WorldWideScience

Sample records for oxygen ion conductivity

  1. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  2. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore-570006 (India); Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in [Govt. Research Centre, Sahyadri Educational Institutions, Mangalore-575007 (India); Kumarswamy, G. N., E-mail: kumy79@gmail.com [Department of Studies in Physics, Amrita Vishwa Vidyapeetham, Bangalore-560035 (India)

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{sup 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  3. Fluctuation Induced Conductivity Studies of 100 MeV Oxygen Ion Irradiated Pb Doped Bi-2223 Superconductors

    NARCIS (Netherlands)

    Banerjee, Tamalika; Kumar, Ravi; Kanjilal, D.; Ramasamy, S.

    2000-01-01

    We report on 100 MeV oxygen ion irradiation in Pb doped Bi-2223 superconductors. Resistivity measurements reveal that both grains as well as the grain boundaries are affected by such irradiation. An analysis of the excess conductivity has been made within the framework of Aslamazov-Larkin (AL) and

  4. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  5. Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Films

    DEFF Research Database (Denmark)

    Fluri, Aline; Gilardi, Elisa; Karlsson, Maths

    2017-01-01

    Solid oxide oxygen ion and proton conductors are a highly important class of materials for renewable energy conversion devices like solid oxide fuel cells. Ba2In2O5 (BIO) exhibits both oxygen ion and proton conduction, in a dry and humid environment, respectively. In a dry environment...

  6. Multivalent ion conducting solids

    Energy Technology Data Exchange (ETDEWEB)

    Imanaka, N. [Osaka Univ., Suita, Osaka (Japan). Dept. of Applied Chemistry

    2008-07-01

    Solid electrolytes possess important characteristics for industrial applications. Only a single ionic species can macroscopically migrate in these solids. This paper described a the new NASICON (M-Zr-Nb-P-O) type system, exhibiting an exceptionally high level of trivalent M3+ ion conductivity on polycrystalline solids. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ stabilized the NASICON phase and realized the M3+ ion conduction in the NASICON structure. It was concluded that the conductivities of the series are comparable to those of the practically applied solid electrolytes of oxide anion conductors of YSZ and CSZ. 3 refs., 2 figs.

  7. Preparation and characterization of structures of oxygen-ion-conductive thin-film membranes; Herstellung und Charakterisierung von sauerstoffionenleitenden Duennschichtmembranstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Betz, Michael

    2010-07-01

    In power plants using Oxyfuel technology, fossil fuels are combusted with pure oxygen. This leads to carbon dioxide of high purity, which is necessary for its transport and storage. Oxygen separation by means of perovskitic membranes have great potential to decrease the efficiency losses caused by the allocation of the enormous amounts of oxygen. The aim of this work is the preparation and characterisation of thin film membranes on porous substrates and the analysis of their oxygen permeation properties. Therefore the material system A{sub 0,68}Sr{sub 0,3}Fe{sub 0,8}Co{sub 0,2}O{sub 3-{delta}} (A68SFC) was analysed, where the A-site was substituted with Lanthanides (La, Pr, Nd, Eu, Sm, Gd, Dy, Er) or alkaline earth metals (Ba, Ca). After an extensive characterisation, the selection was reduced to the substitutions with La, Pr and Nd. Other compounds could not meet the demands with regard to phase purity, chemical stability or extension behaviour. All analyses were conducted in comparison to Ba{sub 0,5}Sr{sub 0,5}Co{sub 0,8}Fe{sub 0,2}O{sub 3-{delta}} (BSCF) which is known to exhibit higher permeation rates, but is more sensitive to stability issues. The dependency of permeation rates on membrane thickness or oxygen partial pressures on both membrane surfaces is discussed by means of permeation measurements conducted on bulk BSCF membranes. These cannot be described completely by the Wagner equation. This is due to changes of the driving force originating from influences of the surface reaction kinetics and concentration polarisation on the membrane surface, which are not considered. Porous substrates for asymmetric membranes were manufactured by tape casting and warm pressing. The application of the functional layer was performed via screen printing. Permeation measurements show that the asymmetric structures exhibit higher permeation rates in comparison to bulk membranes with L=1 mm. The moderate increase can be attributed to the low gas permeability of the

  8. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  9. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  10. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  11. Ionomers for Ion-Conducting Energy Materials

    Science.gov (United States)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  12. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    Science.gov (United States)

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  13. Oxide interfaces with enhanced ion conductivity

    NARCIS (Netherlands)

    Leon, C.; Santamaria, J.; Boukamp, Bernard A.

    2013-01-01

    The new field of nano-ionics is expected to yield large improvements in the performance of oxide-based energy generation and storage devices based on exploiting size effects in ion conducting materials. The search for novel materials with enhanced ionic conductivity for application in energy devices

  14. Relaxation behavior of ion conducting glasses

    International Nuclear Information System (INIS)

    Bunde, A.; Dieterich, W.; Maass, P.; Meyer, M.

    1997-01-01

    We investigate by Monte Carlo simulations the diffusion of ions in an energetically disordered lattice, where the Coulomb interaction between the mobile ions is explicitly taken into account. We show that the combined effect of Coulomb interaction and disorder can account for the ionic ac-conductivity in glasses and the recently discovered non-Arrhenius behavior of the dc-conductivity in glassy fast ionic conductors. Our results suggest that glassy ionic conductors can be optimized by lowering the strength of the energetic disorder but that the ionic interaction effects set an upper bound for the conductivity at high temperatures. (author)

  15. Fast sodium ion conductivity in supertetrahedral phosphidosilicates.

    Science.gov (United States)

    Johrendt, Dirk; Haffner, Arthur; Hatz, Anna Katharina; Moudrakovski, Igor; Lotsch, Bettina Valeska

    2018-04-03

    Fast sodium ion conductors are key components of sodium-based all-solid-state batteries which hold promise as safe systems for large-scale storage of electrical power. Here, we report the synthesis, crystal structure determination and Na+ ion conductivities of six new sodium ion conductors, the phosphidosilicates Na19Si13P25, Na23Si19P33, Na23Si28P45, Na23Si37P57, LT-NaSi2P3 and HT-NaSi2P3, which are entirely based on earth-abundant elements. The new structures exhibit SiP4 tetrahedra assembling interpenetrating networks of T3 to T5 supertetrahedral clusters which can be hierarchically assigned to sphalerite- or diamond-type structures. 23Na solid-state NMR spectra and geometrical pathway analysis indicate Na+ ion mobility between the supertetrahedral cluster networks. Electrochemical impedance spectroscopy revealed Na+ ion conductivities up to σ (Na+) = 4 ∙ 10-4 Scm-1 with an activation energy of Ea = 0.25 eV in HT-NaSi2P3 at 25 °C. The conductivities increase with the size of the supertetrahedral clusters due to the dilution of Na+ ions as the charge density of the anionic supertetrahedral networks decreases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structures and ion conduction pathways of amorphous lithium ion conductors

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei

    2014-01-01

    For ( 7 Li 2 S) x (P 2 S 5 ) 100-x glasses (x = 50, 60, and 70) and 7 Li 7 P 3 S 11 metastable crystal, time-of-flight neutron diffraction and synchrotron X-ray diffraction experiments were performed, and three-dimensional structures and conduction pathways of lithium ions were studied using the reverse Monte Carlo (RMC) modeling and the bond valence sum (BVS) approach. The conduction pathways of the lithium ions could be classified into two types: lithium 'stable' and 'metastable' regions, respectively. Moreover, it was found that there is a significant relationship between the activation energy of the electrical conduction and the topology of the conduction pathways of the lithium ions. (author)

  17. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  18. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    International Nuclear Information System (INIS)

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  19. Proton and oxide ion conductivity of doped LaScO3

    DEFF Research Database (Denmark)

    Lybye, D.; Bonanos, N.

    1999-01-01

    . At temperatures below 800 degrees C and low partial pressure of oxygen, proton conduction was dominant. Above this temperature, the ionic conductivity is dominated by oxide ion transport. The protonic transport number was estimated from the conductivities measured in dry and in water-moisturised gas. An isotope......The conductivity of La0.9Sr0.1Sc0.9Mg0.1O3 has been studied by impedance spectroscopy in controlled atmospheres. The material was found to be a mixed conductor with p-type conduction at high oxygen partial pressures and a combined proton and oxide ion conductor at low oxygen partial pressures...

  20. An atomic oxygen device based on PIG oxygen negative ion source

    International Nuclear Information System (INIS)

    Yu Jinxiang; Cai Minghui; Han Jianwei

    2008-01-01

    It is an important research subject for the spaceflight countries to conduct equivalent simulation of 5 eV atomic oxygen effects for the spaceflight material in low earth orbit. This paper introduces an apparatus used for producing atomic oxygen, which consists of a PIG ion source with permanent magnet, two electrodes extraction system, an electron deflector, an einzel lens, an ion decelerating electrode and a sample bracket. At present it has been used on the small debris accelerator in the Center for Space Science and Applied Research, Chinese Academy of Sciences, and the producing experiments of O - are carried out. 200-300μA of O - ions are extracted at the extraction voltage of 2-3 kV. The experiments for decelerating of O - ions and erosion of kapton foil are carried out also. Because of the target room used for both the atomic oxygen device and the small debris accelerator, the facility can be used for small debris impinging and atomic erosion for spaceflight materials simultaneously. (authors)

  1. Comparative study of ion conducting pathways in borate glasses

    International Nuclear Information System (INIS)

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-01-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity

  2. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad; Hourani, Nadim; Chahine, May; Selim, Hatem; Sarathy, Mani; Farooq, Aamir

    2014-01-01

    Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry

  3. Ion heat conduction losses in Extrap

    International Nuclear Information System (INIS)

    Tennfors, E.

    1989-08-01

    The classical ion heat conduction losses in Extrap discharges are calculated using polynomial magnetic field profiles and compared to the power input. For polynomials matched to magnetic field profiles measured in present experiments, these losses are small. By varying the coefficients of the polynomials, a region is found, where the power input can balance the classical heat conduction losses. Each set of coefficients corresponds to values of the parameters F and Θ used in RFP physics. The region determines a region in an F-Θ diagram, including the usual RFP region but extending to higher values of Θ and βΘ

  4. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  5. Thermal conductivity reduction in oxygen-deficient strontium titanates

    NARCIS (Netherlands)

    Yu, Choongho; Scullin, Matthew L.; Huijben, Mark; Ramesh, Ramamoorthy; Majumdar, Arun

    2008-01-01

    We report significant thermal conductivity reduction in oxygen-deficient lanthanum-doped strontium titanate (Sr1−xLaxTiO3−δ) films as compared to unreduced strontium titanates. Our experimental results suggest that the oxygen vacancies could have played an important role in the reduction. This could

  6. Oxygen reduction kinetics on mixed conducting SOFC model cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, F.S.

    2006-07-01

    The kinetics of the oxygen reduction reaction at the surface of mixed conducting solid oxide fuel cell (SOFC) cathodes is one of the main limiting factors to the performance of these promising systems. For ''realistic'' porous electrodes, however, it is usually very difficult to separate the influence of different resistive processes. Therefore, a suitable, geometrically well-defined model system was used in this work to enable an unambiguous distinction of individual electrochemical processes by means of impedance spectroscopy. The electrochemical measurements were performed on dense thin film microelectrodes, prepared by PLD and photolithography, of mixed conducting perovskite-type materials. The first part of the thesis consists of an extensive impedance spectroscopic investigation of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) microelectrodes. An equivalent circuit was identified that describes the electrochemical properties of the model electrodes appropriately and enables an unambiguous interpretation of the measured impedance spectra. Hence, the dependencies of individual electrochemical processes such as the surface exchange reaction on a wide range of experimental parameters including temperature, dc bias and oxygen partial pressure could be studied. As a result, a comprehensive set of experimental data has been obtained, which was previously not available for a mixed conducting model system. In the course of the experiments on the dc bias dependence of the electrochemical processes a new and surprising effect was discovered: It could be shown that a short but strong dc polarisation of a LSCF microelectrode at high temperature improves its electrochemical performance with respect to the oxygen reduction reaction drastically. The electrochemical resistance associated with the oxygen surface exchange reaction, initially the dominant contribution to the total electrode resistance, can be reduced by two orders of magnitude. This &apos

  7. Scanning Ion Conductance Microscopy of Live Keratinocytes

    International Nuclear Information System (INIS)

    Hegde, V; Mason, A; Saliev, T; Smith, F J D; McLean, W H I; Campbell, P A

    2012-01-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (< nN), could not routinely image microvilli: rather, an apparently convolved image of the underlying cytoskeleton was instead prevalent. We note that the present incarnation of the commercial instrument falls some way behind the market leading SPMs in terms of technical prowess and scanning speed, however, the intrinsic non-obtrusive nature of

  8. Apparatus for simultaneously measuring electrical conductivity and oxygen fugacity

    Energy Technology Data Exchange (ETDEWEB)

    Netherton, R.; Duba, A.

    1978-01-31

    Electrical conductivity studies of silicates are useful in determining temperature vs depth in the earth. Realistic laboratory measurements of conduction mechanisms require that exact determinations of oxygen fugacity (fo{sub 2}) be made in the experimental environment. An apparatus is described that monitors system fo{sub 2} with a calcia-doped zirconia-oxygen cell while measuring electrical conductivity of iron-bearing silicates at high temperature (greater than 1000 K). The fo{sub 2} calculated thermodynamically from CO/CO{sub 2} mixing ratios agreed well with measurements made with the zirconia cell at 1473 K, except for fo{sub 2} greater than 10{sup -4} Pa, where, on a log{sub 10} scale, mixing-ratio errors were as large as +- 0.2. These errors are attributed to oxygen contamination in the CO{sub 2} and to mobile carbon deposits that formed in the apparatus.

  9. Oxygen ion source and RFQ for Linac 1

    CERN Multimedia

    Photographic Service

    1986-01-01

    As injector to the PS Booster, Linac 1 was replaced by Linac 2 in 1980. It continued to be used for the acceleration of oxygen and sulfur ions. In 1984, its Cockcroft-Walton preinjector was replaced by an RFQ. In the foreground at the right is the oxygen ion source. A 90 deg bending magnet selects O6+ ions which are preaccelerated in an RFQ and enter Linac 1, at the far left. In the background is the proton and negative hydrogen ion source, followed by the 520 keV RFQ-1 and a bending magnet towards the entrance of Linac 1.

  10. Oxygen vacancy chain and conductive filament formation in hafnia

    Science.gov (United States)

    Xue, Kan-Hao; Miao, Xiang-Shui

    2018-04-01

    The stability and aggregation mechanisms of oxygen vacancy chains are studied for hafnia using self-energy corrected density functional theory. While oxygen vacancies tend not to align along the c-axis of monoclinic HfO2, oxygen vacancy chains along a-axis and b-axis are energetically favorable, with cohesive energies of 0.05 eV and 0.03 eV per vacancy, respectively. Nevertheless, with an increase of the cross section area, intensive oxygen vacancy chains become much more stable in hafnia, which yields phase separation into Hf-clusters and HfO2. Compared with disperse single vacancy chains, intensive oxygen vacancy chains made of 4, 6, and 8 single vacancy chains are energetically more favorable by 0.17, 0.20, and 0.30 eV per oxygen vacancy, respectively. On the other hand, while a single oxygen vacancy chain exhibits a tiny electronic energy gap of around 0.5 eV, metallic conduction emerges for the intensive vacancy chain made of 8 single vacancy chains, which possesses a filament cross section area of ˜0.4 nm2. This sets a lower area limit for Hf-cluster filaments from metallic conduction point of view, but in real hafnia resistive RAM devices the cross section area of the filaments can generally be much larger (>5 nm2) for the sake of energy minimization. Our work sets up a bridge between oxygen vacancy ordering and phase separation in hafnia, and shows a clear trend of filament stabilization with larger dimensions. The results could explain the threshold switching phenomenon in hafnia when a small AFM tip was used as the top electrode, as well as the undesired multimode operation in resistive RAM cells with 3 nm-thick hafnia.

  11. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    Science.gov (United States)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  12. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As ... Solid electrolytes; bond valence analysis; ion transport in glasses. 1. .... clusters are considered to contribute only to a.c. conduc-.

  13. Thermal ion-molecule reactions in oxygen-containing molecules

    International Nuclear Information System (INIS)

    Kumakura, Minoru

    1981-02-01

    The energetics of ions and the thermal ion-molecule reactions in oxygen-containing molecules have been studied with a modified time-of-flight mass spectrometer. It was found that the translational energy of ion can be easily obtained from analysis of the decay curve using the time-of-flight mass spectrometer. The condensation-elimination reactions proceeded via cross- and homo-elimination mechanism in which the nature of intermediate-complex could be correlated with the nature of reactant ion. It was elucidated that behavior of poly-atomic oxygen-containing ions on the condensation-elimination reactions is considerably influenced by their oxonium ion structures having functional groups. In addition, the rate constants of the condensation-elimination reactions have affected with the energy state of reactant ion and the dipole moment and/or the polarizability of neutral molecule. It was clarified that the rate constants of the ion-molecule clustering reactions in poly-atomic oxygen-containing molecules such as cyclic ether of six member rings are very large and the cluster ions are stable owing to the large number of vibrational degree of freedom in the cluster ions. (author)

  14. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton; Dimitrakopoulos, Georgios; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions

  15. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest {sigma}{sub dc} obtained at ambient temperatures was 6.0 x 10{sup -6} S.cm{sup -1}, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased {sigma}{sub dc} values for the oligo(ethylene oxide) based analogues. Further insights into the mechanism of lithium ion dynamics were derived from {sup 7}Li and {sup 13}C Solid-State NMR investigations. While localized ion motion was probed by i.e. {sup 7}Li spinlattice relaxation measurements with apparent activation energies E{sub a} of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E{sub a} of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the {mu}m-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring 'softer' solvating moieties in future electrolytes.

  16. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  17. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  18. Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm

    Science.gov (United States)

    Martin, M.; Schulz, O.

    Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A

  19. Conducting swift heavy ion track networks

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Kiv, A.; Fuks, D.; Vacík, Jiří; Hnatowicz, Vladimír; Chandra, A.; Saad, A.

    2010-01-01

    Roč. 165, č. 3 (2010), s. 227-244 ISSN 1042-0150 R&D Projects: GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : ion tracks * negative differential resistance * neural networks Subject RIV: JJ - Other Materials Impact factor: 0.660, year: 2010

  20. Thermodynamic analysis of direct internal reforming of methane and butane in proton and oxygen conducting fuel cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Geerlings, J.J.C.

    2008-01-01

    We present results of a thermodynamic analysis of direct internal reforming fuel cells, based on either a proton conducting fuel cell (FC-H+) or an oxygen ion conducting fuel cell (FC-O2-). We analyze the option of methane as fuel as well as butane. The model self-consistently combines all chemical

  1. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  2. Ion thermal conductivity and ion distribution function in the banana regime

    International Nuclear Information System (INIS)

    Taguchi, Masayoshi

    1988-01-01

    A method for calculating the ion thermal conductivity and the ion distribution function in the banana regime is formulated for an axisymmetric toroidal plasma of arbitrary aspect ratio. A simple expression for this conductivity is also derived. (author)

  3. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Cooper, Valentino R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Liu, Bin [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Aidhy, Dilpuneet S. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Mechanical Engineering; Voas, Brian K. [Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering; Lang, Maik [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Ou, Xin [Chinese Academy of Sciences (CAS), Shanghai (China). State Key Lab. of Functional Material for Informatics; Trautmann, Christina [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Technical Univ. of Darmstadt (Germany). Dept. of Materials Science; Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Chisholm, Matthew F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environment and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.

  4. Measuring oxygen surface exchange kinetics on mixed-conducting composites by electrical conductivity relaxation

    NARCIS (Netherlands)

    Hu, Bobing; Wang, Yunlong; Zhu, Zhuoying; Xia, Changrong; Bouwmeester, Henricus J.M.

    2015-01-01

    The oxygen release kinetics of mixed-conducting Sr2Fe1.5Mo0.5O6 d–Sm0.2Ce0.8O2 d (SFM–SDC) dualphase composites has been investigated, at 750 C, as a function of the SDC phase volume fraction using electrical conductivity relaxation (ECR) under reducing atmospheres, extending our previous work on

  5. Hopping models for ion conduction in noncrystals

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2007-01-01

    semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...

  6. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    Science.gov (United States)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  7. Aspirated capacitor measurements of air conductivity and ion mobility spectra

    International Nuclear Information System (INIS)

    Aplin, K.L.

    2005-01-01

    Measurements of ions in atmospheric air are used to investigate atmospheric electricity and particulate pollution. Commonly studied ion parameters are (1) air conductivity, related to the total ion number concentration, and (2) the ion mobility spectrum, which varies with atmospheric composition. The physical principles of air ion instrumentation are long established. A recent development is the computerized aspirated capacitor, which measures ions from (a) the current of charged particles at a sensing electrode, and (b) the rate of charge exchange with an electrode at a known initial potential, relaxing to a lower potential. As the voltage decays, only ions of higher and higher mobility are collected by the central electrode and contribute to the further decay of the voltage. This enables extension of the classical theory to calculate ion mobility spectra by inverting voltage decay time series. In indoor air, ion mobility spectra determined from both the voltage decay inversion, and an established voltage switching technique, were compared and shown to be of similar shape. Air conductivities calculated by integration were: 5.3±2.5 and 2.7±1.1 fSm -1 , respectively, with conductivity determined to be 3 fSm -1 by direct measurement at a constant voltage. Applications of the relaxation potential inversion method include air ion mobility spectrum retrieval from historical data, and computation of ion mobility spectra in planetary atmospheres

  8. Hydrogen ion (Ph), ammonia, dissolved oxygen and nitrite ...

    African Journals Online (AJOL)

    Hydrogen ion (pH), dissolved oxygen, ammonia and nitrite concentrations were studied monthly in two systems (re-circulatory and semi-intensive of 3 m2 sizes) each for six months. The systems were each stocked with 200 g of Clarias gariepinus fingerlings. Results showed that all parameters were within acceptable limits ...

  9. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    Science.gov (United States)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  10. Ion-/proton-conducting apparatus and method

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2011-05-17

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  11. Ring current instabilities excited by the energetic oxygen ions

    International Nuclear Information System (INIS)

    Kakad, A. P.; Singh, S. V.; Lakhina, G. S.

    2007-01-01

    The ring current instabilities driven by the energetic oxygen ions are investigated during the magnetic storm. The electrons and protons are considered to have Maxwellian distributions, while energetic oxygen ions are having loss-cone distribution. Dispersion relation for the quasielectrostatic modes with frequencies ω>ω cp (proton cyclotron frequency) and propagating obliquely to the magnetic field is obtained. Dispersion relation is studied numerically for the storm time ring current parameters and it is found that these instabilities are most prominent during intense storms when the oxygen ions become the dominant constituents of the ring current plasma. For some typical storm-time ring current parameters, these modes can produce quasielectrostatic noise in the range of 17-220 Hz, thus providing a possible explanation of the electrostatic noise observed at the inner boundary of the ring current during magnetic storms. Further, these modes can attain saturation electric fields of the order of 100-500 μV/m, and therefore, are expected to scatter O + ions into the loss-cone giving rise to their precipitation into the atmosphere, thus contributing to the ring current decay

  12. Neoclassical electron heat conduction in tokamaks performed by the ions

    International Nuclear Information System (INIS)

    Ware, A.A.

    1987-07-01

    The increment to neoclassical ion heat conduction caused by electron collisions is shown to act like electron heat conduction since the energy is taken from and given back to the electrons at each diffusion step length. It can exceed electron neoclassical heat conduction by an order of magnitude

  13. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    Science.gov (United States)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  14. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  15. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local oxygenation changes

    DEFF Research Database (Denmark)

    Antonovic, Laura; Lindblom, Emely; Dasu, Alexandru

    2014-01-01

    , using the repairable–conditionally repairable (RCR) damage model with parameters for human salivary gland tumor cells. The clinical oxygen enhancement ratio (OER) was defined as the ratio of doses required for a tumor control probability of 50% for hypoxic and well-oxygenated tumors. The resulting OER...... was well above unity for all fractionations. For the hypoxic tumor, the tumor control probability was considerably higher if LOCs were assumed, rather than static oxygenation. The beneficial effect of LOCs increased with the number of fractions. However, for very low fraction doses, the improvement related...... to LOCs did not compensate for the increase in total dose required for tumor control. In conclusion, our results suggest that hypoxia can influence the outcome of carbon ion radiotherapy because of the non-negligible oxygen effect at the low LETs in the SOBP. However, if LOCs occur, a relatively high...

  16. New insights into methane-oxygen ion chemistry

    KAUST Repository

    Alquaity, Awad B.S.; Chen, Bingjie; Han, Jie; Selim, Hatem; Belhi, Memdouh; Karakaya, Yasin; Kasper, Tina; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2016-01-01

    External electric fields may reduce emissions and improve combustion efficiency by active control of combustion processes. In-depth, quantitative understanding of ion chemistry in flames enables predictive models to describe the effect of external electric fields on combustion plasma. This study presents detailed cation profile measurements in low-pressure, burner-stabilized, methane/oxygen/argon flames. A quadrupole molecular beam mass spectrometer (MBMS) coupled to a low-pressure (P =30Torr) combustion chamber was utilized to measure ion signals as a function of height above the burner. Lean, stoichiometric and rich flames were examined to evaluate the dependence of ion chemistry on flame stoichiometry. Additionally, for the first time, cataloging of flame cations is performed using a high mass resolution time-of-flight mass spectrometer (TOF-MS) to distinguish ions with the same nominal mass. In the lean and stoichiometric flames, the dominant ions were HO, CHO , CHO, CHO and CHO, whereas large signals were measured for HO, CH and CHO in the rich flame. The spatial distribution of cations was compared with results from numerical simulations constrained by thermocouple-measured flame temperatures. Across all flames, the predicted HO decay rate was noticeably faster than observed experimentally. Sensitivity analysis showed that the mole fraction of HO is most sensitive to the rate of chemi-ionization CH+O↔CHO +E. To our knowledge, this work represents the first detailed measurements of positive ions in canonical low-pressure methane flames.

  17. New insights into methane-oxygen ion chemistry

    KAUST Repository

    Alquaity, Awad B.S.

    2016-06-15

    External electric fields may reduce emissions and improve combustion efficiency by active control of combustion processes. In-depth, quantitative understanding of ion chemistry in flames enables predictive models to describe the effect of external electric fields on combustion plasma. This study presents detailed cation profile measurements in low-pressure, burner-stabilized, methane/oxygen/argon flames. A quadrupole molecular beam mass spectrometer (MBMS) coupled to a low-pressure (P =30Torr) combustion chamber was utilized to measure ion signals as a function of height above the burner. Lean, stoichiometric and rich flames were examined to evaluate the dependence of ion chemistry on flame stoichiometry. Additionally, for the first time, cataloging of flame cations is performed using a high mass resolution time-of-flight mass spectrometer (TOF-MS) to distinguish ions with the same nominal mass. In the lean and stoichiometric flames, the dominant ions were HO, CHO , CHO, CHO and CHO, whereas large signals were measured for HO, CH and CHO in the rich flame. The spatial distribution of cations was compared with results from numerical simulations constrained by thermocouple-measured flame temperatures. Across all flames, the predicted HO decay rate was noticeably faster than observed experimentally. Sensitivity analysis showed that the mole fraction of HO is most sensitive to the rate of chemi-ionization CH+O↔CHO +E. To our knowledge, this work represents the first detailed measurements of positive ions in canonical low-pressure methane flames.

  18. Tribological effects of oxygen ion implantation into stainless steel

    International Nuclear Information System (INIS)

    Evans, P.J.; Vilaithong, T.; Yu, L.D.; Monteiro, O.R.; Yu, K.M.; Brown, I.G.

    2000-01-01

    The formation of sub-surface oxide layers by hybrid metal-gas co-implantation into steel and other metals can improve their tribological properties. In this report, we compare the wear and friction performance of previously studied Al + O hybrid implants with that produced by single species oxygen ion (O + ) implantation under similar conditions. The substrates were AISI 304L stainless steel discs polished to a final mirror finish using 1 μm diamond paste, and the ion implantation was done using a conventional swept-beam technique at ion energies of 70 or 140 keV and doses of up to 1x10 17 cm -2 . The wear and friction behaviour of the implanted and unimplanted material was measured with a pin-on-disc tribometer. Here we describe the experimental procedure and results, and discuss the improvement relative to that achieved with surface layers modified by metal-gas co-implantation

  19. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  20. Single-ion conducting diblock terpolymers for lithium-ion batteries

    Science.gov (United States)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  1. Design of a mixed ionic/electronic conducting oxygen transport membrane pilot module

    Energy Technology Data Exchange (ETDEWEB)

    Pfaff, E.M.; Kaletsch, A.; Broeckmann, C. [RWTH Aachen University, IWM, Aachen (Germany)

    2012-03-15

    In the last years, a lot of ceramic materials were developed that, at higher temperatures, have a high electrical conductivity and a high conductivity of oxygen ions. Such mixed ionic/electronic conductors can be used to produce high-purity oxygen. This work focuses on the realization of a pilot membrane module, with BSCF (Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}}) perovskite selected as the membrane material. An amount of 500 kg of powder was industrially fabricated, spray-granulized and pressed into tubes. The best operation conditions concerning energy consumption were calculated, and a module reactor was designed operating at 850 C, with an air pressure of 15-20 bar on the feed site and a low vacuum of about 0.8 bar on the permeate site. Special emphasis was placed on joining alternatives for ceramic tubes in metallic bottoms. A first laboratory module was tested with a membrane area of 1 m{sup 2} and then advanced to a pilot module with 570 tubes and a capability of more than 300 000 L of pure oxygen per day. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Ion thermal conductivity for a pure tokamak plasma

    International Nuclear Information System (INIS)

    Bolton, C.W. III.

    1981-06-01

    The ion thermal conductivity is calculated for a wide range of aspect ratios and collision frequencies. The calculation is done by solving the drift kinetic equation, with a model collision operator, using a finite element method, and then calculating the energy weighted friction force to determine the heat flux. The thermal conductivity, determined from the heat flux, is then curve fitted to analytic formulas. These formulas allow the conductivity to be calculated at all collision frequencies and aspect ratios down to about 3

  3. Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1-xSrx)(y)MnO3 +/-delta

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2000-01-01

    model, based on delocalised electrons, electron holes and all B-ions being trivalent is given in Appendix A. The sequential mathematical method allows us to calculate the high temperature oxygen partial pressure dependent properties of (La1-xSrx)(y)MnO3+/-delta in a unified manner irrespective...... are calculated by the small polaron model containing only ionic species - the B-ion may be Mn-B' (Mn2+), Mn-B(x) (Mn3+), and Mn-B(Mn4+). The A/B-ratio = y greatly influences the oxygen stoichiometry, oxygen ion vacancy- and cation vacancy concentrations and the total conductivity. Calculations are given...

  4. Oxygen ion transference number of doped lanthanum gallate

    Science.gov (United States)

    Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong; Liu, Meilin

    The transference numbers for oxygen ion (t O) in several LaGaO 3-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications.

  5. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H. [Pennsylvania State Univ., University Park, PA (United States); Maranas, Janna K. [Pennsylvania State Univ., University Park, PA (United States); Mueller, Karl T. [Pennsylvania State Univ., University Park, PA (United States); Runt, James [Pennsylvania State Univ., University Park, PA (United States); Winey, Karen I. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  6. Conductivity change of defective graphene by helium ion beams

    Directory of Open Access Journals (Sweden)

    Yuichi Naitou

    2017-04-01

    Full Text Available Applying a recently developed helium ion microscope, we demonstrated direct nano-patterning and Anderson localization of single-layer graphene (SLG on SiO2/Si substrates. In this study, we clarified the spatial-resolution-limitation factor of direct nano-patterning of SLG. Analysis of scanning capacitance microscopy measurements reveals that the conductivity of helium ion (H+-irradiated SLG nanostructures depends on their geometrical size, i.e., the smaller the H+-irradiated SLG region, the higher its conductivity becomes. This finding can be explained by the hopping carrier transport across strongly localized states of defective SLG.

  7. Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation

    International Nuclear Information System (INIS)

    Bridwell, L.B.; Giedd, R.E.; Wang Yongqiang; Mohite, S.S.; Jahnke, T.; Brown, I.M.

    1991-01-01

    Amorphous polyethersulfone (PES) films have been implanted with a variety of ions (He, B, C, N and As) at a bombarding energy of 50 keV in the dose range 10 16 -10 17 ions/cm 2 . Surface resistance as a function of dose indicates a saturation effect with a significant difference between He and the other ions used. ESR line shapes in the He implanted samples changed from a mixed Gaussian/Lorentzian to a pure Lorentzian and narrowed with increasing dose. Temperature dependent resistivity indicates an electron hopping mechanism for conduction. Infrared results indicate cross-linking or self-cyclization occurred for all implanted ions with further destruction in the case of As. (orig.)

  8. Electrical studies on silver based fast ion conducting glassy materials

    International Nuclear Information System (INIS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-01-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries

  9. A study of tritium behavior in lithium oxide by ion conductivity measurements

    International Nuclear Information System (INIS)

    Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi

    1989-01-01

    Ion conductivity of lithium oxide (Li 2 O) irradiated with oxygen ions was measured to obtain information about the effects of irradiation on the behavior of lithium ions and tritium. The conductivity around 490 K decreased with the ion fluence, while around 440 K it increased. The decrease around 490 K and the increase around 440 K were assumed to be attributed to the F + centers and the unspecified radiation defects, respectively. From the point of view that the rate determinant in the mechanism of diffusion of lithium ions in Li 2 O leading to the ion conductivity is the same as that of tritium, the diffusivity of tritium is assumed to be as follows: the diffusivity of tritium is decreased by the F + centers in the range from 490 K to the temperature at which almost all of F + centers are recovered, while it is increased around 440 K by the unspecified radiation defects. In addition, effects of the irradiation on valence states of tritium (i.e., T + , T - ) were discussed in terms of the radiation defects. (orig.)

  10. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  11. Ion conduction in crystalline superionic solids and its applications

    Science.gov (United States)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  12. Dense ceramic membranes based on ion conducting oxides

    International Nuclear Information System (INIS)

    Fontaine, M.L.; Larring, Y.; Bredesen, R.; Norby, T.; Grande, T.

    2007-01-01

    This chapter reviews the recent progress made in the fields of high temperature oxygen and hydrogen separation membranes. Studies of membranes for oxygen separation are mainly focusing on materials design to improve flux, and to lesser extent, related to stability issues. High oxygen fluxes satisfying industrial requirements can be obtained but, for many materials, the surface exchange rate is limiting the performance. The current status on electrolyte-type and mixed proton and electron conducting membranes is outlined, highlighting materials with improved stability in typical applications as solid oxide fuel cell technology and gas separation. In our presentation more fundamental aspects related to transport properties, chemical and mechanical stability of membrane materials are also treated. It is concluded that a significantly better understanding of the long term effects of operation in chemical gradients is needed for these types of membrane materials. (authors)

  13. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System...

  14. Structure and size of ions electrochemically doped in conducting polymer

    Science.gov (United States)

    Kaneto, Keiichi; Hata, Fumito; Uto, Sadahito

    2018-05-01

    Among electroactive polymers (EAPs) for softactuators, conducting polymers have been intensively studied because of the large strain and stress caused by a low voltage operation. A larger deformation is desirable to extend their cycle life by reducing the operation voltage, and this is advantageous for their potential use in wider applications. The deformation is generated by the insertion of ions by electrochemical oxidation; hence, the magnitude of the strain depends on the bulkiness of the ions in the electrolytes. It is important, therefore, to clarify the structure and size of the ions during the electrochemical cycle, in order to achieve better performance of actuation. Anion and cation sizes (radii) in polypyrrole (PPy) film have been estimated using the precise measurement of strain against the amount of charge injected during the electrochemical cycles, assuming isotropic deformation of the film. The anion size was estimated using an anion-drive film, which was electrodeposited in TBABF4/methyl benzoate. The film was electrochemically cycled in sodium electrolytes, and the strain was measured simultaneously using a laser displacement meter. The cation size was obtained using a cation-drive film, being electropolymerized in aqueous dodecylbenzene sulfonic (DBS) acid. The cation-drive film was cycled in chloride electrolytes and measured the strain. The Cl-, Br-, NO3- , BF4- , and ClO4- radii were found to be approximately 235, 245, 250, 270 and 290 pm, respectively. The radii of K+, Na+ and Li+ were approximately 230, 237 and 274 pm, respectively. The results were discussed and took the crystalline ion radius and hydrated ion radius (Stokes radius) into consideration. It was found that the structure and size of the anions were slightly larger than the crystalline ion radius. Contrary to the anions, the cation radii were close to the hydrated ion radius, being larger than the crystalline ion radius.

  15. Oxygen ion transference number of doped lanthanum gallate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shizhong; Wu, Lingli; Gao, Jie; He, Qiong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu, Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2008-12-01

    The transference numbers for oxygen ion (t{sub O}) in several LaGaO{sub 3}-based materials are determined from oxygen concentration cells using the materials as the electrolyte, including La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM8282), La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.15}Co{sub 0.05}O{sub 3-{delta}} (LSGMC5) and La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.115}Co{sub 0.085}O{sub 3-{delta}} (LSGMC8.5). Analysis indicates that the accuracy in determination of oxygen ion transference number depends on the electrode polarization resistances of the concentration cell as well as the transport properties of the materials studied. For example, the ratio of open cell voltage to Nernst potential is a good approximation to the ionic transference number for LSGM8282. However, this approximation is no longer adequate for LSGMC5 and LSGMC8.5; the effect of electrode polarization resistances must be taken into consideration in estimation of the ionic transference numbers. In particular, the ionic transference number for LSGMC5 is as high as 0.99, suggesting that it is a promising electrolyte material for low-temperature solid-state electrochemical applications. (author)

  16. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  17. Enhanced electrical conductivity in Xe ion irradiated CNT based transparent conducting electrode on PET substrate

    Science.gov (United States)

    Surbhi; Sharma, Vikas; Singh, Satyavir; Garg, Priyanka; Asokan, K.; Sachdev, Kanupriya

    2018-02-01

    An investigation of MWCNT-based hybrid electrode films with improved electrical conductivity after Xe ion irradiation is reported. A multilayer hybrid structure of Ag-MWCNT layer embedded in between two ZnO layers was fabricated and evaluated, pre and post 100 keV Xe ion irradiation, for their performance as Transparent Conducting Electrode in terms of their optical and electrical properties. X-ray diffraction pattern exhibits highly c-axis oriented ZnO films with a small variation in lattice parameters with an increase in ion fluence. There is no significant change in the surface roughness of these films. Raman spectra were used to confirm the presence of CNT. The pristine multilayer films exhibit an average transmittance of ˜70% in the entire visible region and the transmittance increases with Xe ion fluence. A significant enhancement in electrical conductivity post-Xe ion irradiation viz from 1.14 × 10-7 Ω-1 cm-1 (pristine) to 7.04 × 103 Ω-1 cm-1 is seen which is due to the high connectivity in the top layer with Ag-CNT hybrid layer facilitating the smooth transfer of electrons.

  18. Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation

    Science.gov (United States)

    Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu

    2018-04-01

    SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.

  19. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lybye, D.; Bonanos, N.

    2004-01-01

    Many metal oxides of fluorite and perovskite related structures are oxide ion conductors, which have practical applications in devices such as oxygen sensors, solid oxide fuel cells (SOFC) and electrolysers. Several structural and thermodynamic parameters such as (1) critical radius of the pathway...... such parameters for fluorite and perovskite oxides by considering their sensitivities to the individual ionic radii. Based on experimental data available in the literature, it is argued that lattice distortion (lattice stress and deviation from cubic symmetry) due to ion radii mismatch determines the ionic...... conductivity to a very large extent, and that lattice distortion is of much greater importance than many other proposed parameters. In case of the perovskites, the charge of the B-site ion is also of major importance. (C) 2004 Published by Elsevier B.V....

  20. Oxygen diffusive conductance in placentae from control and diabetic women

    DEFF Research Database (Denmark)

    Mayhew, T M; Sørensen, Flemming Brandt; Klebe, J G

    1993-01-01

    . maternal erythrocytes and plasma, villous trophoblast, villous stroma, fetal plasma and fetal erythrocytes. From partial conductances and birthweights, total and specific conductances for each placenta were determined. No differences were detected between diabetic placentae in different classes (A, B, C, D...

  1. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  2. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  3. Scanning Ion Conductance Microscopy for Studying Biological Samples

    Directory of Open Access Journals (Sweden)

    Irmgard D. Dietzel

    2012-11-01

    Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.

  4. Modification of WS2 nanosheets with controllable layers via oxygen ion irradiation

    Science.gov (United States)

    Song, Honglian; Yu, Xiaofei; Chen, Ming; Qiao, Mei; Wang, Tiejun; Zhang, Jing; Liu, Yong; Liu, Peng; Wang, Xuelin

    2018-05-01

    As one kind of two-dimensional materials, WS2 nanosheets have drawn much attention with different kinds of research methods. Yet ion irradiation method was barely used for WS2 nanosheets. In this paper, the structure, composition and optical band gap (Eg) of the multilayer WS2 films deposited by chemical vapor deposition (CVD) method on sapphire substrates before and after oxygen ion irradiation with different energy and fluences were studied. Precise tailored layer-structures and a controllable optical band gap of WS2 nanosheets were achieved after oxygen ion irradiation. The results shows higher energy oxygen irradiation changed the shape from triangular shaped grains to irregular rectangle shape but did not change 2H-WS2 phase structure. The intensity of E2g1 (Г) and A1g (Г) modes decreased and have small shifts after oxygen ion irradiation. The peak frequency difference between the E2g1 (Г) and A1g (Г) modes (Δω) decreased after oxygen ion irradiation, and this result indicates the number of layers decreased after oxygen ion irradiation. The Eg decreased with the increase of the energy and the fluence of oxygen ions. The number of layers, thickness and optical band gap changed after ion irradiation with different ion fluences and energies. The results proposed a new strategy for precise control of multilayer nanosheets and demonstrated the high applicability of ion irradiation in super-capacitors, field effect transistors and other applications.

  5. Methodologies For Characterising Mixed Conducting Oxides For Oxygen Membrane And SOFC Cathode Application

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Søgaard, Martin; Plonczak, Pawel

    2012-01-01

    Two methods for detailed characterization of the process of oxygen exchange between the gas phase and a mixed conducting solid oxide are discussed. First, the use of solid electrolyte probes for measuring the change in oxygen activity over the surface of a mixed conductor is presented and advanta......Two methods for detailed characterization of the process of oxygen exchange between the gas phase and a mixed conducting solid oxide are discussed. First, the use of solid electrolyte probes for measuring the change in oxygen activity over the surface of a mixed conductor is presented...

  6. Silicon-conductive nanopaper for Li-ion batteries

    KAUST Repository

    Hu, Liangbing

    2013-01-01

    There is an increasing interest in the development of thin, flexible energy storage devices for new applications. For large scale and low cost devices, structures with the use of earth abundant materials are attractive. In this study, we fabricated flexible and conductive nanopaper aerogels with incorporated carbon nanotubes (CNT). Such conductive nanopaper is made from aqueous dispersions with dispersed CNT and cellulose nanofibers. Such aerogels are highly porous with open channels that allow the deposition of a thin-layer of silicon through a plasma-enhanced CVD (PECVD) method. Meanwhile, the open channels also allow for an excellent ion accessibility to the surface of silicon. We demonstrated that such lightweight and flexible Si-conductive nanopaper structure performs well as Li-ion battery anodes. A stable capacity of 1200. mA. h/g for 100 cycles in half-cells is achieved. Such flexible anodes based on earth abundant materials and aqueous dispersions could potentially open new opportunities for low-cost energy devices, and potentially can be applied for large-scale energy storage. © 2012 Elsevier Ltd.

  7. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration

    NARCIS (Netherlands)

    Lankhorst, M.H.R.; Lankhorst, Martijn H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    Oxygen coulometric titration has been applied to measure chemical diffusion in La0.8Sr0.2CoO3-δ between 700 and 1000°C. The transient current response to a potentiostatic step has been transformed from the time domain to the frequency domain. The equivalent circuit used to fit the resulting

  8. Transport of oxygen ions in Er doped La2Mo2O9 oxide ion conductors: Correlation with microscopic length scales

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2018-01-01

    We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.

  9. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  10. New lithium-ion conducting perovskite oxides related to (Li, La)TiO3

    Indian Academy of Sciences (India)

    Unknown

    We describe the synthesis and lithium-ion conductivity of new perovskite-related oxides ... work on lithium-ion conducting perovskite oxides containing d0 cations. Keywords. ..... On the other hand, Nb/Ta compounds show a higher conductivity.

  11. Testing Conducted for Lithium-Ion Cell and Battery Verification

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  12. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  15. Study of silicon doped with zinc ions and annealed in oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Privezentsev, V. V., E-mail: v.privezentsev@mail.ru [Russian Academy of Sciences, Institute of Physics and Technology (Russian Federation); Kirilenko, E. P.; Goryachev, A. N. [Zelenograd, National Research University of Electronic Technology “MIET” (Russian Federation); Batrakov, A. A. [National Research University “MEI” (Russian Federation)

    2017-02-15

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-ray photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.

  16. Study of silicon doped with zinc ions and annealed in oxygen

    International Nuclear Information System (INIS)

    Privezentsev, V. V.; Kirilenko, E. P.; Goryachev, A. N.; Batrakov, A. A.

    2017-01-01

    The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with "6"4Zn"+ ions with an energy of 50 keV and a dose of 5 × 10"1"6 cm"–"2 at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-ray photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn_2SiO_4 and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.

  17. Ion-conductivity of thin film Li-Borate glasses

    International Nuclear Information System (INIS)

    Abouzari, M.R.S.

    2007-01-01

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi 2 O.(1-y)B 2 O 3 with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10 -10 Ω -1 cm -1 and 2.5 x 10 -6 Ω -1 cm -1 when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but we have also found that the depression arises from the nature of ionic motions. The model

  18. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  19. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Ihlefeld, Jon F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  20. Ion doping of surface layers in conducting electrical materials

    International Nuclear Information System (INIS)

    Zukowski, P.; Karwat, Cz.; Kozak, Cz. M.; Kolasik, M.; Kiszczak, K.

    2009-01-01

    The presented article gives basic component elements of an implanter MKPCz-99, its parameters and methods for doping surface layers of conducting electrical materials. The discussed device makes possible to dope the materials with ions of gaseous elements. At the application of cones made of solid-element sheets it is possible to perform doping with atoms that do not chemically react with the modified material. By performing voltage drop measurements with a specialized circuit between a movable testing electrode and the modified sample the dependence of transition resistance on pressure force of the testing electrode on the sample can be determined. The testing can be performed at the current passage of a determined value for surfaces modified with ions of gaseous elements or atoms of solid elements. A computer stand for switch testing makes possible to measure temperature of switch contacts and voltage drop at the contact and thereby to determine contact resistance of a switch depending on the number of switch cycles (ON-OFF). Pattern recording of current and voltage at the switch contacts and the application of an adequate computer software makes possible to determined the value of energy between fixed and moving contacts at their getting apart. In order to eliminate action of the environment onto the switch operation measurements can be performed at placing the tested switch together with the driving system in an atmosphere of noble gas like argon. (authors)

  1. Kinetics of oxygen exchange between bisulfite ion and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Horner, D.A.

    1984-08-01

    The nuclear magnetic relaxation times of oxygen-17 have been measured in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 as a function of temperature, pH, and S(IV) concentration, at an ionic strength of 1.0 m. The rate law for oxygen exchange between bisulfite ion and water was obtained from an analysis of the data, and is consistent with oxygen exchange occurring via the reaction SO 2 + H 2 O right reversible H + + SHO 3 - . The value of k/sub -1/ is in agreement with relaxation measurements. Direct spectroscopic evidence was found for the existence of two isomers of bisulfite ion: one with the proton bonded to the sulfur (HSO 3 - ) and the other with the proton bonded to an oxygen (SO 3 H - ). (The symbol SHO 3 - in the above chemical equation refers to both isomeric forms of bisulfite ion.) The relative amounts of the two isomers were determined as a function of temperature, and the rate and mechanism of oxygen exchange between the two was investigated. One of the two isomers, presumably SO 3 H - , exchanges oxygens with water much more rapidly than does the other. A two-pulse sequence was developed which greatly diminished the solvent peak in the NMR spectrum

  2. Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock

    Science.gov (United States)

    Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.

    2015-12-01

    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.

  3. Energy deposition and ion production from thermal oxygen ion precipitation during Cassini's T57 flyby

    Science.gov (United States)

    Snowden, Darci; Smith, Michael; Jimson, Theodore; Higgins, Alex

    2018-05-01

    Cassini's Radio Science Investigation (RSS) and Langmuir Probe observed abnormally high electron densities in Titan's ionosphere during Cassini's T57 flyby. We have developed a three-dimensional model to investigate how the precipitation of thermal magnetospheric O+ may have contributed to enhanced ion production in Titan's ionosphere. The three-dimensional model builds on previous work because it calculates both the flux of oxygen through Titan's exobase and the energy deposition and ion production rates in Titan's atmosphere. We find that energy deposition rates and ion production rates due to thermal O+ precipitation have a similar magnitude to the rates from magnetospheric electron precipitation and that the simulated ionization rates are sufficient to explain the abnormally high electron densities observed by RSS and Cassini's Langmuir Probe. Globally, thermal O+ deposits less energy in Titan's atmosphere than solar EUV, suggesting it has a smaller impact on the thermal structure of Titan's neutral atmosphere. However, our results indicate that thermal O+ precipitation can have a significant impact on Titan's ionosphere.

  4. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  5. A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Mozhzhukhina, Nataliia; Longinotti, M. Paula; Corti, Horacio R.; Calvo, Ernesto J.

    2015-01-01

    The electrical mobility of LiPF 6 in acetonitrile–dimethyl sulfoxide (ACN–DMSO) mixtures, a potential electrolyte in oxygen cathodes of lithium-air batteries, has been studied using a very precise conductance technique, which allowed the determination of the infinite dilution molar conductivity and association constant of the salt in the whole composition range. In the search for preferential Li + ion solvation, we also measured the electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF 6 ), a salt formed by a bulky cation, over the same composition range. The results show a qualitative change in the curvature of the LiPF 6 molar conductivity composition dependence for ACN molar fraction (x ACN ) ∼ 0.95, which was not observed for TBAPF 6 . The dependence of the measured Li/Li + couple potential with solvent composition also showed a pronounced change around the same composition. We suggest that these observations can be explained by Li + ion preferential solvation by DMSO in ACN–DMSO mixtures with very low molar fractions of DMSO

  6. Theoretical prediction of ion conductivity in solid state HfO2

    Science.gov (United States)

    Zhang, Wei; Chen, Wen-Zhou; Sun, Jiu-Yu; Jiang, Zhen-Yi

    2013-01-01

    A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria-stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures.

  7. On fabrication procedures of Li-ion conducting garnets

    Energy Technology Data Exchange (ETDEWEB)

    Hanc, Emil [The Mineral and Energy Economy Research Institute, Polish Academy of Sciences, ul. Wybickiego 7, 31-261 Kraków (Poland); Zając, Wojciech, E-mail: wojciech.zajac@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland); Lu, Li; Yan, Binggong; Kotobuki, Masashi [Materials Science Group, Department of Mechanical Engineering, National University of Singapore (Singapore); Ziąbka, Magdalena [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków (Poland); Molenda, Janina [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland)

    2017-04-15

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} electrolyte by means of the pulsed laser deposition technique.

  8. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Raballand, V; Benedikt, J; Keudell, A von [Research Group Reactive Plasmas, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany)], E-mail: Achim.vonKeudell@rub.de

    2008-06-07

    The inactivation of spores of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms is studied. Thereby, the conditions occurring in oxygen containing low pressure plasmas are mimicked and fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms has no effect on the viability of the spores and that no etching of the spore coat occurs up to an O atom fluence of 3.5 x 10{sup 19} cm{sup -2}. The impact of argon ions with an energy of 200 eV does not cause significant erosion for fluences up to 1.15 x 10{sup 18} cm{sup -2}. However, the combined impact of argon ions and oxygen molecules or atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion-induced defect at the surface of the spore reacts with either the incident bi-radical O{sub 2} or with an incident O atom. This leads to the formation of CO, CO{sub 2} and H{sub 2}O and thus to erosion.

  9. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad; Han, Jie; Chahine, May; Selim, Hatem; Belhi, Memdouh; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2016-01-01

    chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon

  10. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.; Han, Jie; Chahine, May; Selim, Hatem; Belhi, Memdouh; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2017-01-01

    chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon

  11. Ionic conductivity of perovskite LaCoO3 measured by oxygen permeation technique

    NARCIS (Netherlands)

    Chen, C.H.; Kruidhof, H.; Bouwmeester, Henricus J.M.; Burggraaf, Anthonie; Burggraaf, A.J.

    1997-01-01

    Oxygen permeation measurement is demonstrated, not only for a mixed oxide ionic and electronic conductor, but also as a new alternative to determine ambipolar conductivities, which can be usually reduced to be partial conductivities (either ionic or electronic). As a model system and an end member

  12. Oxygen permeation through oxygen ion oxide-noble metal dual phase composites

    NARCIS (Netherlands)

    Chen, C.S.; Chen, C.S.; Kruidhof, H.; Bouwmeester, Henricus J.M.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1996-01-01

    Oxygen permeation behaviour of three composites, yttria-stabilized zirconia-palladium, erbia-stabilized bismuth oxidenoble metal (silver, gold) was studied. Oxygen permeation measurements were performed under controlled oxygen pressure gradients at elevated temperatures. Air was supplied at one side

  13. Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms

    Science.gov (United States)

    Tsurutani, Bruce T.; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Huba, Joseph; Lakhina, Gurbax S.

    2013-01-01

    Research reported earlier in literature was conducted relating to estimation of the ionospheric electrical field, which may have occurred during the September 1859 Carrington geomagnetic storm event, with regard to modern-day consequences. In this research, the NRL SAMI2 ionospheric code has been modified and applied the estimated electric field to the dayside ionosphere. The modeling was done at 15-minute time increments to track the general ionospheric changes. Although it has been known that magnetospheric electric fields get down into the ionosphere, it has been only in the last ten years that scientists have discovered that intense magnetic storm electric fields do also. On the dayside, these dawn-to-dusk directed electric fields lift the plasma (electrons and ions) up to higher altitudes and latitudes. As plasma is removed from lower altitudes, solar UV creates new plasma, so the total plasma in the ionosphere is increased several-fold. Thus, this complex process creates super-dense plasmas at high altitudes (from 700 to 1,000 km and higher).

  14. Oxygen partial pressure dependence of electrical conductivity in γ'-Bi2MoO6

    International Nuclear Information System (INIS)

    Vera, C.M.C.; Aragon, R.

    2008-01-01

    The electrical conductivity of γ'-Bi 2 MoO 6 was surveyed between 450 and 750 deg. C as a function of oxygen partial pressure, in the range 0.01-1 atm. A -1/6 power law dependence, consistent with a Frenkel defect model of doubly ionized oxygen vacancies and interstitials, is evidence for an n-type semiconductive component, with an optical band gap of 2.9 eV. The absence of this dependence is used to map the onset of dominant ionic conduction. - Graphical abstract: Temporal dependence of electrical conductivity at 500 deg. C for γ'-Bi 2 MoO 6 at controlled partial pressures of oxygen

  15. Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation

    International Nuclear Information System (INIS)

    Simon, Roland B.; Anaya, Julian; Kuball, Martin

    2014-01-01

    The effect of oxygen doping (n-type) and oxygen (O)-magnesium (Mg) co-doping (semi-insulating) on the thermal conductivity of ammonothermal bulk GaN was studied via 3-omega measurements and a modified Callaway model. Oxygen doping was shown to significantly reduce thermal conductivity, whereas O-Mg co-doped GaN exhibited a thermal conductivity close to that of undoped GaN. The latter was attributed to a decreased phonon scattering rate due the compensation of impurity-generated strain fields as a result of dopant-complex formation. The results have great implications for GaN electronic and optoelectronic device applications on bulk GaN substrates

  16. The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts

    Science.gov (United States)

    Olson, David H.; Freedy, Keren M.; McDonnell, Stephen J.; Hopkins, Patrick E.

    2018-04-01

    We experimentally demonstrate the role of oxygen stoichiometry on the thermal boundary conductance across Au/TiOx/substrate interfaces. By evaporating two different sets of Au/TiOx/substrate samples under both high vacuum and ultrahigh vacuum conditions, we vary the oxygen composition in the TiOx layer from 0 ≤ x ≤ 2.85. We measure the thermal boundary conductance across the Au/TiOx/substrate interfaces with time-domain thermoreflectance and characterize the interfacial chemistry with x-ray photoemission spectroscopy. Under high vacuum conditions, we speculate that the environment provides a sufficient flux of oxidizing species to the sample surface such that one essentially co-deposits Ti and these oxidizing species. We show that slower deposition rates correspond to a higher oxygen content in the TiOx layer, which results in a lower thermal boundary conductance across the Au/TiOx/substrate interfacial region. Under the ultrahigh vacuum evaporation conditions, pure metallic Ti is deposited on the substrate surface. In the case of quartz substrates, the metallic Ti reacts with the substrate and getters oxygen, leading to a TiOx layer. Our results suggest that Ti layers with relatively low oxygen compositions are best suited to maximize the thermal boundary conductance.

  17. Effect of oxygen clusters on optics, magnetism, and conductivity of (In2O3)0.9(SrO)0.1

    Science.gov (United States)

    Okunev, V. D.; Szymczak, H.; Szymczak, R.; Gierłowski, P.; Glot, A. B.; Bondarchuk, A. N.; Burkhovetski, V. V.

    2016-04-01

    We show that in In2O3-SrO ceramics with disordered structure and oxygen clusters in nanovoids, the band tails of valence and conduction bands form "negative" gap. Two types of magnetism are observed. One of them caused by formation of the "dangling bond+O2- ion" centers has been found in the samples saturated with oxygen. Another type is associated with the presence of dangling bonds in the oxygen-depleted samples. At Tconductivity of the samples. At T<54.8 K, the effects related to magnetic phase transitions in the clusters of crystalline oxygen are observed. The changes in resistance of the samples in the range of T=5-300 K correspond to the Mott's law at a dependence of local activation energy on the phase state of oxygen clusters.

  18. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Escape of high-energy oxygen ions through magnetopause reconnection under northward IMF

    Directory of Open Access Journals (Sweden)

    S. Kasahara

    2008-12-01

    Full Text Available During a storm recovery phase on 15 May 2005, the Geotail spacecraft repeatedly observed high-energy (>180 keV oxygen ions in the dayside magnetosheath near the equatorial plane. We focused on the time period from 11:20 UT to 13:00 UT, when Geotail observed the oxygen ions and the interplanetary magnetic field (IMF was constantly northward. The magnetic reconnection occurrence northward and duskward of Geotail is indicated by the Walén analysis and convective flows in the magnetopause boundary layer. Anisotropic pitch angle distributions of ions suggest that high-energy oxygen ions escaped from the northward of Geotail along the reconnected magnetic field lines. From the low-energy particle precipitation in the polar cap observed by DMSP, which is consistent with magnetic reconnection occurring between the magnetosheath field lines and the magnetospheric closed field lines, we conclude that these oxygen ions are of ring current origin. Our results thus suggest a new escape route of oxygen ions during northward IMF. In the present event, this escape mechanism is more dominant than the leakage via the finite Larmor radius effect across the dayside equatorial magnetopause.

  20. EXPERIMENTAL EFFECTS OF CONDUCTIVITY AND MAJOR IONS ON STREAM PERIPHYTON - abstract

    Science.gov (United States)

    Our study examined if specific conductivities comprised of different ions associated with resource extraction affected stream periphyton assemblages, which are important sources of primary production. Sixteen artificial streams were dosed with two ion recipes intended to mimic so...

  1. Performance evaluation of oxygen adsorbents using negative corona discharge–ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Azadkish, Kamal; Jafari, Mohammad T., E-mail: jafari@cc.iut.ac.ir; Ghaziaskar, Hassan S.

    2017-02-08

    Trace amounts of oxygen was determined using negative corona discharge as an ionization source for ion mobility spectrometry. A point-in-cylinder geometry with novel design was used to establish the corona discharge without interferences of negative ions such as NO{sub X}{sup −}. The desirable background spectrum shows only electrons peak, providing the instrument capable of trace analysis of oxygen in gaseous samples. The limit of detection and linear dynamic range with high coefficient of determination (r{sup 2} = 0.9997), were obtained for oxygen as 8.5 and 28–14204 ppm, respectively. The relative standard deviations of the method for intraday and interday were obtained 4 and 11%, respectively. The satisfactory results revealed the ability of the negative corona discharge ion mobility spectrometry for investigating the performance of synthesized oxygen adsorbents in nitrogen streams. Two oxygen scavengers of MnO and Cu powder were prepared and the optimum temperature of the reactor containing MnO and Cu powder were obtained as 180 and 230 °C, respectively. Due to higher lifetime of copper powder, it was selected as the oxygen scavenger and some parameters such as: the type of adsorbent support, the size of adsorbent particles, and the amount of copper were studied for preparation of more efficient oxygen adsorbent. - Highlights: • Analysis of oxygen using negative corona discharge-ion mobility spectrometry was investigated for the first time. • Novel designed point-in-cylinder geometry was used to establish the corona discharge without interferences of negative ions. • The method was utilized to evaluate the performance of some synthesized oxygen scavengers.

  2. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  3. Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivity relaxation

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Lankhorst, M.H.R.; Lankhorst, M.H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    Electrical conductivity relaxation experiments were performed on thin specimens of La1–xSrxFeO3–delta (x = 0.1, 0.4) at oxygen partial pressures pO2 = 10–5 – 1 bar in the temperature range 923 to 1223 K. The transient response of the electrical conductivity after a sudden change of the ambient

  4. Theory and simulation of ion conduction in the pentameric GLIC channel.

    Science.gov (United States)

    Zhu, Fangqiang; Hummer, Gerhard

    2012-10-09

    GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.

  5. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2017-01-01

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  6. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  7. Oxygen vacancies: The origin of n -type conductivity in ZnO

    Science.gov (United States)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  8. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    Science.gov (United States)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  9. Radiation effect on conductivity of oxygen-containing crystals of lithium fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Shchepina, L.I.; Alekseeva, L.I.; Lobanov, B.D.; Kostyukov, V.M. (Irkutskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Prikladnoj Fiziki)

    1984-07-01

    The data are presented on an anomalous behaviour of the conductivity, sigma of oxygen-enriched LiF crystals irradiated by approximately 10/sup 5/ J/kg doses. The ultraviolet absorption spectra were used to measure the oxygen content. The samples were exposed to ..gamma..-radiation of a /sup 60/Co source. The anomalous behaviour of tau is manifested by deviation of the sigma temperature dependence from the exponential law and occurrence of the minimum on the curve. The anomalous behaviour covers the range of 580-660 K and terminates by the tau recovery up to the values of an intact samples.

  10. Oxygen vacancy doping of hematite analyzed by electrical conductivity and thermoelectric power measurements

    Science.gov (United States)

    Mock, Jan; Klingebiel, Benjamin; Köhler, Florian; Nuys, Maurice; Flohre, Jan; Muthmann, Stefan; Kirchartz, Thomas; Carius, Reinhard

    2017-11-01

    Hematite (α -F e2O3 ) is known for poor electronic transport properties, which are the main drawback of this material for optoelectronic applications. In this study, we investigate the concept of enhancing electrical conductivity by the introduction of oxygen vacancies during temperature treatment under low oxygen partial pressure. We demonstrate the possibility of tuning the conductivity continuously by more than five orders of magnitude during stepwise annealing in a moderate temperature range between 300 and 620 K. With thermoelectric power measurements, we are able to attribute the improvement of the electrical conductivity to an enhanced charge-carrier density by more than three orders of magnitude. We compare the oxygen vacancy doping of hematite thin films with hematite nanoparticle layers. Thereby we show that the dominant potential barrier that limits charge transport is either due to grain boundaries in hematite thin films or due to potential barriers that occur at the contact area between the nanoparticles, rather than the potential barrier within the small polaron hopping model, which is usually applied for hematite. Furthermore, we discuss the transition from oxygen-deficient hematite α -F e2O3 -x towards the magnetite F e3O4 phase of iron oxide at high density of vacancies.

  11. XPS study of vanadium surface oxidation by oxygen ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Alov, N.; Kutsko, D.; Spirovová, Ilona; Bastl, Zdeněk

    2006-01-01

    Roč. 600, č. 8 (2006), s. 1628-1631 ISSN 0039-6028 R&D Projects: GA ČR GA104/04/0467 Institutional research plan: CEZ:AV0Z40400503 Keywords : vanadium oxide * oxide film * ion-beam oxidation * X-ray photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.880, year: 2006

  12. High Rate and Stable Li-Ion Insertion in Oxygen-Deficient LiV3O8 Nanosheets as a Cathode Material for Lithium-Ion Battery.

    Science.gov (United States)

    Song, Huanqiao; Luo, Mingsheng; Wang, Aimei

    2017-01-25

    Low performance of cathode materials has become one of the major obstacles to the application of lithium-ion battery (LIB) in advanced portable electronic devices, hybrid electric vehicles, and electric vehicles. The present work reports a versatile oxygen-deficient LiV 3 O 8 (D-LVO) nanosheet that was synthesized successfully via a facile oxygen-deficient hydrothermal reaction followed by thermal annealing in Ar. When used as a cathode material for LIB, the prepared D-LVO nanosheets display remarkable capacity properties at various current densities (a capacity of 335, 317, 278, 246, 209, 167, and 133 mA h g -1 at 50, 100, 200, 500, 1000, 2000, and 4000 mA g -1 , respectively) and excellent lithium-ion storage stability, maintaining more than 88% of the initial reversible capacity after 200 cycles at 1000 mA g -1 . The outstanding electrochemical properties are believed to arise largely from the introduction of tetravalent V (∼15% V 4+ ) and the attendant oxygen vacancies into LiV 3 O 8 nanosheets, leading to intrinsic electrical conductivity more than 1 order of magnitude higher and lithium-ion diffusion coefficient nearly 2 orders of magnitude higher than those of LiV 3 O 8 without detectable V 4+ (N-LVO) and thus contributing to the easy lithium-ion diffusion, rapid phase transition, and the excellent electrochemical reversibility. Furthermore, the more uniform nanostructure, as well as the larger specific surface area of D-LVO than N-LVO nanosheets may also improve the electrolyte penetration and provide more reaction sites for fast lithium-ion diffusion during the discharge/charge processes.

  13. Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation

    Directory of Open Access Journals (Sweden)

    H. Hofsäss

    2011-09-01

    Full Text Available We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films grown on single crystal silicon by irradiation with 1 GeV 238U swift heavy ions at room temperature. VO2 undergoes a temperature driven metal-insulator-transition (MIT at 67 °C. After room temperature ion irradiation with high electronic energy loss of 50 keV/nm the conductivity of the films below the transition temperature is strongly increased proportional to the ion fluence of 5·109 U/cm2 and 1·1010 U/cm2. At high temperatures the conductivity decreases slightly. The ion irradiation slightly reduces the MIT temperature. This observed conductivity change is persistent and remains after heating the samples above the transition temperature and subsequent cooling. Low temperature measurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects, atomic force microscopy (AFM measurements do not show surface hillocks, which are characteristic for ion tracks in other materials. Conductive AFM gives no evidence for conducting ion tracks but rather suggests the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation. Another explanation of the persistent conductivity change could be the ion-induced modification of a high resistivity interface layer formed during film growth between the vanadium dioxide film and the n-Silicon substrate. The swift heavy ions may generate conducting filaments through this layer, thus increasing the effective contact area. Swift heavy ion irradiation can thus be used to tune the conductivity of VO2 films on silicon substrates.

  14. Ion release from magnesium materials in physiological solutions under different oxygen tensions.

    Science.gov (United States)

    Feyerabend, Frank; Drücker, Heiko; Laipple, Daniel; Vogt, Carla; Stekker, Michael; Hort, Norbert; Willumeit, Regine

    2012-01-01

    Although magnesium as degradable biomaterial already showed clinical proof of concepts, the design of new alloys requires predictive in vitro methods, which are still lacking. Incubation under cell culture conditions to obtain "physiological" corrosion may be a solution. The aim of this study was to analyse the influence of different solutions, addition of proteins and of oxygen availability on the corrosion of different magnesium materials (pure Mg, WE43, and E11) with different surface finishing. Oxygen content in solution, pH, osmolality and ion release were determined. Corrosion led to a reduction of oxygen in solution. The influence of oxygen on pH was enhanced by proteins, while osmolality was not influenced. Magnesium ion release was solution-dependent and enhanced in the initial phase by proteins with delayed release of alloying elements. The main corrosion product formed was magnesium carbonate. Therefore, cell culture conditions are proposed as first step toward physiological corrosion.

  15. Effects of extracellular zinc ion on the rate of oxygen consumption of ...

    African Journals Online (AJOL)

    The inhibitory effect of extracellular zinc ion on the rate of oxygen consumption of rat brain mitochondria pre-incubated in 1.0 mM Ca2+EDTA were determined. There was a significant increase [P<0.01] in the rate of oxygen consumption in the rat brain mitochondria pre-incubated in 1.0 mM. Ca2+EDTA in a succinate ...

  16. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    Science.gov (United States)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  17. Sputtering of solid nitrogen and oxygen by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Stenum, B.

    1994-01-01

    Electronic sputtering of solid nitrogen and oxygen by keV hydrogen ions has been studied at two low-temperature setups. The yield of the sputtered particles has been determined in the energy regime 4-10 keV for H+, H-2+ and H-3+ ions. The yield for oxygen is more than a factor of two larger than...... that for nitrogen. The energy distributions of the sputtered N2 and O2 molecules were measured for hydrogen ions in this energy regime as well. The yields from both solids turn out to depend on the sum of the stopping power of all atoms in the ion. The yield increases as a quadratic function of the stopping power...

  18. Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries.

    Science.gov (United States)

    Zheng, Jing; Ji, Guangbin; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi; Yu, Linghui; Xu, Zhichuan J

    2015-12-07

    An ultrafacile aluminum reduction method is reported herein for the preparation of blue TiO2 nanoparticles (donated as Al-TiO2 , anatase phase) with abundant oxygen deficiency for lithium-ion batteries. Under aluminum reduction, the morphology of the TiO2 nanosheets changes from well-defined rectangular into uniform round or oval nanoparticles and the particle size also decreases from 60 to 31 nm, which can aggressively accelerate the lithium-ion diffusion. Electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) results reveal that plentiful oxygen deficiencies relative to the Ti(3+) species were generated in blue Al-TiO2 ; this effectively enhances the electron conductivity of the TiO2 . X-ray photoelectron spectrometry (XPS) analysis indicates that a small peak is observed for the Al-O bond, which probably plays a very important role in the stabilization of the oxygen deficiencies/Ti(3+) species. As a result, the blue Al-TiO2 possesses significantly higher capacity, better rate performance, and a longer cycle life than the white pure TiO2 . Such improvements can be attributed to the decreased particle size, as well as the existence of the oxygen deficiencies/Ti(3+) species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Variation in viscosity and ion conductivity of a polymer–salt complex ...

    Indian Academy of Sciences (India)

    The ion conductivity shows a strong increase for an irradiation of. 35 kGy. DSC studies indicate a decrease in crystallinity with gamma dose. Keywords. Gamma irradiation; polymer electrolyte; viscosity; ion conductivity. PACS Nos 61.82.Pv; 66.30.Dn; 47.57.Ng; 81.70.Pg. 1. Introduction. When polymers are exposed to high ...

  20. Ion motion and conductivity in rubidium and cesium hexafluorotitanates

    International Nuclear Information System (INIS)

    Moskvich, Yu.N.; Cherkasov, B.I.; Sukhovskij, A.A.; Davidovich, R.L.; AN SSSR, Vladivostok. Inst. Khimii)

    1988-01-01

    Relaxation times for 19 F nuclei and electric conductivity in Rb 2 TiF 6 and Cs 2 TiF 6 polycrystals are measured. The parameters of reoriented anion motion and diffusion cation motion are determined according to the NMR data. The effect of phase transition to the cubic phase on the parameters of these motions are studied. High conductivity reaching values σ∼10 -2 -10 -3 Ohm -1 xm -1 is detected at high temperatures. The electric conductivity observed is shown to be caused by the diffusion motion of Rb + and Cs + cations

  1. First-principles calculation on oxygen ion migration in alkaline-earth doped La2GeO5

    International Nuclear Information System (INIS)

    Thuy Linh, Tran Phan; Sakaue, Mamoru; Aspera, Susan Meñez; Alaydrus, Musa; Wungu, Triati Dewi Kencana; Hoang Linh, Nguyen; Kasai, Hideaki; Mohri, Takahiro; Ishihara, Tatsumi

    2014-01-01

    By using first-principles calculations based on the density functional theory, we investigated the doping effects of alkaline-earth metals (Ba, Sr and Ca) in monoclinic lanthanum germanate La 2 GeO 5 on its oxygen ion conduction. Although the lattice parameters of the doped systems changed due to the ionic radii mismatch, the crystal structures remained monoclinic. The contribution of each atomic orbital to electronic densities of states was evaluated from the partial densities of states and partial charge densities. It was confirmed that the materials behaved as ionic crystals comprising of cations of La and dopants and anions of oxygen and covalently formed GeO 4 . The doping effect on the activation barrier for oxygen hopping to the most stable oxygen vacancy site was investigated by the climbing-image nudged elastic band method. By tracing the charge density change during the hopping, it was confirmed that the oxygen motion is governed by covalent interactions. The obtained activation barriers showed excellent quantitative agreements with an experiment for the Ca- and Sr-doped systems in low temperatures as well as the qualitative trend, including the Ba-doped system. (paper)

  2. Study of high energy ion implantation of boron and oxygen in silicon

    International Nuclear Information System (INIS)

    Thevenin, P.

    1991-06-01

    Three aspects of high energy (0.5-3 MeV) light ions ( 11 B + and 16 O + ) implantation in silicon are examined: (1)Spatial repartition; (2) Target damage and (3) Synthesis by oxygen implantation of a buried silicon oxide layer

  3. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  4. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  5. Extraction of low-energy negative oxygen ions for thin film formation

    International Nuclear Information System (INIS)

    Vasquez, M. Jr.; Sasaki, D.; Kasuya, T.; Wada, M.; Maeno, S.

    2011-01-01

    Coextraction of low-energy positive and negative ions were performed using a plasma sputter-type ion source system driven by a 13.56 MHz radio frequency (rf) power. Titanium (Ti) atoms were sputtered out from a target and the sputtered neutrals were postionized in oxygen/argon (O 2 /Ar) plasma prior to extraction. The negative O ions were surface-produced and self-extracted. Mass spectral analyses of the extracted ion beams revealed the dependence of the ion current on the incident rf power, induced target bias and O 2 /Ar partial pressure ratio. Ti + current was found to be dependent on Ar + current and reached a saturation value with increasing O 2 partial pressure while the O - current showed a peak current at around 1:9 O 2 /Ar partial pressure ratio. Ti + current was several orders of magnitude higher than that of the O - current.

  6. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M; Williams, J S; Svensson, B G; Conway, M [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  7. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Williams, J.S.; Svensson, B.G.; Conway, M. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  8. FTIR studies of swift silicon and oxygen ion irradiated porous silicon

    International Nuclear Information System (INIS)

    Bhave, Tejashree M.; Hullavarad, S.S.; Bhoraskar, S.V.; Hegde, S.G.; Kanjilal, D.

    1999-01-01

    Fourier Transform Infrared Spectroscopy has been used to study the bond restructuring in silicon and oxygen irradiated porous silicon. Boron doped p-type (1 1 1) porous silicon was irradiated with 10 MeV silicon and a 14 MeV oxygen ions at different doses ranging between 10 12 and 10 14 ions cm -2 . The yield of PL in porous silicon irradiated samples was observed to increase considerably while in oxygen irradiated samples it was seen to improve only by a small extent for lower doses whereas it decreased for higher doses. The results were interpreted in view of the relative intensities of the absorption peaks associated with O-Si-H and Si-H stretch bonds

  9. Hydrogen and oxygen behaviors on Porous-Si surfaces observed using a scanning ESD ion microscope

    International Nuclear Information System (INIS)

    Itoh, Yuki; Ueda, Kazuyuki

    2004-01-01

    A scanning electron-stimulated desorption (ESD) ion microscope (SESDIM) measured the 2-D images of hydrogen and oxygen distribution on solid surfaces. A primary electron beam at 600 eV, with a pulse width of 220 ns, resulted in ion yields of H + and O + . This SESDIM is applied to the surface analysis of Porous-Si (Po-Si) partially covered with SiN films. During the heating of a specimen of the Po-Si at 800 deg. C under ultra-high-vacuum (UHV) conditions, the components of the surface materials were moved or diffused by thermal decomposition accompanied by a redistribution of hydrogen and oxygen. After cyclic heating of above 800 deg. C, the dynamic behaviors of H + and O + accompanied by the movements of the SiN layers were observed as images of H + and O + . This was because the H + and O + ions have been identified as composite materials by their kinetic energies

  10. Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation.

    Science.gov (United States)

    Cayado, P; Sánchez-Valdés, C F; Stangl, A; Coll, M; Roura, P; Palau, A; Puig, T; Obradors, X

    2017-05-31

    The kinetics of oxygen incorporation (in-diffusion process) and excorporation (out-diffusion process), in YBa 2 Cu 3 O 6+x (YBCO) epitaxial thin films prepared using the chemical solution deposition (CSD) methodology by the trifluoroacetate route, was investigated by electrical conductivity relaxation measurements. We show that the oxygenation kinetics of YBCO films is limited by the surface exchange process of oxygen molecules prior to bulk diffusion into the films. The analysis of the temperature and oxygen partial pressure influence on the oxygenation kinetics has drawn a consistent picture of the oxygen surface exchange process enabling us to define the most likely rate determining step. We have also established a strategy to accelerate the oxygenation kinetics at low temperatures based on the catalytic influence of Ag coatings thus allowing us to decrease the oxygenation temperature in the YBCO thin films.

  11. Damage induced by high energy multiply charged oxygen ions in oxide coated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kulkarni, V.R. [Department of Physics, University of Pune, Pune 411 007 (India); Bogle, K.A. [Department of Physics, University of Pune, Pune 411 007 (India); Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India)

    2006-03-15

    P-type oxide coated silicon samples of resistivity 120 {omega} cm were irradiated with 60 MeV oxygen ions of fixed charge states 4{sup +}, 5{sup +}, 6{sup +} and 7{sup +} at an equal fluence of, {phi}, {approx}10{sup 13} ions/cm{sup 2}. The induced damage was estimated by Hall voltage, Hall coefficient, carrier concentration and lifetime of minority carriers. The results indicate that Hall voltage (V {sub H}) and Hall coefficient (R {sub H}) increases, while carrier concentration (n) decreases with the charge state of impinging oxygen ions. The V {sub H} increases from 22 mV to 76.5 mV at typical current of 0.5 mA, R {sub H} from 0.42 x 10{sup 5} cm{sup 3}/C to 2.16 x 10{sup 5} cm{sup 3}/C and n decreases from 9 x 10{sup 13} cm{sup -3} to 2.88 x 10{sup 13} cm{sup -3} for the different charge states. This fact is an evidence that the oxygen ions with an individual fixed charge state passing through very thin 40 A layer of silicon dioxide, induces significant damage at the SiO{sub 2}-Si interface through the mechanism of electronic stopping power. The lifetime of minority charge carriers, {tau} (bulk property), remains constant at around 6 {mu}s for all the charge states of the 60 MeV energy oxygen ion irradiated samples at a constant fluence of, {phi}, 10{sup 13} ions/cm{sup 2}.

  12. Emission characteristics of negative oxygen ions into vacuum from cerium oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Fujiwara, Yukio; Kaimai, Atsushi; Yashiro, Keiji; Matsumoto, Hiroshige; Nigara, Yutaka; Kawada, Tatsuya; Mizusaki, Junichiro

    2006-01-01

    The oxygen ion emission characteristics of CeO 2 were studied under electric field in a vacuum chamber to find a candidate material for a novel ion source, 'solid oxide ion source (SOIS)'. The emission current was observed from CeO 2 under a pressure of around 10 -3 Pa, at the temperature ranging from 973 K to 1173 K. It was found that the emission current increased with temperature and applied voltage. The ions emitted from CeO 2 were confirmed to be oxygen negative ions (O - ) by the use of quadrupole mass spectrometer. The emission current decreased with time as was observed in the earlier works with other oxide ion conductors such as stabilized zirconia or other materials . To enhance the emission current from CeO 2 , an introduction of donor into CeO 2 was tested using Ce 0.992 Nb 0.008 O 2 . For comparison, effect of acceptor doping was also tested using Ce 0.9 Gd 0.1 O 1.95 . The emission current from Ce 0.9 Gd 0.1 O 1.95 was smaller than that from donor-doped and pure CeO 2. Clear enhancement of the emission current was not observed with Ce 0.992 Nb 0.008 O 2

  13. Investigation of oxygen distribution in HTSC-insulator in film structures on light ion beam

    International Nuclear Information System (INIS)

    Verbitskaya, E.M.; Grekhov, I.V.; Eremin, V.K.; Konnikov, S.G.; Linijchuk, I.A.; Razumov, S.V.; Semchinova, O.K.; Strokan, N.B.; Dyumin, A.N.; Lebedev, V.M.

    1992-01-01

    Use of nuclear reaction method on accelerated ions for profiling of oxygen concentration in thin-film HTSC structures is considered. Reaction on 16 O(d, α) 14 N deuterons, in course of which ∼ 2.6 MeV α-particles are generated, is used. Detected in experiment 2.0-2.6 MeV α-particle spectrum permits to recognstruct oxygen concentration profile in sample depth. Results obtained on YBa 2 Cu 3 O 7-δ and Y 2 BaCuO 5 film om MgO sunstrates, relating to the case of both uniform and nonuniform oxygen distribution, are presented. Resolution in the depth ∼ 200 A and accuracy of concentration measurement (relatively MgO substrate) of several percents are attained during oxygen profiling

  14. Conductivity studies of Chitosan doped with different ammonium salts: Effect of ion size

    Science.gov (United States)

    Mohan, C. Raja; Senthilkumar, M.; Jayakumar, K.

    2015-06-01

    In the present investigation influence of ion size on the electrical properties of various ammonium salts of various concentrations doped with Chitosan liquid electrolyte has been studied. The attachment of ammonium salts with Chitosan has been confirmed through FTIR Spectrum. Polarizability is calculated from the refractive index data. Addition of ammonium salts increases the conductivity. It is also observed that increase in ion size, increases the ionic conductivity due to increase in amorphous nature of the material. Increase in concentration leads to increase in conductivity due to the presence of more number of free ions.

  15. Relaxation effects in oxygen-conducting oxides on base of lanthanum gallate (La, Sr)(Ga, Me)O3, Me = Mg, Fe

    International Nuclear Information System (INIS)

    Glavatskikh, T.Yu.; Venskovskij, N.U.; Kaleva, G.M.; Mosunov, A.V.; Politova, E.D.; Stefanovich, S.Yu.

    2003-01-01

    The dielectric and electric conducting properties of the heterosubstituted perovskite-like solid solutions (La, Sr)(Ga, Me)O 3 , Me Mg, Fe are studied. The increase in the ceramics electric conductivity, conditioned by increase in the ion constituent at strengthening the nonstoichiometry by oxygen and electron constituent by the additional introduction of iron is observed by replacing the part of the lanthanum and gallium cations by strontium, magnesium and iron in the solid solutions on the basis of the lanthanum gallate. The ceramics relaxation behavior is identified; the applicability of the model of the vacational electron transfer for the dipole relaxation is established [ru

  16. Modeling Li-ion conductivity in LiLa(PO{sub 3}){sub 4} powder

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, Ferhi, E-mail: ferhi.mounir@gmail.com [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Karima, Horchani-Naifer [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Khaled, Ben Saad [Laboratoire de Photovoltaieque, Centre des Recherches et des Technologies de l' Energie, Technopole Borj Cedria, BP No. 95, 2050 Hammam Lif (Tunisia); Mokhtar, Ferid [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia)

    2012-07-01

    Polycrystalline powder and single-crystal of LiLa(PO{sub 3}){sub 4} are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO{sub 3}){sub 4} powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO{sub 3}){sub 4} are characterized by single-crystal X-ray diffraction. The LiLa(PO{sub 3}){sub 4} structure was found to be isotypic with LiNd(PO{sub 3}){sub 4}. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) A, b=7.130(3) A, c=9.913(3) A, {beta}=126.37(4) Degree-Sign , V=946.72(6) A{sup 3} and Z=4. The LiLa(PO{sub 3}){sub 4} structure was described as an alternation between spiraling chains (PO{sub 3}){sub n} and (La{sup 3+}, Li{sup +}) cations along the b direction. The small Li{sup +} ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO{sub 8} polyhedra and the polyphosphate chains. The jumping of Li{sup +} through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO{sub 3}){sub 4} and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  17. Modeling Li-ion conductivity in LiLa(PO3)4 powder

    International Nuclear Information System (INIS)

    Mounir, Ferhi; Karima, Horchani-Naifer; Khaled, Ben Saad; Mokhtar, Férid

    2012-01-01

    Polycrystalline powder and single-crystal of LiLa(PO 3 ) 4 are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO 3 ) 4 powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO 3 ) 4 are characterized by single-crystal X-ray diffraction. The LiLa(PO 3 ) 4 structure was found to be isotypic with LiNd(PO 3 ) 4 . It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) Å, b=7.130(3) Å, c=9.913(3) Å, β=126.37(4)°, V=946.72(6) Å 3 and Z=4. The LiLa(PO 3 ) 4 structure was described as an alternation between spiraling chains (PO 3 ) n and (La 3+ , Li + ) cations along the b direction. The small Li + ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO 8 polyhedra and the polyphosphate chains. The jumping of Li + through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO 3 ) 4 and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  18. DISSOLVED OXYGEN REDUCTION IN THE DIII-D NEUTRAL BEAM ION SOURCE COOLING SYSTEM

    International Nuclear Information System (INIS)

    YIP, H.; BUSATH, J.; HARRISON, S.

    2004-03-01

    OAK-B135 Neutral beam ion sources (NBIS) are critical components for the neutral beam injection system supporting the DIII-D tokamak. The NBIS must be cooled with 3028 (ell)/m (800 gpm) of de-ionized and de-oxygenated water to protect the sources from overheating and failure. These ions sources are currently irreplaceable. Since the water cooled molybdenum components will oxidize in water almost instantaneously in the presence of dissolved oxygen (DO), de-oxygenation is extremely important in the NBIS water system. Under normal beam operation the DO level is kept below 5 ppb. However, during weeknights and weekends when neutral beam is not in operation, the average DO level is maintained below 10 ppb by periodic circulation with a 74.6 kW (100 hp) pump, which consumes significant power. Experimental data indicated evidence of continuous oxygen diffusion through non-metallic hoses in the proximity of the NBIS. Because of the intermittent flow of the cooling water, the DO concentration at the ion source(s) could be even higher than measured downstream, and hence the concern of significant localized oxidation/corrosion. A new 3.73 kW (5 hp) auxiliary system, installed in the summer of 2003, is designed to significantly reduce the peak and the time-average DO levels in the water system and to consume only a fraction of the power

  19. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  20. Ion-conducting ceramic apparatus, method, fabrication, and applications

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  1. Heavy-ion induced secondary electron emission from Mg, Al, and Si partially covered with oxygen

    International Nuclear Information System (INIS)

    Weng, J; Veje, E.

    1984-01-01

    We have bombarded Mg, Al, and Si with 80 keV Ar + ions and measured the secondary electron emission yields at projectile incidence angles from 0 0 to 85 0 , with oxygen present at the target as well as under UHV conditions. The total secondary electron emission yields are found to depend fairly much on the amount of oxygen present. The three elements studied show relatively large individual variations. For all three elements, and with as well as without oxygen present, the relative secondary electron emission yield is observed to vary as 1/cos v, where v is the angle of incidence of the projectiles. This seems to indicate that the secondary electron production is initiated uniformly along the projectile path in the solid, in a region close to the surface. The results are discussed, and it is tentatively suggested, that the increase in secondary electron emission, caused by the presence of oxygen, originates from neutralization of sputtered oxygen, which initially is sitting as O 2- ions. (orig.)

  2. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    Science.gov (United States)

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  3. Electron loss from multiply protonated lysozyme ions in high energy collisions with molecular oxygen

    DEFF Research Database (Denmark)

    Hvelplund, P; Nielsen, SB; Sørensen, M

    2001-01-01

    We report on the electron loss from multiply protonated lysozyme ions Lys-Hn(n)+ (n = 7 - 17) and the concomitant formation of Lys-Hn(n+1)+. in high-energy collisions with molecular oxygen (laboratory kinetic energy = 50 x n keV). The cross section for electron loss increases with the charge state...... of the precursor from n = 7 to n = 11 and then remains constant when n increases further. The absolute size of the cross section ranges from 100 to 200 A2. The electron loss is modeled as an electron transfer process between lysozyme cations and molecular oxygen....

  4. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    International Nuclear Information System (INIS)

    Zhang, F.M.; Yao, J.; Shen, Y.G.; King, B.V.; O'Connor, D.J.

    1993-01-01

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li + , He + and Ar + ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs

  5. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F M; Yao, J; Shen, Y G; King, B V; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li{sup +}, He{sup +} and Ar{sup +} ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs.

  6. Oxygen adsorption on Cu(111) using low energy ion scattering spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, F.M.; Yao, J.; Shen, Y.G.; King, B.V.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    The surface structure and oxygen adsorption of Cu(l 11) have been studied by 2 keV Li{sup +}, He{sup +} and Ar{sup +} ion scattering . Incident and azimuthal dependences were measured for the clean and O-covered surfaces, and the surface geometry was analysed on the basis of the shadowing features. Experimental results under different oxygen exposures at room temperature showed that the Cu(l 11) surface undergoes a roughening transition and results in a reconstruction where Cu atoms are vertically displaced by about 0.23 Angstroms. 4 refs., 4 figs.

  7. In situ recording of particle network formation in liquids by ion conductivity measurements.

    Science.gov (United States)

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  8. Improved surface corrosion resistance of WE43 magnesium alloy by dual titanium and oxygen ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Guosong; Lu, Qiuyuan [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Jun [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Xu, Ruizhen [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Yeung, Kelvin W.K., E-mail: wkkyeung@hku.hk [Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-02-01

    Magnesium alloys are potential biodegradable materials and have attracted much attention due to their outstanding biological performance and mechanical properties. However, their rapid degradation inside the human body cannot meet clinical needs. In order to improve the corrosion resistance, dual titanium and oxygen ion implantation is performed to modify the surface of the WE43 magnesium alloy. X-ray photoelectron spectroscopy is used to characterize the microstructures in the near surface layer and electrochemical impedance spectroscopy, potentiodynamic polarization, and immersion tests are employed to investigate the corrosion resistance of the implanted alloys in simulated body fluids. The results indicate that dual titanium and oxygen ion implantation produces a TiO{sub 2}-containing surface film which significantly enhances the corrosion resistance of WE43 magnesium alloy. Our data suggest a simple and practical means to improve the corrosion resistance of degradable magnesium alloys. - Highlights: ► Surface modification of WE43 magnesium alloy using dual ion implantation ► Dual Ti and O ion implantation produces a homogeneous TiO{sub 2}-containing surface film ► Significant improvement of the alloy corrosion resistance after the dual ion implantation.

  9. Effect of variation in the glass-former network structure on the relaxation properties of conductive Ag+ ions in AgI-based fast ion conducting glasses

    Science.gov (United States)

    Hanaya, Minoru; Nakayama, Michiko; Hatate, Atsuo; Oguni, Masaharu

    1995-08-01

    Heat capacities and ac conductivities of AgI-based fast ion conducting glasses of AgI-Ag2O-P2O5 and AgI-Ag2O-B2O3 systems with different P-O or B-O network structures but with the same AgI concentration of 1.55×104 mol m-3 were measured in the temperature range 14-400 K and in the temperature and frequency ranges 100-200 K and 10 Hz-1 MHz, respectively. The β-glass transition due to a freezing-in of the rearrangement of Ag+ ions was observed by adiabatic calorimetry for the glasses in the liquid-nitrogen temperature region, and the conductometry was suggested to see the same mode of Ag+-ion motion as the calorimetry. It was found that the development of the network structure of the glass former at constant AgI concentration resulted in the decrease of the β-glass transition temperature and the activation energy for the diffusional motion of Ag+ ions and in the increase of the heat-capacity jump associated with the glass transition. The results support the amorphous AgI aggregate model for the structure of the conductive region in the glasses with relatively high AgI compositions, indicating that Ag+-ion conductivity is mainly dominated by the degree of development of the AgI aggregate region dependent on the glass-former network structure as well as the AgI composition.

  10. Effects of oxygen gas flow rate and ion beam plasma conditions on the opto-electronic properties of indium molybdenum oxide films fabricated by ion beam-assisted evaporation

    International Nuclear Information System (INIS)

    Kuo, C.C.; Liu, C.C.; Lin, C.C.; Liou, Y.Y.; He, J.L.; Chen, F.S.

    2008-01-01

    The purpose of the present work is to experimentally study the effects of the oxygen gas flow rate and ion beam plasma conditions on the properties of indium molybdenum oxide (IMO) films deposited onto the polyethersulfone (PES) substrate. Crystal structure, surface morphology, and optoelectronic properties of IMO films are examined as a function of oxygen gas flow rate and ion beam discharge voltage. Experimental results show that the IMO films consist of a cubic bixbyite B-In 2 O 3 single phase with its crystal preferred orientation alone B(222). Mo 6+ ions are therefore considered to partially substitute In 3+ sites in the deposit. Under-controlled ion bombardment during deposition enhances the reaction among those arriving oxygen and metal ion species to condense into IMO film and facilitates a decreased surface roughness of IMO film. The film with ultimate crystallinity and the lowest surface roughness is obtained when the oxygen flow rate of 3 sccm and the discharge voltage of 110 V are employed. This results in the lowest electrical resistivity due mainly to the increased Hall mobility and irrelevant to carrier concentration. The lowest electrical resistivity of 8.63 x 10 -4 ohm-cm with a 84.63% transmittance at a wavelength of 550 nm can be obtained, which satisfies the requirement of a flexible transparent conductive polymer substrate

  11. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  12. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  13. Radial transport of high-energy oxygen ions into the deep inner magnetosphere observed by Van Allen Probes

    Science.gov (United States)

    Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.

    2017-12-01

    It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.

  14. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Fan, Hongyu; Yang, Deming; Sun, Li; Yang, Qi; Niu, Jinhai; Bi, Zhenhua; Liu, Dongping

    2013-01-01

    Polymer-like hydrocarbon films are irradiated with 100 keV He ion at the fluences of 1.0 × 10 15 –1.0 × 10 17 ions/cm 2 or at the irradiation temperature ranging from 25 to 600 °C. Conductive atomic force microscopy (CAFM) has been used to evaluate the nanoscale electron conducting properties of these irradiated hydrocarbon films. Nanoscale and conducting defects have been formed in the hydrocarbon films irradiated at a relatively high ion fluence (1.0 × 10 17 ions/cm 2 ) or an elevated sample temperature. Analysis indicates that He ion irradiation results in the evolution of polymer-like hydrocarbon into a dense structure containing a large fraction of sp 2 carbon clusters. The sp 2 carbon clusters formed in irradiated hydrocarbon films can contribute to the formation of filament-like conducting channels with a relatively high local field-enhancing factor. Measurements indicate that the growth of nanoscale defects due to He ion irradiation can result in the surface swelling of irradiated hydrocarbon films at a relatively high ion fluences or elevated temperature

  15. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Sun, Li [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics, Liaoning Normal University, Dalian 116023 (China); Yang, Qi; Niu, Jinhai; Bi, Zhenhua [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-01

    Polymer-like hydrocarbon films are irradiated with 100 keV He ion at the fluences of 1.0 × 10{sup 15}–1.0 × 10{sup 17} ions/cm{sup 2} or at the irradiation temperature ranging from 25 to 600 °C. Conductive atomic force microscopy (CAFM) has been used to evaluate the nanoscale electron conducting properties of these irradiated hydrocarbon films. Nanoscale and conducting defects have been formed in the hydrocarbon films irradiated at a relatively high ion fluence (1.0 × 10{sup 17} ions/cm{sup 2}) or an elevated sample temperature. Analysis indicates that He ion irradiation results in the evolution of polymer-like hydrocarbon into a dense structure containing a large fraction of sp{sup 2} carbon clusters. The sp{sup 2} carbon clusters formed in irradiated hydrocarbon films can contribute to the formation of filament-like conducting channels with a relatively high local field-enhancing factor. Measurements indicate that the growth of nanoscale defects due to He ion irradiation can result in the surface swelling of irradiated hydrocarbon films at a relatively high ion fluences or elevated temperature.

  16. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  17. Comparative study of 150 keV Ar+ and O+ ion implantation induced structural modification on electrical conductivity in Bakelite polymer

    Science.gov (United States)

    Aneesh Kumar, K. V.; Krishnaveni, S.; Asokan, K.; Ranganathaiah, C.; Ravikumar, H. B.

    2018-02-01

    A comparative study of 150 keV argon (Ar+) and oxygen (O+) ion implantation induced microstructural modifications in Bakelite Resistive Plate Chamber (RPC) detector material at different implantation fluences have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). Positron lifetime parameters viz., o-Ps lifetime (τ3) and its intensity (I3) upon lower implantation fluences can be interpreted as the cross-linking and the increased local temperature induced diffusion followed by trapping of ions in the interior polymer voids. The increased o-Ps lifetime (τ3) at higher O+ ion implantation fluences indicates chain scission owing to the oxidation and track formation. This is also justified by the X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) results. The modification in the microstructure and electrical conductivity of Bakelite materials are more upon implantation of O+ ions than Ar+ ions of same energy and fluences. The reduced electrical conductivity of Bakelite polymer material upon ion implantation of both the ions is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate energy and fluence of implanting ions might reduce the leakage current and hence improve the performance of Bakelite RPC detectors.

  18. Collisions of carbon and oxygen ions with electrons, H, H2 and He: Volume 5

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Janev, R.K.; Pindzola, M.S.

    1987-02-01

    This report provides a handbook for fusion research of recommended cross-section and rate-coefficient data for collisions of carbon and oxygen ions with electrons, hydrogen atoms and molecules, and helium atoms. Published experimental and theoretical data have been collected and evaluated, and recommended data are presented in tabular, graphical, and parametrized form. Processes considered include exciation, ionization, and charge exchange at collision energies appropriate to applications in fusion-energy research

  19. Controlled oxygen vacancy induced p-type conductivity in HfO{sub 2-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Mueller, Mathis M.; Kleebe, Hans-Joachim; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, 15236 Frankfurt/Oder (Germany)

    2011-09-12

    We have synthesized highly oxygen deficient HfO{sub 2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10{sup 21} charge carriers per cm{sup 3}. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.

  20. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  1. Chalcogenide glasses as optical and ion-conducting materials. Kogaku oyobi ion dendo zairyo toshite no chalcogenide glass

    Energy Technology Data Exchange (ETDEWEB)

    Toge, N.; Minami, T. (Univ. of Osaka Prefecture, Osaka (Japan))

    1991-12-01

    Nonoxide glasses whose main constituent are chalcogen elements like S, Se, or Te etc. show a lot of various properties, for instance, high infrared transmittancy and semi-conductivity which are already well known. Additionally, the optical properties change a lot along with the phase transition's happening between crystal and noncrystal under comparative low temperature. Further, it is also observed that the glasses containing proper cation appear high ion-conductivity. This paper supplies a brief reviews of chalcogenide glasses used as materials for infrared fiber, phase transition optical memory and superionic conductor, wherein the former two have already on the stage of utilization, particularly the realization of a rewritable optical memory is possible by using chalcogenide glasses film, and ion-conductor is in the phase to have shown the possibility of high conductivity while the development thereof is being expected. 22 refs., 8 figs.

  2. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...... direct calculation of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules is calculated as a difference. The results yield the following primary hydration numbers: Li+: 5.5-5.6; Na+: 4.0-4.1; K+: 2.0-2.5; Rb+: 0.6-1.2; Cs+: ~0. The most important...

  3. Modifying the conductivity of polypyrrole through low-energy lead ion implantation

    International Nuclear Information System (INIS)

    Booth, Marsilea Adela; Leveneur, Jérôme; Costa, Alexsandro Santos; Kennedy, John; Harbison, SallyAnn; Travas-Sejdic, Jadranka

    2012-01-01

    Interest lies in the creation of novel nanocomposite materials obtained through mixing, impregnation or incorporation techniques. One such technique is ion implantation which possesses the potential for retaining properties from the base material and implanted material as well as any effects observed from combining the two. To this end low-energy (15 keV) implantation of lead ions of various fluences was performed in conducting polypyrrole films. The presence of lead-rich particles was evidenced through transmission electron microscopy. An interesting trend was observed between fluence and conductivity. Of the fluences tested, the optimum fluences of lead ion implantation in polypyrrole films for enhanced conductivity are 5 × 10 14 at. cm −2 and 2 × 10 15 at. cm −2 . The conductivity and stability appear to result from a combination of effects: polymer degradation arising from ion beam damage, an increase in charge-carriers (dications) present after implantation and precipitation of Pb-rich nanoparticles. Monitoring conductivity over time showed increased retention of conductivity levels after lead implantation. Improvements in stability for polypyrrole open avenues for application and bring polypyrrole one step closer to practical use. A mechanism is suggested for this advantageous retained conductivity. -- Highlights: ► Implanted and characterized polypyrrole films with Pb ions at different fluences. ► Samples indicate high conductivity when implanted with particular fluences. ► Increase in charge carriers and precipitation of conductive Pb-rich phase. ► Conductivity stability is higher for some implanted fluences than for pristine polypyrrole.

  4. Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes

    Science.gov (United States)

    Narayanan, N. S. Venkata; Ashok Raj, B. V.; Sampath, S.

    Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm -1 at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg 2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries.

  5. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    Science.gov (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  6. Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Abdel Ghaffar, A.M.; Eid, M.

    2011-01-01

    The polyelectrolyte has been prepared as a potential proton exchanger polymer by grafting of acrylic acid/acrylamide and acrylic acid/acrylonitrile comonomer onto low density polyethylene film via gamma radiation. The influence of grafting percent on the electrical conductivity was studied. The resulting polymers were then characterized by evaluating their physico-chemical properties such as ion exchange capacity, and electrical conductivity as a function of grafting yield. The grafted films at different compositions was characterized by FTIR, TGA and SEM. The ion exchange capacity (IEC) of the grafted film at grafting % (191) and monomer concentration ratio 50:50 for (LDPE-g-AAc/AAm) was found to be more than that for (LDPE-g-AAc/AN). The electrical conductivity was found to be greatly affected by the comonomer composition where it increased as the degree of grafting increased for all grafted films. After alkaline treatment with 3% KOH, the electrical conductivity of the grafted films found to be increased. The presence of potassium as counter ion maximized the electrical conductivity of the grafted films. The electrical conductivity of Cu-membrane complexes was higher than that of both Co and Ni complexes. The electrical conductivity increases by increasing both Cu ions content and temperature

  7. Thermal conductivity measurement of the He-ion implanted layer of W using transient thermoreflectance technique

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Shilian; Li, Yuanfei [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Zhigang [Department of Electronic Engineering, Dalian University of Technology, Dalian 116024 (China); Jia, Yuzhen [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213 (China); Li, Chun [School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144 (China); Xu, Ben; Chen, Wanqi [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bai, Suyuan [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Huang, Zhengxing; Tang, Zhenan [Department of Electronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Wei, E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-02-15

    Transient thermoreflectance method was applied on the thermal conductivity measurement of the surface damaged layer of He-implanted tungsten. Uniform damages tungsten surface layer was produced by multi-energy He-ion implantation with thickness of 450 nm. Result shows that the thermal conductivity is reduced by 90%. This technique was further applied on sample with holes on the surface, which was produced by the He-implanted at 2953 K. The thermal conductivity decreases to 3% from the bulk value.

  8. Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences

    International Nuclear Information System (INIS)

    Luhmann, J.G.; Kozyra, J.U.

    1991-01-01

    The fluxes and energy spectra of picked-up planetary O + ions incident on the dayside atmospheres of Venus and Mars are calculated using the neutral exposure models of Nagy and Cravens (1988) and the Spreiter and Stahara (1980) gasdynamic model of the magnetosheath electric and magnetic field. Cold (∼10 eV) O + ions are launched from hemispherical grids of starting points covering the daysides of the planets and their trajectories are followed until they either impact the dayside obstacle or cross the terminator plane. The impacting, or precipitating, ion fluxes are weighted according to the altitude of the hemispherical starting point grid in a manner consistent with the exosphere density models and the local photoion production rate. Maps of precipitating ion number flux and energy flux show the asymmetrical distribution of dayside energy deposition expected from this source which is unique to the weakly magnetized planets. Although the associated heating of the atmosphere and ionsphere is found to be negligible compared to that from the usual sources, backscattered or sputtered neutral oxygen atoms are produced at energies exceeding that needed for escape from the gravitational fields of both planets. These neutral winds, driven by pickup ion precipitation, represent a possibly significant loss of atmospheric constituents over the age of the solar system

  9. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    Science.gov (United States)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  10. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region.

    Science.gov (United States)

    Kleinhans, Kelsey L; McMahan, Jeffrey B; Jackson, Alicia R

    2016-09-06

    The purpose of the present study was to investigate the effects of mechanical strain, anisotropy, and tissue region on electrical conductivity and ion diffusivity in meniscus fibrocartilage. A one-dimensional, 4-wire conductivity experiment was employed to measure the electrical conductivity in porcine meniscus tissues from two tissue regions (horn and central), for two tissue orientations (axial and circumferential), and for three levels of compressive strain (0%, 10%, and 20%). Conductivity values were then used to estimate the relative ion diffusivity in meniscus. The water volume fraction of tissue specimens was determined using a buoyancy method. A total of 135 meniscus samples were measured; electrical conductivity values ranged from 2.47mS/cm to 4.84mS/cm, while relative ion diffusivity was in the range of 0.235 to 0.409. Results show that electrical conductivity and ion diffusion are significantly anisotropic (pmeniscus fibrocartilage, which is essential in developing new strategies to treat and/or prevent tissue degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    Energy Technology Data Exchange (ETDEWEB)

    Catarelli, Samantha Raisa; Lonsdale, Daniel [Uniscan Instruments Ltd., Macclesfield (United Kingdom); Cheng, Lei [Energy Storage and Distribution Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Materials Sciences and Engineering Department, University of California Berkeley, Berkeley, CA (United States); Syzdek, Jaroslaw [Bio-Logic USA LLC, Knoxville, TN (United States); Doeff, Marca, E-mail: mmdoeff@lbl.gov [Energy Storage and Distribution Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-03-31

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then, a dense pellet of an electronically insulating but Li ion conducting garnet phase, Al-substituted Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO), was characterized using the same technique. The polycrystalline pellet was prepared by classical ceramic sintering techniques and was comprised of large (~150 μm) grains. Critical information regarding the contributions of grain and grain boundary resistances to the total conductivity of the garnet phase was lacking due to ambiguities in the impedance data. In contrast, the use of the ic-ac-SECM technique allowed spatially resolved information regarding local conductivities to be measured directly. Impedance mapping of the pellet showed that the grain boundary resistance, while generally higher than that of grains, varied considerably, revealing the complex nature of the LLZO sample.

  12. Anisotropic Oxygen Ion Diffusion in Layered PrBaCo 2 O 5+δ

    KAUST Repository

    Burriel, Mónica

    2012-02-14

    Oxygen diffusion and surface exchange coefficients have been measured on polycrystalline samples of the double perovskite oxide PrBaCo 2O 5+δ by the isotope exchange depth profile method, using a time-of-flight SIMS instrument. The measured diffusion coefficients show an activation energy of 1.02 eV, as compared to 0.89 eV for the surface exchange coefficients in the temperature range from 300 to 670 °C. Inhomogeneity was observed in the distribution of the oxygen-18 isotopic fraction from grain to grain in the ceramic samples, which was attributed to anisotropy in the diffusion and exchange of oxygen. By the use of a novel combination of electron back scattered diffraction measurements, time-of-flight, and focused ion beam SIMS, this anisotropy was confirmed by in-depth analysis of single grains of known orientation in a ceramic sample exchanged at 300 °C. Diffusion was shown to be faster in a grain oriented with the surface normal close to 100 and 010 (ab-plane oriented) than a grain with a surface normal close to 001 (c-axis oriented). The magnitude of this anisotropy is estimated to be close to a factor of 4, but this is only a lower bound due to experimental limitations. These findings are consistent with recent molecular dynamic simulations of this material where anisotropy in the oxygen transport was predicted. © 2012 American Chemical Society.

  13. Role of metal ion impurities in generation of oxygen gas within anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K. [Keio Univ., Yokohama (Japan). Chemical Lab.; Habazaki, H. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering; Skeldon, P.; Thompson, G.E.; Wood, G.C. [University of Manchester Inst. of Science and Technology (United Kingdom). Corrosion and Protection Centre

    2002-07-01

    The generation of oxygen gas within an amorphous anodic alumina film is reported. The film was formed by anodizing aluminum, which was first electropolished and then chemically polished in CrO{sub 3}-H{sub 3}PO{sub 4} solution, in sodium tungstate electrolyte. The procedure results in incorporation of mobile Cr{sup 3+} species, from the chemical polishing film, and mobile W{sup 6+} species, from the electrolyte, into the amorphous structure. The tungsten species are present in the outer 27% of the film thickness, while Cr{sup 6+} species occupy a thin layer within the tungsten-containing region. Above the Cr{sup 3+} containing layer, a band develops that contains oxygen bubbles of a few nanometres size. The oxygen is generated by oxidation of O{sup 2-} ions of the alumina. A mechanism of oxygen generation within the alumina is proposed based on the electronic band structure of the oxide, modified by the Cr{sup 3+} and W{sup 6+} species, and on the ionic transport processes during oxide growth. (author)

  14. Post oxygen treatment characteristics of coke as an anode material for Li-ion batteries.

    Science.gov (United States)

    Kim, Jae-Hun; Park, Min-Sik; Jo, Yong Nam; Yu, Ji-Sang; Jeong, Goojin; Kim, Young-Jun

    2013-05-01

    The effect of a oxygen treatment on the electrochemical characteristics of a soft carbon anode material for Li-ion batteries was investigated. After a coke carbonization process at 1000 degrees C in an argon atmosphere, the samples were treated under a flow of oxygen gas to obtain a mild oxidation effect. After this oxygen treatment, the coke samples exhibited an improved initial coulombic efficiency and cycle performance as compared to the carbonized sample. High-resolution transmission electron microscopy revealed that the carbonized cokes consisted of disordered and nanosized graphene layers and the surface of the modified carbon was significantly changed after the treatment. The chemical state of the cokes was analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The enhanced electrochemical properties of the surface modified cokes could be attributed to the mild oxidation effect induced by the oxygen treatment. The mild oxidation process could have led to the elimination of surface imperfections and the reinforcement of a solid electrolyte interphase film, which resulted in the improved electrochemical characteristics.

  15. Anisotropic Oxygen Ion Diffusion in Layered PrBaCo 2 O 5+δ

    KAUST Repository

    Burriel, Mó nica; Peñ a-Martí nez, Juan; Chater, Richard J.; Fearn, Sarah; Berenov, Andrey V.; Skinner, Stephen J.; Kilner, John A.

    2012-01-01

    Oxygen diffusion and surface exchange coefficients have been measured on polycrystalline samples of the double perovskite oxide PrBaCo 2O 5+δ by the isotope exchange depth profile method, using a time-of-flight SIMS instrument. The measured diffusion coefficients show an activation energy of 1.02 eV, as compared to 0.89 eV for the surface exchange coefficients in the temperature range from 300 to 670 °C. Inhomogeneity was observed in the distribution of the oxygen-18 isotopic fraction from grain to grain in the ceramic samples, which was attributed to anisotropy in the diffusion and exchange of oxygen. By the use of a novel combination of electron back scattered diffraction measurements, time-of-flight, and focused ion beam SIMS, this anisotropy was confirmed by in-depth analysis of single grains of known orientation in a ceramic sample exchanged at 300 °C. Diffusion was shown to be faster in a grain oriented with the surface normal close to 100 and 010 (ab-plane oriented) than a grain with a surface normal close to 001 (c-axis oriented). The magnitude of this anisotropy is estimated to be close to a factor of 4, but this is only a lower bound due to experimental limitations. These findings are consistent with recent molecular dynamic simulations of this material where anisotropy in the oxygen transport was predicted. © 2012 American Chemical Society.

  16. Range measurements of keV hydrogen ions in solid oxygen and carbon monoxide

    International Nuclear Information System (INIS)

    Schou, J.; Soerensen, H.; Andersen, H.H.; Nielsen, M.; Rune, J.

    1984-01-01

    Ranges of 1.3-3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen. The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees with that previously found for solid nitrogen. (orig.)

  17. Flexible probe for measuring local conductivity variations in Li-ion electrode films

    Science.gov (United States)

    Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian

    2018-04-01

    Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.

  18. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  19. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  20. The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; McFadden, J.; Halekas, J. S.; DiBraccio, G. A.; Connerney, J. E. P.; Eparvier, F.; Brain, D.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2017-11-01

    We present multi-instrument observations of the effects of solar wind on ion escape fluxes on Mars based on the Mars Atmosphere and Volatile EvolutioN (MAVEN) data from 1 November 2014 to 15 May 2016. Losses of oxygen ions through different channels (plasma sheet, magnetic lobes, boundary layer, and ion plume) as a function of the solar wind and the interplanetary magnetic field variations were studied. We have utilized the modified Mars Solar Electric (MSE) coordinate system for separation of the different escape routes. Fluxes of the low-energy (≤30 eV) and high-energy (≥30 eV) ions reveal different trends with changes in the solar wind dynamic pressure, the solar wind flux, and the motional electric field. Major oxygen fluxes occur through the tail of the induced magnetosphere. The solar wind motional electric field produces an asymmetry in the ion fluxes and leads to different relations between ion fluxes supplying the tail from the different hemispheres and the solar wind dynamic pressure (or flux) and the motional electric field. The main driver for escape of the high-energy oxygen ions is the solar wind flux (or dynamic pressure). On the other hand, the low-energy ion component shows the opposite trend: ion flux decreases with increasing solar wind flux. As a result, the averaged total oxygen ion fluxes reveal a low variability with the solar wind strength. The large standard deviations from the averages values of the escape fluxes indicate the existence of mechanisms which can enhance or suppress the efficiency of the ion escape. It is shown that the Martian magnetosphere possesses the properties of a combined magnetosphere which contains different classes of field lines. The existence of the closed magnetic field lines in the near-Mars tail might be responsible for suppression of the ion escape fluxes.

  1. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  2. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, H.; Waara, M.; Arvelius, S.; Yamauchi, M.; Lundin, R. [Inst. of Space Physics, Kiruna (Sweden); Marghitu, O. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); Inst. for Space Sciences, Bucharest (Romania); Bouhram, M. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); CETP-CNRS, Saint-Maur (France); Hobara, Y. [Inst. of Space Physics, Kiruna (Sweden); Univ. of Sheffield, Sheffield (United Kingdom); Reme, H.; Sauvaud, J.A.; Dandouras, I. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France); Balogh, A. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom); Kistler, L.M. [Univ. of New Hampshire, Durham (United States); Klecker, B. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); Carlson, C.W. [Space Science Lab., Univ. of California, Berkeley (United States); Bavassano-Cattaneo, M.B. [Ist. di Fisica dello Spazio Interplanetario, Roma (Italy); Korth, A. [Max-Planck-Inst. fuer Sonnensystemforschung, Katlenburg-Lindau (Germany)

    2006-07-01

    The results of a statistical study of oxygen ion outflow using cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H{sup +}) and oxygen ions (O{sup +}) from 3 years (2001-2003) of spring orbits (January to May) have been used. The altitudes covered were mainly in the range 5-12 R{sub E} geocentric distance. It was found that O{sup +} is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O{sup +} parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O{sup +} parallel bulk velocities in excess of 60 km s{sup -1} were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O{sup +} the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H{sup +} and O{sup +} was found to typically be close to the same throughout the observation interval when the H{sup +} bulk velocity was calculated for all pitch-angles. When the H{sup +} bulk velocity was calculated for upward moving particles only the H{sup +} parallel bulk velocity was typically higher than that of O{sup +}. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O{sup +} ions dominates. The thermal velocity of O{sup +} was always well below that of H{sup +}. Thus perpendicular energization that is more effective for O{sup +} takes place, but this is not enough to explain the close to similar parallel velocities. Further parallel acceleration must occur. The results presented constrain the models of perpendicular heating and parallel

  3. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2006-05-01

    Full Text Available The results of a statistical study of oxygen ion outflow using Cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H+ and oxygen ions (O+ from 3 years (2001-2003 of spring orbits (January to May have been used. The altitudes covered were mainly in the range 5–12 RE geocentric distance. It was found that O+ is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O+ parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O+ parallel bulk velocities in excess of 60 km s-1 were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O+ the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H+ and O+ was found to typically be close to the same throughout the observation interval when the H+ bulk velocity was calculated for all pitch-angles. When the H+ bulk velocity was calculated for upward moving particles only the H+ parallel bulk velocity was typically higher than that of O+. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O+ ions dominates. The thermal velocity of O+ was always well below that of H+. Thus perpendicular energization that is more effective for O+ takes place, but this is not enough to explain the close to similar parallel velocities. Further

  4. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2006-05-01

    Full Text Available The results of a statistical study of oxygen ion outflow using Cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H+ and oxygen ions (O+ from 3 years (2001-2003 of spring orbits (January to May have been used. The altitudes covered were mainly in the range 5–12 RE geocentric distance. It was found that O+ is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O+ parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O+ parallel bulk velocities in excess of 60 km s-1 were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O+ the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H+ and O+ was found to typically be close to the same throughout the observation interval when the H+ bulk velocity was calculated for all pitch-angles. When the H+ bulk velocity was calculated for upward moving particles only the H+ parallel bulk velocity was typically higher than that of O+. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O+ ions dominates. The thermal velocity of O+ was always well below that of H+. Thus perpendicular energization that is more effective for O+ takes place, but this is not enough to explain the close to similar parallel velocities. Further parallel acceleration must occur. The results presented constrain the models of perpendicular heating and parallel acceleration. In particular centrifugal acceleration of the outflowing ions, which may

  5. Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2007-03-01

    Full Text Available The prompt penetration of interplanetary electric fields (IEFs to the dayside low-latitude ionosphere during the first ~2 h of a superstorm is estimated and applied to a modified NRL SAMI2 code for the 30 October 2003 event. In our simulations, the dayside ionospheric O+ is convected to higher altitudes (~600 km and higher latitudes (~±25° to 30°, forming highly displaced equatorial ionospheric anomaly (EIA peaks. This feature plus others are consistent with previously published CHAMP electron (TEC measurements and with the dayside superfountain model. The rapid upward motion of the O+ ions causes neutral oxygen (O uplift due to ion-neutral drag. It is estimated that above ~400 km altitude the O densities within the displaced EIAs can be increased substantially over quiet time values. The latter feature will cause increased drag for low-altitude satellites. This newly predicted phenomenon is expected to be typical for superstorm/IEF events.

  6. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  7. Atomic Scale Picture of the Ion Conduction Mechanism in Tetrahedral Network of Lanthanum Barium Gallate

    Energy Technology Data Exchange (ETDEWEB)

    Jalarvo, Niina H [ORNL; Gourdon, Olivier [ORNL; Bi, Zhonghe [ORNL; Gout, Delphine J [ORNL; Ohl, Michael E [ORNL; Paranthaman, Mariappan Parans [ORNL

    2013-01-01

    Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activation energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.

  8. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  9. Photoluminescence of Se-related oxygen deficient center in ion-implanted silica films

    International Nuclear Information System (INIS)

    Zatsepin, A.F.; Buntov, E.A.; Pustovarov, V.A.; Fitting, H.-J.

    2013-01-01

    The results of low-temperature time-resolved photoluminescence (PL) investigation of thin SiO 2 films implanted with Se + ions are presented. The films demonstrate an intensive PL band in the violet spectral region, which is attributed to the triplet luminescence of a new variant of selenium-related oxygen deficient center (ODC). The main peculiarity of the defect energy structure is the inefficient direct optical excitation. Comparison with spectral characteristics of isoelectronic Si-, Ge- and SnODCs show that the difference in electronic properties of the new center is related to ion size factor. It was established that the dominating triplet PL excitation under VUV light irradiation is related to the energy transfer from SiO 2 excitons. A possible model of Se-related ODC is considered. -- Highlights: • The low-temperature photoluminescence of thin SiO 2 films implanted with Se + ions was studied. • The 3.4 eV PL band was attributed to triplet luminescence of Se-related ODC. • The peculiarity of SeODC electronic properties is related to ion size factor. • The dominating VUV excitation of triplet PL is related to energy transfer from SiO 2 excitons. • A possible model of Se-related ODC is considered

  10. Mixed mobile ion effect on a.c. conductivity of boroarsenate glasses

    Indian Academy of Sciences (India)

    In this article we report the study of mixed mobile ion effect (MMIE) in boroarsenate glasses. DSC and a.c. electrical conductivity studies have been carried out for MgO–(25−)Li2O–50B2O3–25As2O3 glasses. It is observed that strength of MMIE in a.c. conductivity is less pronounced with increase in temperature and ...

  11. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    Science.gov (United States)

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  12. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  13. Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts

    KAUST Repository

    Tu, Xingchen

    2014-11-21

    © 2014 AIP Publishing LLC. Besides the peak at one conductance quantum, G0, two additional features at ∼0.4 G0 and ∼1.3 G0 have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions. In order to understand such feature, here we investigate the electronic transport and mechanical properties of clean and oxygen-doped silver atomic contacts by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that, unlike clean Ag single-atom contacts showing a conductance of 1 G0, the low-bias conductance of oxygen-doped Ag atomic contacts depends on the number of oxygen impurities and their binding configuration. When one oxygen atom binds to an Ag monatomic chain sandwiched between two Ag electrodes, the low-bias conductance of the junction always decreases. In contrast, when the number of oxygen impurities is two and the O-O axis is perpendicular to the Ag-Ag axis, the transmission coefficients at the Fermi level are, respectively, calculated to be 1.44 for the junction with Ag(111) electrodes and 1.24 for that with Ag(100) electrodes, both in good agreement with the measured value of ∼1.3 G0. The calculated rupture force (1.60 nN for the junction with Ag(111) electrodes) is also consistent with the experimental value (1.66 ± 0.09 nN), confirming that the measured ∼1.3 G0 conductance should originate from Ag single-atom contacts doped with two oxygen atoms in a perpendicular configuration.

  14. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  15. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor

  16. Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties

    Directory of Open Access Journals (Sweden)

    R. Miyazaki

    2014-05-01

    Full Text Available The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH4, known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH4, more suitable to the high rate condition. We synthesized the H.P. form of LiBH4 under ambient pressure by doping LiBH4 with the KI lattice by sintering. The formation of a KI - LiBH4 solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the “Parasitic Conduction Mechanism.” This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  17. Tumour control in ion beam radiotherapy with different ions in the presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model

    Science.gov (United States)

    Strigari, L.; Torriani, F.; Manganaro, L.; Inaniwa, T.; Dalmasso, F.; Cirio, R.; Attili, A.

    2018-03-01

    Few attempts have been made to include the oxygen enhancement ratio (OER) in treatment planning for ion beam therapy, and systematic studies to evaluate the impact of hypoxia in treatment with the beam of different ion species are sorely needed. The radiobiological models used to quantify the OER in such studies are mainly based on the dose-averaged LET estimates, and do not explicitly distinguish between the ion species and fractionation schemes. In this study, a new type of OER modelling, based on the microdosimetric kinetic model, taking into account the specificity of the different ions, LET spectra, tissues and fractionation schemes, has been developed. The model has been benchmarked with published in vitro data, HSG, V79 and CHO cells in aerobic and hypoxic conditions, for different ion irradiation. The model has been included in the simulation of treatments for a clinical case (brain tumour) using proton, lithium, helium, carbon and oxygen ion beams. A study of the tumour control probability (TCP) as a function of oxygen partial pressure, dose per fraction and primary ion type has been performed. The modelled OER depends on both the LET and ion type, also showing a decrease for an increased dose per fraction with a slope that depends on the LET and ion type, in good agreement with the experimental data. In the investigated clinical case, a significant increase in TCP has been found upon increasing the ion charge. Higher OER variations as a function of dose per fraction have also been found for low-LET ions (up to 15% varying from 2 to 8 Gy(RBE) for protons). This model could be exploited in the identification of treatment condition optimality in the presence of hypoxia, including fractionation and primary particle selection.

  18. Ion-beam-directed self-organization of conducting nanowire arrays

    International Nuclear Information System (INIS)

    Batzill, M.; Bardou, F.; Snowdon, K. J.

    2001-01-01

    Glancing-incidence ion-beam irradiation has been used both to ease kinetic constraints which otherwise restrict the establishment of long-range order and to impose external control on the orientation of nanowire arrays formed during stress-field-induced self-ordering of calcium atoms on a CaF 2 (111) surface. The arrays exhibit exceptional long-range order, with the long axis of the wires oriented along the azimuthal direction of ion-beam incidence. Transport measurements reveal a highly anisotropic electrical conductivity, whose maximum lies in the direction of the long axis of the 10.1-nm-period calcium wires

  19. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  20. The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air

    Science.gov (United States)

    Solovieva, A. A.; Kulbakin, I. V.

    2018-04-01

    The bilayer oxygen-permeable membrane, consisting of a thin-film dense composite based on Co3O4 - 36 wt. % Bi2O3, and of a porous ceramic substrate of Co2SiO4, was synthesized and characterized. The way for obtaining of porous ceramic based on cobalt silicate was found, while the microstructure and the mechanical properties of porous ceramic were studied. Layered casting with post-pressing was used to cover the surface of porous support of Co2SiO4 by the Co3O4 - 36 wt. % Bi2O3 - based film. Transport properties of the asymmetric membrane have been studied, the kinetic features of oxygen transport have been established, and the characteristic thickness of the membrane has been estimated. The methods to prevent the high-temperature creep of ion transport membranes based on solid/molten oxides, which are the promising ones for obtaining of pure oxygen from air, are proposed and discussed.

  1. Si-O compound formation by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Hensel, E.; Wollschlaeger, K.; Kreissig, U.; Skorupa, W.; Schulze, D.; Finster, J.

    1985-01-01

    High dose oxygen ion implantation into silicon at 30 keV was performed to produce understoichiometric and stoichiometric surface oxide layers of approx. 160 nm thickness. The oxygen depth profile and oxide stoichiometry was determined by RBS and XPS. Si-O compound formation was found by IR spectroscopy and XPS in the unannealed samples as well as after target heating, furnace or flash lamp annealing. As implanted understoichiometric layers consist of random bonding like SiOsub(x) (O 2 after annealing. Unannealed stoichiometric layers are bond strained SiO 2 . The activation energies of demixing and of the annealing of bond strains are determined to 0.19 and 0.13 eV, respectively. The removing of bond strains occurs at temperatures >= 800 C in a time shorter than 1 s. The SiO 2 /Si transition region of unannealed stoichiometric layers consists of SiOsub(x) with an extent of about 10 nm. After annealing this extent diminishes to 0.8 to 1 nm in consequence of oxidation by excess oxygen from the overstoichiometric oxide region. This thickness is comparable with that of thermal oxide. (author)

  2. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    KAUST Repository

    Huang, Yi-Jen

    2016-04-07

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device.

  3. Structural, thermal and optical behavior of 84 MeV oxygen and 120 MeV silicon ions irradiated PES

    International Nuclear Information System (INIS)

    Samra, Kawaljeet Singh; Thakur, Sonika; Singh, Lakhwant

    2011-01-01

    In order to study structural, thermal and optical behavior, thin flat samples of polyethersulfone were irradiated with oxygen and silicon ions. The changes in properties were analyzed using different techniques viz: X-ray diffraction, thermo-gravimetric analysis, Fourier transform infrared, UV-visible and photoluminescence spectroscopy. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 84 MeV oxygen ions at low and medium fluences, which may be attributed to radiation-induced cross-linking in polymer. Fourier transform infrared and thermo-gravimetric analysis corroborated the results of X-ray diffraction analysis. No noticeable change in the Fourier transform infrared spectra of oxygen ion irradiated polyethersulfone were observed even at the highest fluence of 1 x 10 13 ions cm -2 , but after irradiation with silicon ions, a reduction in intensity of almost all characteristic bands was revealed. An increase in the activation energy of decomposition of polyethersulfone was observed after irradiation with 84 MeV oxygen ions up to medium fluences but degradation was revealed at higher fluences. Similar trends were observed by photoluminescence analysis.

  4. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    Science.gov (United States)

    Buckeridge, J.; Catlow, C. R. A.; Farrow, M. R.; Logsdail, A. J.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Woodley, S. M.; Sokol, A. A.; Walsh, A.

    2018-05-01

    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3 ,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3 , but also in SnO2 and ZnO.

  5. Ion conductivities of ZrF4-BaF2-CsF glasses

    International Nuclear Information System (INIS)

    Kawamoto, Yoji; Nohara, Ichiro

    1987-01-01

    The glass-forming region in the ZrF 4 -BaF 2 -CsF glass system has been determined and the ac conductivity and the transport number of fluoride ions have been measured. The conductivities of compounds β-Cs 2 ZrF 6 , α-SrZrF 6 , α-BaZrF 6 , β-BaZrF 6 and α-PbZrF 6 have also been measured. These results and a previous study of ZrF 4 -BaF 2 -MF n (M: the groups I-IV metals) glasses revealed the following: (1) the ZrF 4 -BaF 2 -CsF glasses are exclusively fluoride-ion conductors; (2) the ionic conductivities of ZrF 4 -based glasses are predominantly determined by the activation energies for conduction; (3) the activation energy for conduction decreases with an increase in the average polarizability of glass-constituting cations; (4) a decrease in average Zr-F bond length and a lowering of the average F coordination number of Zr are presumed to increase the activation energy for conduction. Principles of developing ZrF 4 -based glasses with higher conductivities have also been proposed. (Auth.)

  6. Depth distribution of carrier lifetime in 65 MeV oxygen ion irradiated silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kanjilal, D. [Nuclear Science Centre, New Delhi (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in

    2006-03-15

    CZ-grown, n-doped crystalline Si(1 1 1) of resistivity 60 {omega} cm and 140 {omega} cm were irradiated with 65 MeV energy oxygen ions, in the fluence range of 2 x 10{sup 1}-10{sup 14} ions/cm{sup 2}. The depth and spatial profile of excess minority carrier recombination time {tau} (lifetime) was measured using photoconductive decay (PCD) method. Lifetime measurements were carried out before the stopping range of impinging ions. Results show a monotonous decrease in lifetime with fluence, which is attributed to defect creation mechanism by electronic energy loss based on the thermal spike model. Also, surface modification is expected with a small loss in crystalline quality. This surface is considered to be a multi-crystalline surface with large grain boundaries that act as trapping sites for excess holes in n-Si(1 1 1). Annealing of the irradiated samples showed a near complete recovery at 750 deg. C for a period of 1 h.

  7. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  8. The effect of hydrostatic pressure on conductivity behaviour of needle crystals of iodine and oxygen doped niobium-sulphur compounds

    International Nuclear Information System (INIS)

    Balla, D.D.; Bondarenko, A.V.; Obolenskij, M.A.; Beletskij, V.I.; Chashka, Kh.B.

    1985-01-01

    The effect of the hydrostatic pressures up to 11 kbar on conductivity behaviour of the needle crystal of iodine and oxygen doped niobium-sulphur compounds were studied in the temperature range 4.2-300 K. It is shown that in the temperature range 110-300 K conductivity is thermal activated (P=1 bar). Below 110 K the Mott characteristic is observed. Under hydrostatic pressure the deviations from Mott characteristic occurs. The analysis of data suggested that crystals are doped semiconductors

  9. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  10. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  11. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-12-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  12. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-02-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  13. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  14. Modification and structuring of conducting polymer films on insulating substrates by ion beam treatment

    International Nuclear Information System (INIS)

    Asmus, T.; Wolf, Gerhard K.

    2000-01-01

    Besides the commonly used procedures of UV-, X-ray and electron beam lithography, surface structuring by ion beam processes represents an alternative route to receive patterns in the nanometre-micrometre scale. In this work we focused on changes of surface properties of the polymer materials induced by ion irradiation and on reproducing hexagonal and square patterns in the micrometre scale. To achieve a better understanding of modification and structuring of insulating and conducting polymers by ion beam treatment we investigated effects of 14 keV Ar + bombardment on thin films of doped conducting polyethoxithiophene (PEOT) and polyethylenedioxithiophene (PEDT) on polyethersulfone (PES) as insulating substrate within the fluence range from 10 14 to 10 17 ions/cm 2 . Changes of surface properties like wettability, solubility, topology and electrochemical behaviour have been studied by contact angle technique, AFM/LFM, cyclovoltammetry and electrochemical microelectrode. By irradiation through copper masks structured patterns were achieved. These patterns can be converted by galvanic or electroless copper deposition in structured metal layers

  15. Oxygen sensing and conducted vasomotor responses in mouse cremaster arterioles in situ

    DEFF Research Database (Denmark)

    Ngo, Thuc Anh; Jensen, Lars Jørn; Riemann, Mads Achen

    2010-01-01

    .0 +/- 4.9 mum) when changing from high (PO(2) = 242.5 +/- 13.3 mm Hg) to low (PO(2) = 22.5 +/- 4.8 mm Hg) oxygen tension as seen in the intact cremaster circulation (DeltaD = 18.7 +/- 1.0 mum). Blockade of NO synthases by L: -NAME and adenosine receptors by DPCPX had no effects on vasomotor responses...... to low or high oxygen. Induction of localized low (PO(2) = 23.3 +/- 5.7 mmHg) or high (PO(2) = 300.0 +/- 25.7 mm Hg) oxygen tension caused vasodilatation or -constriction locally and at a site 1,000 mum upstream (distantly). Glibenclamide blocker of ATP-sensitive K(+) channels inhibited vasodilatation...... and -constriction to low (PO(2) = 16.0 +/- 6.4 mm Hg) and high (PO(2) = 337.4 +/- 12.8 mm Hg) oxygen tension. 1) ATP-sensitive K(+) channels seem to mediate, at least in part, vasodilatation and vasoconstriction to low and high oxygen tension; 2) Red blood cells are not necessary for inducing vasodilatation...

  16. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  17. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    Science.gov (United States)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  18. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    International Nuclear Information System (INIS)

    Fraser, B.J.; Samson, J.C.; Hu, Y.D.; McPherron, R.L.; Russell, C.T.

    1992-01-01

    Pc 2 electromagnetic ion cyclotron waves at 0.1 waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE 1 and 2 between L = 7.6 and 5.8 on an inbound near-equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width ∼ 1.5 R E and penetrated ∼1 R E into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0-100 eV) He + and the warm (0.1-16 keV/e) O + and He + heavy ion populations. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities (E x B)/B 2 were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Poynting fluxes calculated during the first 15 min of the event show wave energy propagation directions both parallel and antiparallel to the field. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event may be attributed to the modulation of this energy source by the Pc 5 waves seen at the same time. Overall, the results are considered an example of an electromagnetic ion cyclotron wave-particle interaction occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase

  19. Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

    International Nuclear Information System (INIS)

    Kim, Do Hee; Lee, Bo Kyung; Lee, Dong Soo

    1999-01-01

    A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H 2 O 2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported

  20. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    Science.gov (United States)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  1. Multiply charged ions of the oxygen - produced at interaction of laser radiation with two-element solids

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Bedilov, R.M.; Kamalova, J.O.; Davletov, I.Yu.; Matnazarov, A.R.

    2007-01-01

    Full text: The interest to study of the oxygen multiply charged ions spectra produced at interaction laser radiation with one and two-element solids, is associate with possibility of creating laser and inertial thermonuclear syntheses, effective sources of multiply charged ions and nuclei atoms elements, plasma lasers, lasers on multiply charged transition, design of radiation-resistant materials and others. The present time many works is devoted to multiply charged ions, obtained from one element targets. Experimental results of study charge and energy spectra multiply charged ions of the oxygen, formed at interaction laser radiation with one and two-element solids are given in this work. Our experiments, we used installation, which is described in [1]. Neodymium laser had following parameters: wavelength 1.06 μm; intensity q = (0.1 h 1000) GW/sm 2 ; angle of incidence = 180. Were study one element Al, and two-element Al 2 O 3 , Y 2 O 3 targets by a diameter of 10 mm and thickness of 3 mm. Analysis obtained charge and energy spectra of multiply charged ions one (Al) and two-element (Al 2 O 3 , Y 2 O 3 ) targets depending on intensity of laser radiation and targets components reveal the following: - maximal charge number one element target (Al) at q 500 GW/sm 2 is equal Z max = 6 and all peaks corresponding to charge numbers Z = 1 - 6 well resolved, but two-element targets (Al 2 O 3 ) Z max ions Al decrease before 3. Also it is necessary to note that, Z max ions of the oxygen depend on target components. In case Al 2 O 3 and Y 2 O 3 maximal charge number of oxygen ions are equal Z max = 6 and 3, accordingly; - obtained charge and energy spectra of oxygen ions being included in two-element targets, are indicative of that, general regularities of the change Z max , E max and structures charge and energy spectra depending on q laser are saved. However they hang by target components; - common features and some differences of energy spectra multiply charged oxygen ions

  2. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity

    KAUST Repository

    Pramana, Stevin S.

    2017-12-04

    A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

  3. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: oxygen evolution reaction and conductivity

    KAUST Repository

    Pramana, Stevin S.; Cavallaro, Andrea; Li, Cheng; Handoko, Albertus D.; Chan, Kuang Wen; Walker, Robert J.; Regoutz, Anna; Herrin, Jason S.; Yeo, Boon Siang; Payne, David J.; Kilner, John A.; Ryan, Mary P.; Skinner, Stephen J.

    2017-01-01

    A cheap and direct solution towards engineering better catalysts through identification of novel materials is required for a sustainable energy system. Perovskite oxides have emerged as potential candidates to replace the less economically attractive Pt and IrO2 water splitting catalysts. In this work, excellent electrical conductivity (980 S cm−1) was found for the double perovskite of composition GdBa0.6Sr0.4Co2O6−δ which is consistent with a better oxygen evolution reaction activity with the onset polarisation of 1.51 V with respect to a reversible hydrogen electrode (RHE). GdBa1−xSrxCo2O6−δ with increasing Sr content was found to crystallise in the higher symmetry tetragonal P4/mmm space group in comparison with the undoped GdBaCo2O6−δ which is orthorhombic (Pmmm), and yields higher oxygen uptake, accompanied by higher Co oxidation states. This outstanding electrochemical performance is explained by the wider carrier bandwidth, which is a function of Co–O–Co buckling angles and Co–O bond lengths. Furthermore the higher oxygen evolution activity was observed despite the formation of non-lattice oxides (mainly hydroxide species) and enrichment of alkaline earth ions on the surface.

  4. Hydraulic Permeability of Resorcinol-Formaldehyde Ion-Exchange Resin - Effects of Oxygen Uptake and Radiation

    International Nuclear Information System (INIS)

    Taylor, Paul Allen

    2009-01-01

    An ion-exchange process, using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the U.S. Department of Energy's (DOE) Hanford site in Washington State. The RF resin is also being evaluated for use in the proposed Small Column Ion Exchange (SCIX) system, which is an alternative treatment option at DOE's Savannah River Site (SRS)in South Carolina. Testing at ORNL will determine the impact of radiation exposure and oxygen uptake by the RF resin on the hydraulic permeability of the resin. Samples of the resin will be removed periodically to measure physical properties (bead size and compressibility) and cesium capacity. The proposed full-scale treatment system at Hanford, the Waste Treatment Plant (WTP), will use an ion-exchange column containing nominally 680 gal of resin, which will treat 30 gpm of waste solution. The ion-exchange column is designed for a typical pressure drop of 6 psig, with a maximum of 9.7 psig. The lab-scale column is 3-in. clear PVC pipe and is prototypic of the proposed Hanford column. The fluid velocity in the lab-scale test will be much higher than for the full-scale column, in order to generate the maximum pressure drop expected in that column (9.7 psig). The frictional drag from this high velocity will produce similar forces on the resin in the lab-scale column as would be expected at the bottom of the full-scale column. The chemical changes in the resin caused by radiation exposure and oxygen uptake are expected to cause physical changes in the resin that could reduce the bed porosity and reduce the hydraulic permeability of the resin bed. These changes will be monitored by measuring the pressure drop through the lab-scale column and by measuring the physical properties of samples of the resin. The test loop with the lab-scale column is currently being fabricated, and operation will start by late May. Testing will be completed by the

  5. Decoupling ion conductivity and fluid permeation through optimizing hydrophilic channel morphology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peter Po-Jen, E-mail: pjchu@cc.ncu.edu.tw; Fang, Yu-Shin; Tseng, Yu-Chen [Department of Chemistry, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (R.O.C.) (China)

    2016-05-18

    Approaches to improve membrane ion conductivity usually leads to higher degree of swelling, more serious fuel cross-over and often sacrificed membrane mechanical strength. Preserving all three main membrane properties is a tough challenge in searching high ion conducting fuel cell membrane. The long standing dilemma is resolved by decoupling ion conduction and fluid permeation property by creating optimized channel morphology using external electric field poling. Success of this approach is demonstrated in the proton conducting membrane composed of poly(ether sulfones) (PES) and sulfonated poly(ether ether ketone) (sPEEK, degree of sulfonation=50%) composites prepared under electric field poling condition. The external field enhanced the aromatic chain ordering from both sPEEK and PES and improved the miscibility. This induced interaction is conducive to the formation of more densely packed amorphous domains that eventually leads to preferentially ordered hydrophilic proton conducting channels having a average dimension (3 nm) smaller than that in generic sPEEK or Nafion. The narrower but more ordered channel displayed much lower methanol permeability (3.17×10{sup −7} cm{sup 2}/s), and lower swelling ratio (31.20%), while the conductivity (~10{sup −1} S/cm) is higher than that of Nafion, or sPEEK at higher (64%) degree of sulfonation. The composite is chemically stable and highly durable with improved membrane mechanical strength. Nearly 50% increase of DMFC power output is observed using this membrane, and the best power density is recorded at 155 mA/cm{sup 2} (80 °C, 1M Methanol).

  6. Effect of swift heavy O7+ ion radiations on conductivity of lithium based polymer blend electrolyte

    Science.gov (United States)

    Joge, Prajakta; Kanchan, D. K.; Sharma, Poonam; Jayswal, Manish; Avasthi, D. K.

    2014-07-01

    In the present work, effect of swift heavy O7+ ion of 80 MeV of different fluences, on conductivity of [PVA(47.5)-PEO(47.5)-LiCF3SO3(5)]-EC(8) polymeric films has been investigated using ac impedance spectroscopy. The power law exponent n, hopping frequency ωh and activation energies for conduction Eac and relaxation Ear, have been investigated for different fluences. The DSC measurements are carried out in order to investigate the variations in the degree of crystallinity and thermal parameters (Tm) of the blend specimen prior and after irradiation. The Fourier Transform Infrared (FT-IR) measurements are carried out in order to investigate the changes in the vibrational modes of molecules upon irradiation. The FT-IR measurements corroborate the formation of amorphous phase in the blend matrix after irradiation. The conductivity is found to be optimum at the fluence of 1×1012 ions/cm2. The enhancement and the improvement in the electrolytic properties of PVA-PEO blend upon O7+ ion irradiation have been observed.

  7. Magnetic studies of current conduction and flux pinning in high-Tc cuprates: Virgin, irradiated, and oxygen deficient materials

    International Nuclear Information System (INIS)

    Thompson, J.R.; Civale, L.; Marwick, A.D.; Holtzberg, F.

    1992-09-01

    To increase the current density and pinning of magnetic flux in high temperature superconductors, defects with point-like and line-like geometries were created in controlled numbers using ion irradiation methods. Single crystals of Y 1 Ba 2 Cu 3 O 7 and Bi 2 Sr 2 Ca 1 Cu 2 0 8 superconductors were studied using dc magnetic methods. These studies showed greatly increased irreversibility in the vortex state magnetization and enhanced intragrain current density J c following irradiation. Linear defects, created by irradiation with energetic heavy ions, are particularly effective in pinning vortices at higher temperatures and magnetic fields. Further investigations of ''flux creep'' (the time dependence of magnetization) are well described by recent vortex glass and collective pinning theories. Complementary investigations have delineated the role of oxygen deficiency δ on pinning in aligned Y 1 Ba 2 Cu 3 O 7-δ materials

  8. Transport and solid state battery characteristic studies of silver based super ion conducting glasses

    International Nuclear Information System (INIS)

    Jayaseelan, S.; Muralidharan, P.; Venkateswarlu, M.; Satyanarayana, N.

    2005-01-01

    Silverarsenotellurite (SAT), silverphosphotellurite (SPT) and silvervanadotellurite (SVT) quaternary glass systems were prepared with various formers compositions by a melt quenching method. Glass nature, glass transition temperature (T g ) and structure of the prepared glasses were identified respectively by X-ray diffraction (XRD), differential scanning calorimetric (DSC) and Fourier transform infrared (FT-IR) technique. Electrical conductivity studies were carried out by impedance measurement in the frequency range 40 Hz to 100 KHz at different temperatures for all three sets of AgI-Ag 2 O-[TeO 2 -M 2 O 5 ] (M 2 O 5 = As 2 O 5 , P 2 O 5 , V 2 O 5 ) glasses. The high conducting compositions of SAT, SPT and SVT glass samples were fixed from the results of total conductivity (σ t ). Electronic conductivity (σ e ) studies were made on high conducting composition of each glass system by Wagner's polarization method. Total current (i t ) is due to ion and electron. Electronic current (i e ) due to electron were estimated through mobility studies. Ionic conductivity (σ i ) and ionic current (i i ) were calculated respectively using the conductivity (σ t and σ e ) and current (i t and i e ) results for the SAT, SPT and SVT glasses. Transport numbers due to ion (t i ) and electron (t e ) were calculated using the conductivity and mobility results for each glass system. The high conducting composition of the SAT, SPT and SVT glasses were used as solid electrolytes with silver metal as an anode and iodine:graphite (I:C) as a cathode for the fabrication of solid state batteries (SSBs). All the fabricated batteries were characterized by measuring the open circuit voltage (OCV) and polarization properties and estimated the batteries performances

  9. Study about ion exchange for decreasing the conductivity of water in power plant and refineries

    International Nuclear Information System (INIS)

    Khosravi, M.; Samani; Hajihosseini, N.

    2002-01-01

    Water has been used directly or indirectly for industries, its use would be in factories: such as steam or as a cooler or the product of the industrial material. water is used more than other material in many industries and what ever is obtained as the effect of industrial activities, it is destabilising like waste. By the control of P H and reducing (total dissolved solid) of water or decreasing conductivity of water, we can protect boiler from corrosion. We want to study this article for different method of decreasing (TDS) in order to produce <1μs/cm conductivity. The suitable method which is ion exchange system will be selected

  10. Solid electrolyte batteries and fast ion conducting glasses, factors affecting a proposed merger

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, D R; Tuller, H L; Button, D P; Valez, M [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering

    1983-01-01

    The present paper is concerned with advanced battery systems employing glass as a solid electrolyte. After an initial discussion of battery systems employing solid electrolytes, and of the attractive features offered by glass electrolytes, consideration is given to batteries fabricated with such electrolytes and to their performance characteristics. Subsequent discussion is directed to the two principal characteristics of glasses which are critical to their use as solid electrolytes - viz., their electrical conductivity and resistance to corrosive attack. The present state of knowledge in each of these areas is summarized, with particular focus on glasses with exceptionally high ionic conductivities - so-called fast ion conductors or FIC's.

  11. Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln = La-Yb)

    International Nuclear Information System (INIS)

    Iwahara, H.; Esaka, T.; Sato, T.; Takahashi, T.

    1981-01-01

    The electrical conduction in various phases of the system Bi 2 O 3 -Ln 2 O 3 (Ln = La, Nd, Sm, Dy, Er, or Yb) was investigated by measuring ac conductivity and the emf of the oxygen gas concentration cell. High-oxide-ion conduction was observed in the rhombohedral and face-centered cubic (fcc) phase in these systems. The fcc phase could be stabilized over a wide range of temperature by adding a certain amount of Ln 2 O 3 . In these cases, the larger the atomic number of Ln, the lower the content of Ln 2 O 3 required to form the fcc solid solution, except in the case of Yb 2 O 3 . The oxide ion conductivity of this phase decreased with increasing content of Ln 2 O 3 . Maximum conductivity was obtained at the lower limit of the fcc solid solution formation range in each system, which was more than one order of magnitude higher than those of conventional stabilized zirconias. Lattice parameters of the fcc phase were calculated from the x-ray diffraction patterns. The relationship between the oxide ion conductivity and the lattice parameter was also discussed

  12. XPS studies of SiO2 surface layers formed by oxygen ion implantation into silicon

    International Nuclear Information System (INIS)

    Schulze, D.; Finster, J.

    1983-01-01

    SiO 2 surface layers of 160 nm thickness formed by 16 O + ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO 2 . There is no evidence for Si or SiO/sub x/ (0 2 and Si is similar to that of thin grown oxide layers. Only its thickness is somewhat larger than in thermal oxide

  13. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2017-11-01

    Full Text Available Aquaporins (AQPs are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophila melanogaster DmBIB were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+ on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2 showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.

  14. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    Science.gov (United States)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process

  15. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices

    International Nuclear Information System (INIS)

    Shukur, M.F.; Kadir, M.F.Z.

    2015-01-01

    Highlights: • Cation transference number of the highest conducting starch-chitosan-NH 4 Cl-glycerol electrolyte is 0.56. • LSV has shown that the polymer electrolyte is suitable for fabrication of EDLC and proton batteries. • The fabricated EDLC has been charged and discharged for 500 cycles. • Secondary proton battery has been charged and discharged for 40 cycles. - Abstract: This paper reports the characterization of starch-chitosan blend based solid polymer electrolyte (SPE) system and its application in electrochemical double layer capacitor (EDLC) and proton batteries. All the SPEs are prepared via solution cast technique. Results from X-ray diffraction (XRD) verify the conductivity result from our previous work. Scanning electron microscopy (SEM) analysis shows the difference in the electrolyte's surface with respect to NH 4 Cl and glycerol content. From transference number measurements (TNM), transference number of ion (t ion ) of the electrolytes shows that ion is the dominant conducting species. Transference number of cation (t + ) for the highest conducting electrolyte is found to be 0.56. Linear sweep voltammetry (LSV) result confirms the suitability of the highest conducting electrolyte to be used in the fabrication of EDLC and proton batteries. The EDLC has been characterized using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The open circuit potential (OCP) of the primary proton batteries for 48 h is lasted at (1.54 ± 0.02) V, while that of secondary proton batteries is lasted at (1.58 ± 0.01) V. The primary proton batteries have been discharged at different constant currents. The secondary proton battery has been charged and discharged for 40 cycles

  16. Oxygen, hydrogen, ethylene and CO 2 development in lithium-ion batteries

    Science.gov (United States)

    Holzapfel, M.; Würsig, A.; Scheifele, W.; Vetter, J.; Novák, P.

    Gas evolution has been examined for different types of battery-related electrode materials via in situ differential electrochemical mass spectrometry (DEMS). Besides standard graphite also a novel silicon-based negative electrode was examined and it was shown that the evolution of hydrogen and ethylene is considerably reduced on this material compared to graphite. Oxygen evolution was proven to happen on the oxidative reaction of a Li 2O 2 electrode, besides a certain oxidation of the electrolyte. The 4.5 V plateau upon the oxidation of Li[Ni 0.2Li 0.2Mn 0.6]O 2 was likewise proven to be linked to oxygen evolution. Also in this case electrolyte oxidation was shown to be a side reaction. Layered positive electrode materials Li(Ni,Co,Al)O 2 and Li(Ni,Mn,Co)O 2 were also examined. The influence of different parameters on the CO 2 evolution in lithium-ion batteries was shown up. The amount of CO 2 formation is increased by high temperatures and cell voltages, while the addition of vinylene carbonate (VC) decreases it. Li(Ni,Mn,Co)O 2 shows much less CO 2 evolution than Li(Ni,Co,Al)O 2.

  17. Accurate and precise measurement of oxygen isotopic fractions and diffusion profiles by selective attenuation of secondary ions (SASI).

    Science.gov (United States)

    Téllez, Helena; Druce, John; Hong, Jong-Eun; Ishihara, Tatsumi; Kilner, John A

    2015-03-03

    The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices.

  18. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    Science.gov (United States)

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  19. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    International Nuclear Information System (INIS)

    Laoire, Cormac O.; Plichta, Edward; Hendrickson, Mary; Mukerjee, Sanjeev; Abraham, K.M.

    2009-01-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc + ) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF 6 in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc 0 /Fc + redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k 0 ) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient α of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  20. High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state

    International Nuclear Information System (INIS)

    Park, S.K.; Lee, S.Y.; Lee, C.S.; Kim, H.M.; Joo, J.; Beag, Y.W.; Koh, S.K.

    2004-01-01

    High energy (MeV) C 2+ , F 2+ , and Cl 2+ ions were irradiated onto π-conjugated polyaniline emeraldine base (PAN-EB) samples. The energy of an ion beam was controlled to a range of 3-4.5 MeV, with the ion dosage varying from 1x10 12 to 1x10 16 ions/cm 2 . The highest dc conductivity (σ dc ) at room temperature was measured to be ∼60 S/cm for 4.5 MeV Cl 2+ ion-irradiated PAN-EB samples with a dose of 1x10 16 ions/cm 2 . We observed the transition of high energy ion-irradiated PAN-EB samples from insulating state to conducting state as a function of ion dosage based on σ dc and its temperature dependence. The characteristic peaks of the Raman spectrum of the PAN-EB samples were reduced, while the D-peak (disordered peak) and the G peak (graphitic peak) appeared as the ion dose increased. From the analysis of the D and G peaks of the Raman spectra of the systems compared to multiwalled carbon nanotubes, ion-irradiated graphites, and annealed carbon films, the number of the clusters of hexagon rings with conducting sp 2 -bonded carbons increased with ion dosage. We also observed the increase in the size of the nanocrystalline graphitic domain of the systems with increasing ion dosage. The intensity of normalized electron paramagnelic resonance signal also increased in correlation with ion dose. The results of this study demonstrate that π-conjugated pristine PAN-EB systems changed from insulating state to carbonized conducting state through high energy ion irradiation with high ion dosage

  1. Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2007-03-01

    Full Text Available The prompt penetration of interplanetary electric fields (IEFs to the dayside low-latitude ionosphere during the first ~2 h of a superstorm is estimated and applied to a modified NRL SAMI2 code for the 30 October 2003 event. In our simulations, the dayside ionospheric O+ is convected to higher altitudes (~600 km and higher latitudes (~±25° to 30°, forming highly displaced equatorial ionospheric anomaly (EIA peaks. This feature plus others are consistent with previously published CHAMP electron (TEC measurements and with the dayside superfountain model. The rapid upward motion of the O+ ions causes neutral oxygen (O uplift due to ion-neutral drag. It is estimated that above ~400 km altitude the O densities within the displaced EIAs can be increased substantially over quiet time values. The latter feature will cause increased drag for low-altitude satellites. This newly predicted phenomenon is expected to be typical for superstorm/IEF events.

  2. Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon

    KAUST Repository

    Kim, Daesang

    2015-07-01

    Uncertainty quantification (UQ) methods are implemented to obtain a quantitative characterization of the evolution of electrons and ions during the ignition of methane-oxygen mixtures under lean and stoichiometric conditions. The GRI-Mech 3.0 mechanism is combined with an extensive set of ion chemistry pathways and the forward propagation of uncertainty from model parameters to observables is performed using response surfaces. The UQ analysis considers 22 uncertain rate parameters, which include both chemi-ionization, proton transfer, and electron attachment reactions as well as neutral reactions pertaining to the chemistry of the CH radical. The uncertainty ranges for each rate parameter are discussed. Our results indicate that the uncertainty in the time evolution of the electron number density is due mostly to the chemi-ionization reaction CH+O⇌HCO+ +E- and to the main CH consumption reaction CH+O2 ⇌O+HCO. Similar conclusions hold for the hydronium ion H3O+, since electrons and H3O+ account for more than 99% of the total negative and positive charge density, respectively. Surprisingly, the statistics of the number density of charged species show very little sensitivity to the uncertainty in the rate of the recombination reaction H3O+ +E- →products, until very late in the decay process, when the electron number density has fallen below 20% of its peak value. Finally, uncertainties in the secondary reactions within networks leading to the formation of minor ions (e.g., C2H3O+, HCO+, OH-, and O-) do not play any role in controlling the mean and variance of electrons and H3O+, but do affect the statistics of the minor ions significantly. The observed trends point to the role of key neutral reactions in controlling the mean and variance of the charged species number density in an indirect fashion. Furthermore, total sensitivity indices provide quantitative metrics to focus future efforts aiming at improving the rates of key reactions responsible for the

  3. Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon

    KAUST Repository

    Kim, Daesang; Rizzi, Francesco; Cheng, Kwok Wah; Han, Jie; Bisetti, Fabrizio; Knio, Omar Mohamad

    2015-01-01

    Uncertainty quantification (UQ) methods are implemented to obtain a quantitative characterization of the evolution of electrons and ions during the ignition of methane-oxygen mixtures under lean and stoichiometric conditions. The GRI-Mech 3.0 mechanism is combined with an extensive set of ion chemistry pathways and the forward propagation of uncertainty from model parameters to observables is performed using response surfaces. The UQ analysis considers 22 uncertain rate parameters, which include both chemi-ionization, proton transfer, and electron attachment reactions as well as neutral reactions pertaining to the chemistry of the CH radical. The uncertainty ranges for each rate parameter are discussed. Our results indicate that the uncertainty in the time evolution of the electron number density is due mostly to the chemi-ionization reaction CH+O⇌HCO+ +E- and to the main CH consumption reaction CH+O2 ⇌O+HCO. Similar conclusions hold for the hydronium ion H3O+, since electrons and H3O+ account for more than 99% of the total negative and positive charge density, respectively. Surprisingly, the statistics of the number density of charged species show very little sensitivity to the uncertainty in the rate of the recombination reaction H3O+ +E- →products, until very late in the decay process, when the electron number density has fallen below 20% of its peak value. Finally, uncertainties in the secondary reactions within networks leading to the formation of minor ions (e.g., C2H3O+, HCO+, OH-, and O-) do not play any role in controlling the mean and variance of electrons and H3O+, but do affect the statistics of the minor ions significantly. The observed trends point to the role of key neutral reactions in controlling the mean and variance of the charged species number density in an indirect fashion. Furthermore, total sensitivity indices provide quantitative metrics to focus future efforts aiming at improving the rates of key reactions responsible for the

  4. Upwelling to Outflowing Oxygen Ions at Auroral Latitudes during Quiet Times: Exploiting a New Satellite Database

    Science.gov (United States)

    Redmon, Robert J.

    The mechanisms by which thermal O+ escapes from the top of the ionosphere and into the magnetosphere are not fully understood even with 30 years of active research. This thesis introduces a new database, builds a simulation framework around a thermospheric model and exploits these tools to gain new insights into the study of O+ ion outflows. A dynamic auroral boundary identification system is developed using Defense Meteorological Satellite Program (DMSP) spacecraft observations at 850 km to build a database characterizing the oxygen source region. This database resolves the ambiguity of the expansion and contraction of the auroral zone. Mining this new dataset, new understanding is revealed. We describe the statistical trajectory of the cleft ion fountain return flows over the polar cap as a function of activity and the orientation of the interplanetary magnetic field y-component. A substantial peak in upward moving O+ in the morning hours is discovered. Using published high altitude data we demonstrate that between 850 and 6000 km altitude, O+ is energized predominantly through transverse heating; and acceleration in this altitude region is relatively more important in the cusp than at midnight. We compare data with a thermospheric model to study the effects of solar irradiance, electron precipitation and neutral wind on the distribution of upward O+ at auroral latitudes. EUV irradiance is shown to play a dominant role in establishing a dawn-focused source population of upwelling O+ that is responsible for a pre-noon feature in escaping O+ fluxes. This feature has been corroborated by observations on platforms including the Dynamics Explorer 1 (DE-1), Polar, and Fast Auroral Snapshot SnapshoT (FAST) spacecraft. During quiet times our analysis shows that the neutral wind is more important than electron precipitation in establishing the dayside O+ upwelling distribution. Electron precipitation is found to play a relatively modest role in controlling dayside, and a

  5. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    Science.gov (United States)

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  7. On the influence of hydronium and hydroxide ion diffusion on the hydrogen and oxygen evolution reactions in aqueous media

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Arenz, Matthias

    2015-01-01

    We present a study concerning the influence of the diffusion of H+ and OH- ions on the hydrogen and oxygen evolution reactions (HER and OER) in aqueous electrolyte solutions. Using a rotating disk electrode (RDE), it is shown that at certain conditions the observed current, i.e., the reaction rate...

  8. Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation

    International Nuclear Information System (INIS)

    Bannister, M.E.; Hijazi, H.; Meyer, H.M.; Cianciolo, V.; Meyer, F.W.

    2014-01-01

    An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R and D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 × 10 16 cm −2 , where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5–6.2 × 10 16 cm −2 . Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities

  9. Ionic conductivity ageing investigation of 1Ce10ScSZ in different partial pressures of oxygen

    DEFF Research Database (Denmark)

    Omar, Shobit; Belda, Adriana; Escardino, Agustín

    2011-01-01

    The conductivity and its ageing behaviour has been determined for zirconia co-doped with 10 mol% of Sc2O3 and 1 mol% CeO2 in different partial pressures of oxygen at 600 °C. After 3000 h, samples kept in air, in a humidified mixture of H2/N2 and in humidified H2 exhibited loss in the ionic...

  10. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.

    Science.gov (United States)

    Malavasi, Lorenzo; Fisher, Craig A J; Islam, M Saiful

    2010-11-01

    This critical review presents an overview of the various classes of oxide materials exhibiting fast oxide-ion or proton conductivity for use as solid electrolytes in clean energy applications such as solid oxide fuel cells. Emphasis is placed on the relationship between structural and mechanistic features of the crystalline materials and their ion conduction properties. After describing well-established classes such as fluorite- and perovskite-based oxides, new materials and structure-types are presented. These include a variety of molybdate, gallate, apatite silicate/germanate and niobate systems, many of which contain flexible structural networks, and exhibit different defect properties and transport mechanisms to the conventional materials. It is concluded that the rich chemistry of these important systems provides diverse possibilities for developing superior ionic conductors for use as solid electrolytes in fuel cells and related applications. In most cases, a greater atomic-level understanding of the structures, defects and conduction mechanisms is achieved through a combination of experimental and computational techniques (217 references).

  11. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates.

    Science.gov (United States)

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    The local structure of apatite-type lanthanum silicates of general formula La 9.33+x (SiO 4 ) 6 O 2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO 4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  12. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-02-01

    The interactions between oxygen permeation and homogeneous fuel oxidation reactions on the sweep side of an ion transport membrane (ITM) are examined using a comprehensive model, which couples the dependency of the oxygen permeation rate on the membrane surface conditions and detailed chemistry and transport in the vicinity of the membrane. We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. Results show that increasing the sweep gas inlet temperature and fuel concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases the gas temperature near the membrane. Faster reactions at higher fuel concentration and higher inlet gas temperature support substantial fuel conversion and lead to a higher oxygen permeation flux without the contribution of surface catalytic activity. Beyond a certain maximum in the fuel concentration, extensive heat loss to the membrane (and feed side) reduces the oxidation kinetic rates and limits oxygen permeation as the reaction front reaches the membrane. The sweep gas flow rate and channel height have moderate impacts on oxygen permeation and fuel conversion due to the residence time requirements for the chemical reactions and the location of the reaction zone relative to the membrane surface. © 2012 Elsevier B.V.

  13. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    Science.gov (United States)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  14. Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions

    International Nuclear Information System (INIS)

    Maruyama, Jun; Baier, Claudia; Wolfschmidt, Holger; Bele, Petra; Stimming, Ulrich

    2012-01-01

    One of the promising candidates as noble-metal-free electrode catalysts for polymer electrolyte fuel cells (PEFCs) is a carbon material with nitrogen atoms coordinating iron ions embedded on the surface (Fe-N x moiety) as the active site, although the activity is insufficient compared to conventional platinum-based electrocatalysts. In order to obtain fundamental information on the activity enhancement, a simple model of the Fe-N x active site was formed by adsorbing 5,10,15,20-Tetrakis(4-pyridyl)-21H,23H-porphine iron(III) chloride (FeTPyPCl) on the basal plane of highly oriented pyrolytic graphite (HOPG), and cathodic oxygen reduction was investigated on the surface in 0.1 M HClO 4 . The catalytic activity for oxygen reduction was enhanced by loading transition metal ions (Co 2+ , Ni 2+ , Cu 2+ ) together with FeTPyPCl. The X-ray photoelectron spectrum of the surface suggested that the metal was coordinated by the pyridine-N. The enhancement effect of the transition metals was supported by two different measurements: oxygen reduction at HOPG in 0.1 M HClO 4 dissolving FeTPyPCl and the metal ions; oxygen reduction in 0.1 M HClO 4 at the subsequently well-rinsed and dried HOPG. The ultraviolet–visible spectrum for the solution also suggested the coordination between the pyridyl-N and the metal ions. The oxygen reduction enhancement was attributed to the electronic interaction between the additional transition metal and the Fe center of the porphyrin through the coordination bonds. These results implied that the improvement of the activity of the noble-metal-free catalyst would be possible by the proper introduction of the transition metal ions around the active site.

  15. Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    Geng Chu; Bo-Nan Liu; Fei Luo; Wen-Jun Li; Hao Lu; Li-Quan Chen; Hong Li

    2017-01-01

    The total conductivity of Li-biphenyl-l,2-dimethoxyethane solution (LixBp(DME)9.65,Bp =biphenyl,DME =1,2-dimethoxyethane,x =0.25,0.50,1.00,1.50,2.00) is measured by impedance spectroscopy at a temperature range from 0 ℃C to 40 ℃C.The Li1.50Bp(DME)9.65 has the highest total conductivity 10.7 mS/cm.The conductivity obeys Arrhenius law with the activation energy (Ea(x=0.50) =0.014 eV,Ea(x=1.00) =0.046 eV).The ionic conductivity and electronic conductivity of LixBp(DME)9.65 solutions are investigated at 20 ℃C using the isothermal transient ionic current (ITIC) technique with an ion-blocking stainless steal electrode.The ionic conductivity and electronic conductivity of Li1.00Bp(DME)9.65 are measured as 4.5 mS/cm and 6.6 mS/cm,respectively.The Li1.00Bp(DME)9.65 solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity.The lithium iron phosphate (LFP) and Li1.5Al0.5Ti1.5(PO4)3 (LATP) are chosen to be the counter electrode and electrolyte,respectively.The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g.The potential of Lit.00Bp(DME)9.65 solution is about 0.3 V vs.Li+/Li,which indicates the solution has a strong reducibility.The Li1.00Bp(DME)9.65 solution is also used to prelithiate the anode material with low first efficiency,such as hard carbon,soft carbon and silicon.

  16. Theoretical and experimental investigation of carnosine and its oxygenated adducts. The reaction with the nickel ion

    Energy Technology Data Exchange (ETDEWEB)

    Pavlos, Dimitrios; Petropouleas, Panayiotis; Hatzipanayioti, Despina, E-mail: stambaki@chem.uoa.gr

    2015-11-05

    Highlights: • Study on models of neutral cations and anions of carnosine at the B3LYP/TZVP level. • The {sup 1}O{sub 2}-adducts of these models resulted in oxygenated carnosine. • Theoretical parameters correlated to experimental results for carn and carn-H{sub 2}O{sub 2}. • Theoretical models of Nickel-carn complexes have been investigated. • Isolation and characterization of the solid [Ni(carn){sub 2}(H{sub 2}O){sub 5}] have been performed. - Abstract: DFT theoretical calculations at B3LYP/TZVP or LANL2DZ level of theory, for neutral, zwitterions, protonated and anionic carnosine, were performed. Energies, the structural and spectroscopic parameters were calculated in the gas phase and aqueous medium. Additional H-bonds stabilize the ionized forms of carnosine, creating “nests” into which metal ions or bio-molecules may be sheltered. Based on Fukui functions, the reactivity of the abovementioned forms of carnosine, with {sup 1}O{sub 2}, may lead to oxygenated species. The theoretical spectroscopic parameters have been correlated to our experimental results. The effect of H{sub 2}O{sub 2} and the electrochemistry of aqueous carnosine solutions were examined. Theoretical models containing Ni(II), carnosine and water were constructed. In the isolated mauve solid, formulated [Ni(carn){sub 2}(H{sub 2}O){sub 5}], the COO−, N{sub π} and/or NH{sub 2} were bonded. When H{sub 2}O{sub 2} was added, the imidazole NMR signals disappeared. A redox couple clearly indicates one electron process, the electron coming from either the oxidation of imidazole ring or the nickel(II)/Ni(III) couple.

  17. Preferential heating of oxygen 5{sup +} ions by finite-amplitude oblique Alfvén waves

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Yana G.; Poedts, Stefaan [Centre for mathematical Plasma Astrophysics, KU Leuven, B-3001 Leuven (Belgium); Viñas, Adolfo [NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, 20771 MD (United States); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Casilla 160 - C, Concepción (Chile)

    2016-03-25

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5{sup +} ions by large-scale finite-amplitude Alfvén waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5{sup +} ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfvén-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles θ ≤ 30°. The obliquely propagating Alfvén pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  18. Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.

    Science.gov (United States)

    Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping

    2013-02-01

    This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.

  19. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  20. Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures

    International Nuclear Information System (INIS)

    Salapare, Hernando S.; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Graphical abstract: - Highlights: • Reactive-ion etching (RIE) is employed to nylon 6,6 fabrics to achieve surface texturing and improved wettability. • FTIR spectra of the treated samples exhibited decreased transmittance of amide and carboxylic acid groups due to etching. • Etching is enhanced for higher power plasma treatments and for samples with larger mesh sizes. • Decreased crystallinity was achieved after plasma treatment. • Higher power induced higher negative DC self-bias voltage on the samples that favored anisotropic and aggressive etching. - Abstract: A facile one-step oxygen plasma irradiation in reactive ion etching (RIE) configuration is employed to nylon 6,6 fabrics with different mesh sizes to achieve surface nanostructures and improved wettability for textile and filtration applications. To observe the effects of power and irradiation time on the samples, the experiments were performed using constant irradiation time in varying power and using constant power in varying irradiation times. Results showed improved wettability after the plasma treatment. The FTIR spectra of all the treated samples exhibited decreased transmittance of the amide and carboxylic acid groups due to surface etching. The changes in the surface chemistry are supported by the SEM data wherein etching and surface nanostructures were observed for the plasma-treated samples. The etching of the surfaces is enhanced for higher power plasma treatments. The thermal analysis showed that the plasma treatment resulted in decreased crystallinity. Surface chemistry showed that the effects of the plasma treatment on the samples have no significant difference for all the mesh sizes. However, surface morphology showed that the sizes of the surface cracks are the same for all the mesh sizes but samples with larger mesh sizes exhibited enhanced etching as compared to the samples with smaller mesh sizes. Higher power induced higher negative DC self-bias voltage on the samples that

  1. Investigation of the electrical conductivity of γ-irradiated sodium silicate glasses containing multivalence Cu ions

    International Nuclear Information System (INIS)

    Tawansi, A.; Basha, A.F.; El-Konsol, S.

    1981-07-01

    The present investigation deals with a study of the γ-radiation effects on the d.c. electrical resistivity (rho) of SiO 2 -Na 2 O-CaO glasses containing Cu 0 , Cu + , Cu 2+ and mixture of Cu + and Cu 2+ ions over the temperature (T) range from 300 to 630 0 K. The applicability of the polaron hopping conduction mechanism has been established from the reciprocal temperature dependence of 1n rho/T for the samples under investigation. The electrical resistivity is found to decrease by increasing the TM valancy which enhances the hoping process. The post-irradiation effect due to ionizing gamma-radiation is investigated within the frame work of the electron (and hole) trapping theory, and an average value of 0.45 is obtained for the parameter Δ, characterizing traps with an exponentially decreasing numbers below the conduction band. (author)

  2. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction

    Science.gov (United States)

    Zhao, Yige; Liu, Jingjun; Wu, Yijun; Wang, Feng

    2017-08-01

    Designing highly efficient electro-catalysts for the oxygen reduction reaction (ORR) has been regarded as a demanding task in the development of renewable energy sources. However, little attention has been paid on improving Pt-based catalysts by promoting proton transfer from the electrolyte solutions to the catalyst layer at the cathode. Herein, we design proton conductive Pt-Co alloy nanoparticles anchoring on citric acid functionalized graphene (Pt-Co/CA-G) catalysts for efficient ORR. The facile modification approach for graphene can introduce oxygenated functional groups on the graphene surface to promote proton transfer as well as keeping the high electron conductivity without destroying the graphene original structure. The electrochemical results show that the Pt-Co/CA-G catalyst exhibits more excellent ORR activity and stability than the commercial Pt/C catalyst, which can be attributed to its improved proton transfer ability. The fast proton transfer comes from the hydrogen-bonding networks formed by the interaction between the oxygenated functional groups and water molecules. This work provides not only a novel and simple approach to modify graphene but also an effective strategy to improve Pt-based catalysts for the ORR.

  3. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khasa, S.; Yadav, Arti, E-mail: artidabhur@gmail.com; Dahiya, M. S.; Seema,; Ashima [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Physics Department, G.J. University of science and technology, Hisar-125001 (India)

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  4. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    International Nuclear Information System (INIS)

    Bengtsson, B.; Ingemarsson, R.; Settervik, G.; Velin, A.

    2010-01-01

    In Ringhals NPP, more than four years of successful operation with a full-scale EDI for the recycling of steam generator blow down (SGBD) gave the inspiration to modify and 'scale down' this EDI process. This with purpose to explore the possibilities to replace the cation exchanger columns used for cation conductivity analysis, with some small and integrated electrochemical ion-exchange cells. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, it's connected to the disadvantage of getting the resins rapidly exhausted, with needs to be frequently replaced or regenerated. This is causing interruptions in the monitoring and giving rise to high workload for the maintenance. This paper reports about some optimization and tests of two different two-compartment electrochemical cells for the possible replacements of cation resin columns when analyzing cation conductivity in the secondary steam circuit at Ringhals NPPs. Field tests during start up condition and more than four months of steady operation together with real and simulated test for impurity influences, indicates that a ELectrical Ion Echange process (ELIX) could be successfully used to replace the resin columns in Ringhals during operating with high pH-AVT (All Volatile Treatment), using hydrazine and ammonia. Installation of an ELIX-system downstream a particle filter and upstream of a small cation resin column, will introduce additional safety and further reduce the maintenance with possible interruptions. Performance of the ELIX-process together with other chemical additives (Morpholine, ETA, MPA, DMA) and dispersants, may be further evaluated to qualify the ELIX-process as well as SGBD-EDI for wider use in nuclear applications. (author)

  5. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions

    International Nuclear Information System (INIS)

    Hazarika, J.; Kumar, A.

    2014-01-01

    In this paper, we report the 160 MeV Ni 12+ swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10 10 , 1 × 10 11 , 5 × 10 11 and 1 × 10 12 ions/cm 2 have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M ″ ) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R ω ) of the charge carriers decreases with increasing the ion fluence. Binding energy (W m ) calculations depict that polarons are the dominant charge carriers

  6. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C 2 H 2 PIII is composed of mainly TiC x with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti 4+ , Ti 3+ and Ti 2+

  7. Organodioxygen complexes of some heavy metal ions and their oxygen transfer reactions

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.; Mei Ling; Gino Mariotto

    2003-09-01

    Several novel organodioxygen complexes of lanthanide ions, viz., lanthanum(m) and cerium(IV) have been synthesized containing a number of organic co- ligands. The complexes characterized were, [La(0 2 )(det)(N0 3 ) 2 ] (1), [La(O 2 )(tet)(NO 3 ) 2 ] (2), [La(O 2 )(C 5 H 5 N)2NO 3 ] (3), [La(O 2 )(C 6 H 18 N 3 PO) 2 (NO 3 ) 2 ] (4), [La(0 2 )(OPPh 3 ) 2 (N0 3 ) 2 ] (5), [La(O 2 ) 2 (NH 2 CH 2 CH 2 NH 2 ) 2 NO 3 ] (6), [La(O 2 )(PPh 3 ) 2 (NO 3 ) 2 ] (7) and [Ce(O 2 )(C 6 H 18 N 3 PO) 2 (NO 3 ) 3 ] (8). IR and Raman spectra revealed that (3) was a peroxo complex while the others were, in particular, superoxo type. The IR spectrum of (3) gives V 1 (O-O) at 851 cm -1 while the Raman spectra of (4), (5), (7) and (8) give V 1 (O 2 ) bands at 1046 cm -1 , 1032 cm 1 , 1100 cm -1 and 1046 cm -1 , respectively. The oxygen transfer reactions of two selected complexes were carried out under stoichiometric conditions. The complex containing a bidentate ligand, (6), was found to oxidize triphenylphosphine and trans-stilbene to their oxides while the complex containing tridentate ligand (1) was stable and inert towards oxidation. (author)

  8. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    International Nuclear Information System (INIS)

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg 2+ ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn 2+ ); and (3) by inducing reactive oxygen species (ROS). Hg 2+ causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn 2+ release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn 2+ or Hg 2+ . Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg 2+ -induced oxidation, because phosphatase activity is inhibited at concentrations of Hg 2+ that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  9. Collisions of singly and doubly charged ions with oxygen molecules in the energy range 1 - 1800 (3600) eV

    International Nuclear Information System (INIS)

    Kuen, I.; Howorka, F.

    1983-01-01

    Absolute cross sections for the excitation of optically emitting states in collisions of He + , Ne + , Ar + , Kr + , B + , He ++ , Ne ++ and Ar ++ with oxygen molecules are measured, the energy range of the ion being1 - 1800 eV Lab for the singly charged and 1 - 3600 eV for the doubly charged ions. Seven important processes can be distinguished: charge exchange excitation of O 2 + band, O I, O II, X I and X II lines (X + , X ++ being the primary ion), direct excitation of X II and double charge exchange excitations. The energy dependences of the excitation cross sections are remarkably different for different processes but similar for one process with different ions. The sum total of all cross sections together for excitations which lead to light emission is on the order of a few square angstroms at 1000 eV c.m. energy. The results are of interest for surface investigations, plasma diagnostics and laser work. (Author)

  10. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  11. Epoxy-silica hybrid organic–inorganic electrolytes with a high Li-ion conductivity

    International Nuclear Information System (INIS)

    Vélez, J.F.; Procaccini, R.A.; Aparicio, M.; Mosa, J.

    2013-01-01

    Organic–inorganic hybrid electrolytes were prepared by co-hydrolysis and co-condensation of 3-glycidoxipropyltrimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) doped with lithium acetate as self-supported materials and thin-films. The effects of the relative molar content of LiAc on the physicochemical properties of electrolytes, such as morphology, thermal, chemical and electrochemical properties were investigated. Two and four probes test cells were designed for comparative studies of ionic conductivity of hybrid electrolytes using electrochemical impedance spectroscopy (EIS). Similar ionic conductivities were obtained using both measurement methods, reaching a maximum ionic conductivity value of around 10 −6 S/cm at 25 °C. The conductivity mechanism presents Arrehenius behavior with the increase of the temperature from 25 °C to 120 °C. The electrochemical stability window is found to be in the range of 0–5 V, which ensures that hybrid organic–inorganic materials are potential electrolytes for solid-state rechargeable lithium ion batteries

  12. Fabrication of Conductive Nanostructures by Femtosecond Laser Induced Reduction of Silver Ions

    Science.gov (United States)

    Barton, Peter G.

    Nanofabrication through multiphoton absorption has generated considerable interest because of its unique ability to generate 2D and 3D structures in a single laser-direct-write step as well as its ability to generate feature sizes well below the diffraction limited laser spot size. The majority of multiphoton fabrication has been used to create 3D structures of photopolymers which have applications in a wide variety of fields, but require additional post-processing steps to fabricate conductive structures. It has been shown that metal ions can also undergo multiphoton absorption, which reduces the metal ions to stable atoms/nanoparticles which are formed at the laser focal point. When the focus is located at the substrate surface, the reduced metal is deposited on the surface, which allows arbitrary 2D patterning as well as building up 3D structures from this first layer. Samples containing the metal ions can be prepared either in a liquid solution, or in a polymer film. The polymer film approach has the benefit of added support for the 3D metallic structures; however it is difficult to remove the polymer after fabrication to leave a free standing metallic structure. With the ion solution method, free standing metallic structures can be fabricated but need to be able to withstand surface tension forces when the remaining unexposed solution is washed away. So far, silver nanowires with resistivity on the order of bulk silver have been fabricated, as well as a few small 3D structures. This research focuses on the surfactant assisted multiphoton reduction of silver ions in a liquid solution. The experimental setup consists of a Coherent Micra 10 Ultrafast laser with 30fs pulse length, 80MHz repetition rate, and a wavelength centered at 800nm. This beam is focused into the sample using a 100x objective with a N.A. of 1.49. Silver structures such as nanowires and grid patterns have been produced with minimum linewidth of 180nm. Silver nanowires with resistivity down to

  13. Engineering Mixed Ionic Electronic Conduction in La 0.8 Sr 0.2 MnO 3+ δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

    KAUST Repository

    Saranya, Aruppukottai M.

    2015-04-09

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nanoionics has become an increasingly promising field for the future development of advanced energy conversion and storage devices, such as batteries, fuel cells, and supercapacitors. Particularly, nanostructured materials offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. However, the enhancement of the mass transport properties at the nanoscale has often been found to be difficult to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with high density of vertically aligned GBs with high concentration of strain-induced defects. Since this type of GBs present a remarkable enhancement of their oxide-ion mass transport properties (of up to six orders of magnitude at 773 K), it is possible to tailor the electrical nature of the whole material by nanoengineering, especially at low temperatures. The presented results lead to fundamental insights into oxygen diffusion along GBs and to the application of these engineered nanomaterials in new advanced solid state ionics devices such are micro-solid oxide fuel cells or resistive switching memories. An electronic conductor such as La0.8Sr0.2MnO3+δ is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with excellent electronic and oxygen mass transport properties. Oxygen diffusion highways are created by promoting a high concentration of strain-induced defects in the grain boundary region. This novel strategy opens the way for synthesizing new families of artificial mixed ionic-electronic conductors by design.

  14. The structure of new germanates, gallates, borates and silicates with laser, piezo, ferroelectric and ion conducting properties

    International Nuclear Information System (INIS)

    Belokonev, E.L.

    1994-01-01

    The results of structure investigation of more than 50 new crystalline germanates, gallates, borogermanates, borates, and silicates with laser, piezo, ferroelectric, and ion-conducting properties are described. The structure - properties relationship is examined. 71 refs.; 24 figs.; 10 tabs

  15. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  16. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Tae; Lopes, Pietro Papa; Park, Shin-Ae; Lee, A-Yeong; Lim, Jinkyu; Lee, Hyunjoo; Back, Seoin; Jung, Yousung; Danilovic, Nemanja; Stamenkovic, Vojislav; Erlebacher, Jonah; Snyder, Joshua; Markovic, Nenad M.

    2017-11-13

    The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factor of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.

  17. Proton-oxygen conductivity in substituted perovskites ATi0.95Mo0.05O3-α (A = Ca, Sr, Ba; M = Sc, Mg) in the reducing hydrogen-containing atmospheres

    International Nuclear Information System (INIS)

    Gorelov, V.P.; Balakireva, V.B.; Sharova, N.V.

    1999-01-01

    Electric conductivity depending on temperature, oxygen partial pressure, as well as the number of t i ion transfer and transfer hydrogen numbers in the perovskites ATi 0.95 Mo 0.05 O 3-α (A = Ca, Sr, Ba; M = Sc, Mg) in reducing hydrogen-containing atmospheres in the temperature range of 450-850 deg C have been measured. With the temperature decrease t i increases reaching 1.0 at a temperature of 550 deg C for all compositions. Proton conductivity under conditions of assumed concomitant transfer of either O 2- or OH - has been ascertained [ru

  18. Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations

    International Nuclear Information System (INIS)

    Bondi, Robert J.; Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoff L.; Marinella, Matthew J.

    2013-01-01

    We apply first-principles density-functional theory (DFT) calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula to predict electrical conductivity in Ta 2 O x (0 ≤ x ≤ 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (V O n ; n = 0,1+,2+). In the crystalline phase, our DFT calculations suggest that V O 0 prefers equatorial O sites, while V O 1+ and V O 2+ are energetically preferred in the O cap sites of TaO 7 polyhedra. Our calculations of DC conductivity at 300 K agree well with experimental measurements taken on Ta 2 O x thin films (0.18 ≤ x ≤ 4.72) and bulk Ta 2 O 5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta 2 O 5 electronic structure provide further theoretical basis to substantiate V O 0 as a donor dopant in Ta 2 O 5 . Furthermore, this dopant-like behavior is specific to the neutral case and not observed in either the 1+ or 2+ oxidation states, which suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for V O n in Ta 2 O 5

  19. Characterization of silicon oxynitride films prepared by the simultaneous implantation of oxygen and nitrogen ions into silicon

    International Nuclear Information System (INIS)

    Hezel, R.; Streb, W.

    1985-01-01

    Silicon oxynitride films about 5 nm in thickness were prepared by simultaneously implanting 5 keV oxygen and nitrogen ions into silicon at room temperature up to saturation. These films with concentrations ranging from pure silicon oxide to silicon nitride were characterized using Auger electron spectroscopy, electron energy loss spectroscopy and depth-concentration profiling. The different behaviour of the silicon oxynitride films compared with those of silicon oxide and silicon nitride with regard to thermal stability and hardness against electron and argon ion irradiation is pointed out. (Auth.)

  20. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Science.gov (United States)

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  1. Lithium ion conductivity of molecularly compatibilized chitosan-poly(aminopropyltriethoxysilane)-poly(ethylene oxide) nanocomposites

    International Nuclear Information System (INIS)

    Fuentes, S.; Retuert, P.J.; Gonzalez, G.

    2007-01-01

    Films of composites of chitosan/poly(aminopropyltriethoxysilane)/poly(ethylene oxide) (CHI/pAPS/PEO) containing a fixed amount of lithium salt are studied. The ternary composition diagram of the composites, reporting information on the mechanic stability, the transparence and the electrical conductivity of the films, shows there is a window in which the molecular compatibility of the components is optimal. In this window, defined by the components ratios CHI/PEO 3:2, pAPS/PEO 2:3 and CHI/PEO 1:2, there is a particular composition Li x (CHI) 1 (PEO) 2 (pAPS) 1.2 for which the conductivity reaches a value of 1.7 x 10 -5 S cm -1 at near room temperature. Considering the balance between the Lewis acid and basic sites available in the component and the observed stoichiometry limits of formed polymer complexes, the conductivity values of these products may be understood by the formation of a layered structure in which the lithium ions, stabilized by the donors, poly(ethylene oxide) and/or poly(aminopropyltriethoxysilane), are intercalated in a chitosan matrix

  2. Silver/carbon nanotube hybrids: A novel conductive network for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou, Fangdong; Qiu, Kehui; Peng, Gongchang; Xia, Li

    2015-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Ag composite cathodes are synthesized by a thermal decomposition method and multi-walled carbon nanotubes are uniformly introduced into the composites through ball mixing. A composite electrically conductive network consisting of CNTs and Ag is obtained to improve the conductivity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material. By comparing with the pure LiNi 1/3 Co 1/3 Mn 1/3 O 2 and cathode modified by CNTs or Ag, the as-obtained LiNi 1/3 Co 1/3 Mn 1/3 O 2 –CNT/Ag electrode exhibits the best rate capability (120.6 mAh/g at 5C) and cycle performance (134.2 mAh/g at 1C with a capacity retention of 94.4% over 100 cycles). With the construction of 3D spatial conductive network, the novel hybrid CNT/Ag demonstrates itself a promising strategy to improve Li storage performance for lithium ion batteries

  3. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  4. Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery

    International Nuclear Information System (INIS)

    Masoud, Emad M.; Khairy, M.; Mousa, M.A.

    2013-01-01

    Graphical abstract: -- Highlights: •AgI dopant created more opened borate network structure. •Dielectric constant and loss values increased with AgI concentration. •AgI dopant enhanced both ion migration and orientation. •0.6 AgI–0.27 Ag 2 O–0.13 B 2 O 3 showed the highest DC-conductivity at room temperature. •It showed also good life time as a solid electrolyte in solid battery at room temperature. -- Abstract: The electrical properties of the ternary ionic conducting glass system xAgI–(1 – x)[0.67Ag 2 O–0.33B 2 O 3 ], where x = 0.4 , 0.5, 0.6, 0.7 and 0.8, were studied for emphasizing the influence of silver iodide concentration on the transport properties in the based borate glasses. The glasses were prepared by melt quenching technique and characterized using X-ray diffraction (XRD), FT-IR spectra and differential thermal analysis (DTA). XRD confirmed a glassy nature for all investigated compositions. Electrical conductivity (σ), dielectric constant (ε′), dielectric loss (ε ″ ) and impedance spectra (Z′–Z′′) were studied for all samples at a frequency range of 0–10 6 Hz and over a temperature range of 303–413 K. Changes of conductivity and dielectric properties with composition, temperature and frequency were analyzed and discussed. A silver iodine battery using glassy electrolyte sample with the highest ionic conductivity (x = 0.6) was studied

  5. Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bondi, Robert J., E-mail: rjbondi@sandia.gov; Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoff L.; Marinella, Matthew J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2013-11-28

    We apply first-principles density-functional theory (DFT) calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula to predict electrical conductivity in Ta{sub 2}O{sub x} (0 ≤ x ≤ 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (V{sub O}{sup n}; n = 0,1+,2+). In the crystalline phase, our DFT calculations suggest that V{sub O}{sup 0} prefers equatorial O sites, while V{sub O}{sup 1+} and V{sub O}{sup 2+} are energetically preferred in the O cap sites of TaO{sub 7} polyhedra. Our calculations of DC conductivity at 300 K agree well with experimental measurements taken on Ta{sub 2}O{sub x} thin films (0.18 ≤ x ≤ 4.72) and bulk Ta{sub 2}O{sub 5} powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta{sub 2}O{sub 5} electronic structure provide further theoretical basis to substantiate V{sub O}{sup 0} as a donor dopant in Ta{sub 2}O{sub 5}. Furthermore, this dopant-like behavior is specific to the neutral case and not observed in either the 1+ or 2+ oxidation states, which suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for V{sub O}{sup n} in Ta{sub 2}O{sub 5}.

  6. In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs

    Science.gov (United States)

    Zhang, Zhenbao; Wang, Jian; Chen, Yubo; Tan, Shaozao; Shao, Zongping; Chen, Dengjie

    2018-05-01

    BaZrxCeyY1-x-yO3-δ are recognized proton-conducting electrolyte materials for proton-conducting solid oxide fuel cells (H+-SOFCs) below 650 °C. Here Co cations are incorporated into the BaZr0.4Ce0.4Y0.2O3-δ (BZCY) scaffold to generate a 3D core-shell and triple-conducting (H+/O2-/e-) electrode in situ via infiltrating and reactive sintering. The core is the bulk BZCY scaffold, while the shell is composed of the cubic Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ, cubic spinel Co3O4 and cubic fluorite (Ce, Zr, Y)O2. The obtained electrode exhibits an excellent compatibility with the BZCY electrolyte, and performs well in yielding a low and stable polarization resistance for oxygen reduction reaction for intermediate-temperature H+-SOFCs. In particular, it achieves polarization resistances as low as 0.094 and 0.198 Ω cm2 at 650 and 600 °C in wet air (3% H2O) when the sintering temperature for the electrode is 900 °C. In addition, a symmetrical cell also exhibits operation stability of 70 h at 650 °C. Furthermore, a fuel cell assembled with the 3D core-shell and triple-conducting electrode delivers a peak power density of ∼330 mW cm-2 at 650 °C. The substantially improved electrochemical performance and high stability are ascribed to the unique core-shell structure and the formation of Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ in the shell.

  7. Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines

    Science.gov (United States)

    Kornbluth, Y. S.; Mathews, R. H.; Parameswaran, L.; Racz, L. M.; Velásquez-García, L. F.

    2018-04-01

    We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism is modelled via COMSOL Multiphysics simulations and validated with experiments. A microplasma sputter head with gold target is constructed and used to deposit imprints with minimum feature sizes as narrow as 9 µm, roughness as small as 55 nm, and electrical resistivity as low as 1.1 µΩ · m.

  8. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    Science.gov (United States)

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  9. Cu_2O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Huang; Dong, Hui; Zhang, Xuan; Xu, Yunlong; Fransaer, Jan

    2016-01-01

    Though MXenes, a new family of 2D transition metal carbides, are generating considerable interests as electrode materials for batteries and supercapacitors, further application is hindered by their low capacities and poor rate capabilities. Here we propose a simple route for the synthesis of Cu_2O particle hybridized titanium carbide Ti_2CT_x (T = O, OH) composites via a solvothermal method. Electrodes containing Cu_2O/MXene were fabricated without carbon black, and tested as anodes for lithium ion batteries. A discharge capacity of 143 mAh g"−"1 was obtained at a discharge current density of 1000 mA g"−"1 and the capacity retention was near 100% after 200 cycles. The hybrid electrodes with open conductive frameworks exhibited significantly improved electrochemical performance, suggesting a new method for preparing MXene-based composites for energy storage application.

  10. Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4)

    Science.gov (United States)

    Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Ulihin, A. S.; Kovaleva, E. V.; Zemnukhova, L. A.

    2018-02-01

    Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4) (I) have been investigated by the methods of 1H, 19F, 31P NMR (including 1H, 19F, 31P MAS NMR), DSC, X-ray diffraction, and impedance spectroscopy. It was found that the fundamental changes in 1H, 19F, 31P NMR spectra (above 390 K) were associated with the formation of a crystalline disorder phase I with high ionic mobility in the proton and fluoride sublattices, as a result of a phase transition in the 400-420 K range. In the same temperature range, the transition of PO2(OH)2- anions from the "rigid lattice" to fast reorientations takes place. Above 430 K, there occurs a transition from the crystalline disordered phase to the amorphous one. The types of ion mobility in CsSbF3(H2PO4) and its amorphous phase have been established and temperature ranges of their realization have been determined (150-450 K). According to the NMR data, the diffusion in the proton sublattice of the disordered crystalline and amorphous phases is preserved even at room temperature. The ionic conductivity in CsSbF3(H2PO4) reaches the values of 2.6 × 10-4 S/cm in the temperature range 410-425 K and decreases down to 2.0 × 10-5 S/cm upon transition to the amorphous phase (435-445 K).

  11. Measurement of the variable track-etch rate of hydrogen, carbon and oxygen Ions in CR-39

    International Nuclear Information System (INIS)

    Lengar, I.; Skvarc, J.; Ilic, R.

    2003-01-01

    The ratio of the track-etch rate to the bulk-etch rate for hydrogen, carbon and oxygen ions was studied for the CR-39 detector with addition of dioctylphthalate. The response was reconstructed from etch-pit growth curves obtained by the multi-step etching technique. A theoretical analysis of the correctness of the method due to the 'missing track segment' is assessed and utilisation of the results obtained for the calibration of fast neutron dosimetry is discussed. (author)

  12. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    GharibDoust, Seyed Hosein Payandeh; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4...... with increasing lattice parameter, that is, increasing size of the halide ion in the structure. Thus, we conclude that the sizes of both windows are important for the lithium ion conduction in LiLa(BH4)3X compounds. The lithium ion conductivity is measured over one to three heating cycles and with different...

  13. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    International Nuclear Information System (INIS)

    Hamilton, D.C.

    1986-01-01

    Measurements are reported for the electrical conductivity of liquid nitrogen (N 2 ), oxygen (O 2 ) and benzene (C 6 H 6 ), and Hugoniot equation of state of liquid 1-butene (C 4 H 8 ) under shock compressed conditions. The conductivity data span 7 x 10 -4 to 7 x 10 1 Ω -1 cm -1 over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs

  14. Report on the FY 1999 investigational survey on the activation of oxygen electrode by ion implantation; 1999 nendo ion chunyuho ni yoru sanso denkyoku no kasseika ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The oxygen electrode is important as the base electrode for water electrolysis and fuel cell, but to move it, overvoltage (activated energy) in addition to equilibrium voltage is necessary, which leads to the lowering of energy efficiency. By forming the active spot by ion implantation, the lowering of overvoltage was studied. The implantation of Ru{sup +} ion in Ruthenium dioxide thin film electrode reduced the oxygen generating overvoltage by 15-20mV. Even in the oxygen reduction, activity was also increased. The chemical composition of thin film does not change by ion implantation. The increase in activity is based on a physical change which is called the surface defect formation. The layer of ion implantation is composed of microcrystals, which is thought to contribute to the formation of any active spot. Ions were implanted in Pt electrode as a practical use material, and even in the oxygen reduction of Pt, a possibility of heightening activity by ion implantation was admitted even in the oxygen reduction of Pt. The generation of high activity oxygen by ion plantation and development of oxygen reduction electrode were established as one method as a rule. (NEDO)

  15. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  16. Removal of Cu(II) ions from contaminated waters using a conducting microfiltration membrane.

    Science.gov (United States)

    Wang, Xueye; Wang, Zhiwei; Chen, Haiqin; Wu, Zhichao

    2017-10-05

    Efficient removal of toxic metals using low-pressure membrane processes from contaminated waters is an important but challenging task. In the present work, a conducting microfiltration membrane prepared by embedding a stainless steel mesh in the active layer of a polyvinylidene fluoride membrane is developed to remove Cu(II) ions from contaminated waters. Results showed that the conducting membrane had favorable electrochemical properties and stability as cathode. Batch tests showed that Cu(II) removal efficiency increased with the increase of voltages and leveled off with the further enhancement of electric field. The optimal voltages were determined to be 1.0V and 2.0V for the influent Cu(II) concentrations of 5mg/L and 30mg/L, respectively. X-ray photoelectron spectroscopy and X-ray diffraction results demonstrated the presence of Cu(0) and Cu(OH) 2 on the membrane surface. The removal mechanisms involved the intrinsic adsorption of membrane, electrosorption of membrane, adsorption of deposited layer, chemical precipitation of Cu(OH) 2 and deposition of Cu(0) which were aided by electrophoresis and electrochemical oxidation-reduction. Long-term tests showed that the major contributors for Cu(II) removal were the deposition of Cu(0) by electrochemical reduction-oxidation (47.3%±8.5%) and chemical precipitation (41.1%±0.2%), followed by electrosorption, adsorption by the fouling layer and membrane intrinsic sorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel.

    Science.gov (United States)

    Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T; Montal, Mauricio

    2012-01-13

    Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.

  18. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  19. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-08-01

    Full Text Available This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  20. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  1. Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode

    International Nuclear Information System (INIS)

    Zhybak, Mykhailo T.; Vagin, Mikhail Yu.; Beni, Valerio; Liu, Xianjie; Turner, Anthony P. F.; Dempsey, Eithne; Korpan, Yaroslav I.

    2016-01-01

    We describe a composite material for use in electrochemical oxygen reduction. A screen-printed electrode (SPE) was consecutively modified with electrodeposited copper, a Nafion membrane and electropolymerized polyaniline (PANi) to give an electrocatalytic composite of type PANi/Nafion/Cu_2O/SPE that displays good electrical conductivity at neutral pH values. It is found that the presence of ammonia causes complex formation with Cu(I), and this causes electroreduction of oxygen to result in an increased cathodic current. The finding was applied to the quantification of ammonium ions in the 1 to 1000 μM concentration range by amperometry at −0.45 V (vs. Ag/AgCl). This Faradaic phenomenon offers the advantage of direct voltammetric detection, one of the lowest known limits of detection (0.5 μM), and high sensitivity (250 mA∙M"−"1∙cm"−"2). It was applied to the determination of ammonium ion in human serum where it compared well with the photometric routine approach for clinical analysis using glutamate dehydrogenase. (author)

  2. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  3. The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells

    KAUST Repository

    Hou, Jie

    2015-01-01

    Two types of proton-blocking composites, La2NiO4+δ-LaNi0.6Fe0.4O3-δ (LNO-LNF) and Sm0.2Ce0.8O2-δ-LaNi0.6Fe0.4O3-δ (SDC-LNF), were evaluated as cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs) based on the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte, in order to compare and investigate the influence of two different oxygen transfer mechanism on the performance of the cathode for H-SOFCs. The X-ray diffraction (XRD) results showed that the chemical compatibility of the components in both compounds was excellent up to 1000°C. Electrochemical studies revealed that LNO-LNF showed lower area specific polarization resistances in symmetrical cells and better electrochemical performance in single cell tests. The single cell with LNO-LNF cathode generated remarkable higher maximum power densities (MPDs) and lower interfacial polarization resistances (Rp) than that with SDC-LNF cathode. Correspondingly, the MPDs of the single cell with the LNO-LNF cathode were 490, 364, 266, 180 mW cm-2 and the Rp were 0.103, 0.279, 0.587, 1.367 Ω cm2 at 700, 650, 600 and 550°C, respectively. Moreover, after the single cell with LNO-LNF cathode optimized with an anode functional layer (AFL) between the anode and electrolyte, the power outputs reached 708 mW cm-2 at 700°C. These results demonstrate that the LNO-LNF composite cathode with the interstitial oxygen transfer mechanism is a more preferable alternative for H-SOFCs than SDC-LNF composite cathode with the oxygen vacancy transfer mechanism.

  4. Increase of ionic conductivity in the microporous lithosilicate RUB-29 by Na-ion exchange processes

    International Nuclear Information System (INIS)

    Park, S.-H.; Senyshyn, A.; Paulmann, C.

    2007-01-01

    The ionic conductivity in the zeolite-like lithosilicate RUB-29 (Cs 14 Li 24 [Li 18 Si 72 O 172 ].14H 2 O [S.-H. Park, J.B. Parise, H. Gies, H. Liu, C.P. Grey, B.H. Toby, J. Am. Chem. Soc. 122 (2000) 11023-11024]) increases via simple ion-exchange processes, in particular when Na cations replace a part of Cs + and Li + of the material. The resulting ionic conductivity value of 3.2x10 -3 S cm -1 at 885 K is about two orders higher than that for the original material [S.-H. Park, J.B. Parise, M.E. Franke, T. Seydel, C. Paulmann, Micropor. Mesopor. Mater., in print ( (doi:10.1016/j.micromeso.2007.03.040) available online since April 19, 2007)]. The structural basis of a Na + -exchanged RUB-29 sample (Na-RUB-29) at 673 K could be elucidated by means of neutron powder diffraction. Rietveld refinements confirmed the replacement of Na + for both parts of Cs and Li cations, agreeing with idealized cell content, Na 8 Cs 8 Li 40 Si 72 O 172 . As a result of the incorporation of Na + in large pores, the number of Li + vacancies in dense Li 2 O-layers of the structure could increase. This can be one of the main reasons for the improved conductivity in Na-RUB-29. In addition, mobile Na cations may also contribute to the conductivity in Na-RUB-29 as continuous scattering length densities were found around the sites for Na in difference Fourier map. - Graphical abstract: Li 2 O-layers formed by edge- and corner-sharing LiO 4 - and LiO 3 -moieties in the zeolite-like lithosilicate RUB-29 provide optimal pathways for conducting Li + . The number of empty Li sites in this layer-like configuration could increase via 'simple' Na + -exchange processes, promoting fast Li motions

  5. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  6. Macrophages Under Low Oxygen Culture Conditions Respond to Ion Parametric Resonance Magnetic Fields

    Science.gov (United States)

    Macrophages, when entering inflamed tissue, encounter low oxygen tension due to the impairment of blood supply and/or the massive infiltration of cells that consume oxygen. Previously, we showed that such macrophages release more bacteriotoxic hydrogen peroxide (H202) when expose...

  7. Lactococcin G is a potassium ion-conducting, two-component bacteriocin.

    Science.gov (United States)

    Moll, G; Ubbink-Kok, T; Hildeng-Hauge, H; Nissen-Meyer, J; Nes, I F; Konings, W N; Driessen, A J

    1996-02-01

    Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.

  8. Simultaneous Determination of Different Anions in Milk Samples Using Ion Chromatography with Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Gülçin Gümüş Yılmaz

    2016-12-01

    Full Text Available The description of a simple method for simultaneous determination of chloride, nitrate, sulfate, iodide, phosphate, thiocyanate, perchlorate, and orotic acid in milk samples was outlined. The method involves the use of dialysis cassettes for matrix elimination, followed by ion chromatography on a high capacity anion exchange column with suppressed conductivity detection. The novelty of dialysis process was that it did not need any chemical and organic solvent for elimination of macromolecules such as fat, carbohydrates and proteins from milk samples. External standard calibration curves for these analytes were linear with great correlation coefficients. The relative standard deviations of analyte concentrations were acceptable both inter-day and intra-day evaluations. Under optimized conditions, the limit of detection (Signal-to-Noise ratio = 3 for chloride, phosphate, thiocyanate, perchlorate, iodide, nitrate, sulfate, and orotate was found to be 0.012, 0.112, 0.140, 0.280, 0.312, 0.516, 0.520, and 0.840 mg L−1, respectively. Significant results were obtained for various spiked milk samples with % recovery in the range of 93.88 - 109.75 %. The proposed method was successfully applied to milk samples collected from Istanbul markets. The advantages of the method described herein are reagent-free, simple, and reliable.

  9. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.

    Science.gov (United States)

    Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E

    2018-04-17

    The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.

  10. Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals

    International Nuclear Information System (INIS)

    Kobor, Diouma; Guiffard, Benoit; Lebrun, Laurent; Hajjaji, Abdelowahed; Guyomar, Daniel

    2007-01-01

    AC-impedance spectroscopic studies in the temperature range 550-700 deg. C are carried out on undoped and Mn doped PZN-PT single crystals grown by the flux method. The variation of dielectric permittivity with temperature at different frequencies shows normal ferroelectric and relaxor-like dependence for the doped and undoped crystals, respectively. Temperature-dependent spectroscopic modulus plots reveal a much broader peak for PZN-4.5PT + 1%Mn compared with that for PZN-4.5PT, which is different from the dielectric behaviour of the doped one. Complex modulus imaginary part (Z-prime) versus real part (Z') plots fit well with one semicircle thus indicating only bulk contribution. The relaxation observed in the spectroscopic plots was assigned to mobile relaxor species such as oxygen vacancies and ions. No such relaxation could be observed for PZN-4.5PT + 1%Mn in the dielectric measurements. For both undoped and Mn doped crystals, the conduction behaviour was modelled by the universal dynamic response equation and by the NTC (negative temperature coefficient) materials resistance-temperature behaviour. A large difference in behaviour was found between the two single crystals such as the thermistor coefficients and the activation energy values, which could explain the increase in the thermal stability observed in the Mn doped PZN-PT single crystals by many studies

  11. thermal, electrical and structural characterization of fast ion conducting glasses (Ag Br)x(AgPO)1-x

    International Nuclear Information System (INIS)

    Kartini, E.; Yufus, S.; Priyanto, T; Indayaningsih, N; Collins, M F

    2001-01-01

    Fast ion conducting glasses are of considerable technological interest because of their possible application in batteries, sensors, and displays. One of the main scientific challenges is to explain how the disordered structure of the glass is related to the high ionic conductivity that can be achieved at ambient temperature. Fast ion conducting glasses (AgBr) x (AgPO3) 1- x with x=0.0; 0.2; 0.3; 0.4; 0.5; 0.7; and 0.85 were prepared by rapid quenching. The studies of structure, thermal property and electrical conductivity have been made. The X-ray diffraction patterns of this system show that the sample are glasses for x 0.5. The neutron diffraction data shows that all AgBr doped glasses exhibit a strong and relatively sharp diffraction peak at anomalously low momentum transfer value, Q∼ 0.7 Α - 1. The low Q-peak is not observed in AgPO 3 glass, and in the X-ray data. The results of electrical conductivity show that the conduction is essentially ionic and due to silver ions alone. The logarithm of the ionic conductivity increases with increasing AgBr mole fraction, and reaches maximum for x = 0.5. The thermal property results measured by differential scanning calorimetric show that the temperatures of the glass transition, the crystallization and the melt reach minimum for the glass with composition x 0.5. We conclude that there appears to be a relation between higher conductivity at ambient temperature, and the low Q-peak. Based on this investigation a better fast ion conducting glass proposed is (AgBr) 0 .5(AgPO 3 ) 0 .5 with the conductivity of 8 x 10 - 5 S/cm

  12. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating costs, as well higher product selectivities than traditional technologies. The oxygen permeation rate through a given ITM is defined by the membrane temperature and oxygen chemical potential difference across it. Both of these parameters can be strongly influenced by thermochemical reactions occurring in the vicinity of the membrane, though in the literature they are often characterized in terms of the well mixed product stream at the reactor exit. This work presents the development of a novel ITM reactor for the fundamental investigation of the coupling between fuel conversion and oxygen permeation under well defined fluid dynamic and thermodynamic conditions, including provisions for spatially resolved, in-situ investigations. A planar, finite gap stagnation flow reactor with optical and probe access to the reaction zone is used to facilitate in-situ measurements and cross-validation with detailed numerical simulations. Using this novel reactor, baseline measurements are presented to elucidate the impact of the sweep gas fuel (CH4) fraction on the oxygen permeation and fuel conversion. In addition, the difference between well-mixed gas compositions measured at the reactor outlet and those measured in the vicinity of the membrane surface are discussed, demonstrating the unique utility of the reactor. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  13. Nuclear tracks in CR-39 produced by carbon, oxygen, aluminium and titanium ions.

    Science.gov (United States)

    Rickards, J; Romo, V; Golzarri, J I; Espinosa, G

    2002-01-01

    This work describes the response of CR-39 (allyl diglycol polycarbonate) to different ions (C, O, Al and Ti) produced by the Instituto de Fisica 3 MV 9SDH-2 Pelletron accelerator and backscattered from a thin Au film on a C support. The ion energies were chosen in series such that the ranges of the different ions in the detector were 2, 3, 4, 5, 6, 7 and 8 microm respectively for each series. Once exposed, the detectors were etched with a solution of 6.25 M KOH at 60 degrees C, and the reading was carried out using a digital image analysis system. An analysis of the measured track diameters of all the types of ions indicates that, for a given range, track kinetics are independent of type of ion, energy and stopping power.

  14. A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Taiqiang; Pan, Likun; Liu, Xinjuan; Sun, Zhuo

    2013-01-01

    Three nanocarbon materials (0 D acetylene black (AB), 1 D carbon nanotubes (CNTs) and 2 D reduced graphene oxide (RGO)) were used as conductive additives (CAs) in the mesocarbon microbead anodes for lithium ion batteries. The electrochemical performances of the electrodes were investigated. The results show that the CAs have a significant impact on the electrode performance because they can influence the electron conduction and lithium ion transportation within the electrode. The electrode with RGO achieves a maximum capacity of 387 mAh g −1 after 50 cycles at a current density of 50 mA g −1 , much higher than those of the electrodes with AB (334 mAh g −1 ) and CNTs (319 mAh g −1 ). The improvement should be mainly ascribed to the “plane-to-point” conducting network formed in the electrode with 2 D RGO which can favor the electron conduction and enhance the lithium ion transportation. - Highlights: • Three carbon materials were used as additives in the electrodes of Li ion battery. • The electrochemical performances of the electrodes were comparatively investigated. • The carbon additives have a significant impact on the electrode performance. • RGO additive acts as a bridge to form a “plane-to-point” conducting network. • The electrode with RGO exhibits better performance than those with other additives

  15. Sub-keV secondary ion mass spectrometry depth profiling: comparison of sample rotation and oxygen flooding

    International Nuclear Information System (INIS)

    Liu, R.; Wee, A.T.S.

    2004-01-01

    Following the increasingly stringent requirements in the characterization of sub-micron IC devices, an understanding of the various factors affecting ultra shallow depth profiling in secondary ion mass spectrometry (SIMS) has become crucial. Achieving high depth resolution (of the order of 1 nm) is critical in the semiconductor industry today, and various methods have been developed to optimize depth resolution. In this paper, we will discuss ultra shallow SIMS depth profiling using B and Ge delta-doped Si samples using low energy 0.5 keV O 2 + primary beams. The relationship between depth resolution of the delta layers and surface topography measured by atomic force microscopy (AFM) is studied. The effect of oxygen flooding and sample rotation, used to suppress surface roughening is also investigated. Oxygen flooding was found to effectively suppress roughening and gives the best depth resolution for B, but sample rotation gives the best resolution for Ge. Possible mechanisms for this are discussed

  16. Uptake of vaporized molybdenum and cesium tracers by molten oxide mixtures as function of free oxygen ion activity

    International Nuclear Information System (INIS)

    Carmon, B.

    1975-11-01

    Molten mixtures of oxides containing Ca, Fe, Al, Na and Si were exposed to vaporized Mo-99 and Cs-137 tracers at 1100 and 1300 deg C. Uptake values at 1300 deg C were extrapolated to short heating times. The obtained ''attachment coefficients'' for that temperature are shown to have the relationship (Mo) approximately equal to (Cs)sup(-1/2). The chemical composition of the melts and their oxygen to metal ratio found to affect the uptake of both tracers. This is associated with the cationic field strengths and the free oxygen ion activities in the mixtures. Molybdenum and cesium apparently behave like glass-network forming and glass-network modifying species, respectively. (author)

  17. Electrical conductivity and equation of state of liquid nitrogen, oxygen, benzene, and 1-butene shocked to 60 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.C.

    1986-10-08

    Measurements are reported for the electrical conductivity of liquid nitrogen (N/sub 2/), oxygen (O/sub 2/) and benzene (C/sub 6/H/sub 6/), and Hugoniot equation of state of liquid 1-butene (C/sub 4/H/sub 8/) under shock compressed conditions. The conductivity data span 7 x 10/sup -4/ to 7 x 10/sup 1/ ..cap omega../sup -1/cm/sup -1/ over a dynamic pressure range 18.1 to 61.5 GPa and are discussed in terms of amorphous semiconduction models which include such transport phenomena as hopping, percolation, pseudogaps, and metallization. Excellent agreement is found between the equation-of-state measurements, which span a dynamic pressure range 12.3 to 53.8 GPa, and Ree's calculated values which assume a 2-phase mixture consisting of molecular hydrogen and carbon in a dense diamond-like phase. There is a 2-1/2 fold increase in the thermal pressure contribution over a less dense, stoichiometrically equivalent liquid. 90 refs., 48 figs., 8 tabs.

  18. Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Ushikubo, T.; Nakashima, D.; Kita, N.T.

    grains and some of them were derived from precursors related to refractory inclusions. However, most relict olivine grains show oxygen isotope ratios that overlap with those in homogeneous chondrules. The delta sup(17)O values of four barred olivine...

  19. Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen Coulometric titration. II. Oxygen nonstoichiometry and defect model for La0.8Sr0.2CoO3-d

    NARCIS (Netherlands)

    Lankhorst, M.H.R.; Lankhorst, M.H.R.; Bouwmeester, Henricus J.M.

    1997-01-01

    The oxygen nonstoichiometry of La0.8Sr0.2CoO3-delta has been determined as a function of oxygen partial pressure and temperature using a high-temperature coulometric titration cell. For each measured value of the oxygen chemical potential, the oxygen nonstoichiometry is found to be nearly

  20. Removal method of fluorescent dyes as pretreatment for measurement of major ion concentrations and hydrogen and oxygen isotopic ratios

    International Nuclear Information System (INIS)

    Nakata, Kotaro; Hasegawa, Takuma; Kashiwaya, Koki; Kodama, Hiroki; Miyajima, Tohru

    2011-01-01

    The major ion concentration and isotope ratio of hydrogen and oxygen can provide important information for migration of groundwater. Sometimes, quantitative estimation of these chemical and isotopic characteristics of solution is necessary for groundwater containing fluorescent dyes, which are used in drilling borehole and tracer experiments. However, sometimes correct estimation is disturbed by dyes and they become a cause of troubles for measurement equipments. Thus development of method to remove dyes is required so that the characteristics of groundwater can be estimated without the negative effect of dyes on measurement or equipments. In this study, removal of four representative dyes (Uranin, Eosin, Naphthalenesulfonic acid sodium(NAP) and Amino G acid potassium salt (AG)) was investigated. Uranin and Eosin were found to be removed by non-ionic synthetic resin: HP2MG. 99.99% of the dyes were removed from initial solutions containing dyes with 10 mg/L after contact with resin, while the contact had little effect on ion concentrations and oxygen and hydrogen isotope ratios. Thus the chemical and isotopic characteristics of groundwater samples containing Uranin and Eosin can be obtained by using the HP2MG resin. On the other hand, the NAP and AG were found to be difficult to remove by the HP2MG resin but they were able to be removed by anion exchange resin (Dowex 1x8). Though contact of solution with Dowex 1x8 did not affect cation concentrations and hydrogen and oxygen isotope ratios, anion concentrations were changed by the contact. Therefore the Dowex 1x8 is only applicable to estimation of the cation concentrations and isotope ratio of hydrogen and oxygen. When both anion and cation concentrations from the samples were necessary, Uranin or Eosin were recommended as a tracer in drilling or tracer experiments. (author)

  1. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.

    Science.gov (United States)

    Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M

    2017-10-24

    Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

  2. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni{sup 12+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-08-15

    In this paper, we report the 160 MeV Ni{sup 12+} swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10{sup 10}, 1 × 10{sup 11}, 5 × 10{sup 11} and 1 × 10{sup 12} ions/cm{sup 2} have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M{sup ″}) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R{sub ω}) of the charge carriers decreases with increasing the ion fluence. Binding energy (W{sub m}) calculations depict that polarons are the dominant charge carriers.

  3. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    Science.gov (United States)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact. PMID:24418812

  4. A comparative study of 30MeV boron4+ and 60MeV oxygen8+ ion irradiated Si NPN BJTs

    International Nuclear Information System (INIS)

    Kumar, M. Vinay; Krishnaveni, S.; Yashoda, T.; Dinesh, C. M.; Krishnakumar, K. S.; Jayashree, B.; Ramani

    2015-01-01

    The impact of 30MeV boron 4+ and 60MeV oxygen 8+ ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor

  5. Amorphous Fast Ion Conducting Systems, Part 1. Structure and Properties of Mid and Far IR Transmitting Materials, Part 2

    Science.gov (United States)

    1991-10-31

    Glasses with high conductivities can also be formed with the Lewis acids GeO 2 (11 ) and no doubt Bi 20 3, TeO2 , etc., but these have been less...P age 3 1. Mechanical Relaxation and Relation to Electrical Relaxation in Fast Ion-Conducting Glasses ...relaxation although considerable information was available for the classical alkali silicate and borate glasses . Our program was to utilize the rheovibron

  6. The molecular mechanism of multi-ion conduction in K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Gwan, J.F.

    2007-01-19

    Steered molecular dynamics (SMD) simulation method is applied to a fully solvated membrane-channel model for studying the ion permeation process in potassium channels. The channel model is based on the crystallographic structure of a prokaryotic K{sup +} channel- the KcsA channel, which is a representative of most known eukaryotic K{sup +} channels. It has long been proposed that the ion transportation in a conventional K{sup +}-channel follows a multi-ion fashion: permeating ions line in a queue in the channel pore and move in a single file through the channel. The conventional view of multi-ion transportation is that the electrostatic repulsion between ions helps to overcome the attraction between ions and the channel pore. In this study, we proposed two SMD simulation schemes, referred to 'the single-ion SMD' simulations and 'the multi-ion SMD' simulations. Concerted movements of a K-W-K sequence in the selectivity filter were observed in the single-ion SMD simulations. The analysis of the concerted movement reveals the molecular mechanism of the multi-ion transportation. It shows that, rather than the long range electrostatic interaction, the short range polar interaction is a more dominant factor in the multi-ion transportation. The polar groups which play a role in the concerted transportation are the water molecules and the backbone carbonyl groups of the selectivity filter. The polar interaction is sensitive to the relative orientation of the polar groups. By changing the orientation of a polar group, the interaction may switch from attractive to repulsive or vice versa. By this means, the energy barrier between binding sites in the selectivity filter can be switched on and off, and therefore the K{sup +} may be able to move to the neighboring binding site without an external driving force. The concerted transportation in the selectivity filter requires a delicate cooperation between K{sup +}, waters, and the backbone carbonyl groups. To

  7. Ionic conductivity of metal oxides : an essential property for all-solid-state Lithium-ion batteries

    NARCIS (Netherlands)

    Chen, C.; Eichel, R.-A.; Notten, P.H.L.

    2017-01-01

    Essential progress has been made for adopting metal oxides (MeO) in various energy storage and energy conversion applications. Among these, utilizing MeO in Lithium-ions batteries (LIBs) seems to be one of the most promising applications. In particular, conductive Li-containing oxides or

  8. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    Science.gov (United States)

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  9. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2012-01-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity

  10. Conductivity enhancement of ion tracks in tetrahedral amorphous carbon by doping with N, B, Cu and Fe

    International Nuclear Information System (INIS)

    Krauser, J.; Nix, A.-K.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.

    2012-01-01

    Conducting ion tracks are formed when high-energy heavy ions (e.g. 1 GeV Au) pass through tetrahedral amorphous carbon (ta-C). These nanowires with a diameter of about 8 nm are embedded in the insulating ta-C matrix and of interest for various nanotechnological applications. Usually the overall conductivity of the tracks and the current/voltage characteristics (Ohmic or non-Ohmic) vary strongly from track to track, even when measured on the same sample, indicating that the track formation is neither complete nor homogeneous. To improve the track conductivity, doping of ta-C with N, B, Cu, or Fe is investigated. Beneficial changes in track conductivity after doping compete with a conductivity increase of the surrounding matrix material. Best results are achieved by incorporation of 1 at.% Cu, while for different reasons, the improvement of the tracks remains moderate for N, B, and Fe doping. Conductivity enhancement of the tracks is assumed to develop during the ion track formation process by an increased number of localized states which contribute to the current transport.

  11. Incorporation of transition metal ions and oxygen generation during anodizing of aluminium alloys

    International Nuclear Information System (INIS)

    Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G.E.

    2004-01-01

    Enrichment of nickel at the alloy/film interface and incorporation of nickel species into the anodic film have been examined for a sputtering-deposited Al-1.2at.%Ni alloy in order to assist understanding of oxygen generation in barrier anodic alumina films. Anodizing of the alloy proceeds in two stages similarly to other dilute aluminium alloys, for example Al-Cr and Al-Cu alloys, where the Gibbs free energies per equivalent for formation of alloying element oxide exceeds the value for alumina. In the first stage, a nickel-free alumina film is formed, with nickel enriching in an alloy layer, 2 nm thick, immediately beneath the anodic oxide film. In the second stage, nickel atoms are oxidized together with aluminium, with oxygen generation forming gas bubbles within the anodic oxide film. This stage commences after accumulation of about 5.4 x 10 15 nickel atoms cm -2 in the enriched alloy layer. Oxygen generation also occurs when a thin layer of the alloy, containing about 2.0 x 10 19 nickel atoms m -2 , on electropolished aluminium, is completely anodized, contrasting with thin Al-Cr and Al-Cu alloy layers on electropolished aluminium, for which oxygen generation is essentially absent. A mechanism of oxygen generation, based on electron impurity levels of amorphous alumina and local oxide compositions, is discussed in order to explain the observations

  12. Comparison of six-minute walking tests conducted with and without supplemental oxygen in patients with chronic obstructive pulmonary disease and exercise-induced oxygen desaturation

    International Nuclear Information System (INIS)

    Ozalevli, S.; Ozden, A.; Gocen, Z.; Cimrin, Arif Hikmet

    2007-01-01

    There are contradictory reports in the literature on the supplemental oxygen administered before or after exercise tests. In light of this, we compared the results of 6-minute walking tests performed in room-air conditions (A6MWT) in patients with supplemental oxygen (O6MWT) in patients with chronic obstructive pulmonary disease (COPD) and exercise-induced oxygen desaturation. Thirty-one patients with COPD were included in the study. The A6MWT and O6MWT were performed in randomized order on each patient. During the tests, severity dyspenia and tiring of the leg were evaluated by the Modified Borg Scale. Heart rate and pulsed oxygen saturation and blood pressure were measured by pulse oximeter. Walking distance was longer with the O6MWT than with the A6MWT (P=0.001). The O6MWT resulted in a smaller increase in dyspnea, leg fatigue and heart rate and a smaller drop in pulsed saturation than the A6MWT (P<0.05). The walking distance with O6MWT correlated with respiratory function and hemodynamic parameters (P<0.05). The O6MWT, which produced less hemodynamic stress and was safer than the A6MWT, might provide more accurate information on exercise limitations for patients with COPD. These results suggest that the O6MWT can be used as a standard walking exercise test for patients with COPd and exercise-induced oxygen desaturation. (author)

  13. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Yingbing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, Dalaver H.; Chaieb, Saharoui; Leseman, Zayd Chad

    2015-01-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties

  14. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  15. Influence of oxygen on the ion-beam synthesis of silicon carbide buried layers in silicon

    International Nuclear Information System (INIS)

    Artamanov, V.V.; Valakh, M.Ya.; Klyui, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of silicon structures with silicon carbide (SiC) buried layers produced by high-dose carbon implantation followed by a high-temperature anneal are investigated by Raman and infrared spectroscopy. The influence of the coimplantation of oxygen on the features of SiC buried layer formation is also studied. It is shown that in identical implantation and post-implantation annealing regimes a SiC buried layer forms more efficiently in CZ Si wafers or in Si (CZ or FZ) subjected to the coimplantation of oxygen. Thus, oxygen promotes SiC layer formation as a result of the formation of SiO x precipitates and accommodation of the volume change in the region where the SiC phase forms. Carbon segregation and the formation of an amorphous carbon film on the SiC grain boundaries are also discovered

  16. Solar-wind interactions with the Moon: role of oxygen ions

    International Nuclear Information System (INIS)

    Mukherjee, N.R.

    1979-01-01

    The solar-wind interacts directly with the lunar surface due to tenuous atmosphere and magnetic field. The interaction results in an almost complete absorption of the solar-wind corpuscles producing no upstream bowshock but a cavity downstream. The solar-wind oxygen ionic species induce and undergo a complex set of reactions with the elements of the lunar minerals and the solar-wind derived trapped gases. In this paper, the long-term concentration and the role of oxygen derived from the solar-wind is discussed. (Auth.)

  17. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  18. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Jiashen Meng; Chaojiang Niu; Xiong Liu; Ziang Liu; Hongliang Chen; Xuanpeng Wang; Jiantao Li

    2016-01-01

    Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis,chemical sensing,drug delivery,and energy storage.However,the controlled synthesis of multilevel nanotubes remains a great challenge.Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment.This versatile strategy can be effectively applied to fabricate wire-in-tube and tubein-tube nanotubes of various metal oxides.These multilevel nanotubes possess a large specific surface area,fast mass transport,good strain accommodation,and high packing density,which are advantageous for lithium-ion batteries (LIBs)and the oxygen reduction reaction (ORR).Specifically,shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh.g-1 at a high rate of 2 A.g-1,maintaining 89% of the latter after 500 cycles.Further,as an oxygen reduction reaction catalyst,these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s,which is higher than that of commercial Pt/C (81%).Therefore,this feasible method may push the rapid development of one-dimensional (1D) nanomaterials.These multifunctional nanotubes have great potential in many frontier fields.

  19. Composition, structure and morphology of oxide layers formed on austenitic stainless steel by oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Anandan, C.; Rajam, K.S.

    2007-01-01

    Oxygen ions were implanted in to austenitic stainless steel by plasma immersion ion implantation at 400 deg. C. The implanted samples were characterized by XPS, GIXRD, micro-Raman, AFM, optical and scanning electron microscopies. XPS studies showed the presence of Fe in elemental, as Fe 2+ in oxide form and as Fe 3+ in the form of oxyhydroxides in the substrate. Iron was present in the oxidation states of Fe 2+ and Fe 3+ in the implanted samples. Cr and Mn were present as Cr 3+ and Mn 2+ , respectively, in both the substrate and implanted samples. Nickel remained unaffected by implantation. GIXRD and micro-Raman studies showed the oxide to be a mixture of spinel and corundum structures. Optical and AFM images showed an island structure on underlying oxide. This island structure was preserved at different thicknesses. Further, near the grain boundaries more oxide growth was found. This is explained on the basis of faster diffusion of oxygen in the grain boundary regions. Measurement of total hemispherical optical aborptance, α and emittance, ε of the implanted sample show that it has good solar selective properties

  20. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Wei, Chaochen [Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States)

    2014-08-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate.

  1. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    International Nuclear Information System (INIS)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd; Wei, Chaochen; Shao, Lin

    2014-01-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate

  2. Atomic-Oxygen-Durable and Electrically-Conductive CNT-POSS-Polyimide Flexible Films for Space Applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Murray, Vanessa J; Marshall, Brooks C; Qian, Min; Minton, Timothy K; Hanein, Yael

    2015-06-10

    In low Earth orbit (LEO), hazards such as atomic oxygen (AO) or electrostatic discharge (ESD) degrade polymeric materials, specifically, the extensively used polyimide (PI) Kapton. We prepared PI-based nanocomposite films that show both AO durability and ESD protection by incorporating polyhedral oligomeric silsesquioxane (POSS) and carbon nanotube (CNT) additives. The unique methods that are reported prevent CNT agglomeration and degradation of the CNT properties that are common in dispersion-based processes. The influence of the POSS content on the electrical, mechanical, and thermo-optical properties of the CNT-POSS-PI films was investigated and compared to those of control PI and CNT-PI films. CNT-POSS-PI films with 5 and 15 wt % POSS content exhibited sheet resistivities as low as 200 Ω/□, and these resistivities remained essentially unchanged after exposure to AO with a fluence of ∼2.3 × 10(20) O atoms cm(-2). CNT-POSS-PI films with 15 wt % POSS content exhibited an erosion yield of 4.8 × 10(-25) cm(3) O atom(-1) under 2.3 × 10(20) O atoms cm(-2) AO fluence, roughly one order of magnitude lower than that of pure PI films. The durability of the conductivity of the composite films was demonstrated by rolling film samples with a tight radius up to 300 times. The stability of the films to thermal cycling and ionizing radiation was also demonstrated. These properties make the prepared CNT-POSS-PI films with 15 wt % POSS content excellent candidates for applications where AO durability and electrical conductivity are required for flexible and thermally stable materials. Hence, they are suggested here for LEO applications such as the outer layers of spacecraft thermal blankets.

  3. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Shao, Zongping; Ran, Ran; Chen, Zhihao; Zeng, Pingying; Gu, Hongxia; Jin, Wanqin; Xu, Nanping [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, JiangSu (China)

    2007-06-30

    A double-layer composite electrode based on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} + Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 {omega} cm{sup 2} was reached at 800 C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm{sup -2} at 700 C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of {proportional_to}100%. (author)

  4. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  5. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  6. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  7. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    Science.gov (United States)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  8. Doubly versus singly positively charged oxygen ions back-scattered from a silicon surface under dynamic O2+ bombardment

    International Nuclear Information System (INIS)

    Franzreb, Klaus; Williams, Peter; Loerincik, Jan; Sroubek, Zdenek

    2003-01-01

    Mass-resolved (and emission-charge-state-resolved) low-energy ion back-scattering during dynamic O 2 + bombardment of a silicon surface was applied in a Cameca IMS-3f secondary ion mass spectrometry (SIMS) instrument to determine the bombarding energy dependence of the ratio of back-scattered O 2+ versus O + . While the ratio of O 2+ versus O + drops significantly at reduced bombarding energies, O 2+ back-scattered from silicon was still detectable at an impact energy (in the lab frame) as low as about 1.6 keV per oxygen atom. Assuming neutralization prior to impact, O 2+ ion formation in an asymmetric 16 O→ 28 Si collision is expected to take place via 'collisional double ionization' (i.e. by promotion of two outer O 2p electrons) rather than by the production of an inner-shell (O 2s or O 1s) core hole followed by Auger-type de-excitation during or after ejection. A molecular orbital (MO) correlation diagram calculated for a binary 'head-on' O-Si collision supports this interpretation

  9. Oxygen- and hydrogen-permeation measurements on-mixed conducting SrFeCo{sub 0.5}O{sub y} ceramic membrane material

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E.; Casagrande, E.; La Barbera, A. [ENEA UTS MAT, CR Casaccia, 00060 S.M. di Galeria, Roma (Italy); Alvisi, M. [ENEA UTS MAT, CR Brindisi, 72100 Brindisi (Italy); Bezzi, G.; Mingazzini, C. [ENEA UTS MAT, CR Faenza, 48018 Faenza (Italy)

    2008-02-15

    The SrFeCo{sub 0.5}O{sub y} system combines high electronic/ionic conductivity with appreciable oxygen permeability at elevated temperatures. This system has potential use in high-temperature electrochemical applications such as solid oxide fuel cells, batteries, sensors, and oxygen separation membranes. Dense ceramic membranes of SrFeCo{sub 0.5}O{sub y} are prepared by pressing a ceramic powder prepared by using a sol-gel combustion technique. Oxygen and hydrogen permeation at high temperature on this material are studied. Measurements are conducted using a time-dependent permeation method at the temperature in the range of 1073-1273 K with oxygen- and hydrogen-driving pressures in the range (3 x 10{sup 2})-(1 x 10{sup 5}) Pa (300-1000 mbar). The maximum oxygen-permeated flux at 1273 K is 6.5 x 10{sup -3} mol m{sup -2} s{sup -1}. The activation energies for the O{sub 2}-permeation fluxes and diffusivities are 240 and 194 kJ/mol, respectively. Due to the high fragility, the high temperature for the measurements and the high oxygen permeation through such material, a special membrane holder, and compression sealing system have been designed and realized for the permeation apparatus. (author)

  10. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W; Lippert, Thomas; Traversa, Enrico; Kilner, John A

    2015-01-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used

  11. Optimisation of oxygen ion transport in materials for ceramic membrane devices.

    Science.gov (United States)

    Kilner, J A

    2007-01-01

    Oxygen transport in ceramic oxide materials has received much attention over the past few decades. Much of this interest has stemmed from the desire to construct high temperature electrochemical devices for energy conversion, an example being the solid oxide fuel cell. In order to achieve high performance for these devices, insights are needed in how to achieve optimum performance from the functional components such as the electrolytes and electrodes. This includes the optimisation of oxygen transport through the crystal lattice of electrode and electrolyte materials and across the homogeneous (grain boundary) and heterogeneous interfaces that exist in real devices. Strategies are discussed for the optimisation of these quantities and current problems in the characterisation of interfacial transport are explored.

  12. Ion-conducting lithium bis(oxalato)borate-based polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Dominko, R.; Nádherná, Martina; Jakubec, Ivo

    2009-01-01

    Roč. 189, č. 1 (2009), s. 133-138 ISSN 0378-7753 R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * 2-ethoxyethyl methacrylate * lithium -ion battery Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  13. A universal carbonate ion effect on stable oxygen isotope ratios in unicellular planktonic calcifying organisms

    OpenAIRE

    Ziveri, P.; Thoms, S.; Probert, I.; Geisen, M.; Langer, H.

    2012-01-01

    The oxygen isotopic composition (δ18O) of calcium carbonate of planktonic calcifying organisms is a key tool for reconstructing both past seawater temperature and salinity. The calibration of paloeceanographic proxies relies in general on empirical relationships derived from field experiments on extant species. Laboratory experiments have more often than not revealed that variables other than the target parameter influence the proxy signal, which makes proxy c...

  14. Influence of the residual oxygen in the plasma immersion ion implantation (PI3) processing of materials

    International Nuclear Information System (INIS)

    Ueda, M.; Silva, A.R.; Mello, Carina B.; Silva, G.; Reuther, H.; Oliveira, V.S.

    2011-01-01

    In this work, we investigated the effects of the contaminants present in the vacuum chamber of the PI3 system, in particular, the residual oxygen, which results in the formation of the oxide compounds on the surface and hence is responsible for the high implantation energies required to achieve reasonably thick treated layers. We used a mass spectrometer (RGA) with a quadruple filter to verify the composition of the residual vacuum and pressure of the elements present in the chamber. Initially we found a high proportion of residual oxygen in a vacuum with a pressure of 1 × 10 −3 Pa. Minimizing the residual oxygen percentage in about 80%, by efficient cleaning of the chamber walls and by improving the gas feeding process, we mitigated the formation of oxides during the PI3 process. Therefore we achieved a highly efficient PI3 processing obtaining implanted layers reaching about 50 nm, even in cases such as an aluminum alloy, where is very difficult to nitrogen implant at low energies. We performed nitrogen PI3 treatment of SS304 and Al7075 using pulses of only 3 kV and 15 × 10 −6 s at 1 kHz with an operating pressure of 1 Pa.

  15. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-Tc superconductors

    International Nuclear Information System (INIS)

    Creager, W.N.

    1991-09-01

    The far infrared reflectance and conductivity of (Ta 1-x Nb x Se 4 ) 2 I and TaS 3 have been measured to determine the origin of a huge infrared resonance that dominates the charge density wave (CDW) dynamics along with the pinned acoustic phason mode in the related materials (TaSe 4 ) 2 I and K 0. 3 MoO 3 . The measurements cover frequencies from 3 to 700cm -1 and the temperature range from 15K to 300K. In the niobium-doped alloys (Ta 1-x Nb x Se 4 ) 2 I, the size and frequency of the giant infrared mode remain nearly constant as the impurity concentration x is increased. For TaS 3 , the pinned acoustic phason near 0.5cm -1 dominates var-epsilon(ω) and an additional small mode lies near 9cm -1 . The latter mode is much smaller than the infrared mode in other CDW materials. These results rule out several models of a ''generic infrared mode'' in CDW excitations. They are compared in detail to the predictions of a recent theory attributing the infrared mode to a bound collective mode localized at impurity sites within the crystal. The transmittance of K 0.3 MoO 3 has been measured at 1.2K with a strong dc electric field applied across the crystal. Under these conditions, the charge density wave depins abruptly and carries large currents with near-zero differential resistance. For some samples, the low-frequency transmittance is enhanced slightly when the CDW depins. The magnitude of the oxygen isotope effect in the high-T c superconductor YBa 2 Cu 3 O 7 has been determined by substitution of 18 O for 16 O. A series of cross-exchanges was performed on high-quality polycrystalline specimens to eliminate uncertainties due to sample heat treatments and sample inhomogeneities

  16. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  17. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  18. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  19. Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2

    International Nuclear Information System (INIS)

    Hayamizu, Kikuko; Aihara, Yuichi

    2004-01-01

    Two binary mixed solvent systems typically used for lithium batteries were studied by measuring the self-diffusion coefficients of the solvent, lithium ion and anion, independently by using the multi-nuclear pulsed field-gradient spin-echo (PGSE) 1 H, 7 Li and 19 F NMR method. One system was propylene carbonate (PC) and diethyl carbonate (DEC) system and the other binary system was PC and 1,2-dimethoxyethane (DME), and the lithium salt used was LiN(SO 2 CF 3 ) 2 (LiTFSI). The relative ratio of the PC was changed from zero (pure DME and DEC) to 100% (pure PC) in the DME-PC and the DEC-PC systems, respectively. The self-diffusion coefficients of the solvents were measured with and without the lithium salt, and the two solvents had almost the same diffusion coefficient in the DEC-PC system, while DME diffused faster than PC in the DME-PC system. In the electrolytes the solvents diffused the fastest, followed by the anion with the lithium ion diffusing the slowest. The degree of ion dissociation was estimated for each electrolyte by comparing the ionic conductivities estimated from the ion diffusion and those measured directly by the electrochemical method

  20. FY 1998 annual report on the development of novel, high-activity oxygen electrode by ion-implantation; 1998 nendo ion chunyuho ni yoru shinkina kokassei sanso denkyoku no kaihatsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    An attempt has been made to develop an electrode material having high activity for oxygen generating reactions by ion-implantation, which is used to form the bulk defects (fine gaps at the atomic level) on the electrode surface, considered to serve as the active sites. It is found that implantation of the Co{sup +} or Zn{sup +} ion into a compound oxide electrode of Ti and Ru is accompanied by decreased overvoltage for oxygen generation by 50 to 100 mV. The Co{sup +} and Zn{sup +} ions, when implanted, cause damage of similar density in the thin film, decreasing its overvoltage to a similar extent, in spite of their different chemical properties, from which it is considered that the effect of ion implantation is not to change chemical properties of the film but to form a structural defect therein. A thin-film electrode of ruthenium dioxide, which is considered to be the oxygen generating electrode of the highest activity at present, is prepared and implanted with the Ru{sup +} ion, to observe the effect. The ion implantation also decreases the overvoltage by 50 to 70 mV, demonstrating its effect. The same principle is expected to be applicable to development of high-activity oxygen reducing electrode (electrode for fuel cell). (NEDO)

  1. Ionic conduction in 70-MeV C5+-ion-irradiated poly(vinylidenefluoride- co-hexafluoropropylene)-based gel polymer electrolytes

    International Nuclear Information System (INIS)

    Saikia, D.; Kumar, A.; Singh, F.; Avasthi, D.K.; Mishra, N.C.

    2005-01-01

    In an attempt to increase the Li + -ion diffusivity, poly(vinylidenefluoride-co-hexafluoropropylene)-(propylene carbonate+diethyl carbonate)-lithium perchlorate gel polymer electrolyte system has been irradiated with 70-MeV C 5+ -ion beam of nine different fluences. Swift heavy-ion irradiation shows enhancement in ionic conductivity at lower fluences and decrease in ionic conductivity at higher fluences with respect to unirradiated gel polymer electrolyte films. Maximum room-temperature (303 K) ionic conductivity is found to be 2x10 -2 S/cm after irradiation with a fluence of 10 11 ions/cm 2 . This interesting result could be attributed to the fact that for a particular ion beam with a given energy, a higher fluence provides critical activation energy for cross linking and crystallization to occur, which results in the decrease in ionic conductivity. X-ray-diffraction results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at higher fluences (>10 11 ions/cm 2 ). Analysis of Fourier-transform infrared spectroscopy results suggests the bond breaking at a fluence of 5x10 9 ions/cm 2 and cross linking at a fluence of 10 12 ions/cm 2 and corroborate conductivity and x-ray-diffraction results. Scanning electron micrographs exhibit increased porosity of the polymer electrolyte after ion irradiation

  2. Nanostructuring of conduction channels in (In,Ga)As-InP heterostructures: Overcoming carrier generation caused by Ar ion milling

    Science.gov (United States)

    Hortelano, V.; Weidlich, H.; Semtsiv, M. P.; Masselink, W. T.; Ramsteiner, M.; Jahn, U.; Biermann, K.; Takagaki, Y.

    2018-04-01

    Nanometer-sized channels are fabricated in (In,Ga)As-InP heterostructures using Ar ion milling. The ion milling causes spontaneous creation of nanowires, and moreover, electrical conduction of the surface as carriers is generated by sputtering-induced defects. We demonstrate a method to restore electrical isolation in the etched area that is compatible with the presence of the nanochannels. We remove the heavily damaged surface layer using a diluted HCl solution and subsequently recover the crystalline order in the moderately damaged part by annealing. We optimize the HCl concentration to make the removal stop on its own before reaching the conduction channel part. The lateral depletion in the channels is shown to be almost absent.

  3. Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2

    Science.gov (United States)

    Fraser, B. J.; Samson, J. C.; Hu, Y. D.; Mcpherron, R. L.; Russell, C. T.

    1992-01-01

    The first results of observations of ion cyclotron waves by the elliptically orbiting ISEE 1 and 2 pair of spacecraft are reported. The most intense waves (8 nT) were observed in the outer plasmasphere where convection drift velocities were largest and the Alfven velocity was a minimum. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by cold plasma propagation theory are identified in the wave data. Computations of the experimental wave spectra during the passage through the plasmapause show that the spectral slots relate to the local plasma parameters, possibly suggesting an ion cyclotron wave growth source near the spacecraft. A regular wave packet structure seen over the first 30 min of the event is attributed to the modulation of this energy source by the Pc 5 waves seen at the same time.

  4. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    Science.gov (United States)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  5. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4)...

  6. Oxidation of sulfur (IV by oxygen in aqueous solution: role of some metal ions

    Directory of Open Access Journals (Sweden)

    Martins Claudia R.

    1999-01-01

    Full Text Available Catalytic effect of metal ions: Cr(VI, Cr(III, Cd(II, V(V and chloride anion, on the oxidation of S(IV in aqueous solution, at concentrations of metal ions and S(IV usually found in urban atmospheres, were studied under controlled experimental conditions (pH (2.1 - 4,5, T (25.0 - 35.0 °C, air flow rate, concentration of reactants, etc.... The kinetic constant determined at 25.0 °C and pH range (2.1 - 4.5, using ultra pure water was 8.0 ± 0.5 x 10-4 s-1. This value was considered as a reference for the oxidation reaction rate. The kinetic constants determined in the presence of Cr(VI revealed that the oxidation reaction of S(IV is quite influenced by the acidity. At pH = 2.1 (K = 2.3 x 10-2 mg-1 L s-1 the reaction is carried out with a rate five times greater when compared to pH = 2.6 (K = 4.3 x 10-3 mg-1 L s-1 and thirty times greater when compared to pH = 3.4 (K= 8.0 x 10 -4 mg-1 L s-1. The following rate expression was obtained at pH = 2.6: -r(S(IV =K [Cr(VI] [S(IV] and the activation energy found was: Ea =70.3KJ/mol. No catalytic effects were observed for Cd(II or chloride ion, while inhibitory effects were observed for Cr(III and V(V ions.

  7. Generation of positive and negative oxygen ions in magnetron discharge during reactive sputtering of alumina

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Petr; Bulíř, Jiří; Lančok, Ján; Musil, Jindřich; Novotný, Michal

    2010-01-01

    Roč. 7, č. 11 (2010), s. 910-914 ISSN 1612-8850 R&D Projects: GA AV ČR IAA100100718; GA AV ČR KAN400100653; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : aluminium oxide * ion-energy distribution function * magnetron * mass spectrometry * pulsed discharges Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.643, year: 2010

  8. Ion-conductive properties of polyether-based composite electrolytes filled with mesoporous silica, alumina and titania

    International Nuclear Information System (INIS)

    Tominaga, Yoichi; Endo, Masanori

    2013-01-01

    Composite polymer electrolytes were prepared consisting of amorphous polyether, Li salt and mesoporous inorganic filler, and we investigated their ion-conductive properties. We synthesized three types of filler, mesoporous silica, alumina and titania (MP-Si, Al, Ti), and characterized their structural and physicochemical properties using SEM, TEM, SAXS and BET surface area measurements. From these measurements, we confirmed that MP fillers have well-defined arrays of mesoporous and hexagonal structures. Dependence on the MP filler content of the glass transition temperature (T g ) revealed that the addition of filler to original polyether-salt electrolyte causes T g decrease, to due to the dissociation of aggregated ions such as triples or crystalline complex domains. The MP-Ti composites had the greatest ionic conductivity (1.4 × 10 −5 S/cm, 7.5 wt% at 30 °C) of all samples, and the values were more than double that of the original. The addition of MP-Ti also increased the lithium transference number, because the electrolyte/filler interface provided active sites that increase mobile Li ions and conducting paths so as to enhance the mobility

  9. Activation of a Ca2+-dependent cation conductance with properties of TRPM2 by reactive oxygen species in lens epithelial cells.

    Science.gov (United States)

    Keckeis, Susanne; Wernecke, Laura; Salchow, Daniel J; Reichhart, Nadine; Strauß, Olaf

    2017-08-01

    Ion channels are crucial for maintenance of ion homeostasis and transparency of the lens. The lens epithelium is the metabolically and electrophysiologically active cell type providing nutrients, ions and water to the lens fiber cells. Ca 2+ -dependent non-selective ion channels seem to play an important role for ion homeostasis. The aim of the study was to identify and characterize Ca 2+ - and reactive oxygen species (ROS)-dependent non-selective cation channels in human lens epithelial cells. RT-PCR revealed gene expression of the Ca 2+ -activated non-selective cation channels TRPC3, TRPM2, TRPM4 and Ano6 in both primary lens epithelial cells and the cell line HLE-B3, whereas TRPM5 mRNA was only found in HLE-B3 cells. Using whole-cell patch-clamp technique, ionomycin evoked non-selective cation currents with linear current-voltage relationship in both cell types. The current was decreased by flufenamic acid (FFA), 2-APB, 9-phenanthrol and miconazole, but insensitive to DIDS, ruthenium red, and intracellularly applied spermine. H 2 O 2 evoked a comparable current, abolished by FFA. TRPM2 protein expression in HLE-B3 cells was confirmed by means of immunocytochemistry and western blot. In summary, we conclude that lens epithelial cells functionally express Ca 2+ - and H 2 O 2 -activated non-selective cation channels with properties of TRPM2. Copyright © 2017. Published by Elsevier Ltd.

  10. Nanoconfinement of LiBH4 for High Ionic Conductivity in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Lefevr, Jessica Emilia Avlina; Das, Supti; Blanchard, Didier

    2016-01-01

    Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use...... of organic liquids and gels electrolytes limits these improvements because of lithium dendrites formation, reducing the lifetime of the battery and which can possibly be hazardous due to risks of short circuits....

  11. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan); Umeno, Tatsuo; Mizuma, Koutarou [Research Center, Mitsui Mining Co. Ltd., Hibiki-machi 1-3, Wakamatsu-ku, Kitakyushu 808-0021 (Japan); Yoshio, Masaki [Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan)

    2008-01-10

    Spherical carbon-coated natural graphite (SCCNG) is a promising anode material for lithium-ion batteries, but the smooth surface of graphite spheres is difficult to wet with an aqueous binder solution, and lacks electrical contacts. As a result, the cycle performance of such a graphite anode material is not satisfactory. An effective method has been introduced to tightly connect adjacent SCCNG particles by a highly conductive binder, viz. acetylene black bridges. The effect of the conductive bridges on the cyclability of SCCNG electrode has been investigated. (author)

  12. Otolith oxygen isotopes measured by high-precision secondary ion mass spectrometry reflect life history of a yellowfin sole (Limanda aspera).

    Science.gov (United States)

    Matta, Mary Elizabeth; Orland, Ian J; Ushikubo, Takayuki; Helser, Thomas E; Black, Bryan A; Valley, John W

    2013-03-30

    The oxygen isotope ratio (δ(18)O value) of aragonite fish otoliths is dependent on the temperature and the δ(18)O value of the ambient water and can thus reflect the environmental history of a fish. Secondary ion mass spectrometry (SIMS) offers a spatial-resolution advantage over conventional acid-digestion techniques for stable isotope analysis of otoliths, especially given their compact nature. High-precision otolith δ(18)O analysis was conducted with an IMS-1280 ion microprobe to investigate the life history of a yellowfin sole (Limanda aspera), a Bering Sea species known to migrate ontogenetically. The otolith was cut transversely through its core and one half was roasted to eliminate organic contaminants. Values of δ(18)O were measured in 10-µm spots along three transects (two in the roasted half, one in the unroasted half) from the core toward the edge. Otolith annual growth zones were dated using the dendrochronology technique of crossdating. Measured values of δ(18)O ranged from 29.0 to 34.1‰ (relative to Vienna Standard Mean Ocean Water). Ontogenetic migration from shallow to deeper waters was reflected in generally increasing δ(18)O values from age-0 to approximately age-7 and subsequent stabilization after the expected onset of maturity at age-7. Cyclical variations of δ(18)O values within juvenile otolith growth zones, up to 3.9‰ in magnitude, were caused by a combination of seasonal changes in the temperature and the δ(18)O value of the ambient water. The ion microprobe produced a high-precision and high-resolution record of the relative environmental conditions experienced by a yellowfin sole that was consistent with population-level studies of ontogeny. Furthermore, this study represents the first time that crossdating has been used to ensure the dating accuracy of δ(18)O measurements in otoliths. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Implantation of oxygen ions for the realization of SOS (silicon on insulator) structures: SIMOX

    International Nuclear Information System (INIS)

    Margail, J.

    1987-03-01

    Highdose oxygen implantation is becoming a serious candidate for SOI (silicon on insulator) structure realization. The fabrication condition study of these substrates allowed to show up the implantation and annealing parameter importance for microstructure, and particularly for crystal quality of silicon films. It has been shown that the use of high temperature annealings leads to high quality substrates: monocrystal silicon film without any precipitate, at the card scale; Si/Si O 2 interface formation. After annealing at 1340 O C, Hall mobilities have been measured in silicon film, and its residual doping is very low. First characteristics and performance of submicron CMOS circuits prooves the electric quality of these substrates [fr

  14. Suppression of self-organized surface nanopatterning on GaSb/InAs multilayers induced by low energy oxygen ion bombardment by using simultaneously sample rotation and oxygen flooding

    Science.gov (United States)

    Beainy, Georges; Cerba, Tiphaine; Bassani, Franck; Martin, Mickaël; Baron, Thierry; Barnes, Jean-Paul

    2018-05-01

    Time of flight secondary ion mass spectrometry (ToF-SIMS) is a well-adapted analytical method for the chemical characterization of concentration profiles in layered or multilayered materials. However, under ion beam bombardment, initially smooth material surface becomes morphologically unstable. This leads to abnormal secondary ion yields and depth profile distortions. In this contribution, we explore the surface topography and roughening evolution induced by O2+ ion bombardment on GaSb/InAs multilayers. We demonstrate the formation of nanodots and ripples patterning according to the ion beam energy. Since the latter are undesirable for ToF-SIMS analysis, we managed to totally stop their growth by using simultaneously sample rotation and oxygen flooding. This unprecedented coupling between these two latter mechanisms leads to a significant enhancement in depth profiles resolution.

  15. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch.

    Science.gov (United States)

    Chakraborty, Anirban; Xiang, Mingming; Luo, Cheng

    2013-08-19

    In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles) on the inner surfaces of polystyrene (PS) microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE). Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  16. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    2013-08-01

    Full Text Available In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles on the inner surfaces of polystyrene (PS microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE. Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  17. XPS studies of SiO/sub 2/ surface layers formed by oxygen ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, D.; Finster, J. (Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Chemie); Hensel, E.; Skorupa, W.; Kreissig, U. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1983-03-16

    SiO/sub 2/ surface layers of 160 nm thickness formed by /sup 16/O/sup +/ ion implantation into silicon are examined by X-ray photoelectron spectroscopy measurements into the depth after a step-by-step chemical etching. The chemical nature and the thickness of the transition layer were determined. The results of the XPS measurements show that the outer surface and the bulk of the layers formed by oxygen implantation and subsequent high temperature annealing consist of SiO/sub 2/. There is no evidence for Si or SiO/sub x/ (0

  18. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    Science.gov (United States)

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Molecular Dynamics study of the effects of non-stoichiometry and oxygen Frenkel pairs on the thermal conductivity of uranium dioxide

    International Nuclear Information System (INIS)

    Nichenko, Sergii; Staicu, Dragos

    2013-01-01

    In the present work, calculations of the thermal conductivity of UO 2 were carried out applying classical Molecular Dynamics for the isothermal-isobaric (NPT) statistical ensemble, using the Green–Kubo approach. The thermal conductivity calculated for perfect stoichiometric UO 2 is in good agreement with the literature data over the temperature range corresponding to heat transfer by phonons (up to 1700 K). The effect of non-stoichiometry on the thermal conductivity was calculated taking into account the presence of polarons. It was found that for the same value of the stoichiometry deviation, the effect of oxygen vacancies (hypo-stoichiometry) is more pronounced than the effect of oxygen interstitials (hyper-stoichiometry). Then the influence of the oxygen Frenkel pairs on the thermal conductivity was calculated. The simultaneous impact of non-stoichiometry and OFP on the thermal conductivity was investigated and it was shown that the two effects can be combined using the interpretation obtained with the classical phonons scattering theory. Finally, simplified correlations were deduced for the calculation of the thermal conductivity of UO 2 taking into account the effect of non-stoichiometry and of Frenkel pairs, these two effects being present during irradiation

  20. Development of a Mass Transfer Model and Its Application to the Behavior of the Cs, Sr, Ba, and Oxygen ions in an Electrolytic Reduction Process for SF

    International Nuclear Information System (INIS)

    Park, Byung Heung; Kang, Dae Seung; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    Isotopes of alkali and alkaline earth metals (AM and AEM) are the main contributors to the heat load and the radiotoxicity of spent fuel (SF). These components are separated from the SF and dissolved in a molten LiCl in an electrolytic reduction process. A mass transfer model is developed to describe the diffusion behavior of Cs, Sr, and Ba in the SF into the molten salt. The model is an analytical solution of Fick's second law of diffusion for a cylinder which is the shape of a cathode in the electrolytic reduction process. And the model is also applied to depict the concentration profile of the oxygen ion which is produced by the electrolysis of Li 2 O. The regressed diffusion coefficients of the model correlating the experimentally measured data are evaluated to be greater in the order of Ba, Cs, and Sr for the metal ions and the diffusion of the oxygen ion is slower than the metal ions which implies that different mechanisms govern the diffusion of the metal ions and the oxygen ions in a molten LiCl.

  1. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Namrata, E-mail: ntripat@ilstu.edu [Department of Physics, Illinois State University, Normal, IL 61790 (United States); Thakur, Awalendra K. [Department of Physics, Indian Institute of Technology Patna, Bihar 800013 (India); Shukla, Archana [Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology, Bombay 721302 (India); Marx, David T. [Department of Physics, Illinois State University, Normal, IL 61790 (United States)

    2015-07-15

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA{sub 4}LiClO{sub 4} dispersed with nano-CeO{sub 2} powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε′) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  2. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Creager, W.N.

    1991-09-01

    The far infrared reflectance and conductivity of (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I and TaS{sub 3} have been measured to determine the origin of a huge infrared resonance that dominates the charge density wave (CDW) dynamics along with the pinned acoustic phason mode in the related materials (TaSe{sub 4}){sub 2}I and K{sub 0. 3}MoO{sub 3}. The measurements cover frequencies from 3 to 700cm{sup {minus}1} and the temperature range from 15K to 300K. In the niobium-doped alloys (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I, the size and frequency of the giant infrared mode remain nearly constant as the impurity concentration x is increased. For TaS{sub 3}, the pinned acoustic phason near 0.5cm{sup {minus}1} dominates {var epsilon}({omega}) and an additional small mode lies near 9cm{sup {minus}1}. The latter mode is much smaller than the infrared mode in other CDW materials. These results rule out several models of a generic infrared mode'' in CDW excitations. They are compared in detail to the predictions of a recent theory attributing the infrared mode to a bound collective mode localized at impurity sites within the crystal. The transmittance of K{sub 0.3}MoO{sub 3} has been measured at 1.2K with a strong dc electric field applied across the crystal. Under these conditions, the charge density wave depins abruptly and carries large currents with near-zero differential resistance. For some samples, the low-frequency transmittance is enhanced slightly when the CDW depins. The magnitude of the oxygen isotope effect in the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} has been determined by substitution of {sup 18}O for {sup 16}O. A series of cross-exchanges was performed on high-quality polycrystalline specimens to eliminate uncertainties due to sample heat treatments and sample inhomogeneities.

  3. Mechanisms of electrical conductivity in olivine

    International Nuclear Information System (INIS)

    Schock, R.N.; Duba, A.G.; Shankland, T.J.

    1984-01-01

    Data on the electrical conductivity and the thermoelectric effect in single crystals indicate that the charge conduction mechanism in pure magnesium forsterite is electrons. The concentration of electrons can be varied by controlling the number of oxygen vacancies through manipulation of the oxygen pressure. For iron bearing olivine, the conduction mechanism is by electron holes localized on an iron ion. Since iron strongly affects the creep process as well, oxidation of iron is probably accompanied by the production of magnesium vacancies. 15 references

  4. Conductivity of ion dielectrics during the mean flux-density electron- and X-ray pulse radiation

    International Nuclear Information System (INIS)

    Vajsburd, D.I.; Mesyats, G.A.; Naminov, V.L.; Tavanov, Eh.G.

    1982-01-01

    Conductivity of ion dielectrics under electron and X-ray pulse radiation is investigated. Investigations have been conducted in the range of average beam densities in which extinction of low-energy conductivity takes place. Thin plates of alkali-halogen crystals have been used as samples. Small-dimensional accelerator with controlled beam parameters: 1-20 ns, 0.1-2000 A/cm 2 , 0.3-0.5 MeV has been used for radiation. Temperature dependence of conductivity current pulse is determined. Time resolution of 10 - 10 s is achieved. In the 70-300 K range it practically coincides with radiation pulse. An essential inertial constituent is observed below 300 K. It is shown that at average beam densities a comparable contribution into fast conductivity is made by intracentre conductivity independent of temperature and high-temperature conductivity which decreases with temperature with activation energy equal to the energy of short-wave background. That is why amplitude of fast constituent decreases with temperature slower than high-energy conductivity

  5. Conductivity enhancement in K{sup +}-ion conducting dry Solid Polymer Electrolyte (SPE): [PEO: KNO{sub 3}]: A consequence of KI dispersal and nano-ionic effect

    Energy Technology Data Exchange (ETDEWEB)

    Kesharwani, Priyanka; Sahu, Dinesh K.; Mahipal, Y.K.; Agrawal, R.C., E-mail: rakesh_c_agrawal@yahoo.co.in

    2017-06-01

    Solid–State batteries. Ion transport behaviour has been characterized in terms of ionic conductivity (σ), total ionic (t{sub ion}) and cation (t{sub +}) transference numbers, evaluated using different ac/dc techniques. Temperature dependent conductivity measurements have also been done to compute activation energy (E{sub a}) value by linear least square fitting of respective ‘log σ -1/T’ plots. Materials characterization vis-a-vis complexation of salt in polymeric host has been confirmed by SEM/XRD/FTIR/DSC analysis. - Highlights: • Non-lithium chemical based SPE films: [95PEO:5KNO{sub 3}] & [70PEO:30KNO{sub 3}] investigated. • Substantial enhancement in σ{sub rt} and t{sub +} achieved adopting two approaches. • As first approach, CPEs prepared dispersing IInd-phase active filler into Ist-phase SPE. • As second approach, Nano–ionic effect introduced by ball milling prior to casting CPE film. • Dry polymer electrolytes can be used for All-Solid-State battery applications.

  6. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  7. On the extraction of ion association data and transference numbers from ionic diffusivity and conductivity data in polymer electrolytes

    International Nuclear Information System (INIS)

    Stolwijk, Nicolaas A.; Kösters, Johannes; Wiencierz, Manfred; Schönhoff, Monika

    2013-01-01

    The degree of ion association in polymer electrolytes is often characterized by the Nernst–Einstein deviation parameter Δ, which quantifies the relative difference between the true ionic conductivity directly measured by electrical methods and the hypothetical maximum conductivity calculated from the individual ionic self-diffusion coefficients. Despite its unambiguous definition, the parameter Δ is a global quantity with limited explanatory power. Similar is true for the cation transport number t cat * , which relies on the same ionic diffusion coefficients usually measured by nuclear magnetic resonance or radiotracer methods. Particularly in cases when neutral ion pairs dominate over higher-order aggregates, more specific information can be extracted from the same body of experimental data that is used for the calculation of Δ and t cat * . This information concerns the pair contributions to the diffusion coefficient of cations and anions. Also the true cation transference number based on charged species only can be deduced. We present the basic theoretical framework and some pertinent examples dealing with ion pairing in polymer electrolytes

  8. Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli

    Science.gov (United States)

    Arkin, I. T.; Sukharev, S. I.; Blount, P.; Kung, C.; Brunger, A. T.

    1998-01-01

    In this report, we present structural studies on the large conductance mechanosensitive ion channel (MscL) from E. coli in detergent micelles and lipid vesicles. Both transmission Fourier transform infrared spectroscopy and circular dichroism (CD) spectra indicate that the protein is highly helical in detergents as well as liposomes. The secondary structure of the proteins was shown to be highly resistant towards denaturation (25-95 degrees C) based on an ellipticity thermal profile. Amide H+/D+ exchange was shown to be extensive (ca. 66%), implying that two thirds of the protein are water accessible. MscL, reconstituted in oriented lipid bilayers, was shown to possess a net bilayer orientation using dichroic ratios measured by attenuated total-reflection Fourier transform infrared spectroscopy. Here, we present and discuss this initial set of structural data on this new family of ion-channel proteins.

  9. Influence of both ion bombardment and chemical treatment processes on the electrical conductivity of PVC/poly aniline composites

    International Nuclear Information System (INIS)

    Gad, E.A.M.; Ashour, A.H.; Abdel-Hamid, H.M.; Sayed, W.M.

    1999-01-01

    In this article the changes in the electrical conductivity of PVC/poly aniline composites, as temperature consecutively increases, have been measured. The measurement were taken with correspondence to a control series of the composites under two processes:A. Composite samples bombarded with Ar + ions with fluence 2.44 x 10 13 beam ions /cm 2 ., sec 4 of 4 ke V beam energy where argon atoms can induce defects in the surface layer take place. Composite samples treated chemically with concentrated H 2 SO 4 as dopant which reacts with nitrogen atom in aniline. The measurements were also, done with the composites as the ratio of poly(aniline) stepped upward

  10. Intrinsic Conductivity in Magnesium-Oxygen Battery Discharge Products: MgO and MgO2

    DEFF Research Database (Denmark)

    Smith, Jeffrey G.; Naruse, Junichi; Hiramatsu, Hidehiko

    2017-01-01

    Nonaqueous magnesium–oxygen (or “Mg-air”) batteries are attractive next generation energy storage devices due to their high theoretical energy densities, projected low cost, and potential for rechargeability. Prior experiments identified magnesium oxide, MgO, and magnesium peroxide, MgO2...

  11. Possible Time-Dependent Effect of Ions and Hydrophilic Surfaces on the Electrical Conductivity of Aqueous Solutions

    Science.gov (United States)

    Verdel, Nada; Jerman, Igor; Krasovec, Rok; Bukovec, Peter; Zupancic, Marija

    2012-01-01

    The purpose of this work was to determine the influence of mechanical and electrical treatment on the electrical conductivity of aqueous solutions. Solutions were treated mechanically by iteration of two steps: 1:100 dilution and vigorous shaking. These two processes were repeated until extremely dilute solutions were obtained. For electrical treatment the solutions were exposed to strong electrical impulses. Effects of mechanical (as well as electrical) treatment could not be demonstrated using electrical conductivity measurements. However, significantly higher conductivity than those of the freshly prepared chemically analogous solutions was found in all aged solutions except for those samples stored frozen. The results surprisingly resemble a previously observed weak gel-like behavior in water stored in closed flasks. We suggest that ions and contact with hydrophilic glass surfaces could be the determinative conditions for the occurrence of this phenomenon. PMID:22605965

  12. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  13. Charge state analysis of heavy ions after penetration of uncleaned and sputter cleaned conducting surfaces

    International Nuclear Information System (INIS)

    Jung, M.; Schosnig, M.; Kroneberger, K.; Tobisch, M.; Maier, R.; Kuzel, M.; Fiedler, C.; Hofmann, D.; Groeneveld, K.O.

    1994-01-01

    The evolution of the charge state distribution of fast ions inside a solid is of basic interest in various research fields as stopping power measurements etc. The existing models for the charge state evolution differ in the treatment of the projectile-exit-surface interaction, which has a strong influence on the final charge state distributions. We measured the charge state distributions for C + , N + , and O + (30≤E/M≤130 keV/u) impact on thin C, Cu, and Au foils, where the surface properties were modified by sputter cleaning. The mesurements show a pronounced change of the mean projectile charge state to lower values in the case of sputter cleaned surfaces. This result underlines the importance of the projectile-surface interaction for the generation of the outcoming charge state distribution. (orig.)

  14. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S D; Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M [Australian National Univ., Canberra, ACT (Australia)

    1997-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  15. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D. [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  16. Ion microprobe analyses of oxygen three-isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk

    Digital Repository Service at National Institute of Oceanography (India)

    Nakashima, D.; Ushikubo, T.; Gowda, R.N.; Kita, N.T.; Valley, J.W.; Naga, K.

    Author version: Meteorit. Planet. Sci., vol.46(6); 2011; 857-874 Ion microprobe analyses of oxygen three isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk Daisuke Nakashima 1,2,* , Takayuki Ushikubo...

  17. Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    concentration enhances oxygen permeation substantially. This is accomplished through promoting oxidation reactions (oxygen consumption) and the transport of the products and reaction heat towards the membrane, which lowers the oxygen concentration and increases

  18. Conductivity of Cellulose Acetate Membranes from Pandan Duri Leaves (Pandanus tectorius for Li-ion Battery

    Directory of Open Access Journals (Sweden)

    Laksono Endang W.

    2016-01-01

    Full Text Available The purpose of this research is to know the influence of lithium chloride composition on membrane conductivity. Cellulose was extracted from pandan duri leaves (P. tectorius by dilute alkaline and bleaching with 0.5% NaOCl followed by synthesis of cellulose acetate using acetic anhydride as acetylating agent, acetic acid as solvent and sulfuric acid as catalyst. The membranes were prepared by casting polymer solution method and the composition of CA/LiCl were 60/40, 65/35, 70/30, 75/25, 80/20 and 100/0. Structural analysis was carried out by FTIR and X-ray diffraction. The conductivity was measured using Elkahfi 100. The highest conductivity of cellulose acetate membrane was 2.20 × 10-4 S cm-1 that measured at room temperature for 65/35 composition

  19. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate

    Science.gov (United States)

    Manjuladevi, R.; Selvin, P. Christopher; Selvasekarapandian, S.; Shilpa, R.; Moniha, V.

    2018-04-01

    The Biopolymer electrolyte based on pectin doped with lithium nitrate of different concentrations have been prepared by solution casting technique. The decrease in crystalline nature of the biopolymer has been identified by XRD analyses. The complex formation between the polymer and the salt has been revealed using FTIR analysis. The ionic conductivity has been explored using A.C. impedance spectroscopy which reveals that the biopolymer containing 30 wt% Pectin: 70wt%LiNO3 has highest ionic conductivity of 3.97 × 10-3 Scm-1.

  20. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    Science.gov (United States)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  1. Ion-bombardment-induced reduction in vacancies and its enhanced effect on conductivity and reflectivity in hafnium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhiqing; Wang, Jiafu; Hu, Chaoquan; Zhang, Xiaobo; Dang, Jianchen; Gao, Jing; Zheng, Weitao [Jilin University, School of Materials Science and Engineering, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Changchun (China); Zhang, Sam [Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Wang, Xiaoyi [Chinese Academy of Sciences, Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun (China); Chen, Hong [Jilin University, Department of Control Science and Engineering, Changchun (China)

    2016-08-15

    Although the role of ion bombardment on electrical conductivity and optical reflectivity of transition metal nitrides films was reported previously, the results were controversial and the mechanism was not yet well explored. Here, we show that proper ion bombardment, induced by applying the negative bias voltage (V{sub b}), significantly improves the electrical conductivity and optical reflectivity in rocksalt hafnium nitride films regardless of level of stoichiometry (i.e., in both near-stoichiometric HfN{sub 1.04} and over-stoichiometric HfN{sub 1.17} films). The observed improvement arises from the increase in the concentration of free electrons and the relaxation time as a result of reduction in nitrogen and hafnium vacancies in the films. Furthermore, HfN{sub 1.17} films have always much lower electrical conductivity and infrared reflectance than HfN{sub 1.04} films for a given V{sub b}, owing to more hafnium vacancies because of larger composition deviation from HfN exact stoichiometry (N:Hf = 1:1). These new insights are supported by good agreement between experimental results and theoretical calculations. (orig.)

  2. Sol-gel preparation of ion-conducting ceramics for use in thin films

    International Nuclear Information System (INIS)

    Steinhauser, M.I.

    1992-12-01

    A metal alkoxide sol-gel solution suitable for depositing a thin film of La 0.6 Sr 0.4 CoO 3 on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed

  3. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.; Krichen, F.; Barre, M.; Busselez, R.; Adil, Karim; Jouanneaux, A.; Suard, E.; Goutenoire, F.

    2016-01-01

    .2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex

  4. Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+

    Science.gov (United States)

    Pilz, Claudia S.

    2008-01-01

    An α-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2′-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2′-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times. Electronic supplementary material The online version of this article (doi:10.1007/s00249-008-0298-8) contains supplementary material, which is available to authorized users. PMID:18347789

  5. Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition.

    Science.gov (United States)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin

    2017-12-27

    In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.

  6. Simultaneous Blood–Tissue Exchange of Oxygen, Carbon Dioxide, Bicarbonate, and Hydrogen Ion

    Science.gov (United States)

    Dash, Ranjan K.; Bassingthwaighte, James B.

    2014-01-01

    A detailed nonlinear four-region (red blood cell, plasma, interstitial fluid, and parenchymal cell) axially distributed convection-diffusion-permeation-reaction-binding computational model is developed to study the simultaneous transport and exchange of oxygen (O2) and carbon dioxide (CO2) in the blood–tissue exchange system of the heart. Since the pH variation in blood and tissue influences the transport and exchange of O2 and CO2 (Bohr and Haldane effects), and since most CO2 is transported as HCO3- (bicarbonate) via the CO2 hydration (buffering) reaction, the transport and exchange of HCO3- and H+ are also simulated along with that of O2 and CO2. Furthermore, the model accounts for the competitive nonlinear binding of O2 and CO2 with the hemoglobin inside the red blood cells (nonlinear O2–CO2 interactions, Bohr and Haldane effects), and myoglobin-facilitated transport of O2 inside the parenchymal cells. The consumption of O2 through cytochrome-c oxidase reaction inside the parenchymal cells is based on Michaelis–Menten kinetics. The corresponding production of CO2 is determined by respiratory quotient (RQ), depending on the relative consumption of carbohydrate, protein, and fat. The model gives a physiologically realistic description of O2 transport and metabolism in the microcirculation of the heart. Furthermore, because model solutions for tracer transients and steady states can be computed highly efficiently, this model may be the preferred vehicle for routine data analysis where repetitive solutions and parameter optimization are required, as is the case in PET imaging for estimating myocardial O2 consumption. PMID:16775761

  7. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Park, J. W.; Lee, J. H.; Lee, J. S.; Kil, J. G.; Choi, B. H.; Han, Z. H.

    2001-01-01

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N + +He + or N + + C + exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  8. Thermo-mechanical properties of mixed ion-electron conducting membrane materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bingxin

    2011-07-01

    The thesis presents thermo-mechanical properties of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) perovskite materials, which are considered as oxygen transport membranes (OTM) for gas separation units. Ring-on-ring bending test with disk-shaped samples and depth-sensitive micro-indentation have been used as macroscopic and microscopic tests, respectively. In addition, the thermo-mechanical properties of a third OTM candidate material La{sub 2}NiO{sub 4+{delta}} (LNO) were investigated. The results of the thermo-mechanical measurements with the BSCF revealed an anomaly between 200 C and 400 C. In particular, the temperature dependence of Young's modulus shows a minimum at {proportional_to} 200 C. Fracture stress and toughness exhibit a qualitatively similar behavior with a minimum between 200 C and 400 C, before recovering between 500 C and 800 C. X-ray diffraction analyses verified that BSCF remains cubic in the relevant temperature range. Hence the anomalies were assumed to be related to the transition of Co{sup 3+} spin states reported for other Co-containing perovskites. This assumption could be experimentally confirmed by magnetic susceptibility measurements. The fracture surfaces of the specimens are not affected by the mechanical anomalies at intermediate temperatures, since only a transgranular fracture mode has been observed. Complementary to the mechanical characterization of BSCF, also the temperature dependency of fracture stress and elastic behavior of LSCF have been determined. Phase compositions of LSCF have been studied by in-situ high temperature XRD. Changes in phase composition with temperature are observed. At ambient temperature the LSCF perovskite material comprises two phases: rhombohedral and cubic symmetry. The ratio of the two phases depends on both cooling rate and atmosphere. The transition of rhombohedral to cubic occurs between 700 C and

  9. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.

    2016-01-29

    The new compound La5NbMo2O16 with high ionic conduction has been discovered during the study of the ternary phase diagram of La2O3-MoO3-Nb2O5. The material crystallizes in the cubic space group Pn 3n (no 222) with the unit cell parameter a=11.2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex impedance spectroscopy. © 2016 Elsevier Inc. All rights reserved.

  10. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline Costa; Gomes, Ailton de Souza; Dutra Filho, José Carlos, E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoléculas Professora Eloisa Mano; Hui, Wang Shu [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Metalúrgica e de Materiais; Oliveira, Vivianna Silva de [Escola Técnica Rezende Rammel (ETRR), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone)) polymer matrix, containing titanium oxide (TiO{sub 2}) (incorporated by sol-gel method). SPEEK with different sulfonation degrees (SD): 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA) and X-ray diffraction (XRD) were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm{sup -1}. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C. (author)

  11. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  12. Observation of He bubbles in ion irradiated fusion materials by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Li, Ruihuan [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Wu, Yunfeng; Niu, Jinhai; Yang, Qi [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Zhao, Jijun [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-15

    Using a non-destructive conductive atomic force microscope combined with the Ar{sup +} etching technique, we demonstrate that nanoscale and conductive He bubbles are formed in the implanted layer of single-crystalline 6H-SiC irradiated with 100 keV He{sup +}. We find that the surface swelling of irradiated SiC samples is well correlated with the growth of elliptic He bubbles in the implanted layer. First-principle calculations are performed to estimate the internal pressure of the He bubble in the void of SiC. Analysis indicates that nanoscale He bubbles acting as a captor capture the He atoms diffusing along the implanted layer at an evaluated temperature and result in the surface swelling of irradiated SiC materials.

  13. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    Science.gov (United States)

    2006-10-04

    range of applications.1 Presently, these molecules are of particular interest in non-linear optics, as liquid crystals, as Langmuir - Blodgett films, for...cathode material in non-aqueous liquid electrolyte medium Since Li2Pc is a mixed ionic and electronic conductor, and some metal phthalocyanines are...14. ABSTRACT Dilithium phthalocyanine (Li2Pc) possesses mixed electronic- ionic conductivity due to overlap of - orbitals (electronic

  14. Beltless Translocation Domain of Botulinum Neurotoxin A Embodies a Minimum Ion-conductive Channel*

    OpenAIRE

    Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T.; Montal, Mauricio

    2011-01-01

    Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformat...

  15. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  16. Determination of Cd2+ in aqueous solution using polyindole-Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode

    Science.gov (United States)

    Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan

    2017-09-01

    In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5  ×  10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98  ×  10-7 M to 1.0  ×  10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.

  17. Conductive surface modification of cauliflower-like WO3 and its electrochemical properties for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yoon, Sukeun; Woo, Sang-Gil; Jung, Kyu-Nam; Song, Huesup

    2014-01-01

    Highlights: • Synthesis of cauliflower-like carbon-decorated WO 3 . • Superior cyclability and rate capability for cauliflower-like carbon-decorated WO 3 . • Electrochemical reaction behavior of cauliflower-like carbon-decorated WO 3 with lithium. • In-situ XRD analysis during the first discharge–charge shows a complex reaction of intercalation and conversion of WO 3 . - Abstract: Cauliflower-like WO 3 was synthesized by a hydrothermal reaction without a surfactant, followed by firing, and was investigated as an anode material for lithium-ion battery applications. The scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization indicated that WO 3 nanorods had an aggregation framework and built a cauliflower morphology. With the objective of understanding the charge–discharge process within a voltage range of 0–3 V vs. Li + /Li, in situ X-ray diffraction was used and a complex reaction of intercalation and conversion of WO 3 was revealed for the first time. The cauliflower-like WO 3 after being decorated with carbon provides a high gravimetric capacity of >635 mA h/g (Li 5.5 WO 3 ) with good cycling and a high rate capability when used as an anode in lithium-ion batteries. Based on our studies, we attribute the high electrochemical performance to the nanoscopic WO 3 particles and a conductive carbon layer, which makes them a potential candidate for lithium-ion batteries

  18. Ionic conduction studies in Li3+ ion irradiated P(VDF-HFP)-(PC + DEC)-LiCF3SO3 gel polymer electrolyte

    International Nuclear Information System (INIS)

    Saikia, D.; Hussain, A.M.P.; Kumar, A.; Singh, F.; Avasthi, D.K.

    2006-01-01

    In an attempt to increase the Li ion diffusivity in gel polymer electrolytes, the effects of Li 3+ ion irradiation in P(VDF-HFP)-(PC + DEC)-LiCF 3 SO 3 electrolyte system, with five different fluences, is studied. Irradiation with swift heavy ions shows enhancement in conductivity at low fluences and decreased in conductivity at higher fluences with respect to pristine polymer electrolyte films. Maximum room temperature ionic conductivity after irradiation is found to be 2.6 x 10 -3 S/cm. This interesting result could be attributed to the fact that, higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in decrease in ionic conductivity. XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at high fluences (>10 11 ions/cm 2 ). In FTIR spectra the absorption band intensities around 3025 cm -1 and 2985 cm -1 decrease upon irradiation with a fluence of 5 x 10 1 ions/cm 2 suggesting chain scission and increase upon irradiation with a fluence of 5 x 10 12 ions/cm 2 indicating cross-linking. FTIR analyses corroborate the conductivity and XRD results

  19. Effect of minimum strength of mirror magnetic field (Bmin) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    International Nuclear Information System (INIS)

    Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions

  20. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    Science.gov (United States)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  1. Different Reactive Oxygen Species Lead to Distinct Changes of Cellular Metal Ions in the Eukaryotic Model Organism Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Peter J. Rogers

    2011-11-01

    Full Text Available Elemental uptake and export of the cell are tightly regulated thereby maintaining the ionomic homeostasis. This equilibrium can be disrupted upon exposure to exogenous reactive oxygen species (ROS, leading to reduction or elevation of the intracellular metal ions. In this study, the ionomic composition in the eukaryotic model organism Saccharomyces cerevisiae was profiled using the inductively-coupled plasma optical emission spectrometer (ICP-OES following the treatment with individual ROS, including hydrogen peroxide, cumen hydroperoxide, linoleic acid hydroperoxide (LAH, the superoxide-generating agent menadione, the thiol-oxidising agent diamide [diazine-dicarboxylic acid-bis(dimethylamide], dimedone and peroxynitrite. The findings demonstrated that different ROS resulted in distinct changes in cellular metal ions. Aluminium (Al3+ level rose up to 50-fold after the diamide treatment. Cellular potassium (K+ in LAH-treated cells was 26-fold less compared to the non-treated controls. The diamide-induced Al3+ accumulation was further validated by the enhanced Al3+ uptake along the time course and diamide doses. Pre-incubation of yeast with individual elements including iron, copper, manganese and magnesium failed to block diamide-induced Al3+ uptake, suggesting Al3+-specific transporters could be involved in Al3+ uptake. Furthermore, LAH-induced potassium depletion was validated by a rescue experiment in which addition of potassium increased yeast growth in LAH-containing media by 26% compared to LAH alone. Taken together, the data, for the first time, demonstrated the linkage between ionomic profiles and individual oxidative conditions.

  2. Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pietrzak, T.K.; Wasiucionek, M.; Michalski, P.P.; Kaleta, A.; Garbarczyk, J.E., E-mail: garbar@if.pw.edu.pl

    2016-11-15

    Glassy analogs of two important cathode materials for Li-ion cells: V{sub 2}O{sub 5} and phosphoolivine LiFePO{sub 4} were heat-treated in order to prepare nanocrystallized materials with high electronic conductivity of up to 7 × 10{sup −2} S cm{sup −1} and ca 7 × 10{sup −3} S cm{sup −1} at 25 °C, respectively. There is a clear correlation between the crystallization phenomena and the increase in the electrical conductivity for both groups of glasses. Electrochemical tests of heat-treated glasses of the V{sub 2}O{sub 5}–P{sub 2}O{sub 5} system, used as cathodes in lithium cells confirm their good gravimetric capacity and reversibility. Heat-treatment of glasses of the Li{sub 2}O–FeO–V{sub 2}O{sub 5}–P{sub 2}O{sub 5} system also leads to a high increase in the conductivity and to formation of nanocrystalline grains in the glassy matrix, evidenced by HR-TEM images. The temperature dependence of the conductivity of these materials follows the Arrhenius formula. The presented results indicate that the overall increase in conductivity in nanocrystallized materials is due to good charge transport properties of their interfacial regions.

  3. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal; Liao, Hsien-Yu; Ng, Tien Khee; Ooi, Boon S.

    2015-01-01

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  4. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-05-09

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  5. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal

    2015-08-19

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  6. Ion conducting behavior in secondary battery materials detected by quasi-elastic neutron scattering measurements

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi

    2014-01-01

    Ionic conducting behaviors in secondary battery materials, i.e. cathode and solid electrolyte, were studied with quasi-elastic neutron scattering (QENS) measurements. Although the incoherent scattering length for Li and Na is lower by two orders of magnitude than that for H, the QENS spectra were clearly detected using the combination of an intense neutron source and a low background spectrometer. The fundamental parameters, such as, the activation energy, the jump distance, and the diffusion coefficient were obtained by analyzing QENS spectra. These parameters are consistent with the previous results estimated by muon-spin relaxation (μSR) measurements and first principles calculations. (author)

  7. Elastic flexibility, fast-ion conduction, boson and floppy modes in AgPO3-AgI glasses

    Science.gov (United States)

    Novita, Deassy I.; Boolchand, P.; Malki, M.; Micoulaut, Matthieu

    2009-05-01

    Raman scattering, IR reflectance and modulated-DSC measurements are performed on specifically prepared dry (AgI)x(AgPO3)1-x glasses over a wide range of compositions 0%37.8% are elastically flexible. Raman optical elasticity power laws, trends in the nature of the glass transition endotherms, corroborate the three elastic phase assignments. Ionic conductivities reveal a step-like increase when glasses become stress-free at x>xc(1) = 9.5% and a logarithmic increase in conductivity (σ~(x-xc(2))μ) once they become flexible at x>xc(2) = 37.8% with a power law μ = 1.78. The power law is consistent with percolation of 3D filamentary conduction pathways. Traces of water doping lower Tg and narrow the reversibility window, and can also completely collapse it. Ideas on network flexibility promoting ion conduction are in harmony with the unified approach of Ingram et al (2008 J. Phys. Chem. B 112 859), who have emphasized the similarity of process compliance or elasticity relating to ion transport and structural relaxation in decoupled systems. Boson mode frequency and scattering strength display thresholds that coincide with the two elastic phase boundaries. In particular, the scattering strength of the boson mode increases almost linearly with glass composition x, with a slope that tracks the floppy mode fraction as a function of mean coordination number r predicted by mean-field rigidity theory. These data suggest that the excess low frequency vibrations contributing to the boson mode in flexible glasses come largely from floppy modes.

  8. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Photobehavior of aqueous uranyl ion and photo-oxygenation of isobutane using light from the visible region

    International Nuclear Information System (INIS)

    Bergfeldt, T.M.; Waltz, W.L.; Xu, X; Sedlak, P.; Dreyer, U.; Mockel, H.; Lilie, J.; Stephenson, J.W.

    2003-01-01

    The photochemical and photophysical behavior of the aqueous uranyl ion [UO 2 (H 2 O) 5 ] 2+ has been studied under the influence of visible light and with added perchloric acid over the range of 0.01-4 M. In the presence of 2-methylpropane (isobutane), photo-oxygenation of isobutane occurs to yield, as the major product, 2-methyl-2-propanol (tert-butyl alcohol) along with lesser amounts of 2-methyl-2-propene (isobutene) and other C1-C8 products. The quantum yield for formation of tert-butyl alcohol is independent of light intensity at the irradiation wavelength of 415 nm and of uranyl concentration, but it increases from 0.016 ± 0.001 at 0.01 M HC1O 4 (pH 2) to 0.13 ± 0.01 at 4 M HC1O 4 . The emission spectrum from the electronically excited uranyl ion and the associated quantum yields have been measured in the presence and absence of isobutane, as a function of added perchloric acid. While in both cases the shape of the spectrum remains invariant, the quantum yields increase with increasing perchloric acid concentration. The strong dependence on added perchloric acid is interpreted within the context of the presence and interconversion of two electronically excited species, an acid form, *[UO 2 (H 2 O) 5 ] 2+ , and a base form, *[UO 2 (H 2 O) n (OH)] + . It is proposed that both forms react with isobutane to give a tert-butyl radical, and that oxidation of coordinated aqua ligands occur, the latter generating a hydroxyl radical whose reaction with isobutane rapidly leads also to a tert-butyl radical. The reaction of this alkyl radical with ground-state [UO 2 (H 2 O) 5 ] 2+ then gives rise to the stable tert-butyl alcohol product and reduced forms of uranyl ion. Based upon the values of the quantum yields and of excited-state lifetime measurements reported in the literature, a comprehensive mechanism has been developed in a quantitative manner to provide calculated values of the rate constants for the individual mechanistic steps. The calculated rate constants

  10. Optically continuous silcrete quartz cements of the St. Peter Sandstone: High precision oxygen isotope analysis by ion microprobe

    Science.gov (United States)

    Kelly, Jacque L.; Fu, Bin; Kita, Noriko T.; Valley, John W.

    2007-08-01

    A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (ratio by laser fluorination, resulting in an average δ 18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ 18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ 18O between 9.8‰ and 16.7‰ ( n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ 18O = 29.3 ± 1.0‰ (1SD, n = 161). Given the similarity, on average, of δ 18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ 18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement. Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ 18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ 18O values of -10

  11. Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts

    KAUST Repository

    Tu, Xingchen; Wang, Minglang; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    © 2014 AIP Publishing LLC. Besides the peak at one conductance quantum, G0, two additional features at ∼0.4 G0 and ∼1.3 G0 have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions

  12. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus; Olesen, Ping Liu; Hougaard, Mads

    2009-01-01

    , both Ag NPs and Ag+ were shown to induce apoptosis and necrosis in THP-1 cells depending on dose and exposure time. Furthermore, the presence of apoptosis could be confirmed by the TUNEL method. A number of studies have implicated the production of reactive oxygen species (ROS) in cytotoxicity mediated...... the effect of well characterized, PVP-coated Ag NPs (69 nm ± 3 nm) and Ag+ in a human monocytic cell line (THP-1). Characterization of the Ag NPs was conducted in both stock suspension and cell media with or without serum and antibiotics. By using the flowcytometric annexin V/propidium iodide (PI) assay...... by NPs. We used the fluorogenic probe, 2′,7′-dichlorofluorescein to assess the levels of intracellular ROS during exposure to Ag NPs and Ag+. A drastic increase in ROS levels could be detected after 6–24 h suggesting that oxidative stress is an important mediator of cytotoxicity caused by Ag NPs and Ag+....

  13. DETERMINATION OF PERCHLORATE BY ION CHROMATOGRAPHY, SUPPRESSED CONDUCTIVITY AND MASS SPECTROMETRIC DETECTION USING AN OXYGEN-18 ENRICHED ISOTROPIC INTERNAL STANDARD

    Science.gov (United States)

    Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...

  14. Silver modified platinum surface/H{sup +} conducting Nafion membrane for cathodic reduction of nitrate ions

    Energy Technology Data Exchange (ETDEWEB)

    Hasnat, M.A., E-mail: mahtazim@yahoo.com [Department of Chemistry, Graduate School of Physical Sciences, Shahajalal University of Science and Technology, Sylhet 3114 (Bangladesh); School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Ahamad, N.; Nizam Uddin, S.M. [Department of Chemistry, Graduate School of Physical Sciences, Shahajalal University of Science and Technology, Sylhet 3114 (Bangladesh); Mohamed, Norita [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia)

    2012-01-15

    Electrocatalytic reduction of NO{sub 3}{sup -} was performed at an Ag modified Pt electrodes supported on a H{sup +} conducting Nafion-117 polymer electrolyte. The cyclic voltammetric and electrolysis experiments showed that the reduction process was a two-electron transfer reaction. The conversion of nitrate to nitrite follows first order kinetics. Controlled potential electrolysis experiments revealed that the highest reduction rate (k{sub 1}; 95.1 Multiplication-Sign 10{sup -3} min{sup -1}) could be obtained at -1.3 V versus Ag/AgCl (std. KCl) reference electrode. Meanwhile, substantial nitrate removal (ca. 89%) could be attained by a flow system when the flow rate is as low as 0.1 ml min{sup -1}. The Ag particles on the Pt film were a in polycrystalline state having roughness value of 0.45 {mu}m, which was reduced to 0.30 {mu}m after 270 min of undergoing electrolysis.

  15. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  16. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  17. Characteristic length scale dependence on conductivity for La2-xErxMo2O9 (0.05 ≤ x ≤ 0.3) oxide ion conductors

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2016-05-01

    Structural property of polycrystalline La2-xErxMo2O9 has been investigated. Rietveld refinements at room temperature of the materials suggest a single phase nature with cubic symmetry (space group P213). The electron density contour plot confirms the nature of different cation-oxygen bonds. Time dependent mean square displacement (√) and the spatial extent of the sub-diffusive motion (√) are evaluated using the linear response theory. The localized hop at O2 and O3 sites is found to be favorable for oxygen ion migration for these systems.

  18. Conductive surface modification of cauliflower-like WO{sub 3} and its electrochemical properties for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukeun, E-mail: skyoon@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Chungnam 330-717 (Korea, Republic of); Woo, Sang-Gil [Advanced Batteries Research Center, Korea Electronics Technology Institute, Gyeonggi 463-816 (Korea, Republic of); Jung, Kyu-Nam [Energy Efficiency and Materials Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Song, Huesup, E-mail: hssong@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Chungnam 330-717 (Korea, Republic of)

    2014-11-15

    Highlights: • Synthesis of cauliflower-like carbon-decorated WO{sub 3}. • Superior cyclability and rate capability for cauliflower-like carbon-decorated WO{sub 3}. • Electrochemical reaction behavior of cauliflower-like carbon-decorated WO{sub 3} with lithium. • In-situ XRD analysis during the first discharge–charge shows a complex reaction of intercalation and conversion of WO{sub 3}. - Abstract: Cauliflower-like WO{sub 3} was synthesized by a hydrothermal reaction without a surfactant, followed by firing, and was investigated as an anode material for lithium-ion battery applications. The scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization indicated that WO{sub 3} nanorods had an aggregation framework and built a cauliflower morphology. With the objective of understanding the charge–discharge process within a voltage range of 0–3 V vs. Li{sup +}/Li, in situ X-ray diffraction was used and a complex reaction of intercalation and conversion of WO{sub 3} was revealed for the first time. The cauliflower-like WO{sub 3} after being decorated with carbon provides a high gravimetric capacity of >635 mA h/g (Li{sub 5.5}WO{sub 3}) with good cycling and a high rate capability when used as an anode in lithium-ion batteries. Based on our studies, we attribute the high electrochemical performance to the nanoscopic WO{sub 3} particles and a conductive carbon layer, which makes them a potential candidate for lithium-ion batteries.

  19. Structural and compositional characterization of X-cut LiNbO3 crystals implanted with high energy oxygen and carbon ions

    International Nuclear Information System (INIS)

    Bentini, G.G.; Bianconi, M.; Cerutti, A.; Chiarini, M.; Pennestri, G.; Sada, C.; Argiolas, N.; Bazzan, M.; Mazzoldi, P.; Guzzi, R.

    2005-01-01

    High energy implantation of medium-light elements such as oxygen and carbon was performed in X-cut LiNbO 3 single crystals in order to prepare high quality optical waveguides. The compositional and damage profiles, obtained by exploiting the secondary ion mass spectrometry and Rutherford back-scattering techniques respectively, were correlated to the structural properties measured by the high resolution X-ray diffraction. This study evidences the development of tensile strain induced by the ion implantation that can contribute to the decrease of the ordinary refractive index variation through the photo-elastic effect

  20. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  1. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

    Science.gov (United States)

    Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi

    2017-07-25

    Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.

  2. Slags in a Large Variation Range of Oxygen Potential Based on the Ion and Molecule Coexistence Theory

    Science.gov (United States)

    Yang, Xue-Min; Li, Jin-Yan; Zhang, Meng; Chai, Guo-Min; Zhang, Jian

    2014-12-01

    A thermodynamic model for predicting sulfide capacity of CaO-FeO-Fe2O3-Al2O3-P2O5 slags in a large variation range of oxygen potential corresponding to mass percentage of FetO from 1.88 to 55.50 pct, i.e., IMCT- model, has been developed by coupling with the deduced desulfurization mechanism of the slags based on the ion and molecule coexistence theory (IMCT). The developed IMCT- model has been verified through comparing the determined sulfide capacity after Ban-ya et al.[20] with the calculated by the developed IMCT- model and the calculated by the reported sulfide capacity models such as the KTH model. Mass percentage of FetO as 6.75 pct corresponding to the mass action concentration of FetO as 0.0637 or oxygen partial as 2.27 × 10-6 Pa is the criterion for distinguishing reducing and oxidizing zones for the slags. Sulfide capacity of the slags in reducing zone is controlled by reaction ability of CaO regardless of slag oxidization ability. However, sulfide capacity of the slags in oxidizing zone shows an obvious increase tendency with the increasing of slag oxidization ability. Sulfide capacity of the slags in reducing zone keeps almost constant with variation of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)), or optical basicity, or the mass action concentration ratios of N FeO/ N CaO, , , and . Sulfide capacity of the slags in oxidizing zone shows an obvious increase with the increasing of the simplified complex basicity (pct CaO)/((pct Al2O3) + (pct P2O5)) or optical basicity, or the aforementioned mass action concentration ratios. Thus, the aforementioned mass action concentration ratios and the corresponding mass percentage ratios of various iron oxides to basic oxide CaO are recommended to represent the comprehensive effect of various iron oxides and basic oxide CaO on sulfide capacity of the slags.

  3. Efficient Imaging and Real-Time Display of Scanning Ion Conductance Microscopy Based on Block Compressive Sensing

    Science.gov (United States)

    Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing

    2014-07-01

    Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.

  4. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    Science.gov (United States)

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  5. PEMODELAN KONDUKTIVITAS ION DALAM STRUKTUR Li2Sc3(PO43 (Modeling Ionic Conductivity in Li2Sc3(PO43 Structure

    Directory of Open Access Journals (Sweden)

    Akram La Kilo

    2011-11-01

    Full Text Available ABSTRAK Fasa Li2Sc3(PO43 merupakan material konduktor superionik yang dapat diaplikasikan sebagai baterai yang dapat diisi ulang (rechargeable. Ion Li+ dalam struktur Li2Sc3(PO4 dapat mengalami migrasi dari posisi terisi ke posisi kosong. Penelitian ini telah memodelkan migrasi ion Li+ dalam struktur Li2Sc3(PO4 dengan menggunakan metode bond valence sum (BVS. Metode ini dapat memprediksi bilangan oksidasi suatu atom berdasarkan jarak dengan atom-atom tetangga. Source code berbasis BVS yang digunakan adalah JUMPITER yang mensimulasi efek gaya listrik eksternal yang bertindak pada ion litium sehingga nilai BVS litium dapat dipetakan terhadap jarak. Hasil simulasi menunjukkan bahwa konduksi ion Li+ dapat terjadi pada arah [010], [101], dan [120]. Namun, lintasan konduksi ion Li+ lebih mudah terjadi pada arah [120] atau bidang ab dengan nilai maksimum BVS adalah 0,982. ABSTRACT g-phase of Li2Sc3(PO43 is a lithium super ionic conductor which can be applied as a rechargeable lithium battery. Lithium ions of g-Li2Sc3(PO43 can migrate from occupied site to vacant site. In this research, simulation of Li+ ions migration in the structure of g-Li2Sc3(PO43 carried out using bond valence sum (BVS to predict the oxidation state of Li+ion based on the distance of the ion to neighboring atoms. BVS-based code used JUMPITER to simulate the effect of external electrical force acting on the lithium ions to produce the lithium BVS value which can be mapped to the distance. The simulation results shows that Li+ ion conduction can be occurred on [010], [101], and [120] directions. However, the Li ion conduction pathway occur more easily in the direction of [120] or ab plane with the BVS maximum value is 0.982.

  6. The effect of oxygen pressure on structure, electrical conductivity and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ thin films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    S Daneshmandi

    2013-09-01

    Full Text Available  In this paper, Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF thin films were deposited on single crystal SrTiO3 (STO (100 by pulsed laser deposition (PLD technique at different pressures of oxygen. Crystal structure of bulk and thin film samples was studied by x-ray diffraction (XRD. The XRD results indicate that both bulk and thin film samples have cubic structures. AFM micrographs showed an increase in RMS roughness by oxygen pressure. The electrical resistance was measured at room temperature up to 600 and 800 °C in air using four probe method for bulk and thin films, respectively. A sharp drop in resistance was observed by increasing temperature up to 400 °C, that was explained with the small polaron hopping model. Polaron activation energy was calculated by Arrhenius relation. It was decreased over increasing oxygen pressure. The surface exchange coefficient (Kchem of the 300 mTorr sample was measured by electrical conductivity relaxation (ECR technique. The results suggested a linear relationship between Kchem and reciprocal of absolute temperature.

  7. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions.

    Science.gov (United States)

    Bodner, Thomas; Wirnsberger, Bianca; Albering, Jörg; Wiesbrock, Frank

    2011-11-07

    Anhydrous thallium hydrogen L-glutamate [Tl(L-GluH)] crystallizes from water (space group P2(1)) with a layer structure in which the thallium ions are penta- and hexacoordinated exclusively by the oxygen atoms of the γ-carboxylate group of the hydrogen L-glutamate anions to form a two-dimensional coordination polymer. The thallium-oxygen layer is composed of Tl(2)O(2) and TlCO(2) quadrangles and is only 3 Å high. Only one hemisphere of the thallium ions participates in coordination, indicative of the presence of the 6s(2) lone pair of electrons. The thallium-oxygen assemblies are shielded by the hydrogen l-glutamate anions. Only the carbon atom of the α-carboxylate group deviates from the plane spanned by the thallium ions, the γ-carboxylate groups and the proton bearing carbon atoms, which are in trans conformation. Given the abundance of L-glutamic and L-aspartic acid in biological systems on the one hand and the high toxicity of thallium on the other hand, it is worth mentioning that the dominant structural motifs in the crystal structure of [Tl(L-GluH)] strongly resemble their corresponding analogues in the crystalline phase of [K(L-AspH)(H(2)O)(2)].

  8. X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition

    International Nuclear Information System (INIS)

    Nelson, A.J.; Aharoni, H.

    1987-01-01

    X-ray photoelectron spectroscopy analysis was performed on ion beam sputter deposited films of indium tin oxide as a function of O 2 partial pressure during deposition. The oxygen partial pressure was varied over the range of 2.5 x 10 -6 --4.0 x 10 -5 Torr. Changes in composition as well as in the deconvoluted In 3d 5 /sub // 2 , Sn 3d 5 /sub // 2 , and O 1s core level spectra were observed and correlated with the variation of the oxygen partial pressure during deposition. Results show that the films become increasingly stoichiometric as P/sub =/ is increased and that the excess oxygen introduced during deposition is bound predominantly to the Sn and has little or no effect on the In--O bonding

  9. Role of oxygen in enhancing N-type conductivity of CuInS2 thin films

    International Nuclear Information System (INIS)

    Rabeh, M. Ben; Kanzari, M.; Rezig, B.

    2007-01-01

    Post-growth treatments in air atmosphere were performed on CuInS 2 films prepared by the single-source thermal evaporation method. Their effect on the structural, optical and electrical properties of the films was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical reflection and transmission and resistance measurements. The films were annealed from 100 to 350 deg. C in air. The stability of the observed N-type conductivity after annealing depends strongly on the annealing temperature. Indeed it is shown that for annealing temperatures above 200 deg. C the N-type conductivity is stable. The resistance of the N-CuInS 2 thin films correlates well with the corresponding annealing temperature. The samples after annealing have direct bandgap energies of 1.45-1.50 eV

  10. The effect of oxygen on segregation-induced redistribution of rare-earth elements in silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, O. V.

    2006-01-01

    A model of segregation-induced redistribution of impurities of rare-earth elements during solid-phase epitaxial crystallization of silicon layers amorphized by ion implantation is developed. This model is based on the assumption that a transition layer with a high mobility of atoms is formed at the interphase boundary on the side of a-Si; the thickness of this layer is governed by the diffusion length of vacancies in a-Si. The Er concentration profiles in Si implanted with both erbium and oxygen ions are analyzed in the context of the model. It shown that, in the case of high doses of implantation of rare-earth ions, it is necessary to take into account the formation of R m clusters (m = 4), where R denotes the atom of a rare-earth element, whereas, if oxygen ions are also implanted, formation of the complexes RO n (n = 3-6) should be taken into account; these complexes affect the transition-layer thickness and segregation coefficient

  11. Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass-ceramics with water

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-04-01

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATP), has been examined in distilled water, and aqueous solutions of LiNO{sub 3}, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO{sub 3} and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li{sub 3-x}PO{sub 4-y}N{sub y}/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li{sub 3-x}PO{sub 4-y}N{sub y} (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water. (author)

  12. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  13. Metallic and/or oxygen ion implantation into AlN ceramics as a method of preparation for its direct bonding with copper

    International Nuclear Information System (INIS)

    Barlak, M.; Borkowska, K.; Olesinska, W.; Kalinski, D.; Piekoszewski, J.; Werner, Z.; Jagielski, J.; Sartowska, B.

    2006-01-01

    Direct bonding (DB) process is recently getting an increasing interest as a method for producing high quality joints between aluminum nitride (AlN) ceramics and copper. The metallic ions were implanted using an MEVVA type TITAN implanter with unseparated beam. Oxygen ions were implanted using a semi-industrial ion implanter without mass separation equipped with a gaseous ion source. The substrate temperature did not exceed 200 o C. Ions were implanted at two acceleration voltages, i.e. 15 and 70 kV. The fluence range was between 1·E16 and 1·E18 cm -2 . After implantation, some of the samples were characterized by the Rutherford backscattering (RBS) method. In conclusion: (a) The investigations performed in the present work confirm an assumption that ion implantation is a very promising technique as a pretreatment of AlN ceramics for the formation of the joints with copper in direct bonding process. (b) It has been shown that titanium implantation gives the best results in comparison to other metals examined (Fe, Cr, Cu) but also in comparison to double Ti+O and O+Ti implantations

  14. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kamioka, K.; Oga, T.; Izawa, Y. [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kuriyama, K., E-mail: kuri@ionbeam.hosei.ac.jp [College of Engineering and Research Center of Ion Beam Technology, Hosei University, Koganei, Tokyo 184-8584 (Japan); Kushida, K. [Department of Arts and Science, Osaka Kyouiku University, Kashiwara, Osaka 582-8582 (Japan); Kinomura, A. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 10{sup 20} cm{sup −3}) into ZnO is performed using a multiple-step energy. The high resistivity of ∼10{sup 3} Ω cm in un-implanted samples remarkably decreased to ∼10{sup −2} Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  15. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    Science.gov (United States)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 1020 cm-3) into ZnO is performed using a multiple-step energy. The high resistivity of ∼103 Ω cm in un-implanted samples remarkably decreased to ∼10-2 Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  16. The effect of metal ion exchange and alkali metal doping on the electrical conductivity of the Faujasite-type zeolite 13X

    International Nuclear Information System (INIS)

    Swart, S.

    1983-12-01

    Zeolite 13X was synthesized in the sodium form. Some transition metal cations were introduced into the zeolite framework by ion exchange reactions. These different cationic zeolite forms were doped or impregnated with sodium metal, utilizing the adsorptive properties of the zeolite. An A.C. technique was used to determine the electrical conductivity of the dehydrated ion exchanged zeolites and the sodium impregnated zeolite samples as a function of temperature. The conductivity value obtained was used to determine some thermodynamic parameters relating to the conduction process. For the dehydrated ion exchanged zeolites the electrical conductivity showed a general decrease with a decreasing ion exchange capacity. The sodium impregnated zeolites showed an increase in conductivity with respect to the dehydrated unimpregnated samples. This was attributed to the presence of Na 6 5 + centres in the impregnated zeolites. The reduction of some of the metal cations by the sodium on impregnation did not appear to have any significant effect on the overall ionic conductivity of the samples. The conductivity as a function of temperature and pressure for the dehydrated sodium form of zeolite 13X and its impregnated counterpart was determined. The conductivity was found to increase with increasing pressure and temperature

  17. Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption

    International Nuclear Information System (INIS)

    Wang, C; Fu, X Q; Xue, X Y; Wang, Y G; Wang, T H

    2007-01-01

    P-type CuO nanorods were synthesized by a hydrothermal method and the ethanol-sensing properties of sensors based on CuO were investigated. The sensor resistance increased when it was exposed to ethanol and decreased in the air, which is contrary to the case for sensors realized from n-type semiconductor. The resistance of the CuO-based sensor was about 2 kΩ in air and 6 kΩ in ethanol vapour with concentration of 2000 ppm. Such a sensing property is attributed to surface accumulation conduction. Sensors based on CuO nanorods have potential applications in detecting ethanol in low concentration

  18. Electrical conductivity and oxygen exchange kinetics of La2NiO4+delta thin films grown by chemical vapor deposition

    DEFF Research Database (Denmark)

    Garcia, G.; Burriel, M.; Bonanos, Nikolaos

    2008-01-01

    Epitaxial c-axis oriented La2NiO4+delta films were deposited onto SrTiO3 and NdGaO3 substrates by the pulsed injection metal organic chemical vapor deposition technique. Experimental conditions were optimized in order to accurately control the composition, thickness, and texture of the layers. X......-ray diffraction was used to confirm the high crystalline quality of the obtained material. Electrical characterizations were performed on thin (50 nm) and thick (335 nm) layers. The total specific conductivity, which is predominantly electronic, was found to be larger for the thinner films measured (50 nm......), probably due to the effect of the strain present in the layers. Those thin films (50 nm) showed values even larger than those observed for single crystals and, to our knowledge, are the largest conductivity values reported to date for the La2NiO4+delta material. The oxygen exchange kinetics was studied...

  19. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  20. Preparation and characterization of electronically conducting polypyrrole-montmorillonite nanocomposite and its potential application as a cathode material for oxygen reduction

    International Nuclear Information System (INIS)

    Rajapakse, R.M.G.; Murakami, Kenji; Bandara, H.M.N.; Rajapakse, R.M.M.Y.; Velauthamurti, K.; Wijeratne, S.

    2010-01-01

    Simple wet chemical processes were deployed to prepare low-cost conducting nanocomposites based on natural clays with 2:1 layered structures such as sodium montmorillonite (MMT). Ce(IV) modified MMT was used for the spontaneous polymerization of pyrrole within clay interlayers. The resulted clay-conducting polypyrrole nanocomposites containing the reduced form of the oxidising agent, have been extensively characterized by X-ray diffraction (XRD) technique for interlayer spacing variations and by Fourier transform infra red (FT-IR) spectroscopy to study the interactions between the clay and polymer functional groups. DC polarization technique with both blocking and non-blocking electrodes was used to distinguish between the ionic and electronic transport numbers and to recognize the type of mobile ionic species. AC impedance analysis further resolved the electrical conduction of these materials. Bulk conductivity analysis implied that the polypyrrole (PPY) formed within Ce(IV) modified MMT posses dominant electronic conductivity. The low-cost, light-weight and stable polymer-clay nanocomposite prepared by Ce(IV) intercalated MMT, [Ce(III)-PPY-MMT], seems to be a promising cathode material for oxygen reduction and hence may find applications in fuel cell industries.

  1. Influence of SiO{sub 2} on conduction and relaxation mechanism of Li{sup +} ions in binary network former lead silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Navneet [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Ahlawat, Neetu, E-mail: neetugju@yahoo.co.in [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Aghamkar, Praveen [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Agarwal, Ashish; Sanghi, Sujata; Sindhu, Monica [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2013-04-01

    Ion conducting glasses having composition 30Li{sub 2}O·(70−x)PbO·xSiO{sub 2} were prepared by the normal melt quench technique. The compositional variations in density, molar volume and glass transition temperature confirm the dual role of PbO acting as a network modifying oxide as well as a network forming oxide. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in the frequency range from 1 Hz to 7 MHz and in a temperature range below glass transition temperature. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency were extracted from the impedance spectra. Similar values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions have to overcome the same energy barrier while conducting and relaxing. The increase in dc conductivity for silica rich compositions is attributed to the presence of mixed former effect in the studied glasses. The study of conductivity spectra reveals a transition from non-random to random hopping motion of lithium ions on successive replacement of PbO by SiO{sub 2} in glass matrix. The conduction and relaxation mechanism in the studied glasses are well explained with the concept of mismatch and relaxation (CMR) model.

  2. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  3. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  4. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects.

    Science.gov (United States)

    Chen, Rui; Swale, Daniel R

    2018-01-25

    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  5. Correlation between the structure modification and conductivity of 3 MeV Si ion-irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Youmei; Zhu Zhiyong; Li Changlin

    2002-01-01

    The surface modification of the polyimide (PI/Kapton) films was carried out by 3 MeV Si + implantation to fluences ranging from 1x10 12 to 1.25x10 15 ions/cm 2 . Fourier transform infrared (FTIR), Raman and ultraviolet/visible (UV/Vis) spectroscopes were employed to investigate the chemical degradation of function groups in the irradiated layer. FTIR results show that the absorbance of typical function group decreases exponentially as a function of fluence. The damage cross-section of typical bonds of PI was evaluated from the FTIR spectra. Raman analysis shows the absorbed dose for destruction of all function groups is above 218 MGy. The red shifting of the absorption edge from UV to visible reveals the band gap closing which results from increase of the cluster size. The production efficiency of the chromophores was discussed according to UV/Vis analysis. Irradiation dramatically enhances the electrical conductivity and the sheet resistivity in our experiment descends nearly 10 orders of magnitude compared with its intrinsic value

  6. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    Science.gov (United States)

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.

    Science.gov (United States)

    Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric

    2015-05-13

    Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.

  8. Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Mitzi, D.B.; Lombardo, L.W.; Kapitulnik, A.; Laderman, S.S.; Jacowitz, R.D.

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20--25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)x10 21 cm -3 (0.34 holes per Cu site) to 4.6(3)x10 21 cm -3 (0.50 holes per Cu site)

  9. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    Science.gov (United States)

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously.

  10. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li3PS4

    International Nuclear Information System (INIS)

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.; Rondinone, Adam J.; Ganesh, P.

    2016-01-01

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3 PS 4 and Li 10 GeP 2 S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice, maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3 PS 4 . In addition, for β-Li 3 PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in

  11. Doubly versus Singly Positively Charged Oxygen Ions Back-Scattering from a Silicon Surface under Dynamic O2+ Bombardment

    Czech Academy of Sciences Publication Activity Database

    Franzreb, K.; Williams, P.; Lörinčík, Jan; Šroubek, Zdeněk

    203-204, 1/4 (2003), s. 39-42 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z2067918; CEZ:AV0Z4040901 Keywords : low-energy ion scattering * doubly charged ions * molecular orbital Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.284, year: 2003

  12. Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, R C [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM/FZJ, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Baranov, Y [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Garbet, X [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Hawkes, N [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Peeters, A G [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Challis, C [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Baar, M de [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Giroud, C [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Joffrin, E [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Mantsinen, M [Helsinki University of Technology, Association-EURATOM Tekes, FIN-02015 HUT (Finland); Mazon, D [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Meister, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Zastrow, K-D [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2003-09-01

    In ASDEX Upgrade and JET, the ion temperature profiles can be described by R/L{sub Ti} which exhibits only little variations, both locally, when comparing different discharges, and radially over a wide range of the poloidal cross-section. Considering a change of the local ion heat flux of more than a factor of two, this behaviour indicates some degree of profile stiffness. In JET, covering a large ion temperature range from 1 to 25 keV, the normalized ion temperature gradient, R/L{sub Ti}, shows a dependence on the electron to ion temperature ratio or toroidal rotational shear. In particular, in hot ion plasmas, produced predominantly by neutral beam heating at low densities, in which large T{sub i}/T{sub e} is coupled to strong toroidal rotation, the effect of the two quantities cannot be distinguished. Both in ASDEX Upgrade and JET, plasmas with internal transport barriers (ITBs), including the PEP mode in JET, are characterized by a significant increase of R/L{sub Ti} above the value of L- and H-mode plasmas. In agreement with previous ASDEX Upgrade results, no increase of the ion heat transport in reversed magnetic shear ITB plasmas is found in JET when raising the electron heating. Evidence is presented that magnetic shear directly influences R/L{sub Ti}, namely decreasing the ion heat transport when going from weakly positive to negative magnetic shear.

  13. K-, L- and M-shell X-ray productions induced by oxygen ions in the 0.8–1.6 MeV/amu range

    Energy Technology Data Exchange (ETDEWEB)

    Gorlachev, I., E-mail: Igor.Gorlachev@gmail.com [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Gluchshenko, N. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Ivanov, I. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Kireyev, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Kozin, S.; Kurakhmedov, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); L.N. Gumilyov Eurasian National University, Mirzoyan 2, Astana (Kazakhstan); Platov, A. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Zdorovets, M. [Institute of Nuclear Physics, 050032 Ibragimov 1, Almaty (Kazakhstan); Ural Federal University, Yekaterinburg 620002 (Russian Federation)

    2016-08-15

    The X-ray production cross sections induced by oxygen ions with projectile energies from 12.8 to 25.6 MeV for the elements from Al to Bi were measured. The applied approach is based on calculation of X-ray production cross sections through the cross section of Rutherford backscattering, which can be calculated with high accuracy using the Rutherford formula. The experimental results are compared to the predictions of ECPSSR and PWBA theories calculated with the ISICS code.

  14. submitter Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    CERN Document Server

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break ...

  15. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    Science.gov (United States)

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).

  16. Conductivity, XRD, and FTIR studies of New Mg2+-ion-conducting solid polymer electrolytes: [PEG: Mg(CH3COO)2

    International Nuclear Information System (INIS)

    Polu, Anji Reddy; Kumar, Ranveer; Causin, Valerio; Neppalli, Ramesh

    2011-01-01

    Solid polymer electrolytes based on poly (ethylene glycol) (PEG) doped with Mg(CH 3 COO) 2 have been prepared by using the solution-casting method. The X-ray diffraction patterns of PEG with Mg(CH 3 COO) 2 salt indicated a decrease in the degree of crystallinity with increasing concentration of the salt. The complexation of Mg(CH 3 COO) 2 salt with the polymer was confirmed by using Fourier transform infrared spectroscopy (FTIR) studies. The ionic conductivity was measured for the [PEG: Mg(CH 3 COO) 2 ] system in the frequency range 50 Hz - 1 MHz. The addition of Mg salt was found to improve the ionic conductivity significantly. The 15-wt-% Mg(CH 3 COO) 2 -doped system had a maximum conductivity of 1.07 x 10 -6 S/cm at 303 K. The conductance spectrum shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the ionic conductivity reveals the conduction mechanism to be an Arrhenius-type thermally activated process.

  17. Self-doped carbon architectures with heteroatoms containing nitrogen, oxygen and sulfur as high-performance anodes for lithium- and sodium-ion batteries

    International Nuclear Information System (INIS)

    Lu, Mingjie; Yu, Wenhua; Shi, Jing; Liu, Wei; Chen, Shougang; Wang, Xin; Wang, Huanlei

    2017-01-01

    Highlights: •Self-doped carbon architectures with nitrogen, oxygen, and sulfur are derived from Carrageen. •The obtained carbon materials exhibit excellent electrochemical property. •The strategy provides a one-step synthesis route to design advanced anodes for batteries. -- Abstract: Nitrogen, oxygen and sulfur tridoped porous carbons have been successfully synthesized from natural biomass algae-Carrageen by using a simultaneous carbonization and activation procedure. The doped carbons with sponge-like interconnected architecture, partially ordered graphitic structure, and abundant heteroatom doping perform outstanding features for electrochemical energy storage. When tested as lithium-ion battery anodes, a high reversible capacity of 839 mAh g −1 can be obtained at the current density of 0.1 A g −1 after 100 cycles, while a high capacity of 228 mAh g −1 can be maintained at 10 A g −1 . Tested against sodium, a high specific capacity of 227 can be delivered at 0.1 A g −1 after 100 cycles, while a high capacity of 109 mAh g −1 can be achieved at 10 A g −1 . These results turn out that the doped carbons would be potential anode materials for lithium- and sodium-ion batteries, which can be achieved by a one-step and large-scale synthesis route. Our observation indicates that heteroatom doping (especially sulfur) can significantly promote ion storage and reduce irreversible ion trapping to some extent. This work gives a general route for designing carbon nanostructures with heteroatom doping for efficient energy storage.

  18. Overall conductivity and NCL-type relaxation behavior in nanocrystalline sodium peroxide Na{sub 2}O{sub 2}—Consequences for Na-oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunst, Andreas; Sternad, Michael; Wilkening, Martin, E-mail: wilkening@tugraz.at

    2016-09-15

    Highlights: • Na{sub 2}O{sub 2} turned out to be a poor electrical conductor. • Total conductivity of nanocrystalline Na{sub 2}O{sub 2} measured slightly above room temperature is in the order of 10{sup −15} S cm{sup −1}. • Activation energies of micro- and nanocrystalline Na{sub 2}O{sub 2} are in the order of 1 eV. • At low temperatures nearly constant loss behavior showed up pointing to locally restricted electrical relaxation processes. - Abstract: Metal air batteries are considered as promising candidates for room-temperature batteries with high-energy densities. On discharge, atmospheric oxygen is reduced at the positive electrode which, in the ideal case, forms the discharge products in a reversible cell reaction. In Na-O{sub 2} batteries upon discharge either sodium peroxide (Na{sub 2}O{sub 2}) or sodium superoxide (NaO{sub 2}) is reported to be formed. So far, the charge carrier transport remains relatively unexplored but is expected to crucially determine the efficiency of such energy storage systems. Na{sub 2}O{sub 2} is predicted to be an electrical insulator wherein the transport presumably is determined by very slow hopping processes. Understanding the basic fundamental properties of the overall charge carrier transport, including also nanostructured forms of Na{sub 2}O{sub 2}, is key to developing high-energy metal oxygen batteries. The present study answers the question how overall, i.e., total, conductivity changes when going from microcrystalline to nanocrystalline, defect-rich Na{sub 2}O{sub 2}. Nanocrystalline Na{sub 2}O{sub 2} was prepared via a top-down approach, viz by high-energy ball milling. Milling does not only shrink the average crystallite diameter but also introduces a large amount of defects which are anticipated to influence total conductivity. It turned out that even after vigorous mechanical treatment the conductivity of the sample is only increased by ca.