WorldWideScience

Sample records for oxygen functionalised plasma

  1. Osteoblast response to oxygen functionalised plasma polymer surfaces

    International Nuclear Information System (INIS)

    Kelly, Jonathan M.

    2001-01-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma copolymers was studied by enzyme linked immunosorbent assays and by I 125 radiolabelling. Fibronectin adsorbed in largest amounts to surfaces with intermediate concentrations of carboxyl functionality. Spreading of ROS cells and rat bone marrow stromal cells (BMSC) was characterised by computer image analysis. Cell spreading in media containing 10% serum, on a surface deposited from a plasma of 5 O/o acrylic acid was much greater than on the octadiene plasma polymer while most extensive cell spreading was observed on these surfaces when preadsorbed with fibronectin. Growth (proliferation) of BMSC was assessed over nine days and was found to be faster on an 50% acrylic acid plasma polymer than on tissue culture polystyrene or a hydrocarbon plasma polymer, though cell growth was fastest on fibronectin precoated substrates. Expression of cellular alkaline phosphatase, collagen and calcium reached similar levels on the 50% acrylic acid plasma polymer, tissue culture

  2. Osteoblast response to oxygen functionalised plasma polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Jonathan M

    2001-07-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma copolymers was studied by enzyme linked immunosorbent assays and by I{sup 125} radiolabelling. Fibronectin adsorbed in largest amounts to surfaces with intermediate concentrations of carboxyl functionality. Spreading of ROS cells and rat bone marrow stromal cells (BMSC) was characterised by computer image analysis. Cell spreading in media containing 10% serum, on a surface deposited from a plasma of 5 O/o acrylic acid was much greater than on the octadiene plasma polymer while most extensive cell spreading was observed on these surfaces when preadsorbed with fibronectin. Growth (proliferation) of BMSC was assessed over nine days and was found to be faster on an 50% acrylic acid plasma polymer than on tissue culture polystyrene or a hydrocarbon plasma polymer, though cell growth was fastest on fibronectin precoated substrates. Expression of cellular alkaline phosphatase, collagen and calcium reached similar levels on the 50% acrylic acid plasma polymer, tissue

  3. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds.

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S

    2011-06-01

    Understanding nanodiamond functionalisation is of great importance for biological and medical applications. Here we examine the stabilities of oxygen, hydroxyl, and water functionalisation of the nanodiamonds using the self-consistent charge density functional tight-binding simulations. We find that the oxygen and hydroxyl termination are thermodynamically favourable and form strong C–O covalent bonds on the nanodiamond surface in an O2 and H2 gas reservoir, which confirms previous experiments. Yet, the thermodynamic stabilities of oxygen and hydroxyl functionalisation decrease dramatically in a water vapour reservoir. In contrast, H2O molecules are found to be physically adsorbed on the nanodiamond surface, and forced chemical adsorption results in decomposition of H2O. Moreover, the functionalisation efficiency is found to be facet dependent. The oxygen functionalisation prefers the {100} facets as opposed to alternative facets in an O2 and H2 gas reservoir. The hydroxyl functionalisation favors the {111} surfaces in an O2 and H2 reservoir and the {100} facets in a water vapour reservoir, respectively. This facet selectivity is found to be largely dependent upon the environmental temperature, chemical reservoir, and morphology of the nanodiamonds.

  4. Surface functionalisation of polypropylene hernia-repair meshes by RF-activated plasma polymerisation of acrylic acid and silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nisticò, Roberto, E-mail: roberto.nistico@unito.it [University of Torino, Department of Chemistry and NIS Research Centre, Via P. Giuria 7, 10125 Torino (Italy); Rosellini, Andrea [University of Torino, Department of Chemistry and NIS Research Centre, Via P. Giuria 7, 10125 Torino (Italy); Rivolo, Paola [Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Faga, Maria Giulia [CNR-IMAMOTER, Strada delle Cacce 73, 10135 Torino (Italy); Lamberti, Roberta; Martorana, Selanna [Herniamesh S.r.l., Via F.lli Meliga 1/C, 10034 Chivasso (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Virga, Alessandro; Mandracci, Pietro [Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Malandrino, Mery; Magnacca, Giuliana [University of Torino, Department of Chemistry and NIS Research Centre, Via P. Giuria 7, 10125 Torino (Italy)

    2015-02-15

    Graphical abstract: - Highlights: • Polypropylene meshes for hernioplasty were surface functionalised via plasma-polymerisation to confer adhesive properties. • Subsequently, silver nanoparticles were loaded to add antibacterial activity. • Materials were physico-chemical characterised and adhesive properties evaluated. - Abstract: Hernia diseases are among the most common and diffuse causes of surgical interventions. Unfortunately, still nowadays there are different phenomena which can cause the hernioplasty failure, for instance post-operative prostheses displacements and proliferation of bacteria in the surgical site. In order to limit these problems, commercial polypropylene (PP) and polypropylene/Teflon (PP/PTFE) bi-material meshes were surface functionalised to confer adhesive properties (and therefore reduce undesired displacements) using polyacrylic acid synthesized by plasma polymerisation (PPAA). A broad physico-chemical and morphological characterisation was carried out and adhesion properties were investigated by means of atomic force microscopy (AFM) used in force/distance (F/D) mode. Once biomedical devices surface was functionalised by PPAA coating, metallic silver nanoparticles (AgNPs) with antimicrobial properties were synthesised and loaded onto the polymeric prostheses. The effect of the PPAA, containing carboxylic functionalities, adhesive coating towards AgNPs loading capacity was verified by means of X-ray photoelectron spectroscopy (XPS). Preliminary measurement of the Ag loaded amount and release in water were also investigated via inductively coupled plasma atomic emission spectroscopy (ICP-AES). Promising results were obtained for the functionalised biomaterials, encouraging future in vitro and in vivo tests.

  5. Modifying TiO{sub 2} surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rajmohan, Gayathri Devi [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Dai, Xiujuan J., E-mail: jane.dai@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Tsuzuki, Takuya; Lamb, Peter R. [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001 (Australia); Huang, Fuzhi; Cheng, Yi-Bing [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia)

    2013-10-31

    Oxygen plasma treatment of TiO{sub 2} films has been used to improve the efficiency of dye sensitized solar cells. Both a commercial TiO{sub 2} sample and a TiO{sub 2} thin film synthesized by a sol-gel technique were treated using a custom built inductively coupled plasma apparatus. X-ray photoelectron spectroscopy revealed that oxygen-plasma treatment increased the number of oxygen functional groups (hydroxyl groups) and introduced some Ti{sup 3+} species on the surface of TiO{sub 2}. A sample solar cell with plasma treated TiO{sub 2} showed an overall solar-to-electricity conversion efficiency of 4.3%, about a 13% increase over untreated TiO{sub 2}. The photon conversion efficiency for the plasma treated TiO{sub 2} was 34% higher than untreated TiO{sub 2}. This enhanced cell-performance is partly due to increased dye adsorption from an increase in surface oxygen functional groups and also may be partly due to Ti{sup 3+} states on the surface of TiO{sub 2}. - Highlights: • Oxygen plasma is used to generate hydroxyl groups on the surface of TiO{sub 2} • Parallel study was conducted using a spin coated TiO{sub 2} and a Commercial TiO{sub 2} film. • The plasma functionalization caused increased dye uptake. • Some species in Ti{sup 3+} state are also generated after oxygen plasma. • Dye sensitised solar cell with functionalised electrode showed improved efficiency.

  6. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Mathur, A.; Roy, S.S.; Hazra, K.S.; Wadhwa, S.; Ray, S.C.; Mitra, S.K.; Misra, D.S.; McLaughlin, J.A.

    2012-01-01

    Highlights: ► We showed Ar/O 2 plasma can be effective for the end opening of aligned CNTs. ► The field emission property was dramatically enhanced after plasma modification. ► Microstructures were clearly understood by Raman and SEM analysis. ► Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15–20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110° to 40°. It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from ∼0.80 V μm −1 (untreated) to ∼0.60 V μm −1 (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  7. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Roy, S.S., E-mail: sinharoy@ualberta.ca [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Hazra, K.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); Wadhwa, S. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Ray, S.C. [School of Physics, University of the Witwatersrand, WITS 2050, Johannesburg (South Africa); Mitra, S.K. [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Misra, D.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); McLaughlin, J.A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We showed Ar/O{sub 2} plasma can be effective for the end opening of aligned CNTs. Black-Right-Pointing-Pointer The field emission property was dramatically enhanced after plasma modification. Black-Right-Pointing-Pointer Microstructures were clearly understood by Raman and SEM analysis. Black-Right-Pointing-Pointer Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15-20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110 Degree-Sign to 40 Degree-Sign . It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from {approx}0.80 V {mu}m{sup -1} (untreated) to {approx}0.60 V {mu}m{sup -1} (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  8. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment

    International Nuclear Information System (INIS)

    Burke, Aoife M.; Hanrahan, John P.; Healy, David A.; Sodeau, John R.; Holmes, Justin D.; Morris, Michael A.

    2009-01-01

    Here we demonstrate aminopropyl and mercatopropyl functionalised and bi-functionalised large pore mesoporous silica spheres to extract various metal ions from aqueous solutions towards providing active sorbents for mitigation of metal ion pollution. Elemental analysis (EA) and FTIR techniques were used to quantify the attachment of the aminopropyl and mercatopropyl functional groups to the mesoporous silica pore wall. Functionalisation was achieved by post-synthesis reflux procedures. For all functionalised silicas the functionalisation refluxing does not alter particle morphology/agglomeration of the particles. It was found that sorptive capacities of the mesoporous silica towards the functional groups were unaffected by co-functionalisation. Powder X-ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameters, packing of the pores and specific surface areas of the modified mesoporous silica spheres. Atomic absorption (AA) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) techniques were used to measure the extraction efficiencies of each metal ion species from solution at varying pHs. Maximum sorptive capacities (as metal ions) were determined to be 384 μmol g -1 for Cr, 340 μmol g -1 for Ni, 358 μmol g -1 for Fe, 364 μmol g -1 for Mn and 188 μmol g -1 for Pd

  9. Large pore bi-functionalised mesoporous silica for metal ion pollution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Aoife M.; Hanrahan, John P. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Environmental Research Institute (ERI), Lee Road, Cork (Ireland); Healy, David A.; Sodeau, John R. [Department of Chemistry, Centre of Research in Atmospheric Chemistry, University College Cork, Cork (Ireland); Holmes, Justin D. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Morris, Michael A. [Department of Chemistry, Materials Section and Supercritical Fluid Centre, University College Cork, Cork (Ireland); Environmental Research Institute (ERI), Lee Road, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland)], E-mail: m.morris@ucc.ie

    2009-05-15

    Here we demonstrate aminopropyl and mercatopropyl functionalised and bi-functionalised large pore mesoporous silica spheres to extract various metal ions from aqueous solutions towards providing active sorbents for mitigation of metal ion pollution. Elemental analysis (EA) and FTIR techniques were used to quantify the attachment of the aminopropyl and mercatopropyl functional groups to the mesoporous silica pore wall. Functionalisation was achieved by post-synthesis reflux procedures. For all functionalised silicas the functionalisation refluxing does not alter particle morphology/agglomeration of the particles. It was found that sorptive capacities of the mesoporous silica towards the functional groups were unaffected by co-functionalisation. Powder X-ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameters, packing of the pores and specific surface areas of the modified mesoporous silica spheres. Atomic absorption (AA) spectroscopy and inductively coupled plasma-atomic emission spectrometry (ICP-AES) techniques were used to measure the extraction efficiencies of each metal ion species from solution at varying pHs. Maximum sorptive capacities (as metal ions) were determined to be 384 {mu}mol g{sup -1} for Cr, 340 {mu}mol g{sup -1} for Ni, 358 {mu}mol g{sup -1} for Fe, 364 {mu}mol g{sup -1} for Mn and 188 {mu}mol g{sup -1} for Pd.

  10. AN INVESTIGATION ON THE EFFECT OF FUNCTIONALISED GRAPHENE COMPOSITED WITH NCNT AND FE-NCNT ON THE OXYGEN REDUCTION REACTION VIA PHYSICAL MIXING METHOD

    Directory of Open Access Journals (Sweden)

    CHONG W.Z.

    2016-02-01

    Full Text Available Oxygen reduction reaction plays a major role in fuel cell applications to generate electricity by an electrochemical reaction. In this study, functionalised graphene composited with Fe-NCNT or NCNT were investigated on its ORR activity using a physical mixing method. Initially, functionalised graphene was produced via oxidation of graphene. NCNT and Fe-NCNT was obtained from the previously prepared samples using chemical vapour deposition technique and electrochemical reduction method for Fe-NCNT. The physical mixing between functionalised graphene and NCNT or Fe-NCNT was performed using sonication with the presence of pyrrole to produce the desired nanocatalyst. The surface morphologies and microstructures of the synthesised nanocatalysts were studied using field emission scanning electron microscopy. Surface chemical functionality of the nanocatalysts was investigated using X-ray photoelectron microscopy. Meanwhile, the ORR performance of nanocatalysts in a half cell were investigated using cyclic voltammetry techniques in both alkaline and acidic electrolytes. From this study, agglomeration of functionalised graphene (f-graphene was observed on the Fe-NCNTs indicating a hindrance in transfer of electrons within the catalyst surface. NCNT/f-graphene showed to contain higher percentage of pyridinic-N which claimed to have favored the catalytic activity compared to Fe-NCNT/f-graphene. Likewise, a higher onset potential was recorded for NCNT/f-graphene which indicated a higher ORR activity than the Fe-NCNT/f-graphene.

  11. Functionalised Oximes: Emergent Precursors for Carbon-, Nitrogen- and Oxygen-Centred Radicals

    Directory of Open Access Journals (Sweden)

    John C. Walton

    2016-01-01

    Full Text Available Oxime derivatives are easily made, are non-hazardous and have long shelf lives. They contain weak N–O bonds that undergo homolytic scission, on appropriate thermal or photochemical stimulus, to initially release a pair of N- and O-centred radicals. This article reviews the use of these precursors for studying the structures, reactions and kinetics of the released radicals. Two classes have been exploited for radical generation; one comprises carbonyl oximes, principally oxime esters and amides, and the second comprises oxime ethers. Both classes release an iminyl radical together with an equal amount of a second oxygen-centred radical. The O-centred radicals derived from carbonyl oximes decarboxylate giving access to a variety of carbon-centred and nitrogen-centred species. Methods developed for homolytically dissociating the oxime derivatives include UV irradiation, conventional thermal and microwave heating. Photoredox catalytic methods succeed well with specially functionalised oximes and this aspect is also reviewed. Attention is also drawn to the key contributions made by EPR spectroscopy, aided by DFT computations, in elucidating the structures and dynamics of the transient intermediates.

  12. Functionalisation of surfaces for the biotechnology. Proceedings; Funktionalisierung von Oberflaechen fuer die Biotechnologie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Surface functionalisation methods for biotechnological applications have been presented at the meeting of the Society of Thin Films in Dresden, Germany, on march 11th, 2003. The lectures are: Biochips - function, applications and markets (M.Fritz); Requirements on biochips with microfluid on the surface (H.Reinecke; H.Bartos); Lab-on-a-chip systems for medical diagnostics (S.Hardt; K.Drese; A.Griebel; S.Rund; F.Schoenfeld); Biotronics - combination of biological systems with microelectronics (A.Offenhaeusser); Observing and directing biological machines at the subnanometer scale (D.Mueller); Molecularly designed surfaces for bio-applications (U.Schedler; T.Thiele; H.Matuschewski; R.Storm); Functionalisation by self-organizing monolayers (R.Dahint; S.Herrwerth; T.Rosendahl; C.Feng; J.Fick; W.Eck: M.Himmelhaus; M.Grunze); Bioactive nanosol coatings (H.Boettcher; D.Fiedler; U.Soltmann); Possibilities of surface modifying for the biotechnology by means of microfluid systems (F.-U.Gast; H.Fiehn; S.Howitz); Coated slides as supports for DNA and protein microarrays (A.Papra); Surface functionalisation by plasma polymerisation (R.Foerch; C.Thielemann; R.Naumann; W.Knoll); Physical modification of the surface functions of supports for polymeric cell cultures (P.Wuensche; K.Riess); Plasma processes for storage resistant hydrophilic interface layers for biomedical applications (K.Schroeder; R.Ihrke; A.Ohl); Targeted chemical functionalisation of porous materials and parts of the microsystem technology (P.Krueger).

  13. Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme.

    Science.gov (United States)

    Lalaoui, Noémie; Holzinger, Michael; Le Goff, Alan; Cosnier, Serge

    2016-07-18

    We report the controlled orientation of bilirubin oxidases (BOD) from Myrothecium verrucaria on multiwalled carbon nanotubes (MWCNTs) functionalised by electrografting of 6-carboxynaphthalenediazonium and 4-(2-aminoethyl)benzenediazonium salts. On negatively charged naphthoate-modified MWCNTs, a high-potential (0.44 V vs. SCE) oxygen reduction electrocatalysis is observed, occurring via the T1 copper centre. On positively charged ammonium-modified MWCNTs, a low-potential (0.15 V) oxygen reduction electrocatalysis is observed, occurring through a partially oxidised state of the T2/T3 trinuclear copper cluster. Finally, chemically modified naphthoate MWCNTs exhibit high bioelectrocatalytic current densities of 3.9 mA cm(-2) under air at gas-diffusion electrode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis, characterisation and functionalisation of luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Labéguerie-Egéa, Jessica; McEvoy, Helen M.; McDonagh, Colette

    2011-01-01

    The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2′-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy) 2 (phen-5-NH 2 )(PF 6 )), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.

  15. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    Science.gov (United States)

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  16. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  17. Functionalised Silver Nanowire Structures

    International Nuclear Information System (INIS)

    Andrew, Piers; Ilie, Adelina

    2007-01-01

    Crystalline silver nanowires 60-100 nm in diameter and tens of micrometres in length have been fabricated using a low temperature, solution synthesis technique. We explore the potential of this method to produce functional nanowire structures using two different strategies to attach active molecules to the nanowires: adsorption and displacement. Initially, as-produced silver nanowires capped with a uniaxial-growth-inducing polymer layer were functionalised by solution adsorption of a semiconducting conjugated polymer to generate fluorescent nanowire structures. The influence of nanowire surface chemistry was investigated by displacing the capping polymer with an alkanethiol self-assembled monolayer, followed by solution adsorption functionalisation. The success of molecular attachment was monitored by electron microscopy, absorption and fluorescence spectroscopy and confocal fluorescence microscopy. We examined how the optical properties of such adsorbed molecules are affected by the metallic nanowires, and observed transfer of excitation energy between dye molecules mediated by surface plasmons propagating on the nanowires. Non-contact dynamic force microscopy measurements were used to map the work-function of individual wires, revealing inhomogeneity of the polymer surface coverage

  18. Platinum and palladium on carbon nanotubes : Experimental and theoretical studies

    NARCIS (Netherlands)

    Adjizian, J. J.; De Marco, P.; Suarez-Martinez, I.; El Mel, A. A.; Snyders, R.; Gengler, R. Y. N.; Rudolf, P.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.; Ewels, C. P.

    2013-01-01

    Pristine and oxygen plasma functionalised carbon nanotubes (CNTs) were studied after the evaporation of Pt and Pd atoms. High resolution transmission electron microscopy shows the formation of metal nanoparticles at the CNT surface. Oxygen functional groups grafted by the plasma functionalization

  19. Surface interaction of polyimide with oxygen ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P.S.; Bhoraskar, V.N.; Mandle, A.B.; Ganeshan, V.; Bhoraskar, S.V.

    2004-01-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis

  20. Surface interaction of polyimide with oxygen ECR plasma

    Science.gov (United States)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  1. Plasmonic behaviour of phenylenediamine functionalised silver nanoparticles

    Science.gov (United States)

    Akmal Che Lah, Nurul; Samykano, Mahendran; Rafie Johan, Mohd; Syahierah Othman, Nuurul; Mawardi Saari, Mohd; Bey Fen, Leo; Zalikha Khalil, Nur

    2017-09-01

    The surface functionalisation of AgNPs has demonstrated improved capability for various applications by modifying their surface chemical conditions. In this study, AgNPs functionalised with p-phenylenediamine (PPD) ligand were prepared, and the plasmonic effects of the nanocomposites were then investigated. The synthesis and functionalisation of Ag nanocomposites were achieved through chemical modification reaction of naphthalene group through hydrothermal synthesis. The influence of the chemical modification reaction on the plasmonic behaviour and size variation were obtained via optical measurement techniques such as UV-visible spectroscopy (UV-Vis) for absorbance characteristic, photoluminescence for emission response and micro-Raman spectroscopy (MRS) for SERS study on the presence of regions containing AgNPs and PPD ligand. It was observed that the one-step process of deprotonation of the amino group on the aromatic rings gives the re-arrangement of the electron cloud towards the π-conjugated system. High-resolution transmission electron microscope (TEM) analysis showed the formation of the nanocomposites and the AgNPs (for ~4 and ~5 nm of diameter sizes) are well-dispersed over the PPD matrix. The nanocomposites are assembled into higher dimensional structures through coordination with functional PPD ligand and also increasing the PPD amount led to the increase in the surface area of the nanoparticles.

  2. Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

    Directory of Open Access Journals (Sweden)

    Margus Kodu

    2017-03-01

    Full Text Available Graphene has been recognized as a promising gas sensing material. The response of graphene-based sensors can be radically improved by introducing defects in graphene using, for example, metal or metal oxide nanoparticles. We have functionalised CVD grown, single-layer graphene by applying pulsed laser deposition (PLD of V2O5 which resulted in a thin V2O5 layer on graphene with average thickness of ≈0.6 nm. From Raman spectroscopy, it was concluded that the PLD process also induced defects in graphene. Compared to unmodified graphene, the obtained chemiresistive sensor showed considerable improvement of sensing ammonia at room temperature. In addition, the response time, sensitivity and reversibility were essentially enhanced due to graphene functionalisation by laser deposited V2O5. This can be explained by an increased surface density of gas adsorption sites introduced by high energy atoms in laser ablation plasma and formation of nanophase boundaries between deposited V2O5 and graphene.

  3. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Thovhogi, Ntevheleni; Sibuyi, Nicole [Medical Research Council, Diabetes Research Group (South Africa); Meyer, Mervin [University of the Western Cape, Biotechnology Department, DST/Mintek Nanotechnology Innovation Centre (South Africa); Onani, Martin [University of the Western Cape, Chemistry Department (South Africa); Madiehe, Abram, E-mail: amadiehe@csir.co.za [Medical Research Council, Diabetes Research Group (South Africa)

    2015-02-15

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  4. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    International Nuclear Information System (INIS)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-01-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats

  5. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    Science.gov (United States)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-02-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  6. Sterilization by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Adir Jose; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Silva Zambon, Luis da; Silva, Monica Valero da; Verdonck, Patrick Bernard

    2004-07-31

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  7. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    International Nuclear Information System (INIS)

    Chen, Shih-Cheng; Chang, Ting-Chang; Chen, Wei-Ren; Lo, Yuan-Chun; Wu, Kai-Ting; Sze, S.M.; Chen, Jason; Liao, I.H.; Yeh, Fon-Shan

    2010-01-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  8. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  9. Modification of ink-jet paper by oxygen-plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, A [Jozef Stefan Institute, Jamova 39, Ljubljana 1000 (Slovenia); Mozetic, M [Jozef Stefan Institute, Jamova 39, Ljubljana 1000 (Slovenia); Hladnik, A [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Dolenc, J [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Zule, J [Pulp and Paper Institute, Bogisiceva 8, Ljubljana 1001 (Slovenia); Milosevic, S [Institute of Physics, Bijenicka 46, Zagreb 10000 (Croatia); Krstulovic, N [Institute of Physics, Bijenicka 46, Zagreb 10000 (Croatia); Klanjsek-Gunde, M [National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000 (Slovenia); Hauptmann, N [National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000 (Slovenia)

    2007-06-21

    A study on oxygen-plasma treatment of ink-jet paper is presented. Paper was exposed to a weakly ionized, highly dissociated oxygen plasma with an electron temperature of 5 eV, a positive-ion density of 8 x 10{sup 15} m{sup -3} and a density of neutral oxygen atoms of 5 x 10{sup 21} m{sup -3}. Optical emission spectroscopy (OES) was applied as a method for detection of the reaction products during the plasma treatment of the paper. OES spectra between 250 and 1000 nm were measured continuously during the plasma treatment. The wettability of the samples before and after the plasma treatment was determined by measuring the contact angle of a water drop. The appearance of the surface-functional groups was determined by using high-resolution x-ray photoelectron spectroscopy (XPS), while changes in the surface morphology were monitored with scanning electron microscopy (SEM). Already after 1 s of the plasma treatment the surface, which was originally hydrophobic, changed to hydrophilic, as indicated by a high absorption rate of a water drop into the paper. The OES showed a rapid increase of the CO and OH bands for the first few seconds of the plasma treatment, followed by a slow decrease during the next 40 s. The intensity of the O atom line showed reversed behaviour. The XPS analyses showed a gradual increase of oxygen-rich functional groups on the surface, while SEM analyses did not show significant modification of the morphology during the first 10 s of the plasma treatment. The results were explained by degradation of the alkyl ketene dimer sizing agent during the first few seconds of the oxygen-plasma treatment.

  10. Modification of ink-jet paper by oxygen-plasma treatment

    International Nuclear Information System (INIS)

    Vesel, A; Mozetic, M; Hladnik, A; Dolenc, J; Zule, J; Milosevic, S; Krstulovic, N; Klanjsek-Gunde, M; Hauptmann, N

    2007-01-01

    A study on oxygen-plasma treatment of ink-jet paper is presented. Paper was exposed to a weakly ionized, highly dissociated oxygen plasma with an electron temperature of 5 eV, a positive-ion density of 8 x 10 15 m -3 and a density of neutral oxygen atoms of 5 x 10 21 m -3 . Optical emission spectroscopy (OES) was applied as a method for detection of the reaction products during the plasma treatment of the paper. OES spectra between 250 and 1000 nm were measured continuously during the plasma treatment. The wettability of the samples before and after the plasma treatment was determined by measuring the contact angle of a water drop. The appearance of the surface-functional groups was determined by using high-resolution x-ray photoelectron spectroscopy (XPS), while changes in the surface morphology were monitored with scanning electron microscopy (SEM). Already after 1 s of the plasma treatment the surface, which was originally hydrophobic, changed to hydrophilic, as indicated by a high absorption rate of a water drop into the paper. The OES showed a rapid increase of the CO and OH bands for the first few seconds of the plasma treatment, followed by a slow decrease during the next 40 s. The intensity of the O atom line showed reversed behaviour. The XPS analyses showed a gradual increase of oxygen-rich functional groups on the surface, while SEM analyses did not show significant modification of the morphology during the first 10 s of the plasma treatment. The results were explained by degradation of the alkyl ketene dimer sizing agent during the first few seconds of the oxygen-plasma treatment

  11. Electrospun complexes - functionalised nanofibres

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wolf, M.; Dreyer, B.; Unruh, D.; Krüger, C.; Menze, M. [Leibniz University Hannover, Institute of Inorganic Chemistry (Germany); Sindelar, R. [University of Applied Science Hannover, Faculty II (Germany); Klingelhöfer, G. [Gutenberg-University, Institute of Inorganic and Analytic Chemistry (Germany); Renz, F., E-mail: renz@acd.uni-hannover.de [Leibniz University Hannover, Institute of Inorganic Chemistry (Germany)

    2016-12-15

    Here we present a new approach of using iron-complexes in electro-spun fibres. We modify poly(methyl methacrylate) (PMMA) by replacing the methoxy group with Diaminopropane or Ethylenediamine. The complex is bound covalently via an imine-bridge or an amide. The resulting polymer can be used in the electrospinning process without any further modifications in method either as pure reagent or mixed with small amounts of not functionalised polymer resulting in fibres of different qualities (Fig. 1).

  12. Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen

    International Nuclear Information System (INIS)

    Schneider, J.M.; Anders, A.; Brown, I.G.; Hjoervarsson, B.; Hultman, L.

    1999-01-01

    We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 μs of the pulse at oxygen pressures of ≥5x10 -5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas. copyright 1999 American Institute of Physics

  13. The influence of surface functionalisation on the electrical properties and thermal stability of nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Joseph O; Li, Pei; Chaudhary, Aysha; Edgington, Robert; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology and the Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2014-10-07

    Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material. However, to date there has been little investigation of the electrical properties of this material. Due to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND, verified using Fourier transform infrared spectroscopy, are shown to strongly influence the electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also displayed so-called “surface conductivity,” a property displayed by hydrogen-terminated bulk diamond films, whilst O-NDs display properties high resistivity. These results indicate that under the correct conditions ND layers can display similar electrical properties to “bulk” diamond thin films.

  14. Synthesis and characterisation of doxorubicin-loaded functionalised ...

    African Journals Online (AJOL)

    The synthesised cobalt ferrite nanoparticles (CFNPs) were functionalised with xanthine gum (XG) and subsequently characterised by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and contact angle studies. Vibrating sample magnetometry (VSM) was used for magnetic measurements of ...

  15. Azide- and Alkyne-Functionalised α- and β3-Amino Acids

    DEFF Research Database (Denmark)

    Sminia, T.J.; Pedersen, Daniel Sejer

    2012-01-01

    The synthesis and full characterisation of bifunctional β -amino acids that have side chains functionalised with terminal azides (S)-4 and (R)-4 or acetylenes 5 and 6 is reported for the first time. The building blocks incorporate a turn-inducing β -segment and a side chain that can...... be functionalised further, for example, through copper-catalysed Huisgen cycloaddition. Moreover, the corresponding α-amino acids 1 and 3 have been synthesised and characterised. All amino acid building blocks were of high optical purity as demonstrated by derivatisation and subsequent NMR analysis....

  16. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching(SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition,etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000?C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  17. Singular Sheet Etching of Graphene with Oxygen Plasma

    Institute of Scientific and Technical Information of China (English)

    Haider Al-Mumen; Fubo Rao; Wen Li; Lixin Dong

    2014-01-01

    This paper reports a simple and controllable post-synthesis method for engineering the number of graphene layers based on oxygen plasma etching. Singular sheet etching (SSE) of graphene was achieved with the optimum process duration of 38 seconds. As a demonstration of this SSE process, monolayer graphene films were produced from bilayer graphenes. Experimental investigations verified that the oxygen plasma etching removes a single layer graphene sheet in an anisotropic fashion rather than anisotropic mode. In addition, etching via the oxygen plasma at the ground electrodes introduced fewer defects to the bottom graphene layer compared with the conventional oxygen reactive ion etching using the powered electrodes. Such defects can further be reduced with an effective annealing treatment in an argon environment at 900-1000◦C. These results demonstrate that our developed SSE method has enabled a microelectronics manufacturing compatible way for single sheet precision subtraction of graphene layers and a potential technique for producing large size graphenes with high yield from multilayer graphite materials.

  18. Novel elastomer dye-functionalised POSS nanocomposites: Enhanced colourimetric, thermomechanical and thermal properties

    Directory of Open Access Journals (Sweden)

    R. A. Shanks

    2012-05-01

    Full Text Available Nanocomposites consisting of poly(styrene-b-butadiene-b-styrene (SBS and polyhedral oligomeric silsesquioxanes (POSS were prepared using a solvent dispersion method. POSS molecules were functionalised with two dichlorotriazine reactive dyes (CI Reactive Blue 4, CI Reactive Red 2 prior to compounding. Infrared spectroscopy confirmed functionalisation.Scanning electron microscopy revealed an increase in filler aggregation with concentration, with preferential phase selectivity. Ultraviolet spectroscopy and colourimetry confirmed colour uniformity and suggested that colour intensity could be controlled. Functionalised POSS improved thermal stability by imparting restrictions on SBS chain motions. Tensile stress-strain analysis revealed an increase in modulus with filler concentration, while creep deformation decreased and permanent strain increased with POSS content. Storage modulus, loss modulus and glass transition temperature increased with filler content due to effective SBS-POSS interaction. Nanocomposite properties were influenced by the phase the filler was dispersed throughout and the structure of the dye chromophore.

  19. Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites

    Science.gov (United States)

    Sapiai, Napisah; Jumahat, Aidah; Mahmud, Jamaluddin

    2018-04-01

    This paper aims to study the effect of functionalised carbon nanotubes (CNT) on mechanical properties of kenaf fibre reinforced polymer composites. The CNT was functionalised using acid mixtures of H2SO4:HNO3 and 3-Aminopropyl Triethoxysilane before it was incorporated into epoxy resin. Three different types of CNT were used, i.e. pristine (PCNT), acid-treated (ACNT) and acid-silane treated (SCNT), to fabricate kenaf composite. Three different filler contents were mixed in each composite system, i.e. 0.5, 0.75 and 1.0 wt%. The functionalised CNT was characterized using x-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM). Tensile, flexural and Izod impact tests were conducted in order to evaluate the effect of CNT contents and surface treatment of mechanical properties of kenaf composites. It was observed that the inclusion of 1 wt% acid-silane treated CNT improved the tensile, flexural and impact strengths of kenaf/epoxy composite by 43.30%, 21.10%, and 130%, respectively. Silane modification had been proven to be beneficial in enhancing the dispersibility and reducing agglomeration of CNT in the epoxy matrix.

  20. Plasma-Oxygen Interaction During Thin Films Deposition by Laser ...

    African Journals Online (AJOL)

    In this contribution we study the effect of the oxygen pressure on the plasma dynamics during the ablation of oxides materials into an oxygen gas. The study was done using fast imaging and ion probe techniques. Both techniques revealed that a threshold oxygen pressure is needed to initiate the plume oxygen interaction.

  1. Photoluminescence wavelength variation of monolayer MoS2 by oxygen plasma treatment

    International Nuclear Information System (INIS)

    Kim, Min Su; Nam, Giwoong; Park, Seki; Kim, Hyun; Han, Gang Hee; Lee, Jubok; Dhakal, Krishna P.; Leem, Jae-Young; Lee, Young Hee; Kim, Jeongyong

    2015-01-01

    We performed nanoscale confocal photoluminescence (PL), Raman, and absorption spectral imaging measurements to investigate the optical and structural properties of molybdenum disulfide (MoS 2 ) monolayers synthesized by chemical vapor deposition method and subjected to oxygen plasma treatment for 10 to 120 s under high vacuum (1.3 × 10 −3 Pa). Oxygen plasma treatment induced red shifts of ~ 20 nm in the PL emission peaks corresponding to A and B excitons. Similarly, the peak positions corresponding to A and B excitons of the absorption spectra were red-shifted following oxygen plasma treatment. Based on the confocal PL, absorption, and Raman microscopy results, we suggest that the red-shifting of the A and B exciton peaks originated from shallow defect states generated by oxygen plasma treatment. - Highlights: • Effects of oxygen plasma on optical properties of monolayer MoS 2 were investigated. • Confocal photoluminescence, Raman, and absorption spectral maps are presented. • Wavelength tuning up to ~ 20 nm for the peak emission wavelength was achieved

  2. Non-Covalent Functionalisation of C30 Fullerene by Pyrrole-n-Carboxylic Acid (n=2, 3): Density Functional Theory Studies

    Science.gov (United States)

    Harismah, Kun; Mirzaei, Mahmoud; Ghasemi, Nahid; Nejati, Mohammad

    2017-12-01

    For functionalisation of a representative C30 fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C60 fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C60, the shape of C30 fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC30 and EC30). The results indicated that both the positions of C30 have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C60. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C30 than for C60 fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.

  3. Fluorophore-based sensor for oxygen radicals in processing plasmas

    International Nuclear Information System (INIS)

    Choudhury, Faraz A.; Shohet, J. Leon; Sabat, Grzegorz; Sussman, Michael R.; Nishi, Yoshio

    2015-01-01

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye

  4. Fluorophore-based sensor for oxygen radicals in processing plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Sabat, Grzegorz; Sussman, Michael R. [Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  5. COOH-functionalisation of silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Albrecht, Trent [Ian Wark Research Institute, University of South Australia, Adelaide (Australia); Weber, Siegfried [Department of Biotechnology, University of Applied Sciences, Mannheim (Germany)

    2011-09-01

    In this study COOH-functionalised silica is synthesised using phosphonateN-(phosphonomethyl)iminodiacetic acid (PMIDA) in an aqueous solution. The presence of PMIDA on the silica particles was verified using Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and titration. Experimentally, surface concentrations of COOH functional groups of up to about 3 mmol/g{sub silica} were achieved, whereas theoretical calculation of the maximum COOH functional group concentration gave about 1 mmol/g{sub silica}. The discrepancy may be caused by PMIDA multilayer formation on the particle.

  6. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  7. Surface functionalisation of polypyrrole films using UV light induced radical activation

    International Nuclear Information System (INIS)

    Lisboa, P.; Gilliland, D.; Ceccone, G.; Valsesia, A.; Rossi, F.

    2006-01-01

    Electrochemically deposited polypyrrole (PPy) films were functionalised with amine or carboxylic function. The functionalisation was done by grafting allylamine or acrylic acid (AAc) using UV light radical activation. The active groups of the surface were quantified by X-ray photoelectron spectroscopy (XPS) after chemical derivatisation with trifluoroethanol (TFE) or 4-trifluoromethylbenzaldehyde (TFBA), respectively. Grafting with AAc completely covered the PPy film introducing high levels of carboxylic function. In the case of allylamine grafting, a saturation point at low amine carbon level was achieved. Further characterisation of the surfaces was done by time of flight secondary ion mass spectroscopy (TOF-SIMS), atomic force microscope (AFM) and scanning electron microscope (SEM)

  8. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    International Nuclear Information System (INIS)

    Marciano, F.R.; Bonetti, L.F.; Pessoa, R.S.; Massi, M.; Santos, L.V.; Trava-Airoldi, V.J.

    2009-01-01

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  9. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, F.R., E-mail: fernanda@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil); Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Bonetti, L.F. [Clorovale Diamantes Industria e Comercio Ltda, Estr. do Torrao de Ouro, 500-Sao Jose dos Campos, 12229-390, SP (Brazil); Pessoa, R.S.; Massi, M. [Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Santos, L.V.; Trava-Airoldi, V.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil)

    2009-08-03

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  10. Non-covalent functionalisation of C{sub 30} fullerene by pyrrole-n-carboxylic acid (n=2, 3). Density functional theory studies

    Energy Technology Data Exchange (ETDEWEB)

    Harismah, Kun [Univ. Muhammadiyah Surakarta (Indonesia). Dept. of Chemical Engineering; Mirzaei, Mahmoud [Isfahan Univ. of Medical Sciences (Iran, Islamic Republic of). Bioinformatics Research Center; Ghasemi, Nahid [Islamic Azad Univ., Arak (Iran, Islamic Republic of). Dept. of Chemistry; Nejati, Mohammad [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry

    2018-04-01

    For functionalisation of a representative C{sub 30} fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C{sub 60} fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C{sub 60}, the shape of C{sub 30} fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC{sub 30} and EC{sub 30}). The results indicated that both the positions of C{sub 30} have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C{sub 60}. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C{sub 30} than for C{sub 60} fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.

  11. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  12. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  13. Vancomycin-functionalised Ag-TiO{sub 2} phototoxicity for bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wan Yi [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China); Zhang Dun, E-mail: zhangdun@ms.qdio.ac.cn [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China); Wang Yi; Qi Peng; Wu Jiajia; Hou Baorong [Chinese Academy of Sciences, Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, 7 Nanhai Road, Qingdao 266071 (China)

    2011-02-15

    Research highlights: {yields} A multivalent interaction between Van-Ag-TiO{sub 2} and SRB. {yields} Van-Ag-TiO{sub 2} allow for selective photokilling of pathogen. {yields} Van-Ag-TiO{sub 2} show certain bactericidal property in dark. - Abstract: This study reports on the synthesis of vancomycin (Van)-functionalised Ag-TiO{sub 2} nanoparticles and their enhanced bactericidal activities. Van-Ag-TiO{sub 2} nanoparticles were prepared by nanoparticle deposition and chemical cross-linking reactions. The catalysts showed high efficiency for the degradation of methylene blue under ultraviolet (UV) illumination. The photocatalytic inactivation of the sulphate-reducing bacteria, Desulfotomaculum, was also studied under UV light irradiation and in the dark using aqueous mixtures of Ag, Ag-SiO{sub 2}, Ag-TiO{sub 2}, and Van-Ag-TiO{sub 2}. The Van-Ag-TiO{sub 2} nanoparticles showed a capacity to target Van-sensitive bacteria. They also effectively prevented bacterial cell growth through the functionalised nanoparticles under UV irradiation for 1 h. To investigate the specificity of the catalyst phototoxicity, a Van-resistant bacteria, Vibrio anguillarum, was used as the negative control. The results indicated that Van-Ag-TiO{sub 2} nanoparticles had a higher selective phototoxicity for Van-sensitive bacteria. Therefore, the antibiotic molecule-functionalised core-shell nanoparticles allow for selective photokilling of pathogenic bacteria.

  14. Functionalisation of cross-linked polyethylenimine for the removal of ...

    African Journals Online (AJOL)

    ... and describe the experimental data. The thermodynamic study of the adsorption process indicated high activation energies (55.91 kJ mol-1) which confirms chemisorption as a mechanism of interaction between As and PCPEI. Keywords: Adsorption; arsenic; phosphonated cross-linked polyethylenimine, functionalisation ...

  15. Photoluminescence wavelength variation of monolayer MoS{sub 2} by oxygen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Su [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Nam, Giwoong [Department of Nanoscience & Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Park, Seki; Kim, Hyun [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Gang Hee [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Jubok; Dhakal, Krishna P. [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Leem, Jae-Young [Department of Nanoscience & Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Lee, Young Hee [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Jeongyong, E-mail: j.kim@skku.edu [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-09-01

    We performed nanoscale confocal photoluminescence (PL), Raman, and absorption spectral imaging measurements to investigate the optical and structural properties of molybdenum disulfide (MoS{sub 2}) monolayers synthesized by chemical vapor deposition method and subjected to oxygen plasma treatment for 10 to 120 s under high vacuum (1.3 × 10{sup −3} Pa). Oxygen plasma treatment induced red shifts of ~ 20 nm in the PL emission peaks corresponding to A and B excitons. Similarly, the peak positions corresponding to A and B excitons of the absorption spectra were red-shifted following oxygen plasma treatment. Based on the confocal PL, absorption, and Raman microscopy results, we suggest that the red-shifting of the A and B exciton peaks originated from shallow defect states generated by oxygen plasma treatment. - Highlights: • Effects of oxygen plasma on optical properties of monolayer MoS{sub 2} were investigated. • Confocal photoluminescence, Raman, and absorption spectral maps are presented. • Wavelength tuning up to ~ 20 nm for the peak emission wavelength was achieved.

  16. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application

    Directory of Open Access Journals (Sweden)

    Hilal Ahmad Rather

    2018-06-01

    Full Text Available Skin wound healing involves a coordinated cellular response to achieve complete reepithelialisation. Elevated levels of reactive oxygen species (ROS in the wound environment often pose a hindrance in wound healing resulting in impaired wound healing process. Cerium oxide nanoparticles (CeNPs have the ability to protect the cells from oxidative damage by actively scavenging the ROS. Furthermore, matrices like nanofibers have also been explored for enhancing wound healing. In the current study CeNP functionalised polycaprolactone (PCL-gelatin nanofiber (PGNPNF mesh was fabricated by electrospinning and evaluated for its antioxidative potential. Wide angle XRD analysis of randomly oriented nanofibers revealed ∼2.6 times reduced crystallinity than pristine PCL which aided in rapid degradation of nanofibers and release of CeNP. However, bioactive composite made between nanoparticles and PCL-gelatin maintained the fibrous morphology of PGNPNF upto 14 days. The PGNPNF mesh exhibited a superoxide dismutase (SOD mimetic activity due to the incorporated CeNPs. The PGNPNF mesh enhanced proliferation of 3T3-L1 cells by ∼48% as confirmed by alamar blue assay and SEM micrographs of cells grown on the nanofibrous mesh. Furthermore, the PGNPNF mesh scavenged ROS, which was measured by relative DCF intensity and fluorescence microscopy; and subsequently increased the viability and proliferation of cells by three folds as it alleviated the oxidative stress. Overall, the results of this study suggest the potential of CeNP functionalised PCL-gelatin nanofibrous mesh for wound healing applications.

  17. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform......A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  18. Tailoring of materials by atomic oxygen from ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, Munzer; Bhoraskar, S.V.

    2002-01-01

    Full text: An intense source of oxygen finds important applications in many areas of science, technology and industry. It has been successfully used for surface activation and cleaning in the electronic, chemical and automotive industries. Atomic oxygen and interaction with materials have also a significant importance in space science and technology. This paper describes the detailed studies related to the surface modification and processing of different materials, which include metals and polymers by atomic oxygen produced in microwave assisted electron cyclotron resonance plasma. The energy distribution of ions was measured as a function of plasma parameters and density measurements were supplemented by catalytic probe using nickel and oxidation of silver surface

  19. Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound.

    Science.gov (United States)

    Vaithilingam, Jayasheelan; Kilsby, Samuel; Goodridge, Ruth D; Christie, Steven D R; Edmondson, Steve; Hague, Richard J M

    2015-01-01

    Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications. Copyright © 2014. Published by Elsevier B.V.

  20. SU-8 etching in inductively coupled oxygen plasma

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming

    2013-01-01

    Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...

  1. Examination of Amine-Functionalised Anion-Exchange Membranes for Possible Use in the All-Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Mallinson, Sarah L.; Varcoe, John R.; Slade, Robert C.T.

    2014-01-01

    The applicability of amine-functionalised anion-exchange membranes (AEMs) for use in the all-vanadium redox flow battery has been studied. A selection of radiation-grafted aminated membranes functionalised with dimethylamine, trimethylamine or diazabicyclo(2,2,2)octane were extensively tested. The success of each grafting process was confirmed by Raman and infrared spectroscopies, titrimetry and ionic conductivity measurements. The amine-functionalised membranes were found to have poor thermo-oxidative stability and high vanadium cation permeabilities. The results highlight the importance of balancing ionic conductivity with vanadium cation permeability and indicate that amine-based functional groups may not be suitably stable for the membranes to remain true AEMs when in use in the all-vanadium redox flow battery

  2. Effects of oxygen plasma treatment on domestic aramid fiber III reinforced bismaleimide composite interfacial properties

    Science.gov (United States)

    Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze

    2017-12-01

    Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.

  3. Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Tinck, S; Bogaerts, A

    2011-01-01

    In this paper, an O 2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al 2 O 3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O 2 , while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.

  4. Analysis of the expanding thermal argon-oxygen plasma gas phase

    International Nuclear Information System (INIS)

    Hest, M F A M van; Haartsen, J R; Weert, M H M van; Schram, D C; Sanden, M C M van de

    2003-01-01

    An expanding thermal argon plasma into which oxygen is injected has been analysed by means of Langmuir and Pitot probe measurements. Information is obtained on the ion density profile and the flow pattern in the downstream plasma. A combination of Langmuir and Pitot probe measurements provide information on the total ion flux generated by the plasma source (cascaded arc). It has been found that the ion diffusion is mainly determined by the background pressure in the expansion vessel and the arc current. The ion density is determined by the total power input into the plasma as well as the gas flow in the plasma source. There is an optimum in the power transfer used for ionization from plasma source to the feed gas. Interaction of oxygen with the plasma results in a decrease in the argon ion density and the plasma beam radius. The recirculation pattern of the downstream plasma has been investigated experimentally using the Pitot probe. Due to the low downstream pressure (10-30 Pa), the conventional compressible Pitot probe theory no longer applies. It is concluded that viscous effects start to play an important role at these low pressures and should be taken into account in the analysis of the Pitot probe measurements

  5. Aminopropyl-functionalised silica CO{sub 2} adsorbents via sonochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Gregory P. Knowles; Alan L. Chaffee [Monash University, Vic. (Australia). CRC for Greenhouse Gas Technologies

    2007-07-01

    Amine functionalized silicas are being investigated to provide high selectivity, high capacity sorbents for CO{sub 2} capture from flue gas. A series of aminopropyl-functionalised hexagonal mesoporous silica (HMS) products were prepared via sonication of mixtures of aminopropyltrimethoxysilane (APTS) and HMS dispersed in toluene at 55{sup o}C. Sonication times and curing methods were varied. The HMS substrate was also separately functionalised via a more conventional stirred reactor for comparison. Sonication was expected to improve the dispersion of the substrate in the solvent and, also, the diffusion of the silane throughout the mesoporous substrate, thus providing products with higher tether loadings and correspondingly higher CO{sub 2} sorption capacities. The CO{sub 2} adsorption/desorption properties of the products were determined together with structural properties as measured by x-ray diffraction, N{sub 2} adsorption/desorption (77K), helium pycnometry and elemental analysis. The tether loadings of the sonication products (up to 1.8 tethers.nm{sup -2}) were found to increase with sonication time and in each case were greater than the corresponding product prepared by the conventional approach. It was also found that the crude product cured just as effectively under N{sub 2} flow as it did under vacuum, that rinsing the crude product prior to curing was not essential and that the concentration of the reagent mixture did influence the extent of functionalisation. As expected, sonication products with higher tether loadings were also found to have higher CO{sub 2} sorption capacities and higher Hads(CO{sub 2}).

  6. Dynamics of silver elution from functionalised antimicrobial nanofiltration membranes.

    Science.gov (United States)

    Choudhari, S; Habimana, O; Hannon, J; Allen, A; Cummins, E; Casey, E

    2017-07-01

    In an effort to mitigate biofouling on thin film composite membranes such as nanofiltration and reverse osmosis, a myriad of different surface modification strategies has been published. The use of silver nanoparticles (Ag-NPs) has emerged as being particularly promising. Nevertheless, the stability of these surface modifications is still poorly understood, particularly under permeate flux conditions. Leaching or elution of Ag-NPs from the membrane surface can not only affect the antimicrobial characteristics of the membrane, but could also potentially present an environmental liability when applied in industrial-scale systems. This study sought to investigate the dynamics of silver elution and the bactericidal effect of an Ag-NP functionalised NF270 membrane. Inductively coupled plasma-atomic emission spectroscopy was used to show that the bulk of leached silver occurred at the start of experimental runs, and was found to be independent of salt or permeate conditions used. Cumulative amounts of leached silver did, however, stabilise following the initial release, and were shown to have maintained the biocidal characteristics of the modified membrane, as observed by a higher fraction of structurally damaged Pseudomonas fluorescens cells. These results highlight the need to comprehensively assess the time-dependent nature of bactericidal membranes.

  7. Oxygen functionalization of MWCNTs in RF-dielectric barrier discharge Ar/O2 plasma

    Science.gov (United States)

    Abdel-Fattah, E.; Ogawa, D.; Nakamura, K.

    2017-07-01

    The oxygenation of multi-wall carbon nanotubes (MWCNTs) was performed via a radio frequency dielectric barrier discharge (RF-DBD) in an Ar/{{\\text{H}}2}\\text{O} plasma mixture. The relative intensity of the Ar/{{\\text{O}}2} plasma species was characterized by optical emission spectroscopy (OES). The effects of treatment time, RF power and oxygen gas percentage on the chemical composition and surface morphology of MWCNTs were investigated by means of x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). The results of FTIR and XPS revealed the presence of oxygen-containing functional groups on the MWCNTs treated in an Ar/{{\\text{O}}2} plasma at an RF power of 50 W and pressure of 400 Pa. The amount of oxygen functional groups (C=O, C-O, and O-COO) also increased by increasing treatment time up to 6 min, but slightly decreased when treatment time was increased by 10 min. The increase of oxygen gas percentage in the plasma mixture does not affect the oxygen content in the treated MWCNTs. Meanwhile, MWCNTs treated at high power (80 W) showed a reduction in oxygen functional groups in comparison with low RF power conditions. The Raman analysis was consistent with the XPS and FTIR results. The integrity of the nanotube patterns also remained damaged as observed by FE-SEM images. The MWCNTs treated in RF-DBD using the Ar/{{\\text{O}}2} plasma mixture showed improved dispersibility in deionized water. A correlation between the OES data and the observed surface characterization for an improved understanding of the functionalization of MWCNTs in Ar/{{\\text{O}}2} plasma was presented.

  8. Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors

    International Nuclear Information System (INIS)

    Pu, Haifeng; Zhou, Qianfei; Yue, Lan; Zhang, Qun

    2013-01-01

    We reported the impact of oxygen plasma treatment on solution-processed amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs). Plasma-treated devices showed higher mobility, larger on/off current ratio, but a monotonically increased SS with plasma treatment time as well. The phenomenon was mainly due to two components in oxygen plasma, atomic oxygen and O 2 + , according to the photoluminescence (PL) measurement. Atomic oxygen reacted with oxygen vacancies in channel layer resulting in an improved mobility, and O 2 + tends to aggregated at the surface acting as trapping states simultaneously. Our study suggests that moderate oxygen plasma treatment can be adopted to improve the device performance, while O 2 + should be eliminated to obtain good interfacial states.

  9. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  10. Study of oxygen diluted silane plasmas applied for the deposition of silicium oxyde; Etudes des plasmas organoscilicies dilues en oxygene utilises pour la deposition d'oxyde de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Magni, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-09-01

    Plasma enhanced chemical vapour deposition of thin films such as silicon dioxide is used in many applications such as the insulator production in semiconductor technology or anticorrosion coating in packaging industry as a substitute for aluminium which is less ecological. Oxygen diluted silane plasmas are often utilized to produce SiO{sub 2} film, but the tendency is to work with organosilicon precursors such as HMDSO (hexamethyldisiloxane ) described as non-toxic and requiring less stringent safety and costly installation. In this study, the species in gaseous phase and the powder produced in oxygen-diluted HMDSO plasmas were experimentally characterized in a radiofrequency (RF) capacitively-coupled reactor at 13.56 MHz. Some aspects of plasma enhanced deposition of SiO{sub 2} were studied in a RF magnetron reactor . The gaseous phase of the oxygen-diluted plasmas were studied by infrared absorption spectroscopy and mass spectrometry .The complementarity of these diagnostics allowed to show that the dominant species in gaseous phase come from the homogeneous reaction between oxygen and the radical CH{sub x} (with x 1,2 and 3), abundantly produced in the plasma. Two principal pathways were shown to occur. A first way leads to hydrocarbon formation such as methane (CH{sub 4}) and acetylene (C{sub 2}H{sub 2}), whose partial pressures are close to 2 %. A second way leads to the formation of molecules from the combustion of CH{sub x}, such as formaldehyde (CH{sub 2}O), formic acid (CH{sub 2}O{sub 2}), carbon monoxide (CO), carbon dioxide (CO{sub 2}) and water. Moreover it is shown that the CO{sub 2} results from a heterogeneous reaction between the carbon on the surfaces and the oxygen coming from the plasma. At low dilution conditions, the partial pressures of CO and CO{sub 2} were estimated at 25 and 10 % of the total pressure respectively. In argon or helium diluted HMDSO plasmas, methane, acetylene and hydrogen are the main stable molecules produced in the gaseous

  11. Functionalisation of the hinge region in receptor molecules for explosive detection

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2003-01-01

    The functionalisation of the hinge region in a molecular tweezer molecule showing a strong binding to explosives is presented. Two versatile functional groups are introduced, a carboxylic acid and a bromine atom. (C) 2003 Elsevier Ltd. All rights reserved....

  12. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering.

    Science.gov (United States)

    Lee, Chang-Min; Yang, Seong-Won; Jung, Sang-Chul; Kim, Byung-Hoon

    2017-04-01

    The 3D hydroxyapatite/gelatin/chitosan composite scaffolds were fabricated by 3D printing technique. The scaffolds were treated by oxygen plasma to improve the bioactivity and its surface characterization and in vitro cell culture were investigated. The scaffolds exhibited the good porosity and interconnectivity of pores. After oxygen plasma etching, roughness and wettability on the scaffolds surface are increased. Plasma treated scaffolds showed higher proliferation than that of untreated scaffolds. Oxygen plasma treatment could be used as potential tool to enhance the biocompatibility on the 3D composite scaffolds.

  13. Characterization of atomic oxygen from an ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, M; Bhoraskar, V N; Mandale, A B; Sainkar, S R; Bhoraskar, S V

    2002-01-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ∼1x10 20 to ∼10x10 20 atom m -3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe

  14. Characterization of atomic oxygen from an ECR plasma source

    Science.gov (United States)

    Naddaf, M.; Bhoraskar, V. N.; Mandale, A. B.; Sainkar, S. R.; Bhoraskar, S. V.

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ~1×1020 to ~10×1020 atom m-3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  15. Characterization of atomic oxygen from an ECR plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Bhoraskar, V N [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Mandale, A B [National Chemical Laboratory, Pashan, Pune 411008 (India); Sainkar, S R [National Chemical Laboratory, Pashan, Pune 411008 (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from {approx}1x10{sup 20} to {approx}10x10{sup 20} atom m{sup -3} as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  16. Metal-ion complexes of functionalised 1,10-Phenanthrolines as hydrolytic synzymes

    NARCIS (Netherlands)

    Weijnen, J.G.J.

    1993-01-01

    In this thesis metal-ion complexes of functionalised 1,10-phenanthroline derivatives have been studied as model systems for hydrolytic metallo-enzymes. Amphiphilic metallo- complexes incorporated into micelles or vesicles and water-soluble complexes in pure aqueous buffer solutions, have

  17. Analysis of the expanding thermal argon-oxygen plasma gas phase

    NARCIS (Netherlands)

    Hest, van M.F.A.M.; Haartsen, J.R.; Weert, van M.H.M.; Schram, D.C.; Sanden, van de M.C.M.

    2003-01-01

    An expanding thermal argon plasma into which oxygen is injected has been analyzed by means of Langmuir and Pitot probe measurements. Information is obtained on the ion d. profile and the flow pattern in the downstream plasma. A combination of Langmuir and Pitot probe measurements provide information

  18. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  19. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Sever, K. [Department of Mechanical Engineering, Dokuz Eylul University, 35100, Izmir (Turkey); Erden, S. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey); Guelec, H.A. [Department of Food Engineering, Yuzuncu Yil University, 65250, Van (Turkey); Seki, Y., E-mail: yoldas.seki@deu.edu.tr [Department of Chemistry, Dokuz Eylul University, 35160, Buca, Izmir (Turkey); Sarikanat, M. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey)

    2011-09-15

    Highlights: {yields} To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. {yields} LF and RF plasma systems at different plasma powers were used for treatment. {yields} In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  20. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    International Nuclear Information System (INIS)

    Sever, K.; Erden, S.; Guelec, H.A.; Seki, Y.; Sarikanat, M.

    2011-01-01

    Highlights: → To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. → LF and RF plasma systems at different plasma powers were used for treatment. → In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  1. Computational study of sheath structure in oxygen containing plasmas at medium pressures

    Science.gov (United States)

    Hrach, Rudolf; Novak, Stanislav; Ibehej, Tomas; Hrachova, Vera

    2016-09-01

    Plasma mixtures containing active species are used in many plasma-assisted material treatment technologies. The analysis of such systems is rather difficult, as both physical and chemical processes affect plasma properties. A combination of experimental and computational approaches is the best suited, especially at higher pressures and/or in chemically active plasmas. The first part of our study of argon-oxygen mixtures was based on experimental results obtained in the positive column of DC glow discharge. The plasma was analysed by the macroscopic kinetic approach which is based on the set of chemical reactions in the discharge. The result of this model is a time evolution of the number densities of each species. In the second part of contribution the detailed analysis of processes taking place during the interaction of oxygen containing plasma with immersed substrates was performed, the results of the first model being the input parameters. The used method was the particle simulation technique applied to multicomponent plasma. The sheath structure and fluxes of charged particles to substrates were analysed in the dependence on plasma pressure, plasma composition and surface geometry.

  2. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  3. Novel titration method for surface-functionalised silica

    Energy Technology Data Exchange (ETDEWEB)

    Hofen, Kai; Weber, Siegfried [Department of Biotechnology, University of Applied Sciences, Mannheim (Germany); Chan, Chiu Ping Candace [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes 5095 (Australia); Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Mawson Lakes Blvd, Mawson Lakes 5095 (Australia)

    2011-01-15

    This paper describes three inexpensive and fast analytical methods to characterise grafted particle surfaces. The reaction of silica with (3-aminopropyl)triethoxysilane, (3-mercaptopropyl)trimethoxysilane and N-(phosphonomethyl)iminodiacetic acid hydrate, respectively, leads to NH{sub 2}-, SO{sub 3}H- or COOH-functionalised silica, which were characterised by X-ray photoelectron spectrometry and titration in nonaqueous media as well as with two titration methods in a water-based environment. In the work presented, factors influencing the titrations are pointed out and solutions are presented to overcome these limiting factors are shown.

  4. Novel titration method for surface-functionalised silica

    International Nuclear Information System (INIS)

    Hofen, Kai; Weber, Siegfried; Chan, Chiu Ping Candace; Majewski, Peter

    2011-01-01

    This paper describes three inexpensive and fast analytical methods to characterise grafted particle surfaces. The reaction of silica with (3-aminopropyl)triethoxysilane, (3-mercaptopropyl)trimethoxysilane and N-(phosphonomethyl)iminodiacetic acid hydrate, respectively, leads to NH 2 -, SO 3 H- or COOH-functionalised silica, which were characterised by X-ray photoelectron spectrometry and titration in nonaqueous media as well as with two titration methods in a water-based environment. In the work presented, factors influencing the titrations are pointed out and solutions are presented to overcome these limiting factors are shown.

  5. Study of oxygen diluted silane plasmas applied for the deposition of silicium oxyde

    International Nuclear Information System (INIS)

    Magni, D.

    2001-09-01

    Plasma enhanced chemical vapour deposition of thin films such as silicon dioxide is used in many applications such as the insulator production in semiconductor technology or anticorrosion coating in packaging industry as a substitute for aluminium which is less ecological. Oxygen diluted silane plasmas are often utilized to produce SiO 2 film, but the tendency is to work with organosilicon precursors such as HMDSO (hexamethyldisiloxane ) described as non-toxic and requiring less stringent safety and costly installation. In this study, the species in gaseous phase and the powder produced in oxygen-diluted HMDSO plasmas were experimentally characterized in a radiofrequency (RF) capacitively-coupled reactor at 13.56 MHz. Some aspects of plasma enhanced deposition of SiO 2 were studied in a RF magnetron reactor . The gaseous phase of the oxygen-diluted plasmas were studied by infrared absorption spectroscopy and mass spectrometry .The complementarity of these diagnostics allowed to show that the dominant species in gaseous phase come from the homogeneous reaction between oxygen and the radical CH x (with x 1,2 and 3), abundantly produced in the plasma. Two principal pathways were shown to occur. A first way leads to hydrocarbon formation such as methane (CH 4 ) and acetylene (C 2 H 2 ), whose partial pressures are close to 2 %. A second way leads to the formation of molecules from the combustion of CH x , such as formaldehyde (CH 2 O), formic acid (CH 2 O 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and water. Moreover it is shown that the CO 2 results from a heterogeneous reaction between the carbon on the surfaces and the oxygen coming from the plasma. At low dilution conditions, the partial pressures of CO and CO 2 were estimated at 25 and 10 % of the total pressure respectively. In argon or helium diluted HMDSO plasmas, methane, acetylene and hydrogen are the main stable molecules produced in the gaseous phase. Particle formation in oxygen-diluted HMDSO

  6. Antioxidants may Attenuate Plasma Erythropoietin Decline after Hyperbaric Oxygen Diving.

    Science.gov (United States)

    Mutzbauer, T S; Schneider, M; Neubauer, B; Weiss, M; Tetzlaff, K

    2015-11-01

    According to previous studies, plasma erythropoietin (EPO) may decrease after hyperbaric oxygen exposure due to oxidative stress. It is hypothesized that the decrease of EPO can be attenuated by oxygen free radical scavengers.The aim of the present study was to evaluate whether EPO plasma levels can be influenced by oral application of vitamin C and E before repeated hyperbaric oxygen exposure during diving. 16 healthy male police task force divers performed 3 morning dives on oxygen within a regular diving schedule on 3 consecutive days. They were randomized into either the placebo group or the vitamin group, receiving 1 g ascorbic acid and 600 IU D-α-tocopherol orally 60 min before the dive. Blood samples for EPO measurement were taken on days 1, 2, and 3 at T1, T3 and T5 60 min before and at T2, T4 and T6 60 min after each dive, respectively. A moderate decrease of EPO was observed beginning at T3 until T6 in the placebo group. The EPO concentrations in the vitamin group did not show relevant variations compared to baseline. Radical scavenging vitamins C and D may counteract hyperbaric oxygen related mechanisms reducing EPO production in hyperbaric oxygen exposure during diving. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Plasma Extraction of Oxygen from Martian Atmosphere, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Plasma techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (96 % CO2). In this process, CO2 is...

  8. Surface Wettability of Oxygen Plasma Treated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2014-01-01

    Full Text Available Oxygen plasma treatment on porous silicon (p-Si surfaces was studied as a practical and effective means to modify wetting properties of as-fabricated p-Si surfaces, that is, contact angles of the p-Si materials. P-Si samples spanning a wide range of surface nanostructures have been fabricated which were subjected to a series of oxygen plasma treatments. Reduction of the p-Si surface contact angles has been systematically observed, and the surface activation rate constant as a function of different pore geometries has been analyzed to achieve an empirical equation. The underlying diffusion mechanisms have been discussed by taking into account of different pore diameters of p-Si samples. It is envisaged that such an approach as well as the corresponding empirical equation may be used to provide relevant process guidance in order to achieve precise control of p-Si contact angles, which is essential for many p-Si applications especially in biosensor areas.

  9. Using oxygen plasma treatment to improve the performance of electrodes for capacitive water deionization

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Zou, Linda; Fabretto, Manrico; Short, Robert D.

    2013-01-01

    An oxygen plasma treatment was employed to modify the surface of carbon electrodes used in capacitive deionization (CDI). X-ray photoelectron spectroscopy analysis of samples showed that oxygen plasma is mainly attaching oxygenated groups on the PTFE binder used in these electrodes. By functionalizing the binder it can increase the hydrophilicity of the electrode surface and increase the available specific surface area. 2.5 min of plasma treatment resulted in the largest improvement of CDI performance of electrodes. Thermodynamic study of CDI performance showed that the modified electrodes followed Langmuir and Freundlich isotherms resulting from the increased interaction between the enhanced electrodes and water. The kinetic study showed that the CDI process followed a pseudo-first order adsorption kinetics. The calculated adsorption rate constants suggested that plasma modification can accelerate ion adsorption of electrodes

  10. Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry

    International Nuclear Information System (INIS)

    Dykman, Lev A; Bogatyrev, Vladimir A

    2007-01-01

    The review summarises data on the synthesis and functionalisation of gold nanoparticles and their applications in biological investigations. Particular attention is given to applications of colloidal gold in solid-phase assays, immunoassay and studies of biologically active compounds by vibrational spectroscopy. A special section deals with the use of gold nanoparticles as antigen carriers in immunisation.

  11. Physics and engineering of singlet delta oxygen production in low-temperature plasma

    International Nuclear Information System (INIS)

    Ionin, A A; Kochetov, I V; Napartovich, A P; Yuryshev, N N

    2007-01-01

    An overview is presented of experimental and theoretical research in the field of physics and engineering of singlet delta oxygen (SDO) production in low-temperature plasma of various electric discharges. Attention is paid mainly to the SDO production with SDO yield adequate for the development of an electric discharge oxygen-iodine laser (DOIL). The review comprises a historical sketch describing the main experimental results on SDO physics in low-temperature plasma obtained since the first detection of SDO in electric discharge in the 1950s and the first attempt to launch a DOIL in the 1970s up to the mid-1980s when several research groups started their activity aimed at DOIL development, stimulated by success in the development of a chemical oxygen-iodine laser (COIL). A detailed analysis of theoretical and experimental research on SDO production in electric discharge from the mid-1980s to the present, when the first DOIL has been launched, is given. Different kinetic models of oxygen low-temperature plasma are compared with the model developed by the authors. The latter comprises electron kinetics based on the accompanying solution of the electron Boltzmann equation, plasma chemistry including reactions of excited molecules and numerous ion-molecular reactions, thermal energy balance and electric circuit equation. The experimental part of the overview is focused on the experimental methods of SDO detection including experiments on the measurements of the Einstein coefficient for SDO transition a 1 Δ g - X 3 Σ g - and experimental procedures of SDO production in self-sustained and non-self-sustained discharges and analysis of different plasma-chemical processes occurring in oxygen low-temperature plasma which brings limitation to the maximum SDO yield and to the lifetime of the SDO in an electric discharge and its afterglow. Quite recently obtained results on gain and output characteristics of DOIL and some projects aimed at the development of high-power DOIL

  12. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  13. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy.

    Science.gov (United States)

    Ranjbar-Navazi, Zahra; Eskandani, Morteza; Johari-Ahar, Mohammad; Nemati, Ali; Akbari, Hamid; Davaran, Soudabeh; Omidi, Yadollah

    2018-03-01

    Nanoscaled quantum dots (QDs), with unique optical properties have been used for the development of theranostics. Here, InP/ZnS QDs were synthesised and functionalised with folate (QD-FA), D-glucosamine (QD-GA) or both (QD-FA-GA). The bi-functionalised QDs were further conjugated with doxorubicin (QD-FA-GA-DOX). Optimum Indium to fatty acid (In:MA) ratio was 1:3.5. Transmission electron microscopy (TEM) micrographs revealed spherical morphology for the QDs (11 nm). Energy-dispersive spectroscopy (EDS) spectrum confirmed the chemical composition of the QDs. MTT analysis in the OVCAR-3 cells treated with bare QDs, QD-FA, QD-GA, QD-FA-GA and QD-FA-GA-DOX (0.2 mg/mL of QDs) after 24 h indicated low toxicity for the bare QDs and functionalised QDs (about 80-90% cell viability). QD-FA-GA-DOX nanoparticles elicited toxicity in the cells. Cellular uptake of the engineered QDs were investigated in both folate receptor (FR)-positive OVCAR-3 cells and FR-negative A549 cells using fluorescence microscopy and FACS flow cytometry. The FA-functionalised QDs showed significantly higher uptake in the FR-positive OVCAR-3 cells, nonetheless the GA-functionalised QDs resulted in an indiscriminate uptake in both cell lines. In conclusion, our findings indicated that DOX-conjugated FA-armed QDs can be used as theranostics for simultaneous imaging and therapy of cancer.

  14. Effect of oxygen plasma treatment on adhesion improvement of Au deposited on Pa-c substrates

    International Nuclear Information System (INIS)

    Lee, Jeong Hoon; Hwang, Kyo Seon; Kim, Tae Song; Seong, Jin Wook; Yoon, Ki Hyun; Ahn, Sae Young

    2004-01-01

    Adhesion of gold on parylene C (Pa-c) is a major hurdle in achieving reliable and durable performance for biosensor application due to the hydrophobicity of Pa-c. It is, therefore, imperative to put efforts to improve adhesion between Au and Pa-c. In this reseach, oxygen plasma treatment for adhesion improvement was performed on Pa-c surfaces at various plasma powers and times. To analyze the relation of surface energy and roughness to adhesion promotion, we used several techniques such as contact-angle, surface-energy, surface-roughness, and adhesion analyses. As the oxygen plasma power and time were increased, the surface roughness of Pa-c increased. Also, Au films had larger and more uniform grain sizes as the oxygen plasma power and time were increased. Untreated surfaces revealed a contact angle of 108 .deg. , but the contact angle drastically decreased in the initial stage of oxygen plasma treatment and slowly decreased with increasing power and time to values of 27.3 and 34, respectively. From the adhesion analysis, adhesion was improved as the plasma power or time was increased. The improvement of adhesion is related to an increase in roughness as well as carbonyl groups.

  15. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    Science.gov (United States)

    Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.

    2015-05-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.

  16. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).

    Science.gov (United States)

    Varela, Sylvana; Balagué, Isaac; Sancho, Irene; Ertürk, Nihal; Ferrando, Montserrat; Vernet, Anton

    2016-01-01

    Alginate microparticles as flow seeding fulfil all the requirements that are recommended for the velocity measurements in Particle Image Velocimetry (PIV). These spherical microparticles offer the advantage of being environmentally friendly, having excellent seeding properties and they can be produced via a very simple process. In the present study, the performances of alginate microparticles functionalised with a fluorescent dye, Rhodamine B (RhB), for PIV have been studied. The efficacy of fluorescence is appreciated in a number of PIV applications since it can boost the signal-to-noise ratio. Alginate microparticles functionalised with RhB have high emission efficiency, desirable match with fluid density and controlled size. The study of the particles behaviour in strong acid and basic solutions and ammonia is also included. This type of particles can be used for measurements with PIV and Planar Laser Induced Fluorescence (PLIF) simultaneously, including acid-base reactions.

  17. Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration

    International Nuclear Information System (INIS)

    Nandakumar, A; Tahmasebi Birgani, Z; Santos, D; Mentink, A; Auffermann, N; Moroni, L; Van Blitterswijk, C; Habibovic, P; Van der Werf, K; Bennink, M

    2013-01-01

    Plasma treatment is a method to modify the physicochemical properties of biomaterials, which consequently may affect interactions with cells. Based on the rationale that physical cues on the surface of culture substrates and implants, such as surface roughness, have proven to alter cell behaviour, we used electrospinning to fabricate fibrous three-dimensional scaffolds made of a poly (ethylene oxide terephthalate)/poly (butylene terephthalate) copolymer to mimic the physical microenvironment of extracellular matrix and applied radio-frequency oxygen plasma treatment to create nanoscale roughness. Scanning electron microscopy (SEM) analysis revealed a fibre diameter of 5.49 ± 0.96 µm for as-spun meshes. Atomic force microscopy (AFM) measurements determined an exponential increase of surface roughness with plasma treatment time. An increase in hydrophilicity after plasma treatment was observed, which was associated with higher oxygen content in plasma treated scaffolds compared to untreated ones. A more pronounced adsorption of bovine serum albumin occurred on scaffolds treated with plasma for 15 and 30 min compared to untreated fibres. Clinically relevant human mesenchymal stromal cells (hMSCs) were cultured on untreated, 15 and 30 min treated scaffolds. SEM analysis confirmed cell attachment and a pronounced spindle-like morphology on all scaffolds. No significant differences were observed between different scaffolds regarding the amount of DNA, metabolic activity and alkaline phosphatase (ALP) activity after 7 days of culture. The amount of ALP positive cells increased between 7 and 21 days of culture on both untreated and 30 min treated meshes. In addition, ALP staining of cells on plasma treated meshes appeared more pronounced than on untreated meshes after 21 days of culture. Quantitative polymerase chain reaction showed significant upregulation of bone sialoprotein and osteonectin expression on oxygen plasma treated fibres compared to untreated fibres in

  18. Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon

    Science.gov (United States)

    Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang

    2018-02-01

    We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.

  19. Micro-texturing into DLC/diamond coated molds and dies via high density oxygen plasma etching

    Directory of Open Access Journals (Sweden)

    Yunata Ersyzario Edo

    2015-01-01

    Full Text Available Diamond-Like Carbon (DLC and Chemical Vapor Deposition (CVD-diamond films have been widely utilized not only as a hard protective coating for molds and dies but also as a functional substrate for bio-MEMS/NEMS. Micro-texturing into these hard coated molds and dies provides a productive tool to duplicate the original mother micro-patterns onto various work materials and to construct any tailored micro-textures for sensors and actuators. In the present paper, the high density oxygen plasma etching method is utilized to make micro-line and micro-groove patterns onto the DLC and diamond coatings. Our developing oxygen plasma etching system is introduced together with characterization on the plasma state during etching. In this quantitative plasma diagnosis, both the population of activated species and the electron and ion densities are identified through the emissive light spectroscopy and the Langmuir probe method. In addition, the on-line monitoring of the plasmas helps to describe the etching process. DLC coated WC (Co specimen is first employed to describe the etching mechanism by the present method. Chemical Vapor Deposition (CVD diamond coated WC (Co is also employed to demonstrate the reliable capacity of the present high density oxygen plasma etching. This oxygen plasma etching performance is discussed by comparison of the etching rates.

  20. Improved stability of OLEDs with mild oxygen plasma treated PEDOT:PSS

    International Nuclear Information System (INIS)

    Zhou Yunfei; Yuan Yongbo; Cao Lingfang; Zhang Jie; Pang Hongqi; Lian Jiarong; Zhou Xiang

    2007-01-01

    We demonstrate improved stability of OLEDs with mild oxygen plasma-treated poly (3,4-ethylenedioxythiophene) doped with poly (styrenesulfonate) (PEDOT:PSS) as anode buffer layer. The devices with treated PEDOT:PSS layer exhibited dramatically enhanced lifetime by a factor of 9 compared to the control devices. We investigated the substantial changes in surface morphology of PEDOT:PSS layer after the mild oxygen plasma treatment by scanning electron microscopy and atomic force microscopy. We found that the appropriate treatment can form uniformly distributed nano scaled hillocks/islands on the surface of PEDOT:PSS layer, which possibly result in improved contact to hole transport layer and thus enhanced lifetime of the devices

  1. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Science.gov (United States)

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  2. Decomposition of formic acid over silica encapsulated and amine functionalised gold nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Kunov-Kruse, Andreas Jonas; Kegnæs, Søren

    2017-01-01

    Formic acid has recently attracted considerable attention as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage. Here, we show that silica encapsulated and amine functionalised gold nanoparticles are highly active catalysts for the production...... of hydrogen by vapour phase decomposition of formic acid. The core-shell catalysts are prepared in a reverse micelle system that makes it possible to control the size of the Au nanoparticles and the thickness of the SiO2 shells, which has a large impact on the catalytic activity. The smallest gold...... nanoparticles are 2.2 ± 0.3 nm in diameter and have a turnover frequency (TOF) of up to 958 h−1 at a temperature of 130 °C. Based on detailed in situ ATR-FTIR studies and results from kinetic isotope labelling experiments we propose that the active site is a low-coordinated and amine functionalised Au atom...

  3. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect

    International Nuclear Information System (INIS)

    Wang Yingjun; Yin Shiheng; Ren Li; Zhao Lianna

    2009-01-01

    Chitosan has received considerable attention for biomedical applications in recent years because of its biocompatibility and biodegradability. In this paper, angle-resolved x-ray photoelectron spectroscopy (ARXPS) was carried out to investigate the chemical groups' spatial orientation on the chitosan membrane surface. Oxygen plasma treatment was also employed to improve the surface hydrophilicity of the chitosan membrane. The results of ARXPS revealed the distribution of surface polar groups, such as-OH and O=CNH 2 toward the membrane bulk, which was the origin of the chitosan membrane surface hydrophobicity. The contact angle measurements and XPS results indicated that oxygen plasma treatment can markedly improve the surface hydrophilicity and surface energy of the chitosan membrane by incorporating oxygen-containing polar groups. With the existence of the aging process, the influence of plasma treatment was not permanent, it faded with storage time. The ARXPS result discovered that the reorientation of polar functional groups generated by plasma treatment toward the membrane bulk was primarily responsible for the aging effect.

  4. Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound

    Energy Technology Data Exchange (ETDEWEB)

    Vaithilingam, Jayasheelan [Additive Manufacturing and 3D Printing Research Group, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Kilsby, Samuel [Department of Chemistry, Loughborough University, Loughborough LE11 3TU (United Kingdom); Goodridge, Ruth D., E-mail: Ruth.Goodridge@nottingham.ac.uk [Additive Manufacturing and 3D Printing Research Group, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Christie, Steven D.R. [Department of Chemistry, Loughborough University, Loughborough LE11 3TU (United Kingdom); Edmondson, Steve [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Hague, Richard J.M. [Additive Manufacturing and 3D Printing Research Group, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2015-01-01

    Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications. - Graphical abstract: A significant change in the contact angle confirming the immobilisation of Paracetamol. (a) Before self-assembled monolayer (SAM) attachment, (b) after SAM attachment and (c) after the immobilisation of Paracetamol to the SAMs. - Highlights: • Ti6Al4V parts were fabricated using selective laser melting (SLM). • Monolayers used to modify the SLM surface were stable for over 28 days (in-vitro). • Surface roughness did not have a significant impact on the monolayer stability. • Paracetamol was successfully immobilised to the adsorbed monolayers. • Caution required before selecting Paracetamol as a model drug.

  5. Functionalisation of Ti6Al4V components fabricated using selective laser melting with a bioactive compound

    International Nuclear Information System (INIS)

    Vaithilingam, Jayasheelan; Kilsby, Samuel; Goodridge, Ruth D.; Christie, Steven D.R.; Edmondson, Steve; Hague, Richard J.M.

    2015-01-01

    Surface modification of an implant with a biomolecule is used to improve its biocompatibility and to reduce post-implant complications. In this study, a novel approach has been used to functionalise phosphonic acid monolayers with a drug. Ti6Al4V components fabricated using selective laser melting (SLM) were functionalised with Paracetamol (a pharmaceutically relevant biomolecule) using phosphonic acid based self-assembled monolayers (SAMs). The attachment, stability of the monolayers on the SLM fabricated surface and functionalisation of SAMs with Paracetamol were studied using X-ray photoelectron spectroscopy (XPS) and surface wettability measurements. The obtained results confirmed that SAMs were stable on the Ti6Al4V surface for over four weeks and then began to desorb from the surface. The reaction used to functionalise the phosphonic acid monolayers with Paracetamol was noted to be successful. Thus, the proposed method has the potential to immobilise drugs/proteins to SAM coated surfaces and improve their biocompatibility and reduce post-implant complications. - Graphical abstract: A significant change in the contact angle confirming the immobilisation of Paracetamol. (a) Before self-assembled monolayer (SAM) attachment, (b) after SAM attachment and (c) after the immobilisation of Paracetamol to the SAMs. - Highlights: • Ti6Al4V parts were fabricated using selective laser melting (SLM). • Monolayers used to modify the SLM surface were stable for over 28 days (in-vitro). • Surface roughness did not have a significant impact on the monolayer stability. • Paracetamol was successfully immobilised to the adsorbed monolayers. • Caution required before selecting Paracetamol as a model drug

  6. An in vitro investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK.

    Science.gov (United States)

    Rochford, Edward T J; Subbiahdoss, Guruprakash; Moriarty, T Fintan; Poulsson, Alexandra H C; van der Mei, Henny C; Busscher, Henk J; Richards, R Geoff

    2014-12-01

    Polyetheretherketone (PEEK) films were oxygen plasma treated to increase surface free energy and characterized by X-ray photoelectron microscopy, atomic force microscopy, and water contact angles. A parallel plate flow chamber was used to measure Staphylococcus epidermidis, Staphylococcus aureus, and U-2 OS osteosarcomal cell-line adhesion to the PEEK films in separate monocultures. In addition, bacteria and U-2 OS cells were cocultured to model competition between osteoblasts and contaminating bacteria for the test surfaces. Plasma treatment of the surfaces increased surface oxygen content and decreased the hydrophobicity of the materials, but did not lead to a significant difference in bacterial or U-2 OS cell adhesion in the monocultures. In the S. epidermidis coculture experiments, the U-2 OS cells adhered in greater numbers on the treated surfaces compared to the untreated PEEK and spread to a similar extent. However, in the presence of S. aureus, cell death of the U-2 OS occurred within 10 h on all surfaces. The results of this study suggest that oxygen plasma treatment of PEEK may maintain the ability of osteoblast-like cells to adhere and spread, even in the presence of S. epidermidis contamination, without increasing the risk of preoperative bacterial adhesion. Therefore, oxygen plasma-treated PEEK remains a promising method to improve implant surface free energy for osseointegration. © 2014 Wiley Periodicals, Inc.

  7. On the synthesis and functionalisation of the 4-aza-8,12-dioxa-4,8,12,12c-tetrahydrodibenzo[¤cd,mn¤]pyrenium system

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2003-01-01

    The preparative use of the reaction between tris(2,6-dimethoxyphenyl)carbenium tetrafluoroborate and excess of an arylamine such as 4-methylaniline or 4-bromoaniline to yield firstly the aryl functionalised acridinium derivatives and then further in situ reaction to yield the desired functionalised...

  8. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  9. Controlled electropolymerisation of a carbazole-functionalised iron porphyrin electrocatalyst for CO2 reduction

    DEFF Research Database (Denmark)

    Hu, Xinming; Salmi, Zakaria; Lillethorup, Mie

    2016-01-01

    Using a one-step electropolymerisation procedure, CO2 absorbing microporous carbazole-functionalised films of iron porphyrins are prepared in a controlled manner. The electrocatalytic reduction of CO2 for these films is investigated to elucidate their efficiency and the origin of their ultimate...

  10. Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K C [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Liao, E [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Ong, W L [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Wong, J D S [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Agarwal, A [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Nagarajan, R [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Yobas, L [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore)

    2006-04-01

    Oxygen plasma treatment has been used extensively to bond polydimethyl siloxane to polydimethyl siloxane or glass in the rapid prototyping of microfluidic devices. This study aimed to improve the bonding quality of polydimethyl siloxane to passivated silicon using oxygen plasma treatment, and also to evaluate the bonding quality. Four types of passivated silicon were used: phosphosilicate glass, undoped silicate glass, silicon nitride and thermally grown silicon dioxide. Bonding strength was evaluated qualitatively and quantitatively using manual peel and mechanical shear tests respectively. Through peel tests we found that the lowering of plasma pressure from 500 to 30 mTorr and using a plasma power between 20 to 60 W helped to improve the bond quality for the first three types of passivation. Detailed analysis and discussion were conducted to explain the discrepancy between the bonding strength results and peeling results. Our results suggested that polydimethyl siloxane can be effectively bonded to passivated silicon, just as to polydimethyl siloxane or glass.

  11. The modification of nanocomposite hybrid polymer surfaces by exposure to oxygen containing plasmas

    Science.gov (United States)

    Figueiredo, Ashley; Zimmermann, Katherine; Augustine, Brian; Hughes, Chris; Chusuei, Charles

    2006-11-01

    The wetting properties of the surfaces of the nanocomposite hybrid polymer poly[(propylmethacryl-heptaisobutyl- polyhedral oligomeric silsequioxane)-co-(methylmethacrylate)] (POSS-PMMA)has been studied before and after exposure to plasmas containing oxygen. The contact angle of water droplets on the surface showed a substantial decrease after plasma exposure indicating an increase in the hydrophilicity of the surface. A model was developed in which the plasma preferentially removed organic material including both the PMMA backbone and isobutyl groups from the corners of the POSS cages leaving behind a surface characterized by the silicon oxide-like POSS material. Measurements of surface concentrations of oxygen, silicon, and carbon by x-ray photoelectron spectroscopy (XPS) showed an increase in the amount of oxygen and silicon compared to carbon and the appropriate chemical shifts were observed in the XPS data to support the model of Si-O enrichment on the surface. Variable angle spectroscopic ellipsometry (VASE) and atomic force microscopy (AFM) measurements also supported the model and these results will be presented.

  12. Oxidation of the persistent compounds in the oxygen-hydrogen plasma

    International Nuclear Information System (INIS)

    Brozek, V.; Novak, M.; Vonka, P.; Kopecky, V.; Hrabovsky, M.

    1995-01-01

    The effectiveness of plasma-chemical decomposition of the persistent halogenated aliphatic hydrocarbons (CCl 4 , CF 2 Cl 2 , CF 3 Cl 3 and C 6 Cl 6 ) was examined by the analysis of emergent products in the dependence on the next parameters of the plasma-chemical reactor: power of the plasmatron; geometry of the plasmatic cone; velocity of flow of the gases by reaction chamber; stoichiometry of the ratio of the oxygen-air-water

  13. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Hefny, M.M.; Pattyn, C.; Lukeš, Petr; Benedikt, J.

    2016-01-01

    Roč. 49, č. 40 (2016), s. 404002 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : atmospheric pressure plasma * transport of reactive species * reactive oxygen species * aqueous phase chemistry * plasma and liquids * phenol aqueous chemistry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/40/404002

  14. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].

    Science.gov (United States)

    Fang, Wei; Zeng, Shu-Guang; Gao, Wen-Feng

    2015-04-01

    To prepare and characterize a nano-scale fibrous hydrophilic poly-L-lactic acid/ Bioglass (PLLA/BG) composite membrane and evaluate its biocompatibility as a composite membrane for guiding bone regeneration (GBR). PLLA/BG-guided bone regeneration membrane was treated by oxygen plasma to improved its hydrophilicity. The growth of MG-63 osteoblasts on the membrane was observed using Hoechst fluorescence staining, and the biocompatibility of the membrane was evaluated by calculating the cells adhesion rate and proliferation rate. Osteogenesis of MG-63 cells was assessed by detecting alkaline phosphatase (ALP), and the formation of calcified nodules and cell morphology changes were observed using scanning electron microscope (SEM). The cell adhesion rates of PLLA/BG-guided bone regeneration membrane treated with oxygen plasma were (30.570±0.96)%, (47.27±0.78)%, and (66.78±0.69)% at 1, 3, and 6 h, respectively, significantly higher than those on PLLA membrane and untreated PLLA/BG membrane (Pmembranes increased with time, but highest on oxygen plasma-treated PLLA/BG membrane (Pplasma treatment of the PLLA/BG membrane promoted cell adhesion. The membranes with Bioglass promoted the matrix secretion of the osteoblasts. Under SEM, the formation of calcified nodules and spindle-shaped cell morphology were observed on oxygen plasma-treated PLLA/BG membrane. Oxygen plasma-treated PLLA/BG composite membrane has good biocompatibility and can promote adhesion, proliferation and osteogenesis of the osteoblasts.

  15. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  16. Total hydrogen and oxygen fluxes in the edge plasma of tokamaks

    International Nuclear Information System (INIS)

    Kastelewicz, H.

    1988-01-01

    A relativistic model of the edge plasma of tokamaks is described considering the primary neutral fluxes emitted from limiter and wall. The primary neutrals, which determine essentially the particle flux balance in the plasma edge, the scrape-off layer plasma and the particles adsorbed at limiter and wall are treated as separate subsystems which are iteratively coupled through the mutual particle sinks and sources. The model is used for the calculation of total hydrogen and oxygen fluxes in edge plasma of tokamaks. The results for different fractions of and contributions to the total fluxes are illustrated and discussed

  17. Evaporation and alignment of 1-undecene functionalised nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Astuti, Y.; Poolton, N.R.J.; Butenko, Y.V.; Šiller, L., E-mail: lidija.siller@ncl.ac.uk

    2014-12-15

    The possibility to align diamond nanoparticles has a number of potential technological applications, but there are few methods by which this can be achieved, and research in this field can be considered to be in its infancy. Hitherto, two methods which have been commonly used are lithography and chemical vapour deposition (CVD), but these methods are both complex and have poor effectiveness. In this paper, we present a new technique for particle alignment, which is simpler and avoids particle structural damage. The method works by functionalising the nanodiamonds of size 5 nm by attaching 1-undecene onto the nanodiamond surfaces; the particles are then evaporated using UHV and deposited onto TEM grids and mica surfaces at 200 °C. XPS, SERS, HRTEM, luminescence spectroscopy and luminescence micro-imaging have been applied to characterise samples both before and after evaporation. Deposition of nanodiamond onto a mica surface resulted in particle alignment with length scales of 500 µm. The XPS and Raman spectra confirmed the absence of non-diamond carbon (sp{sup 2}-hybridized carbon). Moreover, photoluminescence (emitting in the range of 2.48–1.55 eV; 500–800 nm) which is characteristic for nanodiamond with size of 5 nm was also observed, both before and after evaporation of the functionalised nanodiamonds. - Highlights: • 1-Undecene funcionalised nanodiamonds can be evaporated in vacuum. • When evaporated on mica surface the particles form line ∼500 μm in length. • Their luminescence emission is observed at 2.48–1.55 eV (500–800 nm)

  18. Evaporation and alignment of 1-undecene functionalised nanodiamonds

    International Nuclear Information System (INIS)

    Astuti, Y.; Poolton, N.R.J.; Butenko, Y.V.; Šiller, L.

    2014-01-01

    The possibility to align diamond nanoparticles has a number of potential technological applications, but there are few methods by which this can be achieved, and research in this field can be considered to be in its infancy. Hitherto, two methods which have been commonly used are lithography and chemical vapour deposition (CVD), but these methods are both complex and have poor effectiveness. In this paper, we present a new technique for particle alignment, which is simpler and avoids particle structural damage. The method works by functionalising the nanodiamonds of size 5 nm by attaching 1-undecene onto the nanodiamond surfaces; the particles are then evaporated using UHV and deposited onto TEM grids and mica surfaces at 200 °C. XPS, SERS, HRTEM, luminescence spectroscopy and luminescence micro-imaging have been applied to characterise samples both before and after evaporation. Deposition of nanodiamond onto a mica surface resulted in particle alignment with length scales of 500 µm. The XPS and Raman spectra confirmed the absence of non-diamond carbon (sp 2 -hybridized carbon). Moreover, photoluminescence (emitting in the range of 2.48–1.55 eV; 500–800 nm) which is characteristic for nanodiamond with size of 5 nm was also observed, both before and after evaporation of the functionalised nanodiamonds. - Highlights: • 1-Undecene funcionalised nanodiamonds can be evaporated in vacuum. • When evaporated on mica surface the particles form line ∼500 μm in length. • Their luminescence emission is observed at 2.48–1.55 eV (500–800 nm)

  19. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  20. Printed biotin-functionalised polythiophene films as biorecognition layers in the development of paper-based biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Pesonen, Markus [Physics, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Sund, Pernilla [Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Viitala, Tapani [Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki (Finland); Määttänen, Anni; Sarfraz, Jawad [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Wilén, Carl-Erik [Laboratory of Polymer Technology, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Österbacka, Ronald [Physics, Center for Functional Materials, Åbo Akademi University, Turku (Finland); Peltonen, Jouko [Laboratory of Physical Chemistry, Center for Functional Materials, Åbo Akademi University, Turku (Finland)

    2016-02-28

    Highlights: • Inkjet-printed polythiophene films show good adhesion on ultrathin gold films. • Biotin-functionalisation of polythiophene enables specificity towards streptavidin. • Supramolecular biorecognition architectures can be prepared by printing. • The addition of each printed layer can be followed by a change in capacitance. - Abstract: The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody–antigen complexes.

  1. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    Science.gov (United States)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  2. Transport, electrochemical and thermophysical properties of two N-donor-functionalised ionic liquids.

    Science.gov (United States)

    Rüther, Thomas; Harris, Kenneth R; Horne, Michael D; Kanakubo, Mitsuhiro; Rodopoulos, Theo; Veder, Jean-Pierre; Woolf, Lawrence A

    2013-12-23

    Two N-donor-functionalised ionic liquids (ILs), 1-ethyl-1,4-dimethylpiperazinium bis(trifluoromethylsulfonyl)amide (1) and 1-(2-dimethylaminoethyl)-dimethylethylammonium bis(trifluoromethylsulfonyl)amide (2), were synthesised and their electrochemical and transport properties measured. The data were compared with the benchmark system, N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (3). Marked differences in thermal and electrochemical stability were observed between the two tertiary-amine-functionalised salts and the non-functionalised benchmark. The former are up to 170 K and 2 V less stable than the structural counterpart lacking a tertiary amine function. The ion self-diffusion coefficients (Di ) and molar conductivities (Λ) are higher for the IL with an open-chain cation (2) than that with a cyclic cation (1), but less than that with a non-functionalised, heterocyclic cation (3). The viscosities (η) show the opposite behaviour. The Walden [Λ[proportionality](1/η)(t) ] and Stokes-Einstein [Di /T)[proportionality](1/η)(t) ] exponents, t, are very similar for the three salts, 0.93-0.98 (±0.05); that is, the self-diffusion coefficients and conductivity are set by η. The Di for 1 and 2 are the same, within experimental error, at the same viscosity, whereas Λ for 1 is approximately 13% higher than that of 2. The diffusion and molar conductivity data are consistent, with a slope of 0.98±0.05 for a plot of ln(ΛT) against ln(D+ +D- ). The Nernst-Einstein deviation parameters (Δ) are such that the mean of the two like-ion VCCs is greater than that of the unlike ions. The values of Δ are 0.31, 0.36 and 0.42 for 3, 1 and 2, respectively, as is typical for ILs, but there is some subtlety in the ion interactions given 2 has the largest value. The distinct diffusion coefficients (DDC) follow the order D(d)__ < D(d)++ < D(d)+_, as is common for [Tf2N](-) salts. The ion motions are not correlated as in an electrolyte solution: instead, there is

  3. Technical Note: Preliminary investigations into the use of a functionalised polymer to reduce diffusion in Fricke gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S. T., E-mail: s164.smith@qut.edu.au; Masters, K.-S.; Hosokawa, K.; Blinco, J. P.; Trapp, J. V. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4000 (Australia); Crowe, S. B. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, Australia and Cancer Care Services, Royal Brisbane and Women’s Hospital, Brisbane 4006 (Australia); Kairn, T. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, Australia and Genesis Cancer Care Queensland, Brisbane 4066 (Australia)

    2015-12-15

    Purpose: A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe{sup 3+} diffusion. Methods: The chelating agent, xylenol orange, was chemically bonded to the gelling agent, polyvinyl alcohol (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results: This resulted in an optical density dose sensitivity of 0.014 Gy{sup −1}, an auto-oxidation rate of 0.0005 h{sup −1}, and a diffusion rate of 0.129 mm{sup 2} h{sup −1}; an 8% reduction compared to the original PVA-FX gel, which in practical terms adds approximately 1 h to the time span between irradiation and accurate read-out. Conclusions: Because this initial method of chemically bonding xylenol orange to polyvinyl alcohol has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alcohol with xylenol orange must be developed for this system to gain clinical relevance.

  4. Effects of oxygen plasma treatment power on Aramid fiber III/BMI composite humidity resistance properties

    Science.gov (United States)

    Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang

    2018-01-01

    The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.

  5. Controlled release of 1-methylcyclopropene from its functionalised electrospun fibres under constant and linearly ramped humidity.

    Science.gov (United States)

    Neoh, Tze Loon; Ariyanto, Hermawan Dwi; Menéndez Galvan, Patricia; Yoshii, Hidefumi

    2017-10-01

    The methodology to electrospin polystyrene (PS) fibres functionalised with the inclusion complex between 1-methylcyclopropene (1-MCP) and α-cyclodextrin (α-CD) has been developed successfully. Due to limited availability, α-CD crystals instead of 1-MCP/α-CD complex were suspended in the electrospinning (ES) solutions to investigate the ES process. The ES solutions were characterised in terms of viscosity, conductivity and surface tension. Meanwhile, the fibres were subjected to scanning electron microscopy. The average fibre diameter was proportional to approximately one-sixth power of the capillary number of the ES solution. Viscosity, which was a function of PS concentration and α-CD loading, was the main property that dictated the spin ability of the ES solutions. ES fibres with 1.5-4.4 μm in diameter were produced with 12.5-20.0% (w/w) PS in ES solution and an equal amount of the inclusion complex for PS. In the case of the ES solutions of 20 wt% PS loaded with the inclusion complex from 0 to 100% (w/w) to PS, all the ES solutions were electrospinnable with the average diameter ranging from 3.8 to 4.6 μm. X-ray diffractometry indicated that the α-CD crystals were homogeneously suspended on the fibre mats. Confocal laser scanning microscopy showed that the crystals were suspended on the fibre mats while being coated with a layer of PS. The complex-functionalised fibre was formed from the ES solution of 20% PS and 50% (w/w) inclusion complex with the ES. The release characteristics of 1-methylcyclopropene (1-MCP) from the functionalised fibre and the inclusion complex were investigated real time under linearly ramping humidity conditions at constant temperatures with a home-built humidity regulating system coupled with gas chromatography. The irregular release profiles were successfully modelled and the activation energies of release for the functionalised fibre and inclusion complex were about 128 and 69 kJ/mol, respectively..

  6. Synergized mechanistic and solar photocatalysis features of N-TiO2 functionalised activated carbon

    Directory of Open Access Journals (Sweden)

    Kah Hon Leong

    2017-07-01

    Full Text Available A TiO2 photocatalysts was successfully functionalised by employing nitrogen (N as a dopant on activated carbon (AC support as synergist. Two different types of activated carbon adopting namely Garcinia mangostana and palm shell as precursor were chosen as an activated carbon support. Thus the synthesized samples were examined for its physical and chemistry properties through advanced microscopic and spectroscopic techniques. The results revealed the contribution of adsorbent support through the rich surface area while doping of nitrogen contributed for effectively utilizing the incident photons by narrowing the band gap energy. The synergetic adsorption-photocatalytic activity was investigated by adopting batik dye, Remazol Brilliant Blue Dye (RBB as model pollutant. Thus the N-TiO2 functionalised activated carbon demonstrated excellent adsorption-photocatalytic activity with 80% removal efficiency in 6 h. The synergism of adsorption-photocatalysis portrayed the alternative for treating recalcitrant RBB a predominant dye found in batik textile industry wastewater.

  7. Wheat germ agglutinin-functionalised crosslinked polyelectrolyte microparticles for local colon delivery of 5-FU

    DEFF Research Database (Denmark)

    Glavas-Dodov,, Marija; Steffansen, Bente; Srcarevska, Maja

    2013-01-01

    We have previously reported the development and characterisation of wheat germ agglutinin (WGA)-functionalised chitosan-Ca-alginate (CTS-Ca-ALG) microparticles (MPs) loaded with acid-resistant particles of 5-fluorouracil (5-FU). In the present work, our goal was to evaluate the potential of these......We have previously reported the development and characterisation of wheat germ agglutinin (WGA)-functionalised chitosan-Ca-alginate (CTS-Ca-ALG) microparticles (MPs) loaded with acid-resistant particles of 5-fluorouracil (5-FU). In the present work, our goal was to evaluate the potential......-Ca-ALG MPs and WGA conjugates. The concentration of 5-FU associated with Caco-2 cells was significantly greater when delivered from MPs. By incorporation of 5-FU into MPs and further decoration with WGA, an increased [methyl-³H]thymidine uptake was observed few hours after continuous drug treatment followed...... by significantly reduced uptake after 6 h. Gastrointestinal distribution was in favour of increased localisation and concentration of the particles in colon region....

  8. Tuning the band gap of silicene by functionalisation with naphthyl and anthracyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Mathew D.; Spencer, Michelle J. S., E-mail: t-morishita@aist.go.jp, E-mail: michelle.spencer@rmit.edu.au [School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001 (Australia); Morishita, Tetsuya, E-mail: t-morishita@aist.go.jp, E-mail: michelle.spencer@rmit.edu.au [Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-03-21

    Silicene is a relatively new material consisting of a two-dimensional sheet of silicon atoms. Functionalisation of silicene with different chemical groups has been suggested as a way to tune its electronic properties. In this work, density functional theory calculations and ab initio molecular dynamics simulations are used to examine the effects of functionalisation with naphthyl or anthracyl groups, which are two examples of small polycyclic aromatic hydrocarbons (PAHs). Different attachment positions on the naphthyl and anthracyl groups were compared, as well as different thicknesses of the silicene nanosheet. It was found that the carbon attachment position farthest from the bond fusing the aromatic rings gave the more stable structures for both functional groups. All structures showed direct band gaps, with tuning of the band gap being achievable by increasing the length of the PAH or the thickness of the silicene. Hence, modifying the functional group or thickness of the silicene can both be used to alter the electronic properties of silicene making it a highly promising material for use in future electronic devices and sensors.

  9. Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating.

    Science.gov (United States)

    Warsi, Muhammad Farooq; Adams, Ralph W; Duckett, Simon B; Chechik, Victor

    2010-01-21

    Monolayer-protected, Gd(3+)-functionalised gold nanoparticles with enhanced spin-lattice relaxivity (r(1)) were prepared; adsorption of polyelectrolytes on these materials further increased r(1) and ligand exchange with a biotin-derivatised disulfide led to a prototype avidin-targeted contrast agent.

  10. Improved electrochemical performances of oxygen plasma treated LiMn2O4 thin films

    International Nuclear Information System (INIS)

    Chen, C C; Chiu, K-F; Lin, K M; Lin, H C; Yang, C-R; Wang, F M

    2007-01-01

    LiMn 2 O 4 spinel thin films were deposited by radio frequency (rf) magnetron sputtering followed by annealing at 600 0 C in air.The films were then post-treated with an rf driven oxygen plasma. The crystallization and surface morphology of LiMn 2 O 4 thin films were seen to change with rf power. The treated samples were tested under harsh conditions such as deep discharge to 1.5 V and cycling at elevated temperature of 60 0 C to verify the electrochemical performances of LiMn 2 O 4 cathodes. The oxygen plasma treatments improved the electrochemical properties of LiMn 2 O 4 thin films significantly. As the cells were cycled in the range of 4.5-2.0 V at 60 0 C, the samples treated at a proper rf power of 50 W exhibited an initial capacity greater than ∼400 mAh g -1 with reasonable cycling stability. The results were attributed to the change of morphology and the formation of a surface layer induced by the oxygen plasma irradiation

  11. Bacteria killing effect of pulsed plasmas in oxygen+air at atmospheric pressure

    International Nuclear Information System (INIS)

    Akan, T.

    2005-01-01

    Bacteria Killing Method. The high voltage pulsed plasma is a non-equilibrium plasma and generates UV photons, ozone and active oxygen. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria. One of the probes charged with bacteria, was kept as a control probes (not exposed to the pulsed plasma), the rest of the probes were exposed to the pulsed plasma and afterwards compared with above mentioned control probe (reference sample). During treatment the bacteria were exposed to the active atoms, molecules, charged particles and photons generated by the pulsed plasma. The temperature of the support of samples with bacteria exposed to plasma increased during the treatment with only 1-2 degrees. Full killing time of Staphylococcus species as low as 3 minutes have been obtained quite easily

  12. Microelectrode array fabrication for electrochemical detection with carbon nanotubes

    Science.gov (United States)

    Clark, James

    Understanding how the brain works remains one of the key challenges for scientists. To further this understanding a wide variety of technologies and research methods have been developed. One such technology is conductive electrodes, used to measure the electrical signals elicited from neuronal cells and tissues. These electrodes can be fabricated as a singular electrode or as a multi-electrode array (MEA). This permits bio-electrical measurements from one particular area or simultaneous measurements from multiple areas, respectively. Studying electrical and chemical signals of individual cells in situ requires the use of electrodes with ≤20 µm diameter. However, electrodes of this size generally produce high impedance, perturbing recording of the small signals generated from individual cells. Nanomaterials, such as carbon nanotubes (CNTs), can be deposited to increase the real surface area of these electrodes, producing higher sensitivity measurements. This thesis investigates the potential for using photo-thermal chemical vapour deposition grown CNTs as the electrode material for a de novo fabricated MEA. This device aimed to measure electrochemical signals in the form of dopamine, an important mammalian neurotransmitter, as well as conventional bio-electrical signals that the device is designed for. Realising this aim began with improving CNT aqueous wetting behaviour via oxygen plasma functionalisation. This procedure demonstrated grafting of oxygen functional groups to the CNT structure, and dramatic improvements in aqueous wetting behaviour, with CNTs attached to the device. Subsequently, oxygen plasma functionalised CNT-based MEAs were fabricated and tested, allowing comparisons with a non-functionalised CNT MEA and a state-of-the-art commercial MEA. The functionalised CNT MEA demonstrated an order of magnitude improvement compared to commercial MEAs (2.75 kΩ vs. 25.6 kΩ), at the biologically relevant frequency of 1 kHz. This was followed by measurement

  13. The role of Ar plasma treatment in generating oxygen vacancies in indium tin oxide thin films prepared by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deuk-Kyu [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Misra, Mirnmoy; Lee, Ye-Eun [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of); Baek, Sung-Doo [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Lee, Tae Il, E-mail: t2.lee77@gachon.ac.kr [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of)

    2017-05-31

    Highlights: • Indium tin oxide thin film with about 41 nm thickness was obtained by the sol-gel process. • Thin film exhibited low resistivity. • Sheet resistance of thin film decreases with Ar plasma treatment time. • Ar plasma treatment on thin film does not alter the crystal structure and optical properties of the ITO thin-film. • There is no significant change in oxygen vacancies after 20 min of plasma treatment. - Abstract: Argon (Ar) plasma treatment was carried out to reduce the sheet resistance of indium tin oxide (ITO) thin films. The Ar plasma treatment did not cause any significant changes to the crystal structure, surface morphology, or optical properties of the ITO thin films. However, an X-ray photoelectron spectroscopy study confirmed that the concentration of oxygen vacancies in the film dramatically increased with the plasma treatment time. Thus, we concluded that the decrease in the sheet resistance was caused by the increase in the oxygen vacancy concentration in the film. Furthermore, to verify how the concentration of oxygen vacancies in the film increased with the Ar plasma treatment time, cumulative and continuous plasma treatments were conducted. The oxygen vacancies were found to be created by surface heating via the outward thermal diffusion of oxygen atoms from inside the film.

  14. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Czech Academy of Sciences Publication Activity Database

    Vesel, A.; Drenik, A.; Elersic, K.; Mozetič, M.; Kovač, J.; Gyergyek, T.; Stöckel, Jan; Varju, Jozef; Pánek, Radomír; Balat-Pichelin, M.

    2014-01-01

    Roč. 305, June (2014), s. 674-682 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : Inconel * Oxidation * High temperature * Oxygen plasma * Hydrogen plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.711, year: 2014 https://www.sciencedirect.com/science/article/pii/S0169433214007119

  15. Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Abouzar, Maryam H.; Poghossian, Arshak; Schoening, Michael J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany); Siqueira, Jose R. Jr.; Oliveira, Osvaldo N. Jr. [Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil); Moritz, Werner [Institute of Chemistry, Humboldt University Berlin (Germany)

    2010-04-15

    A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO{sub 2} EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 {mu}M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Oxygen Plasma Modification of Poss-Coated Kapton(Registered TradeMark) HN Films

    Science.gov (United States)

    Wohl, C. J.; Belcher, M. A.; Ghose, S.; Connell, J. W.

    2008-01-01

    The surface energy of a material depends on both surface composition and topographic features. In an effort to modify the surface topography of Kapton(Registered TradeMark) HN film, organic solutions of a polyhedral oligomeric silsesquioxane, octakis(dimethylsilyloxy)silsesquioxane (POSS), were spray-coated onto the Kapton(Registered TradeMark) HN surface. Prior to POSS application, the Kapton(Registered TradeMark) HN film was activated by exposure to radio frequency (RF)-generated oxygen plasma. After POSS deposition and solvent evaporation, the films were exposed to various durations of RF-generated oxygen plasma to create a topographically rich surface. The modified films were characterized using optical microscopy, attenuated total reflection infrared (ATR-IR) spectroscopy, and high-resolution scanning electron microscopy (HRSEM). The physical properties of the modified films will be presented.

  17. Electrochemical selenium- and iodonium-initiated cyclisation of hydroxy-functionalised 1,4-dienes

    Directory of Open Access Journals (Sweden)

    Philipp Röse

    2015-01-01

    Full Text Available The cobalt(I-catalysed 1,4-hydrovinylation reaction of allyloxytrimethylsilane and allyl alcohol with substituted 1,3-dienes leads to hydroxy-functionalised 1,4-dienes in excellent regio- and diastereoselective fashion. Those 1,4-dienols can be converted into tetrahydrofuran and pyran derivatives under indirect electrochemical conditions generating selenium or iodonium cations. The reactions proceed in good yields and regioselectivities for the formation of single diastereomers.

  18. Inhibition of microbial concrete corrosion by Acidithiobacillus thiooxidans with functionalised zeolite-A coating.

    Science.gov (United States)

    Haile, Tesfaalem; Nakhla, George

    2009-01-01

    The inhibition of the corrosive action of Acidithiobacillus thiooxidans on concrete specimens coated by functionalised zeolite-A containing 14% zinc and 5% silver by weight was studied. Uncoated concrete specimens, epoxy-coated concrete specimens (EP), and functionalised zeolite-A coated concrete specimens with epoxy to zeolite weight ratios of 3:1 (Z1), 2:2 (Z2) and 1:3 (Z3) were studied. Specimens were characterised by x-ray powder diffraction and field emission scanning electron microscopy for the identification of corrosion products and morphological changes. Biomass growth at the conclusion of the 32-day experiments was 4, 179 and 193 mg volatile suspended solids g(-1) sulphur for the uncoated, EP and Z1 specimens, whereas that of Z2 and Z3 were negligible. In the uncoated, EP and Z1 specimens, sulphate production rates were 0.83, 9.1 and 8.8 mM SO(4)(2-) day(-1) and the specific growth rates, mu, were 0.14, 0.57 and 0.47 day(-1), respectively. The corresponding values for Z2 and Z3 were negligible due to their bacterial inhibition characteristics.

  19. Biochar activated by oxygen plasma for supercapacitors

    Science.gov (United States)

    Gupta, Rakesh Kumar; Dubey, Mukul; Kharel, Parashu; Gu, Zhengrong; Fan, Qi Hua

    2015-01-01

    Biochar, also known as black carbon, is a byproduct of biomass pyrolysis. As a low-cost, environmental-friendly material, biochar has the potential to replace more expensive synthesized carbon nanomaterials (e.g. carbon nanotubes) for use in future supercapacitors. To achieve high capacitance, biochar requires proper activation. A conventional approach involves mixing biochar with a strong base and baking at a high temperature. However, this process is time consuming and energy inefficient (requiring temperatures >900 °C). This work demonstrates a low-temperature (characteristics are studied. Significant enhancement of the capacitance is achieved: 171.4 F g-1 for a 5-min oxygen plasma activation, in comparison to 99.5 F g-1 for a conventional chemical activation and 60.4 F g-1 for untreated biochar. This enhancement of the charge storage capacity is attributed to the creation of a broad distribution in pore size and a larger surface area. The plasma activation mechanisms in terms of the evolution of the biochar surface and microstructure are further discussed.

  20. Properties of thin films deposited from HMDSO/O2 induced remote plasma: Effect of oxygen fraction

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.; Al-Khaled, B.

    2008-01-01

    Thin films deposited from hexamethyle disiloxane (HMDSO)/O 2 mixture excited in a radio-frequency hollow cathode discharge system have been investigated for their structural, optical and corrosive properties as a function of oxygen fraction χo 2 (χo 2 =0, 0.38, 0.61, 0.76 and 0.90). It is found that the effect of oxygen fraction on films properties is related to O 2 dissociation degree (αd) behavior in pure oxygen plasma. αd has been investigated by actinometry optical emission spectroscopy (AOES) combined with double langmuir probe measurements, a maximum of O 2 dissociation degree of 15% has been obtained for 50 sccm flow rate of O 2 (χo 2 =0.61 in HMDSO/O 2 plasma). Fourier transform infrared spectroscopy (FTIR) and optical measurements showed that the behavior of both identified IR group densities and deposition rate as a function of oxygen fraction is similar to that of O 2 dissociation degree. The inorganic nature of the films depends significantly on oxygen fraction, the best inorganic structure of deposited films has been obtained for 62% HMDSO content in the mixture HMDSO/O 2 (χo 2 =0.38). The refractive index for deposited films from pure HMDSO(χo 2 =0) has been found to be higher than that of films deposited from HMDSO/O 2 mixture. In HMDSO/O 2 plasma, it has a behavior similar to that of deposition rate, and it is comparable to that of quartz. The effect of oxygen fraction on the corrosive properties of thin films deposited on steel has been investigated. It is found that the measured corrosion current density in 0.1 M KCI solution decreases with the addition of O 2 to HMDSO plasma, and it is minimum for χo 2 =0.38. (author)

  1. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    Science.gov (United States)

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  2. Characterization of atomic oxygen in a Hollow Cathode Radio-Frequency Plasma and study its efficiency

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2011-01-01

    The atomic oxygen (AO) generated in the remote oxygen plasma of the HCD-L300 source, has been fully diagnosed by various conventional techniques. The density of AO was found to vary from (1-10)x10 1 9 m - 3 depending on the operating conditions and parameters. The interaction of the oxygen plasma with silver and gold thin films is investigated by gravimetric analysis, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. The effect of AO on surface wetting and energy of polymeric materials is also investigated by using contact angle measurements and analysis technique. From applied point of view, production of super hydrophobic Teflon surface and the significant enhancement in the surface free energy of polyimide and polyamide are considered the most important obtained results in the present work. (author)

  3. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    International Nuclear Information System (INIS)

    Takeuchi, N; Ishii, Y; Yasuoka, K

    2012-01-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  4. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    Science.gov (United States)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  5. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    Science.gov (United States)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  6. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, H.; Hammer, M. U.; Reuter, S. [Center for Innovation Competence plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  7. Modification of low temperature deposited LiMn2O4 thin film cathodes by oxygen plasma irradiation

    International Nuclear Information System (INIS)

    Chen, Chen Chung; Chiu, Kuo-Feng; Lin, Kun Ming; Lin, Hsin Chih

    2009-01-01

    Lithium manganese oxides have been deposited by radio frequency magnetron sputter deposition with relatively lower annealing temperatures and then post-treated with a radio frequency (rf) driven oxygen plasma. Following oxygen plasma irradiation, the film properties were modified, and the performance of the thin film cathode has been enhanced. The electrochemical properties of the treated thin-film cathodes were characterized and compared. The results showed that the samples with moderate plasma treatment also maintained good cyclic properties as cycled at a wide range potential window of 2.0 V-4.5 V. Its electrochemical properties were significantly improved by this process, even though the films were prepared under low annealing temperature.

  8. Printed biotin-functionalised polythiophene films as biorecognition layers in the development of paper-based biosensors

    Science.gov (United States)

    Ihalainen, Petri; Pesonen, Markus; Sund, Pernilla; Viitala, Tapani; Määttänen, Anni; Sarfraz, Jawad; Wilén, Carl-Erik; Österbacka, Ronald; Peltonen, Jouko

    2016-02-01

    The integration of flexible electronic sensors in clinical diagnostics is visioned to significantly reduce the cost of many diagnostic tests and ultimately make healthcare more accessible. This study concentrates on the characterisation of inkjet-printed bio-functionalised polythiophene films on paper-based ultrathin gold film (UTGF) electrodes and their possible application as biorecognition layers. Physicochemical surface properties (topography, chemistry, and wetting) and electrochemical characteristics of water-soluble regioirregular tetraethylene-glycol polythiophene (TEGPT) and biotin-functionalised TEGPT (b-TEGPT) films were examined and compared. In addition, their specificity towards streptavidin protein was tested. The results show that stable supramolecular biorecognition layers of insulating b-TEGPT and streptavidin were successfully fabricated on a paper-based UTGF by inkjet-printing. Good adhesion of thiophene to UTGF can be attributed to covalent linkage between sulphur and gold, whereas the stability of the streptavidin layer is due to the high affinity between biotin and streptavidin. The device introduced can be utilised in the development of biosensors for clinically relevant analytes e.g. for detecting complementary DNA oligomers or antibody-antigen complexes.

  9. Adsorption of CO2 on amine-functionalised MCM-41: experimental and theoretical studies.

    Science.gov (United States)

    dos Santos, Thiago Custódio; Bourrelly, Sandrine; Llewellyn, Philip L; Carneiro, José Walkimar de M; Ronconi, Célia Machado

    2015-04-28

    Adsorption of CO2 on MCM-41 functionalised with [3-(2-aminoethylamino)propyl]trimethoxysilane (MCM-41-N2), N(1)-(3-trimethoxysilylpropyl)diethylenetriamine (MCM-41-N3), 4-aminopyridine (MCM-41-aminopyridine), 4-(methylamino)pyridine (MCM-41-methylaminopyridine) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (MCM-41-guanidine) was investigated. The amine-functionalised materials were characterised by (29)Si and (13)C solid-state nuclear magnetic resonance, N2 adsorption/desorption isotherms, X-ray diffraction and transmission electron microscopy. CO2 adsorption at 1.0 bar and 30 °C showed that the amount of CO2 (nads/mmol g(-1)) adsorbed on MCM-41-N2 and MCM-41-N3 is approximately twice the amount adsorbed on MCM-41. For MCM-41-aminopyridine, MCM-41-methylaminopyridine and MCM-41-guanidine, the CO2 adsorption capacity was smaller than that of MCM-41 at the same conditions. The proton affinity (computed with wB97x-D/6-311++G(d,p)) of the secondary amino groups is higher than that of the primary amino groups; however, the relative stabilities of the primary and secondary carbamates are similar. The differential heat of adsorption decreases as the number of secondary amino groups increases.

  10. Laser diagnostics of atomic hydrogen and oxygen production in rf and microwave plasma discharges

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1993-01-01

    The research for this thesis involved the application of two-photon allowed laser-induced fluorescence (TALIF) to the study of atomic hydrogen and oxygen production in industrial scale radio-frequency and microwave plasma discharge apparatus. Absolute atomic hydrogen concentration profiles were measured in a Gaseous Electronics Conference Reference Cell installed at Wright-Patterson AFB, Ohio operating with a simple H 2 discharge. Two-dimensional atomic hydrogen concentration profiles were also measured in an ASTEX HPMM microwave plasma diamond deposition reactor during actual diamond growth. In addition absolute atomic oxygen concentrations were measured in the ASTEX system. Particular attention as paid to refining the concentration calibration technique and in determining a correction to account for the collisional quenching of excited state fluorescence in high pressure gases

  11. Improvement of Surface Wettability and Hydrophilization of Poly-paraphenylene benzobisoxazole Fiber with Fibrillation Combined Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Xiwen Wang

    2012-01-01

    Full Text Available A new surface modification method fibrillation combined with oxygen plasma treatment to improve the wettability and hydrophily of PBO fiber was studied in this paper. The surface chemical structure and morphology of PBO fiber were characterized by the methods of FTIR, XPS and SEM. The wettability and hydrophlic characters changes on the surface were evaluated by the dynamic contact angle system and image analysis. The results show that the increase surface roughness by fibrillation could improve the wettability. Fibrillation combined oxygen plasma treatment has a better effect than oxygen plasma treatment to improve the wettability and hdyrophlization of PBO fiber. The specific area of PBO fiber increased to 10.7 m2/g from 0.7 m2/g, contact angle decreased to 43.2° from 84.4° and WRV increased to 208.4% from 13.7%. The modified fibers have a good dispersion in water for hydrophilization improvement.

  12. Functionalization of Cellulose Fibres with Oxygen Plasma and ZnO Nanoparticles for Achieving UV Protective Properties

    Directory of Open Access Journals (Sweden)

    Katja Jazbec

    2015-01-01

    Full Text Available Low-pressure oxygen plasma created by an electrodeless radiofrequency (RF discharge was applied to modify the properties of cellulosic fibrous polymer (cotton in order to improve adsorption properties towards zinc oxide (ZnO nanoparticles and to achieve excellent ultraviolet (UV protective properties of cotton fabric. The chemical and physical surface modifications of plasma-treated cotton fabric were examined by X-ray photoelectron spectroscopy (XPS and scanning electron microscopy (SEM. The mechanical properties of plasma-treated samples were evaluated, measuring strength and elongation of the fabrics. The quantity of zinc on the ZnO-functionalized cotton samples was determined using inductively coupled plasma mass spectrometry (ICP-MS and the effectiveness of plasma treatment for UV protective properties of cotton fabrics was evaluated using UV-VIS spectrometry, measuring the UV protection factor (UPF. The results indicated that longer plasma treatment times cause higher concentration of oxygen functional groups on the surface of fibres and higher surface roughness of fibres. These two conditions are crucial in increasing the content of ZnO nanoparticles on the fibres, providing excellent UV protective properties of treated cotton, with UPF factor up to 65.93.

  13. An in vitro investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK

    NARCIS (Netherlands)

    Rochford, Edward T. J.; Subbiahdoss, Guruprakash; Moriarty, T. Fintan; Poulsson, Alexandra H. C.; van der Mei, Henny C.; Busscher, Henk J.; Richards, R. Geoff

    2014-01-01

    Polyetheretherketone (PEEK) films were oxygen plasma treated to increase surface free energy and characterized by X-ray photoelectron microscopy, atomic force microscopy, and water contact angles. A parallel plate flow chamber was used to measure Staphylococcus epidermidis, Staphylococcus aureus,

  14. Experimental study of the hollow cathode radio-frequency plasma mixture: Argon-Oxygen

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2008-01-01

    This study presents experimental results of plasma gas mixture Ar-O 2 for different mixing ratios in radio-frequency hollow cathode plasma. The following plasma parameters have been investigated: The electronic temperature, plasma potential, floating potential, emission atomic lines intensities, as a function of some variables, where the effect of power has been studied in the range [100-300 W], and the effect of pressure has been studied in the range [0.05-0.3 mbar]. The effect of relative composition has been studied for a fixed power and pressure. Two diagnostic techniques have been employed: Optical emission spectroscopy and langmuir probe. The most important result of this study is the ability to measure the relative atomic density of oxygen by optical emission spectroscopy, where the maximum of this density is obtained for the mixture 40% Ar - 60% O 2 . (author)

  15. Deposition of Lanthanum Strontium Cobalt Ferrite (LSCF) Using Suspension Plasma Spraying for Oxygen Transport Membrane Applications

    Science.gov (United States)

    Fan, E. S. C.; Kesler, O.

    2015-08-01

    Suspension plasma spray deposition was utilized to fabricate dense lanthanum strontium cobalt ferrite oxygen separation membranes (OSMs) on porous metal substrates for mechanical support. The as-sprayed membranes had negligible and/or reversible material decomposition. At the longer stand-off distance (80 mm), smooth and dense membranes could be manufactured using a plasma with power below approximately 81 kW. Moreover, a membrane of 55 μm was observed to have very low gas leakage rates desirable for OSM applications. This thickness could potentially be decreased further to improve oxygen diffusion by using metal substrates with finer surface pores.

  16. Oxygen and sodium plasma-implanted nickel-titanium shape memory alloy: A novel method to promote hydroxyapatite formation and suppress nickel leaching

    International Nuclear Information System (INIS)

    Chan, Y.L.; Yeung, K.W.K.; Lu, W.W.; Ngan, A.H.W.; Luk, K.D.K.; Chan, D.; Wu, S.L.; Liu, X.M.; Chu, Paul K.; Cheung, K.M.C.

    2007-01-01

    This study aims at modifying the surface bioactivity of NiTi by sodium and oxygen plasma immersion ion implantation (PIII). Sodium ions were implanted into oxygen plasma-implanted NiTi and untreated NiTi. X-ray photoelectron spectroscopy (XPS) revealed that more sodium was implanted into the oxygen pre-implanted sample in comparison with the untreated surface. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX) detected calcium and phosphorus rich deposits on both samples after immersion in simulated body fluids for 7 and 21 days. Inductively-coupled plasma mass spectrometry (ICPMS) conducted on the deposits dissolved in diluted hydrochloric acid showed more calcium on the oxygen PIII samples. The improved corrosion resistance of the oxygen PIII NiTi was retained after sodium PIII as evaluated by potentiodynamic polarization tests. Better spreading and proliferation of osteoblasts were also observed on the treated samples

  17. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    International Nuclear Information System (INIS)

    Hong, Sung-Ha; Jenkins, A Toby A; Szili, Endre J; Short, Robert D

    2014-01-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine. (fast track communication)

  18. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  19. About the 'enlightenment' of nonideal hydrogen-oxygen plasma at a electron concentration Ne19 cm-3

    International Nuclear Information System (INIS)

    Fedorovich, O.A.

    2013-01-01

    The results of experimental determination of the emissivity of the hydrogen-oxygen plasma pulsed discharge in water and their comparison with calculations. It is shown that when concentrations nonideal plasma N e >3 centre dot 10 18 cm -3 , is observed 'enlightenment' of plasma. The reduction of a emitting ability . can be more order in the N e =3 centre dot 10 19 cm -3 and increases with increasing electron concentration.

  20. Plasma ATP concentration and venous oxygen content in the forearm during dynamic handgrip exercise

    Directory of Open Access Journals (Sweden)

    Askew Christopher D

    2009-12-01

    Full Text Available Abstract Background It has been proposed that adenosine triphosphate (ATP released from red blood cells (RBCs may contribute to the tight coupling between blood flow and oxygen demand in contracting skeletal muscle. To determine whether ATP may contribute to the vasodilatory response to exercise in the forearm, we measured arterialised and venous plasma ATP concentration and venous oxygen content in 10 healthy young males at rest, and at 30 and 180 seconds during dynamic handgrip exercise at 45% of maximum voluntary contraction (MVC. Results Venous plasma ATP concentration was elevated above rest after 30 seconds of exercise (P Conclusions Collectively these results indicate that ATP in the plasma originated from the muscle microcirculation, and are consistent with the notion that deoxygenation of the blood perfusing the muscle acts as a stimulus for ATP release. That ATP concentration was elevated just 30 seconds after the onset of exercise also suggests that ATP may be a contributing factor to the blood flow response in the transition from rest to steady state exercise.

  1. Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation

    Science.gov (United States)

    Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu

    2018-04-01

    SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.

  2. Charge state distribution studies of pure and oxygen mixed krypton ECR plasma - signature of isotope anomaly and gas mixing effect.

    Science.gov (United States)

    Kumar, Pravin; Mal, Kedar; Rodrigues, G

    2016-11-01

    We report the charge state distributions of the pure, 25% and 50% oxygen mixed krypton plasma to shed more light on the understanding of the gas mixing and the isotope anomaly [A. G. Drentje, Rev. Sci. Instrum. 63 (1992) 2875 and Y Kawai, D Meyer, A Nadzeyka, U Wolters and K Wiesemann, Plasma Sources Sci. Technol. 10 (2001) 451] in the electron cyclotron resonance (ECR) plasmas. The krypton plasma was produced using a 10 GHz all-permanent-magnet ECR ion source. The intensities of the highly abundant four isotopes, viz. 82 Kr (~11.58%), 83 Kr (~11.49%), 84 Kr (~57%) and 86 Kr (17.3%) up to ~ +14 charge state have been measured by extracting the ions from the plasma and analysing them in the mass and the energy using a large acceptance analyzer-cum-switching dipole magnet. The influence of the oxygen gas mixing on the isotopic krypton ion intensities is clearly evidenced beyond +9 charge state. With and without oxygen mixing, the charge state distribution of the krypton ECR plasma shows the isotope anomaly with unusual trends. The anomaly in the intensities of the isotopes having quite closer natural abundance, viz. 82 Kr, 86 Kr and 83 Kr, 86 Kr is prominent, whereas the intensity ratio of 86 Kr to 84 Kr shows a weak signature of it. The isotope anomaly tends to disappear with increasing oxygen mixing in the plasma. The observed trends in the intensities of the krypton isotopes do not follow the prediction of linear Landau wave damping in the plasma. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier.

    Science.gov (United States)

    Mansfield, Edward D H; de la Rosa, Victor R; Kowalczyk, Radoslaw M; Grillo, Isabelle; Hoogenboom, Richard; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-08-16

    Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.

  4. Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Sakthivel, P.

    2001-01-01

    This article discusses the measurement of atomic oxygen (AO) concentrations in an oxygen discharge using a quartz-crystal microbalance (QCM). This is a device that has been previously used for monitoring thin-film deposition, among several other applications. The sensor consists of a silver-coated quartz crystal that oscillates at its specific resonant frequency (typically, at about 6 MHz), which is dependent on the mass of the crystal. When exposed to AO, the silver oxidizes rapidly, resulting in a change in its mass, and a consequent change in this frequency. The frequency change is measured with a counter, and when plotted versus time, it may be fit to a standard diffusion-limited oxide-growth model. This model is then used to determine the specific AO flux to the crystal, and by inference, to the wafer. Initial results of QCM measurements in the FusionGemini Plasma Asher (GPL TM -standard downstream microwave asher) and FusionGemini Enhanced Strip (GES TM -fluorine compatible enhanced strip asher) are presented in this article. The results indicate AO densities of the order of 10 12 cm -3 on the wafer. There is a marked increase in AO concentration with addition of nitrogen into the plasma, and a decrease in AO concentration with increasing pressure at constant flow. Effects of increasing the total plasma volume in the enhanced strip tool on AO production are discussed

  5. Oxidation of vanadium metal in oxygen plasma and their characterizations

    Science.gov (United States)

    Sharma, Rabindar Kumar; Singh, Megha; Kumar, Prabhat; Reddy, G. B.

    2015-09-01

    In this report, the role of oxygen plasma on oxidation of vanadium (V) metal and the volatilization of its oxides has been studied as a function of source (V metal strip) temperature (Tss) and oxygen partial pressure (PO2). The presence of O2-plasma not only enhances the oxidation rate but also ficilitates in transport of oxide molecules from metal to substrate, as confirmed by the simultanous deposition of oxide film onto substrate. Both the oxidized metal strips and oxide films deposited on substrates are characterized separately. The structural and vibrational results evidence the presence of two different oxide phases (i.e. orthorhombic V2O5 and monocilinic V O2) in oxide layers formed on V metal strips, whereas the oxide films deposited on substrates exhibit only orthorhombic phase (i.e. V2O5). The decrease in peak intensities recorded from heated V metal strips on increasing Tss points out the increment in the rate of oxide volatilization, which also confirms by the oxide layer thickness measurements. The SEM results show the noticeable surface changes on V-strips as the function of Tss and PO2 and their optimum values are recorded to be 500 ˚ C and 7.5 × 10-2 Torr, respectively to deposit maximum thick oxide film on substrate. The formation of microcracks on oxidized V-strips, those responsible to countinue oxidation is also confirmed by SEM results. The compositional study of oxide layers formed on V-strips, corroborates their pureness and further assures about the existence of mixed oxide phases. The effect of oxygen partial pressure on oxidation of V-metal has also been discussed in the present report. All the results are well in agreement to each other.

  6. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    International Nuclear Information System (INIS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -C=O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  7. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Ganesh C. [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India); Bandyopadhyay, Abhijit [Department of Polymer Science and Technology, University of Calcutta, Calcutta 700 009 (India); Neogi, Sudarsan [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Bhowmick, Anil K., E-mail: anilkb@rtc.iitkgp.ernet.in [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2011-01-15

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -C=O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  8. 'Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes'.

    Science.gov (United States)

    Castillo-Dalí, Gabriel; Castillo-Oyagüe, Raquel; Terriza, Antonia; Saffar, Jean-Louis; Batista-Cruzado, Antonio; Lynch, Christopher D; Sloan, Alastair J; Gutiérrez-Pérez, José-Luis; Torres-Lagares, Daniel

    2016-04-01

    Guided bone regeneration (GBR) processes are frequently necessary to achieve appropriate substrates before the restoration of edentulous areas. This study aimed to evaluate the bone regeneration reliability of a new poly-lactic-co-glycolic acid (PLGA) membrane after treatment with oxygen plasma (PO2) and titanium dioxide (TiO2) composite nanoparticles. Circumferential bone defects (diameter: 10mm; depth: 3mm) were created on the parietal bones of eight experimentation rabbits and were randomly covered with control membranes (Group 1: PLGA) or experimental membranes (Group 2: PLGA/PO2/TiO2). The animals were euthanized two months afterwards, and a morphologic study was then performed under microscope using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone formed in the grown defects, concentration of osteoclasts, and intensity of osteosynthetic activity were assessed. Comparisons among the groups and with the original bone tissue were made using the Kruskal-Wallis test. The level of significance was set in advance at a=0.05. The experimental group recorded higher values for new bone formation, mineralised bone length, and osteoclast concentration; this group also registered the highest osteosynthetic activity. Bone layers in advanced formation stages and low proportions of immature tissue were observed in the study group. The functionalised membranes showed the best efficacy for bone regeneration. The addition of TiO2 nanoparticles onto PLGA/PO2 membranes for GBR processes may be a promising technique to restore bone dimensions and anatomic contours as a prerequisite to well-supported and natural-appearing prosthetic rehabilitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  10. Type of precursor and synthesis of silicon oxycarbide (SiOxCyH) thin films with a surfatron microwave oxygen/argon plasma

    International Nuclear Information System (INIS)

    Walkiewicz-Pietrzykowska, Agnieszka; Espinos, J. P.; Gonzalez-Elipe, Agustin R.

    2006-01-01

    Siliconelike thin films (i.e., SiO x C y H z ) were prepared in a microwave plasma enhanced chemical vapor deposition reactor from structurally different organosilicon precursors [i.e., hexamethyldisiloxane (HMDSO), dimethylsilane (DMS), and tetramethylsilane (TMS)]. The films were deposited at room temperature by using different oxygen/argon ratios in the plasma gas. By changing the type of precursor and the relative concentration of oxygen in the plasma, thin films with different compositions (i.e., O/C ratio) and properties are obtained. In general, raising the oxygen concentration in the plasma produces the progressive removal of the organic moieties from the films whose composition and structure then approach those of silicon dioxide. The deposition rate was highly dependent on the type of precursor, following the order HMDSO>>DMS>TMS. The polarizabilities, optical band gaps, and surface free energy of the films also depended on the thin film composition and structure. It is proposed that the Si-O bonds existing in HMDSO is the main factor controlling the distinct reactivity of this precursor and is also responsible for the different compositions and properties of the SiO x C y H z thin films prepared with very low or no oxygen in the plasma gas

  11. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    Science.gov (United States)

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  12. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  13. Examining the Effects of Oxygen Plasma on Physical and Dyeing Properties of Some Cellulose Fibers

    Directory of Open Access Journals (Sweden)

    Dilara KOCAK

    2016-09-01

    Full Text Available Cotton, Agava Americana and artichoke fibers were treated with plasma with oxygen gas in Diener Vacuum Plasma for 1, 3 and 5 minutes, with 40 kHz low frequency and at 0.3 mbar pressure. After the plasma treatment, fibers' weight loss %, tensile strength, elongation, fiber diameter, surface topography (SEM, colour changes, and light and washing fastness properties were investigated. A positive increase was observed for mechanical and fastness properties after 5 min plasma treatment. The effects of plasma treatments on dyeing properties of fibers were studied. Dyeing properties of plasma treated fibers were improved after 3 min. treatment. SEM results were also proved the improved physical properties and colour changes due to the rough surface structure.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9368

  14. Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Seob [Department of Photoelectronics Information, Chosun College of Science and Technology, Gwangju (Korea, Republic of); Kim, Eungkwon [Digital Broadcasting Examination, Korean Intellectual Property Office, Daejeon, Suwon 440-746 (Korea, Republic of); Hong, Byungyou [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong, 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Jaehyoeng, E-mail: jaehyeong@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong, 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2013-12-15

    Graphical abstract: The effect of O{sub 2} plasma treatment on the surface and the work function of ITO films. - Highlights: • ITO films were prepared on the glass substrate by RF magnetron sputtering method. • Effects of O{sub 2} plasma treatment on the properties of ITO films were investigated. • The work function of ITO film was changed from 4.67 to 5.66 eV by plasma treatment. - Abstract: The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O{sub 2} plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.

  15. Sterilization Effect of Wet Oxygen Plasma in the Bubbling Method.

    Science.gov (United States)

    Tamazawa, Kaoru; Shintani, Hideharu; Tamazawa, Yoshinori; Shimauchi, Hidetoshi

    2015-01-01

    A new low-temperature sterilization method to replace the ethylene oxide gas sterilization is needed. Strong bactericidal effects of OH and O2H radicals are well known. The purpose of this study was to evaluate the sterilization effect of wet oxygen ("O2+H2O") plasma in the bubbling method, confirming the effect of humidity. Sterility assurance was confirmed by using a biological indicator (Geobacillus stearothermophilus ATCC7953, Namsa, USA). One hundred and eight samples (10(5) spores/carrier) were divided into three groups of 36 in each for treatment with a different type of gas (O2, O2+H2O, Air+H2O). Plasma processing was conducted using a plasma ashing apparatus (13.56 MHz, PACK-3(®), Y. A. C., Japan) under various gas pressures (13, 25, 50 Pa) and gas flows (50, 100, 200 sccm). Fixed plasma treatment parameters were power at 150 W, temperature of 60 ℃, treatment time of 10 min. The samples after treatment were incubated in trypticase soy broth at 58 ℃ for 72 h. The negative culture rate in the "O2+H2O" group was significantly (Mantel-Haenszel procedure, pbubbling method which is the method of introducing vapor into the chamber. The bubbling method seems able to generate OH and O2H radicals in a stable way.

  16. Patterned Well-Aligned ZnO Nanorods Assisted with Polystyrene Monolayer by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Hyun Ji Choi

    2016-08-01

    Full Text Available Zinc oxide is known as a promising material for sensing devices due to its piezoelectric properties. In particular, the alignment of ZnO nanostructures into ordered nanoarrays is expected to improve the device sensitivity due to the large surface area which can be utilized to capture significant quantities of gas particles. However, ZnO nanorods are difficult to grow on the quartz substrate with well-ordered shape. So, we investigated nanostructures by adjusting the interval distance of the arranged ZnO nanorods using polystyrene (PS spheres of various sizes (800 nm, 1300 nm and 1600 nm. In addition, oxygen plasma treatment was used to specify the nucleation site of round, patterned ZnO nanorod growth. Therefore, ZnO nanorods were grown on a quartz substrate with a patterned polystyrene monolayer by the hydrothermal method after oxygen plasma treatment. The obtained ZnO nanostructures were characterized by X-ray diffraction (XRD and field-emission scanning electron microscope (FE-SEM.

  17. Effect of low temperature oxygen plasma treatment on microstructure and adhesion force of graphene

    Science.gov (United States)

    Zhu, Jun; Deng, Heijun; Xue, Wei; Wang, Quan

    2018-01-01

    Graphene has attracted strong attention due to its unique mechanical, electrical, thermal and magnetic properties. In this work, we investigate the effect of low temperature oxygen plasma treatment on microstructure and adhesion force of single-layer graphene (SLG). Low temperature oxygen plasma is used to treat SLG grown by chemical vapor deposition through varying the exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy are utilized to identify changes before and after treatment. Raman spectra of treated graphene reveal that peak intensity of the characteristic D and D' peaks increase. Meanwhile, degradation of the G and 2D peaks in X-ray photoelectron spectroscopy indicates that abundant Csbnd OH and Cdbnd O functional groups are introduced into graphene after treatment. AFM investigation shows that surface roughness and adhesion force of treated graphene increase significantly firstly and then slowly. Therefore, this work would offer a practical route to improve the performance of graphene-based devices.

  18. A study of the plasma electronegativity in an argon-oxygen pulsed-dc sputter magnetron

    International Nuclear Information System (INIS)

    You, S D; Dodd, R; Edwards, A; Bradley, J W

    2010-01-01

    Using Langmuir probe-assisted laser photodetachment, the temporal evolution of the O - density was determined in the bulk plasma of a unipolar pulsed-dc magnetron. The source was operated in reactive mode, at a fixed nominal on-time power of 100 W, sputtering Ti in argon-oxygen atmospheres at 1.3 Pa pressure, but over a variation of duty cycles from 5% to 50% and oxygen partial pressures of 10% and 50% of the total pressure. In the plasma on-time, for all duty cycles the negative ion density (n - ) rises marginally reaching values typically less than 2 x 10 15 m -3 with negative ion-to-electron density ratios, α - falls by about 20-30% as fast O - species created at the cathode exit the system. This is followed by a rapid rise in n - to values at least 2 or 3 times that in the on-time. The rate of rise of n - and its maximum value both increase with decreasing duty cycle. In the off-time, the electron density falls rapidly (initial decay rates of several tens of μs), and therefore the afterglow plasma becomes highly electronegative, with α reaching 4.6 and 14.4 for 10% and 50% oxygen partial pressure, respectively. The rapid rise in n - in the afterglow (in which the electron temperature falls from about 5 to 0.5 eV) is attributed to the dissociative attachment of highly excited oxygen metastables, which themselves are created in the pulse on-time. At the lowest duty of 5%, the long-term O - decay times are several hundred μs. Langmuir probe characteristics show the clear signature that negative ions dominate over the electrons in the off-time. From the ion and electron saturation current ratios, α has been estimated in some chosen cases and found to agree within a factor between 2 and 10 with those obtained more directly from the photodetachment method.

  19. Dielectronic recombination of carbon, oxygen and iron in low-density and high-temperature plasmas

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Kasai, Satoshi; Tazima, Teruhiko

    1977-03-01

    The coefficient of dielectronic recombination, which is one of the important atomic processes in tokamak plasmas, is evaluated by a semiclassical method neglecting the effects of the density and the radiation fields. Those of carbon, oxygen and iron, which play important roles in such as plasma resistivity and energy losses, are calculated numerically in the range of the electron temperature of 10 eV - 10 keV. Compared with the results obtained from Burgess equation, which is most useful for the ions with effective nuclear charge z 25 such as molybdenum. (auth.)

  20. A radio-frequency nonequilibrium atmospheric pressure plasma operating with argon and oxygen

    International Nuclear Information System (INIS)

    Moravej, M.; Yang, X.; Hicks, R.F.; Penelon, J.; Babayan, S.E.

    2006-01-01

    A capacitively coupled, atmospheric pressure plasma has been developed that produces a high concentration of reactive species at a gas temperature below 300 deg. C. The concentration of ground-state oxygen atoms produced by the discharge was measured by NO titration, and found to equal 1.2 vol %, or 1.2±0.4x10 17 cm -3 , using 6.0 vol % O 2 in argon at 150 W/cm 3 . The ozone concentration determined at the same conditions was 4.3±0.5x10 14 cm -3 . A model of the gas phase reactions was developed and yielded O atom and O 3 concentrations in agreement with experiment. This plasma source etched Kapton registered at 5.0 μm/s at 280 deg. C and an electrode-to-sample spacing of 1.5 cm. This fast etch rate is attributed to the high O atom flux generated by the plasma source

  1. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hee-Sang [Department of Dental Materials, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452 (Korea, Republic of); Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Sunchon 57922 (Korea, Republic of); Kook, Min-Suk [Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186 (Korea, Republic of); Kim, Byung-Hoon, E-mail: kim5055@chosun.ac.kr [Department of Dental Materials, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452 (Korea, Republic of)

    2016-12-01

    Highlights: • PLGA and PLGA/n-HAp/β-TCP scaffolds were successfully fabricated by 3D printing. • Oxygen plasma etching increases the wettability and surface roughness. • Bioceramics and oxygen plasma etching and could be used to improve the cell affinity. - Abstract: Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on

  2. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration.

    Science.gov (United States)

    Edgington, Robert; Spillane, Katelyn M; Papageorgiou, George; Wray, William; Ishiwata, Hitoshi; Labarca, Mariana; Leal-Ortiz, Sergio; Reid, Gordon; Webb, Martin; Foord, John; Melosh, Nicholas; Schaefer, Andreas T

    2018-01-15

    Nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functional silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.

  3. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes.

    Science.gov (United States)

    Levi-Polyachenko, Nicole; Young, Christie; MacNeill, Christopher; Braden, Amy; Argenta, Louis; Reid, Sean

    2014-11-01

    The aim of this study was to demonstrate that multi-wall carbon nanotubes can be functionalised with antibodies to group A streptoccocus (GAS) for targeted photothermal ablation of planktonic and biofilm residing bacteria. Antibodies for GAS were covalently attached to carboxylated multi-wall carbon nanotubes and incubated with either planktonic or biofilm GAS. Bacterium was then exposed to 1.3 W/cm(2) of 800 nm light for 10-120 s, and then serially diluted onto agar plates from which the number of colony forming units was determined. Photothermal ablation of GAS on the surface of full thickness ex vivo porcine skin and histological sectioning were done to examine damage in adjacent tissue. Approximately 14% of the GAS antibody-functionalised nanotubes attached to the bacterium, and this amount was found to be capable of inducing photothermal ablation of GAS upon exposure to 1.3 W/cm(2) of 800 nm light. Cell viability was not decreased upon exposure to nanotubes or infrared light alone. Compared to carboxylated multi-wall carbon nanotubes, antibody-labelled nanotubes enhanced killing in both planktonic and biofilm GAS in conjunction with infrared light. Analysis of GAS photothermally ablated in direct contact with ex vivo porcine skin shows that heat sufficient for killing GAS remains localised and does not cause collateral damage in tissue adjacent to the treated area. The results of this study support the premise that carbon nanotubes may be effectively utilised as highly localised photothermal agents with the potential for translation into the clinical treatment of bacterial infections of soft tissue.

  4. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  5. Molecular Dynamics Insights into Water-Parylene C Interface: Relevance of Oxygen Plasma Treatment for Biocompatibility

    Czech Academy of Sciences Publication Activity Database

    Golda-Cepa, M.; Kulig, W.; Cwiklik, Lukasz; Kotarba, A.

    2017-01-01

    Roč. 9, č. 19 (2017), s. 16685-16693 ISSN 1944-8244 Institutional support: RVO:61388963 Keywords : molecular dynamics * contact angle * surface free energy * parylene C * biomaterials oxygen plasma Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 7.504, year: 2016

  6. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  7. Characterization of plasma-functionalized surfaces by means of Tof-SIMS and multivariate analysis methods; Charakterisierung von plasmafunktionalisierten Oberflaechen mittels ToF-SIMS und multivariaten Analysemethoden

    Energy Technology Data Exchange (ETDEWEB)

    Gradowski, M. von

    2006-11-13

    The basic principles and opportunities of surface characterisation of selected functionalised samples via ToF-SIMS (time-of-flight secondary ion mass spectrometry) are presented. One major focus of the project was the investigation of non-cohesive surface layers which could exhibit either domain like structure or well defined single functionalised surfaces. By means of ToF-SIMS with the ability of displaying the lateral distribution of surface fragments information on the structure and surface density of specific fragments on the investigated film can be obtained. The combination of the ToF-SIMS experiment with a multivariate algorithm (partial least squares, PLS) provides an interesting opportunity to quantitatively determine surface properties such as elemental and molecular concentrations. Due to the fact that the ToF-SIMS spectrum consist of a huge amount of intensities, a single one-dimensional correlation (e.g. CF{sub 3} fragment intensity <-{yields} CF{sub 3} concentration) would disregard the rest of the spectral information. The large number of fragment intensities in the spectrum is representative for the chemical structure of the analysed surface. Therefore, it is crucial to consider this total information for the quantification of surface properties (element concentration, water contact angle etc.). Furthermore, this method allows the determination of surface properties with a lateral resolution of a few microns only. This can be used for chemically structured surfaces which for many applications show micrometer sized surface structures. Finally, a successful application of the multivariate models is presented for samples from the biological and medical area. Human fibroblasts and pancreas cells have been cultivated on plasma functionalised surfaces in order to study the influence of the functionalisation on the cell growth. The samples have been covered by TEM grids with meshes in the {mu}m range before the plasma treatment to generate structured

  8. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  9. Modelling of an intermediate pressure microwave oxygen discharge reactor: from stationary two-dimensional to time-dependent global (volume-averaged) plasma models

    International Nuclear Information System (INIS)

    Kemaneci, Efe; Graef, Wouter; Rahimi, Sara; Van Dijk, Jan; Kroesen, Gerrit; Carbone, Emile; Jimenez-Diaz, Manuel

    2015-01-01

    A microwave-induced oxygen plasma is simulated using both stationary and time-resolved modelling strategies. The stationary model is spatially resolved and it is self-consistently coupled to the microwaves (Jimenez-Diaz et al 2012 J. Phys. D: Appl. Phys. 45 335204), whereas the time-resolved description is based on a global (volume-averaged) model (Kemaneci et al 2014 Plasma Sources Sci. Technol. 23 045002). We observe agreement of the global model data with several published measurements of microwave-induced oxygen plasmas in both continuous and modulated power inputs. Properties of the microwave plasma reactor are investigated and corresponding simulation data based on two distinct models shows agreement on the common parameters. The role of the square wave modulated power input is also investigated within the time-resolved description. (paper)

  10. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  11. Oxygen plasma treatment and deposition of CNx on a fluorinated polymer matrix composite for improved erosion resistance

    International Nuclear Information System (INIS)

    Muratore, C.; Korenyi-Both, A.; Bultman, J. E.; Waite, A. R.; Jones, J. G.; Storage, T. M.; Voevodin, A. A.

    2007-01-01

    The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN x coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN x was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relative to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN x coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN x reduced the erosion rate by an order of magnitude for normally incident particles

  12. Radiation losses from oxygen and iron impurities in a high temperature plasma

    International Nuclear Information System (INIS)

    Breton, C.; Michelis, C. de; Mattioli, M.

    1976-06-01

    Radiation and ionization losses due to impurities present in a high temperature plasma have been calculated for a light element (oxygen), which is completely stripped in the core of existing Tokamak discharges, and a heavy one (iron), which is only partially stripped. Two extreme cases have been treated: in the first one coronal equilibrium is reached; the radiated power is then equal to the product of the electron density, the impurity density, and a function of the electron temperature; in the second one impurities recycle with a constant radial velocity v 0 in a background plasma; radiation and ionization losses are proportional to the impurity flux and are a decreasing function of the diffusion velocity. The results presented can be used to evaluate losses in a practical case [fr

  13. Surface activation of cyclo olefin polymer by oxygen plasma discharge: a molecular dynamics study

    International Nuclear Information System (INIS)

    Soberon, Felipe

    2014-01-01

    Thermoplastic substrates made of cyclo olefin polymer (COP) are treated with oxygen plasma discharges to introduce polar groups at the surface. This is the first step in the process of surface functionalization of COP substrates used in biosensor devices. A molecular dynamics model of basic COP structure is implemented using the second-generation reactive empirical bond order (REBO) potentials for hydrocarbon–oxygen interactions. The model includes covalent bond and Van der Waals interactions. The bombardment of a COP surface with mono-energetic atomic oxygen ions, energy in the range 1-35 eV, is simulated and reported here. The dynamics of the substrate modification reveals that the substrate top layer is de-hydrogenated and subsequently builds up an oxygen–carbon matrix layer, ∼10 Å thick. Analysis of the modified substrates indicates that surface yield is predominantly peroxide groups. (paper)

  14. Mechanisms of polymer degradation using an oxygen plasma generator

    Science.gov (United States)

    Colony, Joe A.; Sanford, Edward L.

    1987-01-01

    An RF oxygen plasma generator was used to produce polymer degradation which appears to be similar to that which has been observed in low Earth orbit. Mechanisms of this type of degradation were studied by collecting the reaction products in a cryogenic trap and identifying the molecular species using infrared, mass spectral, and X-ray diffraction techniques. No structurally dependent species were found from Kapton, Teflon, or Saran polymers. However, very reactive free radical entities are produced during the polymer degradation, as well as carbon dioxide and water. Reactions of the free radicals with the glass reaction vessel, with copper metal in the cold trap, and with a triphenyl phosphate scavenger in the cold trap, demonstrated the reactivity of the primary products.

  15. Forming-free performance of a-SiN x :H-based resistive switching memory obtained by oxygen plasma treatment

    Science.gov (United States)

    Zhang, Xinxin; Ma, Zhongyuan; Zhang, Hui; Liu, Jian; Yang, Huafeng; Sun, Yang; Tan, Dinwen; Li, Wei; Xu, Ling; Chen, Kuiji; Feng, Duan

    2018-06-01

    An a-SiN x -based resistive random access memory (RRAM) device with a forming-free characteristic has significant potentials for the industrialization of the next-generation memories. We demonstrate that a forming-free a-SiN x O y RRAM device can be achieved by an oxygen plasma treatment of ultra-thin a-SiN x :H films. Electron spin resonance spectroscopy reveals that Si dangling bonds with a high density (1019 cm‑3) are distributed in the initial state, which exist in the forms of Si2N≡Si·, SiO2≡Si·, O3≡Si·, and N3≡Si·. X-ray photoelectron spectroscopy and temperature-dependent current analyses reveal that the silicon dangling bonds induced by the oxygen plasma treatment and external electric field contribute to the low resistance state (LRS). For the high resistance state (HRS), the rupture of the silicon dangling bond pathway is attributed to the partial passivation of Si dangling bonds by H+ and O2‑. Both LRS and HRS transmissions obey the hopping conduction model. The proposed oxygen plasma treatment, introduced to generate a high density of Si dangling bonds in the SiN x O y :H films, provides a new approach to forming-free RRAM devices.

  16. Aquaregia and Oxygen Plasma Treatments on Fluorinated Tin Oxide for Assembly of PLEDs Devices Using OC1C10-PPV as Emissive Polymer

    Directory of Open Access Journals (Sweden)

    Emerson Roberto SANTOS

    2009-02-01

    Full Text Available In this work were carried out treatments with oxygen plasma and aquaregia on fluorinated tin oxide (FTO films varying the treatment times. After treatments, the samples were analyzed by techniques measurements: sheet resistance, thickness, Hall effect, transmittance and superficial roughness. Devices using FTO/PEDOT:PSS/OC1C10-PPV/Al were assembled. In this experiment some variations were observed by sheet resistance and thickness and Hall effect measurements indicated most elevated carriers concentration and resistivity for aquaregia than that oxygen plasma. The roughness was elevated for the first minutes with treatment by aquaregia too. In the I-V curves the aquaregia devices presented the lowest threshold voltage for 30 minutes and devices treated by oxygen plasma presented a behavior most resistivity different of typical curves for PLEDs devices.

  17. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  18. Thermophysical and Electrochemical Properties of Ethereal Functionalised Cyclic Alkylammonium-based Ionic Liquids as Potential Electrolytes for Electrochemical Applications.

    Science.gov (United States)

    Neale, Alex R; Murphy, Sinead; Goodrich, Peter; Hardacre, Christopher; Jacquemin, Johan

    2017-08-05

    A series of hydrophobic room temperature ionic liquids (ILs) based on ethereal functionalised pyrrolidinium, piperidinium and azepanium cations bearing the bis[(trifluoromethyl)sulfonyl]imide, [TFSI] - , anion were synthesized and characterized. Their physicochemical properties such as density, viscosity and electrolytic conductivity, and thermal properties including phase transition behaviour and decomposition temperature have been measured. All of the ILs showed low melting point, low viscosity and good conductivity and the latter properties have been discussed in terms of the IL fragility, an important electrolyte feature of the transport properties of glass-forming ILs. Furthermore, the studied [TFSI] - -based ILs generally exhibit good electrochemical stabilities and, by coupling electrochemical experiments and DFT calculations, the effect of ether functionalisation at the IL cation on the electrochemical stability of the IL is discussed. Preliminary investigations into the Li-redox chemistry at a Cu working electrode are also reported as a function of ether-functionality within the pyrrolidinium-based IL family. Overall, the results show that these ionic liquids are suitable for electrochemical devices such as battery systems, fuel cells or supercapacitors. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics

    Science.gov (United States)

    Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi

    2017-10-01

    Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.

  20. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.; Hedhili, Mohamed N.; Cha, Dong Kyu; Alshareef, Husam N.

    2012-01-01

    decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher

  1. Plasma Methane Pyrolysis for Spacecraft Oxygen Loop Closure

    Science.gov (United States)

    Greenwood, Z. W.

    2018-01-01

    Life support is a critical function of any crewed space vehicle or habitat. Human life support systems on the International Space Station (ISS) include a number of atmosphere revitalization (AR) technologies to provide breathable air and a comfortable living environment to the crew. The Trace Contaminant Control System removes harmful volatile organic compounds and other trace contaminants from the circulating air. The Carbon Dioxide Removal Assembly (CDRA) removes metabolic carbon dioxide (CO2) and returns air to the cabin. Humidity is kept at comfortable levels by a number of condensing heat exchangers. The Oxygen Generation Assembly (OGA) electrolyzes water to produce oxygen for the crew and hydrogen (H2) as a byproduct. A Sabatier reaction-based CO2 Reduction Assembly (CRA) was launched to the ISS in 2009 and became fully operational in June 2011.The CRA interfaces with both the OGA and CDRA. Carbon dioxide from the CDRA is compressed and stored in tanks until hydrogen is available from OGA water electrolysis. When the OGA is operational and there is CO2 available, the CRA is activated and produces methane and water via the Sabatier reaction shown in Equation 1... One approach to achieve these higher recovery rates builds upon the ISS AR architecture and includes adding a methane post-processor to recover H2 from CRA methane. NASA has been developing the Plasma Pyrolysis Assembly (PPA) to fill the role of a methane post-processor.

  2. Selective Thallium (I Ion Sensor Based on Functionalised ZnO Nanorods

    Directory of Open Access Journals (Sweden)

    Z. H. Ibupoto

    2012-01-01

    Full Text Available Well controlled in length and highly aligned ZnO nanorods were grown on the gold-coated glass substrate by hydrothermal growth method. ZnO nanorods were functionalised with selective thallium (I ion ionophore dibenzyldiaza-18-crown-6 (DBzDA18C6. The thallium ion sensor showed wide linear potentiometric response to thallium (I ion concentrations ( M to  M with high sensitivity of 36.87 ± 1.49 mV/decade. Moreover, thallium (I ion demonstrated fast response time of less than 5 s, high selectivity, reproducibility, storage stability, and negligible response to common interferents. The proposed thallium (I ion-sensor electrode was also used as an indicator electrode in the potentiometric titration, and it has shown good stoichiometric response for the determination of thallium (I ion.

  3. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  4. Cyborg cells: functionalisation of living cells with polymers and nanomaterials.

    Science.gov (United States)

    Fakhrullin, Rawil F; Zamaleeva, Alsu I; Minullina, Renata T; Konnova, Svetlana A; Paunov, Vesselin N

    2012-06-07

    Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.

  5. STUDENT AWARD FINALIST: Oxygen Pathways in Streamer Discharge for Transient Plasma Ignition

    Science.gov (United States)

    Pendleton, S. J.; Bowman, S.; Singleton, D.; Watrous, J.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2011-10-01

    The use of streamers for the ignition of fuels, also known as transient plasma ignition (TPI), has been shown in a variety of engines to improve combustion through decreased ignition delay, increased lean burn capability and increased energy release relative to conventional spark ignition. The mechanisms behind these improvements, however, remain poorly understood. Temperature measurements by optical emission spectroscopy demonstrate that ignition by TPI is a nonthermal process, and thus is almost entirely dependent on the production and presence of electron impact-created active species in the discharge afterglow. Of particular interest are active oxygen species due to their relatively long lifetimes at high pressures and the pivotal role they play in combustion reactions. In order to elucidate the oxygen pathways, here we report the investigation of the temporal evolution of the populations of atomic oxygen and ozone by use of two-photon absorption laser induced fluorescence (TALIF) and UV absorption, respectively. Experimental results are presented and compared to kinetic modeling of the streamers. Future experiments are proposed to better understand the physics behind TPI. Supported by NSF, AFOSR, NumerEx-ONR, AFRL-WPAFB.

  6. Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material

    Directory of Open Access Journals (Sweden)

    Kata Hajdu

    2017-12-01

    Full Text Available Photosynthetic reaction center proteins (RCs are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs. Carboxyl—and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques. Light-induced singlet oxygen production was measured in the prepared photoactive biocomposites in water-based suspension by histidine mediated chemical trapping. Carbon nanotubes were applied under different conditions in order to understand their role in the equilibration of singlet oxygen concentration in the suspension. CNTs acted as effective quenchers of 1O2 either by physical (resonance energy transfer or by chemical (oxidation reaction and their efficiency showed dependence on the diffusion distance of 1O2.

  7. Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG Polymer Scaffolds Using Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Rok Zaplotnik

    2016-04-01

    Full Text Available Polyurethane/urea copolymers based on poly(ethylene glycol (PURPEG were exposed to weakly ionized, highly reactive low-pressure oxygen plasma to improve their sorption kinetics. The plasma was sustained with an inductively coupled radiofrequency generator operating at various power levels in either E-mode (up to the forward power of 300 W or H-mode (above 500 W. The treatments that used H-mode caused nearly instant thermal degradation of the polymer samples. The density of the charged particles in E-mode was on the order of 1016 m−3, which prevented material destruction upon plasma treatment, but the density of neutral O-atoms in the ground state was on the order of 1021 m−3. The evolution of plasma characteristics during sample treatment in E-mode was determined by optical emission spectroscopy; surface modifications were determined by water adsorption kinetics and X-ray photoelectron spectroscopy; and etching intensity was determined by residual gas analysis. The results showed moderate surface functionalization with hydroxyl and carboxyl/ester groups, weak etching at a rate of several nm/s, rather slow activation down to a water contact angle of 30° and an ability to rapidly absorb water.

  8. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Velasco Maldonado, Paola S. [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Hernández-Montoya, Virginia, E-mail: virginia.hernandez@yahoo.com.mx [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Concheso, A.; Montes-Morán, Miguel A. [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, E-33080, Oviedo (Spain)

    2016-11-15

    Highlights: • The formation of cerussite and hydrocerussite was observed on the carbon surface. • Occurrence of CaCO{sub 3} on the carbons surface plays a crucial role in the formation. • The carbons were prepared by carbonization and oxidation with cold oxygen plasma. • Oxidation with cold oxygen plasma increases the formation of these compounds. - Abstract: A new procedure of elimination of Pb{sup 2+} from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N{sub 2} at −196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb{sup 2+} was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb{sup 2+} removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO{sub 3} on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb{sup 2+}. Accordingly, retention capacities as high as 63 mg of Pb{sup 2+} per gram of adsorbent have been attained.

  9. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    International Nuclear Information System (INIS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-01-01

    Highlights: • The formation of cerussite and hydrocerussite was observed on the carbon surface. • Occurrence of CaCO_3 on the carbons surface plays a crucial role in the formation. • The carbons were prepared by carbonization and oxidation with cold oxygen plasma. • Oxidation with cold oxygen plasma increases the formation of these compounds. - Abstract: A new procedure of elimination of Pb"2"+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N_2 at −196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb"2"+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb"2"+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO_3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb"2"+. Accordingly, retention capacities as high as 63 mg of Pb"2"+ per gram of adsorbent have been attained.

  10. Specific Effects of Oxygen Molecule and Plasma on Thin-Film Growth of Y-Ba-Cu-O and Bi-Sr-(Ca)-Cu-O Systems

    Science.gov (United States)

    Endo, Tamio; Horie, Munehiro; Hirate, Naoki; Itoh, Katsutoshi; Yamada, Satoshi; Tada, Masaki; Itoh, Ken-ichi; Sugiyama, Morihiro; Sano, Shinji; Watabe, Kinji

    1998-07-01

    Thin films of a-oriented YBa2Cu3Ox (YBCO), Ca-doped c-oriented Bi2(Sr,Ca)2CuOx and nondoped c-oriented Bi2Sr2CuOx (Bi2201) were prepared at low temperatures by ion beam sputtering with supply of oxygen molecules or plasma. The plasma enhances crystal growth of the a-YBCO and Ca-doped Bi2201 phases. This can be interpreted in terms of their higher surface energies. The growth and quality of nondoped Bi2201 are improved with the supply of oxygen molecules. This particular result could be interpreted by the collision process between the oxygen molecules and the sputtered particles.

  11. Improvement in the Sensitivity of PbO Doped Tin Oxide Thick Film Gas Sensor by RF and Microwave Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    J. K. SRIVASTAVA

    2010-07-01

    Full Text Available In the present work efforts have been made to analyze the effect of oxygen plasma and PbO doping on the sensitivity of SnO2-based thick film gas sensor for methanol, propanol and acetone. The effect of substrate temperature on the response of dual frequency (RF and microwave plasma treated thick film sensor array has also been studied. To achieve this, three sensor arrays (each with four tin oxide sensors doped with different (1 %, 2 %, 3 % and 4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for various durations (5 min, 10 min. and 15 min.. The plasma treated sensors were found to possess appreciably high sensitivity at room temperature in comparison to untreated sensor. The sensitivity showed the increasing trend with plasma exposure time and 15 minutes exposure time was found to be most suitable as the sensitivity of the plasma treated sensors for this duration were high towards all the chosen vapors with maximum (97 % value for propanol. The sensitivity of the sensors were found to be increasing gradually as PbO concentration was varied from 1- 4%.

  12. Investigation of the relevant kinetic processes in the initial stage of a double-arcing instability in oxygen plasmas

    Science.gov (United States)

    Mancinelli, B.; Prevosto, L.; Chamorro, J. C.; Minotti, F. O.; Kelly, H.

    2018-05-01

    A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ˜107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ˜109 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B3Σu-) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.

  13. Benefits of oxygen and nitrogen plasma treatment in Vero cell affinity to poly(lactide-co-glycolide acid

    Directory of Open Access Journals (Sweden)

    Andrea Rodrigues Esposito

    2013-01-01

    Full Text Available Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. it is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. in this study, poly(lactide-co-glycolide, plga, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on vero cells culture. the plga membranes, which were characterized by sem and contact angle, showed increased surface rugosity and narrower contact angles. cell adhesion, cytotoxicity assay, sem and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction. Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. It is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. Plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. In this study, poly(lactide-co-glycolide, PLGA, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on Vero cells culture. The PLGA membranes, which were characterized by SEM and contact angle, showed increased surface rugosity and narrower contact angles. Cell adhesion, cytotoxicity assay, SEM and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction.

  14. Molecular Dynamics Insights into Water-Parylene C Interface: Relevance of Oxygen Plasma Treatment for Biocompatibility

    Czech Academy of Sciences Publication Activity Database

    Golda-Cepa, M.; Kulig, W.; Cwiklik, Lukasz; Kotarba, A.

    2017-01-01

    Roč. 9, č. 19 (2017), s. 16685-16693 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA17-06792S Institutional support: RVO:61388955 Keywords : molecular dynamics * contact angle * surface free energy * parylene C * biomaterials oxygen plasma Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 7.504, year: 2016

  15. A study on rare gas - oxygen reactions excited by low temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiroaki; Kiuchi, Kiyoshi; Saburi, Tei; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The concentration of radioactive rare gases like Xe and Kr in nuclear fuels on PWRs and BWRs increases promptly with dependent on the burn-up ratio. These gases are affect to the long performance of nuclear fuel elements due to accumulate in gap between cladding and fuel, because it has the low thermal conductivity. It is also required to develop the practical means to correct these gases including in the off-gas in nuclear plants for inhibiting the environmental pollution. On the present study, we carried out the fundamental research to evaluate the chemical reactivity of these gases under heavy irradiation. We proposed the new excitation mechanism of these gases by expecting the formation of low energy plasma under irradiation. The chemical reactivity on rare gas-oxygen system was examined by using the low energy plasma driven reaction apparatus installed the RF excitation source. The density of electrons and lower pressure limit for the RF excitation was depended on the ionization energy of each gas. It is clarified that Xe is easy to form gaseous oxide due to the high excitation efficiency in low energy plasma. (author)

  16. Specific interactions of functionalised gold surfaces with ammonium perchlorate or starch; towards a chemical cartography of their mixture

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, D. [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Mercader, C.; Quere, S.; Hairault, L. [CEA, DAM, Le Ripault, F-37260 Monts (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Methivier, C. [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France); Pradier, C.M., E-mail: claire-Marie.pradier@upmc.fr [CNRS, UMR CNRS 7609, Laboratoire de Reactivite de Surface, Paris (France); Universite Pierre et Marie Curie - UPMC Paris VI, Laboratoire de Reactivite de Surface, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratoire de recherche conventionne CEA/UPMC n Degree-Sign 1, Paris (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Measurements of interactions by Quartz Crystal Microbalance. Black-Right-Pointing-Pointer AFM and CFM measurements, tip functionalisation. Black-Right-Pointing-Pointer Surface nano-imaging. - Abstract: By functionalising gold samples, planar wafers or AFM tips, with an acid- or an amino acid-terminated thiols, mercaptoundecanoic acid (MUA) and homocystein (H-Cyst) respectively, we were able to differentiate the interactions with ammonium perchlorate (AP) and starch (S), two components of a nanocomposition mixture. To do so, the interaction between gold functionalized surfaces and the two targeted compounds have been characterized and quantified by several complementary techniques. Polarisation modulation-infrared spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS), providing chemical analyses of gold surfaces after contacting S or AP, proved that both compounds were retained on MUA or H-Cyst-modified surfaces, but to various extents. Quartz crystal microbalance on-line measurements enabled to monitor the kinetics of interaction and showed distinct differences in the behaviour of MUA and H-Cyst-surfaces towards the two compounds. Having observed that only H-Cyst-modified surfaces enables to get a contrast on the chemical force microscopy (CFM) images, this new result could be well explained by examining the data obtained by combining the above-mentioned surface characterisation techniques.

  17. Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension.

    Science.gov (United States)

    Donovan, K J; Scott, K

    2013-06-28

    Single walled carbon nanotubes, SWCNTs, are used as a model cylinder of nanoscopic dimensions for testing rheological theories of how addition of cylindrical particles affects the viscosity of a suspension of such particles. Using the rate of growth of the accompanying induced linear dichroism following application of an applied electric field, the dynamics of carbon nanotube alignment is studied in suspensions of octadecylamine functionalised single walled carbon nanotubes, ODA-SWCNTs, in 1,2 dichloroethane. From such measurements the viscosity of the suspension is measured as the concentration of the suspension is varied. While working within the dilute limit the viscosity is found to increase linearly with concentration and the intrinsic viscosity of the suspension is found to be 8000. This anomalously high intrinsic viscosity is compared with the predictions of various models for a rigid cylinder and found to be incompatible with any of the current models. Some suggestions are made as to the way this ODA-SWCNT result may be eventually accommodated within other models.

  18. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Science.gov (United States)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez; Gyergyek, Tomaz; Stockel, Jan; Varju, Jozef; Panek, Radomir; Balat-Pichelin, Marianne

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni60Cr30Mo10Ni4Nb1) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr2O4 compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al2O3 crystals.

  19. Tailoring nanomaterial products through electrode material and oxygen partial pressure in a mini-arc plasma reactor

    International Nuclear Information System (INIS)

    Cui Shumao; Mattson, Eric C.; Lu, Ganhua; Hirschmugl, Carol; Gajdardziska-Josifovska, Marija; Chen Junhong

    2012-01-01

    Nanomaterials with controllable morphology and composition are synthesized by a simple one-step vapor condensation process using a mini-arc plasma source. Through systematic investigation of mini-arc reactor parameters, the roles of carrier gas, electrode material, and precursor on producing diverse nanomaterial products are revealed. Desired nanomaterial products, including tungsten oxide nanoparticles (NPs), tungsten oxide nanorods (NRs), tungsten oxide and tin oxide NP mixtures and pure tin dioxide NPs can thus be obtained by tailoring reaction conditions. The amount of oxygen in the reactor is critical to determining the final nanomaterial product. Without any precursor material present, a lower level of oxygen in the reactor favors the production of W 18 O 49 NRs with tungsten as cathode, while a high level of oxygen produces more round WO 3 NPs. With the presence of a precursor material, amorphous particles are favored with a high ratio of argon:oxygen. Oxygen is also found to affect tin oxide crystallization from its amorphous phase in the thermal annealing. Results from this study can be used for guiding gas phase nanomaterial synthesis in the future.

  20. Dual Action of Lysophosphatidate-Functionalised Titanium: Interactions with Human (MG63 Osteoblasts and Methicillin Resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Mette Elena Skindersoe

    Full Text Available Titanium (Ti is a widely used material for surgical implants; total joint replacements (TJRs, screws and plates for fixing bones and dental implants are forged from Ti. Whilst Ti integrates well into host tissue approximately 10% of TJRs will fail in the lifetime of the patient through a process known as aseptic loosening. These failures necessitate revision arthroplasties which are more complicated and costly than the initial procedure. Finding ways of enhancing early (osseointegration of TJRs is therefore highly desirable and continues to represent a research priority in current biomaterial design. One way of realising improvements in implant quality is to coat the Ti surface with small biological agents known to support human osteoblast formation and maturation at Ti surfaces. Lysophosphatidic acid (LPA and certain LPA analogues offer potential solutions as Ti coatings in reducing aseptic loosening. Herein we present evidence for the successful bio-functionalisation of Ti using LPA. This modified Ti surface heightened the maturation of human osteoblasts, as supported by increased expression of alkaline phosphatase. These functionalised surfaces also deterred the attachment and growth of Staphylococcus aureus, a bacterium often associated with implant failures through sepsis. Collectively we provide evidence for the fabrication of a dual-action Ti surface finish, a highly desirable feature towards the development of next-generation implantable devices.

  1. Solid-phase microextraction Ni-Ti fibers coated with functionalised silica particles immobilized in a sol-gel matrix.

    Science.gov (United States)

    Azenha, Manuel; Ornelas, Mariana; Fernando Silva, A

    2009-03-20

    One of the possible approaches for the development of novel solid-phase microextraction (SPME) fibers is the physical deposition of porous materials onto a support using high-temperature epoxy glue. However, a major drawback arises from decomposition of epoxy glue at temperatures below 300 degrees C and instability in some organic solvents. This limitation motivated us to explore the possibility of replacing the epoxy glue with a sol-gel film, thermally more stable and resistant to organic solvents. We found that functionalised silica particles could be successfully attached to a robust Ni-Ti wire by using a UV-curable sol-gel film. The particles were found to be more important than the sol-gel layer during the microextraction process, as shown by competitive extraction trials and by the different extraction profiles observed with differently functionalised particles. If a quality control microscopic-check aiming at the rejection of fibers exhibiting unacceptably low particle load was conducted, acceptable (6-14%) reproducibility of preparation of C(18)-silica fibers was observed, and a strong indication of the durability of the fibers was also obtained. A cyclohexyldiol-silica fiber was used, as a simple example of applicability, for the successful determination of benzaldehyde, acetophenone and dimethylphenol at trace level in spiked tap water. Recoveries: 95-109%; limits of detection: 2-7 microg/L; no competition effects within the studied range (

  2. Measurement of ozone production scaling in a helium plasma jet with oxygen admixture

    Science.gov (United States)

    Sands, Brian; Ganguly, Biswa

    2012-10-01

    Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.

  3. Longitudinal Relationship between Plasma Reactive Oxygen Metabolites and Periodontal Condition in the Maintenance Phase of Periodontal Treatment

    Directory of Open Access Journals (Sweden)

    Tatsuya Machida

    2014-01-01

    Full Text Available Aim. The present cohort study describes the longitudinal relationship between plasma oxidative status and periodontitis progression during the maintenance phase of treatment. Materials and Methods. Forty-five patients (mean age 58.8 years were monitored from 2008 to 2013. Periodontal conditions, including probing pocket depth (PPD and clinical attachment level (CAL, were recorded. Measurements of plasma reactive oxygen metabolites (ROM and biologic antioxidant potential (BAP were performed to evaluate plasma oxidative status. The patients were assigned into 2 groups as low and high plasma ROM level using a cut-off value which was median of plasma ROM level at baseline. Results. In the subjects with low plasma ROM level at baseline, changes in mean CAL were positively correlated with changes in plasma ROM levels, bleeding on probing, and plaque control record, but not with PPD. In the subjects with high plasma ROM at baseline, changes in CAL were significantly associated with only PPD at baseline. On the other hands there were no significant associations between changes in CAL and those in plasma BAP levels. Conclusions. When plasma ROM level in periodontitis patients was low, increases in plasma ROM level were associated with those in CAL during the maintenance phase of treatment.

  4. Surface modification of carbon/epoxy prepreg using oxygen plasma and its effect on the delamination resistance behavior of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Kim, M.H.; Rhee, K.Y.; Kim, H.J.; Jung, D.H.

    2007-01-01

    It was shown in previous study that the fracture toughness of carbon/epoxy laminated composites could be significantly improved by modifying the surface of the prepreg using Ar + irradiation in an oxygen environment. In this study, the surface of carbon/epoxy prepreg was modified using an oxygen plasma to improve the delamination resistance behavior of carbon/epoxy laminated composites. The variation of the contact angle on the prepreg surface was determined as a function of the modification time, in order to determine the optimal modification time. An XPS analysis was conducted to investigate the chemical changes on the surface of the prepreg caused by the plasma modification. Mode I delamination resistance curves of the composites with and without surface modification were plotted as a function of the delamination increment. The results showed that the contact angle varied from ∼64 o to ∼47 o depending on the modification time and reached a minimum for a modification time of 30 min. The XPS analysis showed that the hydrophilic carbonyl C=O group was formed by the oxygen plasma modification. The results also showed that the delamination resistance behavior was significantly improved by the plasma modification of the prepreg. This improvement was caused by the better layer-to-layer adhesion as well as increased interfacial strength between the fibers and matrix

  5. Two-and-one-half-dimensional magnetohydrodynamic simulations of the plasma sheet in the presence of oxygen ions: The plasma sheet oscillation and compressional Pc 5 waves

    International Nuclear Information System (INIS)

    Lu Li; Liu Zhenxing; Cao Jinbin

    2002-01-01

    Two-and-one-half-dimensional magnetohydrodynamic simulations of the multicomponent plasma sheet with the velocity curl term in the magnetic equation are represented. The simulation results can be summarized as follows: (1) There is an oscillation of the plasma sheet with the period on the order of 400 s (Pc 5 range); (2) the magnetic equator is a node of the magnetic field disturbance; (3) the magnetic energy integral varies antiphase with the internal energy integral; (4) disturbed waves have a propagating speed on the order of 10 km/s earthward; (5) the abundance of oxygen ions influences amplitude, period, and dissipation of the plasma sheet oscillation. It is suggested that the compressional Pc 5 waves, which are observed in the plasma sheet close to the magnetic equator, may be caused by the plasma sheet oscillation, or may be generated from the resonance of the plasma sheet oscillation with some Pc 5 perturbation waves coming from the outer magnetosphere

  6. Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu, Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys are useful orthopedic biomaterials on account of its super-elastic and shape memory properties. However, the problem associated with out-diffusion of harmful nickel ions in prolonged use inside the human body raises a critical safety concern. Titanium oxide films are deemed to be chemically inert and biocompatible and hence suitable to be the barrier layers to impede the leaching of Ni from the NiTi substrate to biological tissues and fluids. In the work reported in this paper, we compare the anti-corrosion efficacy of oxide films produced by atmospheric-pressure oxidation and oxygen plasma ion implantation. Our results show that the oxidized samples do not possess improved corrosion resistance and may even fare worse than the untreated samples. On the other hand, the plasma-implanted surfaces exhibit much improved corrosion resistance. Our work also shows that post-implantation annealing can further promote the anti-corrosion capability of the samples

  7. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    Science.gov (United States)

    Mozetic, Miran; Cvelbar, Uros

    2009-08-01

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 × 1021 m-3. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O2 molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  8. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    Directory of Open Access Journals (Sweden)

    Anna Maria Pappa

    2015-01-01

    Full Text Available Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM. Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold and its effect on cell attachment and growth was evaluated. The conditions of the surface modification were properly adjusted in order to define those conditions of the treatment that result in surfaces favorable for cell growth, while maintaining morphological integrity and mechanical behavior. Goniometry (contact angle measurements, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS measurements were used to evaluate the morphological and chemical changes induced by the plasma treatment. Moreover, depth-sensing nanoindentation was performed to study the resistance of the plasma-treated scaffolds to plastic deformation. Lastly, the cell studies indicated that all scaffolds were cytocompatible, with the plasma-treated ones expressing a more pronounced cell viability and adhesion. All the above findings demonstrate the great potential of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants.

  9. Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium-air battery electrolytes.

    Science.gov (United States)

    Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher

    2016-04-28

    This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.

  10. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Tomaz [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Stockel, Jan; Varju, Jozef; Panek, Radomir [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Ze Slovankou 3, Praha 8 (Czech Republic); Balat-Pichelin, Marianne, E-mail: marianne.balat@promes.cnrs.fr [PROMES-CNRS Laboratory, 7 rue du four solaire, 66120 Font Romeu Odeillo (France)

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni{sub 60}Cr{sub 30}Mo{sub 10}Ni{sub 4}Nb{sub 1}) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr{sub 2}O{sub 4} compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al{sub 2}O{sub 3} crystals.

  11. Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension.

    Science.gov (United States)

    Yasunari, Kenichi; Matsui, Tokuzo; Maeda, Kensaku; Nakamura, Munehiro; Watanabe, Takanori; Kiriike, Nobuo

    2006-06-01

    An association between anxiety and depression and increased blood pressure (BP) and cardiovascular disease risk has not been firmly established. We examined the hypothesis that anxiety and depression lead to increased plasma catecholamines and to production of reactive oxygen species (ROS) by mononuclear cells (MNC) in hypertensive individuals. We also studied the role of BP in this effect. In Protocol 1, a cross-sectional study was performed in 146 hypertensive patients to evaluate whether anxiety and depression affect BP and ROS formation by MNC through increasing plasma catecholamines. In Protocol 2, a 6-month randomized controlled trial using a subtherapeutic dose of the alpha(1)-adrenergic receptor antagonist doxazosin (1 mg/day) versus placebo in 86 patients with essential hypertension was performed to determine whether the increase in ROS formation by MNC was independent of BP. In Protocol 1, a significant relationship was observed between the following: trait anxiety and plasma norepinephrine (r = 0.32, P anxiety may increase plasma norepinephrine and increase ROS formation by MNC independent of BP in hypertensive patients.

  12. Plasma Deposited Thin Iron Oxide Films as Electrocatalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lukasz JOZWIAK

    2017-02-01

    Full Text Available The possibility of using plasma deposited thin films of iron oxides as electrocatalyst for oxygen reduction reaction (ORR in proton exchange membrane fuel cells (PEMFC was examined. Results of energy-dispersive X-ray spectroscopy (EDX and X-ray photoelectron spectroscopy (XPS analysis indicated that the plasma deposit consisted mainly of FeOX structures with the X parameter close to 1.5. For as deposited material iron atoms are almost exclusively in the Fe3+ oxidation state without annealing in oxygen containing atmosphere. However, the annealing procedure can be used to remove the remains of carbon deposit from surface. The single cell test (SCT was performed to determine the suitability of the produced material for ORR. Preliminary results showed that power density of 0.23 mW/cm2 could be reached in the tested cell.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14406

  13. Plasma cleaning for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  14. The first C4-functionalisation of condensed tannins. Phlobatannins as prototype of a new class of C-ring isomerised oligomers

    International Nuclear Information System (INIS)

    Steenkamp, J.A.

    1986-06-01

    This thesis comprises besides the characterisation of new oligomeric flavenoids from the core wood of the indigeneous Colophosphermum mopane, an investigation into the C 4 -functionalisation of flavan-3-ol analogues. The first peltogynoid biflavenoid and prototypes of a new series C-ring isomerised condensed tannins, namely the phlobatannins, were isolated. Besides 1 H- nmr-parameters for structure analysis, the natural phlobatannins were characterised and the unique ring isomerisation was investigated

  15. Reactive-ion etching of nylon fabric meshes using oxygen plasma for creating surface nanostructures

    International Nuclear Information System (INIS)

    Salapare, Hernando S.; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Graphical abstract: - Highlights: • Reactive-ion etching (RIE) is employed to nylon 6,6 fabrics to achieve surface texturing and improved wettability. • FTIR spectra of the treated samples exhibited decreased transmittance of amide and carboxylic acid groups due to etching. • Etching is enhanced for higher power plasma treatments and for samples with larger mesh sizes. • Decreased crystallinity was achieved after plasma treatment. • Higher power induced higher negative DC self-bias voltage on the samples that favored anisotropic and aggressive etching. - Abstract: A facile one-step oxygen plasma irradiation in reactive ion etching (RIE) configuration is employed to nylon 6,6 fabrics with different mesh sizes to achieve surface nanostructures and improved wettability for textile and filtration applications. To observe the effects of power and irradiation time on the samples, the experiments were performed using constant irradiation time in varying power and using constant power in varying irradiation times. Results showed improved wettability after the plasma treatment. The FTIR spectra of all the treated samples exhibited decreased transmittance of the amide and carboxylic acid groups due to surface etching. The changes in the surface chemistry are supported by the SEM data wherein etching and surface nanostructures were observed for the plasma-treated samples. The etching of the surfaces is enhanced for higher power plasma treatments. The thermal analysis showed that the plasma treatment resulted in decreased crystallinity. Surface chemistry showed that the effects of the plasma treatment on the samples have no significant difference for all the mesh sizes. However, surface morphology showed that the sizes of the surface cracks are the same for all the mesh sizes but samples with larger mesh sizes exhibited enhanced etching as compared to the samples with smaller mesh sizes. Higher power induced higher negative DC self-bias voltage on the samples that

  16. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    Science.gov (United States)

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  17. Application of Nanofibrillated Cellulose on BOPP/LDPE Film as Oxygen Barrier and Antimicrobial Coating Based on Cold Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Peng Lu

    2018-05-01

    Full Text Available The application of nanofibrillated cellulose (NC films in packaging industry has been hindered by its lack of heat-sealing ability. Incorporation of NC films with the biaxially oriented polypropylene/low density polyethylene (BOPP/LDPE laminates can take advantage of each material and endow the films with novel functions for food packaging applications. In this study, a coating that consists of NC and nisin was applied onto a cold plasma treated BOPP/LDPE film to fabricate a novel active packaging with an improved oxygen barrier performance and an added antimicrobial effect. The results showed that cold plasma treatment improved the surface hydrophilicity of BOPP/LDPE films for better attachment of the coatings. NC coatings significantly enhanced oxygen barrier property of the BOPP/LDPE film, with an oxygen transmission rate as low as 24.02 cc/m2·day as compared to that of the non-coated one (67.03 cc/m2·day. The addition of nisin in the coating at a concentration of 5 mg/g caused no significant change in barrier properties but imparted the film excellent antimicrobial properties, with a growth inhibition of L. monocytogenes by 94%. All films exhibit satisfying mechanical properties and transparency, and this new film has the potential to be used as antimicrobial and oxygen barrier packaging.

  18. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  19. Functionalisation of mesoporous materials for application as additives in high temperature PEM fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Monir

    2012-03-06

    The presented thesis contains six original research articles dedicated to the preparation and characterization of organic-inorganic mesoporous materials as additives for polymer electroly1e membrane fuel cells (PEMFCs). The mesoporous materials Si-MCM-41 and benzene-PMO (periodic mesoporous organosilica) were chosen for the investigations. These materials were modified with functional groups for enhanced proton conductivity and water-keeping properties. In order to improve these materials Broenstedt acidic groups were introduced in the framework of mesoporous Si-MCM-41. Therefore, some silicium atoms in the framework were substituted by aluminium using different aluminium sources. Here NaAlO{sub 2} exhibits clearly the best results because the entire aluminium incorporated within the framework is tetragonally coordinated as observed by {sup 2}7AI MAS NMR. The increase of the proton conductivities results from an improved hydrophilicity, a decreased particle size, and newly introduced Broenstedt acidity in the mesoporous Al-MCM-41. However, mesoporous Si-MCM-41 materials functionalised by co-condensation with sulphonic acid groups exhibit the best results concerning proton conductivity, compared to those prepared by grafting. Hence, these materials where characterized in more detail by SANS and by MAS NMR measurements. The first one indicated that by co-condensation the entire inner pore surface is altered by functional groups which are, thus, distributed much more homogeneously than samples functionalised by grafting. This result explains the improved proton conductivities. Additionally, {sup 2}9Si NMR spectra proved that samples prepared by co-condensation lead to a successful and almost complete incorporation of mercaptopropyltrimethoxysilan (MPMS) into the mesoporous framework. Furthermore, it was shown by {sup 1}3C MAS NMR spectroscopy that the majority of the organic functional groups remained intact after H{sub 2}0{sub 2}-oxidation. However, proton

  20. Changes in Peak Oxygen Uptake and Plasma Volume in Fit and Unfit Subjects Following Exposure to a Simulation of Microgravity

    National Research Council Canada - National Science Library

    Convertino, Victor

    1997-01-01

    To test the hypothesis that the magnitude of reduction in plasma volume and work capacity following exposure to simulated microgravity is dependent on the initial level of aerobic fitness, peak oxygen uptake (VO2peak...

  1. An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Lucy [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Bismarck, Alexander [Department of Chemical Engineering, Polymer and Composite Engineering (PaCE) Group, Imperial College London, London SW7 2AZ (United Kingdom); Lee, Adam F. [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Wilson, Darren [Smith and Nephew Research Centre, York Science Park, Heslington, York YO10 5DF (United Kingdom); Wilson, Karen [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom)]. E-mail: kw13@york.ac.uk

    2006-09-30

    The growth of highly functionalised poly allyl alcohol films by pulsed plasma polymerisation of CH{sub 2} =CHCH{sub 2}OH on biomedical grade polyurethane has been followed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Film thickness is observed to increase approximately linearly with plasma modification time, suggesting a layer-by-layer growth mode of poly allyl alcohol. Water contact angle measurements reveal the change in the surface free energy of wetting decreases linearly with plasma modification up to the monolayer point after which a constant limiting value of -24 mJ m{sup -2} was attained. Films prepared at 20 W plasma power with a duty cycle of 10 {mu}s:500 {mu}s exhibit a high degree of hydroxyl (-OH) retention with minimal fragmentation of the monomer observed. Increasing the plasma power up to 125 W is found to improve -OH retention at the expense of ether formation generating films close to the monomer stoichiometry. Duty cycle plays an important role in controlling both film composition and thickness, with longer off times increasing -OH retention, while longer on times enhance allyl alcohol film growth.

  2. Identification of deep trap energies and influences of oxygen plasma ashing on semiconductor carrier lifetime

    International Nuclear Information System (INIS)

    Koprowski, A; Humbel, O; Plappert, M; Krenn, H

    2015-01-01

    We have performed an analytical study of the effects of oxygen plasma ashing processes in semiconductor device fabrication and its impact on minority carrier lifetime in high voltage semiconductor devices. Our work includes a critical background study of life time killing mechanisms by deep traps imparted into the semiconductor by barrel plasma ashing. The Elymat technique provides the opportunity to measure lifetime and diffusion length of minority carriers and surface photo voltage (SPV) measurement was used to analyse influences of process parameters such as photoresist, time budget and positioning in the process chamber. It was shown that in microwave plasma processes the diffusion length changes severely with tempering at 200 °C, whereas RF-plasma processes show a significant process time-dependence. Batch tools in general suffer from a strong first wafer effect which could be correlated with the static electrical parameters of the semiconductor devices. The trap identities were detected by using deep level transient spectroscopy and the chemical species of the traps has been proven by inductive coupled plasma mass spectrometry. The deep-bandgap trap energies are reliable fingerprints of the chosen process parameters such as process time and of resist-influences. By microwave plasma processes intrinsic Fe and FeB-complex levels were identified and a good agreement with the SPV-measurement and electrical device characteristic was shown. RF-plasma processes impart levels attributed to Pt levels and an additional level, which could be identified as a trap level probably forming a complex of Pt and H. (paper)

  3. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    Science.gov (United States)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  4. Reactive Oxygen Species and Antioxidant in Seminal Plasma and Their Impact on Male Fertility

    Directory of Open Access Journals (Sweden)

    Mohammad Eid Hammadeh

    2009-01-01

    Full Text Available Spermatozoa generate reactive oxygen species (ROS in physiological amounts, which play arole in sperm functions during sperm capacitation, acrosome reaction (AR, and oocyte fusion. Inaddition, damaged sperm are likely to be the source of ROS. The most important ROS producedby human sperm are hydrogen peroxide, superoxide anion and hydroxyl radicals. Besides, humanseminal plasma and sperm possess an antioxidant system to scavenge ROS and prevent ROS relatedcellular damage. Under normal circumstances, there is an appropriate balance between oxidants andantioxidants. A shift in the levels of ROS towards pro-oxidants in semen can induce oxidative stress(OS on spermatozoa.Male infertility is associated with increased ROS and decreased total antioxidant activity in theseminal plasma. ROS induce nuclear DNA strand breaks. Besides, due to a high polyunsaturatedfatty acid content human sperm plasma membranes are highly sensitive to ROS induced lipidperoxidation thus decreasing membrane fluidity. This will result in increased lipid peroxidation(LPO, decreased sperm motility, viability, function and ultimately lead to infertility. The protectiveaction of antioxidants against the deleterious effect of ROS on cellular lipids, proteins and DNA hasbeen supported by several scientific studies.The purpose of the present review is to address the possible relationship between ROS andantioxidants production in seminal plasma, and the role they may play in influencing the outcomeof assisted reproductive technology (ART.

  5. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  6. Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment

    International Nuclear Information System (INIS)

    Kim, Hogyoung; Jung, Chan Yeong; Hyun Kim, Se; Cho, Yunae; Kim, Dong-Wook

    2015-01-01

    Using current–voltage (I–V) measurements, we investigated the effect of oxygen plasma treatment on the temperature-dependent electrical properties of Cu/n-type indium phosphide (InP) Schottky contacts at temperatures in the range 100–300 K. Changes in the electrical parameters were evident below 180 K for the low-plasma-power sample (100 W), which is indicative of the presence of a wider distribution of regions of low barrier height. Modified Richardson plots were used to obtain Richardson constants, which were similar to the theoretical value of 9.4 A cm −2 K −2 for n-type InP. This suggests that, for all the samples, a thermionic emission model including a spatially inhomogeneous Schottky barrier can be used to describe the charge transport phenomena at the metal/semiconductor interface. The voltage dependence of the reverse-bias current revealed that Schottky emission was dominant for the untreated and high-plasma-power (250 W) samples. For the low-plasma-power sample, Poole–Frenkel emission was dominant at low voltages, whereas Schottky emission dominated at higher voltages. Defect states and nonuniformity of the interfacial layer appear to be significant in the reverse-bias charge transport properties of the low-plasma-power sample. (paper)

  7. Oral Administration of the Japanese Traditional Medicine Keishibukuryogan-ka-yokuinin Decreases Reactive Oxygen Metabolites in Rat Plasma: Identification of Chemical Constituents Contributing to Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Yosuke Matsubara

    2017-02-01

    Full Text Available Insufficient detoxification and/or overproduction of reactive oxygen species (ROS induce cellular and tissue damage, and generated reactive oxygen metabolites become exacerbating factors of dermatitis. Keishibukuryogan-ka-yokuinin (KBGY is a traditional Japanese medicine prescribed to treat dermatitis such as acne vulgaris. Our aim was to verify the antioxidant properties of KBGY, and identify its active constituents by blood pharmacokinetic techniques. Chemical constituents were quantified in extracts of KBGY, crude components, and the plasma of rats treated with a single oral administration of KBGY. Twenty-three KBGY compounds were detected in plasma, including gallic acid, prunasin, paeoniflorin, and azelaic acid, which have been reported to be effective for inflammation. KBGY decreased level of the diacron-reactive oxygen metabolites (d-ROMs in plasma. ROS-scavenging and lipid hydroperoxide (LPO generation assays revealed that gallic acid, 3-O-methylgallic acid, (+-catechin, and lariciresinol possess strong antioxidant activities. Gallic acid was active at a similar concentration to the maximum plasma concentration, therefore, our findings indicate that gallic acid is an important active constituent contributing to the antioxidant effects of KBGY. KBGY and its active constituents may improve redox imbalances induced by oxidative stress as an optional treatment for skin diseases.

  8. Aging of oxygen and hydrogen plasma discharge treated a-C:H and ta-C coatings

    Science.gov (United States)

    Bachmann, Svenja; Schulze, Marcus; Morasch, Jan; Hesse, Sabine; Hussein, Laith; Krell, Lisa; Schnagl, Johann; Stark, Robert W.; Narayan, Suman

    2016-05-01

    Surface modification with gas plasma is an efficient and easy way to improve the surface energy and the tribological behavior of diamond-like carbon (DLC) coatings, e.g., in biomedical implants or as protective coatings. However, the long-term performance of the plasma treated DLC coatings is not fully clear. We thus studied the long-term stability of two kinds of DLC coatings, namely (a) hydrogenated amorphous carbon (a-C:H) and (b) tetrahedral amorphous carbon (ta-C) treated at different radio frequency (RF) power and time of oxygen (O2) and hydrogen (H2) plasma. Their surface properties, e.g. surface wettability, structure and tribological behavior, were studied at regular intervals for a period of two months using contact angle goniometer, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), lateral force microscopy (LFM) and ball on disc apparatus. The surface energy of both the coatings decreased upon aging. The higher the RF power and time of treatment, the higher was the hydrophobicity upon aging. XPS analysis showed that the increase in hydrophobicity could be due to adsorption of unavoidable volatile organic components in the atmosphere. The H2 plasma treated ta-C was capable of rearranging its structural bonds upon aging. The nano-friction measurements by LFM showed that the coefficient of friction of plasma treated a-C:H and ta-C decreased upon aging. The results indicate that the surface properties of plasma treated a-C:H and ta-C are not stable on long-term and are influenced by the environmental conditions.

  9. Improved photocatalytic degradation of Orange G using hybrid nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Ledwaba, Mpho; Masilela, Nkosiphile; Nyokong, Tebello; Antunes, Edith, E-mail: ebeukes@uwc.ac.za [Rhodes University, Department of Chemistry (South Africa)

    2017-05-15

    Functionalised electrospun polyamide-6 (PA-6) nanofibres incorporating gadolinium oxide nanoparticles conjugated to zinc tetracarboxyphenoxy phthalocyanine (ZnTCPPc) as the sensitizer were prepared for the photocatalytic degradation of Orange G. Fibres incorporating the phthalocyanine alone or a mixture of the nanoparticles and phthalocyanine were also generated. The singlet oxygen-generating ability of the sensitizer was shown to be maintained within the fibre mat, with the singlet oxygen quantum yields increasing upon incorporation of the magnetic nanoparticles. Consequently, the rate of the photodegradation of Orange G was observed to increase with an increase in singlet oxygen quantum yield. A reduction in the half-lives for the functionalised nanofibres was recorded in the presence of the magnetic nanoparticles, indicating an improvement in the efficiency of the degradation process.

  10. Surface preparation of gold nanostructures on glass by ultraviolet ozone and oxygen plasma for thermal atomic layer deposition of Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, Cady A., E-mail: lancaster@chem.utah.edu; Shumaker-Parry, Jennifer S., E-mail: shumaker-parry@chem.utah.edu

    2016-08-01

    Thin film deposition to create robust plasmonic nanomaterials is a growing area of research. Plasmonic nanomaterials have tunable optical properties and can be used as substrates for surface-enhanced spectroscopies. Due to the surface sensitivity and the dependence of the near-field behavior on structural details, degradation from cleaning or spectroscopic interrogation causes plasmonic nanostructures to lose distinctive localized surface plasmon resonances or exhibit diminished optical near-field enhancements over time. To decrease degradation, conformal thin films of alumina are deposited on nanostructured substrates using atomic layer deposition. While film growth on homogenous surfaces has been studied extensively, atomic layer deposition-based film growth on heterogeneous nanostructured surfaces is not well characterized. In this report, we have evaluated the impact of oxygen plasma and ultraviolet ozone pre-treatments on Au nanoparticle substrates for thin film growth by monitoring changes in plasmonic response and nanostructure morphology. We have found that ultraviolet ozone is more effective than oxygen plasma for cleaning gold nanostructured surfaces, which is in contrast to bulk films of the same material. Our results show that oxygen plasma treatment negatively impacts the nanostructure and alumina coating based on both scanning electron microscopy analysis of morphology and changes in the plasmonic response. - Highlights: • Plasmonic response indicates oxygen plasma damages Au structures and Al{sub 2}O{sub 3} films. • Ultraviolet ozone (UVO) re-activates aged Al{sub 2}O{sub 3}-coated Au nanostructures. • UVO treatments do not damage Au or Al{sub 2}O{sub 3}-coated nanostructures.

  11. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  12. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  13. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium

    International Nuclear Information System (INIS)

    Ma, R N; Zhang, Q; Tian, Y; Su, B; Zhang, J; Fang, J; Feng, H Q; Liang, Y D

    2013-01-01

    A non-thermal plasma is known to induce apoptosis of various cells but the mechanism is not yet clear. A eukaryotic model organism Saccharomyces cerevisiaewas used to investigate the cellular and biochemical regulations of cell apoptosis and cell cycle after an atmospheric-pressure cold plasma treatment. More importantly, intracellular calcium (Ca 2+ ) was first involved in monitoring the process of plasma-induced apoptosis in this study. We analysed the cell apoptosis and cell cycle by flow cytometry and observed the changes in intracellular reactive oxygen species (ROS) and Ca 2+ concentration, cell mitochondrial membrane potential (Δψ m ) as well as nuclear DNA morphology via fluorescence staining assay. All experimental results indicated that plasma-generated ROS leads to the accumulation of intracellular ROS and Ca 2+ that ultimately contribute to apoptosis associated with cell cycle arrest at G1 phase through depolarization of Δψ m and fragmenting nuclear DNA. This work provides a novel insight into the physical and biological mechanism of apoptosis induced by a plasma which could benefit for promoting the development of plasmas applied to cancer therapy. (paper)

  14. Reactions on catalytic probe surface during oxygen plasma treatment of polyether sulphone: Reakcije na površini katalitične sonde med plazemsko obdelavo polieter sulfona:

    OpenAIRE

    Mozetič, Miran

    1998-01-01

    Experiments on the behavior of a nickel catalytic probe during activation of the surface of polyether sulphone in oxygen plasma are described. The temperature of the probe mounted 30 cm apart from inductively coupled RF oxygen plasma was measured for the case of empty dischaarge vessel and the case a sample with the dimensions of 8 cm x 1.2 cm x 0.4 cm was mounted in the middle of the discharge coil. It was found that both the maximum temperature and the first time derivative of the probe was...

  15. Treatment of the oily waste sludges through thermal plasma in absence of oxygen

    International Nuclear Information System (INIS)

    Castaneda J, G.; Pacheco S, J.

    2001-01-01

    The thermal plasma process in absence of oxygen for the degradation of oily waste sludges was evaluated. These residues are commonly generated in the petrochemical industry and are considered hazardous wastes according to the present environmental regulations. The process was operated using difference residence times and the characteristics of the gaseous by products and residual soils were determined. The efficiency of organic matter degradation was 99.99%. The attained volume reduction, under the best conditions was 95.5%. The residual soils were composed of carbon and clays. The residual gases have low molecular weight. The resulting final wastes were non-hazardous and could be disposed of in landfills. (Author)

  16. Oxygen plasma effects on zero resistance behavior of Yb,Er-doped YBCO (123) based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Helmut; Rathmann, Dirk [Department of Physics, Biophysics, and Photosynthesis, Freie Universitaet Berlin (Germany); Banko, Franziska; Steinhart, Martin [Physical Chemistry, Institute of Chemistry of New Materials, University of Osnabrueck (Germany); Nordmann, Joerg; Voss, Benjamin [Inorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrueck (Germany); Walder, Lorenz [Organic Chemistry, Molecular Electrochemistry, Institute of Chemistry of New Materials, University of Osnabrueck (Germany)

    2014-08-15

    Rare-earth doped YBa{sub 2}Cu{sub 3}O{sub 7-δ} samples were synthesized starting from the corresponding oxides Y{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, CuO as well as Ba(OH){sub 2} by heating to 950 C under air. The doping concentrations were adjusted to 15 % Yb, 7 % Er and 20 % Yb, 15 % Er, respectively, with respect to the yttrium content. The orthogonal phased (123) YBCO ceramics were exposed to an oxygen plasma for 140 and 380 min. Zero resistance temperature (T{sub c,0}) was determined by measuring the resistivity-temperature dependence using a classical four point measurement approach. Under optimal conditions with respect to the material composition and the oxygen treatment an unusual high zero resistance temperature of 97.5 K (T{sub c,onset} ∼ 101 K) was achieved. This represents an increase of T{sub c,0} by 7.5 K. The oxygen treatment could not be monitored by IR spectroscopy, X-ray fluorescence spectroscopy, and X-ray powder diffraction. The results showed good reproducibility. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Oxygen negative glow: reactive species and emissivity

    International Nuclear Information System (INIS)

    Sahli, Khaled

    1991-01-01

    This research thesis addresses the study of a specific type of oxygen plasma created by electron beams (1 keV, 20 mA/cm"2), negative glow of a luminescent discharge in abnormal regime. The objective is to test the qualities of this plasma as source of two 'active' species of oxygen (singlet molecular oxygen and atomic oxygen) which are useful in applications. The experiment mainly bears on the use of VUV (120 to 150 nm) absorption spectroscopy measurements of concentrations of these both species, and on the recording of plasma emissivity space profiles in the visible region (450 to 850 nm). It appears that low concentrations of singlet oxygen definitely exclude this type of discharge for iodine laser applications. On the contrary, concentrations measured for atomic oxygen show it is a good candidate for the oxidation of large surfaces by sheets of beams. The satisfying comparison of emissivity results with a published model confirm the prevailing role of fast electrons, and gives evidence of an important effect of temperature: temperature can reach 1000 K, and this is in agreement with the presented measurement [fr

  18. Supercritical carbon dioxide versus toluene as reaction media in silica functionalisation: Synthesis and characterisation of bonded aminopropyl silica intermediate.

    Science.gov (United States)

    Ashu-Arrah, Benjamin A; Glennon, Jeremy D

    2017-06-09

    This research reports supercritical carbon dioxide versus toluene as reaction media in silica functionalisation for use in liquid chromatography. Bonded aminopropyl silica (APS) intermediates were prepared when porous silica particles (Exsil-pure, 3μm) were reacted with 3-aminopropyltriethoxysilane (3-APTES) or N,N-dimethylaminopropyltrimethoxysilane (DMAPTMS) using supercritical carbon dioxide (sc-CO 2 ) and toluene as reaction media. Covalent bonding to silica was confirmed using elemental microanalysis (CHN), thermogravimetric analysis (TGA), zeta potential (ξ), diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, scanning electron microscopy (SEM) and solid-state nuclear magnetic resonance (CP/MAS NMR) spectroscopy. The results demonstrate that under sc-CO 2 conditions of 100°C/414bar in a substantial reduced time of 3h, the surface coverage of APS (evaluated from%C obtained from elemental analysis) prepared with APTES (%C: 8.03, 5.26μmol/m -2 ) or DMAPTES (%C: 5.12, 4.58μmol/m 2 ) is somewhat higher when compared to organic based reactions under reflux in toluene at a temperature of 110°C in 24h with APTES (%C: 7.33, 4.71μmol/m 2 ) and DMAPTMS (%C: 4.93, 4.38μmol/m 2 ). Zeta potential measurements revealed a change in electrostatic surface charge from negative values for bare Exsil-pure silica to positive for functionalised APS materials indicating successful immobilization of the aminosilane onto the surface of silica. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development of a reagentless electrochemiluminescent electrode for flow injection analysis using copolymerised luminol/aniline on nano-TiO2 functionalised indium-tin oxide glass.

    Science.gov (United States)

    Liu, Chao; Wei, Xiuhua; Tu, Yifeng

    2013-07-15

    In this study, a nano-structured copolymer of luminol/aniline (PLA) was deposited onto nano-TiO2-functionalised indium tin oxide (ITO)-coated glass by electrochemical polymerisation using cyclic voltammetry (CV). The resulting reagentless electrochemiluminescent (ECL) electrode (ECLode) can be used for flow injection analysis (FIA). The properties of the ECLode were characterised by CV, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The ECLode has high background ECL emission as well as excellent stability and reproducibility, and yielding sensitive response towards target analytes. The ECL emissions of the ECLode were 50 times higher than PLA/ITO, and 500 times higher than polyluminol (PL)/ITO. The ECLode showed sensitive responses to reactive oxygen species (ROSs), permitting its application for determination of antioxidants by quenching. Under optimised conditions, an absolute detection limit of 69.9 pg was obtained for resveratrol, comparable to the highest levels of sensitivity achieved by other methods. Thus, the gross antioxidant content of red wine was determined, with satisfactory recoveries between 87.6% and 108.3%. These results suggest a bright future for the use of the ECLode for single-channel FIA due to its high sensitivity, accuracy and reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A ReaxFF-based molecular dynamics study of the mechanisms of interactions between reactive oxygen plasma species and the Candida albicans cell wall

    Science.gov (United States)

    Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.

    2017-10-01

    Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.

  1. Surface modification of gutta-percha cones by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Maíra, E-mail: maira@metalmat.ufrj.br [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Menezes, Marilia Santana de Oliveira [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Gomes, Brenda Paula Figueiredo de Almeida [Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP (Brazil); Barbosa, Carlos Augusto de Melo [Department of Clinical Dentistry, Endodontic Division, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Athias, Leonardo [Social Indicators Division, Brazilian Institute of Geography and Statistics, Rio de Janeiro, RJ (Brazil); Simão, Renata Antoun [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil)

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  2. Surface modification of gutta-percha cones by non-thermal plasma

    International Nuclear Information System (INIS)

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-01-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  3. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    Science.gov (United States)

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  4. Osseointegration of titanium implants functionalised with phosphoserine-tethered poly(epsilon-lysine) dendrons: a comparative study with traditional surface treatments in sheep.

    Science.gov (United States)

    Stübinger, Stefan; Nuss, Katja; Bürki, Alexander; Mosch, Isabel; le Sidler, Miché; Meikle, Steve T; von Rechenberg, Brigitte; Santin, Matteo

    2015-02-01

    The aim of this study was to analyse the osseointegrative potential of phosphoserine-tethered dendrons when applied as surface functionalisation molecules on titanium implants in a sheep model after 2 and 8 weeks of implantation. Uncoated and dendron-coated implants were implanted in six sheep. Sandblasted and etched (SE) or porous additive manufactured (AM) implants with and without additional dendron functionalisation (SE-PSD; AM-PSD) were placed in the pelvic bone. Three implants per group were examined histologically and six implants were tested biomechanically. After 2 and 8 weeks the bone-to-implant contact (BIC) total values of SE implants (43.7±12.2; 53.3±9.0%) and SE-PSD (46.7±4.5; 61.7±4.9%) as well as AM implants (20.49±5.1; 43.9±9.7%) and AM-PSD implants (19.7±3.5; 48.3±15.6%) showed no statistically significant differences. For SE-PSD and AM-PSD a separate analysis of only the cancellous BIC demonstrated a statistically significant difference after 2 and 8 weeks. Biomechanical findings proved the overall increased stability of the porous implants after 8 weeks. Overall, the great effect of implant macro design on osseointegration was further supported by additional phosphoserine-tethered dendrons for SE and AM implants.

  5. Synthesis of 1,2,4-trioxepanes via application of thiol-olefin co-oxygenation methodology.

    Science.gov (United States)

    Amewu, Richard; Stachulski, Andrew V; Berry, Neil G; Ward, Stephen A; Davies, Jill; Labat, Gael; Rossignol, Jean-Francois; O'Neill, Paul M

    2006-12-01

    Thiol-olefin co-oxygenation (TOCO) of substituted allylic alcohols generates beta-hydroxy peroxides that can be condensed in situ with various ketones, to afford a series of functionalised 1,2,4-trioxepanes in good yields. Manipulation of the phenylsulfenyl group in 8a-8c allows for convenient modification to the spiro-trioxepane substituents. Surprisingly, and in contrast to the 1,2,4-trioxanes examined, 1,2,4-trioxepanes are inactive as antimalarials up to 1000 nM and we rationalize this observation based on the inherent stability of these systems to ferrous mediated degradation. FMO calculations clearly show that the sigma* orbital of the peroxide moiety of 1,2,4-trioxane derivatives 4a and 14b are lower in energy and more accessible to attack by Fe(II) compared to their trioxepane analogues 8b and 9b.

  6. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2009-01-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyldisiloxane (HMDSO)/O 2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions (χ0 2 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (∼one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O 2 mixtures exhibit two separated green-blue and yellow-green PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm -1 ) in the spectral range of their PL emission, attractive for possible integrated optics devices. (authors)

  7. Effects of irradiation distance on supply of reactive oxygen species to the bottom of a Petri dish filled with liquid by an atmospheric O{sub 2}/He plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Toshiyuki, E-mail: kawasaki@nbu.ac.jp; Kusumegi, Shota; Kudo, Akihiro; Sakanoshita, Tomohiro; Tsurumaru, Takuya; Sato, Akihiro [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Uchida, Giichiro [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Koga, Kazunori; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2016-05-07

    The impact of irradiation distances on plasma jet-induced specific effects on the supply of reactive oxygen species (ROS) to the bottom of a Petri dish filled with liquid was investigated using a KI-starch gel reagent that can be employed as a ROS indicator even in water. O{sub 3} exposure experiments without plasma irradiation were also performed to elucidate the specific effects of the plasma jet. Relative concentrations of ROS transported to the bottom were evaluated using absorbance measurements. The results indicated that ROS supply to the bottom is markedly enhanced by the plasma jet irradiation at shorter irradiation distances, whereas similar results could not be obtained for the O{sub 3} exposure. In these cases, the liquid mixing in the depth direction was also enhanced by the plasma jet irradiation only, and the supply of reactive atomic oxygen to the liquid surface was markedly increased as well.

  8. P-chiral 1-phosphanorbornenes: from asymmetric phospha-Diels-Alder reactions towards ligand design and functionalisation.

    Science.gov (United States)

    Möller, Tobias; Wonneberger, Peter; Sárosi, Menyhárt B; Coburger, Peter; Hey-Hawkins, Evamarie

    2016-02-07

    The principle of stereotopic face differentiation was successfully applied to 2H-phospholes which undergo a very efficient and highly stereoselective Diels-Alder reaction giving phosphorus-chiral 1-phosphanorbornenes with up to 87% yield. The observed reaction pathway has been supported by theoretical calculations showing that the cycloaddition reaction between 2H-phosphole 3a and the dienophile (5R)-(-)-menthyloxy-2(5H)-furanone (8) is of normal electron demand. Optically pure phosphanes were obtained by separation of the single diastereomers and subsequent desulfurisation of the sulfur-protected phosphorus atom. Finally, divergent ligand synthesis is feasible by reduction of the chiral auxiliary, subsequent stereospecific intramolecular Michael addition, and various functionalisations of the obtained key compound 13a. Furthermore, the unique structural properties of phospanorbornenes are presented and compared to those of phosphanorbornanes.

  9. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-11-01

    Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  10. Application of plasma technology to nuclear engineering fields

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Akatsuka, Hiroshi

    1996-01-01

    In order to discuss about the application of the plasma technology to nuclear engineering fields, we mention two subjects, the oxygenation of metal chloride waste by oxygen plasma and the characterization of fine particles generated in the plasma process. Through the experimental results of two subjects, both of the advantage and the disadvantage of the plasma technology and their characteristics are shown and discussed. The following conclusions are obtained. The reactive plasma is effective to oxygenate the chloride wastes. The particle generation which is one of the disadvantages must not be specialized and its characteristics can be estimated. Consequently, the plasma technology should be applicable to nuclear engineering fields adopting its advantage and overcoming its disadvantage. (author)

  11. High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method

    International Nuclear Information System (INIS)

    Sakai, Tetsuya; Kuniyoshi, Yuji; Aoki, Wataru; Ezoe, Sho; Endo, Tatsuya; Hoshi, Yoichi

    2008-01-01

    High-rate deposition of titanium dioxide (TiO 2 ) film was attempted using oxygen plasma assisted reactive evaporation (OPARE) method. Photocatalytic properties of the film were investigated. During the deposition, the substrate temperature was fixed at 400 deg. C. The film deposition rate can be increased by increasing the supply of titanium atoms to the substrate, although oversupply of the titanium atoms causes oxygen deficiency in the films, which limits the deposition rate. The film structure depends strongly on the supply ratio of oxygen molecules to titanium atoms O 2 /Ti and changes from anatase to rutile structure as the O 2 /Ti supply ratio increased. Consequently, the maximum deposition rates of 77.0 nm min -1 and 145.0 nm min -1 were obtained, respectively, for the anatase and rutile film. Both films deposited at such high rates showed excellent hydrophilicity and organic decomposition performance. Even the film with rutile structure deposited at 145.0 nm min -1 had a contact angle of less than 2.5 deg. by UV irradiation for 5.0 h and an organics-decomposition performance index of 8.9 [μmol l -1 min -1 ] for methylene blue

  12. Aging of oxygen and hydrogen plasma discharge treated a-C:H and ta-C coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Svenja [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); BMW Group, Hufelandstraße 4, 80788 Munich (Germany); Schulze, Marcus [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); Morasch, Jan [Institute of Materials Science, Technische Universität Darmstadt, Surface Science Division, Jovanka-Bonschits-Straße 2, 64287 Darmstadt (Germany); Hesse, Sabine [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); Hussein, Laith [Eduard-Zintl-Institut, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 12, 64287, Darmstadt (Germany); Krell, Lisa; Schnagl, Johann [BMW Group, Hufelandstraße 4, 80788 Munich (Germany); Stark, Robert W. [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); and others

    2016-05-15

    Highlights: • The water CA of O{sub 2} and H{sub 2} plasma treated a-C:H and ta-C changes from hydrophillic to hydrophobic on aging. • XPS study indicates that the decrease in surface energy of plasma treated a-C:H and ta-C could be due to adsorption of organic component from air. • The COFLFM of O{sub 2} and H{sub 2} plasma treated a-C:H and ta-C decreased upon aging. • The COF of glycerol lubricated ta-C showed no sign of change upon aging. - Abstract: Surface modification with gas plasma is an efficient and easy way to improve the surface energy and the tribological behavior of diamond-like carbon (DLC) coatings, e.g., in biomedical implants or as protective coatings. However, the long-term performance of the plasma treated DLC coatings is not fully clear. We thus studied the long-term stability of two kinds of DLC coatings, namely (a) hydrogenated amorphous carbon (a-C:H) and (b) tetrahedral amorphous carbon (ta-C) treated at different radio frequency (RF) power and time of oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma. Their surface properties, e.g. surface wettability, structure and tribological behavior, were studied at regular intervals for a period of two months using contact angle goniometer, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), lateral force microscopy (LFM) and ball on disc apparatus. The surface energy of both the coatings decreased upon aging. The higher the RF power and time of treatment, the higher was the hydrophobicity upon aging. XPS analysis showed that the increase in hydrophobicity could be due to adsorption of unavoidable volatile organic components in the atmosphere. The H{sub 2} plasma treated ta-C was capable of rearranging its structural bonds upon aging. The nano-friction measurements by LFM showed that the coefficient of friction of plasma treated a-C:H and ta-C decreased upon aging. The results indicate that the surface properties of plasma treated a‐C:H and ta‐C are not stable on long-term and are

  13. Growth enhancement and gene expression of Arabidopsis thaliana irradiated with active oxygen species

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya; Shiratani, Masaharu; Tashiro, Kosuke; Kuhara, Satoru; Inoue, Asami; Yasuda, Kaori; Hagiwara, Hiroko

    2016-07-01

    The characteristics of plant growth enhancement effect and the mechanism of the enhancement induced by plasma irradiation are investigated using various active species in plasma. Active oxygen species in oxygen plasma are effective for growth enhancement of plants. DNA microarray analysis of Arabidopsis thaliana indicates that the genes coding proteins that counter oxidative stresses by eliminating active oxygen species are expressed at significantly high levels. The size of plant cells increases owing to oxygen plasma irradiation. The increases in gene expression levels and cell size suggest that the increase in the expression level of the expansin protein is essential for plant growth enhancement phenomena.

  14. Nanotexture Optimization by Oxygen Plasma of Mesoporous Silica Thin Film for Enrichment of Low Molecular Weight Peptides Captured from Human Serum

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Brousseau, Louis; Bouamrani, Ali; Liu, Xuewu; Ferrari, Mauro

    2010-01-01

    This study investigated the optimization of mesoporous silica thin films by nanotexturing using oxygen plasma versus thermal oxidation. Calcination in oxygen plasma provides superior control over pore formation with regard to the pore surface and higher fidelity to the structure of the polymer template. The resulting porous film offers an ideal substrate for the selective partitioning of peptides from complex mixtures. The improved chemico-physical characteristics of porous thin films (pore size distribution, nanostructure, surface properties and pore connectivity) were systematically characterized with XRD, Ellipsometry, FTIR, TEM and N2 adsorption/desorption. The enrichment of low molecular weight proteins captured from human serum on mesoporous silica thin films fabricated by both methodologies were investigated by comparison of their MALDI-TOF MS profiles. This novel on-chip fractionation technology offers advantages in recovering the low molecular weight peptides from human serum, which has been recognized as an informative resource for early diagnosis of cancer and other diseases. PMID:21179395

  15. Effects of plasma on polyethylene fiber surface for prosthodontic application

    Directory of Open Access Journals (Sweden)

    Silvana Marques Miranda SPYRIDES

    2015-12-01

    Full Text Available ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM, and chemically by X-ray photoelectron spectroscopy (XPS. For bending analysis, one indirect composite (Signum was reinforced with polyethylene fiber (Connect, Construct, or InFibra. The InFibra fiber was subjected to three different treatments: (1 single application of silane, (2 oxygen or argon plasma for 1 or 3 min, (3 oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm, 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min.

  16. Access to the meta position of arenes through transition metal catalysed C-H bond functionalisation: a focus on metals other than palladium.

    Science.gov (United States)

    Mihai, Madalina T; Genov, Georgi R; Phipps, Robert J

    2018-01-02

    The elaboration of simple arenes in order to access more complex substitution patterns is a crucial endeavor for synthetic chemists, given the central role that aromatic rings play in all manner of important molecules. Classical methods are now routinely used alongside stoichiometric organometallic approaches and, most recently, transition metal catalysis in the range of methodologies that are available to elaborate arene C-H bonds. Regioselectivity is an important consideration when selecting a method and, of all those available, it is arguably those that target the meta position that are fewest in number. The rapid development of transition metal-catalysed C-H bond functionalisation over the last few decades has opened new possibilities for meta-selective C-H functionalisation through the diverse reactivity of transition metals and their compatibility with a wide range of directing groups. The pace of discovery of such processes has grown rapidly in the last five years in particular and it is the purpose of this review to examine these but in doing so to place the focus on metals other than palladium, the specific contributions of which have been very recently reviewed elsewhere. It is hoped this will serve to highlight to the reader the breadth of current strategies and mechanisms that have been used to tackle this challenge, which may inspire further progress in the field.

  17. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria, C [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de FIsica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain)

    2004-02-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account.

  18. Plasma chemical and electrical modelling of a negative DC corona in pure oxygen

    International Nuclear Information System (INIS)

    Soria, C; Pontiga, F; Castellanos, A

    2004-01-01

    A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account

  19. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Juárez-Moreno, J.A. [Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburna de Hidalgo C.P., 97200 Mérida, Yucatán (Mexico); Ávila-Ortega, A. [Facultad de Ingeniería Química—UADY, Periférico Norte Kilómetro 33.5, Col. Chuburna de Hidalgo Inn, C.P. , 97203 Mérida, Yucatán (Mexico); Oliva, A.I. [Centro de Investigación y de Estudios Avanzados del IPN–Unidad Mérida, Km. 6 Antigua carretera a Progreso Apdo. Postal 73, Cordemex, 97310 Mérida, Yucatán (Mexico); Avilés, F. [Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburna de Hidalgo C.P., 97200 Mérida, Yucatán (Mexico); Cauich-Rodríguez, J.V., E-mail: jvcr@cicy.mx [Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburna de Hidalgo C.P., 97200 Mérida, Yucatán (Mexico)

    2015-09-15

    Highlights: • Plasma treatment was used as an adhesive tool for PDMS/collagen composite preparation. • Response surface methodology was used for statistical optimization. • A microscopic roughness can also lead to a mechanical interlocking between materials. • Hydroxyl groups on the PDMS surface contribute to the enhanced chemical interactions. • PDMS/collagen composite obtained by plasma treatment exhibited higher peel strength. - Abstract: Direct chemical bonding of biomolecules to the surface of chemically inert polymers such as polydimethylsiloxane (PDMS) is not easily achieved. Therefore, pre-activation of such materials, followed by attachment of the biomolecule is necessary. This paper describes a procedure to functionalize a PDMS surface by oxygen-based plasma followed by the adhesion of collagen type I for the preparation of adhesive-free bilayer composite intended as skin substitute. Plasma treatments between 40 and 120 W for 5 to 15 min were used and the extent of surface modification was followed by contact angle, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and adhesion test. It was found that as the plasma power and time were increased, PDMS contact angle decreased while surface roughness increased as revealed by SEM and AFM. The formation of oxygen-containing functional groups at the surface was detected by FTIR. T-peel tests, performed on PDMS treated at 80 W/13 min and covered with collagen showed maximum peel strength of 0.1 N/mm which was 3 times higher than that measured for the untreated bilayer composite. The observed enhancement in the adhesion strength was attributed to the increased mechanical interlocking driven by the increased roughness and the formation of hydrophilic functional groups.

  20. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma

    International Nuclear Information System (INIS)

    Juárez-Moreno, J.A.; Ávila-Ortega, A.; Oliva, A.I.; Avilés, F.; Cauich-Rodríguez, J.V.

    2015-01-01

    Highlights: • Plasma treatment was used as an adhesive tool for PDMS/collagen composite preparation. • Response surface methodology was used for statistical optimization. • A microscopic roughness can also lead to a mechanical interlocking between materials. • Hydroxyl groups on the PDMS surface contribute to the enhanced chemical interactions. • PDMS/collagen composite obtained by plasma treatment exhibited higher peel strength. - Abstract: Direct chemical bonding of biomolecules to the surface of chemically inert polymers such as polydimethylsiloxane (PDMS) is not easily achieved. Therefore, pre-activation of such materials, followed by attachment of the biomolecule is necessary. This paper describes a procedure to functionalize a PDMS surface by oxygen-based plasma followed by the adhesion of collagen type I for the preparation of adhesive-free bilayer composite intended as skin substitute. Plasma treatments between 40 and 120 W for 5 to 15 min were used and the extent of surface modification was followed by contact angle, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and adhesion test. It was found that as the plasma power and time were increased, PDMS contact angle decreased while surface roughness increased as revealed by SEM and AFM. The formation of oxygen-containing functional groups at the surface was detected by FTIR. T-peel tests, performed on PDMS treated at 80 W/13 min and covered with collagen showed maximum peel strength of 0.1 N/mm which was 3 times higher than that measured for the untreated bilayer composite. The observed enhancement in the adhesion strength was attributed to the increased mechanical interlocking driven by the increased roughness and the formation of hydrophilic functional groups

  1. Hydrogen uptake in alumina thin films synthesized from an aluminum plasma stream in an oxygen ambient

    International Nuclear Information System (INIS)

    Schneider, J.M.; Anders, A.; Hjoervarsson, B.; Petrov, I.; Macak, K.; Helmersson, U.; Sundgren, J.

    1999-01-01

    We describe the hydrogen uptake during the synthesis of alumina films from H 2 O present in the high vacuum gas background. The hydrogen concentration in the films was determined by the 1 H( 15 N,αγ) 12 C nuclear resonance reaction. Furthermore, we show the presence of hydrogen ions in the plasma stream by time-of-flight mass spectrometry. The hydrogen content increased in both the film and the plasma stream, as the oxygen partial pressure was increased. On the basis of these measurements and thermodynamic considerations, we suggest that an aluminum oxide hydroxide compound is formed, both on the cathode surface as well as in the film. The large scatter in the data reported in the literature for refractive index and chemical stability of alumina thin films can be explained on the basis of the suggested aluminum oxide hydroxide formation. copyright 1999 American Institute of Physics

  2. Influence of 1D and 2D Carbon Fillers and Their Functionalisation on Crystallisation and Thermomechanical Properties of Injection Moulded Nylon 6,6 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Fabiola Navarro-Pardo

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs and graphene were used as reinforcing fillers in nylon 6,6 in order to obtain nanocomposites by using an injection moulding process. The two differently structured nanofillers were used in their pristine or reduced form, after oxidation treatment and after amino functionalisation. Three low nanofiller contents were employed. Crystallisation behaviour and perfection of nylon 6,6 crystals were determined by differential scanning calorimetry and wide angle X-ray diffraction, respectively. Crystallinity was slightly enhanced in most samples as the content of the nanofillers was increased. The dimensionality of the materials was found to provide different interfaces and therefore different features in the nylon 6,6 crystal growth resulting in improved crystal perfection. Dynamical, mechanical analysis showed the maximum increases provided by the two nanostructures correspond to the addition of 0.1 wt.% amino functionalised CNTs, enhancing in 30% the storage modulus and the incorporation of 0.5 wt.% of graphene oxide caused an increase of 44% in this property. The latter also provided better thermal stability when compared to pure nylon 6,6 under inert conditions. The superior properties of graphene nanocomposites were attributed to the larger surface area of the two-dimensional graphene compared to the one-dimensional CNTs.

  3. Cytocompatibility studies of vertically-aligned multi-walled carbon nanotubes: Raw material and functionalized by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, A.O., E-mail: loboao@yahoo.com [Laboratorio Associado de Sensores e Materiais, INPE, Sao Jose dos Campos/SP (Brazil); Instituto Tecnologico de Aeronautica, ITA, Sao Jose dos Campos/SP (Brazil); Laboratorio de Nanotecnologia Biomedica, Universidade do Vale do Paraiba, Sao Jose dos Campos/SP (Brazil); Corat, M.A.F. [Centro Multidisciplinar para Investigacao Biologica na Area da Ciencia em Animais de Laboratorio, CEMIB, UNICAMP, Campinas/SP (Brazil); Antunes, E.F. [Laboratorio Associado de Sensores e Materiais, INPE, Sao Jose dos Campos/SP (Brazil); Instituto Tecnologico de Aeronautica, ITA, Sao Jose dos Campos/SP (Brazil); Ramos, S.C. [Instituto Tecnologico de Aeronautica, ITA, Sao Jose dos Campos/SP (Brazil); Pacheco-Soares, C. [Laboratorio de Dinamica de Compartimentos Celulares, UNIVAP, Sao Jose dos Campos/SP (Brazil); and others

    2012-05-01

    It was presented a strong difference on cell adhesion and proliferation of functionalized vertically-aligned multi-walled carbon nanotube (VACNT) scaffolds compared to raw-VACNT. Biocompatibility in vitro tests were performed on raw-VACNT after superficial modification by oxygen plasma, which changes its superhydrophobic character to superhydrophilic. Two cytocompatibility tests were applied: 1) total lactate dehydrogenase colorimetric assay for the study of proliferating cells; and 2) cellular adhesion by scanning electron microscopy. Results showed that superhydrophilic VACNT scaffolds stimulate cell growth with proliferation up to 70% higher than normal growth of cell culture.

  4. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    Science.gov (United States)

    Naddaf, M.; Saloum, S.

    2008-09-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyledisiloxane (HMDSO)/O2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions ( \\chi _{O_2 } =0 , 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at \\chi _{O_2 } =0 exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (~one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O2 mixtures exhibit two separated 'green-blue' and 'yellow-green' PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm-1) in the spectral range of their PL emission, attractive for possible integrated optics devices.

  5. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O2 induced remote plasma: effect of oxygen fraction

    International Nuclear Information System (INIS)

    Naddaf, M; Saloum, S

    2008-01-01

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyledisiloxane (HMDSO)/O 2 mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions (χ O 2 =0, 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at (χ O 2 =0 exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease (∼one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O 2 mixtures exhibit two separated 'green-blue' and 'yellow-green' PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm -1 ) in the spectral range of their PL emission, attractive for possible integrated optics devices

  6. Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation

    Science.gov (United States)

    Wakelin, Edgar; Yeo, Giselle; Kondyurin, Alexey; Davies, Michael; McKenzie, David; Weiss, Anthony; Bilek, Marcela

    2015-12-01

    Plasma immersion ion implantation (PIII) is used here to improve the surface bioactivity of polyether ether ketone (PEEK) by modifying the chemical and mechanical properties and by introducing radicals. Modifications to the chemical and mechanical properties are characterised as a function of ion fluence (proportional to treatment time) to determine the suitability of the treated surfaces for biological applications. Radical generation increases with treatment time, where treatments greater than 400 seconds result in a high concentration of long-lived radicals. Radical reactions are responsible for oxidation of the surface, resulting in a permanent increase in the polar surface energy. The nano-scale reduced modulus was found to increase with treatment time at the surface from 4.4 to 5.2 GPa. The macromolecular Young's modulus was also found to increase, but by an amount corresponding to the volume fraction of the ion implanted region. The treated surface layer exhibited cracking under cyclical loads, associated with an increased modulus due to dehydrogenation and crosslinking, however it did not show any sign of delamination, indicating that the modified layer is well integrated with the substrate - a critical factor for bioactive surface coatings to be used in-vivo. Protein immobilisation on the PIII treated surfaces was found to saturate after 240 seconds of treatment, indicating that there is room to tune surface mechanical properties for specific applications without affecting the protein coverage. Our findings indicate that the modification of the chemical and mechanical properties by PIII treatments as well as the introduction of radicals render PEEK well suited for use in orthopaedic implantable devices.

  7. Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    International Nuclear Information System (INIS)

    Walsh, J L; Liu, D X; Iza, F; Kong, M G; Rong, M Z

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O 2 by helium metastables is significantly more efficient than electron dissociative excitation of O 2 , electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O 2 plasmas for excited atomic oxygen based chemistry. (fast track communication)

  8. Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment

    International Nuclear Information System (INIS)

    Hou, Yue; Jayatissa, Ahalapitiya H.

    2014-01-01

    The effect of oxygen plasma treatment on nanocrystalline ZnO thin film based gas sensor was investigated. ZnO thin films were synthesized on alkali-free glass substrates by a sol–gel process. ZnO thin films were treated with oxygen plasma to change the number of vacancies/defects in ZnO. The effect of oxygen plasma on the structural, electrical, optical and gas sensing properties was investigated as a function of plasma treatment time. The results suggest that the microstructure and the surface morphology can be tuned by oxygen plasma treatment. The optical transmission in the visible range varies after the oxygen plasma treatment. Moreover, it is found that the oxygen plasma has significant impact on the electrical properties of ZnO thin films indicating a variation of resistivity. The oxygen plasma treated ZnO thin film exhibits an enhanced sensing response towards NH 3 in comparison with that of the as-deposited ZnO sensor. When compared with the as-deposited ZnO film, the sensing response was improved by 50% for the optimum oxygen plasma treatment time of 8 min. The selectivity of 8 min plasma treated ZnO sensor was also examined for an important industrial gas mixture of H 2 , CH 4 and NH 3 .

  9. Evaluation of oxygen species during E-H transition in inductively coupled RF plasmas: combination of experimental results with global model

    Science.gov (United States)

    Meichsner, Jürgen; Wegner, Thomas

    2018-05-01

    Inductively coupled RF plasmas (ICP) in oxygen at low pressure have been intensively studied as a molecular and electronegative model system in the last funding period of the Collaborative Research Centre 24 "Fundamentals of Complex Plasmas". The ICP configuration consists of a planar coil inside a quartz cylinder as dielectric barrier which is immersed in a large stainless steel vacuum chamber. In particular, the E-H mode transition has been investigated, combining experimental results from comprehensive plasma diagnostics as input for analytical rate equation calculation of a volume averaged global model. The averaged density was determined for electrons, negative ions O-, molecular oxygen ground state O2(X3 Σg-) and singlet metastable state O2(a1 Δg) from line-integrated measurements using 160 GHz Gaussian beam microwave interferometry coupled with laser photodetachment experiment and VUV absorption spectroscopy, respectively. Taking into account the relevant elementary processes and rate coefficients from literature together with the measured temperatures and averaged density of electrons, O2(X3 Σg-) and O2(a1 Δg) the steady state density was calculated for O(3P), O2(b1 Σg+), O(1D), O(1S), O3, O-, O2-, and O3-, respectively. The averaged density of negative ions O- from the rate equation calculation is compared with the measured one. The normalized source and loss rates are discussed for O(3P), O2(b1 Σg+) and O-. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  10. Glow discharge in singlet oxygen

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsyn, D.V.; Yuryshev, N.N.; Kochetov, I.V.; Napartovich, A.P.

    2003-01-01

    Currently, there is no experimental data on the plasma balance in gas mixtures with a high content of singlet delta oxygen O 2 ( 1 Δ g ). These data can be obtained by studying the parameters of an electric discharge in singlet oxygen produced by a chemical generator. The O 2 ( 1 Δ g ) molecules significantly change the kinetics of electrons and negative ions in plasma. Hence, the discharge conditions at low and high O 2 ( 1 Δ g ) concentrations are very different. Here, the parameters of the positive column of a glow discharge in a gas flow from a chemical singlet-oxygen generator are studied. It is experimentally shown that, at an O 2 ( 1 Δ g ) concentration of 50% and at pressures of 1.5 and 2 torr, the electric field required to sustain the discharge is considerably lower than in the case when all of the oxygen molecules are in the ground state. A theoretical model of the glow discharge is proposed whose predictions are in good agreement with the experimental data

  11. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    Science.gov (United States)

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  12. Integration of microplasma and microfluidic technologies for localised microchannel surface modification

    Science.gov (United States)

    Szili, Endre J.; Al-Bataineh, Sameer A.; Priest, Craig; Gruner, Philipp J.; Ruschitzka, Paul; Bradley, James W.; Ralston, John; Steele, David A.; Short, Robert D.

    2011-12-01

    In this paper we describe the spatial surface chemical modification of bonded microchannels through the integration of microplasmas into a microfluidic chip (MMC). The composite MMC comprises an array of precisely aligned electrodes surrounding the gas/fluid microchannel. Pairs of electrodes are used to locally ignite microplasmas inside the microchannel. Microplasmas, comprising geometrically confined microscopic electrically-driven gas discharges, are used to spatially functionalise the walls of the microchannels with proteins and enzymes down to scale lengths of 300 μm inside 50 μm-wide microchannels. Microchannels in poly(dimethylsiloxane) (PDMS) or glass were used in this study. Protein specifically adsorbed on to the regions inside the PDMS microchannel that were directly exposed to the microplasma. Glass microchannels required pre-functionalisation to enable the spatial patterning of protein. Firstly, the microchannel wall was functionalised with a protein adhesion layer, 3-aminopropyl-triethoxysilane (APTES), and secondly, a protein blocking agent (bovine serum albumin, BSA) was adsorbed onto APTES. The functionalised microchannel wall was then treated with an array of spatially localised microplasmas that reduced the blocking capability of the BSA in the region that had been exposed to the plasma. This enabled the functionalisation of the microchannel with an array of spatially separated protein. As an alternative we demonstrated the feasibility of depositing functional thin films inside the MMC by spatially plasma depositing acrylic acid and 1,7-octadiene within the microchannel. This new MMC technology enables the surface chemistry of microchannels to be engineered with precision, which is expected to broaden the scope of lab-on-a-chip type applications.

  13. 2-Phenyl-tetrahydropyrimidine-4(1H-ones – cyclic benzaldehyde aminals as precursors for functionalised β2-amino acids

    Directory of Open Access Journals (Sweden)

    Markus Nahrwold

    2009-09-01

    Full Text Available Novel procedures have been developed to condense benzaldehyde effectively with β-amino acid amides to cyclic benzyl aminals. Double carbamate protection of the heterocycle resulted in fully protected chiral β-alanine derivatives. These serve as universal precursors for the asymmetric synthesis of functionalised β2-amino acids containing acid-labile protected side chains. Diastereoselective alkylation of the tetrahydropyrimidinone is followed by a chemoselective two step degradation of the heterocycle to release the free β2-amino acid. In the course of this study, an L-asparagine derivative was condensed with benzaldehyde and subsequently converted to orthogonally protected (R-β2-homoaspartate.

  14. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment

    Science.gov (United States)

    De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana

    2018-03-01

    In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.

  15. PULLOUT BEHAVIOR OF OXYGEN PLASMA TREATED POLYMER FIBERS FROM CEMENT MATRIX

    Directory of Open Access Journals (Sweden)

    Jan Trejbal

    2017-11-01

    Full Text Available The aim of this work is to describe bonding properties between surface treated polymer fibers and a cement matrix. In order to increase an interaction between the matrix and fiber surfaces, two fiber types having approx. 0.5 mm in diameter were modified by mean of oxygen plasma treatment. Surface physical changes of treated fibers were examined using SEM morphology observation and interfacial adhesion mechanical tests. The principle of mechanical tests rested on a single fiber pulling out from the matrix (cement paste, CEM I 42.5 R, w/c 0.4. The embedded length was equal to 50 % of original fiber length (50 mm, where the fiber free-end displacement and force resisting to the displacement were monitored. It was pointed out that interfacial shear stress needed to break the bond between the modified fibers and the matrix increased almost by 15–65 % if compared to reference fibers. When the fiber free-end displacement reached to 3.5 mm, the shear strength increased almost twice.

  16. Visible photoluminescence from plasma-polymerized-organosilicone thin films deposited from HMDSO/O{sub 2} induced remote plasma: effect of oxygen fraction

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M; Saloum, S [Department of Physics, Atomic Energy Commission of Syria (AECS), PO Box 6091 Damascus (Syrian Arab Republic)], E-mail: scientific6@aec.org.sy

    2008-09-07

    Visible photoluminescence (PL) from thin films deposited on silicon wafers by remote plasma polymerization of the hexamethyledisiloxane (HMDSO)/O{sub 2} mixture in a radio-frequency hollow cathode discharge reactor has been investigated as a function of different oxygen fractions ({chi}{sub O{sub 2}}=0, 0.38, 0.61, 0.76 and 0.9). At room temperature, the film deposited at ({chi}{sub O{sub 2}}=0 exhibits a strong, broad PL band peak centred at around 537.6 nm. A blue shift and a considerable decrease ({approx}one order) in the intensity of the PL peak are observed after the addition of oxygen. Furthermore, in contrast to the film deposited from pure HMDSO, the low temperature (15 K) PL spectra of the film deposited from different HMDSO/O{sub 2} mixtures exhibit two separated 'green-blue' and 'yellow-green' PL peaks. The PL behaviour of the deposited films is correlated with their structural and morphological properties, investigated by using Fourier transform infrared, atomic force microscope and contact angle techniques. In addition, it is found from spectrophotometry measurements that the deposited films have relatively low absorption coefficients (in the range 100-500 cm{sup -1}) in the spectral range of their PL emission, attractive for possible integrated optics devices.

  17. Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies.

    Science.gov (United States)

    Bansod, Sunita Dashrath; Bawaskar, Manisha Subrashrao; Gade, Aniket Krishnarao; Rai, Mahendra Kumar

    2015-08-01

    Many scientists have focused their research on the role of nanotechnology for the control of human pathogens, but there are also many topical pathogens present in animals, which infect animals and transfer to humans. Topical therapy is extremely important for the management of dermatological condition in animals. Therefore, the present study aims to evaluate the efficacy of biogenic silver nanoparticles (AgNPs) in combination with herbal oils against animal skin infections which may be responsible for causing infections in human beings. Here, the authors synthesised and characterised the AgNPs from Azadirachta indica. The oils were extracted from medicinal plants including Cymbopogon citratus, Cymbopogon martini, Eucalyptus globules, A. indica and Ocimum sanctum and the antifungal and antibacterial activity of plant oils along with AgNPs were evaluated. An excision wound model was used for the study of wound healing activity in rabbits. AgNPs functionalised oil has demonstrated remarkable antimicrobial activity against pathogens present on the skin of animals. The nano-functionalised antimicrobial oils were used in the formulation of shampoo, soap and ointment for veterinary dermatology. Antimicrobial products of plant origin with AgNPs are valuable, safe and have a specific role in controlling diseases. The authors believe that this approach will be a good alternative therapy to solve the continuous antibiotic resistance developed by many bacterial pathogens and will be utilised in various animal contacting areas in medicine.

  18. A dc non-thermal atmospheric-pressure plasma microjet

    Science.gov (United States)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  19. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    Zhu Weidong; Lopez, Jose L

    2012-01-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  20. Influence of operating parameters on surface properties of RF glow discharge oxygen plasma treated TiO{sub 2}/PET film for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Mahendiran, R. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Su, Pi-G [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Yassitepe, Emre; Shah, Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Perni, Stefano [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Prokopovich, Polina [School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff (United Kingdom); Institute of Medical Engineering and Medical Physics, School of Engineering, Cardiff University (United Kingdom); Nadagouda, Mallikarjuna N., E-mail: Nadagouda.Mallikarjuna@epamail.epa.gov [The U.S. Environmental Protection Agency, ORD, NRMRL, WSWRD, 26W. Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2014-03-01

    In this paper, a thin transparent titania (TiO{sub 2}) film was coated on the surface of flexible poly(ethylene terephthalate) (PET) film using the sol–gel method. The surface properties of the obtained TiO{sub 2}/PET film were further improved by RF glow discharge oxygen plasma as a function of exposure time and discharge power. The changes in hydrophilicity of TiO{sub 2}/PET films were analyzed by contact angle measurements and surface energy. The influence of plasma on the surface of the TiO{sub 2}/PET films was analyzed by atomic force microscopy (AFM) as well as the change in chemical state and composition that were investigated by X-ray photo electron spectroscopy (XPS). The cytotoxicity of the TiO{sub 2}/PET films was analyzed using human osteoblast cells and the bacterial eradication behaviors of TiO{sub 2}/PET films were also evaluated against Staphylococcus bacteria. It was found that the surface roughness and incorporation of oxygen containing polar functional groups of the plasma treated TiO{sub 2}/PET films increased substantially as compared to the untreated one. Moreover the increased concentration of Ti{sup 3+} on the surface of plasma treated TiO{sub 2}/PET films was due to the transformation of chemical states (Ti{sup 4+} → Ti{sup 3+}). These morphological and chemical changes are responsible for enhanced hydrophilicity of the TiO{sub 2}/PET films. Furthermore, the plasma treated TiO{sub 2}/PET film exhibited no citotoxicity against osteoblast cells and antibacterial activity against Staphylococcus bacteria which can find application in manufacturing of biomedical devices. - Graphical abstract: Mechanism of plasma treatment on the surface of TiO{sub 2}/PET films. - Highlights: • Investigated the surface properties of TiO{sub 2}/PET films modified by O{sub 2} plasma • Studied the effect of operating parameters on surface properties of TiO{sub 2}/PET films • Mechanism of the plasma treatment on TiO{sub 2}/PET was clearly investigated.

  1. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  2. The spatial distribution of temperature and oxygen deficiency in spark-plasma sintered superconducting Bi-based materials

    International Nuclear Information System (INIS)

    Govea-Alcaide, E.; Pérez-Fernández, J.E.; Machado, I.F.; Jardim, R.F.

    2014-01-01

    Pre-reacted powders of (Bi–Pb) 2 Sr 2 Ca 2 Cu 3 O 10+δ (Bi-2223) were consolidated by using the spark plasma sintering (SPS) technique under vacuum and at different consolidate temperatures T D . X-ray diffraction patterns revealed that the dominant phase in all SPS samples is the Bi-2223 phase, but traces of the Bi 2 Sr 2 CaCu 2 O 10+x (Bi-2212) phase were identified. We have found that the transport properties of SPS samples depend on their oxygen content because the SPS process is performed under vacuum. Simulations by using the finite element method (FEM) were performed for determining the actual temperature in which powders are consolidated. From these results we have inferred that SPS samples are oxygen deficient and such a deficiency is more marked near the grain boundaries, suggesting the occurrence of grains with core–shell morphology. We also argued that the width of the shell depends on the consolidation temperature, a feature corroborated by the FEM simulations

  3. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  4. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %

  5. Oxygen reduction reaction properties of nitrogen-incorporated nanographenes synthesized using in-liquid plasma from mixture of ethanol and iron phthalocyanine

    Science.gov (United States)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2018-04-01

    Nanographenes were synthesized using in-liquid plasma from a mixture of iron phthalocyanine and ethanol. In a previous study, micrometer-scale flakes with nitrogen incorporation were obtained. A nonprecious metal catalytic activity was observed with 3.13 electrons in an oxygen reduction reaction under an acidic solute condition. Large-surface-area, high-graphene-crystallinity, and iron-carbon-bonding sites were found owing to a high catalytic activity in Fe-N/nanographene.

  6. The effect of nitrogen and oxygen plasma on the wear properties and adhesion strength of the diamond-like carbon film coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.

    2008-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O 2 and N 2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE. In the N 2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O 2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N 2 plasma pre-treatment was more effective than the O 2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N 2 plasma pre-treatment showed good wear resistance, compared with that with O 2 plasma pre-treatment

  7. Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures

    DEFF Research Database (Denmark)

    Christensen, Emil Aputsiaq Flindt; Svendsen, Morten Bo Søndergaard; Steffensen, John Fleng

    2017-01-01

    with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20...... of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity......The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased...

  8. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  9. Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment

    Science.gov (United States)

    Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool

    2016-01-01

    Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.

  10. One step gold (bio)functionalisation based on CS{sub 2}-amine reaction

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ines [Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa (Portugal); Cascalheira, Antonio C. [Lumisense, Lda, Campus Faculdade de Ciencias da Universidade de Lisboa, Ed. ICAT, Campo Grande, 1749-016 Lisboa (Portugal); Viana, Ana S., E-mail: anaviana@fc.ul.p [Centro de Quimica e Bioquimica, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa (Portugal)

    2010-12-01

    Dithiocarbamates have been regarded as alternative anchor groups to thiols on gold surfaces, and claimed to be formed in situ through the reaction between secondary amines and carbon disulphide. In this paper, we further exploit this methodology for a convenient one step biomolecule immobilisation onto gold surfaces. First, the reactivity between CS{sub 2} and electroactive compounds containing amines, primary (dopamine), secondary (epinephrine), and an amino acid (tryptophan) has been investigated by electrochemical methods. Cyclic voltammetric characterisation of the modified electrodes confirmed the immobilisation of all the target compounds, allowing the estimation of their surface concentration. The best result was obtained with epinephrine, a secondary amine, for which a typical quasi-reversible behaviour of surface confined electroactive species could be clearly depicted. Electrochemical reductive desorption studies enabled to infer on the extent of the reaction and on the relative stability of the generated monolayers. Bio-functionalisation studies have been accomplished through the reaction of CS{sub 2} with glucose oxidase in aqueous medium, and the catalytic activity of the immobilised enzyme was evaluated towards glucose, by electrochemical methods in the presence of a redox mediator. Scanning tunnelling microscopy (STM) and Atomic force microscopy (AFM) were used respectively, to characterize the gold electrodes and Glucose Oxidase coverage and distribution on the modified surfaces.

  11. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    Science.gov (United States)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  12. Characterization of a microwave generated plasma

    International Nuclear Information System (INIS)

    Root, D.J.; Mahoney, L.; Asmussen, J.

    1986-01-01

    Recent experiments have demonstrated a microwave ion beam source without and with static magnetic fields in inert gases and in oxygen gases. This plasma generation configuration also has uses in the areas of plasma processing such as plasma etching, plasma assisted thin flim deposition and plasma assisted oxide growth. These ion beam and plasma processing applications have provided motivation to investigate microwave discharge properties, such as electron density, electron temperature, gas temperature, degree of ionization, etc., of the microwave generated plasma over a wide range of experimental operating conditions. This paper presents the results of experimental measurements which attempt to characterize the experimental microwave discharge in the absence of a static magnetic field. Measurements from a double probe, which is located in the plasma in a zero microwave field region, are presented in argon, xenon and oxygen gases. Variations of plasma density and electron temperature versus absorbed microwave power, gas pressure (0.2 m Torr to 200 m Torr) and discharge diffusion length are presented and compared to dc positive column discharge theory

  13. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium

    OpenAIRE

    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.

    1983-01-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  14. Sterilization of microbes by using various plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Han S.; Choi, Eun H.; Cho, Guang S. [Kwangwoon University, Seoul (Korea, Republic of); Hong, Yong C. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Sterilization of various microbes was carried out by using several plasma jets. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes including spores. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological agents. The key element of the sterilization is oxygen radicals. The penciltype configuration produces a long, cold plasma jet capable of reaching 3.5 cm and having various excited plasma species shown through the optical emission spectrum. Operation of an air plasma jet at 2 W in a pencil-type electrode provides an excellent opportunity for sterilization of microbes. An electron microscope was used to observe the effects of the plasma on bacterial cell morphology. Transmission electron micrographs showed morphological changes in E. coli cells treated with an atmospheric plasma at 75 W for 2 min. The treated cells had severe cytoplasmic deformations and leakage of bacterial chromosome. The chromosomal DNA was either attached to the bacterial cells or released freely into the surrounding medium. The results clearly explain the loss of viability of bacterial cells after plasma treatment.

  15. Dissociation kinetics of iodine in oxygen-containing electrical discharge plasmas

    International Nuclear Information System (INIS)

    Zakharov, A.I.; Klopovskii, K.S.; Rakhimova, T.V.; Samorodov, V.A.

    1993-01-01

    Studies of the kinetics of gaseous media containing oxygen and iodine molecules have been stimulated to a substantial degree by the search for ways of improving iodine-oxygen lasers and by the need for information on loss processes for atmospheric ozone. Results are presented from an experimental study and numerical simulations of the kinetics of the dissociation of iodine in self-sustained volume discharges in high-pressure O 2 :Ar:I 2 mixtures. It is shown that the well-studied mechanism for dissociation based on excitation of iodine molecules in successive collisions with singlet oxygen and excited iodine atoms is supplanted by a substantially different mechanism involving the creation and loss of 10 radicals when the densities of atomic oxygen and ozone are high enough. It is also shown that iodine fractions as low as ∼10 -3 in the mixture lead to rapid loss of ozone molecules while less than 18% of the discharge energy is expended in the production of singlet oxygen

  16. Characteristics of SiOx-containing hard film prepared by low temperature plasma enhanced chemical vapor deposition using hexamethyldisilazane or vinyltrimethylsilane and post oxygen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yi-Syuan; Liu, Wan-Yu; Wu, Hsin-Ming [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Chen, Ko-Shao, E-mail: kschen@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Cech, Vladimir [Institute of Materials Chemistry, Brno University of Technology (Czech Republic)

    2017-03-01

    This study, monomers of hexamethyldisilazane (HMDSZ) and vinyltrimethylsilane (VTMS) were respectively used to deposit on the surface of polyethylene terephthalate (PET) substrate by plasma enhanced chemical vapor deposition. Oxygen plasma treatment follows the HMDSZ and VTMS deposition to produce a hydrophilic surface film on the deposited surface. Time for HMDSZ and VTMS plasma deposition was changed to investigate its influences on water contact angle, deposited film thickness, refractive index, and friction coefficient properties. The surface morphologies of the processed samples were observed by scanning electron microscope and their chemical compositions were measured by X-ray photoelectron spectroscopy. At 550 nm wavelength, the optical transmittance of PET after the HMDSZ treatment decreases from 89% to 83%, but increases from 89% to 95% for the VTMS treatment. With increase in HMDSZ and VTMS deposition times, the film thickness increases and the refractive index decreases. Result revealed by XPS, SiO{sub 2} film is formed on the sample surface after the O{sub 2} plasma treatment. The film adhesion capability by the HMDSZ+O{sub 2} and VTMS+O{sub 2} treatment was stronger than that by the HMDSZ and VTMS treatment only. The SiOx films produced by HMDSZ+O{sub 2} and VTMS+O{sub 2} treatment can increase the film hardness and improve light transmittance. - Highlights: • With increase in HMDSZ and VTMS deposition times, the film thickness increases and the refractive index decreases. • The optical transmittance of PET after the VTMS treatment increases from 89% to 95%. • The SiO{sub 2} films deposited by HMDSZ+O{sub 2} and VTMS+O{sub 2} plasma can increase the film hardness and improve light transmittance. • It is expected that they can be applied to the optical transmittance protective film on plastic substrate in the future.

  17. Surface modification of amine-functionalised graphite for preparation of cobalt hexacyanoferrate (CoHCF)-modified electrode: an amperometric sensor for determination of butylated hydroxyanisole (BHA).

    Science.gov (United States)

    Prabakar, S J Richard; Narayanan, S Sriman

    2006-12-01

    A cobalt hexacyanoferrate (CoHCF)-modified graphite paraffin wax composite electrode was prepared by a new approach. An amine-functionalised graphite powder was used for the fabrication of the electrode. A functionalised graphite paraffin wax composite electrode was prepared and the surface of the electrode was modified with a thin film of CoHCF. Various parameters that influence the electrochemical behaviour of the modified electrode were studied by varying the background electrolytes, scan rates and pH. The modified electrode showed good electrocatalytic activity towards the oxidation of butylated hydroxyanisole (BHA) under optimal conditions and showed a linear response over the range from 7.9 x 10(-7) to 1.9 x 10(-4) M of BHA with a correlation coefficient of 0.9988. The limit of detection was 1.9 x 10(-7) M. Electrocatalytic oxidation of BHA was effective at the modified electrode at a significantly reduced potential and at a broader pH range. The utility of the modified electrode as an amperometric sensor for the determination of BHA in flow systems was evaluated by carrying out hydrodynamic and chronoamperometric experiments. The modified electrode showed very good stability and a longer shelf life. The modified electrode was applied for the determination of BHA in spiked samples of chewing gum and edible sunflower oil. The advantage of this method is the ease of electrode fabrication, good stability, longer shelf life, low cost and its diverse application for BHA determination.

  18. Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    Science.gov (United States)

    Mansell, J. Matthew; Abney, Morgan B.

    2012-01-01

    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing.

  19. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  20. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis

    Science.gov (United States)

    Hunke, Harald; Soin, Navneet; Shah, Tahir H.; Kramer, Erich; Pascual, Alfons; Karuna, Mallampalli Sri Lakshmi; Siores, Elias

    2015-01-01

    Functionalization of Polytetrafluoroethylene (PTFE) powders of ~6 μm particle size is carried out using low-pressure 2.45 GHz H2, NH3 microwave plasmas for various durations (2.5, 10 h) to chemically modify their surface and alter their surface energy. The X-ray Photoelectron Spectroscopy (XPS) analyses reveal that plasma treatment leads to significant defluorination (F/C atomic ratio of 1.13 and 1.30 for 10 h NH3 and H2 plasma treatments, respectively vs. 1.86 for pristine PTFE), along with the incorporation of functional polar moieties on the surface, resulting in enhanced wettability. Analysis of temperature dependent XPS revealed a loss of surface moieties above 200 °C, however, the functional groups are not completely removable even at higher temperatures (>300 °C), thus enabling the use of plasma treated PTFE powders as potential tribological fillers in high temperature engineering polymers. Ageing studies carried over a period of 12 months revealed that while the surface changes degenerate over time, again, they are not completely reversible. These functionalised PTFE powders can be further used for applications into smart, high performance materials such as tribological fillers for engineering polymers and bio-medical, bio-material applications.

  1. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    Sun Peng; Wu Haiyan; Sun Yi; Liu Wei; Li Ruoyu; Zhu Weidong; Lopez, Jose L.; Zhang Jue; Fang Jing

    2011-01-01

    A microhollow cathode based, direct-current, atmospheric pressure, He/O 2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  2. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Ivan [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia); Britcher, Leanne G. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)], E-mail: Leanne.Britcher@unisa.edu.au; Kumar, Sunil [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)

    2008-01-30

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH{sup +}) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected.

  3. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    International Nuclear Information System (INIS)

    Djordjevic, Ivan; Britcher, Leanne G.; Kumar, Sunil

    2008-01-01

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH + ) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected

  4. Separation and concentration of lead, uranium and copper using polystyrene resins functionalised with azobenzylphosphonic acid ligands

    International Nuclear Information System (INIS)

    Ueda, Kazumasa; Sato, Yuko; Yoshimura, Osamu; Yamamoto, Yoshikazu

    1988-01-01

    Two polystyrene resins functionalised with azobenzylphosphonic acid ligands were synthesised and applications for the concentration, separation and determination of micro- or milligram concentrations of metal ions were studied. Physical and chemical properties such as specific mass, water content and ion-exchange capacity were measured and the characteristics of the resins were examined. The resins were especially useful for the concentration of Pbsup(II), Usup(VI) and Cusup(II) by batch and column operations, and effective separations of Pbsup(II) from Group VIII and IIB ions could be achieved by selecting the eluents. Trace amounts of Pbsup(II), Usup(VI), Cusup(II), Mnsup(II), Znsup(II) and Fesup(III) were quantitatively retained on the resin columns at neutral pH and easily recovered by elution with 2M HCl and 2M HNO 3 . The resins were successfully applied to the concentration of trace amounts of metals in river and sea waters prior to spectroscopic determinations. (author)

  5. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David F., E-mail: david.williams@surrey.ac.uk [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Kellar, Ewen J.C. [TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Jesson, David A.; Watts, John F. [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2017-05-01

    Highlights: • Reduction in carbon contamination from ∼80 at.% to 40 at.% after 15 s treatment. • Associated carbon thickness reduction from 4.5 nm to 0.5 nm. • Area treated by torch has a diameter of 11 mm measured using imaging XPS. - Abstract: The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m{sup −1} to >72 mJ m{sup −1} after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  6. Speed associated with plasma pH, oxygen content, total protein and urea in an 80 km race.

    Science.gov (United States)

    Hoffman, R M; Hess, T M; Williams, C A; Kronfeld, D S; Griewe-Crandell, K M; Waldron, J E; Graham-Thiers, P M; Gay, L S; Splan, R K; Saker, K E; Harris, P A

    2002-09-01

    To test the hypothesis that endurance performance may be related quantitatively to changes in blood, we measured selected blood variables then determined their reference ranges and associations with speed during an 80 km race. The plan had 46 horses in a 2 x 2 factorial design testing a potassium-free electrolyte mix and a vitamin supplement. Blood samples were collected before the race, at 21, 37, 56 and 80 km, and 20 min after finishing, for assay of haematocrit, plasma pH, pO2, pCO2, [Na+], [K+], [Ca++], [Mg++], [Cl-], lactate, glucose, urea, cortisol, alpha-tocopherol, ascorbate, creatine kinase, aspartate amino transferase, lipid hydroperoxides, total protein, albumin and creatinine, and erythrocyte glutathione and glutathione peroxidase. Data from 34 finishers were analysed statistically. Reference ranges for resting and running horses were wide and overlapping and, therefore, limiting with respect to evaluation of individual horses. Speed correlations were most repeatable, with variables reflecting blood oxygen transport (enabling exercise), acidity and electrolytes (limiting exercise) and total protein (enabling then, perhaps, limiting). Stepwise regressions also included plasma urea concentration (limiting). The association of speed with less plasma acidity and urea suggests the potential for fat adaptation and protein restriction in endurance horses, as found previously in Arabians performing repeated sprints. Conditioning horses fed fat-fortified and protein-restricted diets may not only improve performance but also avoid grain-associated disorders.

  7. Comparison of NO titration and fiber optics catalytic probes for determination of neutral oxygen atom concentration in plasmas and postglows

    International Nuclear Information System (INIS)

    Mozetic, Miran; Ricard, Andre; Babic, Dusan; Poberaj, Igor; Levaton, Jacque; Monna, Virginie; Cvelbar, Uros

    2003-01-01

    A comparative study of two different absolute methods NO titration and fiber optics catalytic probe (FOCP) for determination of neutral oxygen atom density is presented. Both methods were simultaneously applied for measurements of O density in a postglow of an Ar/O 2 plasma created by a surfatron microwave generator with the frequency of 2.45 GHz an adjustable output power between 30 and 160 W. It was found that the two methods gave similar results. The advantages of FOCP were found to be as follows: it is a nondestructive method, it enables real time measuring of the O density, it does not require any toxic gas, and it is much faster than NO titration. The advantage of NO titration was found to be the ability to measure O density in a large range of dissociation of oxygen molecules

  8. Lysophosphatidic acid-functionalised titanium as a superior surface for supporting human osteoblast (MG63 maturation

    Directory of Open Access Journals (Sweden)

    JP Mansell

    2012-05-01

    Full Text Available Covalent modifications of titanium with small molecules known to promote human osteoblast maturation are especially attractive in developing superior biomaterials. An important step in securing competent bone formation at implant sites is promoting the formation of mature osteoblasts, either from committed pre-osteoblasts or from their mesenchymal progenitors. To this end our research has focussed on identifying molecules that enhance human osteoblast formation and maturation and to develop ways of covalently attaching these molecules to implant surfaces so that they are more likely to withstand the rigors of the implantation process whilst still retaining their bioactivity. Herein we report the novel production of lipid-functionalised titanium using lysophosphatidic acid or a related compound, (3S 1-fluoro-3-hydroxy-4-butyl-1-phosphonate. Both lipids were especially effective at co-operating with calcitriol to promote human osteoblast maturation at these modified Ti surfaces in vitro. The novel findings presented offer enticing new developments towards the fabrication of next-generation implant devices with the potential to significantly enhance the osseointegration process and with it improvements in future prosthesis performance and longevity.

  9. Emission study of alumina plasma produced by a KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, K., E-mail: kyahiaoui@cdta.dz [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Abdelli-Messaci, S.; Messaoud-Aberkane, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Kellou, H. [Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Allia, 16111 Bab-Ezzouar, Alger (Algeria)

    2014-03-01

    We report on the plasma emission formed from an α-alumina target when irradiated by laser into vacuum and through oxygen gas. Two diagnostic tools have been used: ICCD camera fast imaging and optical emission spectroscopy. The alumina plasma was induced by a KrF laser beam at a wavelength of 248 nm and pulse duration of 25 ns. The laser fluence was set to 8 J/cm{sup 2} and the oxygen pressure was varied from 0.01 to 5 mbar. By using the ICCD camera, two dimensional images of the plasma expansion were taken at different times. Depending on oxygen pressure and time delay, the expansion behavior of the plasma showed free expansion, plume splitting, shock wave formation, hydrodynamic instability and deceleration of the plume. Using optical emission spectroscopy, the plasma emission revealed the presence of neutral Al I, Al II, Al III into vacuum and under oxygen ambiance. The molecular emission of aluminum oxide (AlO) was detected only in oxygen ambiance. It should be noted that no oxygen lines were observed. Finally, the evolution of the electronic temperature along the normal axis from the target surface, into vacuum, was estimated using the Boltzmann plot method. - Highlights: • Ablated mass measurements of α-alumina target irradiated by a laser in nanosecond regime. • Optical emission spectroscopy of alumina plasma. • Fast imaging diagnostic of alumina plume using ICCD camera.

  10. [Protective effect of pretreatment of Salvia miltiorrhiza Bunge. f. alba plasma against oxygen-glucose deprivation-induced injury of cultured rat hippocampal neurons by inhibiting apoptosis].

    Science.gov (United States)

    Li, Mei-Yi; Zhang, Yan-Bo; Zuo, Huan; Liu, Li-Li; Niu, Jing-Zhong

    2012-02-25

    The present study was to investigate the effect of Salvia miltiorrhiza Bunge. f. alba (SMA) pharmacological pretreatment on apoptosis of cultured hippocampal neurons from neonate rats under oxygen-glucose deprivation (OGD). Cultured hippocampal neurons were randomly divided into five groups (n = 6): normal plasma group, low dose SMA plasma (2.5%) group, middle dose SMA plasma (5%) group, high dose SMA plasma (10%) group and control group. The hippocampal neurons were cultured and treated with plasma from adult Wistar rats intragastrically administered with saline or aqueous extract of SMA. The apoptosis of neurons was induced by glucose-free Earle's solution containing 1 mmol/L Na2S2O4 and labeled by MTT and Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in control group, whereas the number of apoptotic cells was greatly increased in normal plasma group and low dose SMA plasma group. Both middle and high dose SMA plasma could protect cultured hippocampal neurons from apoptosis induced by OGD (P control, normal plasma and low dose SMA plasma groups, middle and high dose SMA plasma groups both showed significantly higher levels of Bcl-2 (P neurons by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax.

  11. Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies

    Directory of Open Access Journals (Sweden)

    Amy G. Tsai

    2014-10-01

    Full Text Available At least a third of the blood supply in the world is used to transfuse 1–2 units of packed red blood cells for each intervention and most clinical trials of blood substitutes have been carried out at this level of oxygen carrying capacity (OCC restoration. However, the increase of oxygenation achieved is marginal or none at all for molecular hemoglobin (Hb products, due to their lingering vasoactivity. This has provided the impetus for the development of “oxygen therapeutics” using Hb-based molecules that have high oxygen affinity and target delivery of oxygen to anoxic areas. However it is still unclear how these oxygen carriers counteract or mitigate the functional effects of anemia due to obstruction, vasoconstriction and under-perfusion. Indeed, they are administered as a low dosage/low volume therapeutic Hb (subsequently further diluted in the circulatory pool and hence induce extremely small OCC changes. Hyperviscous plasma expanders provide an alternative to oxygen therapeutics by increasing the oxygen delivery capacity (ODC; in anemia they induce supra-perfusion and increase tissue perfusion (flow by as much as 50%. Polyethylene glycol conjugate albumin (PEG-Alb accomplishes this by enhancing the shear thinning behavior of diluted blood, which increases microvascular endothelial shear stress, causes vasodilation and lowering peripheral vascular resistance thus facilitating cardiac function. Induction of supra-perfusion takes advantage of the fact that ODC is the product of OCC and blood flow and hence can be maintained by increasing either or both. Animal studies suggest that this approach may save a considerable fraction of the blood supply. It has an additional benefit of enhancing tissue clearance of toxic metabolites.

  12. Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films

    International Nuclear Information System (INIS)

    Liu, P.; Chen, T.P.; Liu, Z.; Tan, C.S.; Leong, K.C.

    2013-01-01

    Evolution of electrical properties and thin-film transistor characteristics of amorphous indium gallium zinc oxide (IGZO) thin films synthesized by RF sputtering with O 2 plasma immersion has been examined. O 2 plasma immersion results in an enhancement in the Hall mobility and a decrease in the electron concentration; and the transistor performance can be greatly improved by the O 2 plasma immersion. X-ray photoelectron spectroscopy analysis indicates that the effect of O 2 plasma immersion on the electrical properties and the transistor performance can be attributed to the reduction of the oxygen-related defects in the IGZO thin films. - Highlights: • Oxygen plasma immersion effect on indium gallium zinc oxide thin film properties • Oxygen-related defect reduces in the InGaZnO thin film with oxygen plasma immersion. • Increasing oxygen plasma immersion duration on device will decrease the off current. • Oxygen plasma immersion enhances the performance of device

  13. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sungjoon [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Joonhyub [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Park, Chanwon [Department of Electrical and Electronic Engineering, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jin, Joon-Hyung, E-mail: jj1023@chol.com [Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227 (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.kr [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2017-07-15

    Graphical abstract: Superhydrophilic single-walled carbon nanotube obtained by O{sub 2} plasma treatment voluntarily and non-reversibly reverts to a metastable state. This aerobic aging is an essential process to develop a stable carbon nanotube-based sensor. - Highlights: • Superhydrophilic single-walled carbon nanotube network can be obtained by O{sub 2} plasma-based surface modification. • The modified carbon nanotube surface invariably reverts to a metastable state in a non-reversible manner. • Aerobic aging is essential to stabilize the modified carbon nanotube and the carbon nanotube-based sensing device due to minimized sensor-to-sensor variation. - Abstract: Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH{sub 3} gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response

  14. Properties of a-C:H:O plasma polymer films deposited from acetone vapors

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M., E-mail: martin.drabik@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Celma, C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Kousal, J.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Hegemann, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland)

    2014-12-31

    To gain insight into the deposition and stability of oxygen-containing plasma polymer films, the properties of amorphous oxygenated hydrocarbon (a-C:H:O) plasma polymer coatings deposited from acetone vapors under various experimental conditions are investigated. Apart from the discharge power, the influence of the reactive carbon dioxide (CO{sub 2}) gas on the structure of the resulting films is studied. It is found by characterization using X-ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectroscopy that the experimental conditions particularly influence the amount of oxygen in the deposited a-C:H:O plasma polymer films. The O/C elemental ratio increases with increasing amount of CO{sub 2} in the working gas mixture (up to 0.2 for 24 sccm of CO{sub 2} at 30 W) and decreases with increasing RF discharge power (down to 0.17 for 50 W). Furthermore, the nature of bonds between the oxygen and carbon atoms has been examined. Only low amounts of double and triple bonded carbon are observed. This has a particular influence on the aging of the plasma polymer films which is studied both in ambient air and in distilled water for up to 4 months. Overall, stable a-C:H:O plasma polymer films are deposited comprising low amounts (up to about 5%) of ester/carboxyl groups. - Highlights: • Hydrocarbon plasma polymer films with variable oxygen content can be prepared. • Stable oxygenated hydrocarbon plasma polymers contain max 5% of ester/carboxyl groups. • Acetone-derived plasma polymer films can be used as permanent hydrophilic surfaces.

  15. Plasma-material interactions in TFTR

    International Nuclear Information System (INIS)

    Dylla, H.F.; Bell, M.G.; Blanchard, W.R.; Boody, F.P.; Bretz, N.; Budny, R.; Bush, C.E.; Cecchi, J.L.; Cohen, S.A.; Combs, S.K.; Davis, S.L.; Doyle, B.L.; Efthimion, P.C.; England, A.C.; Eubank, H.P.; Fonck, R.; Fredrickson, E.; Grisham, L.R.; Goldston, R.J.; Grek, B.; Groebner, R.; Hawryluk, R.J.; Heifetz, D.; Hendel, H.; Hill, K.W.; Hiroe, S.; Hulse, R.; Johnson, D.; Johnson, L.C.; Kilpatrick, S.; Lamarche, P.H.; Little, R.; Manos, D.M.; Mansfield, D.; Meade, D.M.; Medley, S.S.; Milora, S.L.; Mikkelsen, D.R.; Mueller, D.; Murakami, M.; Nieschmidt, E.; Owens, D.K.; Park, H.; Pontau, A.; Prichard, B.; Ramsey, A.T.; Redi, M.H.; Schivell, J.; Schmidt, G.L.; Scott, S.D.; Sesnic, S.; Shimada, M.; Simpkins, J.E.; Sinnis, J.; Stauffer, F.; Stratton, B.; Tait, G.D.; Taylor, G.; Ulrickson, M.; Von Goeler, S.; Wampler, W.R.; Wilson, K.; Williams, M.; Wong, K.L.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.

    1987-01-01

    This paper presents a summary of plasma-material interactions which influence the operation of TFTR with high current (≤ 2.2 MA) ohmically heated, and high-power (≅ 10 MW) neutral-beam heated plasmas. The conditioning procedures which are applied routinely to the first-wall hardware are reviewed. Fueling characteristics during gas, pellet, and neutral-beam fueling are described. Recycling coefficients near unity are observed for most gas fueled discharges. Gas fueled discharges after helium discharge conditioning of the toroidal bumper limiter, and discharges fueled by neutral beams and pellets, show R e = 5-6x10 19 m -3 ) values of Z eff are ≤ 1.5. Increases in Z eff of ≤ 1 have been observed with neutral beam heating of 10 MW. The primary low Z impurity is carbon with concentrations decreasing from ≅ 10% to e . Oxygen densities tend to increase with n e , and at the ohmic plasma density limit oxygen and carbon concentrations are comparable. Chromium getter experiments and He 2+ /D + plasma comparisons indicate that the limiter is the primary source of carbon and that the vessel wall is a significant source of the oxygen impurity. Metallic impurities, consisting of the vacuum vessel metals (Ni, Fe, Cr) have significant (≅ 10 -4 n e ) concentrations only at low plasma densities (n e 19 m -3 ). The primary source of metallic impurities is most likely ion sputtering from metals deposited on the carbon limiter surface. (orig.)

  16. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    Directory of Open Access Journals (Sweden)

    Partha Saikia

    2016-04-01

    Full Text Available We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te, electron density (ne, ion density (ni, degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  17. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    Science.gov (United States)

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a

  18. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Biazar E

    2011-03-01

    Full Text Available Esmaeil Biazar1, Majid Heidari2, Azadeh Asefnezhad2, Naser Montazeri11Department of Chemistry, Islamic Azad University, Tonekabon Branch, Mazandaran; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IranBackground: Surface modification of medical polymers can improve biocompatibility. Pure polystyrene is hydrophobic and cannot provide a suitable environment for cell cultures. The conventional method for surface modification of polystyrene is treatment with plasma. In this study, conventional polystyrene was exposed to microwave plasma treatment with oxygen and argon gases for 30, 60, and 180 seconds.Methods and results: Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated clearly the presence of functional groups. Atomic force microscopic images of samples irradiated with inert and active gases indicated nanometric surface topography. Samples irradiated with oxygen plasma showed more roughness (31 nm compared with those irradiated with inert plasma (16 nm at 180 seconds. Surface roughness increased with increasing duration of exposure, which could be due to reduction of the contact angle of samples irradiated with oxygen plasma. Contact angle analysis showed reduction in samples irradiated with inert plasma. Samples irradiated with oxygen plasma showed a lower contact angle compared with those irradiated by argon plasma.Conclusion: Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation for samples radiated by oxygen plasma with increasing duration of exposure than those of normal samples.Keywords: surface topography, polystyrene, plasma treatment, argon, oxygen

  19. Atmospheric plasma generates oxygen atoms as oxidizing species in aqueous solutions

    International Nuclear Information System (INIS)

    Hefny, Mohamed Mokhtar; Pattyn, Cedric; Benedikt, Jan; Lukes, Petr

    2016-01-01

    A remote microscale atmospheric pressure plasma jet ( µ APPJ) with He, He/H 2 O, He/O 2 , and He/O 2 /H 2 O gas mixtures was used to study the transport of reactive species from the gas phase into the liquid and the following aqueous phase chemistry. The effects induced by the µ APPJ in water were quantitatively studied using phenol as a chemical probe and by measuring H 2 O 2 concentration and pH values. These results were combined with the analysis of the absolute densities of the reactive species and the modeling of convective/diffusion transport and recombination reactions in the effluent of the plasma jet. Additionally, modified plasma jets were used to show that the role of emitted photons in aqueous chemistry is negligible for these plasma sources. The fastest phenol degradation was measured for the He/O 2 plasma, followed by He/H 2 O, He/O 2 /H 2 O, and He plasmas. The modeled quantitative flux of O atoms into the liquid in the He/O 2 plasma case was highly comparable with the phenol degradation rate and showed a very high transfer efficiency of reactive species from the plasma into the liquid, where more than half of the O atoms leaving the jet nozzle entered the liquid. The results indicate that the high oxidative effect of He/O 2 plasma was primarily due to solvated O atoms, whereas OH radicals dominated the oxidative effects induced in water by plasmas with other gas mixtures. These findings help to understand, in a quantitative way, the complex interaction of cold atmospheric plasmas with aqueous solutions and will allow a better understanding of the interaction of these plasmas with water or buffered solutions containing biological macromolecules, microorganisms, or even eukaryotic cells. Additionally, the µ APPJ He/O 2 plasma source seems to be an ideal tool for the generation of O atoms in aqueous solutions for any future studies of their reactivity. (paper)

  20. Plasma effects on subcellular structures

    International Nuclear Information System (INIS)

    Gweon, Bomi; Kim, Dan Bee; Jung, Heesoo; Choe, Wonho; Kim, Daeyeon; Shin, Jennifer H.

    2010-01-01

    Atmospheric pressure helium plasma treated human hepatocytes exhibit distinctive zones of necrotic and live cells separated by a void. We propose that plasma induced necrosis is attributed to plasma species such as oxygen radicals, charged particles, metastables and/or severe disruption of charged cytoskeletal proteins. Interestingly, uncharged cytoskeletal intermediate filaments are only minimally disturbed by plasma, elucidating the possibility of plasma induced electrostatic effects selectively destroying charged proteins. These bona fide plasma effects, which inflict alterations in specific subcellular structures leading to necrosis and cellular detachment, were not observed by application of helium flow or electric field alone.

  1. Design of a helicon plasma source for ion–ion plasma production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N., E-mail: narayan.sharma@cppipr.res.in; Chakraborty, M.; Neog, N.K.; Bandyopadhyay, M.

    2017-04-15

    Highlights: • Development of a helicon plasma system to carry out ion–ion plasma studies in electronegative gases such as Hydrogen, Oxygen and Chlorine. • Determination of initial parameters of helicon plasma source for ion–ion plasma by using dispersion relation of bounded helicon waves. • Design and development of solenoid with magnetic field strength production capability of ∼ 600 G along the axis of the chamber. • Optimization of the chamber parameters using Helic codes and estimation of optimum attainable density. • Estimation of RF power requirements for various gases. - Abstract: A helicon plasma system is being designed and developed at CPP-IPR. The design parameters of the system are deduced from the dispersion relation of bounded helicon waves and the required magnetic fields are simulated by using Poisson Superfish code. The Helic code is used to simulate the power deposition profile for various conditions and to investigate the optimum values of chamber parameters for effective coupling of radio frequency (RF) power to plasma. The helicon source system is aimed at carrying out ion–ion plasma studies in electronegative gases such as Hydrogen, Oxygen and Chlorine. The system mainly consists of a source chamber in which helicon plasma will be produced by injecting RF power at a frequency of 13.56 MHz through a right helical antenna in presence of a DC magnetic field followed by an expansion chamber in which it is expected to produce negative ions along with the positive ions. Installation of the various parts of the system is in progress. The details of the design and development of the system is presented in this article.

  2. A highly stable (SnOx-Sn)@few layered graphene composite anode of sodium-ion batteries synthesized by oxygen plasma assisted milling

    Science.gov (United States)

    Cheng, Deliang; Liu, Jiangwen; Li, Xiang; Hu, Renzong; Zeng, Meiqing; Yang, Lichun; Zhu, Min

    2017-05-01

    The (SnOx-Sn)@few layered graphene ((SnOx-Sn)@FLG) composite has been synthesized by oxygen plasma-assisted milling. Owing to the synergistic effect of rapid plasma heating and ball mill grinding, SnOx (1 ≤ x ≤ 2) nanoparticles generated from the reaction of Sn with oxygen are tightly wrapped by FLG nanosheets which are simultaneously exfoliated from expanded graphite, forming secondary micro granules. Inside the granules, the small size of the SnOx nanoparticles enables the fast kinetics for Na+ transfer. The in-situ formed FLG and residual Sn nanoparticles improve the electrical conductivity of the composite, meanwhile alleviate the aggregation of SnOx nanoparticles and relieve the volume change during the cycling, which is beneficial for the cyclic stability for the Na+ storage. As an anode material for sodium-ion batteries, the (SnOx-Sn)@FLG composite exhibits a high reversible capacity of 448 mAh g-1 at a current density of 100 mA g-1 in the first cycle, with 82.6% capacity retention after 250 cycles. Even when the current density increases to 1000 mA g-1, this composite retains 316.5 mAh g-1 after 250 cycles. With superior Na+ storage stability, the (SnOx-Sn)@FLG composite can be a promising anode material for high performance sodium-ion batteries.

  3. A numerical two layer model for blood oxygenation in lungs

    International Nuclear Information System (INIS)

    Aminatai, A.

    2001-01-01

    In the modelling of the simultaneous transport of O 2 and CO 2 in the pulmonary circulation described in our earlier studies, the blood has been treated as a homogeneous layer of haemoglobin solution. Since the size of the erythrocyte is not negligible in comparison with that of the capillary, the blood can no longer be considered as a homogeneous fluid and hence, It is worthwhile to consider the blood flow as a two-phase flow consisting of cells and plasma. In the present study, the heterogeneous nature of blood has been proposed by considering the axial train model for the flow [whitmore (1967)], in order to analyze the effect of cell free plasma layer on the process of blood oxygenation in pulmonary capillaries. The proposed model consists of a core of suspended erythrocytes surrounded by a cell free plasma layer near the wall. The coupled system of convective diffusion equaions together with the physiologically relevant boundary, entrance and interface conditions is solved numerically by a four-point semi-implicit scheme to gether with a fixed point iterative technique. The distance traversed by the blood before getting fully oxygenated is computed. It is shown that the core haematocrit and the thickness of the cell depleted layer affect the oxygenation process significantly. It is found that (i) oxygen takes longest and carbondioxide is the fastest to attain equilibraton, (ii) the blood is completely oxygenated within one-fifth part of its transit and (iii) the rate of oxygenation is smaller in case of homogeneous model than that in heterogenous model in the capillary. Finally, the effect of various physiological parameters on the rate of oxygenation has been examined

  4. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    Science.gov (United States)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  5. Plasma interactions determine the composition in pulsed laser deposited thin films

    Science.gov (United States)

    Chen, Jikun; Döbeli, Max; Stender, Dieter; Conder, Kazimierz; Wokaun, Alexander; Schneider, Christof W.; Lippert, Thomas

    2014-09-01

    Plasma chemistry and scattering strongly affect the congruent, elemental transfer during pulsed laser deposition of target metal species in an oxygen atmosphere. Studying the plasma properties of La0.6Sr0.4MnO3, we demonstrate for as grown La0.6Sr0.4MnO3-δ films that a congruent transfer of metallic species is achieved in two pressure windows: ˜10-3 mbar and ˜2 × 10-1 mbar. In the intermediate pressure range, La0.6Sr0.4MnO3-δ becomes cation deficient and simultaneously almost fully stoichiometric in oxygen. Important for thin film growth is the presence of negative atomic oxygen and under which conditions positive metal-oxygen ions are created in the plasma. This insight into the plasma chemistry shows why the pressure window to obtain films with a desired composition and crystalline structure is narrow and requires a careful adjustment of the process parameters.

  6. Diagnostics and biomedical applications of radiofrequency plasmas

    International Nuclear Information System (INIS)

    Lazović, Saša

    2012-01-01

    In this paper we present spatial profiles of ion and atomic oxygen concentrations in a large scale cylindrical 13.56 MHz capacitively coupled plasma low pressure reactor suitable for indirect biomedical applications (like treatment of textile to increase antibacterial properties) and direct (treatment of seeds of rare and protected species). Such reactor can easily be used for the sterilization of medical instruments by removing bacteria, spores, prions and fungi as well. We also discuss electrical properties of the system based on the signals obtained by the derivative probes and show the light emission profiles close to the sample platform. In the case of seeds treatment, the desired effect is to plasma etch the outer shell of the seed which will lead to the easier nutrition and therefore increase of the germination. In the case of textile treatment the functionalization is done by bounding atomic oxygen to the surface. It appears that antibacterial properties of the textile are increased by incorporating nanoparticles to the fibres which can successfully be done after the plasma treatment. From these two examples it is obvious that the balance of ion and atomic oxygen concentrations as well as proper choice of ion energy and power delivered to the plasma direct the nature of the plasma treatment.

  7. Natural dyeing and UV protection of plasma treated cotton

    Science.gov (United States)

    Gorjanc, Marija; Mozetič, Miran; Vesel, Alenka; Zaplotnik, Rok

    2018-03-01

    Raw cotton fabrics have been exposed to low-pressure non-equilibrium gaseous plasma to improve the adsorption of natural dyes as well as ultraviolet (UV) protection factor. Plasma created in a glass tube by an electrodeless radiofrequency (RF) discharge was created either in oxygen or ammonia at the pressure of 50 Pa to stimulate formation of oxygen and nitrogen groups, respectively. The type and concentration of functional groups was determined by X-ray photoelectron spectroscopy (XPS) and morphological modifications by scanning electron microscopy (SEM). The colour yield for curcumin dye was improved significantly for samples treated with ammonia plasma what was explained by bonding of the dye to surface of amino groups. Contrary, the yield decreased when oxygen plasma treatment was applied due to the negatively charged surface that repels the negatively charged dye molecules. The effect was even more pronounced when using green tea extract as the colouring agent. The colour difference between the untreated and ammonia plasma treated sample increased linearly with plasma treatment time reaching the factor of 3.5 for treatment time of 300 s. The ultraviolet protection factor (UPF) was over 50 indicating excellent protection due to improved adsorption of the dye on the ammonia plasma treated samples.

  8. Synthesis and Luminescence Properties of Iridium(III Azide- and Triazole-Bisterpyridine Complexes

    Directory of Open Access Journals (Sweden)

    Timothy W. Schmidt

    2013-07-01

    Full Text Available We describe here the synthesis of azide-functionalised iridium(III bisterpyridines using the “chemistry on the complex” strategy. The resulting azide-complexes are then used in the copper(I-catalysed azide-alkyne Huisgen 1,3-dipolar cycloaddition “click chemistry” reaction to from the corresponding triazole-functionalised iridium(III bisterpyridines. The photophysical characteristics, including lifetimes, of these compounds were also investigated. Interestingly, oxygen appears to have very little effect on the lifetime of these complexes in aqueous solutions. Unexpectedly, sodium ascorbate acid appears to quench the luminescence of triazole-functionalised iridium(III bisterpyridines, but this effect can be reversed by the addition of copper(II sulfate, which is known to oxidize ascorbate under aerobic conditions. The results demonstrate that iridium(III bisterpyridines can be functionalized for use in “click chemistry” facilitating the use of these photophysically interesting complexes in the modification of polymers or surfaces, to highlight just two possible applications.

  9. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  10. Influence of O2 or H2O in a plasma jet and its environment on plasma electrical and biochemical performances

    Science.gov (United States)

    Adhikari, Ek R.; Samara, Vladimir; Ptasinska, Sylwia

    2018-05-01

    Because environmental conditions, such as room temperature and humidity, fluctuate arbitrarily, effects of atmospheric pressure plasma jets (APPJs) used in medical applications operating at various places and time might vary. Therefore, understanding the possible effects of air components in and outside APPJs is essential for clinical use, which requires reproducibility of plasma performance. These air components can influence the formation of reactive species in the APPJ, and the type and amount of these species formed depend on the feed gas inside the APPJ and the plasma jet environment. In this study, we monitored changes in plasma current and power, as well as in the level of DNA damage attributable to plasma irradiation, by adjusting the fraction of oxygen and water vapor in the plasma jet environment and feed gas. Here, DNA was used as a molecular probe to identify chemical changes that occurred in the plasma jet under these various environmental conditions. The damaged and undamaged fractions of DNA were quantified using agarose gel electrophoresis. We obtained an optimal amount of oxygen or water vapor in the plasma jet environment, as well as in the feed gas, which increased the level of DNA damage significantly. This increase can be attributed primarily to the formation of reactive species caused by water and oxygen decomposition in the APPJ detected with mass spectrometry. Moreover, we observed that the plasma power remained the same or decreased when gas was added to the jet environment or the feed gas, respectively, but in both cases, DNA damage increased. This indicates the superiority of plasma chemistry over the electrical power applied for APPJ ignition of the plasma sources used in medical applications.

  11. Therapeutic Plasma Exchange in Critically Ill Children Requiring Intensive Care.

    Science.gov (United States)

    Cortina, Gerard; McRae, Rosemary; Chiletti, Roberto; Butt, Warwick

    2018-02-01

    To characterize the clinical indications, procedural safety, and outcome of critically ill children requiring therapeutic plasma exchange. Retrospective observational study based on a prospective registry. Tertiary and quaternary referral 30-bed PICU. Forty-eight critically ill children who received therapeutic plasma exchange during an 8-year period (2007-2014) were included in the study. Therapeutic plasma exchange. A total of 48 patients underwent 244 therapeutic plasma exchange sessions. Of those, therapeutic plasma exchange was performed as sole procedure in 193 (79%), in combination with continuous renal replacement therapy in 40 (16.4%) and additional extracorporeal membrane oxygenation in 11 (4.6%) sessions. The most common admission diagnoses were hematologic disorders (30%), solid organ transplantation (20%), neurologic disorders (20%), and rheumatologic disorders (15%). Complications associated with the procedure occurred in 50 (21.2%) therapeutic plasma exchange sessions. Overall, patient survival from ICU was 82%. Although patients requiring therapeutic plasma exchange alone (n = 31; 64%) had a survival rate of 97%, those with additional continuous renal replacement therapy (n = 13; 27%) and extracorporeal membrane oxygenation (n = 4; 8%) had survival rates of 69% and 50%, respectively. Factors associated with increased mortality were lower Pediatric Index of Mortality 2 score, need for mechanical ventilation, higher number of failed organs, and longer ICU stay. Our results indicate that, in specialized centers, therapeutic plasma exchange can be performed relatively safely in critically ill children, alone or in combination with continuous renal replacement therapy and extracorporeal membrane oxygenation. Outcome in children requiring therapeutic plasma exchange alone is excellent. However, survival decreases with the number of failed organs and the need for continuous renal replacement therapy and extracorporeal membrane oxygenation.

  12. Ozone synthesis improves by increasing number density of plasma channels and lower voltage in a nonthermal plasma

    Science.gov (United States)

    Arif Malik, Muhammad; Hughes, David

    2016-04-01

    Improvements in ozone synthesis from air and oxygen by increasing the number density of plasma channels and lower voltage for the same specific input energy (SIE) were explored in a nonthermal plasma based on a sliding discharge. The number of plasma channels and energy per pulse increased in direct proportion to the increase in the effective length of the anode (the high voltage electrode). Decreasing the discharge gap increased the energy per pulse for the same length and allowed the installation of more electrode pairs in the same space. It allowed the increase of the number of plasma channels in the same space to achieve the same SIE at a lower peak voltage with less energy per plasma channel. The ozone concentration gradually increased to ~1500 ppmv (140 to 50 g kWh-1) from air and to ~6000 ppmv (400 to 200 g kWh-1) from oxygen with a gradual increase in the SIE to ~200 J L-1, irrespective of the variations in electrode geometry, applied voltage or flow rate of the feed gas. A gradual increase in SIE beyond 200 J L-1 gradually increased the ozone concentration to a certain maximum value followed by a decline, but the rate of increase and the maximum value was higher for the greater number of plasma channels and lower peak voltage combination. The maximum ozone concentration was ~5000 ppmv (~30 g kWh-1) from air and ~22 000 ppmv (~80 g kWh-1) from oxygen. The results are explained on the basis of characteristics of the plasma and ozone synthesis mechanism.

  13. Surface modification of polyethylene by plasma; Modificacion superficial de polietileno por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Colin O, E

    2003-07-01

    The products made of polyethylene (PE) go from construction materials, electric insulating until packing material. The films for bags and pack occupy 83.6% of the distribution of the market of PE approximately. The enormous quantity of PE that is generated by its indiscriminate use brings as consequence a deterioration to the atmosphere, due to the long life that they present as waste. This work is a study on the modification of low density polyethylene films. In this type of thin materials, the changes in the surface meet with largely on the conformation of the rest of the material. To induce changes that modify the surface of PE, plasmas were used with reactive atmospheres of air, oxygen and nitrogen. The experimentation that was carries out went to introduce the PE to a cylindrical reactor where it was generated the plasma of air, oxygen and nitrogen to different times of exposure. After having carried out the exposure to the plasma, it was found that in the polyethylene it modifies their morphology, crystallinity, hydrophobicity, composition and electric conductivity. The analytical techniques that were used to characterize later to the polyethylene of being in contact with the plasma were: X-ray diffraction, Scanning Electron Microscopy, Infrared spectroscopy, Electric conductivity, Angle of contact and finally Thermal Gravimetric Analysis. The content of this work it is presented in five chapters: In the chapter 1 there are presented some general concepts of plasma and of the one polymer in study PE. In the chapter 2 it is made a general revision on modification of surfaces, as well as the properties that were modified in polymeric materials that were exposed to plasma in previous works. In the chapter 3 the experimental part and the conditions used are described in the modification of the PE. Also in this chapter a brief description it is made of the used characterization techniques. The results and discussion are presented in the chapter 4. These results

  14. Modification of polycarbonate surface in oxidizing plasma

    Science.gov (United States)

    Ovtsyn, A. A.; Smirnov, S. A.; Shikova, T. G.; Kholodkov, I. V.

    2017-11-01

    The properties of the surface of the film polycarbonate Lexan 8010 were experimentally studied after treatment in a DC discharge plasma in oxygen and air at pressures of 50-300 Pa and a discharge current of 80 mA. The contact angles of wetting and surface energies are measured. The topography of the surface was investigated by atomic force microscopy. The chemical composition of the surface was determined from the FT-IR spectroscopy data in the variant of total internal reflection, as well as X-ray photoelectron spectroscopy. Treatment in the oxidizing plasma leads to a change in morphology (average roughness increases), an increase in the surface energy, and the concentration of oxygen-containing groups (hydroxyl groups, carbonyl groups in ketones or aldehydes and in oxyketones) on the surface of the polymer. Possible reasons for the difference in surface properties of polymer under the action of oxygen and air plasma on it are discussed.

  15. Microbial Inactivation in the Liquid Phase Induced by Multigas Plasma Jet.

    Directory of Open Access Journals (Sweden)

    Toshihiro Takamatsu

    Full Text Available Various gas atmospheric nonthermal plasmas were generated using a multigas plasma jet to treat microbial suspensions. Results indicated that carbon dioxide and nitrogen plasma had high sterilization effects. Carbon dioxide plasma, which generated the greatest amount of singlet oxygen than other gas plasmas, killed general bacteria and some fungi. On the other hand, nitrogen plasma, which generated the largest amount of OH radical, killed ≥ 6 log of 11 species of microorganisms, including general bacteria, fungi, acid-fast bacteria, spores, and viruses in 1-15 min. To identify reactive species responsible for bacterial inactivation, antioxidants were added to bacterial suspensions, which revealed that singlet oxygen and OH radicals had greatest inactivation effects.

  16. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    International Nuclear Information System (INIS)

    Polk, James E.; Capece, Angela M.

    2015-01-01

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  17. The use of halloysite clay and carboxyl-functionalised multi-walled carbon nanotubes for recombinant LipL32 antigen delivery enhanced the IgG response.

    Science.gov (United States)

    Hartwig, Daiane D; Bacelo, Kátia L; Oliveira, Thaís L; Schuch, Rodrigo; Seixas, Fabiana K; Collares, Tiago; Rodrigues, Oscar; Hartleben, Cláudia P; Dellagostin, Odir A

    2015-02-01

    We studied the feasibility of using halloysite clay nanotubes (HNTs) and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs) as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32). Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05) of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations.

  18. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine.

    Science.gov (United States)

    Ban, Rui; Abdel-Halim, E S; Zhang, Jianrong; Zhu, Jun-Jie

    2015-02-21

    A novel luminescence probe based on mono-6-amino-β-cyclodextrin (NH2-β-CD) functionalised gold nanoclusters (β-CD-AuNC) was designed for dopamine (DA) detection. The NH2-β-CD molecules were conjugated onto the surface of 11-mercaptoundecanoic acid capped AuNCs (11-MUA-AuNC) via a carbodiimide coupling reaction. The integrity of the β-CD cavities was preserved on the surface of AuNCs and they retained their capability for molecular DA host-guest recognition. DA could be captured by the β-CD cavities to form an inclusion complex in which the oxidised DA could quench the fluorescence of the β-CD-AuNC probe by electron transfer. The probe could be used to quantify DA in the range of 5-1000 nM with a detection limit of 2 nM. This sensitivity was 1-2 orders of magnitude higher than that in previously reported methods. Interference by both ascorbic acid (AA) and uric acid (UA) was not observed. Therefore, the β-CD-AuNC probe could be directly used to determine the DA content in biological samples without further separation. This strategy was successfully applied to a DA assay in spiked human serum samples and it exhibited remarkable accuracy, sensitivity and selectivity.

  19. Factors affecting the adhesion of microwave plasma deposited siloxane films on polycarbonate

    International Nuclear Information System (INIS)

    Muir, B.W.; Thissen, H.; Simon, G.P.; Murphy, P.J.; Griesser, H.J.

    2006-01-01

    The effects of a radiofrequency oxygen plasma pretreatment and residual water content in the substrate on the adhesion of microwave plasma deposited tetramethyldisiloxane thin films on Bisphenol-A polycarbonate (BPA-PC) were investigated. Samples were characterised using a crosshatch adhesion test, optical and electron microscopy, and X-ray photoelectron spectroscopy. It was found that the use of a low power (5 W) and low treatment time (0.1 s) oxygen plasma can improve adhesion while greater treatment times (1-30 s) and higher oxygen plasma powers (40 W) resulted in a decreased level of adhesion. In addition, it was shown that a BPA-PC water content greater than 90 ppm resulted in rapid adhesion failure of deposited films at the substrate-plasma polymer interface during outdoor weathering. All films degraded substantially when exposed to environmental weathering, indicating ageing reactions within the plasma polymer films themselves, and at the bulk polymer-coating interface

  20. Fabrication of TiC-TiO{sub 2} composite powders by thermal plasma oxidation of titanium carbide powder; Tanka chitan funmatsu no plasma sanka hanno ni yori seiseishita TiC-TiO{sub 2} fukugo funmatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, T.; Li, Y.; Haneda, H. [National institute for Research Inorganic materials, Tsukuba (Japan); Kataoka, E. [Showa Cabot Supermetals K.K., Tokyo (Japan)

    2000-09-15

    TiC-TiO{sub 2} composite powders were prepared by in-flight oxidation of titanium carbide powder in RF induction thermal plasmas. Original titanium carbide powder of 20 - 38 {mu}m in particle size was axially injected into the center of argon-oxygen plasma. The powders were partially spheroidized and evaporated through the plasma treatment. X-ray diffraction of plasma-treated powders showed the formation of titanium dioxides, both rutile and anatase phases. The phase content of the plasma-prepared powders strongly depended on the plasma conditions, such as the plasma generating pressure and the oxygen flow rate in plasma generating gas. Especially, the increase of oxygen flow rate in plasma gas gave rise to the increase of heat transfer from plasma to powder particles, exothermic heat of oxidation reaction and cooling rate of plasma, giving the increase of spheroidization ratio, formation ratio of titanium dioxides, and content of anatase phases. (author)

  1. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    Science.gov (United States)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  2. Composition, structure and morphology of oxide layers formed on austenitic stainless steel by oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Anandan, C.; Rajam, K.S.

    2007-01-01

    Oxygen ions were implanted in to austenitic stainless steel by plasma immersion ion implantation at 400 deg. C. The implanted samples were characterized by XPS, GIXRD, micro-Raman, AFM, optical and scanning electron microscopies. XPS studies showed the presence of Fe in elemental, as Fe 2+ in oxide form and as Fe 3+ in the form of oxyhydroxides in the substrate. Iron was present in the oxidation states of Fe 2+ and Fe 3+ in the implanted samples. Cr and Mn were present as Cr 3+ and Mn 2+ , respectively, in both the substrate and implanted samples. Nickel remained unaffected by implantation. GIXRD and micro-Raman studies showed the oxide to be a mixture of spinel and corundum structures. Optical and AFM images showed an island structure on underlying oxide. This island structure was preserved at different thicknesses. Further, near the grain boundaries more oxide growth was found. This is explained on the basis of faster diffusion of oxygen in the grain boundary regions. Measurement of total hemispherical optical aborptance, α and emittance, ε of the implanted sample show that it has good solar selective properties

  3. Development of barrier coatings for cellulosic-based materials by cold plasma methods

    Science.gov (United States)

    Denes, Agnes Reka

    Cellulose-based materials are ideal candidates for future industries that need to be based on environmentally safe technologies and renewable resources. Wood represents an important raw material and its application as construction material is well established. Cellophane is one of the most important cellulosic material and it is widely used as packaging material in the food industry. Outdoor exposure of wood causes a combination of physical and chemical degradation processes due to the combined effects of sunlight, moisture, fungi, and bacteria. Cold-plasma-induced surface modifications are an attractive way for tailoring the characteristics of lignocellulosic substrates to prevent weathering degradation. Plasma-polymerized hexamethyldisiloxane (PPHMDSO) was deposited onto wood surfaces to create water repellent characteristics. The presence of a crosslinked macromolecular structure was detected. The plasma coated samples exhibited very high water contact angle values indicating the existence of hydrophobic surfaces. Reflective and electromagnetic radiation-absorbent substances were incorporated with a high-molecular-weight polydimethylsiloxane polymer in liquid phase and deposited as thin layers on wood surfaces. The macromolecular films, containing the dispersed materials, were then converted into a three dimensional solid state network by exposure to a oxygen-plasma. It was demonstrated that both UV-absorbent and reflectant components incorporated into the plasma-generated PDMSO matrix protected the wood from weathering degradation. Reduced oxidation and less degradation was observed after simulated weathering. High water contact angle values indicated a strong hydrophobic character of the oxygen plasma-treated PDMSO-coated samples. Plasma-enhanced surface modifications and coatings were employed to create water-vapor barrier layers on cellophane substrate surfaces. HMDSO was selected as a plasma gas and oxygen was used to ablate amorphous regions. Oxygen plasma

  4. Characterization of a 5-eV neutral atomic oxygen beam facility

    Science.gov (United States)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  5. Carbon fiber manufacturing via plasma technology

    Science.gov (United States)

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  6. Plasma interactions determine the composition in pulsed laser deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Conder, Kazimierz; Wokaun, Alexander; Schneider, Christof W.; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Laboratory of Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2014-09-15

    Plasma chemistry and scattering strongly affect the congruent, elemental transfer during pulsed laser deposition of target metal species in an oxygen atmosphere. Studying the plasma properties of La{sub 0.6}Sr{sub 0.4}MnO{sub 3}, we demonstrate for as grown La{sub 0.6}Sr{sub 0.4}MnO{sub 3-δ} films that a congruent transfer of metallic species is achieved in two pressure windows: ∼10{sup −3} mbar and ∼2 × 10{sup −1} mbar. In the intermediate pressure range, La{sub 0.6}Sr{sub 0.4}MnO{sub 3-δ} becomes cation deficient and simultaneously almost fully stoichiometric in oxygen. Important for thin film growth is the presence of negative atomic oxygen and under which conditions positive metal-oxygen ions are created in the plasma. This insight into the plasma chemistry shows why the pressure window to obtain films with a desired composition and crystalline structure is narrow and requires a careful adjustment of the process parameters.

  7. High rate performance of LiMn2O4 cathodes for lithium ion batteries synthesized by low temperature oxygen plasma assisted sol–gel process

    International Nuclear Information System (INIS)

    Chen, C.-L.; Chiu, K.-F.; Chen, Y.-R.; Chen, C.C.; Lin, H.C.; Chiang, H.Y.

    2013-01-01

    Nano-crystalline LiMn 2 O 4 thin films have been synthesized by the sol–gel process at low temperature (623 K). The low temperature prepared films are treated by a direct current pulsed oxygen plasma, and tested as cathodes for lithium batteries. The plasma treated films are able to sustain charge–discharge cycles under significant high current density of up to 5.4 A/g corresponding to 45 C for battery operation. The capacity ratio for discharging at 1.2 A/g and 0.024 A/g is over 65%, indicating low internal resistance, which meets the requirement of fast charge and discharge for electric vehicles. The stable high current density performances can be attributed to the formation of a dense surface morphology that is induced by the plasma irradiation. The formation of the surface morphology results in the more uniform current distribution on the film surface, which decreases the interface charge transfer resistances as measured by the electrochemical impedance spectra. - Highlights: • A low temperature process has been used to synthesize LiMn 2 O 4 thin films. • Plasma treatment can reduce the interface charge transfer resistances for LiMn 2 O 4 . • LiMn 2 O 4 cathodes treated by plasma treatment can deliver high rate capability

  8. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application

    Science.gov (United States)

    Dixon, D.; Babu, D. J.; Langner, J.; Bruns, M.; Pfaffmann, L.; Bhaskar, A.; Schneider, J. J.; Scheiba, F.; Ehrenberg, H.

    2016-11-01

    Oxygen plasma treatment was applied on commercially available graphite felt electrodes based on rayon (GFA) and polyacrylonitrile (GFD). The formation of functional groups on the surface of the felt was confirmed by X-ray photoelectron spectroscopy measurements. The BET studies of the plasma treated electrodes showed no significant increase in surface area for both the rayon as well as the PAN based felts. Both plasma treated electrodes showed significantly enhanced V3+/V2+ redox activity compared to the pristine electrodes. Since an increase of the surface area has been ruled out for plasma treated electrode the enhanced activity could be attributed to surface functional groups. Interestingly, plasma treated GFD felts showed less electrochemical activity towards V5+/V4+ compared to the pristine electrode. Nevertheless, an overall increase of the single cell performance was still observed as the negative electrode is known to be the performance limiting electrode. Thus, to a great extent the present work helps to preferentially understand the importance of functional groups on the electrochemical activity of negative and positive redox reaction. The study emphasizes the need of highly active electrodes especially at the negative electrode side as inactive electrodes can still facilitate hydrogen evolution and degrade the electrolyte in VRFBs.

  9. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.

    Science.gov (United States)

    Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun

    2017-10-01

    Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O 2 and CO 2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1737-1746, 2017. © 2016 Wiley Periodicals, Inc.

  10. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    Science.gov (United States)

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  11. Arc plasma devices: Evolving mechanical design from numerical

    Indian Academy of Sciences (India)

    A recipe for obtaining mechanical design of arc plasma devices from numerical ... to the plasma of the mixture of molecular gases like nitrogen and oxygen. ... Temperature field, associated fluid dynamics and electrical characteristics of a ...

  12. Plasma Post Oxidation of Plasma Nitrocarburized SKD 61 Steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Plasma nitrocarburizing and plasma oxidizing treatments were performed to improve the wear and corrosion resistance of SKD 61 steel. Plasma nitrocarburizing was conducted for 12 h at 540℃ in the nitrogen,hydrogen and methane atmosphere to produce the ε-Fe,2-3(N,C) phase. The compound layer produced by plasma nitrocarburising was predominantly composed of ε-phase, with a small proportion of γ′-Fe4(N,C) phase.The thickness of the compound layer and the diffusion layer are about 10 μm and about 200μm, respectively.Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of 500℃ for 1 h. The very thin magnetite (Fe3O4) layer of 1-2μm in thickness on top of the compound layer was obtained. Anodic polarization test revealed that plasma nitrocarburizing process contributed a significant improvement of corrosion resistance of SKD 61 steel. However, the corrosion characteristics of the nitrocarburized compound layer was deteriorated by oxidation treatment.

  13. The use of halloysite clay and carboxyl-functionalised multi-walled carbon nanotubes for recombinant LipL32 antigen delivery enhanced the IgG response

    Directory of Open Access Journals (Sweden)

    Daiane D Hartwig

    2015-02-01

    Full Text Available We studied the feasibility of using halloysite clay nanotubes (HNTs and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32. Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05 of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations.

  14. Oxygen plasma etching of graphene: A first-principles dynamical inspection of the reaction mechanisms and related activation barriers

    Science.gov (United States)

    Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi; Dept. of Applied Physics Team; Institute of Physics and Chemistry of Strasbourg (IPCMS) Collaboration; Department Of Materials Engineering Science Collaboration

    2013-03-01

    Oxygen plasma etching is a crucial step in the fabrication of electronic circuits and has recently received a renovated interest in view of the realization of carbon-based nanodevices. In an attempt at unraveling the atomic-scale details and to provide guidelines for the control of the etching processes mechanisms, we inspected the possible reaction pathways via reactive first principles simulations. These processes involve breaking and formation of several chemical bonds and are characterized by different free-energy barriers. Free-energy sampling techniques (metadynamics and blue moon), used to enhance the standard Car-Parrinello molecular dynamics, provide us a detailed microscopic picture of the etching of graphene surfaces and a comprehensive scenario of the activation barriers involved in the various steps. MEXT, Japan - contract N. 22104005

  15. Radial and azimuthal distribution of Io's oxygen neutral cloud observed by Hisaki/EXCEED

    Science.gov (United States)

    Koga, R.; Tsuchiya, F.; Kagitani, M.; Sakanoi, T.; Yoneda, M.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kimura, T.; Smith, H. T.

    2017-12-01

    We report the spatial distributions of oxygen neural cloud surrounding Jupiter's moon Io and along Io's orbit observed by the HISAKI satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exobase and move to corona ( 5.8 Io radii) mainly due to atmospheric sputtering. Io plasma torus is formed by ionization of these atoms by electron impact and charge exchange processes. It is essential to examine the dominant source of Io plasma torus, particularly in the vicinity of Io (5.8 Io radii; extended neutral clouds). The spatial distribution of oxygen and sulfur neutral clouds is important to understand the source. The extreme ultraviolet spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Hisaki satellite observed Io plasma torus continuously in 2014-2015, and we carried out the monitoring of the distribution of atomic oxygen emission at 130.4 nm. The emission averaged over the distance range of 4.5-6.5 Jovian radii on the dawn and dusk sides strongly depends on the Io phase angle (IPA), and has a emission peak between IPA of 60-90 degrees on the dawn side, and between 240-270 degrees on the dusk side, respectively. It also shows the asymmetry with respect to Io's position: the intensity averaged for IPA 60-90 degrees (13.3 Rayleighs (R)) is 1.2 times greater than that for IPA 90-120 degrees (11.1 R) on the dawn side. The similar tendency is found on the dusk side. Weak atomic oxygen emission (4 R) uniformly distributes in every IPA. We also examined the radial distribution of the oxygen neutral cloud during the same period and found the emission peak near Io's orbit with decreasing the intensity toward 8.0 Jupiter radii. The results show the high density component of the oxygen neutral cloud is concentrated around Io and extends mainly toward leading side of Io. In addition, the low density neutrals uniformly exist along Io's orbit. Both components extend radially outward up to 8 Jovian radii with

  16. Methane Post-Processing for Oxygen Loop Closure

    Science.gov (United States)

    Greenwood, Zachary W.; Abney, Morgan B.; Miller, Lee

    2016-01-01

    State-of-the-art United States Atmospheric Revitalization carbon dioxide (CO2) reduction is based on the Sabatier reaction process, which recovers approximately 50% of the oxygen (O2) from crew metabolic CO2. Oxygen recovery from carbon dioxide is constrained by the limited availability of reactant hydrogen. Post-processing of methane to recover hydrogen with the Umpqua Research Company Plasma Pyrolysis Assembly (PPA) has the potential to further close the Atmospheric Revitalization oxygen loop. The PPA decomposes methane into hydrogen and hydrocarbons, predominantly acetylene, and a small amount of solid carbon. The hydrogen must then be purified before it can be recycled for additional oxygen recovery. Long duration testing and evaluation of a four crew-member sized PPA and a discussion of hydrogen recycling system architectures are presented.

  17. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  18. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    Energy Technology Data Exchange (ETDEWEB)

    Caldarola, Dario [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Mitev, Dimitar P. [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Marlin, Lucile [Ecole Nationale Superieure des Ingenieurs en Arts Chimiques et Technologiquesm, Toulouse (France); Irish Separation Science Cluster, Dublin City University, Dublin (Ireland); Nesterenko, Ekaterina P. [Irish Separation Science Cluster, Dublin City University, Dublin (Ireland); Paull, Brett [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Onida, Barbara [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); CR-INSTM for Materials with Controlled Porosity (Italy); Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado [Analytical Chemistry Department, University of Torino, Via P. Giuria 5, 10125 Torino (Italy); Nesterenko, Pavel N., E-mail: Pavel.Nesterenko@utas.edu.au [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia)

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (d{sub p} = 37–63 μm, average pore size 6 nm, specific surface area 425 m{sup 2} g{sup −1}) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid–base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 10{sup 4}, 4.9 × 10{sup 5} and 2.6 × 10{sup 4} for Zn(II), Pb(II) and Cd(II), respectively.

  19. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    Science.gov (United States)

    Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.

  20. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Tresp, H; Hammer, M U; Winter, J; Reuter, S; Weltmann, K-D

    2013-01-01

    In this paper the qualitative and quantitative detection of oxygen radicals in liquids after plasma treatment with an atmospheric pressure argon plasma jet by electron paramagnetic resonance spectroscopy is investigated. Absolute values for · OH and O 2 ·- radical concentration and their net production rate in plasma-treated liquids are determined without the use of additional scavenging chemicals such as superoxide dismutase (SOD) or mannitol (D-MAN). The main oxygen-centred radical generation in PBS was found to originate from the superoxide radical. It is shown that hidden parameters such as the manufacturer of chemical components could have a big influence on the comparability and reproducibility of the results. Finally, the effect of a shielding gas device for the investigated plasma jet with a shielding gas composition of varying oxygen-to-nitrogen ratio on radical generation after plasma treatment of phosphate-buffered saline solution was investigated. (paper)

  1. Singlet oxygen in the low-temperature plasma of an electron-beam-sustained discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Klimachev, Yu. M.; Kotkov, A. A.; Kochetov, I. V.; Napartovich, A. P.; Podmar'kov, Yu. P.; Rulev, O. A.; Seleznev, L. V.; Sinitsyn, D. V.; Frolov, M. P.; Yuryshev, N. N.

    2006-01-01

    Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (∼18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ∼2 to ∼11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results

  2. Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jesuraj, P. Justin; Parameshwari, R. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India); Kanthasamy, K.; Koch, J. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Pfnür, H. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Laboratorium für Nano- und Quantene$ngineering, Schneiderberg 30, D-30167, Hannover (Germany); Jeganathan, K., E-mail: kjeganathan@yahoo.com [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India)

    2017-03-01

    Graphical abstract: Plasma treated Graphene oxide for hole injection enhancement in OLEDs. - Highlights: • Oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma exposed graphene oxide (GO) sheets have been demonstrated as hole buffer layers in OLEDs. • O{sub 2} plasma exposure induces assimilation of oxygen contents in GO lattice resulting in improved work function that reduced the hole injection barrier further. Whereas, H{sub 2} plasma contrastingly reduced the GO by excluding oxygen which ensuing lower work function. • X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy investigations reveal the capricious amount of oxygen in GO lattice and its corresponding work function variations. • GO and O{sub 2} plasma treated GO significantly improves the current efficiency of OLEDs more than one order with notable reduction in turn on voltage. - Abstract: The hole injection layer (HIL) with high work function (WF) is desirable to reduce the injection barrier between anode and hole transport layer in organic light emitting devices (OLED). Here, we report a novel approach to tune the WF of graphene oxide (GO) using oxygen and hydrogen plasma treatment and its hole injection properties in OLEDs. The mild exposure of oxygen plasma on GO (O{sub 2}-GO) significantly reduces the injection barrier by increasing the WF of anode (4.98 eV) through expansion of C−O bonds. In contrast, the hole injection barrier was drastically increased for hydrogen plasma treated GO (H{sub 2}-GO) layers as the WF is lowered by the contraction of C−O bond. By employing active O{sub 2}-GO as HIL in OLEDs found to exhibit superior current efficiency of 4.2 cd/A as compared to 3.3 cd/A for pristine GO. Further, the high injection efficiency of O{sub 2}-GO infused hole only device can be attributed to the improved energy level matching. Ultraviolet and X-ray photoelectron spectroscopy were used to correlate the WF of HIL infused anode towards the enhanced performance of

  3. A unique mode of tissue oxygenation and the adaptive radiation of teleost fishes.

    Science.gov (United States)

    Randall, D J; Rummer, J L; Wilson, J M; Wang, S; Brauner, C J

    2014-04-15

    Teleost fishes constitute 95% of extant aquatic vertebrates, and we suggest that this is related in part to their unique mode of tissue oxygenation. We propose the following sequence of events in the evolution of their oxygen delivery system. First, loss of plasma-accessible carbonic anhydrase (CA) in the gill and venous circulations slowed the Jacobs-Stewart cycle and the transfer of acid between the plasma and the red blood cells (RBCs). This ameliorated the effects of a generalised acidosis (associated with an increased capacity for burst swimming) on haemoglobin (Hb)-O2 binding. Because RBC pH was uncoupled from plasma pH, the importance of Hb as a buffer was reduced. The decrease in buffering was mediated by a reduction in the number of histidine residues on the Hb molecule and resulted in enhanced coupling of O2 and CO2 transfer through the RBCs. In the absence of plasma CA, nearly all plasma bicarbonate ultimately dehydrated to CO2 occurred via the RBCs, and chloride/bicarbonate exchange was the rate-limiting step in CO2 excretion. This pattern of CO2 excretion across the gills resulted in disequilibrium states for CO2 hydration/dehydration reactions and thus elevated arterial and venous plasma bicarbonate levels. Plasma-accessible CA embedded in arterial endothelia was retained, which eliminated the localized bicarbonate disequilibrium forming CO2 that then moved into the RBCs. Consequently, RBC pH decreased which, in conjunction with pH-sensitive Bohr/Root Hbs, elevated arterial oxygen tensions and thus enhanced tissue oxygenation. Counter-current arrangement of capillaries (retia) at the eye and later the swim bladder evolved along with the gas gland at the swim bladder. Both arrangements enhanced and magnified CO2 and acid production and, therefore, oxygen secretion to those specialised tissues. The evolution of β-adrenergically stimulated RBC Na(+)/H(+) exchange protected gill O2 uptake during stress and further augmented plasma disequilibrium states

  4. Removing of oxides from Fe-Ni alloys by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2007-01-01

    Plasma wall interaction is one of the key issues in fusion research for ITER application. The first-wall materials in tokamaks and in other high temperature plasma reactors are subject to and to continuous degradation due to the ion bombardment. Furthermore the release of the eroded wall material leads to their redeposition to other parts of the fusion reactor and they can be even transported into the core plasma where they cause dilution of the plasma fuel and cooling of the plasma itself. One possible solution for removal of deposits formed during operation of the fusion devices is oxygen plasma treatment. A drawback of the oxygen plasma is that it causes formation of oxides on the surface of the materials. These oxides can be reduced by further hydrogen plasma treatment. A study on reduction of an oxide layer from Fe-Ni alloys was performed. The samples were exposed to low pressure weakly ionized hydrogen plasma for different periods. A density of hydrogen plasma was 8x10 15 m -3 , an electron temperature was 6 eV, and a degree of dissociation was about 30%. After plasma treatment the samples were analyzed by Auger Electron Spectroscopy (AES). The results showed that the complete reduction of an initial oxide layer with the thickness of about 30 nm occurred after 20 s of exposure to hydrogen plasma, when AES showed no more oxygen on the surface of Fe-Ni alloy. During the exposure of the samples to the plasma their temperature was measured. The temperature first rised with time, reached the maximum value, and than dropped as soon as the layer of an oxide on the surface was reduced. (author)

  5. Influence of the ion bombardment of O{sub 2} plasmas on low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick, E-mail: verdonck@imec.be [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Samara, Vladimir [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Open University, Materials Engineering, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Goodyear, Alec [Open University, Materials Engineering, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ferchichi, Abdelkarim; Van Besien, Els; Baklanov, Mikhail R. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Braithwaite, Nicholas [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2011-10-31

    In this study, special tests were devised in order to investigate the influence of ion bombardment on the damage induced in low-k dielectrics by oxygen plasmas. By placing a sample that suffered a lot of ion bombardment and one which suffered little ion bombardment simultaneously in the same plasma, it was possible to verify that ion bombardment in fact helped to protect the low-k film against oxygen plasma induced damage. Exhaustive analyses (ellipsometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, porosimetry, capacitance-voltage (C-V) measurements, water contact angle analysis) show that ion bombardment induced the formation of a denser top layer in the film, which then hampered further penetration of active oxygen species deeper into the bulk. This was further confirmed by other tests combining capacitively and inductively coupled plasmas. Therefore, it was possible to conclude that, at least for these plasmas, ion bombardment may help to reduce plasma induced damage to low-k materials.

  6. Atmospheric non-thermal argon-oxygen plasma for sunflower seedling growth improvement

    Science.gov (United States)

    Matra, Khanit

    2018-01-01

    Seedling growth enhancement of sunflower seeds by DC atmospheric non-thermal Ar-O2 plasma has been proposed. The plasma reactor was simply designed by the composition of multi-pin electrodes bonded on a solderable printed circuit board (PCB) anode. A stable plasma was exhibited in the non-periodical self-pulsing discharge mode during the seed treatment. The experimental results showed that non-thermal plasma treatment had a significant positive effect on the sunflower seeds. Ar-O2 mixed gas ratio, treatment time and power source voltage are the important parameters affecting growth stimulation of sunflower sprouts. In this research, the sunflower seeds treated with 3:3 liters per minute (LPM) of Ar-O2 plasma at a source voltage of 8 kV for 1 min showed the best results in stimulating the seedling growth. The results in this case showed that the dry weight and average shoot length of the sunflower sprouts were 1.79 and 2.69 times higher and heavier than those of the untreated seeds, respectively.

  7. The relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Heidari S

    2011-04-01

    Full Text Available Saeed Heidari Keshel1, S Neda Kh Azhdadi2, Azadeh Asefnezhad2, Mohammad Sadraeian3, Mohamad Montazeri4, Esmaeil Biazar51Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch - Islamic Azad University; 3Young Researchers Club, Islamic Azad University, North Tehran Branch, Tehran; 4Faculty of Medical Sciences, Babol University of Medical Sciences, Babol; 5Department of Chemistry, Islamic Azad University, Tonekabon, IranAbstract: Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polyurethane was exposed to microwave plasma treatment with oxygen and argon gases for 30 seconds and 60 seconds. Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated the presence of functional groups. Atomic force microscope images of samples irradiated with inert and active gases indicated the nanometric topography of the sample surfaces. Samples irradiated by oxygen plasma indicated high roughness compared with those irradiated by inert plasma for the different lengths of time. In addition, surface roughness increased with time, which can be due to a reduction of contact angle of samples irradiated by oxygen plasma. Contact angle analysis indicated a reduction in samples irradiated with both types of plasma. However, samples irradiated with oxygen plasma indicated lower contact angle compared with those irradiated by argon plasma. Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation among samples radiated by oxygen plasma for longer than for normal samples.Keywords: surface topography, polyurethane, plasma treatment, cellular investigation

  8. Synthesis of Pt nanoparticles as catalysts of oxygen reduction with microbubble-assisted low-voltage and low-frequency solution plasma processing

    Science.gov (United States)

    Horiguchi, Genki; Chikaoka, Yu; Shiroishi, Hidenobu; Kosaka, Shinpei; Saito, Morihiro; Kameta, Naohiro; Matsuda, Naoki

    2018-04-01

    In the preparation of metallic nanoparticles by conventional solution plasma (SP) techniques, unstable plasma emission becomes an issue when the voltage and frequency of the waves applied between two electrodes placed in solution are lowered to avoid the boiling of the solution. In this study, we confirm that, in the presence of microbubbles, plasma is generated stably at low voltage (440 V) and low frequency (50-100 Hz) and small-size (≤10 nm) Pt nanoparticles (PtNPs) are synthesized in succession using a flow cell. The smallest PtNPs, ∼3.3 nm in diameter, are obtained using half-wave rectification, a tungsten wire anode, and a platinum wire cathode. The PtNPs are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimeter-differential thermal analysis. The oxygen reduction reaction (ORR) is investigated in 0.1 M HClO4 solution on carbon-supported PtNPs using a rotating ring-disk electrode. The catalytic activities per initial electrochemical active surface area of the carbon-supported PtNPs synthesized employing the low-voltage, low-frequency (LVLF)-SP technique is higher than that of the commercially available 20 wt% Pt on Vulcan XC-72R. These results indicate that the LVLF-SP technique is a promising approach to producing carbon-supported PtNPs that catalyze ORR with low energy consumption.

  9. The fabrication of diversiform nanostructure forests based on residue nanomasks synthesized by oxygen plasma removal of photoresist

    Energy Technology Data Exchange (ETDEWEB)

    Mao Haiyang; Wu Di; Wu Wengang; Hao Yilong [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871 (China); Xu Jun, E-mail: wuwg@ime.pku.edu.c [Electron Microscopy Laboratory, Peking University, Beijing 100871 (China)

    2009-11-04

    A simple lithography-free approach for fabricating diversiform nanostructure forests is presented. The key technique of the approach is that randomly distributed nanoscale residues can be synthesized on substrates simply by removing photoresist with oxygen plasma bombardment. These nanoresidues can function as masks in the subsequent etching process for nanopillars. By further spacer and then deep etching processes, a variety of forests composed of regular, tulip-like or hollow-head nanopillars as well as nanoneedles are successfully achieved in different etching conditions. The pillars have diameters of 30-200 nm and heights of 400 nm-3 {mu}m. The needles reach several microns in height, with their tips less than 10 nm in diameter. Moreover, microstructures containing these nanostructure forests, such as surface microchannels, have also been fabricated. This approach is compatible with conventional micro/nano-electromechanical system (MEMS/NEMS) fabrication.

  10. The fabrication of diversiform nanostructure forests based on residue nanomasks synthesized by oxygen plasma removal of photoresist

    International Nuclear Information System (INIS)

    Mao Haiyang; Wu Di; Wu Wengang; Hao Yilong; Xu Jun

    2009-01-01

    A simple lithography-free approach for fabricating diversiform nanostructure forests is presented. The key technique of the approach is that randomly distributed nanoscale residues can be synthesized on substrates simply by removing photoresist with oxygen plasma bombardment. These nanoresidues can function as masks in the subsequent etching process for nanopillars. By further spacer and then deep etching processes, a variety of forests composed of regular, tulip-like or hollow-head nanopillars as well as nanoneedles are successfully achieved in different etching conditions. The pillars have diameters of 30-200 nm and heights of 400 nm-3 μm. The needles reach several microns in height, with their tips less than 10 nm in diameter. Moreover, microstructures containing these nanostructure forests, such as surface microchannels, have also been fabricated. This approach is compatible with conventional micro/nano-electromechanical system (MEMS/NEMS) fabrication.

  11. A cold plasma plume with a highly conductive liquid electrode

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Wenxing; Chen Shihua; Yang Size

    2008-01-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 10 11 /cm 3 , respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O * , O 3 ) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O 2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively. (fluids, plasmas and electric discharges)

  12. Improving the work function of the niobium surface of SRF cavities by plasma processing

    International Nuclear Information System (INIS)

    Tyagi, P.V.; Doleans, M.; Hannah, B.; Afanador, R.; McMahan, C.; Stewart, S.; Mammosser, J.; Howell, M.; Saunders, J.; Degraff, B.; Kim, S.-H.

    2016-01-01

    Highlights: • An in situ plasma processing for SNS SRF cavities has been developed to remove hydrocarbons from cavity surface. • Reactive oxygen plasma is very effective to remove hydrocarbons from niobium top surface. • Reactive oxygen plasma processing increases the work function of niobium surface in the range of 0.5–1.0 eV. • It was observed that hydrocarbons can migrate at plasma cleaned top surface from near surface regions when waiting in vacuum at room temperature. • Multiple cycles of plasma processing with waiting periods in between was found beneficial to mitigate such hydrocarbons migration at plasma cleaned surface. - Abstract: An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature has been developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5–1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  13. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  14. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  15. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  16. Specific interactions of functionalised gold surfaces with ammonium perchlorate or starch; towards a chemical cartography of their mixture

    Science.gov (United States)

    Mercier, D.; Mercader, C.; Quere, S.; Hairault, L.; Méthivier, C.; Pradier, C. M.

    2012-10-01

    By functionalising gold samples, planar wafers or AFM tips, with an acid- or an amino acid-terminated thiols, mercaptoundecanoic acid (MUA) and homocystein (H-Cyst) respectively, we were able to differentiate the interactions with ammonium perchlorate (AP) and starch (S), two components of a nanocomposition mixture. To do so, the interaction between gold functionalized surfaces and the two targeted compounds have been characterized and quantified by several complementary techniques. Polarisation modulation-infrared spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS), providing chemical analyses of gold surfaces after contacting S or AP, proved that both compounds were retained on MUA or H-Cyst-modified surfaces, but to various extents. Quartz crystal microbalance on-line measurements enabled to monitor the kinetics of interaction and showed distinct differences in the behaviour of MUA and H-Cyst-surfaces towards the two compounds. Having observed that only H-Cyst-modified surfaces enables to get a contrast on the chemical force microscopy (CFM) images, this new result could be well explained by examining the data obtained by combining the above-mentioned surface characterisation techniques.

  17. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  18. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C 2 H 2 PIII is composed of mainly TiC x with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti 4+ , Ti 3+ and Ti 2+

  19. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Microwave AsherA tool using microwave oxygen plasma to remove organics on the surfacesSpecifications / Capabilities:Frequency: 2.45 GHzPower:...

  20. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  1. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  2. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  3. Oxidation of monovacancies in graphene by oxygen molecules

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Faccio, R.; Schwingenschlö gl, Udo

    2011-01-01

    We study the oxidation of monovacancies in graphene by oxygen molecules using first principles calculations. In particular, we address the local magnetic moments which develop at monovacancies and show that they remain intact when a molecule is adsorbed such that the dangling carbon bonds are not fully saturated. However, the lowest energy configuration does not maintain dangling bonds and is found to be semiconducting. Our data can explain the experimentally observed behavior of graphene under exposure to an oxygen plasma.

  4. Oxidation of monovacancies in graphene by oxygen molecules

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-14

    We study the oxidation of monovacancies in graphene by oxygen molecules using first principles calculations. In particular, we address the local magnetic moments which develop at monovacancies and show that they remain intact when a molecule is adsorbed such that the dangling carbon bonds are not fully saturated. However, the lowest energy configuration does not maintain dangling bonds and is found to be semiconducting. Our data can explain the experimentally observed behavior of graphene under exposure to an oxygen plasma.

  5. Hyperbaric oxygen and radiotherapy

    International Nuclear Information System (INIS)

    Mayer, R.; Hamilton-Farrell, M.R.; Kleij, A.J. van der

    2005-01-01

    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on www.oxynet.org. (orig.)

  6. Evidence for neutral beam injected oxygen impurities in 2XIIB

    International Nuclear Information System (INIS)

    Drake, R.P.; Moos, H.W.

    1978-01-01

    A series of experiments indicates that the principal source of impurities in the 2XIIB mirror confinement plasma experiment at Lawrence Livermore Laboratory is oxygen in the neutral beams. The dependence of 0 II 539 A emissions on neutral beam current, spatial scans of oxygen emissions, impurity injection experiments, spectral scans of the 0 VI 1032 A line, and other experiments all support this conclusion

  7. Separated Type Atmospheric Pressure Plasma Microjets Array for Maskless Microscale Etching

    Directory of Open Access Journals (Sweden)

    Yichuan Dai

    2017-06-01

    Full Text Available Maskless etching approaches such as microdischarges and atmospheric pressure plasma jets (APPJs have been studied recently. Nonetheless, a simple, long lifetime, and efficient maskless etching method is still a challenge. In this work, a separated type maskless etching system based on atmospheric pressure He/O2 plasma jet and microfabricated Micro Electro Mechanical Systems (MEMS nozzle have been developed with advantages of simple-structure, flexibility, and parallel processing capacity. The plasma was generated in the glass tube, forming the micron level plasma jet between the nozzle and the surface of polymer. The plasma microjet was capable of removing photoresist without masks since it contains oxygen reactive species verified by spectra measurement. The experimental results illustrated that different features of microholes etched by plasma microjet could be achieved by controlling the distance between the nozzle and the substrate, additive oxygen ratio, and etch time, the result of which is consistent with the analysis result of plasma spectra. In addition, a parallel etching process was also realized by plasma microjets array.

  8. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    Science.gov (United States)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  9. N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility.

    Science.gov (United States)

    Fang, Yung-Chin; Chen, Kuen-Yi; Hsieh, Ching-Heng; Su, Chang-Chia; Wu, Yung-Hsien

    2015-12-09

    Solid phase epitaxially grown GeSn was employed as the platform to assess the eligibility of direct O2 plasma treatment on GeSn surface for passivation of GeSn N-MOSFETs. It has been confirmed that O2 plasma treatment forms a GeSnO(x) film on the surface and the GeSnO(x) topped by in situ Al2O3 constitutes the gate stack of GeSn MOS devices. The capability of the surface passivation was evidenced by the low interface trap density (D(it)) of 1.62 × 10(11) cm(-2) eV(-1), which is primarily due to the formation of Ge-O and Sn-O bonds at the surface by high density/reactivity oxygen radicals that effectively suppress dangling bonds and decrease gap states. The good D(it) not only makes tiny frequency dispersion in the characterization of GeSn MOS capacitors, but results in GeSn N-MOSFETs with outstanding peak electron mobility as high as 518 cm(2)/(V s) which outperforms other devices reported in the literature due to reduced undesirable carrier scattering. In addition, the GeSn N-MOSFETs also exhibit promising characteristics in terms of acceptable subthreshold swing of 156 mV/dec and relatively large I(ON)/I(OFF) ratio more than 4 orders. Moreover, the robust reliability in terms small V(t) variation against high field stress attests the feasibility of using the O2 plasma-treated passivation to advanced GeSn technology.

  10. Thomson, Raman and Rayleigh scattering on atmospheric plasma jets

    NARCIS (Netherlands)

    Gessel, van A.F.H.

    2010-01-01

    Non-equilibrium atmospheric pressure plasma jets are the subject of growing interest, due to their applicability in many fields, including material processing, surface treatment and medical applications. However the plasma operates in contact with air, thus species like oxygen and nitrogen diffuse

  11. Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung; Xing Piao, Ming; Jang, Ho-Kyun; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Joo, Min-Kyu [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); IMEP-LAHC, Grenoble INP, Minatec, CS 50257, 38016 Grenoble (France); Ahn, Seung-Eon [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Advanced Institute of Technology, Samsung Electronics Corporations, Yongin, Gyeonggi-Do 446-712 (Korea, Republic of); Choi, Yong-Hee [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Semiconductor R and D Center, Samsung Electronics, Hwasung, Gyeonggi-do 445-701 (Korea, Republic of)

    2014-03-21

    Various plasma treatment effects such as oxygen (O{sub 2}), nitrogen (N{sub 2}), and argon (Ar) on amorphous indium gallium zinc oxide thin-film transistors (a-IGZO TFTs) are investigated. To study oxygen stoichiometry in a-IGZO TFTs with respect to various plasma environments, X-ray photoelectron spectroscopy was employed. The results showed that oxygen vacancies were reduced by O{sub 2} and N{sub 2} plasmas while they were increased after Ar plasma treatment. Additionally, the effects of plasma treatment on trap distribution in bulk and surface channels were explored by means of low-frequency noise analysis. Details of the mechanisms used for generating and restoring traps on the surface and bulk channel are presented.

  12. Confinement of multiply charged ions in an ECRH mirror plasma

    International Nuclear Information System (INIS)

    Petty, C.C.

    1989-06-01

    This thesis is an experimental study of multiply charged ions in the Constance B mirror experiment. By measuring the ion densities, end loss fluxes and ion temperatures, the parallel confinement times for the first five charge states of oxygen and neon plasmas are determined. The parallel ion confinement times increase with charge state and peak on axis, both indications of an ion-confining potential dip created by the hot electrons. The radial profile of ion end loss is usually hollow due to large ion radial transport (τ paralleli ∼ τ perpendiculari ), with the peak fluxes occurring at the edge of the electron cyclotron resonance zone. Several attempts are made to increase the end loss of selected ion species. Using minority ICRH, the end loss flux of resonant ions increases by 20% in cases when radial transport induced by ICRH is not too severe. A large antenna voltage can also extinguish the plasma. By adding helium to an oxygen plasma, the end loss of O 6+ increases by 80% due to decreased ion radial transport. An ion model is developed to predict the ion densities, end loss fluxes and confinement times in the plasma center using the ion particle balance equations, the quasineutrality condition and theoretical confinement time formulas. The model generally agrees with the experimental data for oxygen and neon plasmas to within experimental error. Under certain conditions spatial diffusion appears to determine the parallel ion confinement time of the highest charge states. For oxygen plasmas during ICRH, the measured parallel confinement time of the resonant ions is much shorter than their theoretical value, probably due to rf diffusion of the ions into the loss cone. 58 refs., 101 figs., 16 tabs

  13. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.

    Science.gov (United States)

    Wang, Ying; Yang, Meng; Lee, Sang-Gil; Davis, Catherine G; Kenny, Anne; Koo, Sung I; Chun, Ock K

    2012-12-01

    Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, Pantioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Surface modification of polyethylene by plasma

    International Nuclear Information System (INIS)

    Colin O, E.

    2003-01-01

    The products made of polyethylene (PE) go from construction materials, electric insulating until packing material. The films for bags and pack occupy 83.6% of the distribution of the market of PE approximately. The enormous quantity of PE that is generated by its indiscriminate use brings as consequence a deterioration to the atmosphere, due to the long life that they present as waste. This work is a study on the modification of low density polyethylene films. In this type of thin materials, the changes in the surface meet with largely on the conformation of the rest of the material. To induce changes that modify the surface of PE, plasmas were used with reactive atmospheres of air, oxygen and nitrogen. The experimentation that was carries out went to introduce the PE to a cylindrical reactor where it was generated the plasma of air, oxygen and nitrogen to different times of exposure. After having carried out the exposure to the plasma, it was found that in the polyethylene it modifies their morphology, crystallinity, hydrophobicity, composition and electric conductivity. The analytical techniques that were used to characterize later to the polyethylene of being in contact with the plasma were: X-ray diffraction, Scanning Electron Microscopy, Infrared spectroscopy, Electric conductivity, Angle of contact and finally Thermal Gravimetric Analysis. The content of this work it is presented in five chapters: In the chapter 1 there are presented some general concepts of plasma and of the one polymer in study PE. In the chapter 2 it is made a general revision on modification of surfaces, as well as the properties that were modified in polymeric materials that were exposed to plasma in previous works. In the chapter 3 the experimental part and the conditions used are described in the modification of the PE. Also in this chapter a brief description it is made of the used characterization techniques. The results and discussion are presented in the chapter 4. These results

  15. Behavior of oxygen impurities in tokamak. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharif, R N; Beket, A H [Plasma and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Aurhority, Cairo (Egypt)

    1996-03-01

    Impurity transport in tokamak plasma is a subject of great importance in present day tokamak experiments. The transport of oxygen as an impurity element in small tokamak was studied theoretically. The viscosity coefficient of oxygen has been calculated in different approximation 13 and 21 moment approximation, taking into consideration {chi}>>1,{chi}{omega}{sub c} {tau}. It was found that in 21 moment approximation additional terms added to the perturbation from equilibrium leads to increase in viscosity coefficients than in 13 moments approximation. 9 figs.

  16. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  17. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    Science.gov (United States)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  18. Plasma diagnostics during magnetron sputtering of aluminum doped zinc oxide

    DEFF Research Database (Denmark)

    Stamate, Eugen; Crovetto, Andrea; Sanna, Simone

    2016-01-01

    Plasma parameters during magnetron sputtering of aluminum-doped zinc oxide are investigated with optical emission spectroscopy, electrostatic probes and mass spectrometry with the aim of understanding the role of negative ions of oxygen during the film growth and improving the uniformity of the f......Plasma parameters during magnetron sputtering of aluminum-doped zinc oxide are investigated with optical emission spectroscopy, electrostatic probes and mass spectrometry with the aim of understanding the role of negative ions of oxygen during the film growth and improving the uniformity...

  19. Nanofluids with plasma treated diamond nanoparticles

    International Nuclear Information System (INIS)

    Yu Qingsong; Kim, Young Jo; Ma Hongbin

    2008-01-01

    In this study, diamond nanoparticles were plasma treated by glow discharges of methane and oxygen with an aim of improving their dispersion characteristics in a base fluid of water and enhancing the thermal conductivity of the resulting nanofluids. It was found that, after plasma treatment, stable nanofluids with improved thermal conductivity were obtained without using any stabilizing agents. With <0.15 vol % addition of plasma treated nanoparticles into water, a 20% increase in thermal conductivity was achieved and a 5%-10% increase in both fluid density and viscosity was observed

  20. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    Science.gov (United States)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation

  1. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  2. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  3. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak, E-mail: zam89blue@gmail.com [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  4. Magnetic Resonance Imaging-Derived Renal Oxygenation and Perfusion During Continuous, Steady-State Angiotensin-II Infusion in Healthy Humans.

    Science.gov (United States)

    van der Bel, René; Coolen, Bram F; Nederveen, Aart J; Potters, Wouter V; Verberne, Hein J; Vogt, Liffert; Stroes, Erik S G; Krediet, C T Paul

    2016-03-28

    The role of kidney hypoxia is considered pivotal in the progression of chronic kidney disease. A widely used method to assess kidney oxygenation is blood oxygen level dependent (BOLD)-magnetic resonance imaging (MRI), but its interpretation remains problematic. The BOLD-MRI signal is the result of kidney oxygen consumption (a proxy of glomerular filtration) and supply (ie, glomerular perfusion). Therefore, we hypothesized that with pharmacological modulation of kidney blood flow, renal oxygenation, as assessed by BOLD-MRI, correlates to filtration fraction (ie, glomerular filtration rate/effective renal plasma flow) in healthy humans. Eight healthy volunteers were subjected to continuous angiotensin-II infusion at 0.3, 0.9, and 3.0 ng/kg per minute. At each dose, renal oxygenation and blood flow were assessed using BOLD and phase-contrast MRI. Subsequently, "gold standard" glomerular filtration rate/effective renal plasma flow measurements were performed under the same conditions. Renal plasma flow decreased dose dependently from 660±146 to 467±103 mL/min per 1.73 m(2) (F[3, 21]=33.3, PMRI, we showed that cortical oxygenation measured by BOLD MRI relates poorly to glomerular filtration rate but is associated with filtration fraction. For future studies, there may be a need to include renal plasma flow measurements when employing renal BOLD-MRI. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    Science.gov (United States)

    Graves, David B.

    2012-07-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well.

  6. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology

    International Nuclear Information System (INIS)

    Graves, David B

    2012-01-01

    Reactive oxygen species (ROS) and the closely related reactive nitrogen species (RNS) are often generated in applications of atmospheric pressure plasmas intended for biomedical purposes. These species are also central players in what is sometimes referred to as ‘redox’ or oxidation-reduction biology. Oxidation-reduction biochemistry is fundamental to all of aerobic biology. ROS and RNS are perhaps best known as disease-associated agents, implicated in diabetes, cancer, heart and lung disease, autoimmune disease and a host of other maladies including ageing and various infectious diseases. These species are also known to play active roles in the immune systems of both animals and plants and are key signalling molecules, among many other important roles. Indeed, the latest research has shown that ROS/RNS play a much more complex and nuanced role in health and ageing than previously thought. Some of the most potentially profound therapeutic roles played by ROS and RNS in various medical interventions have emerged only in the last several years. Recent research suggests that ROS/RNS are significant and perhaps even central actors in the actions of antimicrobial and anti-parasite drugs, cancer therapies, wound healing therapies and therapies involving the cardiovascular system. Understanding the ways ROS/RNS act in established therapies may help guide future efforts in exploiting novel plasma medical therapies. The importance of ROS and RNS to plant biology has been relatively little appreciated in the plasma biomedicine community, but these species are just as important in plants. It appears that there are opportunities for useful applications of plasmas in this area as well. (topical review)

  7. Mechanisms of oxygen permeation through plastic films and barrier coatings

    Science.gov (United States)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian

    2017-10-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.

  8. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2001-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species

  9. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Science.gov (United States)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  10. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2004-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species. (author)

  11. Modeling of Plasma Assisted Combustion

    Science.gov (United States)

    Akashi, Haruaki

    2012-10-01

    Recently, many experimental study of plasma-assisted combustion has been done. However, numerous complex reactions in combustion of hydrocarbons are preventing from theoritical study for clarifying inside the plasma-assisted combustion, and the effect of plasma-assist is still not understood. Shinohara and Sasaki [1,2] have reported that the shortening of flame length by irradiating microwave without increase of gas temperature. And they also reported that the same phenomena would occur when applying dielectric barrier discharges to the flame using simple hydrocarbon, methane. It is suggested that these phenomena may result by the electron heating. To clarify this phenomena, electron behavior under microwave and DBD was examined. For the first step of DBD plasma-assisted combustion simulation, electron Monte Carlo simulation in methane, oxygen and argon mixture gas(0.05:0.14:0.81) [2] has been done. Electron swarm parameters are sampled and electron energy distribution function (EEDF)s are also determined. In the combustion, gas temperature is higher(>1700K), so reduced electric field E/N becomes relatively high(>10V/cm/Torr). The electrons are accelerated to around 14 eV. This result agree with the optical emission from argon obtained by the experiment of reference [2]. Dissociation frequency of methane and oxygens are obtained in high. This might be one of the effect of plasma-assist. And it is suggested that the electrons should be high enough to dissociate methane, but plasma is not needed.[4pt] [1] K. Shinohara et al, J. Phys. D:Appl. Phys., 42, 182008 (1-7) (2009).[0pt] [2] K. Sasaki, 64th Annual Gaseous Electronic Conference, 56, 15 CT3.00001(2011).

  12. Experimental study of the plasma fluorination of Y-Ba-Cu-O thin films

    CERN Document Server

    Li Qi; Ji Zheng Ming; Feng Yi Jun; Kang Lin; Yang Sen Zu; Wu Pei Heng; Wang Xiao Shu; Ye Yuda

    2002-01-01

    The authors have experimentally studied the surface modifications of Y-Ba-Cu-O (YBCO) thin films using CF sub 4 plasma. The intensity of the plasma fluorination was controlled by changing the biasing voltage and the time of the plasma treatment. Microstructural analyses reveal that the oxygen content of the YBCO thin films was changed. Transport measurements of sufficient fluorinated YBCO films imply that the films changed totally into an oxygen-deficient semi-conducting state. From these experimental results, the authors believe that plasma fluorination is quite a useful method to form controllable a thin barrier layer in fabricating interface engineered junctions and to form a stable narrow weak-link region in fabricating planar superconductor-normal-superconductor junctions

  13. Role of chemical functional groups on thermal and electrical properties of various graphene oxide derivatives: a comparative x-ray photoelectron spectroscopy analysis

    Science.gov (United States)

    Balaji Mohan, Velram; Jakisch, Lothar; Jayaraman, Krishnan; Bhattacharyya, Debes

    2018-03-01

    In recent years, graphene and its derivatives have become prominent subject matter due to their fascinating combination of properties and potential applications in a number application. While several fundamental studies have been progressed, there is a particular need to understand how different graphene derivatives are influenced in terms of their electrical and thermal conductivities by different functional groups they end up with through their manufacturing and functionalisation methods. This article addresses of the role of different functional groups present of different of reduced graphene oxides (rGO) concerning their electrical and thermal properties, and the results were compared with elemental analyses of functionalised reduced graphene oxide (frGO) and graphene. The results showed that electrical and thermal conductivities of the rGO samples, highly dependent on the presence of residual functional groups from oxidation, reduction and functionalisation processes. The increase in reduction of oxygen, hydroxyl, carboxylic, epoxide moieties and heterocyclic compounds increase the specific surface area of the samples through which the mean electron path has increased. This improved both electrical and thermal conductivities together in all the samples which were highly dependent on the efficiency of different reductant used in this study.

  14. Advanced research and development for plasma processing of polymers with combinatorial plasma-process analyzer

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2010-01-01

    A plasma-process analyzer has been developed on the basis of combinatorial method, in which process examinations with continuous variations of plasma-process conditions can be carried out on a substrate holder with an inclined distribution of process parameters. Combinatorial plasma-process analyses have been demonstrated for examinations of plasma-polymer interactions in terms of etching characteristics and surface morphologies in order to show feasibility and effectiveness of the methodology as advanced research and development for next-generation plasma nano processes. The etching properties and surface morphologies have been investigated for polyethylene terephthalate (PET) films exposed to argon-oxygen mixture plasmas. The etching depth data obtained from three independent batches of the experiments showed universal and almost linear dependence with increasing product of (ion saturation current) x (exposure time); i.e. ion dose. Surface roughness of the polymer slightly increased with increasing ion dose, while the mean spacing after plasma exposure was found to decrease monotonically with increasing ion dose but was saturated at the level of approximately 250 nm.

  15. Air plasma effect on dental disinfection

    International Nuclear Information System (INIS)

    Duarte, S.; Murata, R. M.; Saxena, D.; Kuo, S. P.; Chen, C. Y.; Huang, K. J.; Popovic, S.

    2011-01-01

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  16. Air plasma effect on dental disinfection

    Science.gov (United States)

    Duarte, S.; Kuo, S. P.; Murata, R. M.; Chen, C. Y.; Saxena, D.; Huang, K. J.; Popovic, S.

    2011-07-01

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  17. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Mark J., E-mail: msowa@ultratech.com [Ultratech/Cambridge NanoTech, 130 Turner Street, Building 2, Waltham, Massachusetts 02453 (United States)

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  18. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Y.; Andersen, Tom L.; Soerensen, B.F.; Toftegaard, H.L.; Teodoru, S. [Technical Univ. of Denmark. DTU Wind Energy, Risoe Campus, Roskilde (Denmark); Hansen, Charles M. [Hoersholm (Denmark)

    2013-09-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar functional groups at the surface, and subsequently improved adhesion to the epoxy and fracture resistance of epoxy composites. Hansen solubility parameters (HSP), quantitatively describing physical interactions among molecules, were measured for the UHMWPE fibre surfaces. The result identifies two distinct types of surfaces in both the plasma treated and the untreated fibres. One type is typical of polyethylene polymers while the other is characteristic of the oxygenated surface at much higher values of HSP. (Author)

  19. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  20. Applications of non-equilibrium plasma in chemical processes

    International Nuclear Information System (INIS)

    Patino, P.; Castro, A.

    2003-01-01

    By means of optical emission spectroscopy the population of O( 3 P) in a non-equilibrium, high voltage, oxygen plasma, and O( 3 P), H and OH in another of steam in radio frequency, have been followed. Reactions of both plasmas with liquid hydrocarbons have produced oxidation and/or hydrogenation, depending on the conditions of each one. (Author)

  1. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...

  2. Radiation losses and global power balance of JT-60 plasmas

    International Nuclear Information System (INIS)

    Nishitani, T.; Itami, K.; Nagashima, K.; Tsuji, S.; Hosogane, N.; Yoshida, H.; Ando, T.; Kubo, H.; Takeuchi, H.

    1990-01-01

    The radiation losses and the global power balance for Ohmic and neutral beam heated plasmas have been investigated in different JT-60 configurations. Discharges with a TiC coated molybdenum wall and with a graphite wall, with limiter, outer and lower X-point configurations have been studied by bolometric measurements, thermocouples and an infrared TV camera. In neutral beam heated outer X-point discharges with a TiC coated molybdenum first wall, the radiation loss of the main plasma was very low (10% of the absorbed power). The radiation loss due to oxygen was dominant in this case. On the contrary, in discharges with TiC coated molybdenum limiters the radiation loss was very high (>60% of the absorbed power). In the discharges with a graphite wall the radiated power from the main plasma was 20-25% for both limiter and lower X-point configurations. In lower X-point discharges the main contributor to the radiation loss was oxygen, whereas in limiter discharges the loss due to carbon was equal to the loss due to oxygen. The radiation loss from the lower X-point divertor increased with increasing electron density of the main plasma. (author). 33 refs, 14 figs, 1 tab

  3. Disposal of olive mill wastewater with DC arc plasma method.

    Science.gov (United States)

    Ibrahimoglu, Beycan; Yilmazoglu, M Zeki

    2018-07-01

    Olive mill wastewater is an industrial waste, generated as a byproduct of olive oil production process and generally contains components such as organic matter, suspended solids, oil, and grease. Although various methods have been developed to achieve the disposal of this industrial wastewater, due to the low cost, the most common disposal application is the passive storage in the lagoons. The main objective of this study is to reduce pollution parameters in olive mill wastewater and draw water to discharge limits by using plasma technology. Plasma-assisted disposal of olive mill wastewater method could be an alternative disposal technique when considering potential utilization of treated water in agricultural areas and economic value of flammable plasma gas which is the byproduct of disposal process. According to the experimental results, the rates of COD (chemical oxygen demand) and BOD (biological oxygen demand) of olive mill wastewater are decreased by 94.42% and 95.37%, respectively. The dissolved oxygen amount is increased from 0.36 to 6.97 mg/l. In addition, plasma gas with high H 2 content and treated water that can be used in agricultural areas for irrigation are obtained from non-dischargeable wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Influence of atmospheric plasma on physicochemical properties of vapor-grown graphite nanofibers.

    Science.gov (United States)

    Seo, Min-Kang; Park, Soo-Jin; Lee, Sang-Kwan

    2005-05-01

    Vapor-grown graphite nanofibers (GNFs) were modified by plasma treatments using low-pressure plasmas with different gases (Ar gas only and/or Ar/O2 gases), flow rates, pressures, and powers. Surface characterizations and morphologies of the GNFs after plasma treatment were investigated by X-ray photoelectron spectroscopy (XPS), contact angle, titration, and transmission electron microscopy (TEM) measurements. Also, the investigation of thermomechanical behavior and impact strengths of the GNFs/epoxy composites was performed by dynamic-mechanical thermal analysis (DMTA) and Izod impact testing, respectively. The plasma treatment of the fibers changed the surface morphologies by forming a layer with a thickness on the order of 1 nm, mainly consisting of oxygen functional groups such as hydroxyl, carbonyl, and carboxyl groups. After functionalization of the complete surfaces, further plasma treatment did not enhance the superficial oxygen content but slightly changed the portions of the functional groups. Also, the composites with plasma-treated GNFs showed an increase in T(g) and impact strength compared to the composites containing the same amount of plasma-untreated GNFs.

  5. Plasma-oxidation of Ge(100)-surfaces characterized by MIES, UPS and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Wegewitz, Lienhard; Dahle, Sebastian; Maus-Friedrichs, Wolfgang [Institut fuer Energieforschung und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Hoefft, Oliver; Endres, Frank [Institut fuer Mechanische Verfahrenstechnik, Technische Universitaet Clausthal, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld (Germany); Vioel, Wolfgang [HAWK Goettingen, Fakultaet Naturwissenschaften und Technik, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2011-07-01

    Cleaning and passivation of Germanium surfaces is of tremendous technological interest. Germanium has various applications, for example in complementary metal-oxide-semiconductor elements. It turned out to be difficult to prepare contamination free Germanium surfaces by methods of wet chemistry. Several attempts have been made preparing such surfaces by different plasma treatments. We report cleaning and passivation of Ge(100)-surfaces by dielectric barrier discharge plasma at ambient temperature in oxygen and in air studied by Metastable Induced Electron Spectroscopy (MIES) and Photoelectron Spectroscopy (UPS(He I) and XPS). The plasma treatment is carried out in a special high-vacuum chamber which operates up to ambient pressure and is directly connected to the ultra-high vacuum chamber including the analysis equipment. In summary the air plasma treatment as well as the oxygen plasma treatment result in contamination free GeO{sub 2} covered surfaces.

  6. A plasma needle generates nitric oxide

    International Nuclear Information System (INIS)

    Stoffels, E; Gonzalvo, Y Aranda; Whitmore, T D; Seymour, D L; Rees, J A

    2006-01-01

    Generation of nitric oxide (NO) by a plasma needle is studied by means of mass spectrometry. The plasma needle is an atmospheric glow generated by a radio-frequency excitation in a mixture of helium and air. This source is used for the treatment of living tissues, and nitric oxide may be one of the most important active agents in plasma therapy. Efficient NO generation is of particular importance in the treatment of cardiovascular diseases. Mass spectrometric measurements have been performed under various plasma conditions; gas composition in the plasma and conversion of feed gases (nitrogen and oxygen) into other species has been studied. Up to 30% of the N 2 and O 2 input is consumed in the discharge, and NO has been identified as the main conversion product

  7. How to assess the plasma delivery of RONS into tissue fluid and tissue

    Science.gov (United States)

    Oh, Jun-Seok; Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Furuta, Hiroshi; Kurita, Hirofumi; Mizuno, Akira; Hatta, Akimitsu; Short, Robert D.

    2016-08-01

    The efficacy of helium (He) and argon (Ar) plasma jets are being investigated for different healthcare applications including wound and cancer therapy, sterilisation and surface disinfections. Current research points to a potential link between the generation of reactive oxygen and nitrogen species (RONS) and outcomes in a range of biological and medical applications. As new data accrue, further strengthening this link, it becomes important to understand the controlled delivery of RONS into solutions, tissue fluids and tissues. This paper investigates the use of He and Ar plasma jets to deliver three RONS (hydrogen peroxide—H2O2, nitrite—\\text{NO}2- and nitrate—\\text{NO}3- ) and molecular oxygen (O2) directly into deionised (DI) water, or indirectly into DI water through an agarose target. The DI water is used in place of tissue fluid and the agarose target serves as a surrogate of tissue. Direct plasma jet treatments deliver more RONS and O2 than the through-agarose treatments for equivalent treatments times. The former only deliver RONS whilst the plasma jets are ignited; the latter continues to deliver RONS into the DI water long after the plasmas are extinguished. The He plasma jet is more effective at delivering H2O2 and \\text{NO}2- directly into DI water, but the Ar plasma jet is more effective at nitrating the DI water in both direct and through-agarose treatments. DI water directly treated with the plasma jets is deoxygenated, with the He plasma jet purging more O2 than the Ar plasma jet. This effect is known as ‘sparging’. In contrast, for through-agarose treatments both jets oxygenated the DI water. These results indicate that in the context of direct and indirect plasma jet treatments of real tissue fluids and tissue, the choice of process gas (He or Ar) could have a profound effect on the concentrations of RONS and O2. Irrespective of operating gas, sparging of tissue fluid (in an open wound) for long prolonged periods during direct plasma

  8. Effect of surface functionalisation on the interaction of iron oxide nanoparticles with polymerase chain reaction.

    Science.gov (United States)

    Aysan, Ayse Beyza; Knejzlík, Zdeněk; Ulbrich, Pavel; Šoltys, Marek; Zadražil, Aleš; Štěpánek, František

    2017-05-01

    The combination of nanoparticles with the polymerase chain reaction (PCR) can have benefits such as easier sample handling or higher sensitivity, but also drawbacks such as loss of colloidal stability or inhibition of the PCR. The present work systematically investigates the interaction of magnetic iron oxide nanoparticles (MIONs) with the PCR in terms of colloidal stability and potential PCR inhibition due to interaction between the PCR components and the nanoparticle surface. Several types of MIONs with and without surface functionalisation by sodium citrate, dextran and 3-aminopropyl-triethoxysilane (APTES) were prepared and characterised by Transmission Electron Microscopy (TEM), dynamic light scattering (DLS) and Fourier Transform Infrared (FT-IR) spectroscopy. Colloidal stability in the presence of the PCR components was investigated both at room temperature and under PCR thermo-cycling. Dextran-stabilized MIONs show the best colloidal stability in the PCR mix at both room and elevated temperatures. Citrate- and APTES-stabilised as well as uncoated MIONs show a comparable PCR inhibition near the concentration 0.1mgml -1 while the inhibition of dextran stabilized MIONs became apparent near 0.5mgml -1 . It was demonstrated that the PCR could be effectively carried out even in the presence of elevated concentration of MIONs up to 2mgml -1 by choosing the right coating approach and supplementing the reaction mix by critical components, Taq DNA polymerase and Mg 2+ ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  10. The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015

    Science.gov (United States)

    Jahn, J. M.; Goldstein, J.; Reeves, G. D.; Fernandes, P. A.; Skoug, R. M.; Larsen, B.; Spence, H. E.

    2017-12-01

    Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view of warm, cloak-like ion populations in the inner magnetosphere, contrasting in particular the warm plasma composition during quiet and active times. We study the relative abundances and absolute densities of warm plasma measured by the Van Allen Probes, whose two spacecraft cover the inner magnetosphere from plasmaspheric altitudes close to Earth to just inside geostationary orbit. We observe that warm (> 30 eV) oxygen is most abundant closer to the plasmasphere boundary whereas warm hydrogen dominates closer to geostationary orbit. Warm helium is usually a minor constituent, but shows a noticeable enhancement in the near-Earth dusk sector.

  11. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  12. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E{sub c}) and at 415 K (0.9 below E{sub c}); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E{sub c} known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E{sub c} is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  13. Development of bonding techniques between tungsten and copper alloy for plasma facing components by HIP method. 1. Bonding between tungsten and oxygen free copper

    International Nuclear Information System (INIS)

    Saito, Shigeru; Fukaya, Kiyoshi; Ishiyama, Shintaro; Eto, Motokuni; Akiba, Masato

    1999-08-01

    In recent years, it has been considered that W (tungsten) is one of candidate materials for armor tiles of plasma facing components, like first wall or divertor, of fusion reactor. On the other hand, oxygen free high thermal conductivity (OFHC)-copper is proposed as heat sink materials behind the plasma facing materials because of its high thermal conductivity. However, plasma facing components are exposed to cyclic high heat load and heavily irradiated by 14 MeV neutron. Under these conditions, many unfavorable effects, for instance, thermal stresses of bonding interface, irradiation damage and He atom production by nuclear transmutation, will be decreased bonding strength between W and Cu alloys. Therefore, it is necessary to develop a reliable bonding techniques in order to make plasma facing components which can resist them. Then, we started the bonding technology development by hot isostatic press (HIP) method to bond W with Cu alloys. In this experiments, to optimize HIP bonding conditions, four point bending were performed for each bonded conditions at temperature from R.T. to 873 K and we could get the best HIP bonding conditions for W and OFHC-Cu as 1273 K x 2 hours x 147 MPa. To evaluate bonding strength of the specimen bonded at these conditions, tensile tests were also performed at same temperature range. The tensile strength was similar with OFHC-Cu which were treated at same conditions. (author)

  14. Plasma potentials and performance of the advanced electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.

    1994-01-01

    The mean plasma potential was measured on the LBL advanced electron cyclotron resonance (AECR) ion source for a variety of conditions. The mean potentials for plasmas of oxygen, argon, and argon mixed with oxygen in the AECR were determined. These plasma potentials are positive with respect to the plasma chamber wall and are on the order of tens of volts. Electrons injected into the plasma by an electron gun or from an aluminum oxide wall coating with a very high secondary electron emission reduce the plasma potential as does gas mixing. A lower plasma potential in the AECR source coincides with enhanced production of high charged state ions indicating longer ion confinement times. The effect of the extra electrons from external injection or wall coatings is to lower the average plasma potential and to increase the n e τ i of the ECR plasma. With sufficient extra electrons, the need for gas mixing can be eliminated or reduced to a lower level, so the source can operate at lower neutral pressures. A reduction of the neutral pressure decreases charge exchange between ions and neutrals and enhances the production of high charge state ions. An aluminum oxide coating results in the lowest plasma potential among the three methods discussed and the best source performance

  15. Plasma Exchange in the Management of Catastrophic Antiphospholipid Syndrome

    Directory of Open Access Journals (Sweden)

    Dimitri Titeca-Beauport

    2016-01-01

    Full Text Available Objective. Report of a case of catastrophic antiphospholipid syndrome (CAPS with multiple organ involvement leading to a life-threatening condition despite early combination corticosteroid and heparin therapy. Initiation of plasma exchange led to rapid improvement of the patient’s general condition. Design. Case report. Setting. University teaching hospital medical intensive care unit. Patient. Single case: 52-year-old man hospitalized for catastrophic antiphospholipid syndrome (CAPS with cardiac, renal, and cutaneous involvement. Despite early methylprednisolone and heparin therapy, the patient’s condition progressively deteriorated, resulting in acute renal failure, right adrenal hemorrhage, and pulmonary involvement, leading to acute respiratory distress on day 6, requiring high-flow nasal cannula oxygen therapy with FiO2 of 1.0. Interventions. Plasma exchange was started on day 6. Endpoints and Main Results. A marked improvement of the patient’s general condition was observed after initiation of plasma exchange, with successful weaning of oxygen therapy and normalization of platelet count, troponin, and serum creatinine within four days. Conclusions. This case illustrates the efficacy of plasma exchange in CAPS and the difficulty for physicians to determine the optimal timing of plasma exchange.

  16. Production and correlation of reactive oxygen and nitrogen species in gas- and liquid-phase generated by helium plasma jets under different pulse widths

    Science.gov (United States)

    Liu, Zhijie; Zhou, Chunxi; Liu, Dingxin; Xu, Dehui; Xia, Wenjie; Cui, Qingjie; Wang, Bingchuan; Kong, Michael G.

    2018-01-01

    In this paper, we present the effects of the pulse width (PW) on the plasma jet's discharge characteristics, particularly focusing on the production and correlation of the reactive oxygen and nitrogen species (RONS) in gas- and liquid-phase. It is found that the length of plasma jet plume first increases before the PW of 10 μs, then gradually decreases and finally almost remains unchanged beyond 150 μs. The plasma bullet disappears after the falling edge of the voltage pulse at low PW, while it terminates far ahead of the falling edge of voltage pulse at high PW. This is mainly attributed to accumulation of space charges that lead to weakening of the reduced electric field with an increase of PW from low to high. More important, it is found that the excited reactive species, the positive and negative ions from plasma jet, and the concentrations of NO2- and NO3- in deionized water exposed to plasma jet also display the first increasing and then decreasing change trend with increase of PW, while the concentration of H2O2 in water almost displays the linearly increasing trend. This mainly results from the formation of the H3O+ and HO2-, as well as their ion water clusters that can produce more OH radicals to be converted into H2O2, while the NO2- and NO3- in gas phase can transport into water and exist most stably in water. The water cluster formation at gas-liquid interface is an important key process that can affect the chemical nature and dose of aqueous RONS in water; this is beneficial for understanding how the RONS are formed in liquid-phase.

  17. Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge

    Science.gov (United States)

    Dvořák, P.; Mrkvičková, M.; Obrusník, A.; Kratzer, J.; Dědina, J.; Procházka, V.

    2017-06-01

    Concentration of atomic oxygen was measured in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar + O2(+ H2) at atmospheric pressure. Two-photon absorption laser induced fluorescence (TALIF) of atomic oxygen was used and this method was calibrated by TALIF of Xe in a mixture of argon and a trace of xenon. The calibration was performed at atmospheric pressure and it was shown that quenching by three-body collisions has negligible effect on the life time of excited Xe atoms. The concentration of atomic oxygen in the DBD was around 1021 m-3 and it was stable during the whole discharge period. The concentration did not depend much on the electric power delivered to the discharge provided that the power was sufficiently high so that the visible discharge filled the whole reactor volume. Both the addition of hydrogen or replacing of argon by helium led to a significant decrease of atomic oxygen concentration. The TALIF measurements of O concentration levels in the DBD plasma performed in this work are made use of e.g. in the field analytical chemistry. The results contribute to understanding the processes of analyte hydride preconcentration and subsequent atomization in the field of trace element analysis where DBD plasma atomizers are employed.

  18. Redox signaling in acute oxygen sensing

    Directory of Open Access Journals (Sweden)

    Lin Gao

    2017-08-01

    Full Text Available Acute oxygen (O2 sensing is essential for individuals to survive under hypoxic conditions. The carotid body (CB is the main peripheral chemoreceptor, which contains excitable and O2-sensitive glomus cells with O2-regulated ion channels. Upon exposure to acute hypoxia, inhibition of K+ channels is the signal that triggers cell depolarization, transmitter release and activation of sensory fibers that stimulate the brainstem respiratory center to produce hyperventilation. The molecular mechanisms underlying O2 sensing by glomus cells have, however, remained elusive. Here we discuss recent data demonstrating that ablation of mitochondrial Ndufs2 gene selectively abolishes sensitivity of glomus cells to hypoxia, maintaining responsiveness to hypercapnia or hypoglycemia. These data suggest that reactive oxygen species and NADH generated in mitochondrial complex I during hypoxia are signaling molecules that modulate membrane K+ channels. We propose that the structural substrates for acute O2 sensing in CB glomus cells are “O2-sensing microdomains” formed by mitochondria and neighboring K+ channels in the plasma membrane. Keywords: Hypoxia, Acute oxygen sensing, Peripheral chemoreceptors, Carotid body, Adrenal medulla, Mitochondrial complex I, Reactive oxygen species (ROS, Pyridine nucleotides

  19. Cell Proliferation on Polyethylene Terephthalate Treated in Plasma Created in SO2/O2 Mixtures

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2017-02-01

    Full Text Available Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples’ surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT and in vitro toxic effects of unknown compounds (TOX were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.

  20. Argon-plasma-controlled optical reset in the SiO2/Cu filamentary resistive memory stack

    Science.gov (United States)

    Kawashima, T.; Yew, K. S.; Zhou, Y.; Ang, D. S.; Zhang, H. Z.; Kyuno, K.

    2018-05-01

    We show that resistive switching in the SiO2/Cu stack can be modified by a brief exposure of the oxide to an Ar plasma. The set voltage of the SiO2/Cu stack is reduced by 33%, while the breakdown voltage of the SiO2/Si stack (control) is almost unchanged. Besides, the Ar plasma treatment suppresses the negative photoconductivity or optical resistance reset effect, where the electrically formed filamentary conductive path consisting of Cu-ion and oxygen-vacancy clusters is disrupted by the recombination of the oxygen vacancies with nearby light-excited oxygen ions. From the enhanced O-H peak in the Fourier-transform infrared spectrum of the plasma-treated oxide, it is proposed that the Ar plasma has created more oxygen vacancies in the surface region of the oxide. These vacancies in turn adsorb water molecules, which act as counter anions (OH-) promoting the migration of Cu cations into the oxide and forming a more complete Cu filament that is less responsive to light. The finding points to the prospect of a control over the optical resistance reset effect by a simple surface treatment step.

  1. Effect of oxygen partial pressure on oxidation of Mo-metal

    Science.gov (United States)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.

    2018-05-01

    This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.

  2. Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen

    Science.gov (United States)

    Hornung, Steven

    2013-01-01

    Oxygen used for extravehicular activities (EVAs) must be free of contaminants because a difference in a few tenths of a percent of argon or nitrogen content can mean significant reduction in available EVA time. These inert gases build up in the extravehicular mobility unit because they are not metabolized or scrubbed from the atmosphere. A prototype optical emission technique capable of detecting argon and nitrogen below 0.1% in oxygen has been developed. This instrument uses a glow discharge in reduced-pressure gas to produce atomic emission from the species present. Because the atomic emission lines from oxygen, nitrogen, and argon are discrete, and in many cases well-separated, trace amounts of argon and nitrogen can be detected in the ultraviolet and visible spectrum. This is a straightforward, direct measurement of the target contaminants, and may lend itself to a device capable of on-orbit verification of oxygen purity. A glow discharge is a plasma formed in a low-pressure (1 to 10 Torr) gas cell between two electrodes. Depending on the configuration, voltages ranging from 200 V and above are required to sustain the discharge. In the discharge region, the gas is ionized and a certain population is in the excited state. Light is produced by the transitions from the excited states formed in the plasma to the ground state. The spectrum consists of discrete, narrow emission lines for the atomic species, and broader peaks that may appear as a manifold for molecular species such as O2 and N2, the wavelengths and intensities of which are a characteristic of each atom. The oxygen emission is dominated by two peaks at 777 and 844 nm.

  3. Singlet oxygen production and quenching mechanisms in travelling microwave discharges

    International Nuclear Information System (INIS)

    Savin, Yu V; Goryachev, L V; Adamenkov, Yu A; Rakhimova, T V; Mankelevich, Yu A; Popov, N A; Adamenkov, A A; Egorov, V V; Ilyin, S P; Kolobyanin, Yu V; Kudryashov, E A; Rogozhnikov, G S; Vyskubenko, B A

    2004-01-01

    Experimental and theoretical studies of singlet oxygen excitation in travelling microwave (TMW) discharges are presented. Singlet oxygen O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fraction have been measured for different pressures, input powers and distances from the MW resonator. It was shown that a steady-state TMW discharge with a coaxial cavity resonator could provide a maximal O 2 (a 1 Δ g ) yield of 22% for 2 Torr of pure oxygen and 27-30% for He : O 2 = 1 : 1 mixture. The two-dimensional (r, z) model developed for calculations of plasma-chemical kinetics, heat and mass transfer was used for simulation of processes in the TMW discharge under study. Effects of gas pressure, gas flow rate and input power are studied and compared with experimental measurements of O 2 (a 1 Δ g ) concentrations and atomic oxygen mole fractions

  4. Pathogen Inactivated Plasma Concentrated: Preparation and Uses

    Science.gov (United States)

    2004-09-01

    of decontamination, porcine parvovirus (PPV) was selected as a model virus; B19 is the form that infects humans. PPV is an interesting pathogen...ultrasound to cold plasma. The ultrasound generates pure ice crystals, which are then removed to leave concentrated plasma. Testing: Porcine parvovirus ...energy to “burn” any proteins that they encounter. Furthermore, as they react, they also produce multiple other reactive oxygen species (ROS) that are

  5. Mechanisms of oxygen permeation through plastic films and barrier coatings

    International Nuclear Information System (INIS)

    Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Dahlmann, Rainer; Hopmann, Christian; Mitschker, Felix; Awakowicz, Peter

    2017-01-01

    Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µ m) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities. (paper)

  6. Plasma arc and cold crucible furnace vitrification for medium level waste: a review

    International Nuclear Information System (INIS)

    Poitou, S.; Fiquet, O.; Bourdeloie, C.; Gramondi, P.; Rebollo, F.; Girold, C.; Charvillat, J.P.; Boen, R.; Jouan, A.; Ladirat, C.; Nabot, J.P.; Ochem, D.; Baronnet, J.M.

    2001-01-01

    Initially developed for high-level waste reprocessing, several vitrification processes have been under study since the 80's at the French Atomic Energy Commission (CEA) for other waste categories. According to the French law concerning waste management research passed on December 30, 1991, vitrification may be applied to mixed medium-level waste. A review of processes developed at CEA is presented: cold crucible furnace heated by induced current, refractory furnace heated by nitrogen transferred arc plasma torch, and coupling of cold crucible furnace with oxygen transferred plasma arc twin torch. Furthermore, gas post-combustion has been studied with an oxygen non-transferred plasma torch. (authors)

  7. Plasma treatment: A Novel Medical Application

    International Nuclear Information System (INIS)

    Boonyawan, Dheerawan

    2015-01-01

    Cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contrains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air CAPs are O 3 , OH, N x , and HNO x . Two cold atomospheric plasma devices were utiized (either in an indirect or a direct way) for the treatment of physiologically healthy volunterrs, The results show that CAP is effective againts chronic wound infections and/ or for skin treatment in clinical trials. The current developments in this field have fuelled the hope that CAP could be, and interesting new therapeutic apptoach in the treatment of cancer.

  8. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N. [Fusion Safety Program, Idaho National Laboratory, P.O. Box 1625-7113, Idaho Falls, Idaho 83415 (United States); School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Illinois 61801 (United States); Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Institute for Advanced Computational Science, Stony Brook University, New York 11794 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); TheoretiK, Knoxville, Tennessee 379XX (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-05-15

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to ∼16% and then bombarded with deuterium. X-ray photoelectron spectroscopy showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  9. Air plasma effect on dental disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, S.; Murata, R. M.; Saxena, D. [Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, New York, New York 10010 (United States); Kuo, S. P.; Chen, C. Y.; Huang, K. J. [Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, New York 11202 (United States); Popovic, S. [Department of Physics, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2011-07-15

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  10. Diamond films deposited by oxygen-enhanced linear plasma chemistry

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Babchenko, Oleg; Ižák, Tibor; Varga, Marián; Davydova, Marina; Krátká, Marie; Rezek, Bohuslav

    2013-01-01

    Roč. 5, č. 6 (2013), s. 509-514 ISSN 2164-6627 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Institutional support: RVO:68378271 Keywords : diamond films * process gas chemistry * pulsed microwave plasma * surface conductivity of diamond Subject RIV: BM - Solid Matter Physics ; Magnetism

  11. 27.12 MHz plasma generation in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Toyota, Hiromichi; Nomura, Shinfuku; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro; Yamashita, Hiroshi

    2007-01-01

    An experiment was conducted for generating high-frequency plasma in supercritical carbon dioxide; it is expected to have the potential for applications in various types of practical processes. It was successfully generated at 6-20 MPa using electrodes mounted in a supercritical cell with a gap of 1 mm. Emission spectra were then measured to investigate the physical properties of supercritical carbon dioxide plasma. The results indicated that while the emission spectra for carbon dioxide and carbon monoxide could be mainly obtained at a low pressure, the emission spectra for atomic oxygen could be obtained in the supercritical state, which increased with the pressure. The temperature of the plasma in supercritical state was estimated to be approximately 6000-7000 K on the assumption of local thermodynamic equilibrium and the calculation results of thermal equilibrium composition in this state showed the increase of atomic oxygen by the decomposition of CO 2

  12. Downstream microwave ammonia plasma treatment of polydimethylsiloxane

    International Nuclear Information System (INIS)

    Pruden, K.G.; Beaudoin, S.P.

    2005-01-01

    To control the interactions between surfaces and biological systems, it is common to attach polymers, proteins, and other species to the surfaces of interest. In this case, surface modification of polydimethylsiloxane (PDMS) was performed by exposing PDMS films to the effluent from a microwave ammonia plasma, with a goal of creating primary amine groups on the PDMS. These amine sites were to be used as binding sites for polymer attachment. Chemical changes to the surface of the PDMS were investigated as a function of treatment time, microwave power, and PDMS temperature during plasma treatment. Functional groups resulting from this treatment were characterized using attenuated total reflectance infrared spectroscopy. Plasma treatment resulted in the incorporation of oxygen- and nitrogen-containing groups, including primary amine groups. In general, increasing the treatment time, plasma power and substrate temperature increased the level of oxidation of the films, and led to the formation of imines and nitriles. PDMS samples treated at 100 W and 23 deg. C for 120 s were chosen for proof-of-concept dextran coating. Samples treated at this condition contained primary amine groups and few oxygen-containing groups. To test the viability of the primary amines for attachment of biopolymers, functionalized dextran was successfully attached to primary amine sites on the PDMS films

  13. Effects of photoirradiation in UV and VUV regions during plasma exposure to polymers

    International Nuclear Information System (INIS)

    Cho, Ken; Setsuhara, Yuichi; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Interactions between photons irradiated from Ar-O 2 mixture plasmas and polymer surfaces were investigated on the basis of depth analyses of chemical bonding states in the nano-surface layer of polyethylene terephthalate (PET) films via hard X-ray photoelectron spectroscopy (HXPES) and conventional X-ray photoelectron spectroscopy (XPS). The PET films were exposed to photons from the Ar-O 2 mixture plasmas by covering the PET samples with MgF 2 and quartz windows as optical filters for evaluation of photoirradiation effects in ultraviolet (UV) and vacuum ultraviolet (VUV) regions. The HXPES results indicated that the degradation of the chemical bonding states due to photoirradiation in regions was insignificant in deeper regions up to about 50 nm from the surface. Whereas, conventional XPS analysis showed that C-O bond, O=C-O bond and C=O bond increased after photoirradiation in UV and VUV regions. These results suggest that the increase in oxygen functionalities (C-O bond, O=C-O bond and C=O bond) may be attributed to chemical reactions and/or terminations of scissed bonds via photodecompositions of the polymer with oxygen and/or OH species (oxygen molecules and radicals during plasma exposure and/or oxygen molecules and moisture after taking the PET samples out of the plasma reactor to the ambient air) in the vicinity of the sample surface.

  14. Nanodiamonds in dusty low-pressure plasmas

    International Nuclear Information System (INIS)

    Vandenbulcke, L.; Gries, T.; Rouzaud, J. N.

    2009-01-01

    Dusty plasmas composed of carbon, hydrogen, and oxygen have been evidenced by optical emission spectroscopy and microwave interferometry, due to the increase in electron energy and the decrease in electron density. These plasmas allow homogeneous synthesis of nanodiamond grains composed of either pure diamond nanocrystals only (2-10 nm in size) or of diamond nanocrystals and some sp 2 -hybridized carbon entities. The control of their size and their microstructure could open ways for a wide range of fields. Their formation from a plasma-activated gaseous phase is also attractive because the formation of nanodiamonds in the universe is still a matter of controversy

  15. First C/sub 4/-functionalisation of condensed tannins. Phlobatannins as prototype of a new class of C-ring isomerised oligomers. Die eerste C/sub 4/-funksionalisering van gekondenseerde tanniene. Flobatanniene as prototipe van 'n nuwe klas van C-ring geisomeriseerde oligomere

    Energy Technology Data Exchange (ETDEWEB)

    Steenkamp, J A

    1986-06-01

    This thesis comprises besides the characterisation of new oligomeric flavenoids from the core wood of the indigeneous Colophosphermum mopane, an investigation into the C/sub 4/-functionalisation of flavan-3-ol analogues. The first peltogynoid biflavenoid and prototypes of a new series C-ring isomerised condensed tannins, namely the phlobatannins, were isolated. Besides /sup 1/H- nmr-parameters for structure analysis, the natural phlobatannins were characterised and the unique ring isomerisation was investigated.

  16. Effects of oxygen gas flow rate and ion beam plasma conditions on the opto-electronic properties of indium molybdenum oxide films fabricated by ion beam-assisted evaporation

    International Nuclear Information System (INIS)

    Kuo, C.C.; Liu, C.C.; Lin, C.C.; Liou, Y.Y.; He, J.L.; Chen, F.S.

    2008-01-01

    The purpose of the present work is to experimentally study the effects of the oxygen gas flow rate and ion beam plasma conditions on the properties of indium molybdenum oxide (IMO) films deposited onto the polyethersulfone (PES) substrate. Crystal structure, surface morphology, and optoelectronic properties of IMO films are examined as a function of oxygen gas flow rate and ion beam discharge voltage. Experimental results show that the IMO films consist of a cubic bixbyite B-In 2 O 3 single phase with its crystal preferred orientation alone B(222). Mo 6+ ions are therefore considered to partially substitute In 3+ sites in the deposit. Under-controlled ion bombardment during deposition enhances the reaction among those arriving oxygen and metal ion species to condense into IMO film and facilitates a decreased surface roughness of IMO film. The film with ultimate crystallinity and the lowest surface roughness is obtained when the oxygen flow rate of 3 sccm and the discharge voltage of 110 V are employed. This results in the lowest electrical resistivity due mainly to the increased Hall mobility and irrelevant to carrier concentration. The lowest electrical resistivity of 8.63 x 10 -4 ohm-cm with a 84.63% transmittance at a wavelength of 550 nm can be obtained, which satisfies the requirement of a flexible transparent conductive polymer substrate

  17. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    Science.gov (United States)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  18. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J.; Wieczorek, L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  19. Detection of submonolayer oxygen-18 on a gold surface by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L S; Kenny, M J; Wieczorek, L [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    A gold substrate is the preferred solid surface for formation of an organic self-assembled monolayer ( SAM ). Device fabrication process may require the gold film to be exposed to photolithographic processing and plasma treatment prior to molecular assembly. It has been observed that oxygen plasma treatment prevents the formation of SAMs; however, subsequent treatment with an argon plasma allows assembly of the organic monolayers. To understand the mechanisms involved, a plasma containing 98% {sup 18}O was used and the film surface was analysed using the {sup 18}O (p,{alpha}){sup 15}N nuclear reaction. 5 refs., 1 tab., 3 figs.

  20. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  1. Physical and chemical contributions of a plasma treatment in the growth of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jang, J.T. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, W.J. [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Yun, J. [Department of Nano Science and Engineering, Kyungnam University, Changwon, Gyeongnam 631-701 (Korea, Republic of)

    2013-11-15

    Highlights: •ZnO nanorods were grown by hydrothermal synthesis. •Oxygen plasma was done on the surface of seed ZnO nanorods. •The ZnO nanorods with and without plasma treatment were characterized. •The results showed that the optical and structural properties of ZnO nanorods with plasma treatment were enhanced. -- Abstract: We analyzed the enhancement of optical and structural properties of ZnO nanorods by using a plasma treatment. In this study, seed ZnO nanorods were grown by hydrothermal synthesis for 1 h on a ZnO buffered Si substrate. The seed ZnO nanorods were then treated with an oxygen plasma. Next, ZnO was grown for an additional 4 h by hydrothermal synthesis. The resultant ZnO nanorods were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and photoluminescence (PL). The measurements showed that the plasma treatment of the seed ZnO nanorods increased the roughness of the buffer layer and the concentration of oxygen ions on the surfaces of the seed ZnO nanorods and the buffer layer, leading to improved optical and structural properties. In this study, we found that the plasma treatment on the seed ZnO nanorods enhanced the optical and structural properties of the ZnO nanorods.

  2. Plasma cleaning and the removal of carbon from metal surfaces

    International Nuclear Information System (INIS)

    Baker, M.A.

    1980-01-01

    In an investigation of the plasma cleaning of metals and the plasma etching of carbon, a mass spectrometer was used as a sensitive process monitor. CO 2 produced by the plasma oxidation of carbon films or of organic contamination and occluded carbon at the surfaces of metals proved to be the most suitable gas to monitor. A good correlation was obtained between the measured etch rate of carbon and the resulting CO 2 partial pressure monitored continuously with the mass spectrometer. The rate of etching of carbon in an oxygen-argon plasma at 0.1 Torr was high when the carbon was at cathode potential and low when it was electrically isolated in the plasma, thus confirming the findings of previous workers and indicating the importance of ion bombardment in the etching process. Superficial organic contamination on the surfaces of the metals aluminium and copper and of the alloy Inconel 625 was quickly removed by the oxygen-argon plasma when the metal was electrically isolated and also when it was at cathode potential. Occluded carbon (or carbides) at or near the surfaces of the metals was removed slowly and only when the metal was at cathode potential, thus illustrating again the importance of ion bombardment. (Auth.)

  3. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad; Han, Jie; Chahine, May; Selim, Hatem; Belhi, Memdouh; Sarathy, Mani; Bisetti, Fabrizio; Farooq, Aamir

    2016-01-01

    chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon

  4. Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jianjun, E-mail: huangjj@szu.edu.cn [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Wang Fan; Liu Ying; Jiang Shishou; Wang Xisheng; Qi Bing; Gao Liang [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China)

    2011-07-01

    Tungsten (W) coatings were fabricated on copper (Cu) by high-speed atmospheric plasma spray (HAPS) technique. The properties of the porosity, oxygen content, bonding strength and microhardness were measured. The results obtained indicated that the HAPS-W coating showed good properties particularly in terms of porosity and oxygen content. The porosity of the HAPS-W coating was 2.3% and the distribution of pore size diameter was mainly concentrated in the range of 0.01-1 {mu}m. The oxygen content of the coating measured by means of Nitrogen/Oxygen Determinator was about 0.10 wt.%. These initial results suggest that the HAPS-W coating has achieved the reported properties of the vacuum plasma spray (VPS) W coating. Compared with VPS, HAPS-W technique could provide a convenient and low cost way to obtain adequate W coatings for fusion applications.

  5. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.

    Science.gov (United States)

    Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla

    2015-01-01

    Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.

  6. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

    Directory of Open Access Journals (Sweden)

    Claudia Struzzi

    2015-12-01

    Full Text Available Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.

  7. Plasma and catalyst for the oxidation of NOx

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Raud, Jüri; Stamate, Eugen

    2018-03-01

    Efficient exhaust gas cleaning from NO x (NO and NO2) by absorption and adsorption based methods requires the oxidation of NO. The application of non-thermal plasma is considered as a promising oxidation method but the oxidation of NO by direct plasma remains limited due to the back-reaction of NO2 to NO mediated by O radicals in plasma. Indirect NO oxidation by plasma produced ozone allows to circumvent the back-reaction and further oxidize NO2 to N2O5 but the slow reaction rate for the latter process limits the efficiency of this process. Present paper gives an overview of the role of metal-oxide catalysts in the improvement of oxidation efficiency for both direct and indirect plasma oxidation of NO x . The plasma produced active oxygen species (O, O3) were shown to play an important role in the reactions taking place on the catalyst surfaces while the exact mechanism and extent of the effect were different for direct and indirect oxidation. In the case of direct plasma oxidation, both short and long lifetime oxygen species could reach the catalyst and participate in the oxidation of NO to NO2. The back-reaction in the plasma phase remained still important factor and limited the effect of catalyst. In the case of indirect oxidation, only ozone could reach the catalyst surface and improve the oxidation of NO2 to N2O5. The effect of catalyst at different experimental conditions was quantitatively described with the aid of simple global chemical kinetic models derived for the NO x oxidation either by plasma or ozone. The models allowed to compare the effect of different catalysts and to analyze the limitations for the efficiency improvement by catalyst.

  8. Microwave exposure as a fast and cost-effective alternative of oxygen plasma treatment of indium-tin oxide electrode for application in organic solar cells

    Science.gov (United States)

    Soultati, Anastasia; Kostis, Ioannis; Papadimitropoulos, Giorgos; Zeniou, Angelos; Gogolides, Evangelos; Alexandropoulos, Dimitris; Vainos, Nikos; Davazoglou, Dimitris; Speliotis, Thanassis; Stathopoulos, Nikolaos A.; Argitis, Panagiotis; Vasilopoulou, Maria

    2017-12-01

    Pre-treatment methods are commonly employed to clean as well as to modify electrode surfaces. Many previous reports suggest that modifying the surface properties of indium tin oxide (ITO) by oxygen plasma treatment is a crucial step for the fabrication of high performance organic solar cells. In this work, we propose a fast and cost-effective microwave exposure step for the modification of the surface properties of ITO anode electrodes used in organic solar cells. It is demonstrated that a short microwave exposure improves the hydrophilicity and reduces the roughness of the ITO surface, as revealed by contact angle and atomic force microscopy (AFM) measurements, respectively, leading to a better quality of the PEDOT:PSS film coated on top of it. Similar results were obtained with the commonly used oxygen plasma treatment of ITO suggesting that microwave exposure is an effective process for modifying the surface properties of ITO with the benefits of low-cost, easy and fast processing. In addition, the influence of the microwave exposure of ITO anode electrode on the performance of an organic solar cell based on the poly(3-hexylthiophene):[6,6]-phenyl C70 butyric acid methyl ester (P3HT:PC70BM) blend is investigated. The 71% efficiency enhancement obtained in the microwave annealed-ITO based device as compared to the device with the as-received ITO was mainly attributed to the improvement in the short circuit current (J sc) and decreased leakage current caused by the reduced series and the increased shunt resistances and also by the higher charge generation efficiency, and the reduced recombination losses.

  9. Study of low resistivity and high work function ITO films prepared by oxygen flow rates and N2O plasma treatment for amorphous/crystalline silicon heterojunction solar cells.

    Science.gov (United States)

    Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin

    2014-12-01

    Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

  10. Incineration/vitrification of radioactive wastes and combustion of pyrolysis gases in thermal plasmas; Incineration/vitrification de dechets radioactifs et combustion de gaz de pyrolyse en plasma d`arc

    Energy Technology Data Exchange (ETDEWEB)

    Girold, Ch. [CEA de la Vallee du Rhone, Departement de Retraitement des Dechets et du Demantelemnet, 30 - Marcoule (France)]|[Limoges Univ., 87 (France)

    1997-03-01

    Two thermal plasma processes used for incineration of radioactive technological wastes (cellulose, plastics, rubber...) have been investigated. First, the different types of radioactive wastes are presented, with a special attention to those which may benefit from a high temperature thermal treatment. The most significant thermal plasma processes, suitable for this goal, are described. Then, the author deals with the post-combustion, in an oxygen plasma jet reactor, of gases from burnable radioactive waste pyrolysis. An experimental planning method as been used to evaluate the combustion performances in the reactor, with a wide range of gas composition and running parameters such as oxygen excess and electrical power. The results of a modeling of kinetics, based on 116 chemicals reactions between 25 species, are compared with experimental values. Finally, an oxygen plasma reactor where the arc is transferred on a basalt melt is experimented. The efficiency of the combustion and the homogeneity of the glass are discussed. The volatility of some glass elements and tracers added to the wastes is also approached in two different ways: by post-trial material balance and by an optical emission spectroscopic method. The author built a diagnostic method that allows the following versus time of the metallic vapours above the melt. (author) 51 refs.

  11. Synthesis and Chromatography-Free Purification of PNA-PEO Conjugates for the Functionalisation of Gold Sensors

    Directory of Open Access Journals (Sweden)

    Filippo Romanato

    2012-09-01

    Full Text Available Peptide Nucleic Acids (PNAs linked to high molecular weight (MW poly(ethylene oxide (PEO derivatives could be useful conjugates for the direct functionalisation of gold surfaces dedicated to Surface Plasmon Resonance (SPR-based DNA sensing. However their use is hampered by the difficulty to obtain them through a convenient and economical route. In this work we compared three synthetic strategies to obtain PNA-high MW PEO conjugates composed of (a a 15-mer PNA sequence as the probe complementary to genomic DNA of Mycobacterium tuberculosis, (b a PEO moiety (2 or 5 KDa MW and (c a terminal trityl-protected thiol necessary (after acidic deprotection for grafting to gold surfaces. The 15-mer PNA was obtained by solid-phase synthesis. Its amino terminal group was later condensed to bi-functional PEO derivatives (2 and 5 KDa MW carrying a Trt-cysteine at one end and a carboxyl group at the other end. The reaction was carried out either in solution, using HATU or PyOxim as coupling agents, or through the solid-phase approach, with 49.6%, 100% and 5.2% yield, respectively. A differential solvent extraction strategy for product purification without the need for chromatography is described. The ability of the 5 KDa PEO conjugate to function as a probe for complementary DNA detection was demonstrated using a Grating-Coupling Surface Plasmon Resonance (GC-SPR system. The optimized PEO conjugation and purification protocols are economical and simple enough to be reproduced also within laboratories that are not highly equipped for chemical synthesis.

  12. The influence of target oxygen on the YBa2Cu3O6+δ DC Magnetron sputtering process

    International Nuclear Information System (INIS)

    Larsson, G.; Selinder, T.I.; Helmersson, U

    1990-01-01

    The oxygen partial pressure and the target potential have been monitored under a range of process conditions during single target dc magnetron sputtering of Y-Ba-Cu-O. The introduced sputtering gas consisted in all but one instance of pure argon and hence the oxygen present in the plasma originated mainly from the target. During the first hours of sputtering the oxygen partial pressure was of the same magnitude as the argon pressure (3.0 Pa). As the oxygen was released from the target and subsequently removed by pumping, the target potential increased and the film composition became more stoichiometric. After 30-40 hours of sputtering the target potential and the oxygen pressure stabilized and the film composition was equal to that of the stoichiometric target. If an oxygen flow exceeding a critical level was mixed into the sputtering gas the target potential and the deposition rate decreased swiftly. This was due to target oxidation, further manifested in changing plasma and target colours. In some instances the stabilization after 'presputtering' was incomplete and oscillations in target voltage and oxygen partial pressure were observed. The fluctuations made it virtually impossible to obtain stoichiometric films. The oscillative behaviour of the sputtering process is tentatively explained by a target temperature dependent oxygen diffusion. (au)

  13. In Vitro Comparative Study of Oxygen Plasma Treated Poly(Lactic⁻Co⁻Glycolic) (PLGA) Membranes and Supported Nanostructured Oxides for Guided Bone Regeneration Processes.

    Science.gov (United States)

    Torres-Lagares, Daniel; Castellanos-Cosano, Lizett; Serrera-Figallo, Maria-Angeles; López-Santos, Carmen; Barranco, Angel; Rodríguez-González-Elipe, Agustín; Gutierrez-Perez, Jose-Luis

    2018-05-08

    (1) Background: The use of physical barriers to prevent the invasion of gingival and connective tissue cells into bone cavities during the healing process is called guided bone regeneration. The objective of this in-vitro study was to compare the growth of human osteoblasts on Poly(Lactic⁻co⁻Glycolic) (PLGA) membranes modified with oxygen plasma and Hydroxyapatite (HA), silicon dioxide (SiO₂), and titanium dioxide (TiO₂) composite nanoparticles, respectively. (2) Methods: All the membranes received a common treatment with oxygen plasma and were subsequently treated with HA nanostructured coatings (n = 10), SiO₂ (n = 10) and TiO₂ (n = 10), respectively and a PLGA control membrane (n = 10). The assays were performed using the human osteoblast line MG-63 acquired from the Center for Scientific Instrumentation (CIC) from the University of Granada. The cell adhesion and the viability of the osteoblasts were analyzed by means of light-field microphotographs of each condition with the inverted microscope Axio Observer A1 (Carl Zeiss). For the determination of the mitochondrial energy balance, the MitoProbe™ JC-1 Assay Kit was employed. For the determination of cell growth and the morphology of adherent osteoblasts, two techniques were employed: staining with phalloidin-TRITC and staining with DAPI. (3) Results: The modified membranes that show osteoblasts with a morphology more similar to the control osteoblasts follow the order: PLGA/PO₂/HA > PLGA/PO₂/SiO₂ > PLGA/PO₂/TiO₂ > PLGA ( p membranes was observed as follows: PLGA/PO₂/SiO₂ > PLGA/PO₂/HA > PLGA/PO₂/TiO₂ > PLGA ( p membranes PLGA/PO₂/HA and PLGA/PO₂/SiO₂. (4) Conclusion: The membrane in which osteoblasts show characteristics more similar to the control osteoblasts is the PLGA/PO₂/HA, followed by the PLGA/PO₂/SiO₂.

  14. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics

    International Nuclear Information System (INIS)

    Peng Shujing; Gao Zhiqiang; Sun Jie; Yao Lan; Qiu Yiping

    2009-01-01

    The effect of argon/oxygen atmospheric dielectric barrier discharge (DBD) treatment on desizing and scouring of polyvinyl alcohol (PVA) on cotton fabric was studied with respect to the treatment duration of 1, 2, 4 and 6 min. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen concentration increased for the plasma treated PVA film. Solubility measurement revealed that plasma treatment increased PVA solubility in hot washing but less effective in cold washing. Scanning electron microscopy (SEM) showed that the fiber surfaces were as clean as unsized fibers after 6 min treatment followed by hot washing. Wickability analysis indicated that the capillary heights of plasma treated fabrics increased significantly as the plasma treatment duration increased. The results of the yarn tensile strength test showed that the plasma treatment did not have a negative effect on fabric tensile strength.

  15. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  16. Electrochemical nitrite nanosensor developed with amine- and sulphate-functionalised polystyrene latex beads self-assembled on polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Muchindu, Munkombwe; Waryo, Tesfaye; Arotiba, Omotayo [SensorLab, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Kazimierska, Ewa; Morrin, Aoife; Killard, Anthony J.; Smyth, Malcolm R. [School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Jahed, Nazeem; Kgarebe, Boitumelo; Baker, Priscilla G.L. [SensorLab, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Iwuoha, Emmanuel I., E-mail: eiwuoha@uwc.ac.z [SensorLab, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2010-05-30

    Aniline doped with polyvinyl sulphonate (PV-SO{sub 3}{sup -}) was electropolymerised on screen printed carbon (SPCE) and glassy carbon (GCE) electrodes. Then nano-structured polystyrene (PS{sub NP}) latex beads functionalised with amine (PS{sub NP}-NH{sub 2}) and sulphate (PS{sub NP}-OSO{sub 3}{sup -}) were self-assembled on the modified SPCE and GCE. The resultant polyaniline nanocomposites (PANI|PS{sub NP}-NH{sub 2} or PANI|PS{sub NP}-OSO{sub 3}{sup -}) were characterised by cyclic voltammetry (CV), UV-vis spectroscopy and scanning electron microscopy (SEM). Brown-Anson analysis of the multi-scan rate CV responses of the various PANI films gave surface concentrations of the order of 10{sup -8} mol cm{sup -2}. UV-vis spectra of the PANI films dissolved in dimethyl sulphoxide showed typical strong absorbance maxima at 480 and 740 nm associated with benzenoid pi-pi* transition and quinoid excitons of polyaniline, respectively. The SEM images of the PANI nanocomposite films showed cauliflower-like structures that are <100 nm in diameter. When applied as electrochemical nitrite sensor, sensitivity values of 60, 40 and 30 muA/mM were obtained for electrode systems containing PANI|PS{sub NP}-NH{sub 2}, PANI and PANI|PS{sub NP}-SO{sub 3}{sup -}, respectively. The corresponding limits of detection of the sensors were 7.4, 9.2 and 38.2 muM NO{sub 2}{sup -}.

  17. Plasma-grafting polymerization on carbon fibers and its effect on their composite properties

    Science.gov (United States)

    Zhang, Huanxia; Li, Wei

    2015-11-01

    Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.

  18. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions.

    Science.gov (United States)

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L

    2014-10-09

    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole.

  19. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air

    International Nuclear Information System (INIS)

    Nguyen Dinh, M.T.; Giraudon, J.-M.; Vandenbroucke, A.M.; Morent, R.; De Geyter, N.; Lamonier, J.-F.

    2016-01-01

    Highlights: • Post plasma catalysis: negative DC glow discharge combined with a cryptomelane. • The α-MnO_2 catalyst totally decomposes the NTP generated ozone. • Active oxygen oxidizes the end-up plasma VOC by-products. - Abstract: The total oxidation of trichloroethylene (TCE) in air at low relative humidity (RH = 10%) in the presence of CO_2 (520 ppmv) was investigated in function of energy density using an atmospheric pressure negative DC luminescent glow discharge combined with a cryptomelane catalyst positioned downstream of the plasma reactor at a temperature of 150 °C. When using Non-Thermal Plasma (NTP) alone, it is found a low COx (x = 1–2) yield in agreement with the detection of gaseous polychlorinated by-products in the outlet stream as well as ozone which is an harmful pollutant. Introduction of cryptomelane enhanced trichloroethylene removal, totally inhibited plasma ozone formation and increased significantly the COx yield. The improved performances of the hybrid system were mainly ascribed to the total destruction of plasma generated ozone on cryptomelane surface to produce active oxygen species. Consequently these active oxygen species greatly enhanced the abatement of the plasma non-reacted TCE and completely destroyed the hazardous plasma generated polychlorinated intermediates. The facile redox of Mn species associated with oxygen vacancies and mobility as well as the textural properties of the catalyst might also contribute as a whole to the efficiency of the process.

  20. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Dinh, M.T. [Université Lille, Sciences et Technologies, Unité de Catalyse et Chimie du Solide UMR CNRS UCCS 8181, 59655 Villeneuve d’Ascq (France); The University of Da-Nang, University of Science and Technology, 54, Nguyen Luong Bang, Da-Nang (Viet Nam); Giraudon, J.-M., E-mail: jean-marc.giraudon@univ-lille1.fr [Université Lille, Sciences et Technologies, Unité de Catalyse et Chimie du Solide UMR CNRS UCCS 8181, 59655 Villeneuve d’Ascq (France); Vandenbroucke, A.M.; Morent, R.; De Geyter, N. [Ghent University, Faculty of Engineering and Architecture, Department of Applied Physics, Research Unit Plasma Technology, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Lamonier, J.-F. [Université Lille, Sciences et Technologies, Unité de Catalyse et Chimie du Solide UMR CNRS UCCS 8181, 59655 Villeneuve d’Ascq (France)

    2016-08-15

    Highlights: • Post plasma catalysis: negative DC glow discharge combined with a cryptomelane. • The α-MnO{sub 2} catalyst totally decomposes the NTP generated ozone. • Active oxygen oxidizes the end-up plasma VOC by-products. - Abstract: The total oxidation of trichloroethylene (TCE) in air at low relative humidity (RH = 10%) in the presence of CO{sub 2} (520 ppmv) was investigated in function of energy density using an atmospheric pressure negative DC luminescent glow discharge combined with a cryptomelane catalyst positioned downstream of the plasma reactor at a temperature of 150 °C. When using Non-Thermal Plasma (NTP) alone, it is found a low COx (x = 1–2) yield in agreement with the detection of gaseous polychlorinated by-products in the outlet stream as well as ozone which is an harmful pollutant. Introduction of cryptomelane enhanced trichloroethylene removal, totally inhibited plasma ozone formation and increased significantly the COx yield. The improved performances of the hybrid system were mainly ascribed to the total destruction of plasma generated ozone on cryptomelane surface to produce active oxygen species. Consequently these active oxygen species greatly enhanced the abatement of the plasma non-reacted TCE and completely destroyed the hazardous plasma generated polychlorinated intermediates. The facile redox of Mn species associated with oxygen vacancies and mobility as well as the textural properties of the catalyst might also contribute as a whole to the efficiency of the process.