the method by demonstrating strong agreement between carbonate and chironomid-derived paleo-isotope records (Verbruggen et al., 2009, 2010, 2011). However, outstanding questions remain, including the seasonality of chironomid growth, possible species-dependent vital effects, and diagenetic effects on the protein-chitin complex that comprise chironomid cuticles. To address some of these questions, we summarize available data from paired modern chironomid-lake water δ18O values from around the world and discuss climatic and environmental factors affecting chironomid isotopic signatures. We also present new data on the resistance of these subfossils to diagenesis and degradation throughout the late Quaternary using Fourier Transform Infrared Spectroscopy (FT-IR) and Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) of chironomid remains up to >100,000 years old. As chironomids are nearly ubiquitous in lakes globally and, we argue, molecularly stable through glacial and interglacial cycles, this proxy has the potential to greatly expand the spatial and temporal resolution of Quaternary paleo-isotopes and thus climate records. In addition to reviewing and presenting new methodological advances, we also present applications of chironomid δ18O from millennial- to centennial-scale Holocene Greenland lake records.

  19. Meteoric water in normal fault systems: Oxygen and hydrogen isotopic measurements on authigenic phases in brittle fault rocks

    Science.gov (United States)

    Haines, S. H.; Anderson, R.; Mulch, A.; Solum, J. G.; Valley, J. W.; van der Pluijm, B. A.

    2009-12-01

    The nature of fluid circulation systems in normal fault systems is fundamental to understanding the nature of fluid movement within the upper crust, and has important implications for the on-going controversy about the strength of faults. Authigenic phases in clay gouges and fault breccias record the isotopic signature of the fluids they formed in equilibrium with, and can be used to understand the ‘plumbing system’ of brittle fault environments. We obtained paired oxygen and hydrogen isotopic measurements on authigenic illite and/or smectite in clay gouge from normal faults in two geologic environments, 1.) low-angle normal faults (Ruby Mountains detachment, NV; Badwater Turtleback, CA; Panamint range-front detachment; CA; Amargosa detachment; CA; Waterman Hills detachment, CA), and 2.) An intracratonic high-angle normal fault (Moab Fault, UT). All authigenic phases in these clay gouges are moderately light isotopically with respect to oxygen (illite δ18O -2.0 - + 11.5 ‰ SMOW, smectite δ18O +3.6 and 17.9 ‰) and very light isotopically with respect to hydrogen (illite δD -148 to -98 ‰ SMOW, smectite δD -147 to -92 ‰). Fluid compositions calculated from the authigenic clays at temperatures of 50 - 130 ○C (as indicated by clay mineralogy) indicate that both illite and smectite in normal fault clay gouge formed in the presence of near-pristine to moderately-evolved meteoric fluids and that igneous or metamorphic fluids are not involved in clay gouge formation in these normal fault settings. We also obtained paired oxygen and hydrogen isotopic measurements on chlorites derived from footwall chlorite breccias in 4 low-angle normal fault detachment systems (Badwater and Mormon Point Turtlebacks, CA, the Chemehuevi detachment, CA, and the Buckskin-Rawhide detachment, AZ). All chlorites are isotopically light to moderately light with respect to oxygen (δ18O +0.29 to +8.1 ‰ SMOW) and very light with respect to hydrogen (δD -97 to -113 ‰) and indicate

  20. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry.

    Science.gov (United States)

    Nam, Jungjoo; Kwon, Hyuksu; Jang, Inae; Jeon, Aeran; Moon, Jingyu; Lee, Sun Young; Kang, Dukjin; Han, Sang Yun; Moon, Bongjin; Oh, Han Bin

    2015-02-01

    We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Oxygen isotopes in tree rings record variation in precipitation δ18O and amount effects in the south of Mexico.

    Science.gov (United States)

    Brienen, Roel J W; Hietz, Peter; Wanek, Wolfgang; Gloor, Manuel

    2013-12-01

    [1] Natural archives of oxygen isotopes in precipitation may be used to study changes in the hydrological cycle in the tropics, but their interpretation is not straightforward. We studied to which degree tree rings of Mimosa acantholoba from southern Mexico record variation in isotopic composition of precipitation and which climatic processes influence oxygen isotopes in tree rings ( δ 18 O tr ). Interannual variation in δ 18 O tr was highly synchronized between trees and closely related to isotopic composition of rain measured at San Salvador, 710 km to the southwest. Correlations with δ 13 C, growth, or local climate variables (temperature, cloud cover, vapor pressure deficit (VPD)) were relatively low, indicating weak plant physiological influences. Interannual variation in δ 18 O tr correlated negatively with local rainfall amount and intensity. Correlations with the amount of precipitation extended along a 1000 km long stretch of the Pacific Central American coast, probably as a result of organized storm systems uniformly affecting rainfall in the region and its isotope signal; episodic heavy precipitation events, of which some are related to cyclones, deposit strongly 18 O-depleted rain in the region and seem to have affected the δ 18 O tr signal. Large-scale controls on the isotope signature include variation in sea surface temperatures of tropical north Atlantic and Pacific Ocean. In conclusion, we show that δ 18 O tr of M . acantholoba can be used as a proxy for source water δ 18 O and that interannual variation in δ 18 O prec is caused by a regional amount effect. This contrasts with δ 18 O signatures at continental sites where cumulative rainout processes dominate and thus provide a proxy for precipitation integrated over a much larger scale. Our results confirm that processes influencing climate-isotope relations differ between sites located, e.g., in the western Amazon versus coastal Mexico, and that tree ring isotope records can help in

  2. Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L

    International Nuclear Information System (INIS)

    Yakir, D.; DeNiro, M.J.

    1990-01-01

    Lemna gibba L. B3 was grown under heterotrophic, photoheterotrophic, and autotrophic conditions in water having a variety of hydrogen and oxygen isotopic compositions. The slopes of the linear regression lines between the isotopic composition of water and leaf cellulose indicated that under the three growth conditions about 40, 70, and 100% of oxygens and carbon-bound hydrogens of cellulose exchanged with those of water prior to cellulose formation. Using the equations of the linear relationships, we estimated the overall fractionation factors between water and the exchanged oxygen and carbon bound-hydrogen of cellulose. At least two very different isotope effects must determine the hydrogen isotopic composition of Lemna cellulose. One reflects the photosynthetic reduction of NADP, while the second reflects exchange reactions that occur subsequent to NADP reduction. Oxygen isotopic composition of cellulose apparently is determined by a single type of exchange reaction with water. Under different growth conditions, variations in metabolic fluxes affect the hydrogen isotopic composition of cellulose by influencing the extent to which the two isotope effects mentioned above are recorded. The oxygen isotopic composition of cellulose is not affected by such changes in growth conditions

  3. Uranium isotopic signatures measured in samples of dirt collected at two former uranium facilities

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; LaMont, S.P.; Spitz, H.B.

    2014-01-01

    Nuclear forensics is a multidisciplinary science that uses a variety of analytical methods and tools to explore the physical, chemical, and isotopic characteristics of nuclear and radiological materials. These characteristics, when evaluated alone or in combination, become signatures that may reveal how and when the material was fabricated. The signatures contained in samples of dirt collected at two different uranium metal processing facilities in the United States were evaluated to determine uranium isotopic composition and compare results with processes that were conducted at these sites. One site refined uranium and fabricated uranium metal ingots for fuel and targets and the other site rolled hot forged uranium and other metals into dimensional rods. Unique signatures were found that are consistent with the activities and processes conducted at each facility and establish confidence in using these characteristics to reveal the provenance of other materials that exhibit similar signatures. (author)

  4. Normalization of oxygen and hydrogen isotope data

    Science.gov (United States)

    Coplen, T.B.

    1988-01-01

    To resolve confusion due to expression of isotopic data from different laboratories on non-corresponding scales, oxygen isotope analyses of all substances can be expressed relative to VSMOW or VPDB (Vienna Peedee belemnite) on scales normalized such that the ??18O of SLAP is -55.5% relative to VSMOW. H3+ contribution in hydrogen isotope ratio analysis can be easily determined using two gaseous reference samples that differ greatly in deuterium content. ?? 1988.

  5. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    Science.gov (United States)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  6. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  7. Oxygen isotopic signature of CO2 from combustion processes

    NARCIS (Netherlands)

    Schumacher, M.; Werner, R. A.; Meijer, H. A. J.; Brand, W. A.; Geilmann, H.; Neubert, R. E. M.; Kaiser, J.; Jansen, Henk G.

    2011-01-01

    For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (C-13 and O-18) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the delta O-18

  8. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments

    Science.gov (United States)

    Kohl, Issaku E.; Asatryan, Rubik; Bao, Huiming

    2012-10-01

    In both laboratory experiments and natural environments where microbial dissimilatory sulfate reduction (MDSR) occurs in a closed system, the δ34S ((34S/32S)sample/(34S/32S)standard - 1) for dissolved SO42- has been found to follow a typical Rayleigh-Distillation path. In contrast, the corresponding δ18O ((18O/16O)sample/(18O/16O)standard) - 1) is seen to plateau with an apparent enrichment of between 23‰ and 29‰ relative to that of ambient water under surface conditions. This apparent steady-state in the observed difference between δ18O and δ18OO can be attributed to any of these three steps: (1) the formation of adenosine-5'-phosphosulfate (APS) from ATP and SO42-, (2) oxygen exchange between sulfite (or other downstream sulfoxy-anions) and water later in the MDSR reaction chain and its back reaction to APS and sulfate, and (3) the re-oxidation of produced H2S or precursor sulfoxy-anions to sulfate in environments containing Fe(III) or O2. This study examines the first step as a potential pathway for water oxygen incorporation into sulfate. We examined the structures and process of APS formation using B3LYP/6-31G(d,p) hybrid density functional theory, implemented in the Gaussian-03 program suite, to predict the potential for oxygen exchange. We conducted a set of in vitro, enzyme-catalyzed, APS formation experiments (with no further reduction to sulfite) to determine the degree of oxygen isotope exchange between the APS-sulfate and water. Triple-oxygen-isotope labeled water was used in the reactor solutions to monitor oxygen isotope exchange between water and APS sulfate. The formation and hydrolysis of APS were identified as potential steps for oxygen exchange with water to occur. Quantum chemical modeling indicates that the combination of sulfate with ATP has effects on bond strength and symmetry of the sulfate. However, these small effects impart little influence on the integrity of the SO42- tetrahedron due to the high activation energy required for

  9. Growth history of cultured pearl oysters based on stable oxygen isotope analysis

    Science.gov (United States)

    Nakashima, R.; Furuta, N.; Suzuki, A.; Kawahata, H.; Shikazono, N.

    2007-12-01

    We investigated the oxygen isotopic ratio in shells of the pearl oyster Pinctada martensii cultivated in embayments in Mie Prefecture, central Japan, to evaluate the biomineralization of shell structures of the species and its pearls in response to environmental change. Microsamples for oxygen isotope analysis were collected from the surfaces of shells (outer, middle, and inner shell layers) and pearls. Water temperature variations were estimated from the oxygen isotope values of the carbonate. Oxygen isotope profiles of the prismatic calcite of the outer shell layer reflected seasonal variations of water temperature, whereas those of nacreous aragonites of the middle and inner shell layers and pearls recorded temperatures from April to November, June to September, and July to September, respectively. Lower temperatures in autumn and winter might slow the growth of nacreous aragonites. The oxygen isotope values are controlled by both variations of water temperature and shell structures; the prismatic calcite of this species is useful for reconstructing seasonal changes of calcification temperature.

  10. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Stable carbon and nitrogen isotope ratios of sodium and potassium cyanide as a forensic signature.

    Science.gov (United States)

    Kreuzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. Upon analysis, a few of the cyanide samples displayed nonhomogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of the 65 cyanide samples, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples. © 2011 American Academy of Forensic Sciences.

  12. Geochemical and isotopic signatures for the identification of ...

    Indian Academy of Sciences (India)

    In case of stable isotopes of hydrogen and oxygen in water samples, the reference material is a stan- dard ocean ..... Aquifers – Modeling, Monitoring and Management,. Morocco .... Israel: Its bearing on the water crisis in the country;. J. Hydrol.

  13. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    International Nuclear Information System (INIS)

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-01-01

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several Δ 17 O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil ( 2 O 3 ) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl 12 O 19 ) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of ∼60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3.0), Bishunpur (LL3.1), Roosevelt County 075 (H3.2)) and unmetamorphosed carbonaceous chondrites (Orgueil (CI1), Murray (CM2), and Alan Hills A77307 (CO3.0)) measured with a Cameca ims-1280 ion microprobe. All corundum grains, except two, are 16 O-rich (Δ 17 O = -22.7 per mille ± 8.5 per mille, 2σ), and compositionally similar to the mineralogically pristine CAIs from the CR carbonaceous chondrites (-23.3 per mille ± 1.9 per mille, 2σ), and solar wind returned by the Genesis spacecraft (-27 per mille ± 6 per mille, 2σ). One corundum grain is highly 17 O-enriched (δ 17 O ∼ +60 per mille, δ 18 O

  14. Preliminary results of oxygen isotope ratio measurement with a particle-gamma coincidence method

    Energy Technology Data Exchange (ETDEWEB)

    Borysiuk, Maciek, E-mail: maciek.borysiuk@pixe.lth.se; Kristiansson, Per; Ros, Linus; Abdel, Nassem S.; Elfman, Mikael; Nilsson, Charlotta; Pallon, Jan

    2015-04-01

    The possibility to study variations in the oxygen isotopic ratio with photon tagged nuclear reaction analysis (pNRA) is evaluated in the current work. The experiment described in the article was performed at Lund Ion Beam Analysis Facility (LIBAF) with a 2 MeV deuteron beam. Isotopic fractionation of light elements such as carbon, oxygen and nitrogen is the basis of many analytical tools in hydrology, geology, paleobiology and paleogeology. IBA methods provide one possible tool for measurement of isotopic content. During this experimental run we focused on measurement of the oxygen isotopic ratio. The measurement of stable isotopes of oxygen has a number of applications; the particular one driving the current investigation belongs to the field of astrogeology and specifically evaluation of fossil extraterrestrial material. There are three stable isotopes of oxygen: {sup 16}O, {sup 17}O and {sup 18}O. We procured samples highly enriched with all three isotopes. Isotopes {sup 16}O and {sup 18}O were easily detected in the enriched samples, but no significant signal from {sup 17}O was detected in the same samples. The measured yield was too low to detect {sup 18}O in a sample with natural abundances of oxygen isotopes, at least in the current experimental setup, but the spectral line from the reaction with {sup 16}O was clearly visible.

  15. Application of Stable Isotope Signatures in Food Traceability

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Roslanzairi Mostapha; Zainon Othman; Nor Afiqah Harun; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Md Suhaimi Elias; Salmah Moosa

    2015-01-01

    Stable isotope analysis has widely been used to trace the origin of organic materials in various fields, such as geochemistry, biochemistry, archaeology and petroleum. In past a decade, it has also become an important tool for food traceability study. The globalization of food markets and the relative ease with which food commodities are transported through and between countries and continents, means that consumers are increasingly concerned about the origin of the foods they eat. The natural abundance isotope variation such as carbon, nitrogen, hydrogen and oxygen are use as geographic tracers or marker to determine the geographic origin of fruits, crop, vegetables and food products from animal. The isotopic compositions of plant materials reflect various factors such as isotopic compositions of source materials and their assimilation processes as well as growth environments. This paper will discuss on stable carbon and nitrogen isotopic compositions in rice, advantages, limitations and potential of other analysis applications that can be incorporated in food traceability system. (author)

  16. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  17. Application of Stable Isotope Signatures in Food Traceability

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Roslanzairi Mostapha; Zainon Othman

    2016-01-01

    Stable isotope analysis has widely been used to trace the origin of organic materials in various fields, such as geochemistry, biochemistry, archaeology and petroleum. In past a decade, it has also become an important tool for food traceability study. The globalisation of food markets and the relative ease which food commodities are transported through and between countries and continents means that consumers are increasingly concerned about the origin of the foods they eat. The natural abundance of stable isotope variation such as carbon, nitrogen, hydrogen and oxygen are used as geographic tracers or marker to determine the geographic origin of fruits, crop, vegetables and food products from animal. The isotopic compositions of plant materials reflect various factors such as isotopic compositions of source materials and their assimilation processes as well as growth environments. This paper will discuss on stable carbon and nitrogen isotopic compositions in rice that been determined by Isotope Ratio Mass Spectrometry, advantages, limitations and potential of other analysis applications that can be incorporated in food traceability system. (author)

  18. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    Science.gov (United States)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  19. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    Science.gov (United States)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  20. Geological isotope anomalies as signatures of nearby supernovae

    CERN Document Server

    Ellis, Jonathan Richard; Schramm, David N; Ellis, John; Fields, Brian D; Schramm, David N

    1996-01-01

    Nearby supernova explosions may cause geological isotope anomalies via the direct deposition of debris or by cosmic-ray spallation in the earth's atmosphere. We estimate the mass of material deposited terrestrially by these two mechanisms, showing the dependence on the supernova distance. A number of radioactive isotopes are identified as possible diagnostic tools, such as Be-10, Al-26, Cl-36, Mn-53, Fe-60, and Ni-59, as well as the longer-lived I-129, Sm-146, and Pu-244. We discuss whether the 35 and 60 kyr-old Be-10 anomalies observed in the Vostok antarctic ice cores could be due to supernova explosions. Combining our estimates for matter deposition with results of recent nucleosynthesis yields, we calculate the expected signal from nearby supernovae using ice cores back to \\sim 300 kyr ago, and we discuss using deep ocean sediments back to several hundred Myr. In particular, we examine the prospects for identifying isotope anomalies due to the Geminga supernova explosion, and signatures of the possibility...

  1. Geological controls on isotopic signatures of streamflow: results from a nested catchment experiment in Luxembourg (Europe)

    Science.gov (United States)

    Pfister, Laurent; McDonnell, Jeffrey J.; Hissler, Christophe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; François Iffly, Jean; Barnich, François; Stewart, Mike K.

    2014-05-01

    Controls of geology and topography on hydrological metrics, like summer low flow (Grant and Tague, 2004) or dynamic storage (Sayama et al., 2011), have been identified in nested catchment experiments. However, most tracer-based studies on streamflow generation have been carried out in small (10 km2) homogenous catchments (Klaus and McDonnell, 2013). The controlling effects of catchment physiography on how catchments store and release water, and how this eventually controls stream isotope behaviour over a large range of scale are poorly understood. Here, we present results from a nested catchment analysis in the Alzette River basin (Luxembourg, Europe). Our hydro-climatological network consists of 16 recording streamgauges and 21 pluviographs. Catchment areas range from 0.47 to 285 km2, with clean and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Our objective was to identify geological controls on (i) winter runoff ratios, (ii) maximum storage and (iii) isotopic signatures in streamflow. For each catchment we determined average runoff ratios from winter season precipitation-discharge double-mass curves. Maximum catchment storage was based on the dynamic storage change approach of Sayama et al. (2011). Changes in isotopic signatures of streamflow were documented along individual catchment flow duration curves. We found strong correlations between average winter runoff ratios, maximum storage and the prevailing geological settings. Catchments with impermeable bedrock (e.g. marls or schists) were characterised by small storage potential and high average filling ratios. As a consequence, these catchments also exhibited the highest average runoff ratios. In catchments underlain by permeable bedrock (e.g. sandstone), storage potential was significantly higher and runoff ratios were considerably smaller. The isotopic signatures of streamflow showed large differences between catchments. In catchments dominated by

  2. Kinetic control on Zn isotope signatures recorded in marine diatoms

    Science.gov (United States)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that

  3. The impact of moisture sources on the oxygen isotope composition of precipitation at a continental site in central Europe

    Science.gov (United States)

    Krklec, Kristina; Domínguez-Villar, David; Lojen, Sonja

    2018-06-01

    The stable isotope composition of precipitation records processes taking place within the hydrological cycle. Potentially, moisture sources are important controls on the stable isotope composition of precipitation, but studies focused on this topic are still scarce. We studied the moisture sources contributing to precipitation at Postojna (Slovenia) from 2009 to 2013. Back trajectory analyses were computed for the days with precipitation at Postojna. The moisture uptake locations were identified along these trajectories using standard hydrometeorological formulation. The moisture uptake locations were integrated in eight source regions to facilitate its comparison to the monthly oxygen isotope composition (δ18O values) of precipitation. Nearly half of the precipitation originated from continental sources (recycled moisture), and >40% was from central and western Mediterranean. Results show that moisture sources do not have a significant impact on the oxygen isotope composition at this site. We suggest that the large proportion of recycled moisture originated from transpiration rather than evaporation, which produced water vapour with less negative δ18O values. Thus the difference between the oceanic and local vapour source was reduced, which prevented the distinction of the moisture sources based on their oxygen isotope signature. Nevertheless, δ18O values of precipitation are partially controlled by climate parameters, which is of major importance for paleoclimate studies. We found that the main climate control on Postojna δ18O values of precipitation is the surface temperature. Amount effect was not recorded at this site, and the winter North Atlantic Oscillation (NAO) does not impact the δ18O values of precipitation. The Western Mediterranean Oscillation (WeMO) was correlated to oxygen stable isotope composition, although this atmospheric pattern was not a control. Instead we found that the link to δ18O values results from synoptic scenarios affecting We

  4. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?

    Directory of Open Access Journals (Sweden)

    Brooke eCrowley

    2015-11-01

    Full Text Available Stable isotope data provide insight into the foraging ecology of animals. Traditionally, carbon and nitrogen isotope values have been used to infer dietary and habitat preferences. Oxygen isotopes are used less frequently but may complement the ecological information provided by carbon and nitrogen, particularly in densely forested or arid environments. Additionally, because oxygen is preserved in both bioapatite and collagen, it is useful for paleoecological studies. To investigate the suitability of oxygen isotopes for complementing and building on ecological applications of carbon and nitrogen isotopes, we analyze all three isotopes in bone collagen for nearly identical assemblages of Costa Rican mammals in two ecologically distinct habitats - a evergreen rainforest and a seasonal dry forest. We assess the degree to which differences in habitat, activity pattern, diet, arboreality, and thermoregulation are revealed by each of the isotope systems. Our results highlight the potential of oxygen isotopes in modern and paleoecological contexts. In addition to reflecting habitat type, oxygen isotope values in collagen distinguish species on the basis of vertical habitat stratification and drinking behavior. Within a locality, individuals with low oxygen isotope values likely track meteoric water, whereas those with elevated values most likely consume evaporatively-enriched plant tissues, such as canopy leaves. These patterns will be useful in reconstructing paleoenvironments and interpreting ecological differences among taxa both extant and extinct.

  5. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    Science.gov (United States)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  6. Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Science.gov (United States)

    Haumann, F. A.; Batenburg, A. M.; Pieterse, G.; Gerbig, C.; Krol, M. C.; Röckmann, T.

    2013-09-01

    In this study, we identify a biomass-burning signal in molecular hydrogen (H2) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H2 and several other species as well as the H2 isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H2 emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb-1 and an isotopic source signature of -280 ± 41‰ in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H2, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The ΔH2 / ΔCO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H2 isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H2 from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H2. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations.

  7. Hydrogen and oxygen isotope exchange reactions over illuminated and nonilluminated TiO2

    International Nuclear Information System (INIS)

    Sato, S.

    1987-01-01

    Hydrogen isotope exchange between H 2 , gaseous H 2 O, and the surface hydroxyls of TiO 2 , and oxygen isotope exchange between O 2 , CO 2 , CO, H 2 O vapor, and the hydroxyls over TiO 3 were studied at room temperature in the dark and under illumination. Hydrogen isotope exchange between H 2 O and the hydroxyls occurred rapidly in the dark, but the exchange involving H 2 did not occur at all even under illumination. Oxygen isotope exchange among H 2 O vapor, CO 2 , and the hydroxyls easily took place in the dark, but the exchange involving O 2 required band-gap illumination. Dioxygen isotope equilibration was much faster than the other photoexchange reactions. Although the oxygen exchange between O 2 and illuminated TiO 2 has been considered to involve lattice-oxygen exchange, the present experiments revealed that the hydroxyls of TiO 2 mainly participate in the exchange reaction. The oxygen exchange between O 2 and H 2 O vapor was strongly inhibited by H 2 O vapor itself probably because oxygen adsorption was retarded by adsorbed water. Oxygen in CO was not exchanged with the other substrates under any conditions tested

  8. Analysis of dissolved organic carbon concentration and 13C isotopic signature by TOC-IRMS - assessment of analytical performance

    Science.gov (United States)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2013-04-01

    Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly TOC-IRMS in comparison with other systems capable of determining C concentration and isotopic signatures. We recognize the advantages of this system providing: - High sample throughput, short measurement time (15 minutes), flexible sample volume - Easy maintenance

  9. The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean

    DEFF Research Database (Denmark)

    Rumble, D.; Bowring, S.; Iizuka, T.

    2013-01-01

    Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce....... But other sources of heat for global melting cannot be excluded such as bolide impacts during early accretion of proto-Earth, the decay of short-lived radioactive isotopes, or the energy released during segregation of core from mantle.......Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce...... such long-lived consistency was most easily established by mixing in a terrestrial magma ocean. The measured identical oxygen isotope mass fractionation lines for Earth and Moon suggest that oxygen isotope reservoirs of both bodies were homogenized at the same time during a giant moon-forming impact...

  10. Oxygen isotope fractionation in uranium oxides

    International Nuclear Information System (INIS)

    Zheng Yongfei

    1995-01-01

    Thermodynamic oxygen isotope factors for uranium oxides have been calculated by means of the modified increment method. The sequence of 18 O-enrichment in the uranium oxides with respect to the common rock-forming minerals is predicted as follows: spinel 3 < illite. Two sets of self-consistent fractionation factors between the uranium oxides and water and between the uranium oxides and the other minerals have been obtained for 0∼1200 degree C. The theoretical results are applicable to the isotopic geothermometry of uranium ores when pairing with other gangue minerals in hydrothermal uranium deposits

  11. Bulk Oxygen Isotopic Composition of Ultracarbonaceous Antarctic Micrometeorites with the NanoSIMS

    Science.gov (United States)

    Kakazu, Y.; Engrand, C.; Duprat, J.; Briani, G.; Bardin, N.; Mostefaoui, S.; Duhamel, R.; Remusat, L.

    2014-09-01

    We analyzed the carbon and oxygen isotope ratios of two UCAMMs with the NanoSIMS in order to understand the origin and formation of UCAMMs. One UCAMM has 16O-rich composition and a highly heterogeneous oxygen isotopic distribution.

  12. Role of stable isotope mass spectroscopy in hydrological sciences

    International Nuclear Information System (INIS)

    Keesari, Tirumalesh

    2017-01-01

    Isotope Ratio Mass Spectrometry (IRMS) is a specialized technique used to provide information about a given sample about its geographic, chemical, physical and biological origin. The ability to determine the source of water molecule stems from the relative isotopic abundances of its constituent elements, viz., hydrogen and oxygen or sometimes through its dissolved elements such as carbon, nitrogen and sulphur etc. Since the isotope ratios of carbon, hydrogen, oxygen, sulfur, and nitrogen can become locally enriched or depleted through a variety of kinetic and thermodynamic factors, measurement of the isotope ratios can be used to unravel the processes and differentiate water samples which otherwise exhibit similar chemical signatures. For brevity, this article focuses mainly on measurement of water isotopes, common notation for expressing isotope data and standards, theory of isotope hydrology, field applications and advances

  13. Stable isotope genealogy of meteorites

    International Nuclear Information System (INIS)

    Pillinger, C.T.

    1988-01-01

    One of the oldest problems in meteoritics is that of taxonomically grouping samples. In recent years the use of isotopes, particularly oxygen isotopes has proved very successful in this respect. Other light-element systematics potentially can perform the same function. For example, nitrogen in iron meteorites, and nitrogen and carbon in ureilites and SNC meteorites. These measurements will serve to extend and augment existing classification schemes and provide clues to the nature of meteorite parent bodies. They can also aid in the recognition of the isotopic signatures relating to inaccessible regions of the Earth. (author)

  14. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    Science.gov (United States)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  15. Oxygen isotope exchange on palladium catalysts

    International Nuclear Information System (INIS)

    Kravchuk, L.S.; Beschetvertnaya, T.I.; Novorodskij, V.G.; Novikova, M.G.; Zaretskij, M.V.; Valieva, S.V.

    1983-01-01

    Oxygen heteromolecular isotope exchange on unreduced palladium catalysts, distingushing by metal content is studied. Content of 18 O in gaseous phase is eoual to 46%. Calculations of heteroexchange rates are conducted with decrease of the 18 O in the gaseous phase over solid sample. Method of oxygen thermodesorption has been used to establish that palladium, deposited on γ-Al 2 O 3 during exchange process is in oxidized state; in this case strength of Pd-O bond is determined by content dispersity) of the metal. It is shown that significant increase of exchange rate on the samples with Pd >> 0.5 mass.% content can be induced as by side decomposition reaction of its oxide and corresponding dilution of gaseous mixture by ''light'' oxygen so by possibility of exchange with oxygen of PdO phase

  16. Hydrogen and oxygen isotope ratios of geothermal waters in the southern hachimantai area

    International Nuclear Information System (INIS)

    Matsubaya, Osamu; Etchu, Hiroshi; Takenaka, Teruo; Yoshida, Yutaka.

    1985-01-01

    Geothermal waters from the Matsukawa and Kakkonda Geothermal Plants, wells at Amihari-Motoyu, and Nyuto and Tazawako areas were isotopically studied. The geothermal waters from Mutsukawa, Kakkonda and Amihari-Motoyu have hydrogen isotope ratios similar to the local meteoric waters, while have higher oxygen isotope ratios than the local meteoric waters. This relationship of hydrogen and oxygen isotope ratios, that is called ''oxygen shift'', means that these geothermal waters are meteoric waters undergone the oxygen isotope exchange with rocks at high temperature of underground. The exygen shifts are 2 -- 3 per mil in Matsukawa and Kakkonda, and 7 per mil in Amihari-Motoyu. This difference may be important to understand the processe of water-rock interaction in this area. The geothermal waters at Nyuto and Tazawako areas also show 2 -- 3 per mil oxygen shift. The steam from the Tazawako-cho well and the hot spring water form the Tsurunoyu are estimated to be vapor and liquid phases separated form a single geothermal water of NaCl type, though the hot water from the Tsurunoyu is diluted with shallow meteoric water. (author)

  17. Analytical techniques for determination of framework oxygen isotope ratio of wairakite

    International Nuclear Information System (INIS)

    Noto, Masami; Kusakabe, Minoru; Uchida, Tetsuo.

    1990-01-01

    Dehydration techniques were developed for the analysis of isotopic ratios of framework oxygen of wairakite, one of calcium zeolites often encountered in geothermal systems. Channel water in wairakite were separated from aluminosilicate framework by dehydration in vacuum at 300 deg, 400 deg, 450 deg, 500 deg, 550 deg, 650 deg, 750 deg, 850 deg, and 950 degC, and by stepwise heating at temperatures from 300 deg to 700 degC. The oxygen isotopic analyses of the separated channel water and the residual aluminosilicate framework of wairakite indicated that dehydration at temperatures higher than 400 degC is accompanied by isotopic exchang between the framework oxygen and dehydrating water vapor. The isotopic exchange during the high temperature dehydration makes the δ 18 O of framework oxygen lower and that of channel water higher than those obtained by dehydration at 300 degC. These results are consistent with dehydration behavior of wairakite under vacuum that the maximum rate of dehydration of channel water is attained at about 400 degC. Consequently it is recommended to dehydrate wairakite at a temperature as low as possible in order to avoid the effect of the isotopic exchange. Time required to attain complete dehydration becomes longer with lowering the temperature of dehydration. To compromise these conflicting effects, the optimum conditions of dehydration have been found that most of the channel water is dehydrated at 300 degC for 24 hours, followed by stepwise heating for additional 17 hours up to 700 degC. We obtained a better than ± 0.1 reproducibility for the framework oxygen isotopic determinations with this technique. (author)

  18. Relationship of leaf oxygen and carbon isotopic composition with transpiration efficiency in the C4 grasses Setaria viridis and Setaria italica.

    Science.gov (United States)

    Ellsworth, Patrick Z; Ellsworth, Patrícia V; Cousins, Asaph B

    2017-06-15

    Leaf carbon and oxygen isotope ratios can potentially provide a time-integrated proxy for stomatal conductance (gs) and transpiration rate (E), and can be used to estimate transpiration efficiency (TE). In this study, we found significant relationships of bulk leaf carbon isotopic signature (δ13CBL) and bulk leaf oxygen enrichment above source water (Δ18OBL) with gas exchange and TE in the model C4 grasses Setaria viridis and S. italica. Leaf δ13C had strong relationships with E, gs, water use, biomass, and TE. Additionally, the consistent difference in δ13CBL between well-watered and water-limited plants suggests that δ13CBL is effective in separating C4 plants with different availability of water. Alternatively, the use of Δ18OBL as a proxy for E and TE in S. viridis and S. italica was problematic. First, the oxygen isotopic composition of source water, used to calculate leaf water enrichment (Δ18OLW), was variable with time and differed across water treatments. Second, water limitations changed leaf size and masked the relationship of Δ18OLW and Δ18OBL with E. Therefore, the data collected here suggest that δ13CBL but not Δ18OBL may be an effective proxy for TE in C4 grasses. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Comparison of the Sr isotopic signatures in brines of the Canadian and Fennoscandian shields

    International Nuclear Information System (INIS)

    Negrel, Philippe; Casanova, Joel

    2005-01-01

    A synthesis of Sr isotope data from shallow and deep groundwaters, and brines from the Fennoscandian and Canadian Shields is presented. A salinity gradient is evident in the water with concentrations varying from approximately 1-75 g L -1 below 1500 m depth in the Fennoscandian Shield and from 10 up to 300 g L -1 below 650 m depth in the Canadian Shield. Strontium isotope ratios were measured to assess the origin of the salinity and evaluate the degree of water-rock interaction in the systems. In both shields, the Sr concentrations are enriched relative to Cl, defining a positive trend parallel to the seawater dilution line and indicative of Sr addition through weathering processes. The depth distribution for Sr concentration increases strongly with increasing depth in both shields although the variation in Sr-isotope composition does not mirror that of Sr concentrations. Strontium-isotope compositions are presented for surface waters, and groundwaters in several sites in the Fennoscandian and Canadian Shields. Numerous mixing lines can be drawn reflecting water-rock interaction. A series of calculated lines links the surface end-members (surface water and shallow groundwater) and the deep brines; these mixing lines define a range of 87 Sr/ 86 Sr ratios for the deep brines in different selected sites. All sites show a specific 87 Sr/ 86 Sr signature and the occurrence of large 87 Sr/ 86 Sr variations is site specific in both shields. In Canadian Shield brines, the Sr isotope ratios clearly highlight large water rock interaction that increases the 87 Sr/ 86 Sr ratio from water that could have been of marine origin. In contrast to the Canadian Shield, groundwater does not occur in closed pockets in the Fennoscandian, and the well-constrained 87 Sr/ 86 Sr signatures in deep brines should correspond to a large, well-mixed and homogeneous water reservoir, whose Sr isotope signature results from water-rock interaction

  20. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)

  1. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  2. Oxygen isotope ratios of the Icelandic crust

    International Nuclear Information System (INIS)

    Hattori, K.; Muehlenbachs, K.

    1982-01-01

    Oxygen isotope ratios of hydrothermally altered basalts from depth of up to approx.3 km are reported from three localities in Iceland: International Research Drilling Project (IRDP) core at Reydarfjordur, eastern Iceland (Tertiary age); drill cuttings from Reykjavik (Plio-Pleistocene age); and Halocene drill cuttings from the active Krafla central volcano. Whole rock samples from these three localities have delta 18 O values averaging +3.9 +- 1.3, +2.4 +- 1.1, and -7.7 +- 2.4%, respectively. The observed values in the deeper samples from Krafla are as low as the values for any rocks previously reported. There seems to be a slight negative gradient in delta 18 O with depth at the former two localities and a more pronounced one at Krafla. Oxygen isotope fractionations between epidote and quartz and those between calcite and fluid suggests that the basalts were altered at temperatures of 300 0 --400 0 C. Low deltaD and delta 18 O of epidote and low delta 34 S of anhydrite indicate that the altering fluids in all three areas originated as meteoric waters and have undergone varied 'oxygen shifts'. Differences in the 18 O shift of the fluids are attributed to differences in hydrothermal systems; low water/rock ratios ( 5) at Krafla. The convective hydrothermal activity, which is probably driven by silicic magma beneath the central volcanoes, has caused strong subsolidus depletion of 18 O in the rocks. The primary-magnetic delta 18 O value of the rocks in the Tertiary IRDP core was about +3.9%, which is lower than that obtained for fresh basalt from other places. Such exceptionally low delta 18 O magmas are common in Iceland and may occur as the result of oxygen isotope exchange with or assimilation of altered rocks that form a thick sequence beneath the island due to isostatic subsidence

  3. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  4. Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.; McKenzie, J.A.; Bernasconi, S.; Paul, H.

    1998-01-01

    Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition above and below its melting temperature have been studied and compared with the primary (PKIE) and secondary kinetic isotope effects (SKIE) of 13 C and 18 O, respectively, in the decarboxylation of other heterocyclic acids. The temperature dependence of the secondary oxygen-18 isotope effects is negative in the total 221-255 deg C temperature interval investigated initially. The 13 C KIE measured above melting point of N.A. (temperature interval 235-270 deg C) are located in the range 1.007-1.009. Below melting point of nicotinic acid the 13 C KIE are larger and reveal the negative temperature dependence ( 13 C KIE decreases with decreasing the reaction temperature from 1.013/at 230 deg C to 1.0114/at 221 deg C). A discussion of the above isotopic results is presented. (author)

  5. Stable isotope deltas: Tiny, yet robust signatures in nature

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  6. Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.

    Science.gov (United States)

    Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky

    2012-09-30

    Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera

    International Nuclear Information System (INIS)

    Woodruff, F.; Douglas, R.G.

    1980-01-01

    Recent deep-sea benthic foraminifera from five East Pacific Rise box core tops have been analyzed for oxygen and carbon isotopic composition. The five equatorial stations, with water depths of between 3200 and 4600 m, yielded fourteen specific and generic taxonomic groups. Of the taxa analyzed, Uvigerina spp. most closely approaches oxygen isotopic equilibrium with ambient sea water. Pyrgo spp. was next closest to isotopic equilibrium, being on the average 0.59 per thousand depleted in 18 O relative to Uvigerina spp. Oridorsalis umbonatus also has relatively high delta 18 O values. Most other taxa were depleted in 18 O by large amounts. In no taxa was the carbon in the CaCO 3 secreted in carbon isotopic equilibrium with the dissolved HCO 3 - of ambient sea water. (Auth.)

  8. Oxygen stable isotopes variation in water precipitation in Poland – anthropological applications

    Directory of Open Access Journals (Sweden)

    Lisowska-Gaczorek Aleksandra

    2017-03-01

    Full Text Available The main objective of oxygen isotope analysis is to determine the probable place of origin of an individual or the reconstruction of migration paths. The research are methodologically based on referencing oxygen isotope ratios of apatite phosphates (δ18Op to the range of environmental background δ18O, most frequently determined on the basis of precipitation.

  9. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water

    International Nuclear Information System (INIS)

    Luz, B.; Kolodny, V.; Horowitz, M.

    1984-01-01

    The delta 18 O of mammalian bone-phosphate varies linearly with delta 18 O of environmental water, but is not in isotopic equilibrium with that water. This situation is explained by a model of delta 18 O in body water in which the important fluxes of exchangeable oxygen through the body are taken into account. Fractionation of oxygen isotopes between body and environmental drinking water is dependent on the rates of drinking and respiration. Isotopic fractionation can be estimated from physiological data and the estimates correlate very well with observed fractionation. Species whose water consumption is large relative to its energy expenditure is sensitive to isotopic ratio changes in environmental water. (author)

  10. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    OpenAIRE

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  11. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    OpenAIRE

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  12. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability

    Science.gov (United States)

    Brienen, Roel J. W.; Helle, Gerd; Pons, Thijs L.; Guyot, Jean-Loup; Gloor, Manuel

    2012-10-01

    We present a unique proxy for the reconstruction of variation in precipitation over the Amazon: oxygen isotope ratios in annual rings in tropical cedar (Cedrela odorata). A century-long record from northern Bolivia shows that tree rings preserve the signal of oxygen isotopes in precipitation during the wet season, with weaker influences of temperature and vapor pressure. Tree ring δ18O correlates strongly with δ18O in precipitation from distant stations in the center and west of the basin, and with Andean ice core δ18O showing that the signal is coherent over large areas. The signal correlates most strongly with basin-wide precipitation and Amazon river discharge. We attribute the strength of this (negative) correlation mainly to the cumulative rainout processes of oxygen isotopes (Rayleigh distillation) in air parcels during westward transport across the basin. We further find a clear signature of the El Niño-Southern Oscillation (ENSO) in the record, with strong ENSO influences over recent decades, but weaker influence from 1925 to 1975 indicating decadal scale variation in the controls on the hydrological cycle. The record exhibits a significant increase in δ18O over the 20th century consistent with increases in Andean δ18O ice core and lake records, which we tentatively attribute to increased water vapor transport into the basin. Taking these data together, our record reveals a fresh path to diagnose and improve our understanding of variation and trends of the hydrological cycle of the world's largest river catchment.

  13. Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review

    Directory of Open Access Journals (Sweden)

    Sehrawat Jagmahender Singh

    2017-09-01

    Full Text Available This article reviews the present scenario of use of stable isotopes (mainly δ13C, δ15N, δ18O, 87Sr to trace past life behaviours like breast feeding and weaning practices, the geographic origin, migration history, paleodiet and subsistence patterns of past populations from the chemical signatures of isotopes imprinted in human skeletal remains. This approach is based on the state that food-web isotopic signatures are seen in the human bones and teeth and such signatures can change parallely with a variety of biogeochemical processes. By measuring δ13C and δ15N isotopic values of subadult tissues of different ages, the level of breast milk ingestion at particular ages and the components of the complementary foods can be assessed. Strontium and oxygen isotopic analyses have been used for determining the geographic origins and reconstructing the way of life of past populations as these isotopes can map the isotopic outline of the area from where the person acquired water and food during initial lifetime. The isotopic values of strontium and oxygen values are considered specific to geographical areas and serve as reliable chemical signatures of migration history of past human populations (local or non-local to the site. Previous isotopic studies show that the subsistence patterns of the past human populations underwent extensive changes from nomadic to complete agricultural dependence strategies. The carbon and nitrogen isotopic values of local fauna of any archaeological site can be used to elucidate the prominence of freshwater resources in the diet of the past human populations found near the site. More extensive research covering isotopic descriptions of various prehistoric, historic and modern populations is needed to explore the role of stable isotope analysis for provenancing human skeletal remains and assessing human migration patterns/routes, geographic origins, paleodiet and subsistence practices of past populations.

  14. Oxygen Isotope Records in Modern Oyster Shells from Chi Ku, Tainan and Their Implication of Seasonality

    Science.gov (United States)

    Chen, Y. C.; Mii, H. S.; Li, K. T.

    2015-12-01

    To exam whether oxygen isotope records of Crassostrea gigasoysters can be used as proxies of environment, 133 cultivated oysters and 21 water samples were collected from Chi Ku area, Tainan City, southern Taiwan in December of 2012, and from March, 2013 to July, 2014. Instrumental air and water temperatures and precipitation records were obtained from a nearest Central Weather Bureau (CWB) station roughly 16 km north of Chi Ku. The oxygen and carbon isotope values of the ligamental area of the modern oyster shells are from -6.92‰ to -0.08‰ (-3.05 ± 1.17‰, N = 2280; 1σ; VPDB) and from -5.57‰ to 0.63‰ (-1.88 ± 0.81‰), respectively. Oxygen isotope values of the water samples are mainly between -0.28‰ and 0.74‰ (0.18 ± 0.29‰, N = 20; 1σ; VSMOW). However, water oxygen isotope value of -2.75‰ was observed for the water sample collected immediately after a typhoon heavy rainfall. Seasonal temperature fluctuation pattern of estimated oxygen isotope temperatures from modern shells is similar to that of CWB instrumental records. However, the oxygen isotope temperatures are respectively about 3 °C and 10°C higher than those of instrumental records for winter and summer. Higher estimated oxygen isotope temperatures are most likely caused by underestimated fraction of freshwater. We analyzed 5 archaeological oyster shells of Siraya culture (500~250B.P.) collected from Wu Chien Tuso North (WCTN) archaeological site of Tainan branch of Southern Taiwan Science Park to infer the harvest season of mollusks. Oxygen isotope values of the ligamental area of the archaeological oyster shells are between -5.98‰ and -1.26‰ (-3.34 ± 1.37‰, N = 60; 1σ), and carbon isotope values are between -3.21‰ and 0.60‰ (-2.04‰ ± 0.55‰). The oxygen isotope records of archaeological oyster shells also showed clear seasonality. Most of the oysters were collected in autumn and winter. Oxygen isotope values of archaeological oyster shells was 1‰ greater than that

  15. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  16. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  17. Phosphorus dynamics in soils irrigated with reclaimed waste water or fresh water - A study using oxygen isotopic composition of phosphate

    Science.gov (United States)

    Zohar, I.; Shaviv, A.; Young, M.; Kendall, C.; Silva, S.; Paytan, A.

    2010-01-01

    Transformations of phosphate (Pi) in different soil fractions were tracked using the stable isotopic composition of oxygen in phosphate (??18Op) and Pi concentrations. Clay soil from Israel was treated with either reclaimed waste water (secondary, low grade) or with fresh water amended with a chemical fertilizer of a known isotopic signature. Changes of ??18Op and Pi within different soil fractions, during a month of incubation, elucidate biogeochemical processes in the soil, revealing the biological and the chemical transformation impacting the various P pools. P in the soil solution is affected primarily by enzymatic activity that yields isotopic equilibrium with the water molecules in the soil solution. The dissolved P interacts rapidly with the loosely bound P (extracted by bicarbonate). The oxides and mineral P fractions (extracted by NaOH and HCl, respectively), which are considered as relatively stable pools of P, also exhibited isotopic alterations in the first two weeks after P application, likely related to the activity of microbial populations associated with soil surfaces. Specifically, isotopic depletion which could result from organic P mineralization was followed by isotopic enrichment which could result from preferential biological uptake of depleted P from the mineralized pool. Similar transformations were observed in both soils although transformations related to biological activity were more pronounced in the soil treated with reclaimed waste water compared to the fertilizer treated soil. ?? 2010 Elsevier B.V.

  18. Application of carbon and oxygen stable isotopes to the study of Brazilian precambrian

    International Nuclear Information System (INIS)

    Torquato, J.R.F.

    1980-01-01

    Samples of carbonated rocks of precambrian age are studied. The stable carbon and oxygen isotopes are applied to the study of terrestrial materials considering the variations of some element isotopic composition in function of the environment of sedimentation. The isotopic analysis was done using mass spectrometers. The analytical results and the description of region geology of the site of each sample are presented. The isotopic data are interpreted aiming to the environment of sedimentation. New techniques for better improvement of carbon and oxygen ratios, are proposed, such as: to use the analysis of surface trend and the isotopic logging in mapping of surface and subsurface. A new method for approximated determination of the ages of precambrian carbonated rocks, considering the limitations of their new technique, is also presented. (M.C.K.) [pt

  19. Modeling calcification periods of Cytheridella ilosvayi from Florida based on isotopic signatures and hydrological data

    Directory of Open Access Journals (Sweden)

    J. Meyer

    2017-11-01

    Full Text Available The isotopic signatures of ostracod shells are the result of the temperature and composition of their host water and the phenology and ecology of the target species. Investigations addressing the influence of site-specific environmental variations on the isotopic ranges of ostracod shells are still rare but can provide important information on habitat-dependent variations and may signify a seasonally restricted timing of calcification periods. Here we present isotopic signatures (δ18Oostr, δ13Costr of living Cytheridella ilosvayi (Ostracoda and physical, chemical, and isotopic (δD, δ18Owater, δ13CDIC compositions of 14 freshwater habitats (rivers, lakes, canals, marshes, sinkholes in South Florida from winter 2013 and summer 2014. We also present instrumental data of river temperatures and δ18O of precipitation (δ18Oprec from this region. The physicochemical and isotopic compositions of the selected sites characterize the different habitats and show the influence of the source water, biological activity, and duration of exposure to the surface. Mean δ18Oostr and δ13Costr signatures of C. ilosvayi shells correlate well with the isotopic composition of their host waters. Within-sample variabilities in repeated isotopic measurements of single ostracod shells reflect habitat-dependent ranges. The similarly high range of ostracod δ18O in rivers and one marsh sample indicates that both temperature and δ18Oprec are responsible for their variation in the whole study area. Rivers and canals, which are predominantly influenced by the input and mixing of inorganic carbon from the catchment, show smaller δ13Costr ranges than the marsh dominated by local fluctuations in biological activities. Based on these observations, background data of water temperatures and δ18Oprec were used to calculate monthly δ18O variations in a theoretical calcite formed in rivers in Florida assuming a direct reaction on precipitation changes. The calculated values

  20. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Science.gov (United States)

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  1. Growth of the European abalone ( Haliotis tuberculata L.) in situ: Seasonality and ageing using stable oxygen isotopes

    Science.gov (United States)

    Roussel, Sabine; Huchette, Sylvain; Clavier, Jacques; Chauvaud, Laurent

    2011-02-01

    The ormer, Haliotis tuberculata is the only European abalone species commercially exploited. The determination of growth and age in the wild is an important tool for fisheries and aquaculture management. However, the ageing technique used in the past in the field is unreliable. The stable oxygen isotope composition ( 18O/ 16O) of the shell depends on the temperature and oxygen isotope composition of the ambient sea water. The stable oxygen isotope technique, developed to study paleoclimatological changes in shellfish, was applied to three H. tuberculata specimens collected in north-west Brittany. For the specimens collected, the oxygen isotope ratios of the shell reflected the seasonal cycle in the temperature. From winter-to-winter cycles, estimates of the age and the annual growth increment, ranging from 13 to 55 mm per year were obtained. This study shows that stable oxygen isotopes can be a reliable tool for ageing and growth studies of this abalone species in the wild, and for validating other estimates.

  2. Oxygen isotope exchange in La2NiO(4±δ).

    Science.gov (United States)

    Ananyev, M V; Tropin, E S; Eremin, V A; Farlenkov, A S; Smirnov, A S; Kolchugin, A A; Porotnikova, N M; Khodimchuk, A V; Berenov, A V; Kurumchin, E Kh

    2016-04-07

    Oxygen surface exchange kinetics and diffusion have been studied by the isotope exchange method with gas phase equilibration using a static circulation experimental rig in the temperature range of 600-800 °C and oxygen pressure range of 0.13-2.5 kPa. A novel model which takes into account distributions of the dissociative adsorption and incorporation rates has been developed. The rates of the elementary stages have been calculated. The rate-determining stages for a La2NiO(4±δ) polycrystalline specimen have been discussed. The diffusion activation energies calculated using the gas phase equilibration method (1.4 eV) differ significantly from those calculated using isotope exchange depth profiling (0.5-0.8 eV), which was attributed to the influence of different oxygen diffusion pathways.

  3. Cu and Zn Isotopes as New Tracers of Early Solar Nebula and Asteroidal processes

    Science.gov (United States)

    LUCK, J.; BEN OTHMAN, D.; ALBAREDE, F.

    2001-12-01

    Cu and Zn isotopic variations are now identified in extra-terrestrial samples, as has been the case for terrestrial samples (1). The main parameters which may cause these variations are : redox state, temperature, biological activity (Earth), and volatility (extra-terrestrial samples). We report data for meteorites from various groups and classes, including carbonaceous chondrites, ordinary and diffentiated chondrites (iron meteorites, SNC and HED). All analyses have been duplicated (from powder aliquot to final measurement). Values are expressed as relative deviations from NIST and JMC standards for 65Cu/63Cu and 66Zn64Zn, respectively (deltas in permil). Carefull chemistry and MC-ICP-MS measurements allow an overall precision of +/-0.04 permil. I- Carbonaceous Chondrites A very important feature is that each group seems to exhibit a specific isotopic signature : Cu gets isotopically lighter from CI to CM to CO to CV, spanning an overall range of 1.5 permil. Zn shows a reverse order, getting heavier from CI to CM to CO. Zn in CV chondrites (whole rock) seems more variable. This order is the same as that observed for trace elements. Cu and Zn isotopic compositions are generally correlated to trace element content from one group to another, particularly those of similar volatility (e.g. Mn for Cu; Ge for Zn). Cu and Zn isotopic signatures exhibit remarkable relationships with Oxygen isotopes. Each group is well identified. Cu is linearly correlated with Oxygen, whereas Zn-O data display strong curvature : the difference in shape can be related to the nearly constant Cu content in all groups, and by the decreasing Zn content from CI to CO. Since Oxygen variations (from CV to CI) are thought to reflect progressive interaction of liquid water with initial solid (asteroid), Cu isotopic variations may also reflect this progressive alteration process. It may be so for Zn too, although its more volatile character might play a role. II-Allende Progressive leaching

  4. Searching for signatures of life on Mars: an Fe-isotope perspective.

    Science.gov (United States)

    Anand, M; Russell, S S; Blackhurst, R L; Grady, M M

    2006-10-29

    Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.

  5. 99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.

    Science.gov (United States)

    Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E

    2018-03-01

    99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.

  6. The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction

    Science.gov (United States)

    Martin, E.; Bindeman, I.; Grove, T. L.

    2011-11-01

    We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9-6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.

  7. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    International Nuclear Information System (INIS)

    Ovaskainen, R.

    1999-01-01

    The mass spectrometric determination of minor abundant isotopes, 234 U and 236 U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n( 234 U)/n( 238 U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n( 234 U)/n( 235 U) and n( 236 U)/n( 235 U) ratios were determined using ion counting in combination with the decelerating device. The n( 235 U)/n( 238 U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n( 234 U)/n( 235 U) ratios and 5-25 percent for the n( 236 U)/n( 235 U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International Atomic Energy Agency (IAEA) from uranium milling and mining

  8. A Quantitative, Time-Dependent Model of Oxygen Isotopes in the Solar Nebula: Step one

    Science.gov (United States)

    Nuth, J. A.; Paquette, J. A.; Farquhar, A.; Johnson, N. M.

    2011-01-01

    The remarkable discovery that oxygen isotopes in primitive meteorites were fractionated along a line of slope I rather than along the typical slope 0,52 terrestrial fractionation line occurred almost 40 years ago, However, a satisfactory, quantitative explanation for this observation has yet to be found, though many different explanations have been proposed, The first of these explanations proposed that the observed line represented the final product produced by mixing molecular cloud dust with a nucleosynthetic component, rich in O-16, possibly resulting from a nearby supernova explosion, Donald Clayton suggested that Galactic Chemical Evolution would gradually change the oxygen isotopic composition of the interstellar grain population by steadily producing O-16 in supernovae, then producing the heavier isotopes as secondary products in lower mass stars, Thiemens and collaborators proposed a chemical mechanism that relied on the availability of additional active rotational and vibrational states in otherwise-symmetric molecules, such as CO2, O3 or SiO2, containing two different oxygen isotopes and a second, photochemical process that suggested that differential photochemical dissociation processes could fractionate oxygen , This second line of research has been pursued by several groups, though none of the current models is quantitative,

  9. Cellulose and Lignin Carbon Isotope Signatures in Sphagnum Moss Reveal Complementary Environmental Properties

    Science.gov (United States)

    Loisel, J.; Nichols, J. E.; Kaiser, K.; Beilman, D. W.; Yu, Z.

    2016-12-01

    The carbon isotope signature (δ13C) of Sphagnum moss is increasingly used as a proxy for past surface wetness in peatlands. However, conflicting interpretations of these carbon isotope records have recently been published. While the water film hypothesis suggests that the presence of a thick (thin) water film around hollow (hummock) mosses leads to less (more) negative δ13C values, the carbon source hypothesis poses that a significant (insignificant) amount of CH4 assimilation by hollow (hummock) mosses leads to more (less) negative δ13C values. To evaluate these competing mechanisms and their impact on moss δ13C, we gathered 30 moss samples from 6 peatlands in southern Patagonia. Samples were collected along a strong hydrological gradient, from very dry hummocks (80 cm above water table depth) to submerged hollows (5 cm below water surface). These peat bogs have the advantage of being colonized by a single cosmopolitan moss species, Sphagnum magellanicum, limiting potential biases introduced by species-specific carbon discrimination. We measured δ13C from stem cellulose and leaf waxes on the same samples to quantify compound-specific carbon signatures. We found that stem cellulose and leaf-wax lipids were both strongly negatively correlated with moss water content, suggesting a primary role of water film thickness on carbon assimilation. In addition, isotopic fractionation during wax synthesis was greater than for cellulose. This offset decreases as conditions get drier, due to (i) a more effective carbon assimilation, or (ii) CH4 uptake through symbiosis with methanotrophic bacteria within the leaves of wet mosses. Biochemical analysis (carbohydrates, amino acids, hydrophenols, cutin acids) of surface moss are currently being conducted to characterize moss carbon allocation under different hydrological conditions. Overall, this modern calibration work should be of use for interpreting carbon isotope records from peatlands.

  10. Oxygen isotopic composition of mammal bones as a new tool for studying ratios of paleoenvironmental water and paleoclimates

    International Nuclear Information System (INIS)

    Longinelli, A.

    1984-04-01

    The purpose of this study is to try to establish quantitative relationships between the average oxygen isotopic composition of local meteoric water, the oxygen isotopic composition of mammal body water and the oxygen isotopic composition of phosphate in mammal bones. These relationships, after calibration of the method on living specimens, would allow quantitative paleoclimatological research based on the measurement of delta 18 O(PO 4 3- ) of fossil mammal bones

  11. Exploring Neutron-Rich Oxygen Isotopes with MoNA

    International Nuclear Information System (INIS)

    Frank, N.; Gade, A.; Peters, W. A.; Thoennessen, M.; Baumann, T.; Bazin, D.; Lecouey, J.-L.; Scheit, H.; Schiller, A.; Brown, J.; DeYoung, P. A.; Finck, J. E.; Hinnefeld, J.; Howes, R.; Luther, B.

    2007-01-01

    The Modular Neutron Array (MoNA) was used in conjunction with a large-gap dipole magnet (Sweeper) to measure neutron-unbound states in oxygen isotopes close to the neutron dripline. While no excited states were observed in 24 O, a resonance at 45(2) keV above the neutron separation energy was observed in 23 O

  12. Oxygen isotope fractionation in the CaCO3-DIC-H2O system

    Science.gov (United States)

    Devriendt, Laurent S.; Watkins, James M.; McGregor, Helen V.

    2017-10-01

    The oxygen isotope ratio (δ18O) of inorganic and biogenic carbonates is widely used to reconstruct past environments. However, the oxygen isotope exchange between CaCO3 and H2O rarely reaches equilibrium and kinetic isotope effects (KIE) commonly complicate paleoclimate reconstructions. We present a comprehensive model of kinetic and equilibrium oxygen isotope fractionation between CaCO3 and water (αc/w) that accounts for fractionation between both (a) CaCO3 and the CO32- pool (α c / CO32-) , and (b) CO32- and water (α CO32- / w) , as a function of temperature, pH, salinity, calcite saturation state (Ω), the residence time of the dissolved inorganic carbon (DIC) in solution, and the activity of the enzyme carbonic anhydrase. The model results suggest that: (1) The equilibrium αc/w is only approached in solutions with low Ω (i.e. close to 1) and low ionic strength such as in the cave system of Devils Hole, Nevada. (2) The sensitivity of αc/w to the solution pH and/or the mineral growth rate depends on the level of isotopic equilibration between the CO32- pool and water. When the CO32- pool approaches isotopic equilibrium with water, small negative pH and/or growth rate effects on αc/w of about 1-2‰ occur where these parameters covary with Ω. In contrast, isotopic disequilibrium between CO32- and water leads to strong (>2‰) positive or negative pH and growth rate effects on α CO32-/ w (and αc/w) due to the isotopic imprint of oxygen atoms derived from HCO3-, CO2, H2O and/or OH-. (3) The temperature sensitivity of αc/w originates from the negative effect of temperature on α CO32-/ w and is expected to deviate from the commonly accepted value (-0.22 ± 0.02‰/°C between 0 and 30 °C; Kim and O'Neil, 1997) when the CO32- pool is not in isotopic equilibrium with water. (4) The model suggests that the δ18O of planktic and benthic foraminifers reflects a quantitative precipitation of DIC in isotopic equilibrium with a high-pH calcifying fluid, leading

  13. Sulfur cycling in contaminated aquifers: What can we learn from oxygen isotopes in sulfate? (Invited)

    Science.gov (United States)

    Knoeller, K.; Vogt, C.; Hoth, N.

    2009-12-01

    Bacterial reduction of dissolved sulfate (BSR) is a key process determining the natural attenuation in many contaminated aquifers. For example, in groundwater bodies affected by acid mine drainage (AMD) BSR reduces the contaminant load by producing alkalinity and facilitating a sustainable fixation of sulfur in the sediment. In aquifers contaminated with petroleum hydrocarbons sulfate may act as a terminal electron acceptor for the anaerobic oxidation of the organic contaminants to carbon dioxide and water. Due to the isotope selectivity of sulfate reducing bacteria, BSR shows the most pronounced isotope fractionation within the sulfur cycle. While sulfur displays a straightforward kinetic enrichment in the residual sulfate described by the enrichment factor epsilon (ɛ), the mechanism of oxygen isotope fractionation is still being discussed controversially. Nevertheless, it is agreed on that oxygen isotope exchange between ambient water and residual sulfate occurs during BSR in natural environments. With respect to this potential isotope exchange, the fractionation parameter theta (θ) is introduced instead of the kinetic enrichment factor epsilon (ɛ). The dual isotope system considering both sulfate-sulfur and sulfate-oxygen isotope fractionation and the respective fractionation parameters ɛ and θ provides an excellent tool for the recognition and quantification of BSR. Beyond that, the dual isotope approach may help identify and estimate interfering sulfur transformations such as re-oxidation and disproportionation processes which is especially vital for the understanding of the overall natural attenuation potential of the investigated aquifers. We present two examples from different field studies showing the benefits of applying the combination of sulfur and oxygen isotopes in dissolved sulfate to reveal the details of the sulfur cycle. The first case study is concerned with the evaluation of the potential for BSR in an AMD-affected aquifer close to an

  14. Carbon and oxygen isotope compositions of the carbonate facies

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  15. Sulphur isotope variations in the atmosphere

    International Nuclear Information System (INIS)

    Newman, L.; Krouse, H.R.; Grinenko, V.A.

    1991-01-01

    The measurement of the isotope ratios of sulphur and oxygen can in principal be used to assess sulphur inputs into, transformation within, and removal from the atmosphere. Major inputs arise from both anthropogenic and biogenic activities. Transformations arise from oxidation, neutralization, and other chemical reactions. Advection causes dilution and the main removal processes are dry deposition (governed by gravitation and diffusion) and rain. The admixture of sources can be discerned from their isotopic signatures whereas transformations and removal can be followed from the isotopic fractionation that might occur. In this chapter, the atmospheric sulphur cycle and the associated chemistry are summarized. Also presented is information on natural isotopic variations and fundamental concepts relating to the use of isotopic data to delineate anthropogenic S in the atmosphere. Examples of successful applications of these concepts are given. Finally, consideration is given to the potential of using isotopically enriched sulphur to study transport and transformation of atmospheric S compounds. Refs, figs and tabs

  16. On the origin of cratonic `high-mu' isotopic signatures

    Science.gov (United States)

    Reimink, J. R.; Carlson, R.; Shirey, S. B.; Pearson, D. G.; Kamber, B. S.

    2017-12-01

    Some Archean cratons (i.e. Slave, Wyoming) contain Neoarchean granitoids with initial Pb isotopic compositions indicative of derivation from sources characterized by high time-integrated U/Pb ratios (high-mu [1]). Single-stage high-m precursor source reservoir separation from the depleted mantle occurred no later than 3.9 Ga [2]. However, multi-stage separation could have occurred in the Hadean, suggesting that recycling or reworking of Eoarchean/Hadean crust played a significant role in the generation of Neoarchean granitic crust in many cratons. The Sm-Nd system is similar to the U-Pb system in that it has a short-lived parent-daughter pair (146Sm-142Nd) that is sensitive to very early differentiation events, as well as a long-lived parent-daughter pair (147Sm-143Nd) that is sensitive to differentiation throughout all of Earth history. The 103 Ma half-life of 146Sm makes it sensitive only to Sm/Nd fractionation that occurred in the Hadean, providing a useful tracker for very early differentiation events. Indeed, evidence for Neoarchean remelting of ancient crust in another craton has come from analyses of the paired Sm-Nd isotope systems from the Hudson Bay terrane of the northeastern Superior Province. These results indicate that the source of 2.7 Ga Hudson Bay terrane granitoids was Hadean mafic crust, and not Eoarchean felsic crust [3]. Here, we present new data from Neoarchean granites located in the Slave and Wyoming cratons, along with modeling of the dual paired-isotope systems of U-Pb and Sm-Nd to achieve a tighter constraint on the composition of the precursors and the timing of their melting. Combining our newly collected 142Nd data with the high-m signature of these Neoarchean rocks, we evaluate precursor source separation ages along with the source Sm/Nd and U/Pb compositions. In the simplest end-member scenarios, use of the 142Nd system allows us to test whether the cratonic high-mu signature was created by melting of Hadean mafic crust or Eoarchean

  17. Controls of oxygen isotope ratios of nitrate formed during nitrification in soils

    International Nuclear Information System (INIS)

    Mayer, B.; Bollwerk, S.M.; Vorhoff, B.; Mansfeldt, T.; Veizer, J.

    1999-01-01

    The isotopic composition of nitrate is increasingly used to determine sources and transformations of nitrogen in terrestrial and aquatic ecosystems. Oxygen isotope ratios of nitrate appear to be particularly useful, since they allow the differentiation between nitrate from atmospheric deposition (δ 18 O nitrate between +25 and +70 per mille), nitrate from fertilizers (δ 18 O nitrate +23 per mille), and nitrate derived from nitrification processes in soils (δ 18 O nitrate 3 molecule derive from H 2 O (with negative δ 18 O values dependent upon location) and one oxygen derives from atmospheric O 2 (δ 18 O = +23.5 per mille).. The objective of this study was to experimentally determine the extent to which water oxygen controls the δ 18 O value of nitrate, which is formed during nitrification in soils

  18. Oxygen isotope mass balance of atmospheric nitrate at Dome C, East Antarctica, during the OPALE campaign

    Directory of Open Access Journals (Sweden)

    J. Savarino

    2016-03-01

    Full Text Available Variations in the stable oxygen isotope composition of atmospheric nitrate act as novel tools for studying oxidative processes taking place in the troposphere. They provide both qualitative and quantitative constraints on the pathways determining the fate of atmospheric nitrogen oxides (NO + NO2 = NOx. The unique and distinctive 17O excess (Δ17O = δ17O − 0.52 × δ18O of ozone, which is transferred to NOx via oxidation, is a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O excess within the NOx cycle is critical in polar areas, where there exists the possibility of extending atmospheric investigations to the glacial–interglacial timescale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C (East Antarctic Plateau during the austral summer of 2011/2012. Nitrate isotope analysis has been here combined for the first time with key precursors involved in nitrate production (NOx, O3, OH, HO2, RO2, etc. and direct observations of the transferrable Δ17O of surface ozone, which was measured at Dome C throughout 2012 using our recently developed analytical approach. Assuming that nitrate is mainly produced in Antarctica in summer through the OH + NO2 pathway and using concurrent measurements of OH and NO2, we calculated a Δ17O signature for nitrate on the order of (21–22 ± 3 ‰. These values are lower than the measured values that ranged between 27 and 31 ‰. This discrepancy between expected and observed Δ17O(NO3− values suggests the existence of an unknown process that contributes significantly to the atmospheric nitrate budget over this East Antarctic region. However, systematic errors or false isotopic balance transfer functions are not totally excluded.

  19. The determination of minor isotope abundances in naturally occurring uranium materials. The tracing power of isotopic signatures for uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ovaskainen, R

    1999-11-01

    The mass spectrometric determination of minor abundant isotopes, {sup 234}U and {sup 236}U in naturally occurring uranium materials requires instruments of high abundance sensitivity and the use of highly sensitive detection systems. In this study the thermal ionisation mass spectrometer Finnigan MAT 262RPQ was used. It was equipped with 6 Faraday cups and a Secondary Electron Multiplier (SEM), which was operated in pulse counting mode for the detection of extremely low ion currents. The dynamic measurement range was increased considerably combining these two different detectors. The instrument calibration was performed carefully. The linearity of each detector, the deadtime of the ion counting detector, the detector normalisation factor, the baseline of each detector and the mass discrimination in the ion source were checked and optimised. A measurement technique based on the combination of a Gas Source Mass Spectrometry (GSMS) and a Thermal Ionisation Mass Spectrometry (TIMS) was developed for the accurate determination of isotopic composition in naturally occurring uranium materials. Because the expected ratio of n({sup 234}U)/n({sup 238}U) exceeded the dynamic measurement range of the Faraday detectors of the TIMS instrument, an experimental design using a combination of two detectors was developed. The n({sup 234}U)/n({sup 235}U) and n({sup 236}U)/n({sup 235}U) ratios were determined using ion counting in combination with the decelerating device. The n({sup 235}U)/n({sup 238}U) ratio was determined by the Faraday detector. This experimental design allowed the detector cross calibration to be circumvented. Precisions of less than 1 percent for the n({sup 234}U)/n({sup 235}U) ratios and 5-25 percent for the n({sup 236}U)/n({sup 235}U) ratios were achieved. The purpose of the study was to establish a register of isotopic signatures for natural uranium materials. The amount ratio, and isotopic composition of 18 ore concentrates, collected by the International

  20. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    Science.gov (United States)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  1. Oxygen isotope fractionation and algal symbiosis in benthic foraminifera from the Gulf of Elat, Israel

    International Nuclear Information System (INIS)

    Buchardt, B.; Hansen, H.J.

    1977-01-01

    In order to investigate possible isotopic fractionations due to algal symbiosis the oxygen and carbon isotope compositions of shell carbonate from symbiont-free and symbiont-bearing benthic foraminifera have been compared to that of molluscs living at the same locality. The material was collected over a depth profile in the Gulf of Elat (Aqaba), Israel, covering the interval from 4 to 125 metres. After corrections variations for temperature with depth, characteristic 18 O-depletions were observed in the foraminiferal shell carbonate when compared to the molluscs. These depletions are interpreted as 1) a constant vital effect seen in all the foraminifera studied and 2) an additional, light-dependent vital effect observed in the symbiont-bearing forms only, caused by incorporation of photosynthetic oxygen formed by the symbiotic algae. This additional vital effect emphasizes the difficulties in applying foraminifera to oxygen isotope palaeotemperature analyses. No well-defined differences in carbon isotope compositions are observed between symbiont-bearing and symbiont-free foraminifera. (author)

  2. Oxygen isotope fractionation and algal symbiosis in benthic foraminifera from the Gulf of Elat, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Buchardt, B; Hansen, H J [Copenhagen Univ. (Denmark)

    1977-01-01

    In order to investigate possible isotopic fractionations due to algal symbiosis the oxygen and carbon isotope compositions of shell carbonate from symbiont-free and symbiont-bearing benthic foraminifera have been compared to that of molluscs living at the same locality. The material was collected over a depth profile in the Gulf of Elat (Aqaba), Israel, covering the interval from 4 to 125 metres. After correcting for variations of temperature with depth, characteristic /sup 18/O-depletions were observed in the foraminiferal shell carbonate when compared to the molluscs. These depletions are interpreted as 1) a constant vital effect seen in all the foraminifera studied and 2) an additional, light-dependent vital effect observed in the symbiont-bearing forms only, caused by incorporation of photosynthetic oxygen formed by the symbiotic algae. This additional vital effect emphasizes the difficulties in applying foraminifera to oxygen isotope palaeotemperature analyses. No well-defined differences in carbon isotope compositions are observed between symbiont-bearing and symbiont-free foraminifera.

  3. Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica

    Directory of Open Access Journals (Sweden)

    J. Savarino

    2007-01-01

    Full Text Available Throughout the year 2001, aerosol samples were collected continuously for 10 to 15 days at the French Antarctic Station Dumont d'Urville (DDU (66°40' S, l40°0' E, 40 m above mean sea level. The nitrogen and oxygen isotopic ratios of particulate nitrate at DDU exhibit seasonal variations that are among the most extreme observed for nitrate on Earth. In association with concentration measurements, the isotope ratios delineate four distinct periods, broadly consistent with previous studies on Antarctic coastal areas. During austral autumn and early winter (March to mid-July, nitrate concentrations attain a minimum between 10 and 30 ng m−3 (referred to as Period 2. Two local maxima in August (55 ng m−3 and November/December (165 ng m−3 are used to assign Period 3 (mid-July to September and Period 4 (October to December. Period 1 (January to March is a transition period between the maximum concentration of Period 4 and the background concentration of Period 2. These seasonal changes are reflected in changes of the nitrogen and oxygen isotope ratios. During Period 2, which is characterized by background concentrations, the isotope ratios are in the range of previous measurements at mid-latitudes: δ18Ovsmow=(77.2±8.6‰; Δ17O=(29.8±4.4‰; δ15Nair=(−4.4±5.4‰ (mean ± one standard deviation. Period 3 is accompanied by a significant increase of the oxygen isotope ratios and a small increase of the nitrogen isotope ratio to δ18Ovsmow=(98.8±13.9‰; Δ17O=(38.8±4.7‰ and δ15Nair=(4.3±8.20‰. Period 4 is characterized by a minimum 15N/14N ratio, only matched by one prior study of Antarctic aerosols, and oxygen isotope ratios similar to Period 2: δ18Ovsmow=(77.2±7.7‰; Δ17O=(31.1±3.2‰; δ15Nair=(−32.7±8.4‰. Finally, during Period 1, isotope ratios reach minimum values for oxygen and intermediate values for nitrogen: δ18Ovsmow=63.2±2.5‰; Δ17O=24.0±1.1‰; δ15Nair=−17.9±4.0‰. Based on the measured

  4. Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes

    International Nuclear Information System (INIS)

    2009-01-01

    Stable isotope ratios of hydrogen and oxygen are tracers of choice for water cycle processes in hydrological, atmospheric and ecological studies. The use of isotopes has been limited to some extent because of the relatively high cost of isotope ratio mass spectrometers and the need for specialized operational skills. Here, the results of performance testing of a recently developed laser spectroscopic instrument for measuring stable hydrogen and oxygen isotope ratios of water samples are described, along with a procedure for instrument installation and operation. Over the last four years, the IAEA Water Resources Programme conducted prototype and production model testing of these instruments and this publication is the outcome of those efforts. One of the main missions of the IAEA is to promote the use of peaceful applications of isotope and nuclear methods in Member States and this publication is intended to facilitate the use of laser absorption based instruments for hydrogen and oxygen stable isotope analyses of liquid water samples for hydrological and other studies. The instrument uses off-axis integrated cavity output spectroscopy to measure absolute abundances of 2 HHO, HH 18 O, and HHO via laser absorption. Test results using a number of natural and synthetic water standards and samples with a large range of isotope values demonstrate adequate precision and accuracy (e.g. precisions of 1 per mille for δ 2 H and 0.2 per mille for δ 18 O). The laser instrument has much lower initial and maintenance costs than mass spectrometers and is substantially easier to operate. Thus, these instruments have the potential to bring about a paradigm shift in isotope applications by enabling researchers in all fields to measure isotope ratios by themselves. The appendix contains a detailed procedure for the installation and operation of the instrument. Using the procedure, new users should be able to install the instrument in less than two hours. It also provides step

  5. Oxygen isotope variations in phosphate of biogenic apatites. Pt.1

    International Nuclear Information System (INIS)

    Kolodny, Y.; Luz, B.; Navon, O.

    1983-01-01

    The major advantage of the oxygen in phosphate isotope paleothermometry is that it is a system which records temperatures with great sensitivity while bone (and teeth) building organisms are alive, and the record is nearly perfectly preserved after death. Fish from seven water bodies of different temperatures (3-23 0 C) and different delta 18 O (values - 16 to + 3) of the water were analysed. The delta 18 O values of the analysed PO 4 vary from 6 to 25. The system passed the following tests: (a) the temperature deduced from isotopic analyses of the sequence of fish from Lake Baikal are in good agreement with the temperatures measured in the thermally stratified lake; (b) the isotopic composition of fish bone phosphate is not influenced by the isotopic composition of the phosphate which is fed to the fish, but only by temperature and water composition. Isotopic analysis of fossil fish in combination with analysis of mammal bones should be a useful tool in deciphering continental paleoclimates. (orig.)

  6. Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites

    Science.gov (United States)

    Jones, R. H.; Leshin, L. A.; Guan, Y.

    2004-01-01

    Some of the biggest challenges to understanding the early history of the solar system include determining the distribution of oxygen isotopes amongst materials that existed in the solar nebula, and interpreting the processes that might have resulted in the observed isotopic distributions. Oxygen isotope ratios in any individual mineral grain from a chondritic meteorite may be the cumulative product of a variety of processes, including stellar nucleosynthetic events, gas/solid interactions in the molecular cloud, mixing of independent isotopic reservoirs in the nebula, mass-independent processing in the nebula, and mass-dependent fractionation effects in various environments. It is not possible to unravel this complex isotopic record unless the distribution of oxygen isotope ratios in chondritic materials is fully understood.

  7. Reconsideration of Methane Isotope Signature As a Criterion for the Genesis of Natural Gas: Influence of Migration on Isotopic Signatures Reconsidération de la signature isotopique du méthane comme critère pour la genèse du gaz naturel : influence de la migration sur les signatures isotopiques

    Directory of Open Access Journals (Sweden)

    Pernaton E.

    2006-11-01

    Full Text Available Experiments were performed in the purpose of studying the isotopic consequences of the diffusional transport of hydrocarbon gases through sediment rocks. Linked to a numerical model, these gas diffusion experiments through a shale porous plug allowed us to correlate porosity and diffusivity of the migration medium. Significant isotopic fractionations (carbon and hydrogen of methane, and ethane at a lesser degree were observed. This is in contradiction with the actual dogma of isotope geochemistry of natural gases which claims that no fractionation occurs during gas migration. The genetic characterization of natural gases by using the isotopic signature of methane appears as an ambiguous method. Plusieurs expériences ont été réalisées dans le but d'étudier les conséquences isotopiques du transport par diffusion des gaz hydrocarbures au travers des roches sédimentaires. Associées à un modèle numérique, ces expériences de diffusion au travers d'une membrane d'argile reconstituée nous ont permis de corréler deux paramètres pétrophysiques du milieu de migration : la porosité et la diffusivité. D'importants fractionnements isotopiques ont été observés au cours de la diffusion du méthane et, à plus petite échelle, lors de la diffusion de l'éthane. Ces résultats remettent en cause le dogme actuel de la géochimie isotopique des gaz naturels qui stipule que la migration des gaz ne peut induire de fractionnements isotopiques. En conséquence, les méthodes de caractérisation génétique des gaz naturels utilisant la signature isotopique du méthane apparaissent comme insuffisantes.

  8. Scavenging of oxygen vacancies at modulation-doped oxide interfaces: Evidence from oxygen isotope tracing

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Döbeli, M.; Pomjakushina, E.

    2017-01-01

    , the mechanisms underlying the extreme mobility enhancement remain elusive. Herein, we used 18O isotope exchanged SrTi18O3 as substrates to create 2DEG at room temperature with and without the LSMO buffer layer. By mapping the oxygen profile across the interface between STO18 and disordered LaAlO3 or yttria...

  9. Sulfur and Oxygen Isotope Fractionation During Bacterial Sulfur Disproportionation Under Anaerobic Haloalkaline Conditions

    NARCIS (Netherlands)

    Poser, Alexander; Vogt, Carsten; Knöller, Kay; Sorokin, Dimitry Y.; Finster, Kai W.; Richnow, Hans H.

    2016-01-01

    Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic haloalkaline conditions was evaluated for the first time. Isotope enrichment factors of the strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 or 10 were −0.9‰ to −1‰ for

  10. Stable isotopes in barnacles as a tool to understand green sea turtle (Chelonia mydas) regional movement patterns

    Science.gov (United States)

    Detjen, M.; Sterling, E.; Gómez, A.

    2015-12-01

    Sea turtles are migratory animals that travel long distances between their feeding and breeding grounds. Traditional methods for researching sea turtle migratory behavior have important disadvantages, and the development of alternatives would enhance our ability to monitor and manage these globally endangered species. Here we report on the isotope signatures in green sea-turtle (Chelonia mydas) barnacles (Platylepas sp.) and discuss their potential relevance as tools with which to study green sea turtle migration and habitat use patterns. We analyzed oxygen (δ18O) and carbon (δ13C) isotope ratios in barnacle calcite layers from specimens collected from green turtles captured at the Palmyra Atoll National Wildlife Refuge (PANWR) in the central Pacific. Carbon isotopes were not informative in this study. However, the oxygen isotope results suggest likely regional movement patterns when mapped onto a predictive oxygen isotope map of the Pacific. Barnacle proxies could therefore complement other methods in understanding regional movement patterns, informing more effective conservation policy that takes into account connectivity between populations.

  11. Preparation and use of nitrogen (2) oxide of special purity for production of oxygen and nitrogen isotopes

    International Nuclear Information System (INIS)

    Polevoj, A.S.

    1989-01-01

    Problems related with production of oxygen and nitrogen isotopes by means of low-temperature rectification of nitrogen (2) oxide are analyzed. Special attention, in particular, is payed to the techniques of synthesis and high purification of initial NO, utilization of waste flows formed during isotope separation. Ways to affect the initial isotope composition of nitrogen oxide and the rate of its homogeneous-isotope exchange, which provide for possibility of simultaneous production of oxygen and nitrogen isotopes by means of NO rectification, are considered. Description of a new technique for high purification of nitrogen oxide, prepared at decomposition of nitric acid by sulfurous anhydride, suggested by the author is presented

  12. Isotopic-spectral determination of hydrogen, nitrogen, oxygen and carbon in semiconductor materials

    International Nuclear Information System (INIS)

    Dudich, G.K.; Eremeev, V.A.; Li, V.N.; Nemets, V.M.

    1981-01-01

    Techniques of low-temperature isotopic-spectral determination of impurities of hydrogen, nitrogen, oxygen and carbon in semiconductor materials Bi, Ge, Pb tellurides are developed. The techniques include selection into special vessel with the known volume (exchanger) of sample analyzed, dosed introduction into exchanger of rare isotope of the element determined ( 2 H, 15 N, 18 O, 13 C) in the form of isotope-containing gas, balancing of the determined element isotopes in the system sample-isotope, containing gas, spectroscopic, determination of its isotope composition in gaseous phase of the system and calculation of the amount of the element determined in the sample. The lower boundaries of the amounts determined constitute 10 -7 , 10 -7 , 10 -6 and 10 -5 mass % respectively when sample of 20 g are used [ru

  13. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa)

    Science.gov (United States)

    Albut, Gülüm; Babechuk, Michael G.; Kleinhanns, Ilka C.; Benger, Manuela; Beukes, Nicolas J.; Steinhilber, Bernd; Smith, Albertus J. B.; Kruger, Stephanus J.; Schoenberg, Ronny

    2018-05-01

    Previously reported stable Cr isotopic fractionation in Archaean paleosols and iron formations (IFs) have been interpreted as a signature of oxidative weathering of Cr(III) to Cr(VI) in soils, and delivery of isotopically heavy Cr(VI) into the oceans. One of the oldest reported fingerprints of this process is isotopically heavy Cr preserved in the 2.95 Ga old Ijzermijn IF, Sinqeni Formation of the Mozaan Group (Pongola Supergroup), South Africa and could suggest that atmospheric free oxygen was present ca. 600 million years earlier than the Great Oxidation Event (GOE). However, fractionated stable Cr isotopic signatures have only been found to date in surface outcrop samples of the White Mfolozi Inlier exposed along the White Mfolozi River Gorge. In this study, the latter outcrop was resampled along with two drill cores of the Ijzermijn IF and a drill core of the Scotts Hill IF to represent multiple exposures of Mozaan Group IFs with different states of preservation. A detailed geochemical comparison on bulk samples of different units was undertaken using stable Cr isotopes coupled with trace and major elements. Outcrop iron-rich mudstones (Fe - lutites) show very low LOI [wt] %, and very low Fe(II)/Fetot ratios, and lower Ca and Mg relative to equivalent facies in drill cores, indicating the effects that oxidative recent surface weathering had on Fe/Mn-rich carbonate minerals of the IF. Overall rare earth element and yttrium (REE + Y) mixing models agree well with previous studies, confirming that they were minimally disturbed by weathering and are consistent with a high magnitude of continental solutes delivered in a near-shore depositional environment, with a minor contribution of hydrothermally derived fluids that upwelled into shallower depositional setting. Importantly, all drill core samples of this study revealed δ53/52Cr values within the igneous inventory, despite variable amounts of detrital Cr input that includes nearly detritus-free, chert

  14. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    Science.gov (United States)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  15. Intracrystalline oxygen isotope effects in CuSO4.5H2O and their dependence on crystallization temperature

    International Nuclear Information System (INIS)

    Heinzinger, K.

    1976-01-01

    In copper sulphate pentahydrate the water molecules occupy three different sites, connected with different oxygen isotope ratios. Results of measurements of the change of these isotope ratios with crystallization temperature are reported. The temperature dependence found here provides the basis for the determination of crystallization temperatures of hydrated crystals from such intracrystalline oxygen isotope fractionation. Suppositions necessary for the application of this method are discussed. (author)

  16. Oxygen isotope separation by isotopically selective infrared multiphoton dissociation of 2,3-dihydropyran

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Akagi, Hiroshi; Yokoyama, Keiichi; Saeki, Morihisa; Katsumata, Keiichi

    2008-01-01

    Oxygen isotopic selectivity on infrared multiphoton dissociation of 2,3-dihydropyran has been studied by the examination of the effects of excitation frequency, laser fluence, and gas pressure on the dissociation probability of 2,3-dihydropyran and isotopic composition of products. Oxygen-18 was enriched in a dissociation product: 2-propenal. The enrichment factor of 18 O and the dissociation probability were measured at laser frequency between 1033.5 and 1057.3 cm -1 ; the laser fluence of 2.2 - 2.3 J/cm 2 ; and the 2,3-dihydropyran pressure of 0.27 kPa. The dissociation probability decreases as the laser frequency being detuned from the absorption peak of 2,3-dihydropyran around 1081 cm -1 . On the other hand, the enrichment factor increases with detuning the frequency. The enrichment factor of 18 O increases with increasing the 2,3-dihydropyran pressure at the laser fluence below 3 J/cm 2 and the laser frequency of 1033.5 cm -1 , whereas the yield of 2-propenal decreases with increasing the pressure. Very high enrichment factor of 751 was obtained by the irradiation of 0.53 kPa of 2,3-dihydropyran at 2.1 J/cm 2 . (author)

  17. Oxygen isotope analysis of plant water without extraction procedure

    International Nuclear Information System (INIS)

    Gan, K.S.; Wong, S.C.; Farquhar, G.D.; Yong, J.W.H.

    2001-01-01

    Isotopic analyses of plant water (mainly xylem, phloem and leaf water) are gaming importance as the isotopic signals reflect plant-environment interactions, affect the oxygen isotopic composition of atmospheric O 2 and CO 2 and are eventually incorporated into plant organic matter. Conventionally, such isotopic measurements require a time-consuming process of isolating the plant water by azeotropic distillation or vacuum extraction, which would not complement the speed of isotope analysis provided by continuous-flow IRMS (Isotope-Ratio Mass Spectrometry), especially when large data sets are needed for statistical calculations in biological studies. Further, a substantial amount of plant material is needed for water extraction and leaf samples would invariably include unenriched water from the fine veins. To measure sub-microlitre amount of leaf mesophyll water, a new approach is undertaken where a small disc of fresh leaf is cut using a specially designed leaf punch, and pyrolysed directly in an IRMS. By comparing with results from pyrolysis of the dry matter of the same leaf, the 18 O content of leaf water can be determined without extraction from fresh leaves. This method is validated using a range of cellulose-water mixtures to simulate the constituents of fresh leaf. Cotton leaf water δ 18 O obtained from both methods of fresh leaf pyrolysis and azeotropic distillation will be compared. The pyrolysis technique provides a robust approach to measure the isotopic content of water or any volatile present in a homogeneous solution or solid hydrous substance

  18. Microbial methane from in situ biodegradation of coal and shale: A review and reevaluation of hydrogen and carbon isotope signatures

    Science.gov (United States)

    Vinson, David S.; Blair, Neal E.; Martini, Anna M.; Larter, Steve; Orem, William H.; McIntosh, Jennifer C.

    2017-01-01

    Stable carbon and hydrogen isotope signatures of methane, water, and inorganic carbon are widely utilized in natural gas systems for distinguishing microbial and thermogenic methane and for delineating methanogenic pathways (acetoclastic, hydrogenotrophic, and/or methylotrophic methanogenesis). Recent studies of coal and shale gas systems have characterized in situ microbial communities and provided stable isotope data (δD-CH4, δD-H2O, δ13C-CH4, and δ13C-CO2) from a wider range of environments than available previously. Here we review the principal biogenic methane-yielding pathways in coal beds and shales and the isotope effects imparted on methane, document the uncertainties and inconsistencies in established isotopic fingerprinting techniques, and identify the knowledge gaps in understanding the subsurface processes that govern H and C isotope signatures of biogenic methane. We also compare established isotopic interpretations with recent microbial community characterization techniques, which reveal additional inconsistencies in the interpretation of microbial metabolic pathways in coal beds and shales. Collectively, the re-assessed data show that widely-utilized isotopic fingerprinting techniques neglect important complications in coal beds and shales.Isotopic fingerprinting techniques that combine δ13C-CH4 with δD-CH4 and/or δ13C-CO2have significant limitations: (1) The consistent ~ 160‰ offset between δD-H2O and δD-CH4 could imply that hydrogenotrophic methanogenesis is the dominant metabolic pathway in microbial gas systems. However, hydrogen isotopes can equilibrate between methane precursors and coexisting water, yielding a similar apparent H isotope signal as hydrogenotrophic methanogenesis, regardless of the actual methane formation pathway. (2) Non-methanogenic processes such as sulfate reduction, Fe oxide reduction, inputs of thermogenic methane, anaerobic methane oxidation, and/or formation water interaction can cause the apparent carbon

  19. Can we screen phosphorus movement in the landscape through the analysis of δ"1"8O isotopic abundance in phosphate?

    International Nuclear Information System (INIS)

    Heiling, M.; Aigner, M.; Slaets, J.; Dercon, G.

    2016-01-01

    The SWMCNL explored the possibility of using δ18O isotopic signature in phosphate for screening phosphorus (P) movement in the landscape. Phosphorus is essential for crop production, but extensive use of P fertilizer and animal manure can lead to eutrophication of rivers and lakes. To study these effects, numerous studies on P movement in the soil plant system and P transformation processes have been performed in the past decades. Assessing losses of P through erosion processes, however, is challenging – particularly at the landscape level and on a longer timescale. Using the isotopic signature of stable oxygen isotope ("1"8O) in the phosphate ion as a tracer could be a cost-effective way to study P movements. This approach is already applied as a paleotemperature proxy (the fractionation between phosphate and water is temperature dependent) and can be used for quantifying P losses through leaching into surface and groundwater, as oxygen exchange between phosphate and water is slow in the absence of biological activity.

  20. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    Science.gov (United States)

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  1. Investigations into Pb isotope signatures in groundwater and sediments in a uranium-mineralized area

    Energy Technology Data Exchange (ETDEWEB)

    Vecchia, Adriana Monica Dalla; Rodrigues, Paulo Cesar Horta; Rios, Francisco Javier; Ladeira, Ana Claudia Queiroz, E-mail: amdvc@cdtn.br, E-mail: acql@cdtn.br, E-mail: javier@cdtn.br, E-mail: pchr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-01-15

    This work presents the investigation in an environment that contains uranium deposits by using Pb isotope signatures. The study area, southeast of Brazil, is characterized by the lack of surface water and, as a consequence, the groundwater plays an important role in the economy of the region, such as the supply to the uranium industry and, above all serving the needs of the local population. The objective of the present investigation is the determination of the signatures of Pb in groundwater and sediments as well as the identification of environments under influences of geogenic and/or anthropogenic sources. It was determined that the Pb in the majority of sediments was geogenic in origin. Although data from the literature, related to the environmental studies, consider {sup 206}Pb/{sup 207}Pb isotopic ratio values below or close to 1.2 as an indicative of anthropogenic Pb, the {sup 206}Pb/{sup 207}Pb determined for the majority of groundwater samples ranged from 1.14 to 1.19, and are similar to the data reported for rocks samples (1.09 to 1.96) from area with U mineralization. It was also determined that the anthropogenic influence of the uranium was restricted to a single sampling point within the mining area. (author)

  2. Investigations into Pb isotope signatures in groundwater and sediments in a uranium-mineralized area

    Directory of Open Access Journals (Sweden)

    Adriana Mônica Dalla Vecchia

    Full Text Available ABSTRACT: This work presents the investigation in an environment that contains uranium deposits by using Pb isotope signatures. The study area, southeast of Brazil, is characterized by the lack of surface water and, as a consequence, the groundwater plays an important role in the economy of the region, such as the supply to the uranium industry and, above all serving the needs of the local population. The objective of the present investigation is the determination of the signatures of Pb in groundwater and sediments as well as the identification of environments under influences of geogenic and/or anthropogenic sources. It was determined that the Pb in the majority of sediments was geogenic in origin. Although data from the literature, related to the environmental studies, consider 206Pb/207Pb isotopic ratio values below or close to 1.2 as an indicative of anthropogenic Pb, the 206Pb/ 207Pb determined for the majority of groundwater samples ranged from 1.14 to 1.19, and are similar to the data reported for rocks samples (1.09 to 1.96 from area with U mineralization. It was also determined that the anthropogenic influence of the uranium was restricted to a single sampling point within the mining area.

  3. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    Science.gov (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  4. Stratigraphy on Oxygen and Carbon Isotope of Paciran Formation East Java

    International Nuclear Information System (INIS)

    Premonowati; R P Koesoemadinata; Harsono-Pringgoprawiro; Wahyoe-S-Hantoro

    2004-01-01

    Paleotemperature fluctuation in tropical zone (centennial and decad al scale) has been known. It's based on stable isotopic analysis from each of unconformity zones. Those boundaries have derived on reef units of shallows marine reef complex of Paciran Formation, Tuban area in Northeast Java Basin. From 25 samples have been choosen on undeformed calcite and analyzed by oxygen and carbon stable isotope. It used to validizing a sea level changes during the formation to Reef 1 to Reef 17 from Paciran formation with sea surface temperature (SST) since 4 Ma until now. On early forming of Reef 1 to Reef 3 (since 4 Ma - 2,88 Ma), sea level occurred marine flooding surface. Since the formation of reef 4 (2,59 Ma) to Reef 8 (1,4 Ma) occurred stagnant temperature and almost to warmer condition. Then, δ 18 O have arise up drastically to 5 0/00 and shows warmer condition to Reef 8 formation, in contrary, the sea level have been arised to Reef 10 formation (0,7 Ma). The temperature have been fluctuated between 0,5 o and 1 o C until the formation of Reef 17 (Early Holocene) and continued to Reef 17 formation at 2 o C based on the rapidity sampling of Po rites sp. Wholly, in centennial scale, since the formation of Reef 4 (2,59 Ma) to Reef 17 (1 Ma), the curve of oxygen stable isotope shows decrease or cooler condition. Those condition have conducted to sea level drop since the formation to Reef 7 and Reef 8. There are 4 periods of interglacial since the formation of Reef 4. The warmer condition indicated since the formation of Reef 9, Reef 11 and Reef 17. Recently, a curve of oxygen isotopes reveals warmer drastically or sea level have been arisen. (author)

  5. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    Science.gov (United States)

    Planavsky, Noah J.; Asael, Dan; Hofmann, Axel; Reinhard, Christopher T.; Lalonde, Stefan V.; Knudsen, Andrew; Wang, Xiangli; Ossa Ossa, Frantz; Pecoits, Ernesto; Smith, Albertus J. B.; Beukes, Nicolas J.; Bekker, Andrey; Johnson, Thomas M.; Konhauser, Kurt O.; Lyons, Timothy W.; Rouxel, Olivier J.

    2014-04-01

    The early Earth was characterized by the absence of oxygen in the ocean-atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5-2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen.

  6. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    Science.gov (United States)

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  7. Technical note: Consistent calculation of aquatic gross production from oxygen triple isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2011-07-01

    Full Text Available Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences (delta values directly. I call this the "dual delta method". The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple isotope measurements below the mixed layer can be used to derive gross production.

    In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state.

    I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to

  8. Quasi-free one nucleon knockout reactions on neutron-rich oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla; Aumann, Thomas [TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerse (United States); Paschalis, Stefanos [TU Darmstadt, Darmstadt (Germany); Nociforo, Chiara [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    Recent experiments have shown a reduction of spectroscopic strengths to about 60-70% for stable nuclei. When going to drip lines this tendency is changing, loosely bound nucleons have spectroscopic strengths close unity while deeply bound nucleons have a large reduction of the strength. We aim to make a systematic study of spectroscopic factors (SF) of the Oxygen isotopes using quasi-free (p,2p) and (p,pn) knockout reactions in inverse kinematics. Quasi-free knockout reactions are a direct tool to study the occupancy and the location of valance and deeply bound single particle states. The Oxygen isotopes offer a large variation of separation energies which will allow us to obtain a qualitative and quantitative understanding of SF in a large variation of isospin asymmetry. For this we performed an experiment at the R3B-LAND setup at the GSI with secondary beams containing {sup 14-24}O. The {sup 16-18}O and {sup 21-23}O isotopes have been analyzed and the preliminary results will be presented. The results include the partial cross sections, gamma ray spectra of the residual fragments in coincidence, and the SF obtained via comparison with theory.

  9. Stable carbon and oxygen isotope signatures in molluscan shells under ocean acidification

    Science.gov (United States)

    Nishida, K.; Hayashi, M.; Suzuki, A.; Sato, M.; Nojiri, Y.

    2017-12-01

    Stable carbon and oxygen isotope compositions (δ13C, δ18O) of biogenic carbonate have been widely used for many paleoclimate, paleoecological, and biomineralization studies. δ13C of molluscan shells reflects the mixing of δ13C of dissolved inorganic carbon (DIC) of seawater and respiratory carbon. Previous studies reported physiological effects on molluscs by ocean acidification, and thus the metabolic changes could potentially appear in shell δ13C as changes in a fraction of two carbon sources. In addition, shell δ18O, a commonly used proxy of seawater temperature and seawater δ18O, is also affected by seawater carbonate chemistry. As changes in the marine carbonate system, such as pH and pCO2, have occurred in the past 300 million years, to estimate pH effect on paleotemperature reconstruction is important. Here, we experimentally examined acidification effects on shell δ13C and δ18O of two species of clams for understanding of environmental and physiological proxies. Juvenile specimens of bloody clam Scapharca broughtonii and Japanese surf clam Pseudocardium sachalinense were cultured at five (400, 600, 800, 1000, and 1200 µatm, P. sachalinense) or six (280, 400, 600, 800, 1000, and 1200 µatm, S. broughtonii) different pCO2 levels using CO2 control system of the Demonstration Laboratory, MERI, Japan. Significant negative correlations between shell δ13C and pH appeared in S. broughtonii, which showed non-significant pH effects on calcification, and the slope of the relationship of shell carbonate was lower than that of seawater DIC. On the other hand, in P. sachalinense which showed a decrease in calcification at low-pH treatment, the slopes of the relationship between shell δ13C and pH was roughly the same as that of seawater DIC. Thus, the extrapallial fluid of P. sachalinense might more strongly affected by acidified seawater than S. broughtonii. The results of two species might be attributable to differences in physiological responses to

  10. Stable isotope signatures in bulk samples from two soils with contrasting characteristics. What do they tell about ongoing pedogenic processes?

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; dos Anjos Leal, Otávio; Knicker, Heike; Pinheiro Dick, Deborah; González-Vila, Francisco J.; González-Pérez, José A.

    2014-05-01

    Isotopic ratio mass spectrometry (IRMS) has been proven as a promising tool for the monitoring of biogeochemical processes in soil. In this work, stable isotope signatures of light elements δ15N, δ13C, δ18O and δD were determined for two soils with contrasting characteristics in terms of climate, vegetation, land use and management. The studied soils were a Cambisol from a subtropical area (Paraná region, South Brazil) and an Arenosol from a Mediterranean climate (Andalusia, South Spain). A Flash 2000 HT (N, C, S, H and O) elemental analyzer (Thermo Scientific) coupled to a Delta V Advantage IRMS (Thermo Scientific) was used. Isotopic ratios are reported as parts per thousand (o ) deviations from appropriate standards recognized by the international atomic energy agency (IAEA). In a first approach we took advantage of the well-known different δ13C signature between plants using either the C4 or C3 carbon fixation pathway (O'Leary, 1981). The Arenosol (Spain) revealed a δ13C signature which is clearly in the range of C3 plants (-26 to -30 o ). Different plant canopies (tree, shrubs or ferns) caused only slight variations δ13C (STD= 0.98). In contrast, the Cambisol (Brazil) showed less depletion of the heavier carbon isotope corresponding to C4 predominant vegetation. In addition an increase from -19 o in the soil surface (0 - 5 cm) to -16 o in the subsoil (20 - 30 cm) was observed in line with a recent (2 years old) shift of the land use from the predominant C4 grassland to eucalypt (C3) cultivation. Crossplots of δ15N vs. δ18O may provide information about nitrate (NO3-) sources and N cycling (Kendall, 1998). In the Mediterranean Arenosol this signal (δ18O = 30o δ15N = 2o ) was found compatible with a predominant nitrate atmospheric deposition, whereas the signal in the Brazilian Cambisol pointed to the use of a mineral N fertilization with signs of denitrification processes (δ18O = 13o δ15N = 9o ). No conclusive results could be obtained from the

  11. Foraminifera isotopic records... with special attention to high northern latitudes and the impact of sea-ice distillation processes

    Energy Technology Data Exchange (ETDEWEB)

    Hillaire-Marcel, Claude, E-mail: hillaire-marcel.claude@uqam.ca [GEOTOP, Universite du Quebec a Montreal, PO Box 8888, succursale ' centre ville' Montreal, Qc, H3C 3P8 (Canada)

    2011-05-15

    Since the reassessment of oxygen isotope paleotemperatures by N. Shackleton in the late 60s, most papers using isotopic records from planktic or benthic foraminifers imply a direct relationship between oxygen isotopes in seawater and the ice/ocean volume, thus some linkage with salinity, sea level, etc. Such assumptions are also made when incorporating 'isotopic modules' in coupled models. Here, we will further examine the linkages between salinity and oxygen isotope ratios of sea-water recorded by foraminifers, and their potential temporal and spatial variability, especially in the northern North Atlantic and the Arctic oceans. If temporal and spatial changes in the isotopic composition of precipitations and ice meltwaters tune the isotopic properties of the fresh water end-member that dilutes the ocean, rates of sea-ice formation and evaporation at the ocean surface play a further role on the salt and oxygen isotope contents of water masses. Thus, the oxygen 18-salinity relationship carries a specific isotopic signature for any given water mass. At the ocean scale, residence time and mixing of these water masses, as well as the time dependent-achievement of proxy-tracer equilibrium, will also result in variable recordings of mass transfers into the hydrosphere, notable between ice-sheets and ocean. Since these records in water mass may vary in both amplitude and time, direct correlations of isotopic records will potentially be misleading. Implications of such issues on the interpretation of oxygen isotope records from the sub-arctic seas will be discussed, as well as the inherent flaws of such records due to sedimentological and or ecological parameters.

  12. Oxygen isotope partitioning between rhyolitic glass/melt and CO2: An experimental study at 550-950 degrees C and 1 bar

    International Nuclear Information System (INIS)

    Palin, J.M.; Epstein, S.; Stolper, E.M.

    1996-01-01

    Oxygen isotope partitioning between gaseous CO 2 and a natural rhyolitic glass and melt (77.7 wt% SiO 2 , 0.16 wt% H 2 O total ) has been measured at 550-950 degrees C and approximately 1 bar. Equilibrium oxygen isotope fractionation factors (α CO2-rhyolite = ( 18 O/ 16 O) rhyolite ) determined in exchange experiments of 100-255 day duration. These values agree well with predictions based on experimentally determined oxygen isotope fractionation factors for CO 2 -silica glass and CO 2 -albitic glass/melt, if the rhyolitic glass is taken to be a simple mixture of normative silica and alkali feldspar components. The results indicate that oxygen isotope partitioning in felsic glasses and melts can be modeled by linear combinations of endmember silicate constituents. Rates of oxygen isotope exchange observed in the partitioning experiments are consistent with control by diffusion of molecular H 2 O dissolved in the glass/melt and are three orders of magnitude faster than predicted for rate control solely by diffusion of dissolved molecular CO 2 under the experimental conditions. Additional experiments using untreated and dehydrated (0.09 wt% H 2 O total ) rhyolitic glass quantatively support these interpretations. We conclude that diffusive oxygen isotope exchange in rhyolitic glass/melt, and probably other polymerized silicate materials, it controlled by the concentrations and diffusivities of dissolved oxygen-bearing volatile species rather than diffusion of network oxygen under all but the most volatile-poor conditions. 25 refs., 6 figs., 1 tab

  13. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone

    DEFF Research Database (Denmark)

    Bristow, Laura A.; Callbeck, C. M.; Larsen, M

    2017-01-01

    with isotopically labelled nitrogen compounds and analyse geochemical signatures of these processes in the water column. We find that the Bay of Bengal supports denitrifier and anammox microbial populations, mediating low, but significant N loss. Yet, unlike other oxygen minimum zones, our measurements using...

  14. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures.

    Science.gov (United States)

    Zhang, Hua; Yin, Run-sheng; Feng, Xin-bin; Sommar, Jonas; Anderson, Christopher W N; Sapkota, Atindra; Fu, Xue-wu; Larssen, Thorjørn

    2013-11-25

    The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ(199)Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude.

  15. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    International Nuclear Information System (INIS)

    Rogers, Karyne M.

    2003-01-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature (δ 15 N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature (δ 13 C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months

  16. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Karyne M

    2003-07-01

    Stable carbon and nitrogen isotopes have been used to assess sewage contamination of a sewage outfall, discharging milli-screened effluent into Moa Point Bay, New Zealand, and monitor the recovery of flora and fauna after the outfall's closure. An initial study characterising the extent of the discharge and the effects on seaweed (Ulva lactuca L.), blue mussels (Mytilus galloprovincialis) and limpets (Cellana denticulata) from the area, showed effects of the sewage discharge on flora and fauna were localised within in the bay. The immediate area surrounding the discharge area was found to contain limited biodiversity, with an abundance of Ulva lactuca, a bright green lettuce-like seaweed, typically found in areas with high nutrient input, limpets and small blue mussels. The nitrogen isotopic signature ({delta}{sup 15}N) is shown to be a good tracer of sewage pollution in seaweed and associated grazers (i.e. limpets) as a result of the increased contribution of urea and ammonia to seawater nitrogen derived from the effluent. The carbon isotopic signature ({delta}{sup 13}C) is suggested as a more appropriate sewage tracer for mussels, which filter feed the effluent's particulate organic matter from the water. Lower carbon:nitrogen ratios were found in Ulva lactuca sampled from around the outfall region compared to uncontaminated control sites. However carbon:nitrogen ratios do not vary significantly amongst shellfish species. After closure, monitoring continued for 9 months and showed that the carbon and nitrogen isotopic signatures of algae (Ulva lactuca L.) returned to similar control site levels within 3 months. Limpet and blue mussels (Cellana denticulata and Mytilus galloprovincialis) showed slower recovery times than the Ulva lactuca, with detectable levels of the sewage-derived carbon and nitrogen remaining in the animal's tissue for up to 9 months.

  17. The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia: validation of a new paleoenvironmental tool

    Directory of Open Access Journals (Sweden)

    A. Alexandre

    2012-02-01

    Full Text Available Phytoliths are micrometric particles of amorphous silica that form inside or between the cells of higher plant tissues throughout the life of a plant. With plant decay, phytoliths are either incorporated into soils or exported to sediments via regional watersheds. Phytolith morphological assemblages are increasingly used as proxy of grassland diversity and tree cover density in inter-tropical areas. Here, we investigate whether, along altitudinal gradients in northeast Queensland (Australia, changes in the δ18O signature of soil top phytolith assemblages reflect changes in mean annual temperature (MAT and in the oxygen isotopic composition of precipitation (δ18Oprecipitation, as predicted by equilibrium temperature coefficients previously published for silica. Oxygen isotopic analyses were performed on 16 phytolith samples, after controlled isotopic exchange (CIE, using the IR Laser-Heating Fluorination Technique. Long-term mean annual precipitation (MAP and MAT values at the sampled sites were calculated by the ANUCLIM software. δ18Oprecipitation estimates were calculated using the Bowen and Wilkinson (2002 model, slightly modified. An empirical temperature-dependant relationship was obtained: δ18Owood phytolith-precipitation (‰ vs. VSMOW = −0.4 (±0.2 t (°C + 46 (±3 (R2 = 0.4, p < 0.05; n = 12. Despite the various unknowns introduced when estimating δ18Oprecipitation values and the large uncertainties on δ18Owood phytolith values, the temperature coefficient (−0.4 ± 0.2‰ °C−1 is in the range of values previously obtained for natural quartz, fresh and sedimentary diatoms and harvested grass phytoliths (from −0.2 to −0.5‰ °C−1. The consistency supports the reliability of δ18Owood phytolith signatures for recording

  18. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    Gaffney, Jeffrey

    2012-01-01

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  19. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  20. Oxygen isotopic analyses of individual planktic foraminifera species: Implications for seasonality in the western Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Niitsuma, N.; Naik, S.S.

    The variation of stable isotopes between individual shells of planktic foraminifera of a given species and size may provide short-term seasonal insight on Paleoceanography. In this context, oxygen isotope analyses of individual Globigerinoides...

  1. Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification

    Science.gov (United States)

    Boshers, D.; Granger, J.; Bohlke, J. K.

    2016-12-01

    Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.

  2. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes.

    Science.gov (United States)

    De Bénédittis, J; Bertrand-Krajewski, J L

    2005-01-01

    The paper presents the principle of a method to measure infiltration rates in sewer systems based on the use of oxygen isotopes and its application in Lyon (France). In the urban area of Lyon, significant differences in delta 18O that can reach 3 per thousand are observed between the oxygen isotopic compositions of groundwater originating from Rhone, Saone and from their associated alluvial aquifers. Drinking water supplying Lyon results mainly from pumping in the Rhone alluvial aquifer. Therefore, in some areas, the difference of isotopic composition between wastewater resulting from the consumption of drinking water and local groundwater can be used to measure infiltration in sewer systems. The application in the catchment of Ecully shows that the infiltration flow rate presents strong fluctuations at an hourly scale: it varies between 15 and 40 m3/h. This variability could be explained by non-constant discharges of pumping and by variations of the water level in the sewer.

  3. Triple oxygen isotope systematics of structurally bonded water in gypsum

    Science.gov (United States)

    Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael

    2017-07-01

    The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.

  4. Spatial and temporal variance in fatty acid and stable isotope signatures across trophic levels in large river systems

    Science.gov (United States)

    Fritts, Andrea; Knights, Brent C.; Lafrancois, Toben D.; Bartsch, Lynn; Vallazza, Jon; Bartsch, Michelle; Richardson, William B.; Karns, Byron N.; Bailey, Sean; Kreiling, Rebecca

    2018-01-01

    Fatty acid and stable isotope signatures allow researchers to better understand food webs, food sources, and trophic relationships. Research in marine and lentic systems has indicated that the variance of these biomarkers can exhibit substantial differences across spatial and temporal scales, but this type of analysis has not been completed for large river systems. Our objectives were to evaluate variance structures for fatty acids and stable isotopes (i.e. δ13C and δ15N) of seston, threeridge mussels, hydropsychid caddisflies, gizzard shad, and bluegill across spatial scales (10s-100s km) in large rivers of the Upper Mississippi River Basin, USA that were sampled annually for two years, and to evaluate the implications of this variance on the design and interpretation of trophic studies. The highest variance for both isotopes was present at the largest spatial scale for all taxa (except seston δ15N) indicating that these isotopic signatures are responding to factors at a larger geographic level rather than being influenced by local-scale alterations. Conversely, the highest variance for fatty acids was present at the smallest spatial scale (i.e. among individuals) for all taxa except caddisflies, indicating that the physiological and metabolic processes that influence fatty acid profiles can differ substantially between individuals at a given site. Our results highlight the need to consider the spatial partitioning of variance during sample design and analysis, as some taxa may not be suitable to assess ecological questions at larger spatial scales.

  5. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    Science.gov (United States)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  6. Estimating of gas transfer velocity using triple isotopes of dissolved oxygen.

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Abe, O.; Honda, M.; Saino, T.

    variations in oxygen isotopes are found to be higher than the direct estimations at low wind speed (<5 m s sup(-1)) and lower at high wind speeds (>13 m s sup(-1)) and showed significant spatial variability. The method presented here can be used to derive...

  7. Monsoonal influence on variation of hydrochemistry and isotopic signatures: Implications for associated arsenic release in groundwater

    Science.gov (United States)

    Majumder, Santanu; Datta, Saugata; Nath, Bibhash; Neidhardt, Harald; Sarkar, Simita; Roman-Ross, Gabriela; Berner, Zsolt; Hidalgo, Manuela; Chatterjee, Debankur; Chatterjee, Debashis

    2016-04-01

    The present study examines the groundwater and surface water geochemistry of two different geomorphic domains within the Chakdaha block, West Bengal, in an attempt to decipher potential influences of groundwater abstraction on the hydrochemical evolution of the aquifer, the effect of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and concomitant As release. A low-land flood plain and a natural levee have been selected for this purpose. Although the stable isotopic signatures of oxygen (δ18O) and hydrogen (δ2H) are largely controlled by local precipitation, the isotopic composition falls sub-parallel to the Global Meteoric Water Line (GMWL). The Cl/Br molar ratio indicates vertical recharge into the wells within the flood plain area, especially during the post-monsoon season, while influences of both evaporation and vertical mixing are visible within the natural levee wells. Increase in mean DOC concentrations (from 1.33 to 6.29 mg/L), from pre- to post-monsoon season, indicates possible inflow of organic carbon to the aquifer during the monsoonal recharge. Concomitant increase in AsT, Fe(II) and HCO3- highlights a possible initial episode of reductive dissolution of As-rich Fe-oxyhydroxides. The subsequent sharp increase in the mean As(III) proportions (by 223%), particularly in the flood plain samples during the post-monsoon season, which is accompanied by a slight increase in mean AsT (7%) may refer to anaerobic microbial degradation of DOC coupled with the reduction of As(V) to As(III) without triggering additional As release from the aquifer sediments.

  8. The magnesium isotope (δ26Mg) signature of dolomites

    Science.gov (United States)

    Geske, A.; Goldstein, R. H.; Mavromatis, V.; Richter, D. K.; Buhl, D.; Kluge, T.; John, C. M.; Immenhauser, A.

    2015-01-01

    Dolomite precipitation models and kinetics are debated and complicated due to the complex and temporally fluctuating fluid chemistry and different diagenetic environments. Using well-established isotope systems (δ18O, δ13C, 87Sr/86Sr), fluid inclusions and elemental data, as well as a detailed sedimentological and petrographic data set, we established the precipitation environment and subsequent diagenetic pathways of a series of Proterozoic to Pleistocene syn-depositional marine evaporative (sabkha) dolomites, syn-depositional non-marine evaporative (lacustrine and palustrine) dolomites, altered marine ("mixing zone") dolomites and late diagenetic hydrothermal dolomites. These data form the prerequisite for a systematic investigation of dolomite magnesium isotope ratios (δ26Mgdol). Dolomite δ26Mg ratios documented here range, from -2.49‰ to -0.45‰ (δ26Mgmean = -1.75 ± 1.08‰, n = 42). The isotopically most depleted end member is represented by earliest diagenetic marine evaporative sabkha dolomites (-2.11 ± 0.54‰ 2σ, n = 14). In comparing ancient compositions to modern ones, some of the variation is probably due to alteration. Altered marine (-1.41 ± 0.64‰ 2σ, n = 4), and earliest diagenetic lacustrine and palustrine dolomites (-1.25 ± 0.86‰ 2σ, n = 14) are less negative than sabkha dolomites but not distinct in composition. Various hydrothermal dolomites are characterized by a comparatively wide range of δ26Mg ratios, with values of -1.44 ± 1.33‰ (2σ, n = 10). By using fluid inclusion data and clumped isotope thermometry (Δ47) to represent temperature of precipitation for hydrothermal dolomites, there is no correlation between fluid temperature (∼100 to 180 °C) and dolomite Mg isotope signature (R2 = 0.14); nor is there a correlation between δ26Mgdol and δ18Odol. Magnesium-isotope values of different dolomite types are affected by a complex array of different Mg sources and sinks, dissolution/precipitation and non

  9. Comparison of interglacial warm events since the marine oxygen isotope stage 11

    Digital Repository Service at National Institute of Oceanography (India)

    Oba, T.; Banakar, V.K.

    Large numbers of oxygen isotopic curves of benthic foraminifcral tests from deep-sea sediment cores have been published. The curves are well-established reliable proxies for past climate and relative sea level fluctuations. In order to understand...

  10. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  11. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    Science.gov (United States)

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  12. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    Science.gov (United States)

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  13. Palmyra Island Monthly Oxygen Isotope Data (delta 18O) for 1886-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Palmyra Island Monthly Coral Oxygen Isotope Data. 112-yr, monthly-resolved coral record from Palmyra Island (5 deg 52 min N, 162 deg 8 min W). The coral was drilled...

  14. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  15. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  16. Fractionation of oxygen and hydrogen isotopes at the hydrate gas forming in the sea sediments

    International Nuclear Information System (INIS)

    Pashkina, V.I.; Esikov, A.D.

    1990-01-01

    The paper gives data on isotope composition of interstitial and near-bottom waters sampled in a region of gas-hydrate formation in the Sea of Okhotsk. The studies show that heavy isotopes of oxygen and hydrogen is used in gas-hydrate formation, with the result that isotope composition of its constitution water constitutes δ 18 O=+1.99per mille, δD=+23per mille relatively to SMOW. Formation of autogenic carbonates leads to isotope exchange with interstitial water wich, in turn, changes its primary isotope composition in the direction of increasing of O-18 content. The near-bottom waters are isotope-light relatively to the SMOW standard and to the mean isotope composition of interstitial water in the studied region of gas-hydrate spreading. (orig.) [de

  17. Dolomite clumped isotope constraints on the oxygen isotope composition of the Phanerozoic Sea

    Science.gov (United States)

    Ryb, U.; Eiler, J. M.

    2017-12-01

    The δ18O value of the Phanerozoic Sea has been debated several decades, largely motivated by an 8‰ increase in δ18O of sedimentary carbonates between the Cambrian and the present. Some previous studies have interpreted this increase to be a primary depositional signal, resulting from an increase in the 18O content of ocean water over time, or from a decrease in ocean temperature increasing the oxygen isotope fractionation between seawater and carbonates. In contrast, other studies have interpreted lower δ18O compositions as the products of diagenetic alteration at elevated burial temperatures. Here, we show that the Phanerozoic dolomite δ18O record overlaps with that of well-preserved calcite fossils, and use carbonate clumped isotope measurements of Cambrian to Pleistocene dolomites to calculate their formation temperatures and the isotopic compositions of their parent-waters. The observed variation in dolomite δ18O is largely explained by dolomite formation at burial temperatures of up to 158°C. The δ18O values of dolomite parent-waters range -2 to +12‰ and are correlated with formation temperatures. Such correlation is consistent with the modification of seawater (0±2‰, VSMOW) toward isotopically heavier compositions through water-rock reactions at elevated burial temperatures. The similarity between the dolomite and calcite δ18O records, and published clumped isotope-based calculations of water compositions, suggests that like dolomite, temporal variations of the calcite δ18O record may also be largely driven by diagenetic alteration. Finally, the relationship we observe between temperature of dolomitization and d18O of dolomite suggests platform carbonates generally undergo dolomitization through reaction with modified marine waters, and that there is no evidence those waters were ever significantly lower in d18O than the modern ocean.

  18. INVESTIGATION OF DISSOLVED SULPHATE IN VARIOUS GEOTHERMAL FIELDS OF SUMATRA USING OXYGEN AND SULPHUR ISOTOPES

    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati

    2010-06-01

    Full Text Available There are at least 30 high temperature systems; eleven active volcanoes, five degassing volcanoes and one caldera volcano controlled by Sumatra Fault Zone over a length of 1700 km. To understand this geothermal field system, some information about geochemistry including isotope composition in its fluid is needed. Sulphur-34 and oxygen-18 isotopes in dissolved sulphate pair have been used to determine the origin of acidic fluid of sulphate and to evaluate the process involved. The fluids from eight hot springs, two fumaroles, four deep wells and crater have been collected in along Sumatra geothermal fields. Sulphur-34 (d 34S (SO4, 0/00 CDT and oxygen-18 (d 18O (SO4, 0/00 SMOW in sulphate is analyzed according to Robinson-Kusakabe and Rafter method, respectively. The d 34S (SO4 values from Sibayak wells are more enriched of 16.8 0/00 to 18.2 0/0 that may indicate the dissolution of anhydrite minerals or isotope partitioning in hydration of SO2. The d 34S (SO4 values from two fumaroles (Pusuk Bukit - North Sumatra and Rantau Dadap - South Sumatra are at depleted value of -0.150/00 and 1.80/00, those are close to d 34S from magmatic sulphur.  In general, the d 34S (SO4 of springs spread in a wide range of 5.250/00 to14.20/00 and show a mixing process between atmospheric sulphate and sulphate from deep wells. The d 18O (SO4 from wells exhibits depleted value around -3.60/00 suggesting that 87.5% of sulphate oxygen is derived from groundwater oxygen and 12.5% is derived from atmospheric molecular oxygen in sulphide oxidation reaction. In the other hand, hot springs (except Semurup, crater and fumaroles have enriched value of d 18O (SO4. These enriched values suggest that a higher percentage of atmospherically derived oxygen compared to those from the depth.   Keywords: isotope, geothermal, Sumatra

  19. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M. F. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Madrid (Spain); Castano, S. [Geological Survey of Spain (IGME), Madrid (Spain)

    2013-07-15

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a digital elevation model using GIS tools. Application of the resulting map to several groundwater case studies in spain has shown it to be useful as a reference of the input function to recharge. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is ongoing through comparison of model results with isotope data from the GNIP database and from isotope studies in hydrogeology and climate change taking place in spain. (author)

  20. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

    Science.gov (United States)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan

    2017-08-01

    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  1. Oxygen isotope geochemistry of The Geysers reservoir rocks, California

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, Richard P.; Moore, Joseph N.

    1994-01-20

    Whole-rock oxygen isotopic compositions of Late Mesozoic graywacke, the dominant host rock at The Geysers, record evidence of a large liquid-dominated hydrothermal system that extended beyond the limits of the present steam reservoir. The graywackes show vertical and lateral isotopic variations that resulted from gradients in temperature, permeability, and fluid composition during this early liquid-dominated system. All of these effects are interpreted to have resulted from the emplacement of the granitic "felsite" intrusion 1-2 million years ago. The {delta}{sup 18}O values of the graywacke are strongly zoned around a northwest-southeast trending low located near the center of and similar in shape to the present steam system. Vertical isotopic gradients show a close relationship to the felsite intrusion. The {delta}{sup 18}O values of the graywacke decrease from approximately 15 per mil near the surface to 4-7 per mil 300 to 600 m above the intrusive contact. The {delta}{sup 18}O values then increase downward to 8-10 per mil at the felsite contact, thereafter remaining nearly constant within the intrusion itself. The large downward decrease in {delta}{sup 18}O values are interpreted to be controlled by variations in temperature during the intrusive event, ranging from 150{degree}C near the surface to about 425{degree}C near the intrusive contact. The upswing in {delta}{sup 18}O values near the intrusive contact appears to have been caused by lower rock permeability and/or heavier fluid isotopic composition there. Lateral variations in the isotopic distributions suggests that the effects of temperature were further modified by variations in rock permeability and/or fluid-isotopic composition. Time-integrated water:rock ratios are thought to have been highest within the central isotopic low where the greatest isotopic depletions are observed. We suggest that this region of the field was an area of high permeability within the main upflow zone of the liquid

  2. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    Science.gov (United States)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  3. Oxygen isotopes in garnet and accessory minerals to constrain fluids in subducted crust

    Science.gov (United States)

    Rubatto, Daniela; Gauthiez-Putallaz, Laure; Regis, Daniele; Rosa Scicchitano, Maria; Vho, Alice; Williams, Morgan

    2017-04-01

    Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. Garnet and U-Pb accessory minerals constitute some of the most robust and ubiquitous minerals in subducted crust and can preserve multiple growth zones that track the metamorphic evolution of the sample they are hosted in. Microbeam investigation of the chemical (major and trace elements) and isotopic composition (oxygen and U-Pb) of garnet and accessory minerals is used to track significant fluid-rock interaction at different stages of the subduction system. This approach requires consideration of the diffusivity of oxygen isotopes particularly in garnet, which has been investigated experimentally. The nature of the protolith and ocean floor alteration is preserved in relict accessory phases within eclogites that have been fully modified at HP conditions (e.g. Monviso and Dora Maira units in the Western Alps). Minerals in the lawsonite-blueschists of the Tavsanli zone in Turkey record pervasive fluid exchange between mafic and sedimentary blocks at the early stage of subduction. High pressure shear zones and lithological boundaries show evidence of intense fluid metasomatism at depth along discontinuities in Monviso and Corsica. In the UHP oceanic crust of the Zermatt-Saas Zone, garnet oxygen isotopes and tourmaline boron isotopes indicate multistage fluid infiltration during prograde metamorphism. Localized exchanges of aqueous fluids are also observed in the subducted continental crust of the Sesia-Lanzo Zone. In most cases analyses of distinct mineral zones enable identification of multiple pulses of fluids during the rock evolution.

  4. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship

    Science.gov (United States)

    Chaumard, Noël; Defouilloy, Céline; Kita, Noriko T.

    2018-05-01

    High-precision oxygen three-isotope measurements of olivine and pyroxene were performed on 29 chondrules in the Murchison CM2 chondrite by secondary ion mass spectrometry (SIMS). The oxygen isotope ratios of analyzed chondrules all plot very close to the primitive chondrule minerals (PCM) line. In each of 24 chondrules, the olivine and/or pyroxene grains analyzed show indistinguishable oxygen isotope ratios. Exceptions are minor occurrences of isotopically distinguished relict olivine grains, which were found in nine chondrules. The isotope homogeneity of these phenocrysts is consistent with a co-magmatic crystallization of olivine and pyroxene from the final chondrule melts and a significant oxygen isotope exchange between the ambient gas and the melts. Homogeneous type I chondrules with Mg#'s of 98.9-99.5 have host chondrule Δ17O values ranging from -6.0‰ to -4.1‰, with one exception (Δ17O: -1.2‰; Mg#: 99.6). Homogeneous chondrules with Mg#'s poor H2O ice (∼0.3-0.4× the CI dust; Δ17O > 0‰) and at dust enrichments of ∼300-2000×. Regarding the Mg# and oxygen isotope ratios, the chondrule populations sampled by CM and CO chondrites are similar and indistinguishable. The similarity of these 16O-rich components in CO and CM chondrites is also supported by the common Fe/Mn ratio of olivine in type II chondrules. Although they accreted similar high-temperature silicates, CO chondrites are anhydrous compared to CM chondrites, suggesting they derived from different parent bodies formed inside and outside the snow line, respectively. If chondrules in CO and CM chondrites formed at the same disk locations but the CM parent body accreted later than the CO parent body, the snow line might have crossed the common chondrule-forming region towards the Sun between the time of the CO and CM parent bodies accretion.

  5. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    Science.gov (United States)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  6. Fractionation of Nitrogen and Oxygen Isotopes and Roles of Bacteria during Denitrification

    Science.gov (United States)

    Kang, J.; Buyanjargal, A.; Jeen, S. W.

    2017-12-01

    Nitrate in groundwater can cause health and environmental problems when not properly treated. The purpose of this study was to develop a treatment method for nitrate in groundwater using organic carbon-based reactive mixtures (i.e., wood chips and gravel) through column experiments and to evaluate reaction mechanisms responsible for the treatment. The column experiments were operated for a total of 19 months. The results from the geochemical analyses for the experiments suggest that cultures of denitrifying bacteria used organic carbon while utilizing nitrate as their electron acceptor via denitrification process. Proteobacteria was the most abundant phylum in all samples, accounting for 45.7% of the bacterial reads, followed by Firmicutes (22.6%) and Chlorobi (10.6%). Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria_c consisted of 32, 30, 23, 11, and 2% of denitrifying bacteria class. The denitrification process caused fractionation of nitrogen and oxygen isotopes of nitrate while nitrate concentration decreased. When fitted to the Rayleigh's fractionation model, enrichment factors (ɛ) were 11.5‰ and 5.6‰ for 15N and 18O isotopes, respectively. Previous studies suggested that nitrogen isotope enrichment factors of denitrification are within the range of 4.7 to 40‰ and oxygen isotopic enrichment factors are between 8 and 18.3‰. This study shows that nitrate in groundwater can be effectively treated using passive treatment systems, such as permeable reactive barriers (PRBs), and denitrificaton is the dominant process reponsible for the removal of nitrate.

  7. Heterogenous Oxygen Isotopic Composition of a Complex Wark-Lovering Rim and the Margin of a Refractory Inclusion from Leoville

    Science.gov (United States)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2014-01-01

    Wark-Lovering (WL) rims [1] surrounding many refractory inclusions represent marker events in the early evolution of the Solar System in which many inclusions were exposed to changes in pressure [2], temperature [3], and isotopic reservoirs [4-7]. The effects of these events can be complex, not only producing mineralogical variability of WL rims [2], but also leading to mineralogical [8-10] and isotopic [7, 11, 12] changes within inclusion interiors. Extreme oxygen isotopic heterogeneity measured in CAIs has been explained by mixing between distinct oxygen gas reservoirs in the nebula [13]. Some WL rims contain relatively simple mineral layering and/or are isotopically homogeneous [14, 15]. As part of a larger effort to document and understand the modifications observed in some CAIs, an inclusion (L6) with a complex WL rim from Leoville, a member of the reduced CV3 subgroup was studied. Initial study of the textures and mineral chemistry was presented by [16]. Here we present NanoSIMS oxygen isotopic measurements to complement these petrologic observations.

  8. Groundwater hydrochemistry,Variation of Arsenic and Monsoonal influence : An explanation regarding release mechanism assisted by isotopic signatures

    Science.gov (United States)

    Chatterjee, Debashis

    2017-04-01

    The investigation examines the groundwater and surface water geochemistry of two different geomorphics in West Bengal. During investigation, several key factors are taken into account e.g. potential influences of groundwater abstraction on the hydrochemical evolution of the aquifer, the effect of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and accompanying As release. A natural levee and low-land flood plain have been chosen for said investigation. The results reveal that the stable isotopic signatures of oxygen (d18O) and hydrogen (d2H) are governed by local precipitation, the isotopic composition falls sub-parallel to the Global Meteoric Water Line (GMWL). The Cl/Br molar ratio indicates vertical recharge into the wells within the flood plain area, notably during the post-monsoon season, while influences of both evaporation and vertical mixing are visible within the natural levee wells. The important finding is the increasing mean DOC concentrations (from 1.33 to 6.29 mg/L), from pre- to post-monsoon season, which is indicative of possible inflow of organic carbon to the aquifer during the monsoonal recharge. This suggests the subsequent increase in AsT, Fe(II) and HCO3 highlighting a possible initial episode of reductive dissolution of As-rich Fe-oxyhydroxides. The abrupt increase in the mean As(III) proportions (by 223%), notably in the flood plain samples during the post-monsoon season. This is attended by a slight increase in mean AsT (7%). This may refer to anaerobic microbial degradation of DOC coupled with the reduction of As(V) to As(III) without resulting in additional As release from the aquifer sediments.

  9. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    Science.gov (United States)

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  10. Isotopic exchange between CO2 and H2O and labelling kinetics of photosynthetic oxygen

    International Nuclear Information System (INIS)

    Gerster, Richard

    1971-01-01

    The reaction of carbon dioxide with water has been studied by measuring the rate of oxygen exchange between C 18 O 2 and H 2 16 O. The mathematical treatment of the kinetics allows to determine with accuracy the diffusion flow between the gas and the liquid phase, in the same way as the CO 2 hydration rate. The velocity constant of this last process, whose value gives the in situ enzymatic activity of carbonic anhydrase, has been established in the case of chloroplast and Euglena suspensions and of aerial leaves. The study of the isotopic exchange between C 18 O 2 and a vegetable submitted to alternations of dark and light has allowed to calculate the isotopic abundance of the metabolized CO 2 whose value has been compared to that of the intracellular water and that of photosynthetic oxygen. In addition, a new method using 13 C 18 O 2 gives the means to measure with accuracy eventual isotopic effects. The labelling kinetics of the oxygen evolved by Euglena suspensions whose water has been enriched with 18 O have been established at different temperatures. (author) [fr

  11. Preliminary study on the characteristics of carbon and oxygen isotopes in the Shiziping geothermal field groundwater in Emei Mountain

    International Nuclear Information System (INIS)

    Yu Xiujing; Jia Shuyuan

    2000-01-01

    Emei Mountain is a well-known scenic tourism spot in China. In order to promote the development of tourist trade, the authors have explored the hydrothermal water in Emei Mountain. At the beginning of 1998, the hydrothermal water was successfully drilled from the Shiziping geothermal field. In the process of prospecting the hydrothermal water, the authors adopted the geochemical method such as carbon and oxygen isotopes. The result indicates that the groundwater of different genetic types has different constitution characteristics of carbon and oxygen isotopes. This provides the important basis for finding out the forming conditions of underground hydrothermal water. So, it is prospective to study the growth characteristics of hydrothermal water with the carbon and oxygen isotopes of HCO 3 in groundwater

  12. Tracing the oxygen triple isotopic composition of tropospheric molecular oxygen in biogenic apatite - a new tool for palaeoclimatology

    Science.gov (United States)

    Pack, A.; Süssenberger, A.; Gehler, A.; Wotzlaw, J.

    2009-04-01

    It has been demonstrated that tropospheric molecular oxygen posses a significant isotope anomaly [1, 2 and refs. therein]. Relative to the rocks- and minerals-defined terrestrial fractionation line (TFL), tropospheric O2 has an anomaly of -0.35‰ [2]. Because almost all oxygen on Earth is contained in rocks, we suggest that the rocks- and minerals-defined TFL [3] should be used as reference when reporting isotope anomalies with ∆17O = δ'17OSMOW - βTFL δ'18OSMOW. We have developed a new technique for the determination of δ17O and δ18O of silicates by means of laser fluorination GC-CF-irmMS. We have determined βTFL to 0.5247 (N > 100), which is identical to the value reported by other laboratories and techniques [2, 3]. The uncertainty in ∆17O is ±0.03 (1σ) for a single analysis. It was suggested that ∆17O of tropospheric O2 can be used as proxy for the global bioactivity rate [GBR, 1] as well as for past atmospheric CO2 concentrations [4]. Past ∆17O of tropospheric O2 can be determined by analyzing O2 trapped in ice [1, 5] or by analyzing sulfates from terrestrial sulphide oxidation [4]. Disadvantage of ice core data is the limitation in time back mammals of different body mass (Mb) from Northern Germany (except Indian Elephant). The ∆17O of apatite varies between -0.16‰ for a wood mouse (Apodemus sylvaticus) and +0.04‰ for a wild boar (Sus scrofa). Samples were analyzed between 5 and 7 times in order to reduce the analytical uncertainty to ±0.012-0.025‰. Our data confirm the prediction from mass balance that animals inherit a ∆17O signature from anomalous air O2. We have developed a detailed mass balance for mammals with respect to ∆17O. The mass balance considers the oxygen fluxes (drinking and food water, respired O2, metabolic water, excrements, evaporated water and exhaled CO2). The fractionation in δ18O and ∆17O (from associated β-value) was considered for each of the fluxes. The result is an allometric scaling model for ∆17

  13. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, L.W.; DeNiro, M.J. (Univ. of California, Los Angeles (United States))

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leaf water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.

  14. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research?

    Science.gov (United States)

    Longinelli, Antonio

    1984-02-01

    Oxygen isotope analyses of water in blood of humans and domestic pigs indicate that the oxygen isotope fractionation effects between ingested water and body water are the same in all specimens of the same species. The δ18O of body water has been shown to vary linearly with the mean δ18O of local meteoric water. This conclusion also holds for the bone phosphate. Thus, δ18O( PO3-4) values of unaltered fossil bones from humans and domestic pigs can be used to reconstruct the δ18O values of local meteoric waters during the life-times of the mammals. Such data can be used for paleohydrological and paleoclimatological studies both on land and at sea.

  15. Ras Umm Sidd Oxygen Isotope (delta 18O) Data for 1750 to 1995

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ras Umm Sidd bimonthly coral oxygen isotope data (coral core RUS-95). Notes on the data: File (Ras Umm Sidd d18O.txt.) includes columns for Year AD (bimonthly...

  16. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  17. Carbon, hydrogen oxygen isotope studies on imbedded old tree ring and paleoclimate reconstruction

    International Nuclear Information System (INIS)

    Sun Yanrong; Mu Zhiguo; Cui Haiting

    2002-01-01

    Tree ring is a kind of natural archives, on which the isotopic analysis is important to study global climate and environmental change. The authors mainly provide a comprehensive introduction to the fractionation models of carbon, hydrogen and oxygen isotope in plants, their research technique and the extract methods from cellulose. That results show isotopic tracer can record the message of climatic variation and has become a powerful tool for paleoclimate reconstruction and for the modern environment changing research. Especially studying on PAGES. the cellulose isotopic analyses of imbedded old tree ring have become the mainly quantitative means of environmental evolvement. In addition, China is a typical monsoon country, research in tree ring stable isotope seasonal variation can give a lot of important information on that. Up to now, the research techniques and works on tree ring in China are still in its earlier stage, and remain many limitations. It needs further accumulate basic research materials, intensity regional contrast and intercross studies on relative subjects

  18. Modelling and Mapping Oxygen-18 Isotope Composition of Precipitation in Spain for Hydrologic and Climatic Applications

    International Nuclear Information System (INIS)

    Rodriguez-Arevalo, J.; Diaz-Teijeiro, M.F.; Castano, S.

    2011-01-01

    A simple multiple regression model based on two geographic factors (latitude and elevation) has been developed that reproduces reasonably well the spatial distribution of the current mean oxygen-18 isotope composition in precipitation over Spain. In a preliminary analysis, additional geographic and climatic factors do not improve the performance of the model. A continuous digital map of oxygen-18 isotope composition in precipitation has been produced by combining the polynomial model with a Digital Elevation Model using GIS tools. Application of the resulting map to several case studies in Spain has shown it to be useful as a reference of the isotope input function to groundwater recharge and surface runoff. The results obtained so far show a good fit between modelled stable isotope values and those measured in surface and ground waters from different aquifers and recharge areas. The GIS tools applied to a continuous digital layer of spatial isotope are able to provide accurate information at detailed scales that are not affordable by other means. Further validation of the model, and further testing of its usefulness in surface hydrology and climatic studies, is going on.

  19. Intracrystalline fractionation of oxygen isotopes between hydroxyl and non-hydroxyl sites in kaolinite measured by thermal dehydroxylation and partial fluorination

    Science.gov (United States)

    Girard, Jean-Pierre; Savin, Samuel M.

    1996-02-01

    Thermal dehydroxylation and partial fluorination techniques were used to measure intracrystalline fractionation of oxygen isotopes between hydroxyl and non-hydroxyl sites in kaolinite. Several aliquots of a well characterized, fine-grained (rates, and target temperatures. Measured δ18O values of both the liberated water and the dehydroxylated residue are consistent over a wide range of temperatures (550 850°C) when dehydroxylation is performed in a single-step fashion at a rapid heating rate (>50°C/min.). Similar dehydroxylation experiments indicate that brucite dehydroxylation occurs without any significant isotopic fractionation of the oxygen isotopes. By extrapolation we postulate that no significant fractionation occurs during single-step thermal dehydroxylation of fine-grained kaolinite, provided that dehydroxylation is performed under well controlled conditions. In contrast, gibbsite dehydroxylation is accompanied by substantial isotopic fractionation. This is probably the result of the complex, multi-pathway dehydroxylation reaction of this mineral. Similarly, thermal dehydroxylation of coarsegrained (>1 μm) kaolinites and dickites of weathering and hydrothermal origin yield results that are dependent on the temperature of dehydroxylation. We suggest that this effect may be caused by isotopic exchange during diffusion of water molecules through coarse particles. Partial fluorination of fine-grained kaolinite in the presence of excess F2 at low temperatures (rate of reaction of hydroxyl oxygen than of non-hydroxyl oxygen, but examination of the isotopic data as well as XRD and IR analyses of the residues after partial fluorination indicates that the separation between the two types of oxygen is not complete. The results, therefore, do not yield a reliable δ18O value of the hydroxyl oxygen. The results of this study suggest that the thermal dehydroxylation technique may be appropriate for analysis of OH groups in fine-grained kaolinite. The partial

  20. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation

    Science.gov (United States)

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua

    2013-01-01

    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  1. Low-temperature, non-stoichiometric oxygen isotope exchange coupled to Fe(II)-goethite interactions

    Energy Technology Data Exchange (ETDEWEB)

    Frierdich, Andrew J. [Univ. of Wisconsin, Madison, WI (United States); Univ. of Iowa, Iowa City, IA (United States); Beard, Brian L. [Univ. of Wisconsin, Madison, WI (United States); Rosso, Kevin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scherer, Michelle M. [Univ. of Iowa, Iowa City, IA (United States); Spicuzza, Michael J. [Univ. of Wisconsin, Madison, WI (United States); Valley, John W. [Univ. of Wisconsin, Madison, WI (United States); Johnson, Clark M. [Univ. of Wisconsin, Madison, WI (United States)

    2015-07-01

    The oxygen isotope composition of natural iron oxide minerals has been widely used as a paleoclimate proxy. Interpretation of their stable isotope compositions, however, requires accurate knowledge of isotopic fractionation factors and an understanding of their isotopic exchange kinetics, the latter of which informs us how diagenetic processes may alter their isotopic compositions. Prior work has demonstrated that crystalline iron oxides do not significantly exchange oxygen isotopes with pure water at low temperature, which has restricted studies of isotopic fractionation factors to precipitation experiments or theoretical calculations. Using a double three-isotope method (¹⁸O-¹⁷O-¹⁶O and ⁵⁷Fe-⁵⁶Fe-⁵⁴Fe) we compare O and Fe isotope exchange kinetics, and demonstrate, for the first time, that O isotope exchange between structural O in crystalline goethite and water occurs in the presence of aqueous Fe(II) (Fe(II)aq) at ambient temperature (i.e., 22–50 °C). The three-isotope method was used to extrapolate partial exchange results to infer the equilibrium, mass-dependent isotope fractionations between goethite and water. In addition, this was combined with a reversal approach to equilibrium by reacting goethite in two unique waters that vary in composition by about 16‰ in ¹⁸O/¹⁶O ratios. Our results show that interactions between Fe(II)aq and goethite catalyzes O isotope exchange between the mineral and bulk fluid; no exchange (within error) is observed when goethite is suspended in ¹⁷O-enriched water in the absence of Fe(II)aq. In contrast, Fe(II)-catalyzed O isotope exchange is accompanied by significant changes in ¹⁸O/¹⁶O ratios. Despite significant O exchange, however, we observed disproportionate amounts of Fe versus O exchange, where Fe isotope exchange in goethite was roughly three times that of O. This disparity provides novel insight into the reactivity of oxide minerals in aqueous

  2. Study of medical isotope production facility stack emissions and noble gas isotopic signature using automatic gamma-spectra analysis platform

    Science.gov (United States)

    Zhang, Weihua; Hoffmann, Emmy; Ungar, Kurt; Dolinar, George; Miley, Harry; Mekarski, Pawel; Schrom, Brian; Hoffman, Ian; Lawrie, Ryan; Loosz, Tom

    2013-04-01

    The nuclear industry emissions of the four CTBT (Comprehensive Nuclear-Test-Ban Treaty) relevant radioxenon isotopes are unavoidably detected by the IMS along with possible treaty violations. Another civil source of radioxenon emissions which contributes to the global background is radiopharmaceutical production companies. To better understand the source terms of these background emissions, a joint project between HC, ANSTO, PNNL and CRL was formed to install real-time detection systems to support 135Xe, 133Xe, 131mXe and 133mXe measurements at the ANSTO and CRL 99Mo production facility stacks as well as the CANDU (CANada Deuterium Uranium) primary coolant monitoring system at CRL. At each site, high resolution gamma spectra were collected every 15 minutes using a HPGe detector to continuously monitor a bypass feed from the stack or CANDU primary coolant system as it passed through a sampling cell. HC also conducted atmospheric monitoring for radioxenon at approximately 200 km distant from CRL. A program was written to transfer each spectrum into a text file format suitable for the automatic gamma-spectra analysis platform and then email the file to a server. Once the email was received by the server, it was automatically analysed with the gamma-spectrum software UniSampo/Shaman to perform radionuclide identification and activity calculation for a large number of gamma-spectra in a short period of time (less than 10 seconds per spectrum). The results of nuclide activity together with other spectrum parameters were saved into the Linssi database. This database contains a large amount of radionuclide information which is a valuable resource for the analysis of radionuclide distribution within the noble gas fission product emissions. The results could be useful to identify the specific mechanisms of the activity release. The isotopic signatures of the various radioxenon species can be determined as a function of release time. Comparison of 133mXe and 133Xe activity

  3. Bacterial sulphate reduction and mixing processes at the Aespoe Hard Rock Laboratory indicated by groundwater δ34S isotope signatures

    International Nuclear Information System (INIS)

    Wallin, Bill

    2011-04-01

    This report includes data mostly obtained from δ 34 S isotope measurements of groundwater at the Aespoe Island and one sampling from the Laxemar site, southeastern Sweden, during tunnel construction. Early sampling at Aespoe (up to 1992), before tunnel excavation, indicates a groundwater system with multiple sulphur sources. The isotope changes over time in the dissolved sulphate were studied during a sampling campaign in the monitoring phase from 1993 to 1995. A total of 88 samples were collected by SKB between 1992 and 1995 from core-drilled surface boreholes and from boreholes drilled in the tunnel (34 of these samples were collected from the tunnel boreholes). The results of the analyses have been the focus of discussion of the isotope changes with time in the dissolved sulphate (SO 4 2- ). The results indicate that the sulphur isotope signatures in the dissolved sulphate of the groundwater and those from fracture-filling sulphides at Aespoe originate from multiple sulphur sources in the groundwater at Aespoe and Laxemar. The data may be grouped as follows: a) typically homogeneous marine signatures of dissolved SO 4 2- are observed, with δ 34 S values of approximately +21 per mille CDT at intermediate depths of approximately 100-250 m; b) dissolved sulphate in the groundwater at greater depths (below 600 m) with average values of approximately +10 per mille CDT; and c) a dissolved SO 4 2- originating from a mixture of these sulphur sources (100-600m), although there is a difference between a mixture and modification by reduction. Reduced sulphur with low δ 34 S values is also recorded in fracture-filling sulphides, with δ 34 S values of approximately 0 to -10 per mille CDT. This may contribute to small changes in the isotope signature of the dissolved SO 4 2- , probably by sulphide oxidation in the past. The changes in the δ 34 S isotope data for dissolved SO 4 2- over the 1992-1996 period suggest a complex situation, indicating both sulphate reduction by

  4. Application of oxygen and hydrogen isotopes of waters in Tengchong hydrothermal systems of China

    International Nuclear Information System (INIS)

    Shen Minzi; Hou Fagao; Lin Ruifen; Ni Baoling

    1988-01-01

    This paper summarizes the results obtained for hydrothermal systems in Tengchong by using deuterium, oxygen-18 and tritium as natural tracers. On the basis of deuterium and oxygen-18 analyses of 69 thermal springs and some other meteoric, surface and underground water samples it has been confirmed that all geothermal waters are originally meteoric, but the δD of hot spring waters is often lighter than that of local surface and underground waters. It seems that the recharging water is from higher elevations and far from the thermal areas. The differences in oxygen-18 and deuterium contents between thermal springs and deep thermal waters have been calculated for single-stage steam separation from 276 deg. C to 96 deg. C. The oxygen isotope shift of deep thermal water produced by water-rock reactions is of 1.57 per mille and part of the observed oxygen isotope shift of thermal springs seems to have occurred due to subsurface boiling. The tritium content ( 18 O three subsurface processes would have been distinguished, they are subsurface boiling, mixing-subsurface boiling and subsurface boiling-mixing. The springs formed by subsurface boiling have tritium content of less than 5 TU. The tritium content of 5-10 TU is for springs formed by mixing-subsurface boiling and 10-20 TU is for subsurface boiling-mixing. The tritium content of geothermal water in Hot Sea, geothermal field seems higher than that of the Geysers U.S.A. and Wairakei N.Z. It would show that the circulation time of the thermal water in Hot Sea geothermal system is not so long, the reservoir is quite good with percolation and the recharging water is sufficiently enough. The most important applications of oxygen and hydrogen isotopes of water in geothermal study are in two ways, as tracers of water origins and as tracers of reservoir processes. This paper discussed these two aspects of Tengchong hydrothermal systems. 6 refs, 6 figs, 5 tabs

  5. Oxygen isotopic tracing study of the dry thermal oxidation of 6H SiC

    International Nuclear Information System (INIS)

    Vickridge, I.C.; Ganem, J.-J.; Battistig, G.; Szilagyi, E.

    2000-01-01

    The (0 0 0 1) and (0 0 0 1-bar) faces of 6H SiC have been oxidised sequentially at 1100 deg. C and 100 mbar in ultra-dry oxygen of natural isotopic concentration and in ultra-dry oxygen highly enriched in 18 O. Measurement of the 18 O isotopic concentration profiles by nuclear resonance profiling with the narrow resonance at 151 keV in 18 O(p,α) 15 N shows that on the carbon-terminated face (0 0 0 1-bar) the oxidation mechanism is rather similar to that observed on Si(1 0 0), but that on the silicon-terminated face (0 0 0 1) the surface isotopic exchange and oxide formation are superposed. The surface exchange observed during a third dry oxidation, in 16 O 2 , is very similar in magnitude and spatial extent on Si(1 0 0), and the two 6H SiC faces, suggesting that at least near the surface the nature and composition of the three oxides are very similar

  6. Oxygen isotopic tracing study of the dry thermal oxidation of 6H SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vickridge, I.C. E-mail: vickridge@gps.jussieu.fr; Ganem, J.-J.; Battistig, G.; Szilagyi, E

    2000-03-01

    The (0 0 0 1) and (0 0 0 1-bar) faces of 6H SiC have been oxidised sequentially at 1100 deg. C and 100 mbar in ultra-dry oxygen of natural isotopic concentration and in ultra-dry oxygen highly enriched in {sup 18}O. Measurement of the {sup 18}O isotopic concentration profiles by nuclear resonance profiling with the narrow resonance at 151 keV in {sup 18}O(p,{alpha}){sup 15}N shows that on the carbon-terminated face (0 0 0 1-bar) the oxidation mechanism is rather similar to that observed on Si(1 0 0), but that on the silicon-terminated face (0 0 0 1) the surface isotopic exchange and oxide formation are superposed. The surface exchange observed during a third dry oxidation, in {sup 16}O{sub 2}, is very similar in magnitude and spatial extent on Si(1 0 0), and the two 6H SiC faces, suggesting that at least near the surface the nature and composition of the three oxides are very similar.

  7. 18O isotopic tracer studies of silicon oxidation in dry oxygen

    International Nuclear Information System (INIS)

    Han, C.J.

    1986-01-01

    Oxidation of silicon in dry oxygen has been an important process in the integrated circuit industry for making gate insulators on metal-oxide-semiconductory (MOS) devices. This work examines this process using isotopic tracers of oxygen to determine the transport mechanisms of oxygen through silicon dioxide. Oxides were grown sequentially using mass-16 and mass-18 oxygen gas sources to label the oxygen molecules from each step. The resulting oxides are analyzed using secondary ion mass spectrometry (SIMS). The results of these analyses suggest two oxidant species are present during the oxidation, each diffuses and oxidizes separately during the process. A model from this finding using a sum of two linear-parabolic growth rates, each representing the growth rate from one of the oxidants, describes the reported oxidation kinetics in the literature closely. A fit of this relationship reveals excellent fits to the data for oxide thicknesses ranging from 30 A to 1 μm and for temperatures ranging from 800 to 1200 0 C. The mass-18 oxygen tracers also enable a direct observation of the oxygen solubility in the silicon dioxide during a dry oxidation process. The SIMS profiles establish a maximum solubility for interstitial oxygen at 1000 0 C at 2 x 10 20 cm -3 . Furthermore, the mass-18 oxygen profiles show negligible network diffusion during an 1000 0 C oxidation

  8. Isotope characterisation of historical alabaster quarries in Western Europe.

    Science.gov (United States)

    Kloppmann, Wolfram; Leroux, Lise; Bromblet, Philippe; Cooper, Anthony H.; Nestler, Angela; Guerrot, Catherine; Montech, Anne-Thérèse; Worley, Noel

    2015-04-01

    The origin of the raw material of gypsum alabaster artwork is still largely underinvestigated as conventional chemical and mineralogical analyses have not yielded convincing results due to the rather homogeneous composition, especially of the most wanted pure white varieties. Yet, identifying the origin of raw materials used for sculpture is crucial for art historians and museums aiming at identifying artists, rarely nominally documented before the 16th century, workshops and historic trade roads. A pilot study (Kloppmann et al., 2014) revealed the potential of multi-isotope fingerprinting of alabaster provenance, using a combination of sulphur, oxygen and strontium isotopes. Here we present an enlarged data base of isotope analyses of samples from known or suspected historical alabaster exploitations in France (Jura, Alps, Provence, Burgundy, Lorraine, Aquitaine, Paris region), Spain (Aragon and Catalonia), England (East Midlands/Nottingham region, Cumberland, N Yorkshire), Germany (Harz Mountain foreland). Strontium and sulphur isotopes appear to be particularly discriminative with a strong inter-site variability and intra-site homogeneity. Isotope ratios of both elements in seawater and associated evaporites have strongly varied over geological timescales (Claypool et al. 1980; Burke et al. 1982; Denison et al. 1998) so that W-European alabaster samples, ranging from Permian (Zechstein) to Miocene ages, show age-specific differentiation. Additionally, for both elements, non-marine sources such as sulphides, organic sulphur and strontium derived from mineral weathering provide basin- or sub-basin-specific signatures that further discriminate alabaster provenances. Oxygen isotopes provide supplementary evidence even if there is a stronger overlap of signatures. In conclusion, we consider that we have now an operational tool to distinguish the main alabaster sources for historical workshops in Western Europe. This methodology is currently applied to sculptures

  9. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  10. Interplay of crystal fractionation, sulfide saturation and oxygen fugacity on the iron isotope composition of arc lavas: An example from the Marianas

    Science.gov (United States)

    Williams, H. M.; Prytulak, J.; Woodhead, J. D.; Kelley, K. A.; Brounce, M.; Plank, T.

    2018-04-01

    Subduction zone systems are central to a multitude of processes from the evolution of the continental crust to the concentration of metals into economically viable deposits. The interplay between oxygen fugacity, sulfur saturation, fluid exsolution and fractionating mineral assemblages that gives rise to typical arc magma chemical signatures is, however, still poorly understood and novel geochemical approaches are required to make further progress. Here we examine a well-characterized suite of arc lavas from the Marianas (W. Pacific) for their stable Fe isotope composition. In agreement with previous work and mass balance considerations, contributions from sediments and/or fluids are shown to have negligible effect on Fe isotopes. Instead, we focus on disentangling processes occurring during basalt through dacite differentiation using a sample suite from the island of Anatahan. Anatahan whole rock Fe isotope compositions (δ57Fe) range from -0.05 ± 0.05 to 0.17 ± 0.03 (2 S.D.)‰. A fractionation model is constructed, where three distinct stages of differentiation are required to satisfy the combined major and trace element and isotopic observations. In particular, the sequestration of isotopically heavy Fe into magnetite and isotopically light Fe into sulfide melts yields important constraints. The data require that lavas are first undersaturated with respect to crystalline or molten sulfide, followed by the crystallisation of magnetite, which then triggers late sulfide saturation. The model demonstrates that the final stage of removal of liquid or crystalline sulfide can effectively sequester Cu (and presumably other chalcophiles) and that late stage exsolution of magmatic fluids or brines may not be required to do this, although these processes are not mutually exclusive. Finally, the new Fe isotope data are combined with previous Tl-Mo-V stable isotope determinations on the same samples. Importantly, the multi-valent transition metal stable isotope systems of

  11. CAN GALACTIC CHEMICAL EVOLUTION EXPLAIN THE OXYGEN ISOTOPIC VARIATIONS IN THE SOLAR SYSTEM?

    International Nuclear Information System (INIS)

    Lugaro, Maria; Liffman, Kurt; Ireland, Trevor R.; Maddison, Sarah T.

    2012-01-01

    A number of objects in primitive meteorites have oxygen isotopic compositions that place them on a distinct, mass-independent fractionation line with a slope of one on a three-isotope plot. The most popular model for describing how this fractionation arose assumes that CO self-shielding produced 16 O-rich CO and 16 O-poor H 2 O, where the H 2 O subsequently combined with interstellar dust to form relatively 16 O-poor solids within the solar nebula. Another model for creating the different reservoirs of 16 O-rich gas and 16 O-poor solids suggests that these reservoirs were produced by Galactic chemical evolution (GCE) if the solar system dust component was somewhat younger than the gas component and both components were lying on the line of slope one in the O three-isotope plot. We argue that GCE is not the cause of mass-independent fractionation of the oxygen isotopes in the solar system. The GCE scenario is in contradiction with observations of the 18 O/ 17 O ratios in nearby molecular clouds and young stellar objects. It is very unlikely for GCE to produce a line of slope one when considering the effect of incomplete mixing of stellar ejecta in the interstellar medium. Furthermore, the assumption that the solar system dust was younger than the gas requires unusual timescales or the existence of an important stardust component that is not theoretically expected to occur nor has been identified to date.

  12. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite

    Science.gov (United States)

    Joachimski, M. M.; Breisig, S.; Buggisch, W.; Talent, J. A.; Mawson, R.; Gereke, M.; Morrow, J. R.; Day, J.; Weddige, K.

    2009-07-01

    Conodonts, microfossils composed of carbonate-fluor apatite, are abundant in Palaeozoic-Triassic sediments and have a high potential to preserve primary oxygen isotope signals. In order to reconstruct the palaeotemperature history of the Devonian, the oxygen isotope composition of apatite phosphate was measured on 639 conodont samples from sequences in Europe, North America and Australia. The Early Devonian (Lochkovian; 416-411 Myr) was characterized by warm tropical temperatures of around 30 °C. A cooling trend started in the Pragian (410 Myr) with intermediate temperatures around 23 to 25 °C reconstructed for the Middle Devonian (397-385 Myr). During the Frasnian (383-375 Myr), temperatures increased again with temperatures to 30 °C calculated for the Frasnian-Famennian transition (375 Myr). During the Famennian (375-359 Myr), surface water temperatures slightly decreased. Reconstructed Devonian palaeotemperatures do not support earlier views suggesting the Middle Devonian was a supergreenhouse interval, an interpretation based partly on the development of extensive tropical coral-stromatoporoid communities during the Middle Devonian. Instead, the Devonian palaeotemperature record suggests that Middle Devonian coral-stromatoporoid reefs flourished during cooler time intervals whereas microbial reefs dominated during the warm to very warm Early and Late Devonian.

  13. Could a secular increase in organic burial explain the rise of oxygen? Insights from a geological carbon cycle model constrained by the carbon isotope record

    Science.gov (United States)

    Krissansen-Totton, J.; Kipp, M.; Catling, D. C.

    2017-12-01

    The stable isotopes of carbon in marine sedimentary rock provide a window into the evolution of the Earth system. Conventionally, a relatively constant carbon isotope ratio in marine sedimentary rocks has been interpreted as implying constant organic carbon burial relative to total carbon burial. Because organic carbon burial corresponds to net oxygen production from photosynthesis, it follows that secular changes in the oxygen source flux cannot explain the dramatic rise of oxygen over Earth history. Instead, secular declines in oxygen sink fluxes are often invoked as causes for the rise of oxygen. However, constant fractional organic burial is difficult to reconcile with tentative evidence for low phosphate concentrations in the Archean ocean, which would imply lower marine productivity and—all else being equal—less organic carbon burial than today. The conventional interpretation of the carbon isotope record rests on the untested assumption that the isotopic ratio of carbon inputs into the ocean reflect mantle isotopic values throughout Earth history. In practice, differing rates of carbonate and organic weathering will allow for changes in isotopic inputs, as suggested by [1] and [2]. However, these inputs can not vary freely because large changes in isotopic inputs would induce secular trends in carbon reservoirs, which are not observed in the isotope record. We apply a geological carbon cycle model to all Earth history, tracking carbon isotopes in crustal, mantle, and ocean reservoirs. Our model is constrained by the carbon isotope record such that we can determine the extent to which large changes in organic burial are permitted. We find both constant organic burial and 3-5 fold increases in organic burial since 4.0 Ga can be reconciled with the carbon isotope record. Changes in the oxygen source flux thus need to be reconsidered as a possible contributor to Earth's oxygenation. [1] L. A. Derry, Organic carbon cycling and the lithosphere, in Treatise on

  14. Isotopic signatures suggest important contributions from recycled gasoline, road dust and non-exhaust traffic sources for copper, zinc and lead in PM10 in London, United Kingdom

    Science.gov (United States)

    Dong, Shuofei; Ochoa Gonzalez, Raquel; Harrison, Roy M.; Green, David; North, Robin; Fowler, Geoff; Weiss, Dominik

    2017-09-01

    The aim of this study was to improve our understanding of what controls the isotope composition of Cu, Zn and Pb in particulate matter (PM) in the urban environment and to develop these isotope systems as possible source tracers. To this end, isotope ratios (Cu, Zn and Pb) and trace element concentrations (Fe, Al, Cu, Zn, Sb, Ba, Pb, Cr, Ni and V) were determined in PM10 collected at two road sites with contrasting traffic densities in central London, UK, during two weeks in summer 2010, and in potential sources, including non-combustion traffic emissions (tires and brakes), road furniture (road paint, manhole cover and road tarmac surface) and road dust. Iron, Ba and Sb were used as proxies for emissions derived from brake pads, and Ni, and V for emissions derived from fossil fuel oil. The isotopic composition of Pb (expressed using 206Pb/207Pb) ranged between 1.1137 and 1.1364. The isotope ratios of Cu and Zn expressed as δ65CuNIST976 and δ66ZnLyon ranged between -0.01‰ and +0.51‰ and between -0.21‰ and +0.33‰, respectively. We did not find significant differences in the isotope signatures in PM10 over the two weeks sampling period and between the two sites, suggesting similar sources for each metal at both sites despite their different traffic densities. The stable isotope composition of Pb suggests significant contribution from road dust resuspension and from recycled leaded gasoline. The Cu and Zn isotope signatures of tires, brakes and road dust overlap with those of PM10. The correlation between the enrichments of Sb, Cu, Ba and Fe in PM10 support the previously established hypothesis that Cu isotope ratios are controlled by non-exhaust traffic emission sources in urban environments (Ochoa Gonzalez et al., 2016). Analysis of the Zn isotope signatures in PM10 and possible sources at the two sites suggests significant contribution from tire wear. However, temporary additional sources, likely high temperature industrial emissions, need to be invoked

  15. Seasonality of bottom water temperature in the northern North Sea reconstructed from the oxygen isotope composition of the bivalve Arctica islandica

    Science.gov (United States)

    Trofimova, Tamara; Andersson, Carin; Bonitz, Fabian

    2017-04-01

    The seasonality of temperature changes is an important characteristic of climate. However, observational data for the ocean are only available for the last 150 year from a limited number of locations. Prior to 18th century information is only available from proxy reconstructions. The vast majority of such reconstructions depend on land-based archives, primarily from dendrochronology. Established marine proxy records for the ocean, especially at high latitudes, are both sparsely distributed and poorly resolved in time. Therefore, the identification and development of proxies for studying key ocean processes at sub-annual resolution that can extend the marine instrumental record is a clear priority in marine climate science. In this study, we have developed a record of early Holocene seasonal variability of bottom water temperature from the Viking Bank in the northern most North Sea. This area is of a particular interest since the hydrography is controlled by the inflow of Atlantic water. The reconstruction is based on the oxygen isotope composition of the growth increments in two sub-fossil shells of Arctica islandica (Bivalvia), dated to 9600-9335 cal. yr BP. By combining radiocarbon dating and sclerochronological techniques a floating chronology spanning over 200 years was constructed. Using the chronology as an age model, oxygen isotope measurements from 2 shells were combined into a 22-years long record. The results from this oxygen isotope record are compared with stable oxygen isotope profiles from modern shells to estimate changes in the mean state and seasonality between present and early Holocene. Shell-derived oxygen isotope values together with ice-volume corrected oxygen isotope values for the seawater were used to calculate bottom-water temperatures on a sub-annual time-scale. Preliminary results of the reconstructed early Holocene bottom water temperature indicate higher seasonality and lower minimum temperature compared to the present.

  16. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  17. Measurement of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen

    International Nuclear Information System (INIS)

    Wiedenbeck, M.E.; Greiner, D.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    The results of an investigation of the isotopic composition of galactic cosmic ray carbon, nitrogen and oxygen (E approx. 80 to 230 MeV/amu) made using the U.C. Berkeley HKH instrument aboard the ISEE-3 spacecraft are reported. The combination of high mass resolution and a large statistical sample makes possible a precise determination of the relative isotopic abundances for these elements. In local interplanetary space we find: 13 C/C = 0.067 +- 0.008, 15 N/N = 0.54 +- 0.03, 17 O/O 18 O/O = 0.019 +- 0.003

  18. Oxygen isotope regional pattern in granitoids from the Cachoeirinha Belt, northeast Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.

    1984-01-01

    Four groups of granitoids are present within the Cachoeirinha belt and in the adjacent migmatitic basement, between 37 0 and 40 0 W long. and 7 0 and 8 0 15' S lat., States of Pernambuco and Paraiba: a) K 2 O - enriched, very porphyritic; b) a calc-alkalic slightly porphyritic group; c) group with trondjemitic affinities; and d) peralkalic group. Petrology and oxygen isotope geochemistry for over 100 samples from these groups were studied. Almost all plutons for which 5 or more samples were analyzed, exhibit a total range of gamma 18 O less than 2% o. A broad range of mean oxygen isotope composition is observed, varying from 6.93 to 12.79% o. There is a systematic regional trend in which the calc-alkalic granitoids (conceicao-type) found within the Cachoeirinha space are the most 18 O - enriched rocks (10.6 to 12.9% o) while the lowest mean gamma 18 O values (4.5 to 9.7% o) are found in the K 2 O - enriched granitoids (Itaporanga-type). Intermediate gamma 18 O values were recorded in the bodies with trondhjemitic affinities (8.9 to 9.8% o) which intruded metasediments of the Salgueiro Group and in the peralkalic granitoids of Catingueira (8.1 to 9.8% o) which intruded Cachoeirinha metamorphics. Among the potassic granitoids, mean gamma 18 O increases from Bodoco to Itaporanga (from west to east). As a whole, the W.R. gamma 18 O of these plutons correlate with the type of grade of metamorphism of the host rocks and, therefore, with the tectonic framework, increasing from those which intruded the gneiss-migmatites to those which intruded the low-grade metamorphics of the Cachoeirinha Group. The possible origin of each rock group is discussed in light of the oxygen isotope geochemistry. (Author) [pt

  19. Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula.

    Science.gov (United States)

    Simon, Justin I; Hutcheon, Ian D; Simon, Steven B; Matzel, Jennifer E P; Ramon, Erick C; Weber, Peter K; Grossman, Lawrence; DePaolo, Donald J

    2011-03-04

    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  20. Hydrogen and oxygen stable isotope ratios of milk in the United States.

    Science.gov (United States)

    Chesson, Lesley A; Valenzuela, Luciano O; O'Grady, Shannon P; Cerling, Thure E; Ehleringer, James R

    2010-02-24

    Models of hydrogen and oxygen incorporation in human tissues recognize the impact of geographic location on the isotopic composition of fluid intake, but inputs can include nonlocal beverages, such as milk. Milk and cow drinking water were collected from dairies, and commercially available milk was purchased from supermarkets and fast food restaurants. It was hypothesized that milk water delta(2)H and delta(18)O values record geographic location information. Correlations between milk water isotope ratios and purchase location tap water were significant. However, the amount of variation in milk delta(2)H and delta(18)O values explained by tap water was low, suggesting a single estimation of fluid input isotope ratios may not always be adequate in studies. The delta(2)H and delta(18)O values of paired milk and cow drinking water were related, suggesting potential for geographical origin assignment using stable isotope analysis. As an application example, milk water delta(18)O values were used to predict possible regions of origin for restaurant samples.

  1. Oxygen isotope fractionation between bird bone phosphate and drinking water

    Science.gov (United States)

    Amiot, Romain; Angst, Delphine; Legendre, Serge; Buffetaut, Eric; Fourel, François; Adolfssen, Jan; André, Aurore; Bojar, Ana Voica; Canoville, Aurore; Barral, Abel; Goedert, Jean; Halas, Stanislaw; Kusuhashi, Nao; Pestchevitskaya, Ekaterina; Rey, Kevin; Royer, Aurélien; Saraiva, Antônio Álamo Feitosa; Savary-Sismondini, Bérengère; Siméon, Jean-Luc; Touzeau, Alexandra; Zhou, Zhonghe; Lécuyer, Christophe

    2017-06-01

    Oxygen isotope compositions of bone phosphate (δ18Op) were measured in broiler chickens reared in 21 farms worldwide characterized by contrasted latitudes and local climates. These sedentary birds were raised during an approximately 3 to 4-month period, and local precipitation was the ultimate source of their drinking water. This sampling strategy allowed the relationship to be determined between the bone phosphate δ18Op values (from 9.8 to 22.5‰ V-SMOW) and the local rainfall δ18Ow values estimated from nearby IAEA/WMO stations (from -16.0 to -1.0‰ V-SMOW). Linear least square fitting of data provided the following isotopic fractionation equation: δ18Ow = 1.119 (±0.040) δ18Op - 24.222 (±0.644); R 2 = 0.98. The δ18Op-δ18Ow couples of five extant mallard ducks, a common buzzard, a European herring gull, a common ostrich, and a greater rhea fall within the predicted range of the equation, indicating that the relationship established for extant chickens can also be applied to birds of various ecologies and body masses. Applied to published oxygen isotope compositions of Miocene and Pliocene penguins from Peru, this new equation computes estimates of local seawater similar to those previously calculated. Applied to the basal bird Confuciusornis from the Early Cretaceous of Northeastern China, our equation gives a slightly higher δ18Ow value compared to the previously estimated one, possibly as a result of lower body temperature. These data indicate that caution should be exercised when the relationship estimated for modern birds is applied to their basal counterparts that likely had a metabolism intermediate between that of their theropod dinosaur ancestors and that of advanced ornithurines.

  2. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  3. Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes

    Science.gov (United States)

    Cao, Xiaobin; Liu, Yun

    2011-12-01

    With a growing interest in small 17O-anomaly, there is a pressing need for the precise ratio, ln 17α/ln 18α, for a particular mass-dependent fractionation process (MDFP) (e.g., for an equilibrium isotope exchange reaction). This ratio (also denoted as " θ") can be determined experimentally, however, such efforts suffer from the demand of well-defined process or a set of processes in addition to high precision analytical capabilities. Here, we present a theoretical approach from which high-precision ratios for MDFPs can be obtained. This approach will complement and serve as a benchmark for experimental studies. We use oxygen isotope exchanges in equilibrium processes as an example. We propose that the ratio at equilibrium, θE ≡ ln 17α/ln 18α, can be calculated through the equation below: θa-bE=κa+(κa-κb){ln18βb}/{ln18α} where 18βb is the fractionation factor between a compound "b" and the mono-atomic ideal reference material "O", 18αa-b is the fractionation factor between a and b and it equals to 18βa/ 18βb and κ is a new concept defined in this study as κ ≡ ln 17β/ln 18β. The relationship between θ and κ is similar to that between α and β. The advantages of using κ include the convenience in documenting a large number of θ values for MDFPs and in estimating any θ values using a small data set due to the fact that κ values are similar among O-bearing compounds with similar chemical groups. Frequency scaling factor, anharmonic corrections and clumped isotope effects are found insignificant to the κ value calculation. However, the employment of the rule of geometric mean (RGM) can significantly affect the κ value. There are only small differences in κ values among carbonates and the structural effect is smaller than that of chemical compositions. We provide κ values for most O-bearing compounds, and we argue that κ values for Mg-bearing and S-bearing compounds should be close to their high temperature limitation (i.e., 0.5210 for

  4. In situ oxygen isotope compositions in olivines of different types of cosmic spherules: An assessment of relationships to chondritic particles

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Jones, R.H.; Nagashima, K.

    bearing cosmic spherules (Rudraswami et al., 2015b). In addition, some Mg-rich relict olivine grains are very 16O-rich, with 17O ranging from −21.9 to -18.7‰, similar to oxygen isotopic compositions observed in calcium aluminium rich inclusions (CAIs... isotope analyses of the olivine grains are provided in Appendix B and Table 1, respectively. 5    Four scoriaceous spherules namely, AAS62-61-P64, AAS62-9-P43, AAS62-9-P51 and AAS62-9- P54 were identified for oxygen isotope studies (Fig. 1a...

  5. Chemical and Oxygen Isotopic Composition of Roman and Late Antique Glass from Northern Greece

    Directory of Open Access Journals (Sweden)

    Alberta Silvestri

    2017-01-01

    Full Text Available The present paper emphasizes the importance of measuring the oxygen isotopic and chemical compositions of ancient glass, in order to constrain some features such as age, raw materials, and production technologies and to identify the “fingerprint” of local productions. In this context, thirty-nine Roman and late Antique glass samples and eight chert samples from northern Greece were selected and analysed for their oxygen isotopic and chemical compositions. Results show that the majority of glass samples are produced using natron as flux and have δ18O values of about 15.5‰, plus or minus a few tenths of one per mil, suggesting that raw materials probably come from Levantine area. Four samples are heavily enriched in 18O, and their chemical composition clearly shows that they were made with soda plant ash as flux. Isotopic and chemical data of Greek chert samples support the hypothesis of local production of the above samples. About half of the glass samples have chemical compositions, which allow their age to be constrained to the late Antique period. For the remaining glass, similarities with literature compositional groups are reported and discussed.

  6. Oxygen diffusion in monazite

    Science.gov (United States)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  7. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  8. Kalahari groundwaters: Their hydrogen, carbon and oxygen isotopes

    International Nuclear Information System (INIS)

    Mazor, E.; Verhagen, B.T.; Sellschop, J.P.F.; Robins, N.S.; Hutton, L.G.

    1974-01-01

    Tritium and 14 C measurements have revealed several cases of post-nuclear bomb-test rain recharge of local groundwaters, along with values indicating recharge over larger, yet hydrologically active, time scales. In general, recharge seems to follow rain distribution in being more intense in the northern rather than in the southern Kalahari. Initial δ 13 C values vary over a wide range and reveal some correlation to pH and chemical composition of the water. They cannot be used to correct for fossil carbon dilution in 14 C-age calculations. Radiocarbon-deduced ages range from recent to 30,000 years. Stable hydrogen and oxygen isotopes indicate recharge from direct rain infiltration. (author)

  9. Kinetic theory of oxygen isotopic exchange between minerals and water

    Science.gov (United States)

    Criss, R.E.; Gregory, R.T.; Taylor, H.P.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  10. Covariance of oxygen and hydrogen isotopic compositions in plant water: species effects

    International Nuclear Information System (INIS)

    Cooper, L.W.; DeNiro, M.J.

    1989-01-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species—specific factors on leaf water enrichment of D and 18 O have not been studied for different plants growing together. Accordingly, to learn whether leaf water enrichment patterns and processes for D and 18 O are different for individual species growing under the same environmental conditions we tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show higher slopes (m in the leaf water equation °D = m ° 18 O + b) than in C 3 plants. We determined the relationships between the stable hydrogen (°D) and oxygen (° 18 O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. Slopes (m in the above leaf water equation) ranged from 1.50 to 3.21, compared to °8 for meteoric water, but differences in slope could not be attributed to carboxylation pathway (CAM vs. C 3 ) nor climate (coastal California vs. Sonoran Desert). Higher slopes were correlated with greater overall ranges of leaf water enrichment of D and 18 O. Water in plants with higher slopes also differed most from unaltered meteoric water. Leaf water isotope ratios in plants with lower slopes were better correlated with temperature and humidity. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes

  11. Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis

    Science.gov (United States)

    Bean, J. R.; Hill, T. M.; Guerra, C.

    2007-12-01

    The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to

  12. Oxygen and Hydrogen Isotopic Characteristics of the Kaveri River Surface Waters, Southern Peninsular India

    International Nuclear Information System (INIS)

    Achyuthan, Hema; Michelini, Marzia; Sengupta, Somasis D.; Kale, Vishwas S.; Stenni, Barbara; Flora, Onelio

    2010-12-01

    We present in this paper the spatial distribution of stable isotopic composition (δ 18 O and δD) of Kaveri River surface waters to understand how the evaporation and precipitation affect the isotopic signature and dynamics of surface river waters. In the southern peninsular India, Kaveri River is one of the longest tropical river. Our stable isotope data indicate that the upper Kaveri region is influenced strongly by the SW monsoon. There is a narrow range between the δ 18 O values found from the origin of the Kaveri River to its delta, and there is no significant orographic impact of the Western Ghats. A decreasing trend of d values is found along the course of the river. This is attributed to evaporation effects, which nevertheless are not very strong. This difference in deuterium excess due to evaporation is also an indication of the moisture recycling in the lower Kaveri area, which is primarily controlled by evaporation from the wetlands in the delta plain but also from the surface waters and as such from the rivers. (author)

  13. Temperature measurements of Transdanubian Mesozoic rocks by the oxygen isotope method

    International Nuclear Information System (INIS)

    Cornides, I.; Csaszar, G.; Haas, J.; Jochane Edelenyi, E.

    1979-01-01

    Subjected to paleotemperature measurements with the use of oxygen and carbon isotopes were Upper Triassic, Jurassic and Cretaceous sedimentary rocks and their fossils from the Transdanubian Central Mountains, the Mecsek and the Villany Mts. In determining formation temperature, an important parameter of the environment of formation, the authors relied on the fact that the oxygen isotope composition of calcium carbonate precipitating from its aqueous solution deviates, in dependence on the temperature of the solution concerned, from that of the water. Consequently, the temperature of the water of the one-time seas must have been recorded by the 18 O/ 16 O ratio in the calcite of fossils or sediments. The results reported indicate smaller changes in temperature as compared to international results. In the Jurassic the values of temperature remain consistently below those quoted for Swiss and French territories, being around the values reported from/sroe/thern Germany. These u curves have their maxima in the Toarcian, Aalenian, sediments for which unfortunately no Hungarian results are available. The few results of Cretaceous belemnites are values higher than their international counterparts. The high temperature value obtained for the Albian correlates very well with the formation of rocks known from this stratigraphic stage (red clays, bauxites). (A.L.)

  14. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    Science.gov (United States)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability

  15. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone

    Science.gov (United States)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.

    2013-12-01

    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects

  16. Deciphering the iron isotope message of the human body

    Science.gov (United States)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  17. Constraints on the nature of the projectile using siderophile elements and triple-oxygen isotopes: Zhamanshin impact structure, Kazakhstan

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Šárka; Ackerman, Lukáš; Žák, Karel; Skála, Roman; Magna, T.; Pack, A.; Deutsch, A.

    2016-01-01

    Roč. 51, SI, Supplement 1 (2016), A358-A358 ISSN 1086-9379. [Annual Meeting of the Meteoritical Society /79./. 07.08.2016-12.08.2016, Berlin] Institutional support: RVO:67985831 Keywords : impact glass * irghizites * geochemistry * meteoritic component * siderophile elements * osmium isotopes * triple-oxygen Isotopes * Zhamanshin Subject RIV: DD - Geochemistry

  18. Oxygen isotope studies of the Salton Sea geothermal field

    International Nuclear Information System (INIS)

    Olson, E.R.

    1978-01-01

    Interbedded shales and sandstones were drilled to a depth of 1588 metres in Sinclair Number Four Well, Salton Sea Geothermal Field. Bottom hole temperatures are approximately 290 0 C. The oxygen dels of hydrothermal and detrital calcite have a systematic relationship at any depth in the geothermal reservoir. Typical values are: vein calcite, +6 0 / 00 ; calcite in white sandstone, +10 0 / 00 ; calcite in dark gray shale, +11 0 / 00 ; calcite in light gray shale, +17 0 / 00 ; calcite in red-brown shale, +20 0 / 00 . This succession represents decreasing water-rock interaction that is also indicated by the clay mineralogy of the shales. Permeability has a marked effect on the equilibration of water and rocks at any given temperature. Original differences in permeability have resulted in partial preservation of original detrital sedimentary compositions. The fluids in the Salton Sea Geothermal Field are probabaly partially evaporated Colorado River water, and their oxygen del values vary as much as 4 0 / 00 throughout the field. Truesdell's (1974) data suggest that dissolved salts may make the water oxygen activity del as much as 6 0 / 00 greater than the concentration del in the geothermal reservoir. Such an uncertainty is a serious impediment to precise isotope geothermometry in this system.(auth.)

  19. Oxygen isotopic ratio of the diatom siliceous valves: development of a new method in quantitative paleoclimatology

    International Nuclear Information System (INIS)

    Labeyrie, Laurent.

    1979-07-01

    This paper describes a new method allowing the measurement of the 18 O/ 16 O ratio of the biogenic silica oxygen, which takes into account the effects due to the organic matter and hydration water associated with this type of silica. By isotopic exchange with enriched water, we have been able to fix a treatment which eliminate all contamination and memory effects. This has permitted us to study the temperature dependance of the hydrated silica-water oxygen isotopic fractionation. As application, we present a study of the variations of the delta 18 O of fossil diatoms valves along an Equatorial Pacific sediment core covering the last 20.000 years. The results demonstrate the usefulness of the delta 18 O of the diatom silica for paleoclimatic investigations [fr

  20. Isotopes of carbon and oxygen in the carbonate impurities of coal have potential as palaeoenvironmental indicators

    International Nuclear Information System (INIS)

    Verhagen, B.T.; Falcon, R.M.

    1990-01-01

    The nature and systematics of impurities such as carbonates need to be established in order to understand their provenance in coal seams with reference to mining, beneficiation and ultimately their elimination or reduction. To this end, mineralogical and carbon-13 and oxygen-18 isotopic studies were undertaken on carbonate occurrences in coal from the eastern Transvaal highveld. Isotopic variations of considerable amplitude and individual values of extreme ''lightness'' are to be found in the carbonates in coal of the Witbank and adjacent basins. The observed isotopic ratios have a clear bearing on the nature and origins of the carbonates. 1 tab., 1 fig

  1. Assessing Pyrite-Derived Sulfate in the Mississippi River with Four Years of Sulfur and Triple-Oxygen Isotope Data.

    Science.gov (United States)

    Killingsworth, Bryan A; Bao, Huiming; Kohl, Issaku E

    2018-05-17

    Riverine dissolved sulfate (SO 4 2- ) sulfur and oxygen isotope variations reflect their controls such as SO 4 2- reduction and reoxidation, and source mixing. However, unconstrained temporal variability of riverine SO 4 2- isotope compositions due to short sampling durations may lead to mischaracterization of SO 4 2- sources, particularly for the pyrite-derived sulfate load. We measured the sulfur and triple-oxygen isotopes (δ 34 S, δ 18 O, and Δ' 17 O) of Mississippi River SO 4 2- with biweekly sampling between 2009 and 2013 to test isotopic variability and constrain sources. Sulfate δ 34 S and δ 18 O ranged from -6.3‰ to -0.2‰ and -3.6‰ to +8.8‰, respectively. Our sampling period captured the most severe flooding and drought in the Mississippi River basin since 1927 and 1956, respectively, and a first year of sampling that was unrepresentative of long-term average SO 4 2- . The δ 34 S SO4 data indicate pyrite-derived SO 4 2- sources are 74 ± 10% of the Mississippi River sulfate budget. Furthermore, pyrite oxidation is implicated as the dominant process supplying SO 4 2- to the Mississippi River, whereas the Δ' 17 O SO4 data shows 18 ± 9% of oxygen in this sulfate is sourced from air O 2 .

  2. Permafrost oxygen isotope ratios and chronology of three cores from Antarctica

    International Nuclear Information System (INIS)

    Stuiver, M.; Yang, I.C.; Denton, G.H.

    1976-01-01

    It is stated that permafrost core sediments, associated with the last intrusion of the Ross Ice Shelf in the New Harbour region, were deposited in marine (0 - 85 m deep) as well as freshwater environments (100 - 125 m). Oxygen isotope ratio measurements on these cores provide palaeoclimatic information and show that the extension of the Ross Ice Shelf predates 150,000 yr BP, whereas the radiocarbon date of its retreat is about 5,800 yr b.p. (author)

  3. Evaporation Induced Oxygen Isotope Fractionation in Impact Ejecta

    Science.gov (United States)

    Macris, C. A.; Young, E. D.; Kohl, I. E.; zur Loye, T. E.

    2017-12-01

    Tektites are natural glasses formed as quenched impact melt ejecta. Because they experienced extreme heating while entrained in a hot impact vapor plume, tektites allow insight into the nature of these ephemeral events, which play a critical role in planetary accretion and evolution. During tektite formation, the chemical and isotopic composition of parent materials may be modified by (1) vapor/liquid fractionation at high T in the plume, (2) incorporation of meteoric water at the target site, (3) isotope exchange with atmospheric oxygen (if present), or some combination of the three. Trends from O isotope studies reveal a dichotomy: some tektite δ18O values are 4.0-4.5‰ lower than their protoliths (Luft et al. 1987; Taylor & Epstein 1962), opposite in direction to a vaporization induced fractionation; increases in δ18O with decreasing SiO2 in tektites (Taylor & Epstein 1969) is consistent with vapor fractionation. Using an aerodynamic levitation laser furnace (e.g. Macris et al. 2016), we can experimentally determine the contributions of processes (1), (2) and (3) above to tektite compositions. We conducted a series of evaporation experiments to test process (1) using powdered tektite fused into 2 mm spheres and heated to 2423-2473 K for 50-90 s while levitated in Ar in the furnace. Mass losses were from 23 to 26%, reflecting evaporation of Si and O from the melt. The starting tektite had a δ18O value of 10.06‰ (±0.01 2se) and the residues ranged from 13.136‰ (±0.006) for the least evaporated residue to 14.30‰ (±0.02) for the most evaporated (measured by laser fluorination). The increase in δ18O with increasing mass loss is consistent with Rayleigh fractionation during evaporation, supporting the idea that O isotopes are fractionated due to vaporization at high T in an impact plume. Because atmospheric O2 and water each have distinctive Δ17O values, we should be able to use departures from our measured three-isotope fractionation law to evaluate

  4. Fractionation of hydrogen and oxygen isotopes between hydrated and free water molecules in aqueous urea solution

    International Nuclear Information System (INIS)

    Kakiuchi, M.; Matsuo, S.

    1985-01-01

    Ratios of D/H and 18 O/ 16 O in the vapor phase in equilibrium with aqueous urea solution with different urea molalities were measured at 15 and 25 0 C. Under the assumption that urea solutions consist of two species, i.e., the urea-water cluster and free water, the results are interpreted to give the average hydration number, i.e., the number of water molecules per urea molecule in the urea-water cluster. Good agreement was obtained for the hydration number estimated independently from hydrogen and oxygen isotopic fractions. On the basis of hydrogen isotopic data at 25 0 C, the average hydration number of urea in the cluster is 6.3 +/- 0.8 at 2.1 m and 2.75 +/- 0.08 at saturation (20.15 m). The corresponding average hydration numbers based on oxygen isotopic data were calculated to be 6.7 +/- 2.4 at 2.1 m and 2.75 +/- 0.25 at urea saturation. HD 16 O is enriched in the urea-water cluster and H 2 18 O is enriched in free water. Isotopic partitioning between the cluster and free water is markedly different from those between hydration spheres and free water in aqueous electrolyte solutions. 29 references, 6 figures, 5 tables

  5. Learning from soil gas change and isotopic signatures during 2012 Emilia seismic sequence.

    Science.gov (United States)

    Sciarra, Alessandra; Cantucci, Barbara; Coltorti, Massimo

    2017-10-27

    Soil surveys were performed in Medolla (Italy), a peculiar area characterized by spotty high soil temperature, gas vent, and lack of vegetation, to determine the migration mechanisms and spatial behavior of gas species. Hereby we present soil gas measurements and their isotopic ratios measured between 2008 and 2015, including the 2012 Emilia-Romagna seismic sequence. We found that soil gas concentrations markedly changed during the main shocks of May 20 and 29, 2012 (Mw 6.1 and 6.0, respectively), highlighting the presence of a buried fault intersecting the gas vents. We suggest that crustal dilation associated with seismic activity favored the uprising of geogas towards the surface. Changes in the isotopic signature highlight the contribution of two distinct sources, one deeper, thermogenic and another superficial related to organic-rich layer, whose relative contribution varied before, during and after the earthquake. We suppose an increase of microbial component likely due to the ground shaking of shallower layers linked to seismic sequence, which masks the thermogenic contribution. Although the changes we detect are specific for an alluvial plain, we deduce that analogous processes may be active elsewhere, and that soil gas geochemistry represents an useful tool to discriminate the gas migration related to seismic activity.

  6. The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors

    International Nuclear Information System (INIS)

    Khasanov, R; Shengelaya, A; Morenzoni, E; Conder, K; Savic, I M; Keller, H

    2004-01-01

    Muon spin rotation (μSR) studies of the oxygen isotope ( 16 O/ 18 O) effect (OIE) on the in-plane magnetic field penetration depth λ ab in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T c in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T c . Then, bulk μSR, low-energy μSR, and magnetization studies of the total and site-selective OIE on λ ab are described in some detail. A substantial OIE on λ ab was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T c and λ ab arise from the oxygen sites within the superconducting CuO 2 planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T c and λ ab exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity

  7. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    Science.gov (United States)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  8. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  9. The isotopic composition of valves and organic tissue of diatoms grown in steady state cultures under varying conditions of temperature, light and nutrients. Implications for the interpretation of oxygen isotopes from sedimentary biogenic opal as proxies of environmental variations

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, K

    2006-05-15

    The oxygen isotopes of diatomaceous silica from marine and freshwater sediments are frequently used as indicators of the palaeotemperature development, particularly in cases where calcareous microfossils are rare or absent. With regard to terrestrial waters it is unknown whether or not palaeotemperature scale can be used in a limnic ecosystem. Due to the fact that the seasonal variations in lakes are larger than in oceans, specific problems arise when working with freshwater sediments. Thus, an understanding of the contribution of the various factors (e.g. temperature, light nutrients, competition) influencing the formation of isotope signals in biogenic opal is a prerequisite for the accurate interpretation of environmental processes. Since it is impossible to examine the influence of a single parameter under natural ecosystem conditions due to permanent changes of the environment, laboratory experiments with single diatom species are needed. Therefore, the aim of this study was to investigate the correlation between the oxygen isotope variations in biogenic opal and different environmental parameters using steady state cultures with diatoms. It should be examined whether or not the different diatom species grown under identical conditions show equal oxygen isotope ratios (species relationship), if variations of the water temperature induce variations of the oxygen isotope ratio (relationship with temperature), variable parameters such as light intensity and nitrate concentration influence the isotope ratio, and if vital effects (e.g. growth rate) lead to variations of the oxygen isotope ratio. (orig.)

  10. The isotopic composition of valves and organic tissue of diatoms grown in steady state cultures under varying conditions of temperature, light and nutrients. Implications for the interpretation of oxygen isotopes from sedimentary biogenic opal as proxies of environmental variations

    International Nuclear Information System (INIS)

    Kowalczyk, K.

    2006-05-01

    The oxygen isotopes of diatomaceous silica from marine and freshwater sediments are frequently used as indicators of the palaeotemperature development, particularly in cases where calcareous microfossils are rare or absent. With regard to terrestrial waters it is unknown whether or not palaeotemperature scale can be used in a limnic ecosystem. Due to the fact that the seasonal variations in lakes are larger than in oceans, specific problems arise when working with freshwater sediments. Thus, an understanding of the contribution of the various factors (e.g. temperature, light nutrients, competition) influencing the formation of isotope signals in biogenic opal is a prerequisite for the accurate interpretation of environmental processes. Since it is impossible to examine the influence of a single parameter under natural ecosystem conditions due to permanent changes of the environment, laboratory experiments with single diatom species are needed. Therefore, the aim of this study was to investigate the correlation between the oxygen isotope variations in biogenic opal and different environmental parameters using steady state cultures with diatoms. It should be examined whether or not the different diatom species grown under identical conditions show equal oxygen isotope ratios (species relationship), if variations of the water temperature induce variations of the oxygen isotope ratio (relationship with temperature), variable parameters such as light intensity and nitrate concentration influence the isotope ratio, and if vital effects (e.g. growth rate) lead to variations of the oxygen isotope ratio. (orig.)

  11. Analysis of growth and tissue replacement rates by stable sulfur isotope turnover.

    Science.gov (United States)

    Arneson, L. S.; Macko, S. A.; Macavoy, S. E.

    2003-12-01

    Stable isotope analysis has become a powerful tool to study animal ecology. Analysis of stable isotope ratios of elements such as carbon, nitrogen, sulfur, hydrogen, oxygen and others have been used to trace migratory routes, reconstruct dietary sources and determine the physiological condition of individual animals. The isotopes most commonly used are carbon, due to differential carbon fractionation in C3 and C4 plants, and nitrogen, due to the approximately 3% enrichment in 15N per trophic level. Although all cells express sulfur-containing compounds, such as cysteine, methionine, and coenzyme A, the turnover rate of sulfur in tissues has not been examined in most studies, owing to the difficulty in determining the δ 34S signature. In this study, we have assessed the rate of sulfur isotopic turnover in mouse tissues following a diet change from terrestrial (7%) to marine (19%) source. Turnover models reflecting both growth rate and metabolic tissue replacement will be developed for blood, liver, fat and muscle tissues.

  12. Oxygen isotope analysis of phosphate: improved precision using TC/EA CF-IRMS.

    Science.gov (United States)

    LaPorte, D F; Holmden, C; Patterson, W P; Prokopiuk, T; Eglington, B M

    2009-06-01

    Oxygen isotope values of biogenic apatite have long demonstrated considerable promise for paleothermometry potential because of the abundance of material in the fossil record and greater resistance of apatite to diagenesis compared to carbonate. Unfortunately, this promise has not been fully realized because of relatively poor precision of isotopic measurements, and exceedingly small size of some substrates for analysis. Building on previous work, we demonstrate that it is possible to improve precision of delta18O(PO4) measurements using a 'reverse-plumbed' thermal conversion elemental analyzer (TC/EA) coupled to a continuous flow isotope ratio mass spectrometer (CF-IRMS) via a helium stream [Correction made here after initial online publication]. This modification to the flow of helium through the TC/EA, and careful location of the packing of glassy carbon fragments relative to the hot spot in the reactor, leads to narrower, more symmetrically distributed CO elution peaks with diminished tailing. In addition, we describe our apatite purification chemistry that uses nitric acid and cation exchange resin. Purification chemistry is optimized for processing small samples, minimizing isotopic fractionation of PO4(-3) and permitting Ca, Sr and Nd to be eluted and purified further for the measurement of delta44Ca and 87Sr/86Sr in modern biogenic apatite and 143Nd/144Nd in fossil apatite. Our methodology yields an external precision of +/- 0.15 per thousand (1sigma) for delta18O(PO4). The uncertainty is related to the preparation of the Ag3PO4 salt, conversion to CO gas in a reversed-plumbed TC/EA, analysis of oxygen isotopes using a CF-IRMS, and uncertainty in constructing calibration lines that convert raw delta18O data to the VSMOW scale. Matrix matching of samples and standards for the purpose of calibration to the VSMOW scale was determined to be unnecessary. Our method requires only slightly modified equipment that is widely available. This fact, and the

  13. Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in eucalyptus globulus

    International Nuclear Information System (INIS)

    Cernusak, L.A.; Farquhar, G.D.; Arthur, D.J; Pate, J.S.

    2002-01-01

    Full text: The carbon isotope ratio of phloem sap sugars has been previously observed to correlate strongly with the phloem sap sugar concentration in Eucalyptus globulus. We hypothesized that the correspondence between these two parameters results from co-linearity in their responses to variation in plant water potential. Carbon isotope discrimination is expected to decrease with decreasing plant water potential due to the influence of stomatal conductance on the ratio of intercellular to ambient CO 2 , concentrations (c 1 /c a ). Conversely, we expected the phloem sap sugar concentration to increase with decreasing plant water potential, thereby maintaining positive turgor pressure within the sieve tubes. The study comprised 40 individual Eucalyptus globulus trees growing in three plantations situated on opposing ends of a rainfall gradient in southwestern Australia. A strong correlation was observed between the carbon isotope ratio in phloem sap sugars and phloem sap sugar concentration. Carbon isotope discrimination correlated positively with shoot water potential, whereas phloem sap sugar concentration correlated negatively with shoot water potential. The relationship between carbon isotope discrimination measured in phloem sap sugars collected from the stem and c 1 /c a measured instantaneously on subtending leaves was close to that theoretically predicted. Accordingly, a strong, negative relationship was observed between instantaneous c 1 /c a and the phloem sap sugar concentration. Oxygen isotope discrimination in phloem sap sugars also correlated strongly with phloem sap sugar concentration. A theoretical model suggested that the observed variation in stomatal conductance was sufficient to account for the variation observed in oxygen isotope discrimination across the study. Results strongly support the contention that water relations form a mechanistic link between phloem sap sugar concentration and both instantaneous and integrated measures of the

  14. Do oxygen stable isotopes track precipitation moisture source in vascular plant dominated peatlands?

    Science.gov (United States)

    Charman, D.; Amesbury, M. J.; Newnham, R.; Loader, N.; Goodrich, J. P.; Gallego-Sala, A. V.; Royles, J.; Keller, E. D.; Baisden, W. T.

    2014-12-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature and humidity dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives. Exploitation of this record from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, has been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with limited application in the Southern Hemisphere (SH) or in peatlands dominated by vascular plants. Throughout New Zealand (NZ), the preserved root matrix of the restionaceous wire rush (Empodisma spp.) forms deep peat deposits. NZ provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because sites are ideally suited to single taxon analysis, preserve potentially high resolution full Holocene palaeoclimate records and are situated in the climatically sensitive SH mid-latitudes. Crucially, large gradients exist in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. We test the capacity for δ18O analysis of Empodisma alpha cellulose from ombrotrophic restiad peatlands in NZ to provide a methodology for developing palaeoclimate records. We took surface plant, water and precipitation samples over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. We found a strong link between the isotopic compositions of surface root water, the most likely source water for plant growth, and precipitation in both datasets. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in surface root water. The link between source water and plant

  15. Oxygen isotope mapping and evaluation of paleo-hydrothermal systems associated with synvolcanic intrusion and VMS deposits

    International Nuclear Information System (INIS)

    Taylor, B.E

    2001-01-01

    Whole-rock oxygen isotope mapping provides a useful method for the delineation and quantitative evaluation of paleo-hydrothermal systems associated with syn-volcanic intrusions and volcanic-associated massive sulfide (VMS) deposits. During the course of a four-year study of regional alteration systems associated with VMS Deposits, four syn-volcanic intrusive complexes in Canada were mapped using stable isotope techniques. The complexes included Noranda, Quebec; Clifford-Ben Nevis, Ontario; Snow Lake, Manitoba, and Sturgeon Lake, Ontario. This study was regional in extent, involving large areas and large numbers of whole-rock samples: Noranda (625 km 2 ;≥600 samples, plus others (total = 1198); Sturgeon Lake (525 km 2 ; 452 samples); Clifford-Ben Nevis (160 km 2 ; 251 samples); and Snow Lake (84 km 2 ; 575 samples). Isotopic data on whole-rock carbonates and hydrous minerals were also collected. The regional isotopic studies were carried out in concert with other studies on mineral assemblages and mineral composition, and on associated intrusive and extrusive rocks. The Clifford-Ben Nevis area was selected as a control area, in as much as it contains no known VMS deposits; all other areas are well-known, productive VMS districts. Oxygen isotope maps are, in a sense, thermal maps, illustrating the paleo-distribution of heat and fluids, and offering a potential aid to exploration. The isotopic data may be contoured to reveal zones of 18 O depletion and enrichment, relative to unaltered rocks. Zones of δ 18 O≤60% comprise rocks that have reacted with seawater at high (e.g., 300+ o C) temperatures. The volume of foot-wall rocks isotopically-depleted by water/rock interaction during the life of one or more episodes of submarine hydrothermal activity is proportional to the amount of heat available from the syn-volcanic intrusive center. These altered rocks comprise the reaction zone often inferred to have supplied metals and other constituents for the VMS deposits

  16. Oxygen isotope fractionation between human phosphate and water revisited

    DEFF Research Database (Denmark)

    Daux, Valérie; Lécuyer, Christophe; Héran, Marie-Anne

    2008-01-01

    to investigate the impact of solid food consumption on the oxygen isotope composition of the total ingested water (drinking water+solid food water). The results, along with those from three, smaller published data sets, can be considered as random estimates of a unique delta18OW/delta18OP linear relationship...... collected at 12 sites located at latitudes ranging from 4 degrees N to 70 degrees N together with the corresponding oxygen composition of tap waters (delta18OW) from these areas. In addition, the delta18O of some raw and boiled foods were determined and simple mass balance calculations were performed......: delta18OW=1.54(+/-0.09)xdelta18OP-33.72(+/-1.51)(R2=0.87: p [H0:R2=0]=2x10(-19)). The delta18O of cooked food is higher than that of the drinking water. As a consequence, in a modern diet the delta18O of ingested water is +1.05 to 1.2 per thousand higher than that of drinking water in the area. In meat...

  17. Ion Microprobe Measurements of Comet Dust and Implications for Models of Oxygen Isotope Heterogeneity in the Solar System

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Keller, L. P.; Messenger, S.

    2017-01-01

    The oxygen isotopic compositions of anhydrous minerals in carbonaceous chondrites reflect mixing between a O-16-rich and O-17, O18-rich reservoir. The UV photodissociation of CO (i.e. selfshielding) has been proposed as a mass-independent mechanism for producing these isotopically distinct reservoirs. Self-shielding models predict the composition for the CO gas reservoir to be O-16-rich, and that the accreting primordial dust was in isotopic equilibrium with the gaseous reservoir [1, 2]. Self-shielding also predicts that cometary water, presumed to represent the O-17, O-18-rich reservoir, should be enriched in O-17 and O-18, with compositions of 200 -1000per mille, and that the interaction with this O-17, O-18-rich H2O reservoir altered the compositions of the primordial dust toward planetary values. The bulk composition of the solar nebula, which may be an approximation to the 16O-rich gaseous reservoir, has been constrained by the Genesis results [3]. However, material representing the O-17, O-18-rich end-member is rare [4], and dust representing the original accreting primordial dust has been challenging to conclusively identify in current collections. Anhydrous dust from comets, which accreted in the distal cold regions of the nebula at temperatures below approximately 30K, may provide the best opportunity to measure the oxygen isotope composition of primordial dust. Chondritic porous interplanetary dust particles (CP-IDPs) have been suggested as having cometary origins [5]; however, until direct comparisons with dust from a known comet parent body were made, link between CP-IDPs and comets remained circumstantial. Oxygen isotope analyses of particles from comet 81P/Wild 2 collected by NASA's Stardust mission have revealed surprising similarities to minerals in carbonaceous chondrites which have been interpreted as evidence for large scale radial migration of dust components from the inner solar nebula to the accretion regions of Jupiter- family comets [6

  18. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Nurgul Balci

    2017-08-01

    , acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns.

  19. Oxygen isotopic abundances in the atmospheres of seven red giant stars

    International Nuclear Information System (INIS)

    Harris, M.J.; Lambert, D.L.

    1984-01-01

    Abundances ratios of the oxygen isotopes have been measured in α Tau, β And, μ Gem, α Her, β Peg, γ Dra, and α Boo. In all the stars the 16 O/ 18 O ratios are similar; the mean value is 475, which is consistent with the solar system value 16 O/ 18 O = 490. The 16 O/ 17 O ratios range from approx.1000 for β Peg and α Boo to 16 O/ 17 O = 160 for β And

  20. A study of oxygen isotopic fractionation during bio-induced calcite precipitation in eutrophic Baldeggersee, Switzerland

    NARCIS (Netherlands)

    Teranes, J.L.; McKenzie, J.A.; Bernasconi, S.M.; Lotter, A.F.; Sturm, M.

    1999-01-01

    Abstract—In order to better understand environmental factors controlling oxygen isotope shifts in autochthonous lacustrine carbonate sequences, we undertook an extensive one-year study (March, 1995 to February, 1996) of water-column chemistry and daily sediment trap material from a small lake in

  1. A stable isotope-based approach to tropical dendroclimatology

    Science.gov (United States)

    Evans, Michael N.; Schrag, Daniel P.

    2004-08-01

    We describe a strategy for development of chronological control in tropical trees lacking demonstrably annual ring formation, using high resolution δ 18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the δ 18O of α-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology.

  2. Decoding mass-independent fractionation of sulfur isotopes in modern atmosphere using cosmogenic 35S: A five-isotope approach and possible implications for Archean sulfur isotope records

    Science.gov (United States)

    Lin, M.; Thiemens, M. H.; Shen, Y.; Zhang, X.; Huang, X.; Chen, K.; Zhang, Z.; Tao, J.

    2017-12-01

    The signature of sulfur isotopic mass-independent fractionation (S-MIF) observed in Archean sediments have been interpreted as a proxy of the origins and evolution of atmospheric oxygen and early life on Earth [1]. Photochemistry of SOx in the short (negative Δ36S. After eliminating combustion impacts, the obtained Δ36S/Δ33S slope of -4.0 in the modern atmosphere is close to the Δ36S/Δ33S slope (-3.6) in some records from Paleoarchean [4], an era probably with active volcanism [5]. The significant role of volcanic OCS in the Archean atmosphere has been called for in terms of its ability to provide a continual SO2 high altitude source for photolysis [2]. The strong but previously underappreciated stratospheric signature of S-MIF in tropospheric sulfates suggests that a more careful investigation of wavelength-dependent sulfur isotopic fractionation at different altitudes are required. The combustion-induced negative Δ36S may be linked to recombination reactions of elemental sulfur [6], and relevant experiments are being conducted to test the isotope effect. Although combustion is unlikely in Archean, recombination reactions may occur in other previously unappreciated processes such as volcanism and may contribute in part to the heavily depleted 36S in some Paleoarchean records [5,7]. The roles of both photochemical and non-photochemical reactions in the variability of Archean S-MIF records require further analysis in the future. Refs: [1] Farquhar et al., Science 2000; [2] Shaheen et al., PNAS 2014; [3] Lin et al., PNAS 2016; [4] Wacey et al., Precambrian Res 2015; [5] Muller et al., PNAS 2016; [6] Babikov, PNAS 2017; [7] Shen et al., EPSL, 2009.

  3. Carbon Monoxide Stable Isotopes: Extraction Technique Development and Urban Atmospheric Analysis

    Science.gov (United States)

    Vimont, Isaac Josef

    We have developed an extraction system to analyze isotopes of carbon monoxide (CO). We then analyzed CO isotopes for two years at Indianapolis, IN, USA. These measurements were done at three towers, one of which measured incoming, background air into the city. We quantitatively removed the background signal and determined the urban CO mole fraction and isotopic enhancements. During the winter months, we constrained the isotopic signature and concluded that the majority of CO produced during the winter was produced by fossil fuel combustion. We found that the Indianapolis fossil fuel signature differed from that of studies done in Europe. Further, we performed a limited traffic study to look at CO isotopes from traffic. While this was not conclusive, it did support our hypothesis that a larger fraction of the Indianapolis vehicle fleet may have malfunctioning catalytic systems, which biases the isotopic results, particularly for delta18O. We used the wintertime fossil fuel isotopic signature to help constrain the summertime budget. It was hypothesized that a second source of CO was significant during the summer months. Oxidation of biogenically produced volatile organic compounds (BVOC's) was one possible source. Oxidized BVOC's were consistent with the changes between our winter and summer isotopic source signatures. We then used the isotopic signatures to determine that between zero and sixty percent of the summertime CO budget was produced from oxidized VOC's. This provided the first direct evidence of a larger percentage of urban CO being produced by oxidized VOC's.

  4. Early-Middle Pleistocene benthic turnover and oxygen isotope stratigraphy from the Central Mediterranean (Valle di Manche, Crotone Basin, Italy): Data and trends

    OpenAIRE

    Michele Azzarone; Patrizia Ferretti; Veronica Rossi; Daniele Scarponi; Luca Capraro; Patrizia Macrì; John W. Huntley; Costanza Faranda

    2018-01-01

    Ostracod faunal turnover and oxygen isotope data (foraminifera) along the Valle di Manche (VdM) section are herein compiled. Specifically, the material reported in this work includes quantitative palaeoecological data and patterns of ostracod fauna framed within a high-resolution oxygen isotope stratigraphy (δ18O) from Uvigerina peregrina. In addition, the multivariate ostracod faunal stratigraphic trend (nMDS axis-1 sample score) is calibrated using bathymetric distributions of extant mollus...

  5. Accurate and precise measurement of oxygen isotopic fractions and diffusion profiles by selective attenuation of secondary ions (SASI).

    Science.gov (United States)

    Téllez, Helena; Druce, John; Hong, Jong-Eun; Ishihara, Tatsumi; Kilner, John A

    2015-03-03

    The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices.

  6. Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values?

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2002-07-30

    Full Text Available . Cosmo- chim. Acta 46 (1982) 955^965. [35] W.M. Buhay, T.W.D. Edwards, Climate in southwestern Ontario, Canada, between AD 1610 and 1885 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from trees in di?erent hydrological set...

  7. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    Science.gov (United States)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  8. Oxygen and carbon isotopic compositions of gases respired by humans

    International Nuclear Information System (INIS)

    Epstein, S.; Zeiri, L.

    1988-01-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O 2 utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N 2 /O 2 ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O 2 consumption in human respiration and how they are affected by related diseases

  9. Isotopic signature of Madeira basaltic magmatism

    International Nuclear Information System (INIS)

    Kogarko, L.N.; Karpenko, S.F.; Bibikova, E.V.; Mato, Zh.

    2000-01-01

    Chemical composition of the basalts of Madeira Island is studied. To assess the isotopic sources of magmatism the Pb-Sr, Sm-Nd, U-Th-Pb systems were investigated in a number of basalts. It is shown that the island's rocks are characterized by the mostly deplet sources in relation to Pb-Sr and Sm-Nd systems ( 87 Sr/ 86 Sr - 0.70282-0.70292, 143 Nd/ 144 Nd - 0.52303-0.51314). Isotopic composition of lead testifies that the magmatism reservoir is some enriched. It is concluded that the magmatism of Madeira Island is a new example of world ocean island's volcanism [ru

  10. CO and H2 uptake and emissions by soil: variability of fluxes and their isotopic signatures

    Science.gov (United States)

    Popa, Maria Elena; Chen, Qianjie; Ferrero Lopez, Noelia; Röckmann, Thomas

    2017-04-01

    In order to study the uptake and release of H2 and CO by soil, we performed long term, high frequency measurements with an automatic soil chamber at two sites in the Netherlands (Cabauw - grassland, and Speuld - forest). The measurements were performed over different seasons and cover in total a cumulated interval of about one year. These measurements allow determining separately, for each species, the two distinct fluxes i.e. uptake and release, and investigating their temporal variability and dependencies on environmental variables. Additional experiments were performed for determining the isotopic signatures of the H2 and CO uptake and release by soil. Flask samples were filled from the soil chamber, and then analyzed in the laboratory for the stable isotopic composition of H2 (δD) and CO (δ13C and δ18O). We find that both uptake and release are present at all times, regardless of the direction of the net flux. The emissions are significant for both species and at Cabauw, there are times and places where emissions outweigh the soil uptake. For each species, the two fluxes have different behavior and dependence on external variables, which indicates that they have different origins. The isotope results also support that, for both H2 and CO, uptake and emission occur simultaneously. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  11. Synopsis of oxygen isotopes in geothermal solids and fluids of New Zealand

    International Nuclear Information System (INIS)

    Blattner, P.

    1982-01-01

    Geothermal minerals serve as downhole probes of oxygen isotope compositions and thus of parameters of geothermal hydrology. ''Deep'' wells (2500 m) in New Zealand show no sign of Δ 18 O values ''bottoming out''. Ngawha differs from other systems both in the level and profile details of Δ 18 O values. The reservoir fluid at Ngawha hydrogeology may or may not be suited for development of a high-throughput surface recharge system

  12. Isotopic signatures for natural versus anthropogenic Pb in high-altitude Mt. Everest ice cores during the past 800 years

    International Nuclear Information System (INIS)

    Lee, Khanghyun; Hur, Soon Do; Hou, Shugui; Burn-Nunes, Laurie J.; Hong, Sungmin; Barbante, Carlo; Boutron, Claude F.; Rosman, Kevin J.R.

    2011-01-01

    A long-term record, extending back 800 years (1205 to 2002 AD), of the Pb isotopic composition ( 206 Pb/ 207 Pb and 208 Pb/ 207 Pb) as well as Pb concentrations from high altitude Mt. Everest ice cores has the potential to identify sources and source regions affecting natural and anthropogenic Pb deposition in central Asia. The results show that the regional natural background Pb isotope signature (∼ 1.20 for 206 Pb/ 207 Pb and ∼ 2.50 for 208 Pb/ 207 Pb) in the central Himalayas was dominated by mineral dust over the last ∼ 750 years from 1205 to 1960s, mostly originating from local sources with occasional contributions of long-range transported dust probably from Sahara desert and northwestern India. Since the 1970s, the Pb isotope ratios are characterized by a continuous decline toward less radiogenic ratios with the least mean ratios of 1.178 for 206 Pb/ 207 Pb and 2.471 for 208 Pb/ 207 Pb in the period 1990–1996. The depression of the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values during the corresponding periods is most likely due to an increasing influence of less radiogenic Pb of anthropogenic origin mainly from leaded gasoline used in South Asia (India as well as possibly Bangladesh and Nepal). From 1997 to 2002, isotopic composition tends to show a shift to slightly more radiogenic signature. This is likely attributed to reducing Pb emissions from leaded gasoline in source regions, coinciding with the nationwide reduction of Pb in gasoline and subsequent phase-out of leaded gasoline in South Asia since 1997. An interesting feature is the relatively high levels of Pb concentrations and enrichment factors (EF) between 1997 and 2002. Although the reason for this feature remains uncertain, it would be probably linked with an increasing influence of anthropogenic Pb emitted from other sources such as fossil fuel combustion and non-ferrous metal production.

  13. Isotopic signatures for natural versus anthropogenic Pb in high-altitude Mt. Everest ice cores during the past 800 years

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khanghyun; Hur, Soon Do [Korea Polar Research Institute, Songdo Techno Park, 7-50, Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Hou, Shugui [State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000 (China); School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093 (China); Burn-Nunes, Laurie J. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia); Hong, Sungmin, E-mail: smhong@inha.ac.kr [Department of Ocean Sciences, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon, 402-751 (Korea, Republic of); Barbante, Carlo [Department of Environmental Sciences, University Ca' Foscari of Venice, Dorsoduro 2137, 30 123 Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, University Ca' Foscari of Venice, Dorsoduro 2137, 30 123 Venice (Italy); Boutron, Claude F. [Laboratoire de Glaciologie et Geophysique de l' Environnement (UMR Universite Joseph Fourier/CNRS 5183 ), 54 rue Moliere, BP 96, 38402 Saint Martin d' Heres Cedex (France); Unite de Formation et de Recherche ' Physique, Ingenierie, Terre, Environnement, Mecanique' , Universite Joseph Fourier de Grenoble ( Institut Universitaire de France ), 715 rue de la Houille Blanche, BP 53, 38041 Grenoble Cedex 9 (France); Rosman, Kevin J.R. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U1987, Perth, WA 6845 (Australia)

    2011-12-15

    A long-term record, extending back 800 years (1205 to 2002 AD), of the Pb isotopic composition ({sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb) as well as Pb concentrations from high altitude Mt. Everest ice cores has the potential to identify sources and source regions affecting natural and anthropogenic Pb deposition in central Asia. The results show that the regional natural background Pb isotope signature ({approx} 1.20 for {sup 206}Pb/{sup 207}Pb and {approx} 2.50 for {sup 208}Pb/{sup 207}Pb) in the central Himalayas was dominated by mineral dust over the last {approx} 750 years from 1205 to 1960s, mostly originating from local sources with occasional contributions of long-range transported dust probably from Sahara desert and northwestern India. Since the 1970s, the Pb isotope ratios are characterized by a continuous decline toward less radiogenic ratios with the least mean ratios of 1.178 for {sup 206}Pb/{sup 207}Pb and 2.471 for {sup 208}Pb/{sup 207}Pb in the period 1990-1996. The depression of the {sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb values during the corresponding periods is most likely due to an increasing influence of less radiogenic Pb of anthropogenic origin mainly from leaded gasoline used in South Asia (India as well as possibly Bangladesh and Nepal). From 1997 to 2002, isotopic composition tends to show a shift to slightly more radiogenic signature. This is likely attributed to reducing Pb emissions from leaded gasoline in source regions, coinciding with the nationwide reduction of Pb in gasoline and subsequent phase-out of leaded gasoline in South Asia since 1997. An interesting feature is the relatively high levels of Pb concentrations and enrichment factors (EF) between 1997 and 2002. Although the reason for this feature remains uncertain, it would be probably linked with an increasing influence of anthropogenic Pb emitted from other sources such as fossil fuel combustion and non-ferrous metal production.

  14. The oxygen isotope effect on the in-plane penetration depth in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Khasanov, R [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Shengelaya, A [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland); Morenzoni, E [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Conder, K [Laboratory for Neutron Scattering, ETH Zuerich and PSI Villigen, CH-5232 Villigen PSI (Switzerland); Savic, I M [Faculty of Physics, University of Belgrade, 11001 Belgrade (Serbia and Montenegro); Keller, H [Physik-Institut der Universitaet Zuerich, CH-8057 Zurich (Switzerland)

    2004-10-13

    Muon spin rotation ({mu}SR) studies of the oxygen isotope ({sup 16}O/{sup 18}O) effect (OIE) on the in-plane magnetic field penetration depth {lambda}{sub ab} in cuprate high-temperature superconductors (HTS) are presented. First, the doping dependence of the OIE on the transition temperature T{sub c} in various HTS is briefly discussed. It is observed that different cuprate families show similar doping dependences of the OIE on T{sub c}. Then, bulk {mu}SR, low-energy {mu}SR, and magnetization studies of the total and site-selective OIE on {lambda}{sub ab} are described in some detail. A substantial OIE on {lambda}{sub ab} was observed in various cuprate families at all doping levels, suggesting that cuprate HTS are non-adiabatic superconductors. The experiments clearly demonstrate that the total OIE on T{sub c} and {lambda}{sub ab} arise from the oxygen sites within the superconducting CuO{sub 2} planes, demonstrating that the phonon modes involving the movement of planar oxygen are dominantly coupled to the supercarriers. Finally, it is shown that the OIE on T{sub c} and {lambda}{sub ab} exhibit a relation that appears to be generic for different families of cuprate HTS. The observation of these unusual isotope effects implies that lattice effects play an essential role in cuprate HTS and have to be considered in any realistic model of high-temperature superconductivity.

  15. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    Science.gov (United States)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  16. Electrochemically controlled iron isotope fractionation

    Science.gov (United States)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  17. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations.

    Directory of Open Access Journals (Sweden)

    Emma Lightfoot

    Full Text Available Oxygen isotope analysis of archaeological skeletal remains is an increasingly popular tool to study past human migrations. It is based on the assumption that human body chemistry preserves the δ18O of precipitation in such a way as to be a useful technique for identifying migrants and, potentially, their homelands. In this study, the first such global survey, we draw on published human tooth enamel and bone bioapatite data to explore the validity of using oxygen isotope analyses to identify migrants in the archaeological record. We use human δ18O results to show that there are large variations in human oxygen isotope values within a population sample. This may relate to physiological factors influencing the preservation of the primary isotope signal, or due to human activities (such as brewing, boiling, stewing, differential access to water sources and so on causing variation in ingested water and food isotope values. We compare the number of outliers identified using various statistical methods. We determine that the most appropriate method for identifying migrants is dependent on the data but is likely to be the IQR or median absolute deviation from the median under most archaeological circumstances. Finally, through a spatial assessment of the dataset, we show that the degree of overlap in human isotope values from different locations across Europe is such that identifying individuals' homelands on the basis of oxygen isotope analysis alone is not possible for the regions analysed to date. Oxygen isotope analysis is a valid method for identifying first-generation migrants from an archaeological site when used appropriately, however it is difficult to identify migrants using statistical methods for a sample size of less than c. 25 individuals. In the absence of local previous analyses, each sample should be treated as an individual dataset and statistical techniques can be used to identify migrants, but in most cases pinpointing a specific

  18. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites

    DEFF Research Database (Denmark)

    Greenwood, Richard C.; Barrat, Jean-Alix; Scott, Edward R. D.

    2015-01-01

    origin. Although the Dawn mission did not detect mesosiderite-like material on Vesta, evidence linking the mesosiderites and HEDs includes: (i) theirnearly identical oxygen isotope compositions; (ii) the presence in both of coarse-grained Mg-rich olivines; (iii) both have synchronous Lu-Hf and Mn-Cr ages...

  19. Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Ushikubo, T.; Nakashima, D.; Kita, N.T.

    grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The delta sup(17)O values of four barred olivine...

  20. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  1. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  2. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  3. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ13C and δ15N.

    Directory of Open Access Journals (Sweden)

    Marine J Briand

    Full Text Available A wide investigation was conducted into the main organic matter (OM sources supporting coral reef trophic networks in the lagoon of New Caledonia. Sampling included different reef locations (fringing, intermediate and barrier reef, different associated ecosystems (mangroves and seagrass beds and rivers. In total, 30 taxa of macrophytes, plus pools of particulate and sedimentary OM (POM and SOM were sampled. Isotopic signatures (C and N of each OM sources was characterized and the composition of OM pools assessed. In addition, spatial and seasonal variations of reef OM sources were examined. Mangroves isotopic signatures were the most C-depleted (-30.17 ± 0.41 ‰ and seagrass signatures were the most C-enriched (-4.36 ± 0.72 ‰. Trichodesmium spp. had the most N-depleted signatures (-0.14 ± 0.03 ‰ whereas mangroves had the most N-enriched signatures (6.47 ± 0.41 ‰. The composition of POM and SOM varied along a coast-to-barrier reef gradient. River POM and marine POM contributed equally to coastal POM, whereas marine POM represented 90% of the POM on barrier reefs, compared to 10% river POM. The relative importance of river POM, marine POM and mangroves to the SOM pool decreased from fringing to barrier reefs. Conversely, the relative importance of seagrass, Trichodesmium spp. and macroalgae increased along this gradient. Overall, spatial fluctuations in POM and SOM were much greater than in primary producers. Seasonal fluctuations were low for all OM sources. Our results demonstrated that a large variety of OM sources sustain coral reefs, varying in their origin, composition and role and suggest that δ13C was a more useful fingerprint than δ15N in this endeavour. This study also suggested substantial OM exchanges and trophic connections between coral reefs and surrounding ecosystems. Finally, the importance of accounting for environmental characteristics at small temporal and spatial scales before drawing general patterns is

  4. Preliminary stable isotope results from the Mohos peat bog, East-Carpathians

    Science.gov (United States)

    Túri, Marianna; Palcsu, László; Futó, István; Hubay, Katalin; Molnár, Mihály; Rinyu, László; Braun, Mihály

    2016-04-01

    This work provides preliminary results of an isotope investigation carried out on a peat core drilled in the ombrotrophic Mohos peat bog, Ciomadul Mountain, (46°8'3.60"N, 25°54'19.43"E, 1050 m.a.s.l.), East Carpathians, Romania. The Ciomadul is a single dacitic volcano with two craters: the younger Saint Ana and the older Mohos which is a peat bog, and surrounded by a number of individual lava domes as well as a narrow volcaniclastic ring plain volcano. A 10 m long peat core has been taken previously, and is available for stable oxygen and carbon isotope analysis. It is known from our previous work (Hubay et al., 2015) that it covers a period from 11.500 cal year B.P. to present. The peat bog is composed mainly of Sphagnum, which has a direct relationship with the environment, making it suitable for examine the changes in the surrounding circumstances. Isotopic analysis of the prepared cellulose from Sphagnum moss has the attribute to provide such high resolution quantitative estimates of the past climate and there is no such climate studies in this area where the past climate investigations based on oxygen isotope analysis of the Sphagnum. Oxygen and carbon stable isotope analysis were carried out on the hemicellulose samples, which were chemically prepared for 14C dating and taken from every 30 cm of the 10 m long peat core. The oxygen isotope composition of the precipitation can be revealed from the δ18O values of the prepared cellulose samples, since, while carbon isotope ratio tells more about the wet and dry periods of the past. Studying both oxygen and carbon isotope signatures, slight fluctuations can be seen during the Holocene like some of the six periods of significant climate changes can be seen in this resolution during the time periods of 9000-8000, 6000-5000, 4200-3800, 3500-2500, 1200-1000, and 600-150 cal yr B.P. Additionally, the late Pleistocene - early Holocene environmental changes can be clearly observed as Pleistocene peat samples have

  5. Oxygen isotope effect on 55Mn nuclear magnetic shielding in permanganate

    International Nuclear Information System (INIS)

    Haase, A.R.; Lutz, O.; Mueller, M.; Nolle, A.

    1976-01-01

    By Fourier transform NMR spectroscopy the 55 Mn resonance lines of the different permanganate species 55 Mn 16 Osub(4-n) 18 Osub(n) - (n=0,1,2,3,4) have been resolved in aqueous solutions of potassium permanganate. An isotope effect on the Larmor frequency of 55 Mn of (0.599 +- 0.015)ppm to lower frequency was found for the substition of an 16 O atom by an 18 O atom in the permanganate ion. An oxygen exchange rate in the permanganate-water system is given. (orig.) [de

  6. Stable isotopes back-track the origin of alabaster from the 'Ulrich Epitaph', Güstrow, Germany

    Science.gov (United States)

    Böttcher, Michael E.; Fuchs, Arnold; Gehre, Matthias; Krempler, Michael; Cooper, Anthony H.

    2017-04-01

    Natural calcium sulphate minerals (like gypsum, in the variety of 'alabaster') have been used for a long time for art and ornamental works despite its high solubility in aqueous solution due to its easy way of recovery and handling. To identify different European source provenances, geochemical and stable isotope forensic methods have been applied, thereby defining historical pathways of trade. A detailed geochemical characterization of both alabaster samples from the monument and potential sources is a pre-requisite for a backtracking material sources. Several tracers have been tested in the past identifiying the coupled sulfur and oxygen isotope composition of the sulfate molecule in the evaporite minerals to be highly characteristic. In the present study, we analyzed the stable sulfur and oxygen isotope composition of raw alabaster from the famous Ulrich Epithaph in Güstrow, Northeastern Germany, and compared the results with new measurements from one of the major European contributors of alabaster in the 16th century, the Cellaston quarry, Derbyshire (England) and literature data for further potential Spanish and Frensh source quarries (Kloppmann et a., 2014; Archaeometry, 56). We found that the stable sulfur and oxygen isotope signatures of alabaster from the Ulrich Epitaph indicate the origin from the Upper Triassic (Keuper) evaporites of the English Cellaston quarry and are not related to other potential alabaster sources. This further illustrates the alabaster trade way between England and Germany in the late 16th century.

  7. Anthropogenic influences on Pb/Al and lead isotope signature in annually layered Holocene Maar lake sediments

    International Nuclear Information System (INIS)

    Schettler, G.; Romer, R.L.

    1998-01-01

    Annually laminated sediments from two Maar lakes in the West Eifel volcanic field (Germany) show anomalously high Pb within sections deposited during the first centuries A.D. exceeding the local geological background 8.5-fold in Lake Meerfelder Maar (MFM) and 4-fold in Lake Schalkenmehrener Maar (SMM). These Pb anomalies are associated with a distinct shift in the Pb isotope signature to less radiogenic compositions. The excess Pb causing the anomaly has the same isotopic composition as galena deposits 60 km to the NW of the Maar lakes. It is suggested that this component was transported airborne into the Maar lakes and originates from regional Roman Pb refinement and cupellation of argentiferous Pb. Varve chronostratigraphy of correlated cores indicates that significant Roman Pb input lasted for about 230 a. SMM does not get fluviatile input. Its sedimentary record is more sensitive to variations in airborne input than that of MFM, which had an inflow. SMM sediment sections deposited during periods of low soil erosion (early Holocene, Dark Ages) with comparably high Pb/Al values also show little radiogenic Pb. This is caused by airborne minerogenic matter from a geochemically and isotopically distinct remote source that becomes apparent only in sedimentation periods of very restricted local allochthonous input. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Origin of the brines near WIPP from the drill holes ERDA-6 and WIPP-12 based on stable isotope concentrations of hydrogen and oxygen

    International Nuclear Information System (INIS)

    Spiegler, P.; Updegraff, D.

    1983-03-01

    Pathways which might alter the isotopic compositions of deuterium and oxygen-18 meteoric water, seawaters, and in hydration waters in gypsum to the isotopic compositions of brines encountered at ERDA-6 and WIPP-12 are discussed. Present geologic conditions do not favor the alteration of the isotopic compositions of waters that exist near the WIPP site to those of the brines by these pathways. It is concluded that the brines encountered at ERDA-6 and WIPP-12 are probably derived from ancient ocean waters that have been isotopically enriched in oxygen-18 by exchange interaction with rock. The dehydration of gypsum as a process of origin of these brines cannot be ruled out

  9. Distribution of oxygen isotopes in the water masses of Drake Passage and the South Atlantic

    Science.gov (United States)

    Meredith, Michael P.; Grose, Katie E.; McDonagh, Elaine L.; Heywood, Karen J.; Frew, Russell D.; Dennis, Paul F.

    1999-09-01

    Measurements of the ratio of stable isotopes of oxygen (18O and 16O) from samples collected on World Ocean Circulation Experiment sections SR1b (eastern Drake Passage) and A11 (Punta Arenas to Cape Town) are used, together with hydrographic data, to deduce information about the formation and variability of South Atlantic and Southern Ocean water masses. The Drake Passage surface waters south of the Polar Front (PF) are isotopically light (δ18O around -0.4‰) owing to the influence of meteoric waters. The salinity and δ18O of the A11 surface waters yield an apparent freshwater end-member which is much isotopically lighter than the local precipitation, thus advection of these waters from farther south dominates over local effects in determining the surface water properties. The Drake Passage section shows unusual proximity of the two main fronts of the Antarctic Circumpolar Current (the PF and Subantarctic Front (SAF)), and we observe cold, fresh, and isotopically light water derived from the temperature-minimum Winter Water at the SAF. This water is of the correct density to freshen the intermediate water north of the SAF and thus play a role in the formation of the comparatively fresh Antarctic Intermediate Water (AAIW) of the South Atlantic. This confirms the role of Antarctic water in forming the South Atlantic variety of AAIW. Across the A11 section the oxygen isotope and salinity data at the AAIW core show very similar traces, with waters in the Malvinas Current loop showing lowest values of both. At the eastern boundary of the South Atlantic, the input of Red Sea Water from east of South Africa is observed via the presence of anomalously isotopically heavy AAIW. We deduce potentially significant temporal variability in the isotopic composition of Weddell Sea Deep Water (WSDW) by comparing the Drake Passage data to earlier data covering the outflow of the Weddell Sea. The A11 data show WSDW consistent with such variability, indicating that its effects could

  10. Electrolytic separation factors for oxygen isotopes in light and heavy water solutions

    International Nuclear Information System (INIS)

    Gulens, J.; Olmstead, W.J.; Longhurst, T.H.; Gale, K.L.; Rolston, J.H.

    1987-01-01

    The electrolytic separation factor, α, has been measured for /sup 17/O and /sup 18/O at Pt and Ni anodes in both light and heavy water solutions of 6M KOH as a function of current density. For oxygen-17, isotopic separation effects were not observed, within the experimental uncertainty of +-2%, under all conditions studied. For oxygen-18, there is a small difference of 2% in α values between Pt and Ni in both light and heavy water solutions, but there is no significant difference in α values between light and heavy water solutions. In light waters solutions, the separation factor at Pt is small, α(/sup 18/O) ≤ 1.02 for i ≥ 0.1 A/cm/sub 2/. This value agrees reasonably well with theoretical estimates

  11. Seasonal Variations in Stable Isotope Ratios of Oxygen and Hydrogen in Two Tundra Rivers in NE European Russia

    Energy Technology Data Exchange (ETDEWEB)

    Huitu, E.; Arvola, L. [Lammi Biological Station, University of Helsinki (Finland); Sonninen, E. [Radiocarbon Dating Laboratory, University of Helsinki (Finland)

    2013-07-15

    The variability in stable isotope ratios of oxygen and hydrogen ({delta} {sup 18}O and {delta}{sup 2}H values) in river waters in northeast European Russia was studied for the period from July 2007 to october 2008. Exceptional isotope composition in precipitation obtained during the sampling period was clearly traced in the composition of river waters. Water from permafrost thawing did not make a great contribution to river flow. (author)

  12. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    Science.gov (United States)

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. ANALYTICAL EMPLOYMENT OF STABLE ISOTOPES OF CARBON, NITROGEN, OXYGEN AND HYDROGEN FOR FOOD AUTHENTICATION

    Directory of Open Access Journals (Sweden)

    E. Novelli

    2011-04-01

    Full Text Available Stable isotopes of carbon, nitrogen, oxygen and hydrogen were used for analytical purposes for the discrimination of the type of production (farming vs. fishing in the case of sea bass and for geographical origin in the case of milk. These results corroborate similar experimental evidences and confirm the potential of this analytical tool to support of food traceability.

  14. Lead isotope in mineral exploration

    International Nuclear Information System (INIS)

    Gulson, B.L.

    1986-01-01

    This book provides an up-to-date state-of-the-art review of lead isotopes in mineral exploration. Beginning with an historical review on suggested uses of lead isotopes in mineral exploration, the author then outlines the theoretical aspects of lead isotopes and illustrates that the method is based on well-known principles of radioactive decay, from which isotopic signatures for different styles of mineralization are derived. The varying isotopic signatures are then introduced. The major part of the book details over 40 case histories for base and precious metals, uranium and tin using sampling media such as sulfides, gossans, soils, weathered bedrock, vegetation and groundwaters. Advantages and disadvantages of each are discussed. Examples are given of the use of lead isotopes in testing conceptual models for exploration. The success rate and cost-effectiveness of the method are illustrated by actual exploration examples. Analytical advances which should lower the cost of the method and future uses are outlined. Many of the case histories use recently published or unpublished data, 27 tables of which are given in an appendix. Details of sampling, the methods for obtaining the isotope ratios, and a commercially-available integrated lead isotope service are also provided. (Auth.)

  15. Source Signature of Sr Isotopes in Fluids Emitting From Mud volcanoes in Taiwan

    Science.gov (United States)

    Chung, C.; You, C.; Chao, H.

    2003-12-01

    Located at the boundary between the Philippine Sea Plate and the Asia Continental Plate, abundance of mud volcanoes were erupted on land in Taiwan. According to their occurrences and associated tectonic settings, these mud volcanoes were classified into four groupies. The group (I) mud volcanoes are located in the western coastal plane, whereas group (II) and (III) are situated near the Kutinkung anticline axis and the Chishan fault respectively. The group (IV) mud volcanoes are discovered at the Coastal Range. Although there are numerous studies focused on morphology, possible fluid migration paths and sources are poorly understood. We have collected and analyzed major ions and Sr isotopic ratios in fluids separated from various mud volcanoes in Taiwan. Chemical contents of these fluids were measured by IC and the emitted gasses were analyzed by GC. The Sr concentrations in these fluids were determined using AA and the isotopic compositions were analyzed by TIMS. The dominated ions in fluids are Na and Cl which account for 98% of dissolved materials. All fluids show similar Na/Cl ratios(0.7-0.8), slightly higher than seawater but each group has unique Sr isotopic signature. Waters expelled from group I mud volcanoes featured with low salinity and high Sr isotopic ratios ranged from 0.71150 to 0.71175. Groups II and III were outcroped in the Kutinkung formation but show distinctive chemical compositions. Group II fluids have four times Cl concentrations(358-522mM) compared with those of group III(85-162mM). The latter fluids appear to be more radiogenic(0.71012- 0.71075) indicating possible influence due to water-rock interactions. Low 87Sr/86Sr(0.70692-0.70939) is typical characteristic of mud volcano fluids in group IV where large Mg and K depletion were discovered, suggesting effects due to sediment diagenetic processes. The chemical compositions of mud volcano associated gasses show similar distribution pattern. The major gas constituents in mud volcano zones

  16. Using Isotopes to Reconstruct Mammalian Diet, Migration and Paleoenvironment for Hominin Sites in Indonesia

    Science.gov (United States)

    Wershow, H.; Janssen, R.; Vonhof, H.; Lubbe, J. V. D.; Joordens, J. J.; Koutamanis, D. S.; Puspaningrum, M. R.; de Vos, J.; Reijmer, J.

    2015-12-01

    Climate plays a prominent role in ecosystem development in the biodiversity hotspot Sundaland (Malaysia and western Indonesia) throughout the Quaternary. Recurrent isolation and connection of the islands to mainland Asia due to sea level fluctuations has enabled repeated biotic migrations and encouraged genetic speciation. These migration waves also brought Homo erectus to Java. Together with extensive and well-documented collections of other terrestrial species, these hominin fossils form faunal assemblages of which the paleoenvironmental and paleogeographical background is poorly known. Using carbon, oxygen and strontium isotopes, we have reconstructed the paleoenvironmental and paleoecological conditions of several Holocene and Pleistocene fossil sites on Sumatra and Java, Indonesia. Carbon (∂13C) and oxygen (∂18O) isotope analysis of well-preserved herbivore teeth enamel reveals a marked contrast between C3-dominated diets in warmer periods, and C4-dominated diets in cooler periods, reflecting the distinct changes in Sundaland vegetation cover between glacials and interglacials. These isotope patterns allow us to assign the appropriate climatic background to some of the older fossil assemblages from Java, for which dating uncertainty does not allow direct assignment to glacial or interglacial conditions. The stable isotope signatures of herbivores from Trinil and Sangiran, sites well-known for the fossil occurrence of Homo erectus, indicate glacial conditions. The isotope data of several H. erectus fossils from these sites seem to be in line with such an interpretation. Furthermore, we applied strontium (87Sr/86Sr) isotope analyses to a sample subset. The preliminary data show distinct Sr-isotope ratios for different sites, providing clues for the applicability of this isotope technique in detecting climate-related mobility of Sundaland fossil faunas.

  17. Oxygen isotope ratios in the shell of Mytilus edulis: archives of glacier meltwater in Greenland?

    DEFF Research Database (Denmark)

    Versteegh, E. A. A.; Blicher, Martin E.; Mortensen, J.

    2012-01-01

    Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models...... predicting the influence of ongoing climate change. We investigated a potential meltwater proxy in Godthåbsfjord (West Greenland), where glacier meltwater causes seasonal excursions with lower oxygen isotope water (δ18Ow) values and salinity. The blue mussel (Mytilus edulis) potentially records...... its potential as a palaeo-meltwater proxy. First, we confirmed that M. edulis shell calcite oxygen isotope (δ18Oc) values are in equilibrium with ambient water and generally reflect meltwater conditions. Subsequently we investigated if this species recorded the full range of δ18Ow values occurring...

  18. Carbon isotope effects associated with Fenton-like degradation of toluene: Potential for differentiation of abiotic and biotic degradation

    International Nuclear Information System (INIS)

    Ahad, Jason M.E.; Slater, Greg F.

    2008-01-01

    Hydrogen peroxide (H 2 O 2 )-mediated oxygenation to enhance subsurface aerobic biodegradation is a frequently employed remediation technique. However, it may be unclear whether observed organic contaminant mass loss is caused by biodegradation or chemical oxidation via hydroxyl radicals generated during catalyzed Fenton-like reactions. Compound-specific carbon isotope analysis has the potential to discriminate between these processes. Here we report laboratory experiments demonstrating no significant carbon isotope fractionation during Fenton-like hydroxyl radical oxidation of toluene. This implies that observation of significant isotopic fractionation of toluene at a site undergoing H 2 O 2 -mediated remediation would provide direct evidence of biodegradation. We applied this approach at a field site that had undergone 27 months of H 2 O 2 -mediated subsurface oxygenation. Despite substantial decreases (> 68%) in groundwater toluene concentrations carbon isotope signatures of toluene (δ 13 C tol ) showed no significant variation (mean = - 27.5 ±0.3 per mille, n = 13) over a range of concentrations from 11.1 to 669.0 mg L -1 . Given that aerobic degradation by ring attack has also been shown to result in no significant isotopic fractionation during degradation, at this site we were unable to discern the mechanism of degradation. However, such differentiation is possible at sites where aerobic degradation by methyl group attack results in significant isotopic fractionation

  19. Soluble salt sources in medieval porous limestone sculptures: A multi-isotope (N, O, S) approach

    Energy Technology Data Exchange (ETDEWEB)

    Kloppmann, W., E-mail: w.kloppmann@brgm.fr [BRGM, Direction des Laboratoires, Unité Isotopes, BP 6009, F-45060 Orléans cedex 2 (France); Rolland, O., E-mail: olivierrolland@wanadoo.fr [Montlouis-sur-Loire (France); Proust, E.; Montech, A.T. [BRGM, Direction des Laboratoires, Unité Isotopes, BP 6009, F-45060 Orléans cedex 2 (France)

    2014-02-01

    The sources and mechanisms of soluble salt uptake by porous limestone and the associated degradation patterns were investigated for the life-sized 15th century “entombment of Christ” sculpture group located in Pont-à-Mousson, France, using a multi-isotope approach on sulphates (δ{sup 34}S and δ{sup 18}O) and nitrates (δ{sup 15}N and δ{sup 18}O). The sculpture group, near the border of the Moselle River, is within the potential reach of capillary rise from the alluvial aquifer. Chemical analyses show a vertical zonation of soluble salts with a predominance of sulphates in the lower parts of the statues where crumbling and blistering prevail, and higher concentrations of nitrates and chloride in the high parts affected by powdering and efflorescence. Isotope fingerprints of sulphates suggest a triple origin: (1) the lower parts are dominated by capillary rise of dissolved sulphate from the Moselle water with characteristic Keuper evaporite signatures that progressively decreases with height; (2) in the higher parts affected by powdering the impact of atmospheric sulphur becomes detectable; and (3) locally, plaster reparations impact the neighbouring limestone through dissolution and re-precipitation of gypsum. Nitrogen and oxygen isotopes suggest an organic origin of nitrates in all samples. N isotope signatures are compatible with those measured in the alluvial aquifer of the Moselle River further downstream. This indicates contamination by sewage or organic fertilisers. Significant isotopic contrasts are observed between the different degradation features depending on the height and suggest historical changes of nitrate sources. - Highlights: • We use S, N and O isotopes to distinguish salt sources in limestone sculptures. • Vertical zonation of degradation is linked to capillary rise and air pollution. • Sulphate salts in lower parts are derived from river/groundwater. • Sulphate salts in higher parts show signature of air pollution. • Nitrates

  20. Automated system measuring triple oxygen and nitrogen isotope ratios in nitrate using the bacterial method and N2 O decomposition by microwave discharge.

    Science.gov (United States)

    Hattori, Shohei; Savarino, Joel; Kamezaki, Kazuki; Ishino, Sakiko; Dyckmans, Jens; Fujinawa, Tamaki; Caillon, Nicolas; Barbero, Albane; Mukotaka, Arata; Toyoda, Sakae; Well, Reinhard; Yoshida, Naohiro

    2016-12-30

    Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N 2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N 2 O separation by gas chromatography before N 2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. The δ 17 O, δ 18 O, and Δ 17 O values increased with increasing sample size, although the δ 15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ 18 O, Δ 17 O, and δ 15 N values, results that are not inferior to those from other systems using gold tube or gold wire. An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N 2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision

  1. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    Science.gov (United States)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  2. Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record.

    Science.gov (United States)

    Royer, Aurélien; Daux, Valérie; Fourel, François; Lécuyer, Christophe

    2017-08-01

    Stable isotope data provide insight into the reconstruction of ancient human diet. However, cooking may alter the original stable isotope compositions of food due to losses and modifications of biochemical and water components. To address this issue, carbon, nitrogen and oxygen isotope ratios were measured on meat aliquots sampled from various animals such as pork, beef, duck and chicken, and also from the flesh of fishes such as salmon, European seabass, European pilchard, sole, gilt-head bream, and tuna. For each specimen, three pieces were cooked according to the three most commonly-known cooking practices: boiling, frying and roasting on a barbecue. Our data show that cooking produced isotopic shifts up to 1.8‰, 3.5‰, and 5.2‰ for δ 13 C, δ 15 N, and δ 18 O values, respectively. Such variations between raw and cooked food are much greater than previously estimated in the literature; they are more sensitive to the type of food rather than to the cooking process itself, except in the case of boiling. Reconstructions of paleodietary may thus suffer slight bias in cases of populations with undiversified diets that are restrained toward a specific raw or cooked product, or using a specific cooking mode. In cases of oxygen isotope compositions from skeletal remains (bones, teeth), they not only constitute a valuable proxy for reconstructing past climatic conditions, but they could also be used to improve our knowledge of past human diet. © 2017 Wiley Periodicals, Inc.

  3. Mass-Dependent and -Independent Fractionation of Mercury Isotopes in Aquatic Systems

    Science.gov (United States)

    Bergquist, B. A.; Joel, B. D.; Jude, D. J.

    2008-12-01

    Mercury is a globally distributed and highly toxic pollutant. Although Hg is a proven health risk, much of the natural cycle of Hg is not well understood and new approaches are needed to track Hg and the chemical transformations it undergoes in the environment. Recently, we demonstrated that Hg isotopes exhibit two types of isotope fractionation: (1) mass dependent fractionation (MDF) and (2) mass independent fractionation (MIF) of only the odd isotopes (Bergquist and Blum, 2007). The observation of large MIF of Hg isotopes (up to 5 permil) is exciting because only a few other isotopic systems have been documented to display large MIF, the most notable of which are oxygen and sulfur. In both cases, the application of MIF has proven very useful in a variety of fields including cosmochemistry, paleoclimatology, physical chemistry, atmospheric chemistry, and biogeochemistry. Both MDF and MIF isotopic signatures are observed in natural samples, and together they open the door to a new method for tracing Hg pollution and for investigating Hg behavior in the environment. For example, fish record MDF that appears to be related to size and age. Additionally, fish display MIF signatures that are consistent with the photo-reduction of methylmercury (Bergquist and Blum, 2007). If the MDF and MIF in ecosystems can be understood, the signatures in fish could inform us about the sources and processes transforming Hg and why there are differences in the bioaccumulation of Hg in differing ecosystems and populations of fish. This requires sampling of a variety of ecosystems, the sampling of many components of the ecosystems, and the use of other tracers such as carbon and nitrogen isotopes. We have expanded our studies of aquatic ecosystems to include several lakes in North America. Similar to other isotopic systems used to study food web dynamics and structure (i.e., C and N), the MDF of Hg in fish appears to be related to size and age. The MDF recorded in fish likely reflects

  4. Correlation and Stacking of Relative Paleointensity and Oxygen Isotope Data

    Science.gov (United States)

    Lurcock, P. C.; Channell, J. E.; Lee, D.

    2012-12-01

    The transformation of a depth-series into a time-series is routinely implemented in the geological sciences. This transformation often involves correlation of a depth-series to an astronomically calibrated time-series. Eyeball tie-points with linear interpolation are still regularly used, although these have the disadvantages of being non-repeatable and not based on firm correlation criteria. Two automated correlation methods are compared: the simulated annealing algorithm (Huybers and Wunsch, 2004) and the Match protocol (Lisiecki and Lisiecki, 2002). Simulated annealing seeks to minimize energy (cross-correlation) as "temperature" is slowly decreased. The Match protocol divides records into intervals, applies penalty functions that constrain accumulation rates, and minimizes the sum of the squares of the differences between two series while maintaining the data sequence in each series. Paired relative paleointensity (RPI) and oxygen isotope records, such as those from IODP Site U1308 and/or reference stacks such as LR04 and PISO, are warped using known warping functions, and then the un-warped and warped time-series are correlated to evaluate the efficiency of the correlation methods. Correlations are performed in tandem to simultaneously optimize RPI and oxygen isotope data. Noise spectra are introduced at differing levels to determine correlation efficiency as noise levels change. A third potential method, known as dynamic time warping, involves minimizing the sum of distances between correlated point pairs across the whole series. A "cost matrix" between the two series is analyzed to find a least-cost path through the matrix. This least-cost path is used to nonlinearly map the time/depth of one record onto the depth/time of another. Dynamic time warping can be expanded to more than two dimensions and used to stack multiple time-series. This procedure can improve on arithmetic stacks, which often lose coherent high-frequency content during the stacking process.

  5. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jane A.; Pashley, Vanessa [NIGL, BGS, Keyworth, NG12 5GG (United Kingdom); Richards, Gemma J. [School of Veterinary Science, University of Bristol, Bristol BS40 5DU (United Kingdom); Brereton, Nicola [The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ (United Kingdom); Knowles, Toby G. [School of Veterinary Science, University of Bristol, Bristol BS40 5DU (United Kingdom)

    2015-12-15

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. - Highlights: • Lead (Pb) isotopes measured in modern British meat were geogenic in origin. • The match indicates that this technique may be used to provenance biological products. • There was no evidence for a contribution from modern anthropogenic Pb sources.

  6. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability

    International Nuclear Information System (INIS)

    Evans, Jane A.; Pashley, Vanessa; Richards, Gemma J.; Brereton, Nicola; Knowles, Toby G.

    2015-01-01

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. - Highlights: • Lead (Pb) isotopes measured in modern British meat were geogenic in origin. • The match indicates that this technique may be used to provenance biological products. • There was no evidence for a contribution from modern anthropogenic Pb sources.

  7. Oxygen-isotope wiggle maching as a tol for synchronising ice-cor and terrestrial records over Termination !

    NARCIS (Netherlands)

    Hoek, W.Z.; Bohncke, S.J.P.

    2001-01-01

    In NW Europe, the large number of terrestrial records that are now available from Termination 1 (15-10kcal yr BP) form the basis for a highly detailed picture of Lateglacial environmental change. Nevertheless, the Greenland oxygen-isotope records (GRIP/GISP2) are still regarded as the best

  8. Isotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host.

    Science.gov (United States)

    Yohannes, Elizabeth; Hansson, Bengt; Lee, Raymond W; Waldenström, Jonas; Westerdahl, Helena; Akesson, Mikael; Hasselquist, Dennis; Bensch, Staffan

    2008-11-01

    It is widely accepted that animal distribution and migration strategy might have co-evolved in relation to selection pressures exerted by parasites. Here, we first determined the prevalence and types of malaria blood parasites in a breeding population of great reed warblers Acrocephalus arundinaceus using PCR. Secondly, we tested for differences in individual feather stable isotope signatures (delta (13)C, delta (15)N, deltaD and delta (34)S) to investigate whether malaria infected and non-infected birds had occupied different areas in winter. We show that birds moulting in Afro-tropical habitats with significantly higher delta (13)C and delta (15)N but lower deltaD and delta(34)S values were more frequently infected with malaria parasites. Based on established patterns of isotopic distributions, our results indicate that moulting sites with higher incidence of malaria are generally drier and situated further to the north in West Africa than sites with lower incidence of malaria. Our findings are pertinent to the general hypothesis that animal distribution and particularly avian migration strategy might evolve in response to selection pressures exerted by parasites at different geographic scales. Tradeoffs between investment in energy demanding life history traits (e.g. migration and winter moult) and immune function are suggested to contribute to the particular choice of habitat during migration and at wintering sites.

  9. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    Science.gov (United States)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  10. Linking foraging strategies of marine calanoid copepods to patterns of nitrogen stable isotope signatures in a mesocosm study

    DEFF Research Database (Denmark)

    Sommer, Frank; Saage, A.; Santer, B.

    2005-01-01

    foraging mode and, further, with its nitrogen stable isotope signature (delta(15)N). This is because a more carnivorous diet may be expected to result in a higher delta(15)N. We tested this hypothesis in a mesocosm study using a density gradient (0 to 80 ind. 1(-1)) of calanoid copepods. We expected......The foraging modes of calanoid copepods differ in that stationary suspension-feeding is more easily detected by prey with strong escape responses (ciliates) than is 'cruising' or 'ambushing' feeding. Thus, the ability of a copepod to include heterotrophic prey in its diet may be associated with its...

  11. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    Science.gov (United States)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of

  12. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  13. Palaeotemperature reconstructions of the European permafrost zone during Oxygen Isotope Stage 3 compared with climate model results.

    NARCIS (Netherlands)

    van Huissteden, J.; Vandenberghe, J.; Pollard, D.

    2003-01-01

    A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high-resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3

  14. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth

    2012-11-01

    Full Text Available Interpreting stable oxygen isotope18O records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso. The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite.

    First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model.

    We then examine the response of the cave system to mid-Holocene (6000 yr before present, 6 ka climate conditions by forcing the ODSM with ECHAM5-wiso results from 6 ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors

  15. Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland

    DEFF Research Database (Denmark)

    Yde, Jacob C.; Knudsen, Niels T.; Steffensen, Jørgen P.

    2016-01-01

    the Greenland Ice Sheet (GrIS). At the Mittivakkat Gletscher river, a small river draining a local temperate glacier in southeast Greenland, diurnal oscillations in δ18O occurred with a 3 h time lag to the diurnal oscillations in run-off. The mean annual δ18O was -14.68±0.18‰ during the peak flow period...... event. Overall, a comparison of the δ18O compositions from glacial river water in Greenland shows distinct differences between water draining local glaciers and ice caps (between -23.0 and -13.7 ‰) and the GrIS (between -29.9 and -23.2 ‰). This study demonstrates that water isotope analyses can be used......Analysis of stable oxygen isotope (δ18O) characteristics is a useful tool to investigate water provenance in glacier river systems. In order to attain knowledge on the diversity of δ18O variations in Greenlandic rivers, we examined two contrasting glacierised catchments disconnected from...

  16. Oxygen stable isotopes during the Last Glacial Maximum climate: perspectives from data-model (iLOVECLIM) comparison

    NARCIS (Netherlands)

    Caley, T.; Roche, D.M.V.A.P.; Waelbroeck, C.; Michel, E.

    2014-01-01

    We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (Î18O), results can be

  17. Lead isotopic signatures in Antarctic marine sediment cores: A comparison between 1 M HCl partial extraction and HF total digestion pre-treatments for discerning anthropogenic inputs

    International Nuclear Information System (INIS)

    Townsend, A.T.; Snape, I.; Palmer, A.S.; Seen, A.J.

    2009-01-01

    Sensitive analytical techniques are typically required when dealing with samples from Antarctica as even low concentrations of contaminants can have detrimental environmental effects. Magnetic Sector ICP-MS is an ideal technique for environmental assessment as it offers high sensitivity, multi-element capability and the opportunity to determine isotope ratios. Here we consider the Pb isotope record of five marine sediment cores collected from three sites in the Windmill Islands area of East Antarctica: Brown Bay adjacent to the current Australian station Casey, Wilkes near the abandoned US/Australian Station and McGrady Cove lying midway between the two. Two sediment pre-treatment approaches were considered, namely partial extraction with 1 M HCl and total dissolution involving HF. Lead isotope ratio measurements made following sediment partial extraction provided a more sensitive indication of Pb contamination than either Pb concentrations alone (irrespective of sample pre-treatment method) or isotope ratios made after HF digestion, offering greater opportunity for discrimination between impacted and natural/geogenic samples and sites. Over 90% of the easily extractable Pb from sediments near Casey was anthropogenic in origin, consisting of Pb from major Australian deposits. At Wilkes impact from discarded batteries with a unique isotopic signature was found to be a key source of Pb contamination to the marine environment with ∼ 70-80% of Pb being anthropogenic in origin. The country and source of origin of these batteries remain unknown. Little evidence was found suggesting contamination at Wilkes by Pb originating from the major US source, Missouri. No definitive assessment could be made regarding Pb impact at McGrady Cove as the collected sediment core was of insufficient depth. Although Pb isotope ratio signatures may indicate anthropogenic input, spatial concentration gradients at nearby Brown Bay suggest contamination at McGrady Cove is unlikely. We

  18. Isotope shifting capacity of rock

    International Nuclear Information System (INIS)

    Blattner, P.; Department of Scientific and Industrial Research, Lower Hutt

    1980-01-01

    Any oxygen isotope shifted rock volume exactly defines a past throughput of water. An expression is derived that relates the throughput of an open system to the isotope shift of reservoir rock and present-day output. The small isotope shift of Ngawha reservoir rock and the small, high delta oxygen-18 output are best accounted for by a magmatic water source

  19. Oxygen isotope variability in snow from western Dronning Maud Land, Antarctica and its relation to temperature

    International Nuclear Information System (INIS)

    Helsen, M.M.; Wal, R.S.W. van de; Broeke, M.R. van den; As, D. van; Reijmer, C.H.; Meijer, H.A.J.

    2005-01-01

    This paper presents (delta) 18 O records from snow pits from four locations in Dronning Maud Land, Antarctica that contain at least four annual cycles. The aim of the study was to analyse in detail these records as well as the prevailing temperatures during accumulation in order to infer to what extent isotopic composition in this area can be interpreted as temperature information. The original seasonal amplitudes of the isotope records were reconstructed by use of a simple back-diffusion model. Automatic weather station data were used to describe the accumulation history and the near-surface temperatures; the temperatures at the atmospheric level of snow formation were inferred from a regional climate model. The results show that the strongly intermittent nature of the accumulation in this area can result in the exclusion of entire seasons from the isotope records. The temperature records also reveal that the oxygen isotope records in these snow pits are biased towards higher temperatures, since snowfall conditions are associated with higher temperatures. This effect is greatest at low temperatures. A comparison between the seasonal extreme isotopic and temperature values points out that on timescales of seasons to several years, isotopic variability cannot be interpreted with confidence as temperature changes at the accumulation sites

  20. Palaeotemperature estimation in the Holsteinian Interglacial (MIS 11) based on oxygen isotopes of aquatic gastropods from eastern Poland

    Science.gov (United States)

    Szymanek, Marcin

    2017-12-01

    For quantitative estimation of past water temperature of four Holsteinian (MIS 11) palaeolakes from eastern Poland, the oxygen isotope palaeothermometer was applied to shells of the aquatic gastropods Viviparus diluvianus and Valvata piscinalis. The δ18O composition of their shells demonstrated the average growth-season water temperatures during the mesocratic stage of the interglacial (Ortel Królewski Lake), during its climatic optimum - the Carpinus-Abies Zone (Ossówka-Hrud, Roskosz and Szymanowo Lakes), and in the post-optimum (Szymanowo Lake). The calculation was based on δ18OShell values and the δ18OWater assumed for the Holsteinian from the modern oxygen isotope composition of precipitation and the expected amount of evaporative enrichment. The mean oxygen isotope palaeotemperatures of Ortel Królewski lake waters were in the range of 18.1-21.9°C and were uniform for the Taxus and Pinus-Larix zones. Ossówka-Hrud and Roskosz Lakes had mean temperatures of 17.4-21.0°C during the climatic optimum, whereas the temperature of Szymanowo lake waters was estimated at 20.6-21.7°C at that time. These values are concordant with the pollen-inferred July air temperatures noted during the Holsteinian in eastern Poland. Relatively high values of 25°C in the post-optimum noted at Szymanowo were connected with the presence of a shallow and warm isolated bay indicated by pollen and mollusc records.

  1. Oxygen and carbon isotope analyses of a Late Quaternary core in the Zaire (Congo) fan

    International Nuclear Information System (INIS)

    Olausson, E.

    1984-01-01

    Oxygen and carbon isotope analyses have been carried out on samples from a core of the Angola Basin (6 0 50'S, 10 0 45'E, depth 2100 m). The pelagic foraminifer Globigerinoides ruber, a species with a shallow water habitat, and two benthic species Uvigerina peregrina and Bulimina aculeata have been analysed. The data are given relative to PDB. (Auth.)

  2. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species.

    Science.gov (United States)

    Lehmann, Marco M; Gamarra, Bruno; Kahmen, Ansgar; Siegwolf, Rolf T W; Saurer, Matthias

    2017-08-01

    Almost no δ 18 O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ 18 O relationship between leaf water and cellulose. We measured δ 18 O values of bulk leaf water (δ 18 O LW ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ 18 O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18 O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε bio ) of more than 27‰ relative to δ 18 O LW , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ 18 O LW and δ 18 O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε bio  = 25.1‰). Interestingly, damping factor p ex p x , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ 18 O LW but not if modelled directly from δ 18 O of individual carbohydrates. We conclude that δ 18 O LW is not always a good substitute for δ 18 O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ 18 O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants. © 2017 John Wiley & Sons Ltd.

  3. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V

  4. Quasi-free one nucleon knockout reactions on neutron-rich oxygen isotopes at the R3B-LAND setup

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla; Aumann, Thomas [TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerce (United States); Paschalis, Stefanos [TU Darmstadt, Darmstadt (Germany); Nociforo, Chiara [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2016-07-01

    Recent experiments have showed a reduction of spectroscopic strengths of about 60-70% for stable nuclei. When going to driplines this tendency is changing, loosely bound nucleons have spectroscopic strengths close unity while deeply bound nucleons have a large reduction of the strength. We aim to make a systematic study of spectroscopic factors (SF) of the Oxygen isotopes using quasi-free (p,2p) and (p,pn) knockout reactions in inverse kinematics. Quasi-free knockout reactions are a direct tool to study the occupancy and the location of valance and deeply bound single particle states. The Oxygen isotopes offer a large variation of separation energies which will allow us to obtain a qualitative and quantitative understanding of SF in a large variation of isospin asymmetry. For this we performed an experiment at the R3B-LAND setup at the GSI with a secondary beam {sup 14-24}O. The {sup 16-18}O and {sup 21-23}O isotopes have been analyzed and the preliminary results will be presented. The results include the partial cross sections, gamma ray spectra of the residual fragments in coincidence, and the SF obtained via comparison with theory.

  5. Cross-continental triple oxygen isotope analysis of tropospheric CO2

    Science.gov (United States)

    Liang, M. C.; Rangarajan, R.; Newman, S.; Laskar, A. H.

    2016-12-01

    The abundance variations of near surface atmospheric CO2 isotopologues (primarily 16O12C16O, 16O13C16O, 17O12C16O, and 18O12C16O) represent an integrated signal from anthropogenic/biogeochemical processes, including fossil fuel burning, biospheric photosynthesis and respiration, hydrospheric isotope exchange with water, and stratospheric photochemistry. Oxygen isotopes, in particular, are affected by the carbon and water cycles. Being a useful tracer that directly probes governing processes in CO2 biogeochemical cycles, D17O (= ln(1+d17O) - 0.516´ln(1+d18O)) provides an alternative constraint on the strengths of the associated cycles involving CO2. Here, we report more than one year of data obtained from Taiwan (Taipei), South China Sea, and USA (Pasadena, CA and Palos Verdes, CA). On average, the D17O values from these locations are similar and show no significant influence from the 2014-2016 El Nino event, in contrast to what has been reported for the 1997-1998 El Nino from the CO2 data collected from La Jolla, CA. Implications for utilizing the new tracer D17O for carbon cycling studies will be made.

  6. Forward Modeling of Carbonate Proxy Data from Planktonic Foraminifera using Oxygen Isotope Tracers in a Global Ocean Model

    Science.gov (United States)

    Schmidt, Gavin A.

    1999-01-01

    The distribution and variation of oxygen isotopes in seawater are calculated using the Goddard Institute for Space Studies global ocean model. Simple ecological models are used to estimate the planktonic foraminiferal abundance as a function of depth, column temperature, season, light intensity, and density stratification. These models are combined to forward model isotopic signals recorded in calcareous ocean sediment. The sensitivity of the results to the changes in foraminiferal ecology, secondary calcification, and dissolution are also examined. Simulated present-day isotopic values for ecology relevant for multiple species compare well with core-top data. Hindcasts of sea surface temperature and salinity are made from time series of the modeled carbonate isotope values as the model climate changes. Paleoclimatic inferences from these carbonate isotope records are strongly affected by erroneous assumptions concerning the covariations of temperature, salinity, and delta (sup 18)O(sub w). Habitat-imposed biases are less important, although errors due to temperature-dependent abundances can be significant.

  7. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-02-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters.

  8. Separation of isotopes of nitrogen and oxygen by low temperature distillation of nitrogen oxide

    International Nuclear Information System (INIS)

    Isomura, Shohei; Tonooka, Yasuhiko; Kaetsu, Hayato

    1987-01-01

    In general, the distillation parameters, such as the number of theoretical plate (NTP) and the height equivalent to a theoretical plate (HETP), can be obtained from the operation at the steady state. However, it is time-consuming to achieve the steady state especially in the case of isotope separation. In this paper, with the purpose of simultaneous separation of isotopes of nitrogen and oxygen by NO distillation, we tried to determine the distillation parameters by an analytical method through the transient-state operation. It was confirmed that the results from the analysis were in good agreement with those observed for the operation at the steady state. Enrichment of the isotopes was carried out using a distillation column with a height of 1 m and inside diameter of 12 mm. The dependence of HETP on liquid flow rate was measured by the proposed method. The obtained HETP values were from 2 to 4 cm. The operation time of about 5 h was found to be long enough to determine the distillation parameters. (author)

  9. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    Energy Technology Data Exchange (ETDEWEB)

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    Based on the mineralogy and petrography, coarse-grained, igneous, anorthite-rich (Type C) calcium-aluminum-rich inclusions (CAIs) in the CV3 carbonaceous chondrite Allende have been recently divided into three groups: (i) CAIs with melilite and Al,Ti-diopside of massive and lacy textures (coarse grains with numerous rounded inclusions of anorthite) in a fine-grained anorthite groundmass (6-1-72, 100, 160), (ii) CAI CG5 with massive melilite, Al,Ti-diopside and anorthite, and (iii) CAIs associated with chondrule material: either containing chondrule fragments in their peripheries (ABC, TS26) or surrounded by chondrule-like, igneous rims (93) (Krot et al., 2007a,b). Here, we report in situ oxygen isotopic measurements of primary (melilite, spinel, Al,Ti-diopside, anorthite) and secondary (grossular, monticellite, forsterite) minerals in these CAIs. Spinel ({Delta}{sup 17}O = -25{per_thousand} to -20{per_thousand}), massive and lacy Al,Ti-diopside ({Delta}{sup 17}O = -20{per_thousand} to -5{per_thousand}) and fine-grained anorthite ({Delta}{sup 17}O = -15{per_thousand} to -2{per_thousand}) in 100, 160 and 6-1-72 are {sup 16}O-enriched relative spinel and coarse-grained Al,Ti-diopside and anorthite in ABC, 93 and TS26 ({Delta}{sup 17}O ranges from -20{per_thousand} to -15{per_thousand}, from -15{per_thousand} to -5{per_thousand}, and from -5{per_thousand} to 0{per_thousand}, respectively). In 6-1-72, massive and lacy Al,Ti-diopside grains are {sup 16}O-depleted ({Delta}{sup 17}O {approx} -13{per_thousand}) relative to spinel ({Delta}{sup 17}O = -23{per_thousand}). Melilite is the most {sup 16}O-depleted mineral in all Allende Type C CAIs. In CAI 100, melilite and secondary grossular, monticellite and forsterite (minerals replacing melilite) are similarly {sup 16}O-depleted, whereas grossular in CAI 160 is {sup 16}O-enriched ({Delta}{sup 17}O = -10{per_thousand} to -6{per_thousand}) relative to melilite ({Delta}{sup 17}O = -5{per_thousand} to -3{per_thousand}). We infer

  10. Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils

    Science.gov (United States)

    Maggi, Federico; Riley, William J.

    2009-12-01

    The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.

  11. A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa

    Science.gov (United States)

    Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.

    2015-12-01

    The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.

  12. Paleogeographic and paleo-oceanographic influences on carbon isotope signatures: Implications for global and regional correlation, Middle-Upper Jurassic of Saudi Arabia

    Science.gov (United States)

    Eltom, Hassan A.; Gonzalez, Luis A.; Hasiotis, Stephen T.; Rankey, Eugene C.; Cantrell, Dave L.

    2018-02-01

    Carbon isotope data (δ13C) can provide an essential means for refining paleogeographic and paleo-oceanographic reconstructions, and interpreting stratigraphic architecture within complex carbonate strata. Although the primary controls on global δ13C signatures of marine carbonates are well understood, understanding their latitudinal and regional variability is poor. To better constrain the nature and applications of δ13C stratigraphy, this study: 1) presents a new high-resolution δ13C stratigraphic curve from Middle to Upper Jurassic carbonates in the upper Tuwaiq Mountain, Hanifa, and lower Jubaila formations in central Saudi Arabia; 2) explores their latitudinal and regional variability; and 3) discusses their implications for stratigraphic correlations. Analysis of δ13C data identified six mappable units with distinct δ13C signatures (units 1-6) between up-dip and down-dip sections, and one unit (unit 7) that occurs only in the down-dip section of the study succession. δ13C data from the upper Tuwaiq Mountain Formation and the lower Hanifa Formation (units 1, 2), which represent Upper Callovian to Middle Oxfordian strata, and record two broad positive δ13C excursions. In the upper part of the Hanifa Formation (units 3-6, Early Oxfordian-Late Kimmeridgian), δ13C values decreased upward to unit 7, which showed a broad positive δ13C excursion. Isotopic data suggest similar δ13C trends between the southern margin of the Tethys Ocean (Arabian Plate; low latitude, represented by the study succession) and northern Tethys oceans (high latitude), despite variations in paleoclimatic, paleogeographic, and paleoceanographic conditions. Variations in the δ13C signal in this succession can be attributed to the burial of organic matter and marine circulation at the time of deposition. Our study uses δ13C signatures to provide independent data for chronostratigraphic constraints which help in stratigraphic correlations within heterogeneous carbonate successions.

  13. New Isotopic clues to solar system formation

    International Nuclear Information System (INIS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides 26 Al and 107 Pd with half-lives approx.10 6 years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rare gas and oxygen isotopic abundance variations [''anomalies''] relative to the ''cosmic'' composition were observed in a variety of planetary objects indicating that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthetic components permeate of the entire solar system. The correlated nuclear [''FUN''] anomalies in O, Mg, Si, Ca, Sr, Ba, Nd, and Sm were found in three rare inclusions in the Allende meteorite, which show large mass-dependent isotopic fractionation effects. The signature of the nuclear component required to explain these anomalies suggests a source which has received a catastrophic neutron burst [e.g., an r-process event]. These extinct nuclides and nucleosynthetic anomalies provide new clues to solar system formation. In particular, these results have led to the speculation that a nearby supernova had injected freshly synthesized material into the early solar nebula and possibly triggered the collapse of the proto-solar interstellar cloud. Furthermore, these new results have major implications on cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  14. Past 20,000-year history of Himalayan aridity: Evidence from oxygen isotope records in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.

    Late Quaternary climate history of the Himalayas is inferred from sea surface salinity (SSS) changes determined from the oxygen isotope in planktonic foraminifers, in a turbidity-free, 14C-dated core from the Bay of Bengal. The heaviest d18O...

  15. Stable calcium isotope composition of a pedogenic carbonate in forested ecosystem: the case of the needle fibre calcite (NFC).

    Science.gov (United States)

    Milliere, Laure; Verrecchia, Eric; Gussone, Nikolaus

    2014-05-01

    Calcium (Ca), carbon (C) and oxygen (O) are important elements in terrestrial environment, as their biogeochemical cycles are directly related to the storage of atmospheric carbon. Nevertheless, contrarily to C and O, Ca isotope composition has been only poorly studied in the terrestrial carbonates. Needle Fibre Calcite (NFC) is one of the most common pedogenic carbonates, unless its origin is still under debate. Recent studies explain its formation by precipitation inside fungal hyphae. Due to this possible biogenic origin, NFC can be considered as a potential bridge between the biochemistry (precipitation inside organic structure) and geochemistry (pedogenic carbonate related to soil conditions) of the Ca. Thus, the study of the Ca isotope composition of NFC seem to be of first interest in order to shed light on the behaviour of Ca in terrestrial environment, especially when precipitation of secondary carbonates is involved. The sampling site is situated in the Swiss Jura Mountains and has been chosen due to a previous complete study of the C and O isotope composition of NFC in relation to the ecosystem, which represent a good precondition for the understanding of the NFC Ca isotope signatures in this context. In this study, the implication of the fungi in the origin of NFC is investigated, by comparing the Ca isotope composition of NFC and a purely physicochemical calcite cement (LCC), both precipitated in the same environment. The δ44Ca signature of NFC and LCC crystals were used to determine possible differences of the precipitation rate during their formation. NFC and LCC have similar δ18O composition and are supposed to precipitate at the same temperature (Milliere et al., 2011a). Thus the study of Ca isotope composition of NFC seems to demonstrate that the elongated shape of the calcite needle can be explained by different precipitation processes than the rhombohedric calcite crystals precipitated in the same environment; and more precisely, the specific

  16. Carbon 13 and oxygen 18 isotope record of the early eocene nammal formation, salt range, pakistan

    International Nuclear Information System (INIS)

    Ghazi, S.; Sajid, Z.

    2014-01-01

    The Nammal Formation is the lowermost unit of the Early Eocene succession in the Salt Range, Pakistan. It is well exposed throughout the Salt Range. The Nammal Formation having 30 to 35 meters thickness is predominantly composed of nodular limestone interbedded with marl and shale. The present study was focussed on stable carbon 13 and oxygen 18 isotopic analysis based on data from two stratigraphically important sections. The samples from the Nilawahan section provided with the delta 13C values varied between 1.34 to -1.56 (VPDB) and values of delta 18O fluctuated between -4.47 to -6.59 (VPDB). Likewise the sample analysis of BadshahPur section exhibited that the delta 13C values changes from 1.09 to -1.65 (VPDB) and delta 18O values range from -4.17 to -6.85 (VPDB). The isotopic records of carbon 13 and oxygen 18 indicated the shallow marine deposition of the Nammal Formation under tropical conditions. It highlighted the palaeo climatic and diagenetic conditions of the Nammal Formation at the time of deposition in the Salt Range region. (author)

  17. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    Science.gov (United States)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that

  18. Determination of bovine lactoferrin in dairy products by ultra-high performance liquid chromatography–tandem mass spectrometry based on tryptic signature peptides employing an isotope-labeled winged peptide as internal standard

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingshun [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Lai, Shiyun [Beingmate Research Institute, Beingmate Baby and Child Food Co., Ltd., Hangzhou 310007 (China); Cai, Zengxuan [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Chen, Qi [Beingmate Research Institute, Beingmate Baby and Child Food Co., Ltd., Hangzhou 310007 (China); Huang, Baifen [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Ren, Yiping, E-mail: renyiping@263.net [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China)

    2014-06-01

    Highlights: • A UHPLC–MS/MS method for quantification of bovine lactoferrin was developed. • Tryptic fragment LRPVAAEIYGTK was chosen as signature peptide of bovine lactoferrin. • A winged peptide containing isotopically-labeled signature peptide was designed as internal standard. • The method for determining lactoferrin does not discriminate between the different forms of lactoferrin. • Meet the growing demand to quantify bovine lactoferrin in different dairy products. Abstract: A new and sensitive determination method was developed for bovine lactoferrin in dairy products including infant formulas based on the signature peptide by ultra high-performance liquid chromatography and triple-quadrupole tandem mass spectrometry under the multiple reaction monitoring mode. The simple pretreatment procedures included the addition of a winged peptide containing the isotope-labeled signature peptide as internal standard, followed by an enzymatic digestion with trypsin. The signature peptide was chosen and identified from the tryptic hydrolyzates of bovine lactoferrin by ultra high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry based on sequence database search. Analytes were separated on an ACQUITY UPLC BEH 300 C18 column and monitored by MS/MS in seven minutes. Quantitative result bias due to matrix effect and tryptic efficiency was corrected through the use of synthetic isotope-labeled standards. The limit of detection and limit of quantification were 0.3 mg/100 g and 1.0 mg/100 g, respectively. Bovine lactoferrin within the concentration range of 10–1000 nmol L⁻¹ showed a strong linear relationship with a linear correlation coefficient (r) of >0.998. The intra- and inter-day precision of the method were RSD < 6.5% and RSD < 7.1%, respectively. Excellent repeatability (RSD < 6.4%) substantially supported the application of this method for the determination of bovine lactoferrin in dairy samples. The present method

  19. Determination of bovine lactoferrin in dairy products by ultra-high performance liquid chromatography–tandem mass spectrometry based on tryptic signature peptides employing an isotope-labeled winged peptide as internal standard

    International Nuclear Information System (INIS)

    Zhang, Jingshun; Lai, Shiyun; Cai, Zengxuan; Chen, Qi; Huang, Baifen; Ren, Yiping

    2014-01-01

    Highlights: • A UHPLC–MS/MS method for quantification of bovine lactoferrin was developed. • Tryptic fragment LRPVAAEIYGTK was chosen as signature peptide of bovine lactoferrin. • A winged peptide containing isotopically-labeled signature peptide was designed as internal standard. • The method for determining lactoferrin does not discriminate between the different forms of lactoferrin. • Meet the growing demand to quantify bovine lactoferrin in different dairy products. - Abstract: A new and sensitive determination method was developed for bovine lactoferrin in dairy products including infant formulas based on the signature peptide by ultra high-performance liquid chromatography and triple-quadrupole tandem mass spectrometry under the multiple reaction monitoring mode. The simple pretreatment procedures included the addition of a winged peptide containing the isotope-labeled signature peptide as internal standard, followed by an enzymatic digestion with trypsin. The signature peptide was chosen and identified from the tryptic hydrolyzates of bovine lactoferrin by ultra high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry based on sequence database search. Analytes were separated on an ACQUITY UPLC BEH 300 C18 column and monitored by MS/MS in seven minutes. Quantitative result bias due to matrix effect and tryptic efficiency was corrected through the use of synthetic isotope-labeled standards. The limit of detection and limit of quantification were 0.3 mg/100 g and 1.0 mg/100 g, respectively. Bovine lactoferrin within the concentration range of 10–1000 nmol L −1 showed a strong linear relationship with a linear correlation coefficient (r) of >0.998. The intra- and inter-day precision of the method were RSD < 6.5% and RSD < 7.1%, respectively. Excellent repeatability (RSD < 6.4%) substantially supported the application of this method for the determination of bovine lactoferrin in dairy samples. The present

  20. Geogenic lead isotope signatures from meat products in Great Britain: Potential for use in food authentication and supply chain traceability.

    Science.gov (United States)

    Evans, Jane A; Pashley, Vanessa; Richards, Gemma J; Brereton, Nicola; Knowles, Toby G

    2015-12-15

    This paper presents lead (Pb) isotope data from samples of farm livestock raised in three areas of Britain that have elevated natural Pb levels: Central Wales, the Mendips and the Derbyshire Peak District. This study highlights three important observations; that the Pb found in modern British meat from these three areas is geogenic and shows no clear evidence of modern tetraethyl anthropogenic Pb contribution; that the generally excellent match between the biological samples and the ore field data, particularly for the Mendip and Welsh data, suggests that this technique might be used to provenance biological products to specific ore sites, under favourable conditions; and that modern systems reflect the same process of biosphere averaging that is analogous to cultural focusing in human archaeological studies that is the process of biological averaging leading to an homogenised isotope signature with increasing Pb concentration. Copyright © 2015. Published by Elsevier B.V.

  1. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominated peatlands?

    Science.gov (United States)

    Amesbury, Matthew J.; Charman, Dan J.; Newnham, Rewi M.; Loader, Neil J.; Goodrich, Jordan; Royles, Jessica; Campbell, David I.; Keller, Elizabeth D.; Baisden, W. Troy; Roland, Thomas P.; Gallego-Sala, Angela V.

    2015-11-01

    Variations in the isotopic composition of precipitation are determined by fractionation processes which occur during temperature- and humidity-dependent phase changes associated with evaporation and condensation. Oxygen stable isotope ratios have therefore been frequently used as a source of palaeoclimate data from a variety of proxy archives, which integrate this signal over time. Applications from ombrotrophic peatlands, where the source water used in cellulose synthesis is derived solely from precipitation, have been mostly limited to Northern Hemisphere Sphagnum-dominated bogs, with few in the Southern Hemisphere or in peatlands dominated by vascular plants. New Zealand (NZ) provides an ideal location to undertake empirical research into oxygen isotope fractionation in vascular peatlands because single taxon analysis can be easily carried out, in particular using the preserved root matrix of the restionaceous wire rush (Empodisma spp.) that forms deep Holocene peat deposits throughout the country. Furthermore, large gradients are observed in the mean isotopic composition of precipitation across NZ, caused primarily by the relative influence of different climate modes. Here, we test whether δ18O of Empodisma α-cellulose from ombrotrophic restiad peatlands in NZ can provide a methodology for developing palaeoclimate records of past precipitation δ18O. Surface plant, water and precipitation samples were taken over spatial (six sites spanning >10° latitude) and temporal (monthly measurements over one year) gradients. A link between the isotopic composition of root-associated water, the most likely source water for plant growth, and precipitation in both datasets was found. Back-trajectory modelling of precipitation moisture source for rain days prior to sampling showed clear seasonality in the temporal data that was reflected in root-associated water. The link between source water and plant cellulose was less clear, although mechanistic modelling predicted mean

  2. Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment.

    Science.gov (United States)

    Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin

    2011-01-01

    Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon

    Science.gov (United States)

    Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.

    2017-01-01

    We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the

  4. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2015-01-01

    of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0–10 cm layer...... geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence...... can recycle significant amounts of carbon in wetland soils and might contribute to observed radiocarbon reservoir effects influencing Δ14C signatures in peat deposits....

  5. Environmental isotope hydrology

    International Nuclear Information System (INIS)

    1973-01-01

    Environmental isotope hydrology is a relatively new field of investigation based on isotopic variations observed in natural waters. These isotopic characteristics have been established over a broad space and time scale. They cannot be controlled by man, but can be observed and interpreted to gain valuable regional information on the origin, turnover and transit time of water in the system which often cannot be obtained by other techniques. The cost of such investigations is usually relatively small in comparison with the cost of classical hydrological studies. The main environmental isotopes of hydrological interest are the stable isotopes deuterium (hydrogen-2), carbon-13, oxygen-18, and the radioactive isotopes tritium (hydrogen-3) and carbon-14. Isotopes of hydrogen and oxygen are ideal geochemical tracers of water because their concentrations are usually not subject to change by interaction with the aquifer material. On the other hand, carbon compounds in groundwater may interact with the aquifer material, complicating the interpretation of carbon-14 data. A few other environmental isotopes such as 32 Si and 238 U/ 234 U have been proposed recently for hydrological purposes but their use has been quite limited until now and they will not be discussed here. (author)

  6. Anatomy of the thriple oxygen isotope Terrestrial Fractionatoin Line

    Science.gov (United States)

    Sharp, Z. D.; Pack, A.

    2017-12-01

    In the triple oxygen isotope system, it is well established that the δ17O value of nearly all terrestrial materials is approximately ½ that of the corresponding δ18O value. In triple isotope space then, all samples plot on a slope 1/2 line, termed the Terrestrial Fractionation Line (TFL). It has recently been recognized that subtle, but significant departures from the TFL exist, given by Δ'17O = δ'17O -λ× δ'18O + γ, where λ is the slope of the TFL (γ is the y-intercept and assumed to be zero in most studies). There have been many published λ values, ranging from 0.52 to 0.5305. λ values determined from a best-fit to rock and mineral samples range from 0.5244 to 0.5266. λ values from meteoric waters are 0.527 to 0.528 (γ = 0.007 to 0.034), explained by equilibrium and kinetic processes. Extreme polar glacial samples define a λ >0.53. As pointed out by Matsuhisia et al. (GCA, 1978), there is no single factor that controls the δ17O-δ18O slope, and clearly there is no `correct' TFL line. However, some generalities can be noted. 1) Meteoric waters generally plot with a λ = 0.528 with a Δ'17O = 0.033. At both high and low δ18O values, the Δ'17O values of meteoritic waters decrease. Mantle derived samples plot in a limited δ space, with δ18O values of 5-9‰ and a Δ'17O of -0.05‰. Rock and mineral samples falling outside this narrow range have undergone interaction with meteoric or ocean water at some point in their history, either by alteration or neoform mineral growth. The quartz-water triple isotope fractionation factor varies with temperatures, ranging from 0.5237 to 0.5266 at 0°C and 200°C, respective. A fit to published rock data gives an overall λ = 0.5237-0.5240. These results are most likely explained by the sum of hydrothermal and low-temperature mineral-water fractionations. Attempting to place any significance on a TFL from a set of data in unwarranted without understanding the processes controlling the isotopic compositions of

  7. Deuterium isotope fractionation between ortho-alkyl substituted phenols and t-butylthiol in oxygen bases

    International Nuclear Information System (INIS)

    Wawer, A.; Jelenska-Kazimierczuk, M.; Szydlowski, J.

    1998-01-01

    Equilibrium isotope effect in the exchange reaction of deuterium between phenol(P), 2-isopropyl phenol (IPP), 2,6-diisopropyl phenol (DIPP), 2,6-diterbutyl phenol (DTBP) and tertbutylthiol (TBT) has been studied in 296 K. The fractionation factors (α) have been measured in cyclohexane and carbon tetrachloride solutions and in a few oxygen bases: acetone, 1,4-dioxane, ethyl formate, ethyl ether, tetrahydrofurane, N,N-dimethylformamide, dimethylsulfoxide and hexamethylphosphoramide. Using chemical shifts of phenol OH protons, the thermodynamic parameters of complex formation with the oxygen bases have been determined. The experimental data show that lnα correlates with the formation enthalpy of the phenol-oxygen base complex in DIPP-TBT-base system but there is no simple correlation in IPP-TBT-base system. Furthermore, it was found that in DTBT-TBT-base system lnα depends linearly on the basicity of the solvent (DN parameters). On the other hand, lnα correlates with acidic parameters of the solvents (AN) in IPP-TBT-base and P-TBT-base systems. All above correlations are explained by taking into account two competition processes: self association of phenol molecules and their solvation by oxygen bases. (author)

  8. Planetary fertility during the past 400 ka based on the triple isotope composition of atmospheric oxygen in trapped gases from the Vostok ice core

    Science.gov (United States)

    Blunier, T.; Bender, M. L.; Barnett, B.; von Fisher, J. C.

    2012-04-01

    The productivity of the biosphere leaves its imprint on the isotopic composition of atmospheric oxygen. Ultimately atmospheric oxygen, through photosynthesis, originates from seawater. Fractionations during the passage from seawater to atmospheric O2 and during respiration are mass dependent, affecting δ17O about half as much as δ18O. An "anomalous" (also termed mass independent) fractionation process changes δ17O about 1.7 times as much as δ18O during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biological O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass dependent O2 production by photosynthesis versus the rate of mass independent O2-CO2 exchange in the stratosphere. However, the analysis of the 17O anomaly is complicated because each hydrological and biological process influencing δ17O and δ18O fractionates 17O and 18O in slightly different proportions. In this study we present oxygen data covering the last 400 kyr from the Vostok ice core. We reconstruct oxygen productivities from the triple isotope composition of atmospheric oxygen with a box model. Our steady state model for the oxygen cycle takes into account fractionation during photosynthesis and respiration of the land and ocean biosphere as well as fractionation when oxygen passes through the stratosphere. We consider changes of fractionation factors linked to climate variations taking into account the span of estimates of the main factors affecting our calculations. We find that ocean oxygen productivity was likely elevated relative to modern during glacials. However, this increase probably did not fully compensate for a reduction in land ocean productivity resulting in a slight reduction in total oxygen production during glacials.

  9. Stable Isotope Systematics of Martian Perchlorate

    Science.gov (United States)

    Martin, P.; Farley, K. A.; Archer, D., Jr.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairen, A.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2015-12-01

    Chlorine isotopic compositions in HCl released during evolved gas analysis (EGA) runs have been detected by the Sample Analysis at Mars (SAM) instrument on the Curiosity rover ranging from approximately -9‰ to -50‰ δ37Cl, with two spatially and isotopically separated groups of samples averaging -15‰ and -45‰. These extremely low values are the first such detection of any known natural material; common terrestrial values very rarely exceed ±5‰, and the most extreme isotopic signature yet detected elsewhere in the solar system are values of around +24‰ on the Moon. The only other known location in the solar system with large negative chlorine isotopes is the Atacama Desert, where perchlorate with -14‰ δ37Cl has been detected. The Atacama perchlorate has unusual Δ17O signatures associated with it, indicating a formation mechanism involving O3, which suggests an atmospheric origin of the perchlorate and associated large isotopic anomalies. Identification of non-zero positive Δ17O signatures in the O2 released during EGA runs would allow definitive evidence for a similar process having occurred on Mars. Perchlorate is thought to be the most likely source of HCl in EGA runs due to the simultaneous onset of O2 release. If perchlorate is indeed the HCl source, atmospheric chemistry could be responsible for the observed isotopic anomalies, with variable extents of perchlorate production producing the isotopic variability. However, chloride salts have also been observed to release HCl upon heating; if the timing of O2 release is merely coincidental, observed HCl could be coming from chlorides. At thermodynamic equilibrium, the fractionation factor of perchlorate reduction is 0.93, meaning that differing amounts of post-deposition reduction of isotopically normal perchlorate to chloride could account for the highly variable Cl isotopes. Additionally, post-deposition reduction could account for the difference between the two Cl isotopic groups if perchlorate

  10. Mineralogy and Oxygen Isotope Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    Science.gov (United States)

    Keller, L. P.; Snead, C.; Rahman, Z.; McKeegan, K. D.

    2012-01-01

    Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL.

  11. Nitrogen and Triple Oxygen Isotopic Analyses of Atmospheric Particulate Nitrate over the Pacific Ocean

    Science.gov (United States)

    Kamezaki, Kazuki; Hattori, Shohei; Iwamoto, Yoko; Ishino, Sakiko; Furutani, Hiroshi; Miki, Yusuke; Miura, Kazuhiko; Uematsu, Mitsuo; Yoshida, Naohiro

    2017-04-01

    Nitrate plays a significant role in the biogeochemical cycle. Atmospheric nitrate (NO3- and HNO3) are produced by reaction precursor as NOx (NO and NO2) emitted by combustion, biomass burning, lightning, and soil emission, with atmospheric oxidants like ozone (O3), hydroxyl radical (OH), peroxy radical and halogen oxides. Recently, industrial activity lead to increases in the concentrations of nitrogen species (NOx and NHy) throughout the environment. Because of the increase of the amount of atmospheric nitrogen deposition, the oceanic biogeochemical cycle are changed (Galloway et al., 2004; Kim et al., 2011). However, the sources and formation pathways of atmospheric nitrate are still uncertain over the Pacific Ocean because the long-term observation is limited. Stable isotope analysis is useful tool to gain information of sources, sinks and formation pathways. The nitrogen stable isotopic composition (δ15N) of atmospheric particulate NO3- can be used to posses information of its nitrogen sources (Elliott et al., 2007). Triple oxygen isotopic compositions (Δ17O = δ17O - 0.52 ×δ18O) of atmospheric particulate NO3- can be used as tracer of the relative importance of mass-independent oxygen bearing species (e.g. O3, BrO; Δ17O ≠ 0 ‰) and mass-dependent oxygen bearing species (e.g. OH radical; Δ17O ≈ 0 ‰) through the formation processes from NOx to NO3- in the atmosphere (Michalski et al., 2003; Thiemens, 2006). Here, we present the isotopic compositions of atmospheric particulate NO3- samples collected over the Pacific Ocean from 40˚ S to 68˚ N. We observed significantly low δ15N values for atmospheric particulate NO3- on equatorial Pacific Ocean during both cruises. Although the data is limited, combination analysis of δ15N and Δ17O values for atmospheric particulate NO3- showed the possibility of the main nitrogen source of atmospheric particulate NO3- on equatorial Pacific Ocean is ammonia oxidation in troposphere. Furthermore, the Δ17O values

  12. Oxygen isotope thermometry of quartz-Al2SiO5veins in high-grade metamorphic rocks on Naxos island (Greece)

    Science.gov (United States)

    Putlitz, Benita; Valley, John; Matthews, Alan; Katzir, Yaron

    2002-04-01

    Diffusion models predict that peak metamorphic temperatures are best recorded by the oxygen isotope fractionation between minerals in a bi-mineralic rock in which a refractory accessory mineral with slow oxygen diffusion rate is modally minor to a mineral with a faster diffusion rate. This premise is demonstrated for high-grade metamorphism on the island of Naxos, Greece, where quartz-kyanite oxygen isotope thermometry from veins in high-grade metamorphic pelites gives temperatures of 635-690 °C. These temperatures are in excellent agreement with independent thermometry for the regional M2 peak metamorphic conditions and show that the vein minerals isotopically equilibrated at the peak of metamorphism. Quartz-sillimanite fractionations in the same veins give similar temperatures (680+/-35 °C) and suggest that the veins grew near to the kyanite-sillimanite boundary, corresponding to pressures of 6.5 to 7.5 kbar for temperatures of 635-685 °C. By contrast, quartz-kyanite and quartz-biotite pairs in the host rocks yield lower temperature estimates than the veins (590-600 and 350-550 °C, respectively). These lower apparent temperatures are also predicted from calculations of diffusional resetting in the polyphase host-rock system. The data demonstrate that bimineralic vein assemblages can be used as accurate thermometers in high-temperature rocks whereas retrograde exchange remains a major problem in many polymineralic rocks.

  13. Chemical and oxygen isotopic properties of ordinary chondrites (H5, L6) from Oman: Signs of isotopic equilibrium during thermal metamorphism

    Science.gov (United States)

    Ali, Arshad; Nasir, Sobhi J.; Jabeen, Iffat; Al Rawas, Ahmed; Banerjee, Neil R.; Osinski, Gordon R.

    2017-10-01

    Mean bulk chemical data of recently found H5 and L6 ordinary chondrites from the deserts of Oman generally reflect isochemical features which are consistent with the progressive thermal metamorphism of a common, unequilibrated starting material. Relative differences in abundances range from 0.5-10% in REE (Eu = 14%), 6-13% in siderophile elements (Co = 48%), and >10% in lithophile elements (exceptions are Ba, Sr, Zr, Hf, U = >30%) between H5 and L6 groups. These differences may have accounted for variable temperature conditions during metamorphism on their parent bodies. The CI/Mg-normalized mean abundances of refractory lithophile elements (Al, Ca, Sm, Yb, Lu, V) show no resolvable differences between H5 and L6 suggesting that both groups have experienced the same fractionation. The REE diagram shows subtle enrichment in LREE with a flat HREE pattern. Furthermore, overall mean REE abundances are 0.6 × CI with enriched La abundance ( 0.9 × CI) in both groups. Precise oxygen isotope compositions demonstrate the attainment of isotopic equilibrium by progressive thermal metamorphism following a mass-dependent isotope fractionation trend. Both groups show a slope-1/2 line on a three-isotope plot with subtle negative deviation in Δ17O associated with δ18O enrichment relative to δ17O. These deviations are interpreted as the result of liberation of water from phyllosilicates and evaporation of a fraction of the water during thermal metamorphism. The resultant isotope fractionations caused by the water loss are analogous to those occurring between silicate melt and gas phase during CAI and chondrule formation in chondrites and are controlled by cooling rates and exchange efficiency.

  14. The development of a completely automated oxygen isotope mass spectrometer

    International Nuclear Information System (INIS)

    Ahern, T.K.

    1980-01-01

    A completely automated mass spectrometer system has been developed to measure the oxygen isotope ratio of carbon dioxide samples. The system has an accuracy of 0.03 percent, and is capable of analyzing more than 100 samples a day. The system uses an Interdata minicomputer as the primary controller. The intelligence of the system is contained within hardware circuits, software within the minicomputer, and firmware written for a Motorola 6802 microprocessor. A microprocessor-based inlet system controller maximizes the throughput of carbon dioxide samples within the inlet system. The inlet system normally contains four different aliquots of carbon dioxide and introduces these samples to the mass spectrometer through a single admittance leak. The system has been used in the analysis of 111 samples of ice taken from the Steele glacier

  15. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    OpenAIRE

    Ziveri, P.; Thoms, S.; Probert, I.; Geisen, M.; Langer, H.

    2012-01-01

    The oxygen isotopic composition (δ18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy c...

  16. In search of the noble gas 3.52 Ga atmospheric signatures

    Science.gov (United States)

    Pujol, M.; Marty, B.; Philippot, P.

    2008-12-01

    The isotopic signatures of noble gases in the Present-day mantle and in the atmosphere permit exceptional insight into the evolution of these reservoirs through time ([1]). However, related exchange models are under- constrained and would require direct measurements of the atmospheric composition long ago, e.g., in the Archaean. Drilling in the the 3.52 Ga chert-barite ([2]) of the Dresser formation(Pilbara Drilling Project) , North Pole, Pilbara craton (Western Australia), led to recovery of exceptionally fresh samples preserving primary fluid inclusions unaffected by surface weathering. The whole formation is considered to be an already established basin when hydrothermal processes started. The chemical composition of primary fluid inclusions trapped in hydrothermal quartz from vacuolar komatiitic basalt from 110 m depth were determined by synchrotron X-ray microfluorescence (ESRF, Grenoble,France). Data show that fluids are relatively homogenous, consisting of a Ba-rich fluid and a Fe (+Ba)-rich fluid of hydrothermal origin as concluded by Foriel et al.([3]). The isotopic compositions of xenon and argon trapped in these fluids were measured by mass spectrometry following vacuum crushing. The three argon isotopes show a homogeneous signature quite different from present-day Earth atmosphere but we cannot exclude the possibility that secondary nuclear reactions produced these anomalies. Despite this, the Xe isotopic trends indicate a less radiogenic signature than the Present-day atmosphere, and probably represent a remnant of the Archaean atmosphere. If this xenon composition is primitive then it implies that there is no cosmogenic production through time. However, argon ratios could be explained by cosmogenic production which implies significant surface exposure times. Cosmogenic production will produce correlated argon and xenon isotope signatures. Therefore it is necessary to differentiate primary from secondary composition. To investigate the effects of these

  17. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  18. Quasifree (p , 2 p ) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength

    Science.gov (United States)

    Atar, L.; Paschalis, S.; Barbieri, C.; Bertulani, C. A.; Díaz Fernández, P.; Holl, M.; Najafi, M. A.; Panin, V.; Alvarez-Pol, H.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkall, J.; Chartier, M.; Chulkov, L.; Cortina-Gil, D.; Cravo, E.; Crespo, R.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Galaviz Redondo, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Kahlbow, J.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec-Gałązka, J.; Movsesyan, A.; Nacher, E.; Nikolskii, E. Y.; Nilsson, T.; Nociforo, C.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D. M.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G. L.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-01-01

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R3B /LAND setup with incident beam energies in the range of 300 - 450 MeV /u . The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type O A (p ,2 p )N-1A have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  19. Oxygen isotope studies of early Precambrian granitic rocks from the Giants Range batholith, northeastern Minnesota, U.S.A.

    Science.gov (United States)

    Viswanathan, S.

    1974-01-01

    Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.

  20. Quasifree (p, 2p) Reactions on Oxygen Isotopes: Observation of Isospin Independence of the Reduced Single-Particle Strength.

    Science.gov (United States)

    Atar, L; Paschalis, S; Barbieri, C; Bertulani, C A; Díaz Fernández, P; Holl, M; Najafi, M A; Panin, V; Alvarez-Pol, H; Aumann, T; Avdeichikov, V; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Boillos, J M; Boretzky, K; Borge, M J G; Caamaño, M; Caesar, C; Casarejos, E; Catford, W; Cederkall, J; Chartier, M; Chulkov, L; Cortina-Gil, D; Cravo, E; Crespo, R; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estrade, A; Farinon, F; Fraile, L M; Freer, M; Galaviz Redondo, D; Geissel, H; Gernhäuser, R; Golubev, P; Göbel, K; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Heinz, A; Henriques, A; Hufnagel, A; Ignatov, A; Johansson, H T; Jonson, B; Kahlbow, J; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knyazev, A; Kröll, T; Kurz, N; Labiche, M; Langer, C; Le Bleis, T; Lemmon, R; Lindberg, S; Machado, J; Marganiec-Gałązka, J; Movsesyan, A; Nacher, E; Nikolskii, E Y; Nilsson, T; Nociforo, C; Perea, A; Petri, M; Pietri, S; Plag, R; Reifarth, R; Ribeiro, G; Rigollet, C; Rossi, D M; Röder, M; Savran, D; Scheit, H; Simon, H; Sorlin, O; Syndikus, I; Taylor, J T; Tengblad, O; Thies, R; Togano, Y; Vandebrouck, M; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Wheldon, C; Wilson, G L; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M; Zilges, A; Zuber, K

    2018-02-02

    Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450  MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions. Inclusive cross sections for quasifree knockout reactions of the type ^{A}O(p,2p)^{A-1}N have been determined and compared to calculations based on the eikonal reaction theory. The reduction factors for the single-particle strength with respect to the independent-particle model were obtained and compared to state-of-the-art ab initio predictions. The results do not show any significant dependence on proton-neutron asymmetry.

  1. Oxygen isotope analyses of ground ice from North of West Siberia, from Yakutia and from Chukotka

    International Nuclear Information System (INIS)

    Vaikmaee, R.; Vassilchuk, Y.

    1991-01-01

    The aim of the present work is to make the large amount of original factual material obtained by studying the oxygen isotope composition in different types of permafrost and ground ice available to specialists. The samples analysed were systematically collected over a period of many years from different permafrost areas of the Soviet Union with the aim of elucidating and studying the regularities of isotope composition formation in different types of ground ice and selecting the most promising objects for paleoclimatic reconstructions. Much attention was paid on methodical problems of isotopic analysis starting with the collection, transportation and storage of samples up to the interpretation of the results obtained. Besides permafrost isotope data covering a large geographical area, a good deal of data concerns the isotopic composition of precipitation and surface water in permafrost areas. This is of great consequence as regards the understanding of the regularities of isotope compositions formation in permafrost. The largest chapter gives a brief account of the isotopic composition in different types of ground ice. The conclusion has been reached that in terms of paleoclimatic research syngenetic ice wedges are most promising. Grounding on the representative data bank it may be maintained with certainty that the isotopic composition provides a reliable basis for the differentiation of ice wedges originating in different epochs , however, it also reveals regional regularities. Much more complicated is the interpretation of textural ice isotopic composition. In some cases it is possible to use the distribution of 18 O in vertical sections of textural ice for their stratigraphic division. One has to consider here different mechanisms of textural ice formation as a result of which the initial isotopic composition of the ice-forming water can be in some cases highly modified. A problem of its own is the investigation of 18 O variations in the section of massive

  2. Direct dating of the oxygen-isotope record of the last deglaciation by 14C accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Duplessy, J.C.; Arnold, Maurice; Maurice, Pierre; Bard, Edouard; Duprat, Josette; Moyes, Jean

    1986-01-01

    The authors have measured 14 C for various species of foraminifera to produce a reliable timescale for the oxygen-isotope record. The results show that, at the end of the last ice age, continental ice sheets began to melt more than 4,000 yr before the Northern Hemisphere maximum of summer calorific radiation. (author)

  3. A First Look at Oxygen and Silicon Isotope Variations in Diatom Silica from a Pliocene Antarctic Marine Sediment Core

    Science.gov (United States)

    Abbott, T.; Dodd, J. P.; Hackett, H.; Scherer, R. P.

    2016-02-01

    Coupled oxygen (δ18O) and silicon (δ30Si) isotope variations in diatom silica (opal-A) are increasingly used as a proxy to reconstruct paleoenvironmental conditions (water temperatures, water mass mixing, nutrient cycling) in marine environments. Diatom silica is a particularly significant paleoenvironmental proxy in high latitude environments, such as the Southern Ocean, where diatom blooms are abundant and diatom frustules are well preserved in the sediment. The Andrill-1B (AND-1B) sediment core from the Ross Sea (Antarctica) preserves several Pliocene ( 4.5 Ma) age diatomite units. Here we present preliminary δ18O and δ30Si values for a diatomite subunit in the AND-1B sediment core. Initial isotope values for the AND-1B diatoms silica record relatively high variability (range δ18O: 36.3‰ to 39.9‰) that could be interpreted as large-scale changes in the water temperature and/or freshwater mixing in the Ross Sea; however, a significant concern with marine sediment of this age is isotope fractionation during diagenesis and the potential formation of opal-CT lepispheres. The effects of clay contamination on the diatom silica δ18O values have been addressed through sample purification and quantified through chemical and physical analyses of the diatom silica. The isotopic effects of opal-CT are not as clearly understood and more difficult to physically separate from the primary diatom silica. In order to better understand the isotope variations in the AND-1B diatoms, we also evaluated silicon and oxygen isotope fractionation during the transition from opal-A to opal-CT in a controlled laboratory experiment. Opal-A from cultured marine diatoms (Thalassiosira weissflogii) was subjected to elevated temperatures (150°C) in acid digestion vessels for 4 weeks to initiate opal-CT precipitation. Quantifying the effects of opal-CT formation on δ18O and δ30Si variations in biogenic silica improves our understanding of the use of diatom silica isotope values a

  4. Isotope exchange of molecular oxygen with oxygen of La0,7Sr0,3CoO3-δ

    International Nuclear Information System (INIS)

    Vdovin, G.K.; Kuzin, B.L.; Kurumchin, Eh.Kh.

    1991-01-01

    The exchange rate of the oxygen in La 0,7 Sr 0,3 CoO 3-δ has been measured by an isotopic exchange method at temperatures 620-1250 K and pressures 1.6-10 torr. The activation energy and the dependence of the exchange rate on pressures in gas have been defined. It is suggested that the knees on the temperature dependences of the exchange rate are attributed to the appearance of Co 2+ ions on the surface of the sample at elevated temperature as new centres of the exchange reaction. The activation energies of the adsorption and desorption processes on the La 0,7 Sr 0,3 CoO 3-δ surface have been estimated

  5. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    Science.gov (United States)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  6. Technical Report on the Behavior of Trace Elements, Stable Isotopes, and Radiogenic Isotopes During the Processing of Uranium Ore to Uranium Ore Concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Marks, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Borg, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eppich, G. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gaffney, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Genneti, V. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hutcheon, I. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kristo, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindvall, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramon, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robel, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, S. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schorzman, K. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sharp, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Singleton, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-09

    The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.

  7. Water isotope partitioning and ecohydrologic separation in mixed conifer forest explored with a centrifugation water extraction method

    Science.gov (United States)

    Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.

    2017-12-01

    Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the

  8. Effect of Monsoon on spatio-temporal variation of groundwater chemistry and stable isotopic signatures: insights for concomitant arsenic mobilization in West Bengal, India

    Science.gov (United States)

    Majumder, S.; Datta, S.; Nath, B.; Neidhardt, H.; Roman-Ross, G.; Berner, Z.; Hidalgo, M.; Chatterjee, D.; Sarkar, S.

    2017-12-01

    Large-scale groundwater abstraction was hypothesized to be one of the important factors controlling release and distribution of arsenic (As) in aquifers of Bengal Basin. In this study, we studied the groundwater/surface water geochemistry of two different geomorphic domains within the Chakdaha Block, West Bengal, to identify potential influences of groundwater withdrawal on the hydrochemical evolution of the aquifer. This has been done as a function of different water inputs (monsoon rain, irrigation and downward percolation from surface water impoundments) to the groundwater system and associated As mobilization. A low-land flood plain (with relatively more reducing aquifer) and a natural levee (less reducing aquifer) have been chosen for this purpose. The stable isotopic signatures of oxygen (δ18O) and hydrogen (δ2H) falls sub-parallel to the Global Meteoric Water Line (GMWL), with precipitation and subsequent evaporation seems to be the major controlling factor on the water isotopic composition. This shows a contribution of evaporation influenced water, derived from various surface water bodies, pointing at large-scale groundwater withdrawal helping drawdown of the evaporated surface water. In case of flood plain wells, the stable isotope composition and the Cl/Br molar ratio in local groundwater have revealed vertical recharge within the flood plain area to be the major recharge process, especially during the post-monsoon season. However, both evaporation and vertical mixing are visibly controlling the groundwater recharge in the natural levee area. A possible inflow of organic carbon to the aquifer during the monsoonal recharge process is noticeable, with an increase in dissolved organic carbon (DOC) concentration from 1.33 to 6.29 mg/L on passing from pre- to post-monsoon season. Concomitant increase in AsT, Fe(II) and HCO3- during the post monsoon season, being more pronounced in the flood plain samples, indicates a possible initial episode of reductive

  9. Interaction cross sections and matter radii of oxygen isotopes using the Glauber model

    Science.gov (United States)

    Ahmad, Suhel; Usmani, A. A.; Ahmad, Shakeb; Khan, Z. A.

    2017-05-01

    Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction cross sections of oxygen isotopes (O-2616) on 12C at 1.0 GeV/nucleon. The densities of O-2616 are obtained using (i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion, the calculations are performed employing the free as well as the in-medium nucleon-nucleon (N N ) scattering amplitude. The in-medium N N amplitude considers the effects arising due to phase variation, higher momentum transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along with the in-medium N N amplitude, are able to provide satisfactory explanation of the experimental data. It is found that, except for O,2423, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those obtained using the RMF densities. However, for O,2423, our results require reasonably larger SDHO matter rms radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable estimates of the matter rms radii of neutron-rich nuclei.

  10. High-frequency climate linkages between the North Atlantic and the Mediterranean during marine oxygen isotope stage 100 (MIS100)

    NARCIS (Netherlands)

    Becker, Julia; Lourens, L.J.; Raymo, M.E.

    2006-01-01

    High-resolution records of Mediterranean and North Atlantic deep-sea sediments indicate that rapid changes in hydrology and climate occurred during marine oxygen isotope stage 100 (MIS100) (at ~2.52 Ma), which exhibits characteristics similar to late Pleistocene Dansgaard-Oeschger, Bond cycles and

  11. Effect on a long-term afforestation of pine in a beech domain in NE-Spain as reflected in soil C and N isotopic signature

    Science.gov (United States)

    Girona García, Antonio; Badía-Villas, David; González-Pérez, José Antonio; Tomás Jiménez-Morillo, Nicasio; Martí-Dalmau, Clara

    2015-04-01

    The replacement of native beech forests (Fagus sylvatica) by Scots pine (Pinus sylvestris) afforestation may exert changes in soil properties, particularly in soil organic matter (SOM) (Carceller and Vallejo, 1996). Stable isotopic signatures of light elements (d13C, d15N) in soils and plants are valuable proxies for the identification of biogeochemical processes and their rates in the pedosphere (Andreeva et al., 2013 and refs therein). In this work the C and N stable isotopic analysis is used as a proxy to detect changes in SOM surrogated to the effect of centennial replacement of beech by the Scots pinewood. Two acid soil profiles, developed on quartzites under a humid climate at an altitude of 1400-1500 masl, have been sampled in Moncayo (Iberian range, NE-Spain). For each soil profile three O-layers (litter: OL, fragmented litter OF and humified litter OH) and mineral soil horizons (Ah, E, Bhs and C) were sampled. Content and bulk isotopic signature of light elements (C and N) were analysed in a Flash 2000 elemental micro-analyser coupled via a ConFlo IV interface to a Delta V Advantage isotope ratio mass spectrometer (IRMS) (Thermo Scientific, Bremen, Germany). Isotopic ratios are reported as parts per thousand deviations from appropriate standards. The standard deviations of d13C and d15N were typically less than ± 0.05 per thousand, ± 0.2 per thousand, respectively. After 100 years since the pine afforestation, no differences on C content were observed in the O-layers, ranging from 30-47% in pine soils and 37-47 % in beech soils. Similarly, no differences on N content were observed in the O-layers, ranging from 1.24-1.86 % in pine soils and 1.70-1.71 % in beech soils. C and N contents decrease progressively in depth with the exception of E-horizons where the lowest C and N content values were found. C/N ratio is higher in pine soil (20.7-38.1) than in beech O soil horizons (21.8-27.5), showing similar behavior with soil depth. Pine biomass was slightly

  12. Combined oxygen- and carbon-isotope records through the Early Jurassic: multiple global events and two modes of carbon-cycle/temperature coupling

    DEFF Research Database (Denmark)

    Hesselbo, Stephen P.; Korte, Christoph

    2010-01-01

    , to the extent that meaningful comparisons between these events can begin to be made. Here we present new carbon and oxygen isotope data from mollusks (bivalves and belemnites) and brachiopods collected through the marine Early Jurassic succession of NE England, including the Sinemurian-Plienbachian boundary...... GSSP. All materials have been screened by chemical analysis and scanning electron microscopy to check for diagenetic alteration. Analysis of carbon isotopes from marine calcite is supplemented by analysis of carbon-isotope values from fossil wood collected through the same section. It is demonstrated...... that both long-term and short-term carbon-isotope shifts from the UK Early Jurassic represent global changes in carbon cycle balances. The Sinemurian-Pliensbachian boundary event is an event of global significance and shows several similarities to the Toarcian OAE (relative sea-level change, carbon-isotope...

  13. A stochastic approach to the reconstruction of prehistoric human diet in the Pacific region from bone isotope signatures

    International Nuclear Information System (INIS)

    Leach, B.F.; Quinn, C.J.; Lyon, G.L.

    1996-01-01

    A theoretical constraint on dietary reconstructions using isotope analyses of human bones is that for a given number of isotopes, N, one cannot calculate the proportions of more than N+1 food types. This strict algebraic limitation can be relaxed by adopting a stochastic approach, recommended by Mingawa (1992). This strategy is investigated for prehistoric diet in the South Pacific region, focusing on seven of the main food types available to these people: C3 plants, C4 plants, land herbivores, marine shellfish, coral reef fish, non-reef fish, and marine mammals. Sixty-three underlying assumptions were identified and examined in detail. These consist of the mean values for each food type of protein, energy δ 1 3C, δ 1 5N, 3 4S; the offset values for each isotope from the food to human bone collagen; fractionation effects from flesh to collagen in animals; and acceptable daily intake ranges for protein and energy in human diet. Because of the complexity of the environmental regimes in the Pacific it was also found necessary to tabulate these assumptions into tow groups: one set of assumptions relevant to prehistoric people whose environment is dominated by maritime conditions, such as atolls, and a second set where the land is the dominant influence. . A computer simulation algorithm is developed which is based on Mingawa's method. This was tested using a 'Reverse Experiment' procedure. By taking a diet of known percentage weight composition the isotope composition of human bone was forward calculated from this diet. The algorithm was then employed on this isotope signature to see if the original food composition could be calculated in reverse. The differences between real and calculated food weight percentages for the seven foods were 4.8, 0.1, 4.5, 1.8, 1.5, 1.8 and 1.4% respectively. These were all within aceptable statistical limits. Using the full set of assumptions it was then tested on isotope results for δ 1 3C, δ 1 5N and 3 4S for a prehistoric Pacific

  14. Molybdenum isotope variations in calc-alkaline lavas from the Banda arc, Indonesia: Assessing the effect of crystal fractionation in creating isotopically heavy continental crust

    NARCIS (Netherlands)

    Wille, Martin; Nebel, Oliver; Pettke, Thomas; Vroon, Pieter Z.; König, Stephan; Schoenberg, Ronny

    2018-01-01

    Recent studies report a large Mo isotope variability of up to 1‰ (expressed in δ98/95MoNIST3134) in convergent margin lavas. These isotopic variations have been associated with subduction zone processes and ultimately may account for heavy and variable isotope signatures in evolved continental

  15. Oxygen 18 isotopic analysis of sub-glacial concentrations of the Laurentide Ice Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hillaire-Marcel, C [Quebec Univ., Montreal (Canada); Cailleux, A [Observatoire de Paris, Section de Meudon, 92 (France); Soucy, J

    1979-07-01

    Calcareous concretions occuring on Grenvillian gneiss have been discovered north of Hull, Quebec. Their structure and isotopic composition (delta/sub PDB//sup 18/O approximately equal to -26%; delta/sub PDB//sup 13/C approximately equal to 0%; /sup 14/C age > 35,000 BP) indicate subglacial conditions of precipitation. It is concluded that they were deposited at the base of the Laurentide ice sheet. Assuming equilibrium conditions with the subglacial film of water during precipitation of calcite, it is possible to define a -27.5 to -31.8% (vs. 'standard mean ocean water' (SMOW)) range for the oxygen-18 content of ice.

  16. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    Science.gov (United States)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  17. Sulfur and Oxygen Isotopic Composition of Sulfate in the Fresh Water, King Sejong Station, King George Island, Antarctica

    Science.gov (United States)

    Kim, M.; Lee, I.; Lee, J.; Park, B.; Mayer, B.; Kaufman, A. J.; Park, S.; Kim, G.; Lee, K.

    2008-12-01

    Isotopic compositions of sulfur (δ34S) and oxygen (δ18O) were measured for the sulfate of the fresh water near the King Sejong Station, King George Island, Antarctica. Sejong station is located in the Barton peninsular of the King George Island. The geology around King Sejong station mainly composed of basalt-andesite, quart monzodiorite, and granodiorite. Lapilli tuff, conglomerate, sandstone, and siltstone occur along the southern and eastern shore of the Barton peninsula. Lapilli tuff also occurs on the highland located on southeastern part of the Barton peninsula. The δ34S values of sulfate extracted from fresh water samples at King Sejong Station range from 13.7 to 16.3 per mil excluding 1 sample. These sulfur values are very narrow in their range compared with those from anthropogenic sources. These sulfur values are 5 to 7 per mil lower than those of typical present seawater. Considering the rocks occurring near the King Sejong station, these sulfur isotopic values do not seem to be related to any evaporites of certain age. In Antarctic region the natural source of sulfate dissolved in water could be originated from marine biogenic source (DMS), sea-salt, volcanic source, or other continental sources. Most of the δ34S values of sulfate at King Sejong station seems to indicate the dominance of marine biogenic origin for the source of sulfur. The δ18O values of sulfate extracted from fresh water samples at King Sejong Station range from 1.9 to 6.4 per mil excluding 1 sample. These oxygen isotope values are lower than those of the sulfate in the present seawater by 6 per mil. However, both sulfur and oxygen isotope values strongly represent the influence of the seawater sulfate. One sample have 2.6 and -1.1 per mil in its δ34S and δ18O values, respectively, that are quite different from the isotopic values of other samples. This sample was collected in the highland far from the King Sejong station. Therefore this sample might reflect the composition of

  18. The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites

    Science.gov (United States)

    van Ginneken, M.; Gattacceca, J.; Rochette, P.; Sonzogni, C.; Alexandre, A.; Vidal, V.; Genge, M. J.

    2017-09-01

    High-precision oxygen isotopic compositions of eighteen large cosmic spherules (>500 μm diameter) from the Atacama Desert, Chile, were determined using IR-laser fluorination - Isotope Ratio Mass spectrometry. The four discrete isotopic groups defined in a previous study on cosmic spherules from the Transantarctic Mountains (Suavet et al., 2010) were identified, confirming their global distribution. Approximately 50% of the studied cosmic spherules are related to carbonaceous chondrites, 38% to ordinary chondrites and 12% to unknown parent bodies. Approximately 90% of barred olivine (BO) cosmic spherules show oxygen isotopic compositions suggesting they are related to carbonaceous chondrites. Similarly, ∼90% porphyritic olivine (Po) cosmic spherules are related to ordinary chondrites and none can be unambiguously related to carbonaceous chondrites. Other textures are related to all potential parent bodies. The data suggests that the textures of cosmic spherules are mainly controlled by the nature of the precursor rather than by the atmospheric entry parameters. We propose that the Po texture may essentially be formed from a coarse-grained precursor having an ordinary chondritic mineralogy and chemistry. Coarse-grained precursors related to carbonaceous chondrites (i.e. chondrules) are likely to either survive atmospheric entry heating or form V-type cosmic spherules. Due to the limited number of submicron nucleation sites after total melting, ordinary chondrite-related coarse-grained precursors that suffer higher peak temperatures will preferentially form cryptocrystalline (Cc) textures instead of BO textures. Conversely, the BO textures would be mostly related to the fine-grained matrices of carbonaceous chondrites due to the wide range of melting temperatures of their constituent mineral phases, allowing the preservation of submicron nucleation sites. Independently of the nature of the precursors, increasing peak temperatures form glassy textures.

  19. Pb-Sr-Nd-O isotopic characterization of Mesozoic rocks throughout the northern end of the Peninsular Ranges batholith: Isotopic evidence for the magmatic evolution of oceanic arc–continental margin accretion during the Late Cretaceous of southern California

    Science.gov (United States)

    Kistler, Ronald W.; Wooden, Joseph L.; Premo, Wayne R.; Morton, Douglas M.

    2014-01-01

    Within the duration of the U.S. Geological Survey (USGS)–based Southern California Areal Mapping Project (SCAMP), many samples from the northern Peninsular Ranges batholith were studied for their whole-rock radioisotopic systematics (rubidium-strontium [Rb-Sr], uranium-thorium-lead [U-Th-Pb], and samarium-neodymium [Sm-Nd]), as well as oxygen (O), a stable isotope. The results of three main studies are presented separately, but here we combine them (>400 analyses) to produce a very complete Pb-Sr-Nd-O isotopic profile of an arc-continent collisional zone—perhaps the most complete in the world. In addition, because many of these samples have U-Pb zircon as well as argon mineral age determinations, we have good control of the timing for Pb-Sr-Nd-O isotopic variations.The ages and isotopic variations help to delineate at least four zones across the batholith from west to east—an older western zone (126–108 Ma), a transitional zone (111–93 Ma), an eastern zone (94–91 Ma), and a much younger allochthonous thrust sheet (ca. 84 Ma), which is the upper plate of the Eastern Peninsular Ranges mylonite zone. Average initial 87Sr/86 Sr (Sri), initial 206Pb/204Pb (206 Pbi), initial 208Pb/204Pb (average 208Pbi), initial epsilon Nd (average εNdi), and δ18O signatures range from 0.704, 18.787, 38.445, +3.1, and 4.0‰–9.0‰, respectively, in the westernmost zone, to 0.7071, 19.199, 38.777, −5, and 9‰–12‰, respectively, in the easternmost zone. The older western zone is therefore the more chemically and isotopically juvenile, characterized mostly by values that are slightly displaced from a mantle array at ca. 115 Ma, and similar to some modern island-arc signatures. In contrast, the isotopic signatures in the eastern zones indicate significant amounts of crustal involvement in the magmatic plumbing of those plutons. These isotopic signatures confirm previously published results that interpreted the Peninsular Ranges batholith as a progressively

  20. Tracking selenium in the Chalk aquifer of northern France: Sr isotope constraints

    International Nuclear Information System (INIS)

    Cary, L.; Benabderraziq, H.; Elkhattabi, J.; Gourcy, L.; Parmentier, M.; Picot, J.; Khaska, M.; Laurent, A.; Négrel, Ph.

    2014-01-01

    Highlights: • We report the chemistry of the Chalk groundwater affected by Se contamination. • Strontium isotopes were used to identify the groundwater bodies and their mixings. • The spatial and temporal Se variability is mainly linked to the presence of Se-rich clays. • Saturation or desaturation of Se-rich clays control Se mobility. - Abstract: Groundwater at the southern and eastern edges of France’s Paris Basin has a selenium content that at times exceeds the European Framework Directive’s drinking-water limit value of 10 μg/L. To better understand the dynamics of the Chalk groundwater being tapped to supply the city of Lille and the Se origins, we used a combination of geochemical and isotopic tools. Strontium isotopes, coupled with Ca/Sr, Mg/Sr and Se/Sr ratios, were used to identify the main groundwater bodies and their mixings, with the Mg/Sr and Se/Sr ratios constraining a ternary system. Groundwater in the agricultural aquifer-recharge zone represents a first end-member and displays the youngest water ages of the catchment along with the highest Sr isotopic signature (0.70842) and low Se contents. Anaerobic groundwater constitutes a second major end-member affected by water-rock interactions over a long residence time, with the lowest Sr isotopic signature (0.70789) and the lowest Se content, its low SF6 content confirming the contribution of old water. Se-rich groundwater containing up to 30 μg/L of Se represents a third major end-member, with an intermediate Sr isotopic ratio (0.70826), and is mainly constrained by the clayey Se-rich formation overlying the Chalk aquifer. The spatial and temporal Se variability in the groundwater is clearly linked to the presence of this formation identified as Tertiary and also to the hydrological conditions; saturation of the Se-rich clays by oxygenated groundwater enhances Se mobility and also Sr adsorption onto the clays. This multi-tool study including Sr isotopes successfully identified the Se

  1. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  2. Building materials as intrinsic sources of sulphate: A hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S)

    International Nuclear Information System (INIS)

    Kloppmann, W.; Bromblet, P.; Vallet, J.M.; Verges-Belmin, V.; Rolland, O.; Guerrot, C.; Gosselin, C.

    2011-01-01

    Sulphate neoformation is a major factor of degradation of stone monuments. Boron, sulphur and oxygen isotope signatures were investigated for five French historical monuments (Bourges, Chartres and Marseille cathedrals, Chenonceau castle, and Versailles garden statues) to investigate the role of intrinsic sulphate sources (gypsum plasters and mortars) in stone degradation, compared to the influence of extrinsic sources such as atmospheric pollution. Gypsum plasters and gypsum-containing mortars fall systematically in the δ 34 S and δ 18 O range of Paris Basin Eocene evaporites indicating the origin of the raw materials (so-called 'Paris plaster'). Black crusts show the typical S and O isotope signatures observed elsewhere in Europe that can be attributed to atmospheric pollution, together with a marine component for Marseille. Boron isotopes for black crusts indicate coal combustion as principal boron source. Mortar isotope compositions discriminate three types, one similar to gypsum plasters, one strongly depleted in 34 S, attributed to pyrite oxidation, and a third one close to atmospheric sulphates. The isotopic composition of sulphates and boron of most degraded building stones of the different monuments is well explained by the identified sulphate sources. In several cases (in particular for Chenonceau and Bourges, to some extent for Chartres), the impact of gypsum plaster as building and restoration material on the degradation of the stones in its vicinity was clearly demonstrated. The study illustrates the usefulness of multi-isotope studies to investigate stone degradation factors, as the combination of several isotope systematics increases the discriminatory power of isotope studies with respect to contaminant sources. - Research Highlights: → Insight in stone weathering mechanisms by multi-isotope fingerprinting (B, S, O). → Intrinsic sulphate sources (gypsum plaster, mortar) contribute to stone degradation. → Origin of building materials

  3. Building materials as intrinsic sources of sulphate: A hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S)

    Energy Technology Data Exchange (ETDEWEB)

    Kloppmann, W., E-mail: w.kloppmann@brgm.fr [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); Bromblet, P.; Vallet, J.M. [CICRP, 21, rue Guibal, F-13003 Marseille (France); Verges-Belmin, V. [LRMH, 29, rue de Paris, F-77420 Champs sur Marne (France); Rolland, O. [Independent restorer, 3, rue du Gue, 37270 Montlouis s/Loire (France); Guerrot, C. [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); Gosselin, C. [BRGM, BP 6009, F-45060 Orleans cedex 2 (France); LRMH, 29, rue de Paris, F-77420 Champs sur Marne (France)

    2011-04-01

    Sulphate neoformation is a major factor of degradation of stone monuments. Boron, sulphur and oxygen isotope signatures were investigated for five French historical monuments (Bourges, Chartres and Marseille cathedrals, Chenonceau castle, and Versailles garden statues) to investigate the role of intrinsic sulphate sources (gypsum plasters and mortars) in stone degradation, compared to the influence of extrinsic sources such as atmospheric pollution. Gypsum plasters and gypsum-containing mortars fall systematically in the {delta}{sup 34}S and {delta}{sup 18}O range of Paris Basin Eocene evaporites indicating the origin of the raw materials (so-called 'Paris plaster'). Black crusts show the typical S and O isotope signatures observed elsewhere in Europe that can be attributed to atmospheric pollution, together with a marine component for Marseille. Boron isotopes for black crusts indicate coal combustion as principal boron source. Mortar isotope compositions discriminate three types, one similar to gypsum plasters, one strongly depleted in {sup 34}S, attributed to pyrite oxidation, and a third one close to atmospheric sulphates. The isotopic composition of sulphates and boron of most degraded building stones of the different monuments is well explained by the identified sulphate sources. In several cases (in particular for Chenonceau and Bourges, to some extent for Chartres), the impact of gypsum plaster as building and restoration material on the degradation of the stones in its vicinity was clearly demonstrated. The study illustrates the usefulness of multi-isotope studies to investigate stone degradation factors, as the combination of several isotope systematics increases the discriminatory power of isotope studies with respect to contaminant sources. - Research Highlights: {yields} Insight in stone weathering mechanisms by multi-isotope fingerprinting (B, S, O). {yields} Intrinsic sulphate sources (gypsum plaster, mortar) contribute to stone degradation

  4. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover

    Science.gov (United States)

    Mahaffy, Paul R.; Webster, Christopher R.; Atreya, Sushil K.; Franz, Heather; Wong, Michael; Conrad, Pamela G.; Harpold, Dan; Jones, John J.; Leshin, Laurie A.; Manning, Heidi; Owen, Tobias; Pepin, Robert O.; Squyres, Steven; Trainer, Melissa; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Jones, Andrea; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-07-01

    Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 (40Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10-3; carbon monoxide, < 1.0 × 10-3; and 40Ar/36Ar, 1.9(±0.3) × 103. The 40Ar/N2 ratio is 1.7 times greater and the 40Ar/36Ar ratio 1.6 times lower than values reported by the Viking Lander mass spectrometer in 1976, whereas other values are generally consistent with Viking and remote sensing observations. The 40Ar/36Ar ratio is consistent with martian meteoritic values, which provides additional strong support for a martian origin of these rocks. The isotopic signature δ13C from CO2 of ~45 per mil is independently measured with two instruments. This heavy isotope enrichment in carbon supports the hypothesis of substantial atmospheric loss.

  5. Correlations Between Surficial Sulfur and a REE Crustal Assimilation Signature in Martian Shergottites

    Science.gov (United States)

    Jones, J. H.; Franz, H. B.

    2015-01-01

    Compared to terrestrial basalts, the Martian shergottite meteorites have an extraordinary range of Sr and Nd isotopic signatures. In addition, the S isotopic compositions of many shergottites show evidence of interaction with the Martian surface/ atmosphere through mass-independent isotopic fractionations (MIF, positive, non-zero delta(exp 33)S) that must have originated in the Martian atmosphere, yet ultimately were incorporated into igneous sulfides (AVS - acid-volatile sulfur). These positive delta(exp 33)S signatures are thought to be governed by solar UV photochemical processes. And to the extent that S is bound to Mars and not lost to space from the upper atmosphere, a positive delta(exp 33)S reservoir must be mass balanced by a complementary negative reservoir.

  6. Beyond the neutron drip line: The unbound oxygen isotopes 25O and 26O

    DEFF Research Database (Denmark)

    Caesar, C.; Simonis, J.; Adachi, T.

    2013-01-01

    The very neutron-rich oxygen isotopes 25O and 26O are investigated experimentally and theoretically. The unbound states are populated in an experiment performed at the R3B-LAND setup at GSI via proton-knockout reactions from 26F and 27F at relativistic energies around 442 and 414 MeV/nucleon, res...

  7. Hydrogen and oxygen isotope constraints on hydrothermal alteration of the Trinity peridotite, Klamath Mountains, California

    Science.gov (United States)

    Liakhovitch, V.; Quick, J.E.; Gregory, R.T.

    2005-01-01

    The Trinity peridotite represents a rare opportunity to examine a relatively fertile plagioclase peridotite that was exhumed and later subjected to intrusive events in a seafloor environment, followed by its emplacement and incorporation into a continent. Over 250 stable isotopic determinations on whole rocks and minerals elucidate the hydrothermal evolution of the Trinity complex. All three serpentine polymorphs are present in the Trinity peridotite; these separate on the basis of their ??D values: antigorite, -46 serpentinization, or overprinting of earlier low-temperature seafloor serpentinization. Regionally, contours of ??D values exhibit bull's-eye patterns associated with the gabbroic plutons, with ??D maxima coinciding with the blackwall alteration at the margins on the plutons. In contrast to the hydrogen isotope behavior, oxygen isotope values of the three polymorphs are indistinguishable, spanning the range 5.3 history: (1) lithospheric emplacement and cooling of the peridotite in an oceanic environment ??? 472 Ma; (2) intrusion of gabbroic plutons into cold peridotite in an arc environment between 435 and 404 Ma; and finally (3) intrusion of felsic plutons between 171 and 127 Ma, long after the peridotite was incorporated into the continental crust. Copyright ?? 2005 by V. H. Winston & Son, Inc. All rights reserved.

  8. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    Science.gov (United States)

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous

  9. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Ar...... et al., 2007, Water Air Soil Poll. 179, 381-390. [2] Sánchez-Pastor et al., 2011, Cryst. Growth Des. 11, 3081-3089.......The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during...... the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation and isotopic fractionation of chromate into the calcite lattice. Our experiments indicate...

  10. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fekiacova, Z.; Cornu, S. [INRA, UR 1119 Géochimie des Sols et des Eaux, F-13100 Aix en Provence (France); Pichat, S. [Laboratoire de Géologie de Lyon (LGL-TPE), Ecole Normale Supérieure de Lyon, CNRS, UMR 5276, 69007 Lyon (France)

    2015-06-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ{sup 65}Cu values vary from − 0.15 to 0.44‰ and the δ{sup 66}Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ{sup 65}Cu and from − 0.53 to 0.64‰ for δ{sup 66}Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing

  11. Tracing contamination sources in soils with Cu and Zn isotopic ratios

    International Nuclear Information System (INIS)

    Fekiacova, Z.; Cornu, S.; Pichat, S.

    2015-01-01

    Copper (Cu) and zinc (Zn) are naturally present and ubiquitous in soils and are important micronutrients. Human activities contribute to the input of these metals to soils in different chemical forms, which can sometimes reach a toxic level for soil organisms and plants. Isotopic signatures could be used to trace sources of anthropogenic Cu and Zn pollution. The aim of this paper is to determine whether it is possible to identify (i) Cu and Zn contamination in soils and their sources, on the basis of their isotopic signatures, and (ii) situations that are a priori favorable or not for tracing Cu and Zn pollution using the isotopic approach. Therefore, we compiled data from the literature on Cu and Zn isotopes in soils, rocks and pollutants and added to this database the results of our own research. As only a few studies have dealt with agricultural contamination, we also studied a soil toposequence from Brittany, France, that experienced spreading of pig slurry for tens of years. In the surface horizons of the natural soils, the δ 65 Cu values vary from − 0.15 to 0.44‰ and the δ 66 Zn from − 0.03 to 0.43‰. Furthermore, vertical variations along soil profiles range from − 0.95 to 0.44‰ for δ 65 Cu and from − 0.53 to 0.64‰ for δ 66 Zn values. We concluded that pedogenetic processes can produce isotopic fractionation, yet, it is not always discernible and can be overprinted by an exogenous isotopic signature. Furthermore, some contaminants are enriched in heavy Cu or in light Zn compared to the rock or soil, but no generalization can be made. The anthropogenic inputs can be identified based on stable Cu and Zn isotope ratios if the isotope ratios of the sources are different from those of the soil, which needs to be tested for each individual case. - Highlights: • Pedogenetic processes produce some Cu and Zn isotope fractionation. • Pollution with distinct isotopic signatures can be traced using Cu and Zn isotopes. • Tracing of the metal

  12. Late Archean Surface Ocean Oxygenation (Invited)

    Science.gov (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.

    2009-12-01

    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  13. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, I

    Science.gov (United States)

    2004-01-01

    The Special Session: Oxygen in the Solar System, I, included the following reports:Oxygen in the Solar System: Origins of Isotopic and Redox Complexity; The Origin of Oxygen Isotope Variations in the Early Solar System; Solar and Solar-Wind Oxygen Isotopes and the Genesis Mission; Solar 18O/17O and the Setting for Solar Birth; Oxygen Isotopes in Early Solar System Materials: A Perspective Based on Microbeam Analyses of Chondrules from CV Carbonaceous Chondrites; Insight into Primordial Solar System Oxygen Reservoirs from Returned Cometary Samples; Tracing Meteorites to Their Sources Through Asteroid Spectroscopy; Redox Conditions Among the Terrestrial Planets; Redox Complexity in Martian Meteorites: Implications for Oxygen in the Terrestrial Planets; Implications of Sulfur Isotopes for the Evolution of Atmospheric Oxygen; Oxygen in the Outer Solar System; and On the Oxidation States of the Galilean Satellites: Implications for Internal Structures.

  14. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    Science.gov (United States)

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world. Copyright © 2014. Published by Elsevier B.V.

  15. Metamorphosis Affects Metal Concentrations and Isotopic Signatures in a Mayfly (Baetis tricaudatus): Implications for the Aquatic-Terrestrial Transfer of Metals.

    Science.gov (United States)

    Wesner, Jeff S; Walters, David M; Schmidt, Travis S; Kraus, Johanna M; Stricker, Craig A; Clements, William H; Wolf, Ruth E

    2017-02-21

    Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 μg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ 15 N and δ 13 C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ 15 N by ∼0.8‰, but not δ 13 C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ 15 N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).

  16. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Nagashima, K.; Jones, R.H.

    aluminium rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine... to the major components of meteorites such as chondrules and calcium-aluminium-rich inclusions (CAIs). CAIs, the first solar system objects in the solar nebula, are formed by condensation of refractory minerals at high temperatures. They are 16O...

  17. Isotope signatures of N2O emitted from vegetable soil: Ammonia oxidation drives N2O production in NH4(+)-fertilized soil of North China.

    Science.gov (United States)

    Zhang, Wei; Li, Yuzhong; Xu, Chunying; Li, Qiaozhen; Lin, Wei

    2016-07-08

    Nitrous oxide (N2O) is a potent greenhouse gas. In North China, vegetable fields are amended with high levels of N fertilizer and irrigation water, which causes massive N2O flux. The aim of this study was to determine the contribution of microbial processes to N2O production and characterize isotopic signature effects on N2O source partitioning. We conducted a microcosm study that combined naturally abundant isotopologues and gas inhibitor techniques to analyze N2O flux and its isotopomer signatures [δ(15)N(bulk), δ(18)O, and SP (intramolecular (15)N site preference)] that emitted from vegetable soil after the addition of NH4(+) fertilizers. The results show that ammonia oxidation is the predominant process under high water content (70% water-filled pore space), and nitrifier denitrification contribution increases with increasing N content. δ(15)N(bulk) and δ(18)O of N2O may not provide information about microbial processes due to great shifts in precursor signatures and atom exchange, especially for soil treated with NH4(+) fertilizer. SP and associated two end-member mixing model are useful to distinguish N2O source and contribution. Further work is needed to explore isotopomer signature stability to improve N2O microbial process identification.

  18. Using compound-specific isotope analysis to assess the degradation of chloroacetanilide herbicides in lab-scale wetlands.

    Science.gov (United States)

    Elsayed, O F; Maillard, E; Vuilleumier, S; Nijenhuis, I; Richnow, H H; Imfeld, G

    2014-03-01

    Compound-specific isotope analysis (CSIA) is a promising tool to study the environmental fate of a wide range of contaminants including pesticides. In this study, a novel CSIA method was developed to analyse the stable carbon isotope signatures of widely used chloroacetanilide herbicides. The developed method was applied in combination with herbicide concentration and hydrochemical analyses to investigate in situ biodegradation of metolachlor, acetochlor and alachlor during their transport in lab-scale wetlands. Two distinct redox zones were identified in the wetlands. Oxic conditions prevailed close to the inlet of the four wetlands (oxygen concentration of 212±24μM), and anoxic conditions (oxygen concentrations of 28±41μM) prevailed towards the outlet, where dissipation of herbicides mainly occurred. Removal of acetochlor and alachlor from inlet to outlet of wetlands was 56% and 51%, whereas metolachlor was more persistent (23% of load dissipation). CSIA of chloroacetanilides at the inlet and outlet of the wetlands revealed carbon isotope fractionation of alachlor (εbulk=-2.0±0.3‰) and acetochlor (εbulk=-3.4±0.5‰), indicating that biodegradation contributes to the dissipation of both herbicides. This study is a first step towards the application of CSIA to evaluate the transport and degradation of chloroacetanilide herbicides in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region

    Science.gov (United States)

    Cai, Zhongyin; Tian, Lide; Bowen, Gabriel J.

    2017-10-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  20. Elucidation of oxidation and degradation products of oxygen containing fuel components by combined use of a stable isotopic tracer and mass spectrometry.

    Science.gov (United States)

    Frauscher, Marcella; Besser, Charlotte; Allmaier, Günter; Dörr, Nicole

    2017-11-15

    In order to reveal the degradation products of oxygen-containing fuel components, in particular fatty acid methyl esters, a novel approach was developed to characterize the oxidation behaviour. Combination of artificial alteration under pressurized oxygen atmosphere, a stable isotopic tracer, and gas chromatography electron impact mass spectrometry (GC-EI-MS) was used to obtain detailed information on the formation of oxidation products of (9Z), (12Z)-octadecadienoic acid methyl ester (C18:2 ME). Thereby, biodiesel simulating model compound C18:2 ME was oxidized in a rotating pressurized vessel standardized for lubricant oxidation tests (RPVOT), i.e., artificially altered, under 16 O 2 as well as 18 O 2 atmosphere. Identification of the formed degradation products, mainly carboxylic acids of various chain lengths, alcohols, ketones, and esters, was performed by means of GC-EI-MS. Comparison of mass spectra of compounds under both atmospheres revealed not only the degree of oxidation and the origin of oxygen atoms, but also the sites of oxidative attack and bond cleavage. Hence, the developed and outlined strategy based on a gas-phase stable isotopic tracer and mass spectrometry provides insight into the degradation of oxygen-containing fuels and fuel components by means of the accurate differentiation of oxygen origin in a degradation product. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ocean circulation and shelf processes in the Arctic, Mediterranean traced by radiogenic neodymium isotopes, rare earth elements and stable oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Laukert, Georgi

    2017-02-20

    Disentangling the sources, distribution and mixing of water masses involved in the transport and transfer of heat and freshwater in the Arctic Mediterranean (i.e. the Arctic Ocean and the Nordic Seas, AM) is critical for the understanding of present and future hydrological changes in the high-latitude regions. This study refines the knowledge of water mass circulation in the AM and provides new insights into the processes occurring on the Arctic shelves and in high-latitude estuaries. A multi-proxy approach is used combining dissolved radiogenic Nd isotopes (ε{sub Nd}), rare earth elements (REEs) and stable oxygen isotopes (δ{sup 18}O) together with standard hydrographic tracers. The sources, distribution and mixing of water masses that circulate in the AM and pass the Fram Strait are assessed through evaluation of dissolved ε{sub Nd} and REE, and δ{sup 18}O data obtained from samples recovered in 2012, 2014 and 2015, and through a compilation and reassessment of literature Nd isotope and concentration data previously reported for other sites within the AM. The Nd isotope and REE distribution in the central Fram Strait and the open AM is shown to primarily reflect the lateral advection of water masses and their mixing, whereas seawater-particle interactions exert important control only above the shelf regions. New insights into the processes occurring in high latitude estuaries are provided by dissolved Nd isotope and REE compositions together with δ{sup 18}O data for the Laptev Sea based on filtered samples recovered in 2012, 2013 and 2014. A combination of REE removal through coagulation of nanoparticles and colloids and REE redistribution within the water column through formation and melting of sea ice and river ice is suggested to account for the distribution of all REEs, while no REE release from particles is observed. The ice-related processes contribute to the redistribution of other elements and ultimately may also affect primary productivity in high

  2. Starry messages: Searching for signatures of interstellar archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    Searching for signatures of cosmic-scale archaeological artifacts such as Dyson spheres or Kardashev civilizations is an interesting alternative to conventional SETI. Uncovering such an artifact does not require the intentional transmission of a signal on the part of the original civilization. This type of search is called interstellar archaeology or sometimes cosmic archaeology. The detection of intelligence elsewhere in the Universe with interstellar archaeology or SETI would have broad implications for science. For example, the constraints of the anthropic principle would have to be loosened if a different type of intelligence was discovered elsewhere. A variety of interstellar archaeology signatures are discussed including non-natural planetary atmospheric constituents, stellar doping with isotopes of nuclear wastes, Dyson spheres, as well as signatures of stellar and galactic-scale engineering. The concept of a Fermi bubble due to interstellar migration is introduced in the discussion of galactic signatures. These potential interstellar archaeological signatures are classified using the Kardashev scale. A modified Drake equation is used to evaluate the relative challenges of finding various sources. With few exceptions interstellar archaeological signatures are clouded and beyond current technological capabilities. However SETI for so-called cultural transmissions and planetary atmosphere signatures are within reach.

  3. Analysis of stable isotope assisted metabolomics data acquired by GC-MS

    International Nuclear Information System (INIS)

    Wei, Xiaoli; Shi, Biyun; Koo, Imhoi; Yin, Xinmin; Lorkiewicz, Pawel; Suhail, Hamid; Rattan, Ramandeep; Giri, Shailendra; McClain, Craig J.

    2017-01-01

    Stable isotope assisted metabolomics (SIAM) measures the abundance levels of metabolites in a particular pathway using stable isotope tracers (e.g., 13 C, 18 O and/or 15 N). We report a method termed signature ion approach for analysis of SIAM data acquired on a GC-MS system equipped with an electron ionization (EI) ion source. The signature ion is a fragment ion in EI mass spectrum of a derivatized metabolite that contains all atoms of the underivatized metabolite, except the hydrogen atoms lost during derivatization. In this approach, GC-MS data of metabolite standards were used to recognize the signature ion from the EI mass spectra acquired from stable isotope labeled samples, and a linear regression model was used to deconvolute the intensity of overlapping isotopologues. A mixture score function was also employed for cross-sample chromatographic peak list alignment to recognize the chromatographic peaks generated by the same metabolite in different samples, by simultaneously evaluating the similarity of retention time and EI mass spectrum of two chromatographic peaks. Analysis of a mixture of 16 13 C-labeled and 16 unlabeled amino acids showed that the signature ion approach accurately identified and quantified all isotopologues. Analysis of polar metabolite extracts from cells respectively fed with uniform 13 C-glucose and 13 C-glutamine further demonstrated that this method can also be used to analyze the complex data acquired from biological samples. - Highlights: • A signature ion approach is developed for analysis of stable isotope GC-MS data. • GC-MS data of compound standards are used for selection of the signature ion. • Linear regression model is used to deconvolute the overlapping isotopologue peaks. • The developed method was tested by known compounds and biological samples.

  4. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  5. The isotope altitude effect reflected in groundwater: a case study from Slovenia.

    Science.gov (United States)

    Mezga, Kim; Urbanc, Janko; Cerar, Sonja

    2014-01-01

    This paper presents the stable isotope data of oxygen (δ(18)O) and hydrogen (δ(2)H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009-2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ(18)O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ(18)O in groundwater.

  6. Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss, northern England

    Science.gov (United States)

    Daley, T. J.; Barber, K. E.; Street-Perrott, F. A.; Loader, N. J.; Marshall, J. D.; Crowley, S. F.; Fisher, E. H.

    2010-07-01

    Stable isotope analyses of Sphagnum alpha-cellulose, precipitation and bog water from three sites across northwestern Europe (Raheenmore, Ireland, Walton Moss, northern England and Dosenmoor, northern Germany) over a total period of 26 months were used to investigate the nature of the climatic signal recorded by Sphagnum moss. The δ18O values of modern alpha-cellulose tracked precipitation more closely than bog water, with a mean isotopic fractionation factor αcellulose-precipitation of 1.0274 ± 0.001 (1 σ) (≈27‰). Sub-samples of isolated Sphagnum alpha-cellulose were subsequently analysed from core WLM22, Walton Moss, northern England yielding a Sphagnum-specific isotope record spanning the last 4300 years. The palaeo-record, calibrated using the modern data, provides evidence for large amplitude variations in the estimated oxygen isotope composition of precipitation during the mid- to late Holocene. Estimates of palaeotemperature change derived from statistical relationships between modern surface air temperatures and δ18O precipitation values for the British Isles give unrealistically large variation in comparison to proxies from other archives. We conclude that use of such relationships to calibrate mid-latitude palaeo-data must be undertaken with caution. The δ18O record from Sphagnum cellulose was highly correlated with a palaeoecologically-derived index of bog surface wetness (BSW), suggesting a common climatic driver.

  7. On the palaeobiology of the extinct cave bear Ursus spelaeus ROSENMÜLLER. Insights from stable isotope analysis

    Science.gov (United States)

    Grandal-D'Anglade, Aurora; Pérez-Rama, Marta; Fernández-Mosquera, Daniel

    2010-05-01

    Isotopic signatures (δ13C, δ15N) of bone collagen are used more and more to obtain the paleobiological data of fossil species. By means of these signatures, for example, the diet type of an extint species may be inferred. Also, the climate in which this species developed may greatly influence on the isotopic signature of its bone collagen. This influence is firstly produced in the initial material of the trophic chain but also may produce variations due to physiological changes caused by climatic changes in the species involved in this trophic chain. The cave bear (Ursus spelaeus ROSENMÜLLER) is a species of broad distribution in the European Pleistocene sites that has been studied from the isotopic point of view, trying to establish its diet type. For the moment, the results vary: though in most cases the isotopic values indicate a preferably herbivore diet type, differences exist between sites of different geographic zones and chronologies. Taking into account that climate influences on the cave bear's physiology through the physiological mechanism of hibernation, it is expected that in bears that lived in different climatic phases, the isotopic signatures will be also different. During hibernation a recycling of nitrogenised compounds is produced for protein synthesis, including bone collagen, so it is expected that the isotopic signature, at least of Nitrogen, will be altered with respect to the synthesized collagen when the bear is active and feeds normally. However, it is difficult to establish up to what extent the isotopic signatures due to hibernation or diet are overlapped. To study the physiological effect of hibernation on isotopic signatures we have selected bone remains of cave bears from populations whose chronologies correspond to different climatic moments, and in different ontogenetic stages, coming from Galician caves (NW of the Iberian Peninsula). Adult individuals show different isotopic signatures depending on their chronology. Juvenile

  8. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption

    Science.gov (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.

    2014-12-01

    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  9. Distribution of Isotopic and Environmental Tracers in Groundwater, Northern Ada County, Southwestern Idaho

    Science.gov (United States)

    Adkins, Candice B.; Bartolino, James R.

    2010-01-01

    Residents of northern Ada County, Idaho, depend on groundwater for domestic and agricultural uses. The population of this area is growing rapidly and groundwater resources must be understood for future water-resource management. The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used a suite of isotopic and environmental tracers to gain a better understanding of groundwater ages, recharge sources, and flowpaths in northern Ada County. Thirteen wells were sampled between September and October 2009 for field parameters, major anions and cations, nutrients, oxygen and hydrogen isotopes, tritium, radiocarbon, chlorofluorocarbons, and dissolved gasses. Well depths ranged from 30 to 580 feet below land surface. Wells were grouped together based on their depth and geographic location into the following four categories: shallow aquifer, intermediate/deep aquifer, Willow Creek aquifer, and Dry Creek aquifer. Major cations and anions indicated calcium-bicarbonate and sodium-bicarbonate water types in the study area. Oxygen and hydrogen isotopes carried an oxygen-18 excess signature, possibly indicating recharge from evaporated sources or water-rock interactions in the subsurface. Chlorofluorocarbons detected modern (post-1940s) recharge in every well sampled; tritium data indicated modern water (post-1951) in seven, predominantly shallow wells. Nutrient concentrations tended to be greater in wells signaling recent recharge based on groundwater age dating, thus confirming the presence of recent recharge in these wells. Corrected radiocarbon results generated estimated residence times from modern to 5,100 years before present. Residence time tended to increase with depth, as confirmed by all three age-tracers. The disagreement among residence times indicates that samples were well-mixed and that the sampled aquifers contain a mixture of young and old recharge. Due to a lack of data, no conclusions about sources of recharge could be drawn

  10. Mapping the isotopic signature of methane in South-Eastern Spain: complementing biogeochemical long-term research with short term observations

    Science.gov (United States)

    Àgueda, Alba; Morguí, Josep Anton; Vazquez Garcia, Eusebi; Curcoll, Roger; Lowry, David; Fisher, Rebecca E.; Nisbet, Euan G.

    2016-04-01

    As a greenhouse gas, methane has a global warming potential of 25 in a 100 year scale. In order to establish mitigation plans it is important to assess its sources and sinks which can be both of geological and biological origin. South-Eastern Spain is a region with many different possible methane sources: i) by seismic activity of many geological faults both inland and in the neighbouring marine region (i.e. the Carboneras fault crossing the Alborán Sea along Málaga coastline); ii) by seepage of methane from hydrates present in the marine regions close to the Gibraltar Strait and the Gulf of Cádiz; iii) by emissions from fossil fuels caused by high traffic of merchant ships and the presence of large harbours (Algeciras, Tetuan and Cádiz), and the Africa - Europe Gas Transport Network in the Gibraltar Strait region; iv) by organic matter decomposition in both highly productive marshlands and eutrophic reservoirs; v) by burning of agricultural debris for energy supply, mainly from olive residues. In this study, a methane mapping survey has been conducted in the area around three atmospheric stations of the ClimaDat Atmospheric Network for Continuous Measurements of Greenhouse Gases (www.climadat.es) located in South-Eastern Spain (Sierra de Grazalema (SGC3), Tarifa (EEC3) and Sierra de Segura (SSC3). A cavity ring down spectrometer (CRDS) (G2301m, Picarro®) installed on a car has been used to measure methane concentrations. Additionally, in selected points, air samples have been collected in Tedlar bags for isotopic signature analysis by CF-GC-IRMS (Continuous Flow Gas Chromatography-Isotope Ratio Mass Spectrometry). In order to obtain a map facilitating the identification of the different methane sources in the background air at regional scale, the mapping of isotopic signature of methane together with its concentration is a useful tool to obtain fast and direct information that will contribute to the knowledge of methane transport at the regional scale and

  11. Soil, the orphan hydrological compartment: evidence from O and H stable isotopes?

    Science.gov (United States)

    Hissler, Christophe; Legout, Arnaud; Barnich, François; Pfister, Laurent

    2015-04-01

    of different water types in soil (weakly-, moderately- and tightly-bound). Our results show that mobile and tightly bound water may have different hydrogen isotopic signatures and that their respective isotopic signatures may vary between horizons and soil types. However, it is not yet possible to quantify the contribution of different bio-physico-chemical processes to the oxygen and hydrogen isotopic composition of the soil water because the techniques at hand for water separation are not yet reliable enough. Prior to this type of quantifications, we need to focus in a next step at the improvement of water extraction methods.

  12. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  13. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    Science.gov (United States)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  14. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    Science.gov (United States)

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations.

  15. Strontium geochemistry and carbon and oxygen isotopic compositions of Lower Proterozoic dolomite and calcite marbles from the Marmorilik Formation, West Greenland

    International Nuclear Information System (INIS)

    Garde, A.A.

    1979-01-01

    The Marmorilik Formation, Rinkian mobile belt, West Greenland, is a large, Lower Proterozoic carbonate-rock sequence, deformed and metamorphosed under greenschist to amphibolite facies conditions. The pre-deformation thickness of the sequence is at least 2000 m, with about 1400 m of dolomite marble and 350 m of calcite marble. Strontium contents of forty-two dolomite and calcite marbles range from 30 to 100 ppm and 300 to 800 ppm, respectively, whereas samples with calcite of secondary origin have strontium contents between 80 ppm and 200 ppm. Carbon and oxygen isotope ratios were determined for forty calcite and dolomite marbles as -0.2+-1.0 per 1000 delta 13 C and -9.9+-1.5 per 1000 delta 18 O (vs. PDB) and are compatible with the isotopic compositions of unmetamorphosed carbonates of similar age. Calcite from eight calciumsilicate rocks, breccias and calcite veins is significantly more negative in delta 13 C and delta 18 O. Five 13 C analyses of graphite in marble range from -9.6 to -14 per 1000. Possible post-depositional changes in the strontium content and carbon and oxygen isotope compositions are discussed. It is concluded that (a) the calcite marbles are not dedolomites and are therefore of primary origin, (b) the delta 13 C and delta 18 O values of the marbles are primary or diagenetic (i.e., pre-metamorphic), and (c) the isotopic composition of the graphite is compatible with, though not necessarily evidence for, a biogenic origin. (Auth.)

  16. Isotopes in heterogeneous catalysis

    CERN Document Server

    Hargreaves, Justin SJ

    2006-01-01

    The purpose of this book is to review the current, state-of-the-art application of isotopic methods to the field of heterogeneous catalysis. Isotopic studies are arguably the ultimate technique in in situ methods for heterogeneous catalysis. In this review volume, chapters have been contributed by experts in the field and the coverage includes both the application of specific isotopes - Deuterium, Tritium, Carbon-14, Sulfur-35 and Oxygen-18 - as well as isotopic techniques - determination of surface mobility, steady state transient isotope kinetic analysis, and positron emission profiling.

  17. Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies

    Science.gov (United States)

    Bindeman, Ilya; Valley, John

    2002-07-01

    Products of voluminous pyroclastic eruptions with eruptive draw-down of several kilometers provide a snap-shot view of batholith-scale magma chambers, and quench pre-eruptive isotopic fractionations (i.e., temperatures) between minerals. We report analyses of oxygen isotope ratio in individual quartz phenocrysts and concentrates of magnetite, pyroxene, and zircon from individual pumice clasts of ignimbrite and fall units of caldera-forming 0.76 Ma Bishop Tuff (BT), pre-caldera Glass Mountain (2.1-0.78 Ma), and post-caldera rhyolites (0.65-0.04 Ma) to characterize the long-lived, batholith-scale magma chamber beneath Long Valley Caldera in California. Values of δ18O show a subtle 1‰ decrease from the oldest Glass Mountain lavas to the youngest post-caldera rhyolites. Older Glass Mountain lavas exhibit larger ( 1‰) variability of δ18O(quartz). The youngest domes of Glass Mountain are similar to BT in δ18O(quartz) values and reflect convective homogenization during formation of BT magma chamber surrounded by extremely heterogeneous country rocks (ranging from 2 to +29‰). Oxygen isotope thermometry of BT confirms a temperature gradient between "Late" (815 °C) and "Early" (715 °C) BT. The δ18O(quartz) values of "Early" and "Late" BT are +8.33 and 8.21‰, consistent with a constant δ18O(melt)=7.8+/-0.1‰ and 100 °C temperature difference. Zircon-melt saturation equilibria gives a similar temperature range. Values of δ18O(quartz) for different stratigraphic units of BT, and in pumice clasts ranging in pre-eruptive depths from 6 to 11 km (based on melt inclusions), and document vertical and lateral homogeneity of δ18O(melt). Worldwide, five other large-volume rhyolites, Lava Creek, Lower Bandelier, Fish Canyon, Cerro Galan, and Toba, exhibit equal δ18O(melt) values of earlier and later erupted portions in each of the these climactic caldera-forming eruptions. We interpret the large-scale δ18O homogeneity of BT and other large magma chambers as evidence

  18. New Insights from Zinc and Copper Isotopic Compositions into the Sources of Atmospheric Particulate Matter from Two Major European Cities.

    Science.gov (United States)

    Gonzalez, R Ochoa; Strekopytov, S; Amato, F; Querol, X; Reche, C; Weiss, D

    2016-09-20

    This study reports spatial and temporal variability of Zn and Cu isotopes in atmospheric particulate matter (PM) collected in two major European cities with contrasting atmospheric pollution, Barcelona and London. We demonstrate that nontraditional stable isotopes identify source contributions of Zn and Cu and can play a major role in future air quality studies. In Barcelona, samples of fine PM were collected at street level at sites with variable traffic density. The isotopic signatures ranged between -0.13 ± 0.09 and -0.51 ± 0.05‰ for δ(66)ZnIRMM and between +0.04 ± 0.20 and +0.33 ± 0.15‰ for δ(65)CuAE633. Copper isotope signatures similar to those of Cu sulfides and Cu/Sb ratios within the range typically found in brake wear suggest that nonexhaust emissions from vehicles are dominant. Negative Zn isotopic signatures characteristic for gaseous emissions from smelting and combustion and large enrichments of Zn and Cd suggest contribution from metallurgical industries. In London, samples of coarse PM collected on the top of a building over 18 months display isotope signatures ranging between +0.03 ± 0.04 and +0.49 ± 0.02‰ for δ(66)ZnIRMM and between +0.37 ± 0.17 and +0.97 ± 0.21‰ for δ(65)CuAE633. Heavy Cu isotope signatures (up to +0.97 ± 0.21‰) and higher enrichments and Cu/Sb ratios during winter time indicate important contribution from fossil fuel combustion. The positive δ(66)ZnIRMM signatures are in good agreement with signatures characteristic for ore concentrates used for the production of tires and galvanized materials, suggesting nonexhaust emissions from vehicles as the main source of Zn pollution.

  19. Isotopic determinations of carbon and oxygen in the metasedimentary rocks of the Rio Pardo group-Bahia State, Brazil

    International Nuclear Information System (INIS)

    Costa Pinto, N.M.A.C.

    1977-01-01

    Determination of the carbon and oxygen isotopic compositions were made on approximately 100 samples of Late Precambrian metasedimentary rocks of the Rio Pardo Group from Southern Bahia. The results obtained show that carbon varies from δ 13 =C=5,73 per mille to δ 13 C=+9,00 per mille, and oxygen from δ 18 O=-1,87 per mille to δ 18 O=-19,67 per mille relative to PBD. The interpretations lead to some conclusions which confirm the validity the isotopic technique as auxiliary instrument in the study of geological problems. These include: 1) the evidence of a marine transgression during the Camaca sedimentation; 2) the probability that the dolomitic metalimestones of the Agua Preta formation belong to the Serra do Paraiso formation; 3) the assignment of the dolomitic metalismestones, which occur in Itiroro and which had been previously grouped with the crystalline basement rocks, to the Serra do Paraiso formation; 4) the removal of the marble from Serra do Paraiso formation and re-signment to the basement rocks, and finally; 5) the sedimentary evolution of the Rio Pardo Group from a typical fresh-water to a marine environment. (Author) [pt

  20. Isotopic Signature of the Ancient Biosphere

    Science.gov (United States)

    DesMarais, D. J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The age distribution of 261 field localities, sampled for their well-preserved Archean and Proterozoic sedimentary rocks, revealed a 500-700 Ma episodicity. Assuming that the numbers of sites are a proxy for mass of sediments, the record of well-preserved sediments is more abundant in the intervals 3.5-3.3, 2.8-2.5, 2.1-1.8, 1.5-1.3, and 1.0-0.54 Ga than in the intervening intervals. It is proposed that the crustal inventory of photosynthetic organic carbon was modulated by the volume of sedimentation in sites favorable for the burial and long-term preservation of organic carbon. Tectonic processes controlled this sediment volume. Episodic increases in the organic inventory led to stepwise increases in oxidized reservoirs (e.g., O2, SO4(2-), Fe(3+). The interval 2.9-2.5 Ga recorded a large rise in seawater Sr-87/Sr-86, the oldest-known extensive banded iron formations, and the first evidence (C-13-depleted kerogens) of O2 use by methylotrophic bacteria. The interval 2.2-1.8 Ga has both carbon isotopic evidence for a stepwise increase in the organic reservoir and also paleosol evidence for an O2 increase. The interval 1.1-0.6 Ga shows isotopic evidence for another organic carbon increase. The interval 1.5-1.3 Ga revealed no such increases as yet, perhaps because incomplete rifting of the mid-Proterozoic supercontinent was associated with extensive sedimentation in oxidized continental basins, producing redbeds, coarse clastics, etc. Such sedimentation did not promote the burial of reduced carbon.

  1. Isotopic insights into microbial sulfur cycling in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Christopher G Hubbard

    2014-09-01

    Full Text Available Microbial sulfate reduction in oil reservoirs (biosouring is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters containing elevated concentrations of volatile fatty acids and injection water containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

  2. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  3. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  4. Stable Isotopic signatures of Adélie penguin remains provide long-term paleodietary records in Northern Victoria Land (Ross Sea, Antarctica)

    Science.gov (United States)

    Lorenzini, Sandra; Baroni, Carlo; Fallick, Anthony Edward; Baneschi, Ilaria; Salvatore, Maria Cristina; Zanchetta, Giovanni; Dallai, Luigi

    2010-05-01

    The stable isotopes geochemistry of carbon and nitrogen provides a powerful tools for investigating in animal dietary patterns and shifts during the past. The signature of C and N isotopes provide direct information about the diet of an individual and its dietary patterns, especially when the dietary sources consist of prey from different trophic levels (i.e. different C and N isotopic composition) (DeNiro and Epstein 1978, Minawaga and Wada 1984, Koch et al. 1994, Hobson 1995). By analyzing the isotopic composition of penguin remains, we present a new detailed Adélie penguin (Pygoscelis adeliae) paleodietary record for the area of Terra Nova Bay (Victoria Land, Ross Sea). Adélie penguins primarily feed on fish (mainly the silverfish Pleuragramma antarcticum) and krill (Euphausia superba, Euphausia cristallorophias) (Ainley 2002, Lorenzini et al. 2009) that belonging to two different trophic levels. Consequently, they are characterized by different isotopic signatures. Specifically, we analyzed 13C/12C and 15N/14N ratios of more than one thousand of modern and fossil Adélie penguin eggshell and guano samples collected from ornithogenic soils (penguin guano-formed) dated back to ≈7,200 years BP (Baroni and Orombelli 1994, Lambert et al. 2002, Baroni and Hall 2004, Hall et al. 2006). The expanded database of stable isotope values obtained from Adélie penguin remains define a detailed paleodietary record with an excellent temporal continuity over all the investigated time period. Our data indicate a significant dietary shift between fish and krill, with a gradual decrease from past to present time in the proportion of fish compared to krill in Adélie penguin diet. From 7200 yrs BP to 2000 yrs BP, δ13C and δ15N values indicate fish as the most eaten prey. The dietary contribution of lower-trophic prey in penguin diet started becoming evident not earlier than 2000 yrs BP, when the δ13C values reveal a mixed diet based on fish and krill consumption. Modern

  5. Temporal and spatial heterogeneity in lacustrine δ13CDIC and δ18ODO signatures in a large mid-latitude temperate lake

    Directory of Open Access Journals (Sweden)

    Jane DRUMMOND

    2010-08-01

    Full Text Available Modelling limnetic carbon processes is necessary for accurate global carbon models and stable isotope analysis can provide additional insight of carbon flow pathways. This research examined the spatial and temporal complexity of carbon cycling in a large temperate lake. Dissolved inorganic carbon (DIC is utilised by photosynthetic organisms and dissolved oxygen (DO is used by heterotrophic organisms during respiration. Thus the spatial heterogeneity in the pelagic metabolic balance in Loch Lomond, Scotland was investigated using a combined natural abundance isotope technique. The isotopic signatures of dissolved inorganic carbon (δ13CDIC and dissolved oxygen (δ18ODO were measured concurrently on four different dates between November 2004 and September 2005. We measured isotopic variation over small and large spatial scales, both horizontal distance and depth. δ13CDIC and δ18ODO changed over a seasonal cycle, becoming concurrently more positive (negative in the summer (winter months, responding to increased photosynthetic and respiratory rates, respectively. With increasing depth, δ13CDIC became more negative and δ18ODO more positive, reflecting the shift to a respiration-dominated system. The horizontal distribution of δ13CDIC and δ18ODO in the epilimnion was heterogeneous. In general, the south basin had the most positive δ13CDIC, becoming more negative with increasing latitude, except in winter when the opposite pattern was observed. Areas of local variation were often observed near inflows. Clearly δ13CDIC and δ18ODO can show large spatial heterogeneity, as a result of varying metabolic balance coupled with inflow proximity and thus single point sampling to extrapolate whole lake metabolic patterns can result in error when modelling large lake systems Whilst we advise caution when using single point representation, we also show that this combined isotopic approach has potential to assist in constructing detailed lake carbon models.

  6. An oxygen isotope record from Lake Xiarinur in Inner Mongolia since the last deglaciation and its implication for tropical monsoon change

    Science.gov (United States)

    Sun, Qing; Chu, Guoqiang; Xie, Manman; Zhu, Qingzeng; Su, Youliang; Wang, Xisheng

    2018-04-01

    We present a high-resolution oxygen isotope record from authigenic carbonate (δ18Ocarb) from Lake Xiarinur (Inner Mongolia) since the last deglaciation. The lake is located at the modern northern limit of the monsoon, and is therefore sensitive to the extension of the East Asian summer monsoon. Based on calibration against the instrumental record, the δ18Ocar variation has been interpreted as changes in atmospheric circulation pattern on decadal time scales. On longer time scales, the δ18Ocarb in lake sediments could be mainly regulated by the relative contribution of nearby (remote) water-vapor sources associated with subtropical (tropical) monsoon through changes in the distance from sources to the site of precipitation. Increased remote water vapors from tropical monsoon would lead to lighter isotope value in our study site. Through time the δ18Ocarb record in Lake Xiarinur indicate a notable weak tropical monsoon during the Younger Dryas, a gradual increasing monsoon from the early Holocene and weakening monsoon after the middle Holocene. Oxygen isotope records from lakes and stalagmite in the Asian monsoon region across different localities show a general similar temporal pattern since the last deglaciation, and highlight a fundamental role of the tropical monsoon.

  7. Elemental and isotopic characterization of Japanese and Philippine polished rice samples using instrumental neutron activation analysis and isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.; Mendoza, Norman dS.; Ebihara, Mitsuru

    2011-01-01

    Rice is a staple food for most Asian countries such as the Philippines and Japan and as such its elemental and isotopic content are of interest to the consumers. Its elemental content may reflect the macro nutrient reduction during milling or probable toxic elements uptake. Three Japanese and four Philippine polished rice samples in his study mostly came from rice bought from supermarkets.These rice samples were washed, dried and ground to fine powder. Instrumental neutron activation analysis (INAA), a very sensitive non-destructive multi-element analytical technique, was used for the elemental analysis of the samples and isotope-ratio mass spectrometry (IRMS) was used to obtain the isotopic signatures of the samples. Results show that compared with the unpolished rice standard NIES CRM10b, the polished Japanese and Philippine rice sampled show reduced concentrations of elements by as much as 1/3 to 1/10 of Mg, Mn, K and Na. Levels of Ca and Zn are not greatly affected. Arsenic is found in all the Japanese rice tested at an average concentration of 0.103 μg/g and three out of four of the Philippine rice at an average concentration of 0.070 μg/g. Arsenic contamination may have been introduced from the fertilizer used in rice fields. Higher levels of Br are seen in two of the Philippine rice at 14 and 34 μg/g with the most probable source being the pesticide methyl bromide. Isotopic ratio of ae 13 C show signature of a C3 plant with possible narrow distinguishable signature of Japanese rice within -27.5 to -28.5 while Philippine rice within -29 to -30. More rice samples will be analyzed to gain better understanding of isotopic signatures to distinguish inter-varietal and/or geographical differences. Elemental composition of soil samples of rice samples sources will be determined for better understanding of uptake mechanisms. (author)

  8. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    Energy Technology Data Exchange (ETDEWEB)

    Vennemann, T.W.; Kesler, S.E.; O' Neil, J.R. (Univ. of Michigan, Ann Arbor (United States))

    1992-09-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The [delta][sup 18]O values of quartz pebbles within any one sample typically vary by [approximately] 4[per thousand] or more, but occasionally by as much as 8[per thousand], even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting [delta][sup 18]O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with [delta][sup 18]O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., [delta][sup 18]O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low [delta][sup 18]O values of chert pebbles (9[per thousand] to 11.5[per thousand]) relative to those expected for Archean and Proterozoic marine cherts (commonly [ge] 17[per thousand]) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold.

  9. Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates

    International Nuclear Information System (INIS)

    Vennemann, T.W.; Kesler, S.E.; O'Neil, J.R.

    1992-01-01

    Oxygen isotope compositions of pebbles from late Archean to paleo-Proterozoic gold- and/or uranium-bearing oligomictic quartz pebble conglomerates of the Witwatersrand district, South Africa, and Huronian Supergroup, Canada, were determined in an attempt to define the nature of the source terrain. The δ 18 O values of quartz pebbles within any one sample typically vary by ∼ 4 per-thousand or more, but occasionally by as much as 8 per-thousand, even for adjacent pebbles within the same hand specimen. In addition, adjacent quartz pebbles of widely contrasting δ 18 O values also preserve distinct isotopic signatures of their fluid inclusions. This overall heterogeneity suggests that the pebbles did not undergo significant oxygen isotope exchange after incorporation in the conglomerates. Therefore, oxygen isotope analyses of such quartz pebbles, in combination with a detailed investigation of their mineral and fluid inclusions, can provide a useful method for characterizing pebble populations and hence dominant sediment source modes. Comparison of values found in this study with δ 18 O values of quartz from Archean granites, pegmatites, and mesothermal greenstone gold veins, i.e., δ 18 O values of sources commonly proposed for the conglomerate ores, suggests that uranium is derived from a granitic source, whereas gold has a mesothermal greenstone gold source. Low δ 18 O values of chert pebbles (9 per-thousand to 11.5 per-thousand) relative to those expected for Archean and Proterozoic marine cherts (commonly ≥ 17 per-thousand) effectively exclude marine cherts, and therefore, auriferous iron formations and exhalatives, as likely sources of gold

  10. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region

    Science.gov (United States)

    Shackleton, N.J.; Backman, J.; Zimmerman, H.; Kent, D.V.; Hall, M.A.; Roberts, David G.; Schnitker, D.; Baldauf, J.G.; Desprairies, A.; Homrighausen, R.; Huddlestun, P.; Keene, J.B.; Kaltenback, A.J.; Krumsiek, K.A.O.; Morton, A.C.; Murray, J.W.; Westberg-Smith, J.

    1984-01-01

    We report here that DSDP Site 552A, cored with the hydraulic piston corer on the west flank of Rockall Bank, recovered an undisturbed sequence of alternating white deep-sea carbonate oozes and dark-coloured layers that are rich in glacial debris. Oxygen isotope analysis of the sequence together with detailed nannofossil and palaeomagnetic stratigraphy shows that the first major horizon of ice-rafting occurred at about 2.4 Myr, and was preceded by a minor pulse of ice-rafting at about 2.5 Myr. The carbon isotope record shows that the site has been bathed by a water mass of similar characteristics to present-day North Atlantic deep water at least since 3.5 Myr. ?? 1984 Nature Publishing Group.

  11. THz spectroscopy of the 29 cm{sup -1} oxygen vibrational line in natural silicon and isotopically enriched {sup 28}Si

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, Kurt; Dressel, Martin [1. Physikalisches Inst., Univ. Stuttgart (Germany); Gorshunov, Boris; Zhukova, E.S. [1. Physikalisches Inst., Univ. Stuttgart (Germany); A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Moscow Inst. Physics and Technology (Russian Federation); Korolev, P.S. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Lomonosov Moscow State Univ. (Russian Federation); Kalinsuhkin, V.P. [A.M. Prokhorov Gen. Phys. Inst., RAS, Moscow (Russian Federation); Abrosimov, N.V. [Leibniz Inst. Kristallzuechtung, Berlin (Germany); Sennikov, P.G. [Inst. Chem. High-Purity Substances, Nizhny Novgorod (Russian Federation); Pohl, H.J. [PTB, Braunschweig (Germany); Zakel, S. [VITCON-Projektconsult, Jena (Germany)

    2012-07-01

    Looking for a possible host-isotope effect on the low-energy two-dimensional motion of interstitial oxygen in silicon we have measured the resonance parameters of the lowest transition of the 30 cm{sup -1} band of the Si-O-Si complex in natural Si and in isotopically enriched {sup 28}Si at temperatures between 5 K and 22 K by means of coherent-source terahertz spectroscopy. At 5.5 K we obtain for the resonance maxima 29.24 {+-} 0.003 cm{sup -1} and 29.22 {+-} 0.003 cm{sup -1} and for the line widths 0.09 {+-} 0.01 cm{sup -1} and 0.11 {+-} 0.01 cm{sup -1} for {sup 28}Si and {sup nat}Si, respectively. Both lines can be fitted by single Lorentzians, so, no obvious isotopic structure or asymmetry of the line in {sup nat}Si due to the Si neighbors in the Si-O-Si complex is detected. We therefore conclude that down-shift and broadening of the {sup nat}Si-resonance is not due to the Si isotopes in the isolated Si-O-Si complex but to an average effect of the isotopically inhomogeneous lattice.

  12. Methodological validation of the isotopic analysis of fossil bones and contributions to the paleo-ecological reconstitutions of the Upper Paleolithic of south-west France

    International Nuclear Information System (INIS)

    Drucker, D.

    2001-04-01

    A methodology for investigating fossil bone collagen carbon and nitrogen isotopic signatures has been established in order to obtain palaeo-ecological informations. The archaeological, biochemical and geochemical reliability has been estimated. Almost 500 animal and human specimens from southwestern France upper Palaeolithic sites ranging in age from 36,000 to 9,000 years BP have been treated. It has been demonstrated that different dietary resources were isotopically distinct, with a resolution better than the expectations. Small mammals have been distinguished from ungulates, and Reindeer, Horse and Bovines presented specific isotopic signatures. Moreover, isotopic differences have been evidenced between gregarious and solitary species. Time changes of ecological patterns have been described using the isotopic signatures of some mammal species. Biomass fluctuation and exploitation have been demonstrated during upper Palaeolithic. The methodology allowed to use the isotopic signatures of animal predators as a proxy for meat resources availability in the environment. This approach allows to investigate environmental global factors as well as human behaviour with a common tool. (author)

  13. Determination Of Oxygen Isotope Ratio (18O-/16O) and Sulfur (34S-/32S) Value Of BaSO4 Din 5033 For Internal Standard

    International Nuclear Information System (INIS)

    Evarista Ristin, P.I.; Sidauruk, Paston; Wibagoyo; Djiono; Satrio

    2000-01-01

    It has been done an experiment to determine of oxygen( 18 O-/ 16 O) and Sulfur ( 34 S-/ 32 S) ) isotop value of BaSO 4 DIN 5033 (merck) for internal standard. The used technique for preparation of CO 2 gas to measure oxygen isotop ratio ratio (stated as deltaδ 18 O) is based on Rafter on Rafte method using graphite for reduction of BaSO 4 . Where the used technique for preparation of SO 2 gas to measure isotope sulphur ratio (started as δ 34 S) is based on Robinson - Kasakabe method using Cupro oxide to oxidize Ag 2 S. The result of this experiment is 11,48±0,41 0/00 and 5,00 plus minus ±0,33 o/oo for deltaδ 18 O and δ 34 S value respectively. Based on this experiment. BaSO 4 DIN 5033 can be used as internal standard because is values both oxygen and sulphur lie in the middle of range of its variation in nature. The result of interlab comparison shows that the value of this experiment is nearly similar to the value obtained from laboratorium of Pinstech-Pakistan. To acquire the result, it is necessary to carry out more interlab comparison

  14. A quantum cascade laser infrared spectrometer for CO2 stable isotope analysis: Field implementation at a hydrocarbon contaminated site under bio-remediation.

    Science.gov (United States)

    Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude

    2016-02-01

    Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment. Copyright © 2016. Published by Elsevier B.V.

  15. Influence of triaxiality on the signature inversion in odd-odd nuclei

    International Nuclear Information System (INIS)

    Zheng, R.R.; Luo, X.D.; Timar, J.; Sohler, S.; Nyako, B.M.; Zolnai, L.; Paul, E.S.

    2004-01-01

    Complete text of publication follows. Signature inversion in the A ∼ 100 region has been reported earlier only in the case of the odd-odd 98 Rh nucleus. Our studies on the 100-103 Rh isotopes and a close inspection of the known πg 9/2 νh 11/ 2 bands of the Rh (Z = 45) and Ag (Z = 47) isotopes revealed that the signature splitting effects, earlier considered as quenchings of signature splitting, are not only quenchings but signature inversions. Indeed, the energetically favored signature at low spins in these πg 9/2 νh 11/2 bands is the α = 1 branch (odd spins) instead of the expected α = 0 branch (even spins). The systematic occurrence of signature inversion in this mass region is discussed in Refs. together with attempts to understand its behavior qualitatively. Among many attempts for interpreting the mechanism of signature inversion in odd-odd nuclei, a model using an axially symmetric rotor plus two quasi-particles has already been successfully applied to describe the observed signature inversions in the A ∼ 80 and A ∼ 160 mass regions. According to this model the signature inversion is caused by the competition between the Coriolis and the proton-neutron residual interactions in low K space. Such calculations have been also successfully applied to the π g9/2 νh 11/2 bands in the odd-odd 98 Rh and 102 Rh nuclei. Recent observations of chiral band structures in the nearby Rh nuclei suggest a possibility of triaxiality in these nuclei, too. In the present work we examined the possible influence of triaxiality on the signature inversion using a triaxial rotor plus two-quasiparticle model and compared the results with the experimental data of 98 Rh and 102 Rh. The calculations provided a better agreement with the experiment than the axially symmetric calculations. Compared to the axially symmetric case, the triaxiality applied in the Hamiltonian enlarges the amplitudes of high-spin signature zigzags at small triaxial deformation and might push the

  16. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  17. Sources of Holocene variability of oxygen isotopes in paleoclimate archives

    Directory of Open Access Journals (Sweden)

    A. N. LeGrande

    2009-08-01

    Full Text Available Variability in water isotopes has been captured in numerous archives and used to infer past climate changes. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, ~1000 years apart are simulated and driven by estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that simulated water isotope archives match well with those seen in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern spatial slope interpretations might suggest. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to the masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrology, but are better interpreted in terms of regional hydrological cycle changes rather than as indicators of local climate.

  18. Isotopic signatures of eelgrass (Zostera marina L.) as bioindicator of anthropogenic nutrient input in the western Baltic Sea

    International Nuclear Information System (INIS)

    Schubert, Philipp R.; Karez, Rolf; Reusch, Thorsten B.H.; Dierking, Jan

    2013-01-01

    Highlights: • Anthropogenic nitrogen (N) inputs are a global problem, but difficult to quantify. • We tested the use of eelgrass δ 15 N as proxy of such inputs in the Baltic Sea. • The method revealed distinct spatial patterns in sewage N across a eutrophic bay. • Traditional eutrophication measures corroborated the results from δ 15 N values. • Eelgrass δ 15 N ratios have high potential as proxy of sewage-derived N in the Baltic. -- Abstract: Eutrophication is a global environmental problem. Better management of this threat requires more accurate assessments of anthropogenic nitrogen (N) inputs to coastal systems than can be obtained with traditional measures. Recently, primary producer N isotopic signatures have emerged as useful proxy of such inputs. Here, we demonstrated for the first time the applicability of this method using the widespread eelgrass (Zostera marina) in the highly eutrophic Baltic Sea. Spatial availability of sewage N across a bay with one major sewage outflow predicted by eelgrass δ 15 N was high near and downstream of the outflow compared to upstream, but returned to upstream levels within 4 km downstream from the outfall. General conclusions were corroborated by traditional eutrophication measures, but in contrast to these measures were fully quantitative. Eelgrass N isotope ratios therefore show high potential for coastal screens of eutrophication in the Baltic Sea, and in other areas with eelgrass meadows

  19. Oxygen and silicon stable isotopes of diatom silica. Reconstructing changes in surface water hydrography and silicic acid utilization in the late Pleistocene subarctic Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Edith

    2014-03-05

    Deglacial variations in upper ocean nutrient dynamics and stratification in high latitudes, as well as associated changes in thermohaline overturning circulation, are thought to have played a key role in changing atmospheric CO{sub 2} concentrations. This thesis examines the relationship between past changes in subarctic Pacific upper ocean stratification and nutrient (silicic acid) utilization, using oxygen and silicon stable isotopes of diatom silica, for the first time at millennial-scale resolution and analyzed with a new and efficient instrumentation set-up. The isotopic data, presented in three manuscripts, show a consistent picture of millennial-scale variability in upper ocean stratification and silicic acid utilization during the last ∝50 ka BP, e.g. indicating that the subarctic Pacific was a source region for atmospheric CO{sub 2} during the last deglaciation (late Heinrich Stadial 1 and the Boelling/Alleroed). The presented results demonstrate the high potential of combined diatom oxygen and silicon stable isotope analysis especially for, but not restricted to, marine regions characterized by a low biogenic carbonate content like the subarctic Pacific and the Southern Ocean.

  20. Oxygen and silicon stable isotopes of diatom silica. Reconstructing changes in surface water hydrography and silicic acid utilization in the late Pleistocene subarctic Pacific

    International Nuclear Information System (INIS)

    Maier, Edith

    2014-01-01

    Deglacial variations in upper ocean nutrient dynamics and stratification in high latitudes, as well as associated changes in thermohaline overturning circulation, are thought to have played a key role in changing atmospheric CO 2 concentrations. This thesis examines the relationship between past changes in subarctic Pacific upper ocean stratification and nutrient (silicic acid) utilization, using oxygen and silicon stable isotopes of diatom silica, for the first time at millennial-scale resolution and analyzed with a new and efficient instrumentation set-up. The isotopic data, presented in three manuscripts, show a consistent picture of millennial-scale variability in upper ocean stratification and silicic acid utilization during the last ∝50 ka BP, e.g. indicating that the subarctic Pacific was a source region for atmospheric CO 2 during the last deglaciation (late Heinrich Stadial 1 and the Boelling/Alleroed). The presented results demonstrate the high potential of combined diatom oxygen and silicon stable isotope analysis especially for, but not restricted to, marine regions characterized by a low biogenic carbonate content like the subarctic Pacific and the Southern Ocean.

  1. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 2. Animal products.

    Science.gov (United States)

    Inácio, Caio T; Chalk, Phillip M

    2017-01-02

    In this review, we examine the variation in stable isotope signatures of the lighter elements (δ 2 H, δ 13 C, δ 15 N, δ 18 O, and δ 34 S) of tissues and excreta of domesticated animals, the factors affecting the isotopic composition of animal tissues, and whether stable isotopes may be used to differentiate organic and conventional modes of animal husbandry. The main factors affecting the δ 13 C signatures of livestock are the C3/C4 composition of the diet, the relative digestibility of the diet components, metabolic turnover, tissue and compound specificity, growth rate, and animal age. δ 15 N signatures of sheep and cattle products have been related mainly to diet signatures, which are quite variable among farms and between years. Although few data exist, a minor influence in δ 15 N signatures of animal products was attributed to N losses at the farm level, whereas stocking rate showed divergent findings. Correlations between mode of production and δ 2 H and δ 18 O have not been established, and only in one case of an animal product was δ 34 S a satisfactory marker for mode of production. While many data exist on diet-tissue isotopic discrimination values among domesticated animals, there is a paucity of data that allow a direct and statistically verifiable comparison of the differences in the isotopic signatures of organically and conventionally grown animal products. The few comparisons are confined to beef, milk, and egg yolk, with no data for swine or lamb products. δ 13 C appears to be the most promising isotopic marker to differentiate organic and conventional production systems when maize (C4) is present in the conventional animal diet. However, δ 13 C may be unsuitable under tropical conditions, where C4 grasses are abundant, and where grass-based husbandry is predominant in both conventional and organic systems. Presently, there is no universal analytical method that can be applied to differentiate organic and conventional animal products.

  2. Isotopic abundances relevant to the identification of magma sources

    International Nuclear Information System (INIS)

    O'Nions, R.K.

    1984-01-01

    The behaviour of natural radiogenic isotope tracers in the Earth that have lithophile and atmophile geochemical affinity is reviewed. The isotope tracer signature of oceanic and continental crust may in favourable circumstances by sufficiently distinct from that of the mantle to render a contribution from these sources resolvable within the isotopic composition of the magma. Components derived from the sedimentary and altered basaltic portion of oceanic crust are recognized in some island arc magmas from their Sr, Nd and Pb isotopic signatures. The rare-gas isotope tracers (He, Ar, Xe in particular) are not readily recycled into the mantle and thus provide the basis of an approach that is complementary to that based on the lithophile tracers. In particular, a small mantle-derived helium component may be readily recognized in the presence of a predominant radiogenic component generated in the continents. The importance of assessing the mass balance of these interactions rather than merely a qualitative recognition is emphasized. The question of the relative, contribution of continental-oceanic crust and mantle to magma sources is an essential part of the problem of generation and evolution of continental crust. An approach to this problem through consideration of the isotopic composition of sediments is briefly discussed. (author)

  3. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur

    Science.gov (United States)

    Balci, N.; Mayer, B.; Shanks, Wayne C.; Mandernack, K.W.

    2012-01-01

    Studies of metal sulfide oxidation in acid mine drainage (AMD) systems have primarily focused on pyrite oxidation, although acid soluble sulfides (e.g., ZnS) are predominantly responsible for the release of toxic metals. We conducted a series of biological and abiotic laboratory oxidation experiments with pure and Fe-bearing sphalerite (ZnS & Zn 0.88Fe 0.12S), respectively, in order to better understand the effects of sulfide mineralogy and associated biogeochemical controls of oxidation on the resultant ?? 34S and ?? 18O values of the sulfate produced. The minerals were incubated in the presence and absence of Acidithiobacillus ferrooxidans at an initial solution pH of 3 and with water of varying ?? 18O values to determine the relative contributions of H 2O-derived and O 2-derived oxygen in the newly formed sulfate. Experiments were conducted under aerobic and anaerobic conditions using O 2 and Fe(III) aq as the oxidants, respectively. Aerobic incubations with A. ferrooxidans, and S o as the sole energy source were also conducted. The ??34SSO4 values from both the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq produced sulfur isotope fractionations (??34SSO4-ZnS) of up to -2.6???, suggesting the accumulation of sulfur intermediates during incomplete oxidation of the sulfide. No significant sulfur isotope fractionation was observed from any of the aerobic experiments. Negative sulfur isotope enrichment factors (??34SSO4-ZnS) in AMD systems could reflect anaerobic, rather than aerobic pathways of oxidation. During the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq all of the sulfate oxygen was derived from water, with measured ?? 18OSO 4-H 2O values of 8.2??0.2??? and 7.5??0.1???, respectively. Also, during the aerobic oxidation of ZnS Fe and S o by A. ferrooxidans, all of the sulfate oxygen was derived from water with similar measured ?? 18OSO 4-H 2O values of 8.1??0.1??? and 8.3??0.3???, respectively. During biological oxidation

  4. Geochemical importance of isotopic fractionation during respiration

    International Nuclear Information System (INIS)

    Schleser, G.; Foerstel, H.

    1975-01-01

    In 1935 it was found that atmospheric oxygen contained a relatively greater abundance of the 18 O isotope than did the oxygen bound in water (Dole effect). A major contribution to the fractionation of the stable oxygen isotopes should result from the respiration of microorganisms. In this respect our interest centers on the soil because nearly all organic material produced on land is decomposed within the soil. The oceans are less important because the primary productivity on land is twice the value for the oceans. In a first approach we measured the oxygen isotope fractionation during the respiration of E. coli K12 for different respiration rates. These results, accomplished with a chemostat, indicate that the fractionation factor α of the oxygen isotopes increases with the increasing respiratory activity, measured as Q/sub O 2 /. At low dilution rates or growth rates respectively of about 0.05 h -1 , the fractionation factor amounts to 1.006 increasing to 1.017 at dilution rates of about 1.0 h -1 . The results are interpreted as a kinetic mass fractionation due to the slightly different diffusion coefficients of 16 O 2 and 18 O 16 O. The respiration rates in conjunction with the corresponding fractionation data are compared with the respiration rates of typical soil microorganisms such as Azotobacter, in order to deduce fractionation data for these organisms. This is necessary to calculate a mean global fractionation factor. Understanding the Dole effect with these fractionation processes should finally give us the opportunity to calculate gas-exchange rates between the atmosphere and the oceans, on the basis of the behavior of the stable oxygen isotopes

  5. Effect of baking and fermentation on the stable carbon and nitrogen isotope ratios of grain-based food.

    Science.gov (United States)

    Bostic, Joshua N; Palafox, Sherilyn J; Rottmueller, Marina E; Jahren, A Hope

    2015-05-30

    Isotope ratio mass spectrometry (IRMS) is used extensively to reconstruct general attributes of prehistoric and modern diets in both humans and animals. In order to apply these methods to the accurate determination of specific intakes of foods/nutrients of interest, the isotopic signature of individually consumed foods must be constrained. For example, 86% of the calories consumed in the USA are derived from processed and prepared foods, but the relationship between the stable isotope composition of raw ingredients and the resulting products has not been characterized. To examine the effect of common cooking techniques on the stable isotope composition of grain-based food items, we prepared yeast buns and sugar cookies from standardized recipes and measured bulk δ(13) C and δ(15) N values of samples collected throughout a 75 min fermentation process (buns) and before and after baking at 190°C (buns and cookies). Simple isotope mixing models were used to determine if the isotopic signatures of 13 multi-ingredient foods could be estimated from the isotopic signatures of their constituent raw ingredients. No variations in δ(13) C or δ(15) N values were detected between pre- and post-baked yeast buns (pre: -24.78‰/2.61‰, post: -24.75‰/2.74‰), beet-sugar cookies (pre: -24.48‰/3.84‰, post: -24.47‰/3.57‰), and cane-sugar cookies (pre: -19.07‰/2.97‰, post: -19.02‰/3.21‰), or throughout a 75 min fermentation process in yeast buns. Using isotopic mass balance equations, the δ(13) C/δ(15) N values of multi-ingredient foods were estimated from the isotopic composition of constituent raw ingredients to within 0.14 ± 0.13‰/0.24 ± 0.17‰ for gravimetrically measured recipes and 0.40 ± 0.38‰/0.58 ± 0.53‰ for volumetrically measured recipes. Two common food preparation techniques, baking and fermentation, do not substantially affect the carbon or nitrogen isotopic signature of grain-based foods. Mass-balance equations can be used to

  6. Neodymium isotope ratios in fish debris as a tracer for a low oxygen water mass in the equatorial Pacific across the last glacial termination.

    Science.gov (United States)

    Reimi Sipala, M. A.; Marcantonio, F.

    2017-12-01

    The deep ocean has long been suggested as a potential sink of carbon during the LGM, providing storage for the drawdown of atmospheric CO2 observed in the climate record. However, the exact location, origin and pathway of this respired carbon pool remains largely unconstrained. The equatorial Pacific is an important player in the ocean biogeochemical cycling of carbon, with many researchers focusing on the changes in iron-limited systems and potential micronutrient supply changes throughout the Pleistocene glaciation. Here we attempt to isolate the role of deep water circulation changes that may be associated with changing bottom water oxygen conditions in the Central Equatorial Pacific during the last deglaciation. We measure the variability of the Nd isotopic composition of fish debris from three sites in the Central Equatorial Pacific (CEP) along a meridional transect at approximately 160° W -- 0° 28' N (ML1208-17PC), 4° 41' N (ML1208-31BB), and 7 ° 2'N (ML1208-31BB). Nd isotopic values in fish debris reflect the Nd isotopic composition of bottom water at the time of deposition and are insensitive to moderate changes in redox conditions or pore water oxygen levels. Nd isotope ratios can, therefore, be used as an effective deep-ocean water mass tracer. This work attempts to illuminate our current understanding of changes in bottom water oxygenation conditions throughout the Equatorial Pacific over the past 25 kyr. High authigenic U concentrations during peak glacial conditions have been attributed to deep-water suboxic conditions potentially associated with increased respired carbon storage. However, it is still unclear if these changes originate in the Southern Ocean, and propagate to the equatorial Pacific through an increased in penetration of Southern Ocean Intermediate water, or if they represent a change in the efficiency of the biological pump, permitting a drawdown of oxygen in bottom water without increased nutrient availability.

  7. The Oxygen Isotopic Composition (18O/16O) in the Dust of Comet 67P/Churyumov-Gerasimenko Measured by COSIMA On-board Rosetta

    Science.gov (United States)

    Paquette, J. A.; Engrand, C.; Hilchenbach, M.; Fray, N.; Stenzel, O. J.; Silen, J.; Rynö, J.; Kissel, J.

    2018-03-01

    The oxygen isotopic ratio 18O/16O has been measured in cometary gas for a wide variety of comets, but the only measurements in cometary dust were performed by the Stardust cometary sample return mission. Most such measurements find a value of the ratio that is consistent with Vienna Standard Mean Ocean Water (VSMOW) within errors. In this work we present the result of a measurement, using the COSIMA instrument on the Rosetta orbiter, of the oxygen isotopic ratio in dust from Comet 67P/Churyumov-Gerasimenko. Measuring the 18O/16O ratio with COSIMA is challenging for a number of reasons, but it is possible with a reasonable degree of precision. We find a result of 2.00 × 10-3 ± 1.2 × 10-4 which is consistent within errors with VSMOW.

  8. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  9. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    International Nuclear Information System (INIS)

    Gromov, Sergey S.

    2014-01-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ 13 C, δ 18 O and Δ 17 O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13 CO/ 12 CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13 C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH 4 ) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH 4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13 C, were found significant when explicitly simulated. The

  10. Oxygen isotope ratios in the shell of Mytilus edulis: Archives of glacier meltwater in Greenland?

    DEFF Research Database (Denmark)

    Versteegh, E.A.A.; Blicher, M.E.; Mortensen, J.

    2012-01-01

    Melting of the Greenland Ice Sheet (GrIS) is accelerating and will contribute significantly to global sea level rise during the 21st century. Instrumental data on GrIS melting only cover the last few decades, and proxy data extending our knowledge into the past are vital for validating models...... these variations, because it precipitates its shell calcite in oxygen isotopic equilibrium with ambient seawater. As M. edulis shells are known to occur in raised shorelines and archaeological shell middens from previous Holocene warm periods, this species may be ideal in reconstructing past meltwater dynamics. We...

  11. Earth's Coming of Age: Isotopically Tracking the Global Transformation from the Hadean to the Geologically Modern Earth

    Science.gov (United States)

    Bennett, V. C.; Nutman, A. P.

    2017-12-01

    Some of the strongest direct evidence that documents fundamental changes in the chemistry and organisation of Earth's interior derives from radiogenic isotopic compositions that include both long-lived (particularly 176Lu-176Hf and 147Sm-143Nd) and short-lived, i.e., now extinct parent isotope, systems (182Hf-182W, 146Sm-142Nd). Changes in patterns of isotopic evolution are linked to changes in mantle dynamics such that tracking these signatures in geologically well-characterised rocks can be used to discover the the nature and evolution of tectonic processes. Over the past decade, intensive geochemical investigations by various groups focussing on the oldest (> 4.0 Ga to 3.6 Ga) rock record, as preserved in several localities, have revealed isotopic distinctions in the early Earth compared with those in Proterozoic and younger rocks. For example, whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern style characterised by plate tectonics. The emerging image is that many Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182Hf isotopic signatures that are absent in modern terrestrial samples; these signatures are evidence of chemical fractionation processes occuring within the first ca. 10-300 million years of Solar System history. In addition, viewing the global database, patterns of long-half life isotope signatures i.e., 143Nd and 176Hf differ from those seen in younger (modern Earth.

  12. Major, Trace Element Concentration and Triple-Oxygen Isotope Compositions of G- and I-Type Spherules from the Sør Rondane Mountains, East Antarctica

    Science.gov (United States)

    Soens, B.; Goderis, S.; Greenwood, R. C.; McKibbin, S.; Van Ginneken, M.; Vanhaecke, F.; Debaille, V.; Franchi, I. A.; Claeys, Ph.

    2017-07-01

    We present new major, trace element concentration (LA-ICP-MS) and triple-oxygen isotope (LF-IRMS) data for G- and I-type cosmic spherules. This study suggests that both types of micrometeorites may originate from ordinary chondrite parent bodies.

  13. Oxygen diffusion in zircon

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.

    1997-05-01

    Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.

  14. Isotope investigation on groundwater recharge and dynamics in shallow and deep alluvial aquifers of southwest Punjab.

    Science.gov (United States)

    Keesari, Tirumalesh; Sharma, Diana A; Rishi, Madhuri S; Pant, Diksha; Mohokar, Hemant V; Jaryal, Ajay Kumar; Sinha, U K

    2017-11-01

    Groundwater samples collected from the alluvial aquifers of southwest Punjab, both shallow and deep zones were measured for environmental tritium ( 3 H) and stable isotopes ( 2 H and 18 O) to evaluate the source of recharge and aquifer dynamics. The shallow groundwater shows wide variation in isotopic signature (δ 18 O: -11.3 to -5.0‰) reflecting multiple sources of recharge. The average isotopic signature of shallow groundwaters (δ 18 O: -6.73 ± 1.03‰) is similar to that of local precipitation (-6.98 ± 1.66‰) indicating local precipitation contributes to a large extent compared to other sources. Other sources have isotopically distinct signatures due to either high altitude recharge (canal sources) or evaporative enrichment (irrigation return flow). Deep groundwater shows relatively depleted isotopic signature (δ 18 O: -8.6‰) and doesn't show any evaporation effect as compared to shallow zone indicating recharge from precipitation occurring at relatively higher altitudes. Environmental tritium indicates that both shallow ( 3 H: 5 - 10 T.U.) and deeper zone ( 3 H: 1.5 - 2.5 T.U.) groundwaters are modern. In general the inter-aquifer connections seem to be unlikely except a few places. Environmental isotope data suggests that shallow groundwater is dynamic, local and prone to changes in land use patterns while deep zone water is derived from distant sources, less dynamic and not impacted by surface manifestations. A conceptual groundwater flow diagram is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Tracing low-temperature aqueous metal migration in mineralized watersheds with Cu isotope fractionation

    International Nuclear Information System (INIS)

    Mathur, R.; Munk, L.A.; Townley, B.; Gou, K.Y.; Gómez Miguélez, N.; Titley, S.; Chen, G.G.; Song, S.; Reich, M.; Tornos, F.; Ruiz, J.

    2014-01-01

    Highlights: • Cu isotope fractionation of ores and waters identifies copper sulfide weathering. • Redox reactions cause isotopic shift measured in areas of sulfide weathering. • Consistent isotope signature in different deposit, climate, or concentration. - Abstract: Copper isotope signatures in waters emanating from mineralized watersheds provide evidence for the source aqueous copper in solution. Low-temperature aqueous oxidation of Cu sulfide minerals produces significant copper isotopic fractionation between solutions and residues. Abiotic experimental data of fractionation (defined as Δ liquid–solid ‰ = δ 65 Cu liquid − δ 65 Cu solid ) are on the order of 1–3‰ and are unique for copper rich-sulfide minerals. Data presented here from ores and waters within defined boundaries of porphyry copper, massive sulfide, skarn, and epithermal ore deposits mimic abiotic experiments. Thus, the oxidation of sulfide minerals appears to cause the signatures in the waters although significant biological, temperature, and pH variations exist in the fluids. Regardless of the deposit type, water type, concentration of Cu in solution, or location, the data provide a means to trace sources of metals in solutions. This relationship allows for tracking sources and degree of metal migration in low temperature aqueous systems and has direct application to exploration geology and environmental geochemistry

  16. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  17. Ion microprobe analyses of oxygen three-isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk

    Digital Repository Service at National Institute of Oceanography (India)

    Nakashima, D.; Ushikubo, T.; Gowda, R.N.; Kita, N.T.; Valley, J.W.; Naga, K.

    Author version: Meteorit. Planet. Sci., vol.46(6); 2011; 857-874 Ion microprobe analyses of oxygen three isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk Daisuke Nakashima 1,2,* , Takayuki Ushikubo...

  18. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    International Nuclear Information System (INIS)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ( 18 O/ 16 O) and carbon ( 13 C/ 12 C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs

  19. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  20. Study of the tensor correlation in oxygen isotopes using mean-field-type and shell model methods

    International Nuclear Information System (INIS)

    Sugimoto, Satoru

    2007-01-01

    The tensor force plays important roles in nuclear structure. Recently, we have developed a mean-field-type model which can treat the two-particle-two-hole correlation induced by the tensor force. We applied the model to sub-closed-shell oxygen isotopes and found that an sizable attractive energy comes from the tensor force. We also studied the tensor correlation in 16O using a shell model including two-particle-two-hole configurations. In this case, quite a large attractive energy is obtained for the correlation energy from the tensor force

  1. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes.

    Science.gov (United States)

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Kretzschmar, Ruben

    2017-10-18

    Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ 199 Hg and Δ 200 Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg 0 ) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg 0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the

  2. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2007-05-01

    The objective of this study is to determine isotopic characteristics of precipitation, the climatic and geographical conditions affecting isotopic composition in order to obtain the input function of groundwater to evaluate the water resources.13 meteoric stations were selected in Syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the Syrian meteoric line (SMWL) was estimated with a slope of 6.62 and that of both Syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude of 18 O was about 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14 % and -0.84% /100m respectively). The spatial distribution of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern Mediterranean climate type over this region.(author)

  3. Chemical and isotopic fingerprinting of ancient Chinese porcelains

    International Nuclear Information System (INIS)

    Zhao, J.-X.; Li, B.-P.; Greig, A.; Collerson, K.D.; Feng, Y.-X.

    2005-01-01

    We have obtained unequivocal fingerprinting for many Chinese porcelains of utmost significance, based on high-precision multi-element and isotopic analysis by inductively-coupled mass spectrometry (ICP-MS) and thermal ionization mass spectrometry (TIMS) in our laboratory. As most ancient Chinese kilns used raw materials mined from local areas, differences in the geochemistry and mineralogy of these raw materials are expected to be preserved as distinctive geochemical and isotopic signatures in finished products and this may be useful for identifying their sources. Production techniques, such as purifying and mixing of different raw materials, may also vary from kiln to kiln, or may even change over time. All of that could also potentially leave a characteristic chemical and isotopic signature in a kiln's finished products. Using a tiny amount (often a few tens milligrams) of porcelain material, more than 40 element concentrations and Sr-Nd isotopic compositions can be rapidly and precisely determined on the ICP-MS and TIMS, respectively. The analytical results show that visibly similar Chinese porcelains made in different places and/or dynasties are strikingly distinctive. The data also allow modern fakes to be readily distinguished from antique porcelains. (author). 4 refs., 7 figs

  4. In vivo EPR oximetry using an isotopically-substituted nitroxide: Potential for quantitative measurement of tissue oxygen

    Science.gov (United States)

    Weaver, John; Burks, Scott R.; Liu, Ke Jian; Kao, Joseph P.Y.; Rosen, Gerald M.

    2017-01-01

    Variations in brain oxygen (O2) concentration can have profound effects on brain physiology. Thus, the ability to quantitate local O2 concentrations noninvasively in vivo could significantly enhance understanding of several brain pathologies. However, quantitative O2 mapping in the brain has proven difficult. The electron paramagnetic resonance (EPR) spectra of nitroxides are sensitive to molecular O2 and can be used to estimate O2 concentrations in aqueous media. We recently synthesized labile-ester-containing nitroxides, such as 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (nitroxide 4), which accumulate in cerebral tissue after in situ hydrolysis, and thus enable spatial mapping of O2 concentrations in the mouse brain by EPR imaging. In an effort to improve O2 quantitation, we prepared 3-acetoxymethox ycarbonyl-2,2,5,5-tetra(2H3)methyl-1-(3,4,4-2H3,1-15N)pyrrolidinyloxyl (nitroxide 2), which proved to be a more sensitive probe than its normo-isotopic version for quantifying O2 in aqueous solutions of various O2 concentrations. We now demonstrate that this isotopically substituted nitroxide is ~2-fold more sensitive in vivo than the normo-isotopic nitroxide 4. Moreover, in vitro and in vivo EPR spectral-spatial imaging results with nitroxide 2 demonstrate significant improvement in resolution, reconstruction and spectral response to local O2 concentrations in cerebral tissue. Thus, isotopic-substituted nitroxides, such as 2, are excellent sensors for in vivo O2 quantitation in tissues, such as the brain. PMID:27567323

  5. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  6. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    Science.gov (United States)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  7. Isotopic labeling study of oxygen diffusion in amorphous LaScO3 high-κ films on Si(100) and its effects on the electrical characteristics

    International Nuclear Information System (INIS)

    Lopes, J.M.J.; Littmark, U.; Roeckerath, M.; Durgun Oezben, E.; Lenk, S.; Schubert, J.; Mantl, S.; Breuer, U.; Besmehn, A.; Staerk, A.; Grande, P.L.; Sortica, M.A.; Radtke, C.

    2009-01-01

    The influence of post-deposition oxygen anneals on the properties of amorphous LaScO 3 films on Si(100) is reported. The use of an isotopically ( 18 O 2 ) enriched atmosphere allowed to investigate the 16 O- 18 O exchange and the oxygen diffusion across the dielectric layer. Such effects are connected to the formation of an interfacial layer. Oxygen annealing leads to nearly ideal capacitance-voltage curves, lower leakage currents and interface trap densities, as well as to κ-values up to 33 for the LaScO 3 films. These results are attributed to the suppression of oxygen-related trap centers and the achievement of a stoichiometric oxygen content. (orig.)

  8. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    Science.gov (United States)

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-03

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group. © 2011 American Chemical Society

  9. Chemical and isotopic composition of precipitations in Syria

    International Nuclear Information System (INIS)

    Abou Zakhem, B.; Hafez, R.

    2008-01-01

    13 meteoric stations were selected in syria for cumulative monthly rainfall sampling during two hydrological cycles; 1991-1992 and 1992-1993. The chemical and isotopic compositions of monthly precipitation were studied. The winter and spring rainfall isotopic characteristics were determined, in addition to the syrian or local meteoric line (SMWL) was estimated with a slope of 6.63 and that of both syria and Jordan of 6.73. The effect of climatic factors as temperature and relative air humidity on oxygen-18, deuterium and d-excess were studied and it was found that the relationship between temperature and oxygen-18 and deuterium is a positive linear correlation; however, it is a negative correlation with d-excess. The mean seasonal variation amplitude was determined by 6%, and the amount effect on isotopic content of precipitation was studied. The geographic factors and its affect on isotopic contents of precipitation such as altitude were considered, furthermore, the isotopic gradient with altitude was determined for both oxygen-18 and deuterium (-0.14% and - 0.84%/100 m elevation respectively). The spatial variability of oxygen-18, deuterium, tritium and d-excess indicted the effect of mountain chains and gaps between mountains on the isotopic content of precipitation, the continental effect on tritium build-up by about 33% per 100 Km from the coast. The increase of d-excess values towards the south west proves the eastern mediterranean climate type over this region. (author)

  10. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hyd...... in Earth´s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.......Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs......, but hydrogen´s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as Î...

  11. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    Science.gov (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  12. Oxygen and Hydrogen Isotopes of Precipitation in a Rocky Mountainous Area of Beijing to Distinguish and Estimate Spring Recharge

    Directory of Open Access Journals (Sweden)

    Ziqiang Liu

    2018-05-01

    Full Text Available Stable isotopes of oxygen and hydrogen were used to estimate seasonal contributions of precipitation to natural spring recharge in Beijing’s mountainous area. Isotopic compositions were shown to be more positive in the dry season and more negative in the wet season, due to the seasonal patterns in the amount of precipitation. The local meteoric water line (LMWL was δ2H = 7.0 δ18O − 2.3 for the dry season and δ2H = 5.9 δ18O − 10.4 for the wet season. LMWL in the two seasons had a lower slope and intercept than the Global Meteoric Water Line (p < 0.01. The slope and intercept of the LMWL in the wet season were lower than that in the dry season because of the effect of precipitation amount during the wet season (p < 0.01. The mean precipitation effects of −15‰ and −2‰ per 100 mm change in the amount of precipitation for δ2H and δ18O, respectively, were obtained from the monthly total precipitation and its average isotopic value. The isotopic composition of precipitation decreased when precipitation duration increased. Little changes in the isotopic composition of the natural spring were found. By employing isotope conservation of mass, it could be derived that, on average, approximately 7.2% of the natural spring came from the dry season precipitation and the rest of 92.8% came from the wet season precipitation.

  13. Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples

    Science.gov (United States)

    Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.

    2018-02-01

    New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might

  14. Isotopically (δ13C and δ18O) heavy volcanic plumes from Central Andean volcanoes: a field study

    Science.gov (United States)

    Schipper, C. Ian; Moussallam, Yves; Curtis, Aaron; Peters, Nial; Barnie, Talfan; Bani, Philipson; Jost, H. J.; Hamilton, Doug; Aiuppa, Alessandro; Tamburello, Giancarlo; Giudice, Gaetano

    2017-08-01

    Stable isotopes of carbon and oxygen in volcanic gases are key tracers of volatile transfer between Earth's interior and atmosphere. Although important, these data are available for few volcanoes because they have traditionally been difficult to obtain and are usually measured on gas samples collected from fumaroles. We present new field measurements of bulk plume composition and stable isotopes (δ13CCO2 and δ18OH2O+CO2) carried out at three northern Chilean volcanoes using MultiGAS and isotope ratio infrared spectroscopy. Carbon and oxygen in magmatic gas plumes of Lastarria and Isluga volcanoes have δ13C in CO2 of +0.76‰ to +0.77‰ (VPDB), similar to slab carbonate; and δ18O in the H2O + CO2 system ranging from +12.2‰ to +20.7‰ (VSMOW), suggesting significant contributions from altered slab pore water and carbonate. The hydrothermal plume at Tacora has lower δ13CCO2 of -3.2‰ and δ18OH2O+CO2 of +7.0‰, reflecting various scrubbing, kinetic fractionation, and contamination processes. We show the isotopic characterization of volcanic gases in the field to be a practical complement to traditional sampling methods, with the potential to remove sampling bias that is a risk when only a few samples from accessible fumaroles are used to characterize a given volcano's volatile output. Our results indicate that there is a previously unrecognized, relatively heavy isotopic signature to bulk volcanic gas plumes in the Central Andes, which can be attributed to a strong influence from components of the subducting slab, but may also reflect some local crustal contamination. The techniques we describe open new avenues for quantifying the roles that subduction zones and arc volcanoes play in the global carbon cycle.

  15. SIMS study of oxygen diffusion in monoclinic HfO2

    Science.gov (United States)

    Mueller, Michael P.; De Souza, Roger A.

    2018-01-01

    The diffusion of oxygen in dense ceramics of monoclinic HfO2 was studied by means of (18O/16O) isotope exchange annealing and subsequent determination of isotope depth profiles by Secondary Ion Mass Spectrometry. Anneals were performed in the temperature range of 573 ≤T /K ≤ 973 at an oxygen partial pressure of p O2=200 mbar . All measured isotope profiles exhibited two features: the first feature, closer to the surface, was attributed mainly to slow oxygen diffusion in an impurity silicate phase; the second feature, deeper in the sample, was attributed to oxygen diffusion in bulk monoclinic HfO2 . The activation enthalpy of oxygen tracer diffusion in bulk HfO2 was found to be ΔHD∗≈0.5 eV .

  16. Seasonal and inter-annual dynamics in the stable oxygen isotope compositions of water pools in a temperate humid grassland ecosystem: results from MIBA sampling and MuSICA modelling

    Science.gov (United States)

    Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme

    2015-04-01

    The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The

  17. Oxygen isotope records of Globigerina bulloides across a north-south transect in the south-western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khare, N.; Chaturvedi, S.K.; Saraswat, R

    , Washington, D.C). Lutjeharms, J.R.E., N.M. Walters and B.R. Allanson. 1985. Oceanic frontal systems and biologicalenhancement. p.11-21. In: Antarctic Nutrient Cycles and Food Webs. ed. by W.R. Siegfried et al., Springer-Verlag, NewYork. Matsumoto, K., J...: Ocean Sci. J.: 44(2); 2009; 117-123 OXYGEN ISOTOPE RECORDS OF GLOBIGERINA BULLOIDES ACROSS A NORTH-SOUTH TRANSECT IN THE SOUTH-WESTERN INDIAN OCEAN N. Khare 1* , S. K. Chaturvedi 2 and R. Saraswat 3 1. Ministry of Earth Sciences, Block...

  18. Monsoon signatures in trace gas records from Cape Rama, India

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.; Jani, R.A.; Borole, D.V.; Francey, R.J.; Allison, C.E.; Masarie, K.A.

    2002-01-01

    Concentrations of trace gases CO 2 , CH 4 , CO, N 2 O and H 2 , and the stable carbon and oxygen isotopic composition of CO 2 have been measured in air samples collected from Cape Rama, a coastal station on the west coast of India, since 1993. The data show clear signatures of continental and oceanic air mass resulting in complex seasonal variation of trace gas characteristics. The regional atmospheric circulation in the Indian Ocean and Arabian Sea undergoes biannual reversal in low-level winds associated with the yearly migration of the inter-tropical convergence zone (ITCZ). From June to September, the wind is from the equatorial Indian Ocean to the Indian subcontinent (southwest monsoon) and brings in pristine marine air. From December to February, dry continental winds blow from the northeast and transport continental emissions to the ocean (northeast monsoon). Detailed transport and chemical modelling will be necessary to interpret these records, however the potential to identify and constrain the regional trace gas emissions appears to be high. (author)

  19. Pb-Pb age and Rb-Sr and Sm-Nd isotope signature of paleoproterozoic syenitic plutonism in the south of Salvador-Curaca mobile belt: Sao Felix Syenitic Massif, Bahia-Brazil

    International Nuclear Information System (INIS)

    Rosa, Maria de Lourdes da Silva; Conceicao, Herbet; Leal, Luiz Rogerio Bastos

    2001-01-01

    The Sao Felix Syenitic Massif (MSSF) has a tabular shape with about 32 km 2 that represents the south expression of the aligned syenitic plutonism, which occur in the middle part of Salvador-Curaca mobile belt (CMSC). Single zircon dating by stepwise Pb evaporation methodology yields an age of 2098 ± 1 Ma to SFSM. This data correlate the emplacement of the SFSM with the late stages of SCMB stabilization. This massif is isotopically characterized by negative epsilon neodymium values (-1.45 to -2.89) and low initial strontium ratio (0.701 to 0.704). SFSM isotopic signature is similar to the ones displayed by the others syenites from the belt and reflects an enriched source which should be related to a metasomatic enriched mantle. (author)

  20. Greek marbles: determination of provenance by isotopic analysis.

    Science.gov (United States)

    Craig, H; Craig, V

    1972-04-28

    A study has been made of carbon-13 and oxygen-18 variations in Greek marbles from the ancient quarry localities of Naxos, Paros, Mount Hymettus, and Mount Pentelikon. Parian, Hymettian, and Pentelic marbles can be clearly distinguished by the isotopic relationships; Naxian marbles fall into two groups characterized by different oxygen-18/oxygen-16 ratios. Ten archeological samples were also analyzed; the isotopic data indicate that the "Theseion" is made of Pentelic marble and a block in the Treasury of Siphnos at Delphi is probably Parian marble.

  1. Titanium Isotopes Provide Clues to Lunar Origin

    Science.gov (United States)

    Taylor, G. J.

    2012-05-01

    The idea that the Moon formed as the result of the giant impact of a Mars-sized impactor with the still-growing Earth explains two central facts about the Earth-Moon system: its total angular momentum (Earth's spin and the Moon's orbital motion), and the sizes of the metallic cores of the Earth (large) and Moon (tiny). This gives cosmochemists some confidence in the hypothesis, but they would greatly appreciate additional compositional tests. One undisputed point is the identical abundance of the three oxygen isotopes in Earth and Moon. Junjun Zhang and colleagues at the University of Chicago (USA) and the University of Bern (Switzerland) have added another isotopic system to the cosmochemical testing tool kit, titanium isotopes. They find that the ratio of titanium-50 to titanium-47 is identical in Earth and Moon to within four parts per million. In contrast, other solar system materials, such as carbonaceous chondrites, vary by considerably more than this-- up to 150 times as much. The identical oxygen and titanium isotopic compositions in Earth and Moon are surprising in light of what we think we know about planet formation and formation of the Moon after a giant impact. The variations in oxygen and titanium isotopes among meteorite types suggest that it is unlikely that the Moon-forming giant impactor would have had the same isotopic composition as the Earth. Simulations show that the Moon ends up constructed mostly (40-75%) from the impactor materials. Thus, the Moon ought to have different isotopic composition than does Earth. The isotopes might have exchanged in the complicated, messy proto-lunar disk (as has been suggested for oxygen isotopes), making them the same. However, Zhang and colleagues suggest that this exchange is unlikely for a refractory element like titanium. Could the impact simulations be greatly overestimating the contributions from the impactor? Was the mixing of building-block materials throughout the inner solar system much less than

  2. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    Science.gov (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  3. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  4. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    Science.gov (United States)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  5. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    James, Garth A. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Ge Zhao, Alice [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Usui, Marcia [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Underwood, Robert A. [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Nguyen, Hung [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Beyenal, Haluk [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; deLancey Pulcini, Elinor [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Agostinho Hunt, Alessandra [Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing Michigan; Bernstein, Hans C. [Pacific Northwest National Laboratory, Chemical and Biological Signature Science, Richland Washington; Fleckman, Philip [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Olerud, John [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Williamson, Kerry S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Franklin, Michael J. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Stewart, Philip S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana

    2016-02-16

    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygen partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the

  6. Bringing organic carbon isotopes and phytoliths to the table as additional constraints on paleoelevation

    Science.gov (United States)

    Sheldon, N. D.; Cotton, J. M.; Hren, M. T.; Hyland, E. G.; Smith, S. Y.; Strömberg, C. A. E.

    2015-12-01

    A commonly used tool in paleotectonic and paleoaltimetry studies is the oxygen isotopic composition of authigenic carbonates formed that formed in lakes or soils, with both spatial (e.g., shoreline to mountain top) or temporally resolved records potentially providing constraints. However, in many cases there is a substantial spread in the oxygen isotope data for a given time period, often to the point of allowing for essentially any interpretation of the data depending upon how they have been used by the investigator. One potential way of distinguishing between different potential paleotectonic or paleoaltimetric interpretations is to use carbon isotope and plant microfossil (phytolith) analyses from the same paleosols to screen the oxygen isotope data by looking for evidence of evaporative enrichment. For example, if both inorganic (carbonate) and organic carbon isotopes are measured from the same paleosol, then in it possible to determine if the two isotope record equilibrium conditions or if they record disequilibrium driven by kinetic effects. In the former case, the oxygen isotope results can be considered reliable whereas in the latter case, the oxygen isotope results can be considered unreliable and could be culled from the interpretation. Similarly, because the distribution of C4 plants varies as a function of temperature and elevation, the presence/absence or abundance of C4 plant phytoliths, or of carbon isotope compositions that require a component of C4 vegetation can also be used to constrain paleoelevation by providing a maximum elevation constraint. Worked examples will include the late Miocene-Pliocene of Catamarca, Argentina, where phytoliths and organic carbon isotopes provide a maximum elevation constraint and can be used to demonstrate that oxygen isotopes do not provide a locally useful constraint on paleoelevation, and Eocene-Miocene of southwestern Montana where organic matter and phytoliths can be used to select between different potential

  7. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis.

    Science.gov (United States)

    Spangenberg, Jorge E

    2012-11-30

    The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen ((2)H) and oxygen ((18)O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659 days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. Changes of up to +5‰ for δ(2)H values and +2.0‰ for δ(18)O values were measured for water after more than 1 year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal™ cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original δ(2)H and δ(18)O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and

  8. CARBON AND OXYGEN ISOTOPIC RATIOS FOR NEARBY MIRAS

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Kenneth H. [National Optical Astronomy Observatory P.O. Box 26732, Tucson, AZ 85726 (United States); Lebzelter, Thomas [Department of Astrophysics, University of Vienna Türkenschanzstrasse 17, A-1180 Vienna (Austria); Straniero, Oscar, E-mail: khinkle@noao.edu, E-mail: thomas.lebzelter@univie.ac.at, E-mail: straniero@oa-teramo.inaf.it [INAF, Osservatorio Astronomico di Collurania I-64100 Teramo (Italy)

    2016-07-01

    Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration–rotation first and second-overtone CO lines in 1.5–2.5 μ m spectra were measured to derive isotopic ratios for {sup 12}C/{sup 13}C, {sup 16}O/{sup 17}O, and {sup 16}O/{sup 18}O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses ≤2 M {sub ⊙} and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of {sup 16}O/{sup 17}O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2–2 M {sub ⊙} stars after the first dredge-up. In contrast, the {sup 16}O/{sup 18}O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the {sup 16}O/{sup 18}O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O

  9. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    Science.gov (United States)

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  10. Paleoclimatic reconstruction in the Bolivian Andes from oxygen isotope analysis of lake sediment cellulose

    International Nuclear Information System (INIS)

    Wolfe, B.B.; Aravena, R.; Gibson, J.J.; Abbott, M.B.; Seltzer, G.O.

    2002-01-01

    Cellulose-inferred lake water δ 18 O (δ 18 O lw ) records from Lago Potosi, a seasonally-closed lake in a watershed that is not currently glaciated, and Lago Taypi Chaka Kkota, an overflowing lake in a glaciated watershed, provide the basis for late Pleistocene and Holocene paleoclimatic reconstruction in the Bolivian Andes. Deconvolution of the histories of changing evaporative isotopic enrichment from source water δ 18 O in the lake sediment records is constrained by comparison to the Sajama ice core oxygen isotope profile. At Lago Potosi, the δ 18 O lw record appears to be dominantly controlled by evaporative 18 O-enrichment, reflecting shifts in local effective moisture. Using an isotope-mass balance model, a preliminary quantitative reconstruction of summer relative humidity spanning the past 11,500 cal yr is derived from the Lago Potosi Π 18 O lw record. Results indicate that the late Pleistocene was moist with summer relative humidity values estimated at 10-20% greater than present. Increasing aridity developed in the early Holocene with maximum prolonged dryness spanning 7500 to 6000 cal yr BP at Lago Potosi, an interval characterized by summer relative humidity values that may have been 20% lower than present. Highly variable but dominantly arid conditions persist in the mid- to late Holocene, with average summer relative humidity values estimated at 15% below present, which then increase to about 10-20% greater than present by 2000 cal yr BP. Slightly more arid conditions characterize the last millennium with summer relative humidity values ranging from 5-10% lower than present. Similar long-term variations are evident in the Lago Taypi Chaka Kkota δ 18 O lw profile, except during the early Holocene when lake water evaporative 18 Oenrichment in response to low relative humidity appears to have been offset by enhanced inflow from 18 O-depleted snowmelt or groundwater from the large catchment. Close correspondence occurs between the isotope

  11. Groundwater oxygen isotope anomaly before the M6.6 Tottori earthquake in Southwest Japan.

    Science.gov (United States)

    Onda, Satoki; Sano, Yuji; Takahata, Naoto; Kagoshima, Takanori; Miyajima, Toshihiro; Shibata, Tomo; Pinti, Daniele L; Lan, Tefang; Kim, Nak Kyu; Kusakabe, Minoru; Nishio, Yoshiro

    2018-03-19

    Geochemical monitoring of groundwater in seismically-active regions has been carried out since 1970s. Precursors were well documented, but often criticized for anecdotal or fragmentary signals, and for lacking a clear physico-chemical explanation for these anomalies. Here we report - as potential seismic precursor - oxygen isotopic ratio anomalies of +0.24‰ relative to the local background measured in groundwater, a few months before the Tottori earthquake (M 6.6) in Southwest Japan. Samples were deep groundwater located 5 km west of the epicenter, packed in bottles and distributed as drinking water between September 2015 and July 2017, a time frame which covers the pre- and post-event. Small but substantial increase of 0.07‰ was observed soon after the earthquake. Laboratory crushing experiments of aquifer rock aimed to simulating rock deformation under strain and tensile stresses were carried out. Measured helium degassing from the rock and 18 O-shift suggest that the co-seismic oxygen anomalies are directly related to volumetric strain changes. The findings provide a plausible physico-chemical basis to explain geochemical anomalies in water and may be useful in future earthquake prediction research.

  12. Boron and chlorine isotopic signatures of seawater in the Central Indian Ridge

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Hai, L.

    (CIR). Boron and chlorine isotopic measurements were made using positive thermal ionization mass spectrometry (TIMS) of Cs2BO4 + and Cs2Cl+ ions respectively, mainly to understand their isotopic behaviours to elucidate the consistency of boron...

  13. Provenance validation of polished rice samples using nuclear and isotopic analytical techniques

    International Nuclear Information System (INIS)

    Pabroa, P.C.B.; Sucgang, R.J.; Mendoza, N.D.S.; Ebihara, M.; Peña, M.

    2015-01-01

    Rice (Oryza sativa) has been considered the best staple food among all cereals and is the staple food for over 3 billion people, constituting over half of the world’s population. Elemental and isotopic analysis revealed variance between Philippine and Japanese rice. Rice samples collected in Japan and in the Philippines (market survey samples from Metro Manila, and farm harvests from Aklan province and Central Luzon) were washed, dried and ground to fine powder. Elemental analyses of the samples were carried out using instrumental neutron activation analysis (INAA) while isotopic signatures of the samples were determined using the isotope ratio mass spectrometry (IRMS). Results show that compared with the unpolished rice standard NIES CRM10b, the polished Japanese and Philippine rice sampled show reduced concentrations of elements by as much as 1/10. 1/4 , 1/5 and 1/3 for Mg, Mn, K and Na, respectively. Levels of Ca and Zn are not greatly affected. Arsenic, probably introduced from fertilizers used in rice fields is found in all the Japanese rice tested at an average concentration of 0.103 μg/g and three out of four of the Philippine rice at an average concentration of 0.70μg/g. Higher levels of Br seen in two of the Philippine rice at 14 and 34μg/g indicated probable contamination source from the pesticide methyl bromide during quarantine. Good correlation of isotopic signatures with geographical location of polished, but not for unpolished, rice samples from Central Luzon and Aklan indicated that provenance studies are best done on polished rice samples. Isotopic with of ω’”13C show signature that of a C3 plant with possible narrow distinguishable signature with Japanese rice falling within -27.5 to -28.5 while Philippine rice within -29 to -30. Rice provenance can be ascertained using elemental analysis and isotopic abundance determination as shown by the study.(author)

  14. Experimental study on isotope fractionation of evaporating water of different initial isotopic composition

    International Nuclear Information System (INIS)

    Pooja Devi; Jain, A.K.; Rao, M.S.; Kumar, B.

    2014-01-01

    The studies of evaporative isotopic fractionation in controlled conditions are of particular importance for understanding the mechanism of evaporation fractionation in natural conditions. We present the measurements of the average isotopic fractionation factors during the evaporation of water having different initial isotopic compositions at constant temperature. The results show that the isotopic composition of residual water become more enriched over the time and the initial isotopic composition of evaporating water has considerable effect on the average isotopic fractionation factors. The average isotopic fractionation factors in evaporation of Water A and Water B under the present experimental conditions were found to be 0.9817 ± 0.0044 and 0.9887 ± 0.0031 for oxygen and 0.9178 ± 0.0182 and 0.9437 ± 0.0169 for hydrogen, respectively. The findings of this work should lead to a better understanding and use of stable isotope techniques in isotope hydrology by using a simple technique of evaporation pan. (author)

  15. Geochemistry of rare earths and oxygen isotopes in granitic rocks from Monte das Gameleiras and Dona Ines, Rio Grande do Norte-Paraiba border, Brazil

    International Nuclear Information System (INIS)

    Sial, A.N.

    1984-01-01

    The study of oxygen isotopes and rare earth elements in granitic plutons of Monte das Gameleiras and Dona Ines, Rio Grande do Norte-Paraiba border, in Brazil, to define the nature of source rock of progenitor magmas, is presented. (M.C.K.) [pt

  16. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-01-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent 14 C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent 14 C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent 14 C age and δ 13 C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab

  17. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Perched Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-13

    Fine-grained sediments associated with the Cold Creek Unit at Hanford have caused the formation of a perched water aquifer in the deep vadose zone at the B Complex area, which includes waste sites in the 200-DV-1 Operable Unit and the single-shell tank farms in Waste Management Area B-BX-BY. High levels of contaminants, such as uranium, technetium-99, and nitrate, make this aquifer a continuing source of contamination for the groundwater located a few meters below the perched zone. Analysis of deuterium (2H) and 18-oxygen (18O) of nine perched water samples from three different wells was performed. Samples represent time points from hydraulic tests performed on the perched aquifer using the three wells. The isotope analyses showed that the perched water had δ2H and δ18O ratios consistent with the regional meteoric water line, indicating that local precipitation events at the Hanford site likely account for recharge of the perched water aquifer. Data from the isotope analysis can be used along with pumping and recovery data to help understand the perched water dynamics related to aquifer size and hydraulic control of the aquifer in the future.

  18. Stable oxygen isotope analysis reveal vegetation influence on soil water movement and ecosystem water fluxes in a semi-arid oak woodland

    Science.gov (United States)

    Piayda, Arndt; Dubbert, Maren; Werner, Christiane; Cuntz, Matthias

    2015-04-01

    Mechanistically disentangling the role and function of vegetation within the hydrological cycle is one of the key questions in the interdisciplinary field of ecohydrology. The presence of vegetation can have various impacts on soil water relations: transpiration of active vegetation causes great water losses, rainfall is intercepted, soil evaporation can be reduced and infiltration, hydraulic redistribution and translatory flow might be altered. In drylands, covering around 40% of the global land surface, the carbon cycle is closely coupled to water availability due to (seasonal) droughts. Specifically savannah type ecosystems, which cover large areas worldwide, are, due to their bi-layered structure, very suitable to study the effects of distinct vegetation types on the ecosystem water cycle. Oxygen isotope signatures (δ18O) have been used to partition ecosystem evapotranspiration (ET ) because of the distinct isotopic compositions of water transpired by leaves relative to soil evaporated vapor. Recent developments in laser spectroscopy enable measurements of δ18O in the vapor phase with high temporal resolution in the field and bear a novel opportunity to trace water movement within the ecosystem. In the present study, the effects of distinct vegetation layers (i.e. trees and herbaceous vegetation) on soil water infiltration and redistribution as well as ecosystem water fluxes in a Mediterranean cork-oak woodland are disentangled. An irrigation experiment was carried out using δ18O labeled water to quantify the distinct effects of trees and herbaceous vegetation on 1) infiltration and redistribution of water in the soil profile and 2) to disentangle the effects of tree cover on the contribution of unproductive soil evaporation and understory transpiration to total ET . First results proof that stable δ18O isotopes measured onsite with laser spectroscopy is a valuable tool to trace water movement in the soil showing a much higher sensitivity than common TDR

  19. Separation process for boron isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S D

    1975-06-12

    The method according to the invention is characterized by the steps of preparing a gaseous mixture of BCl/sub 3/ containing the isotopes of boron and oxygen as the extractor, irradiating that mixture in the tube of the separator device by means of P- or R-lines of a CO/sub 2/ laser for exciting the molecules containing a given isotope of boron, simultaneously irradiating the mixture with UV for photodissociating the excited BCl/sub 3/ molecules and separating BCl/sub 3/ from the reaction products of photodissociation and from oxygen. Such method is suitable for preparing boron used in nuclear reactors.

  20. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.