WorldWideScience

Sample records for oxygen dissolution alphasub

  1. Electrochemical and CMT measurements of the anomalous dissolution of nickel in solutions containing oxygen

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; de Fontenay, Frank; Poulsen, Henning

    1997-01-01

    In addition to single nickel crystals also nickel samples produced by dc and pr (pulse-reversal) plating were examined. As previously reported the true rate of dissolution of nickel in solutions containing oxygen was found to be as much as three times the electrochemical rate at the corrosion...... potential. When passivation was approached (spontaneously or by anodic polarization) the true rate of dissolution approached the rate of anodic reaction. During cathodic polarization there was still a significant rate of dissolution. The true rate of dissolution was determined by CMT measurements (Corrosion...

  2. Biotite dissolution and oxygen consumption in aqueous media at 100 degrees C

    International Nuclear Information System (INIS)

    Taylor, P.; Owen, D.G.

    1997-04-01

    The ability of biotite to consume dissolved oxygen, and hence restore reducing conditions in a nuclear fuel waste vault after closure, has been assessed experimentally. Oxygen consumption has been measured directly, and also deduced from experimental biotite dissolution rates. Results from the dissolution experiments on granitic biotite from the Lac du Bonnet region, Manitoba indicate that the biotite component of granite backfill should consume entrained oxygen in about 50 years at 100 degrees C. Direct measurements of oxygen consumption by commercial biotite specimens originating from Bancroft, Ontario were reasonably consistent with this finding. Magnetite is significantly more effective than biotite at oxygen consumption, perhaps two orders of magnitude faster at 100 degrees C. (author)

  3. Lyoluminescence of irradiated carbohydrates - the role of dissolution rate and oxygen

    International Nuclear Information System (INIS)

    Baugh, P.J.; Laflin, P.

    1980-01-01

    The lyoluminescent emission from γ-irradiated carbohydrates is shown to be strictly controlled by the rate of dissolution of the solid and the availability of oxygen for reaction during dissolution. These effects are explained in terms of oxidation of trapped radicals diffusing from the dissolving carbohydrate which react in an 'active volume' set up at the onset of dissolution at the crystal-water interface. At irradiation doses greater than 82.5 krad for mannose there is a suppression of the emission which results from an incomplete oxidation of the diffusing radicals due to insufficient O 2 in the active volume leading to a reaction involving unoxidised radicals and peroxyl radicals which are believed to be the precursors of the emission. This reaction is suppressed when the oxygen supply to the 'active volume' is increased. This can be achieved by increasing the oxygen content of the injector gas and indirectly by decreasing the solubility of the carbohydrate. Under these conditions the linear dose range of the lyoluminescence response is extended to ca. 330 krad close to the dose at which trapped radicals saturate in the irradiated solid carbohydrate. Although lyoluminescence is a liquid surface-layer effect as expected the generation of the emission is greatly influenced by oxygen present in the injection atmosphere. Quenching of lyoluminescence by adding peroxyl radical quenchers Cu(II) ions and hydroquinone, suggests that the reaction involving these quenchers also occurs in the 'active volume'. The results generally can be interpreted in terms of a diffusion model. (author)

  4. Influence of oxygen, albumin and pH on copper dissolution in a simulated uterine fluid.

    Science.gov (United States)

    Bastidas, D M; Cano, E; Mora, E M

    2005-06-01

    The aim of this paper is to study the influence of albumin content, from 5 to 45 g/L, on copper dissolution and compounds composition in a simulated uterine solution. Experiments were performed in atmospheric pressure conditions and with an additional oxygen pressure of 0.2 atmospheres, at 6.3 and 8.0 pH values, and at a temperature of 37 +/- 0.1 degrees C for 1, 3, 7, and 30 days experimentation time. The copper dissolution rate has been determined using absorbance measurements, finding the highest value for pH 8.0, 35 g/L albumin, and with an additional oxygen pressure of 0.2 atmospheres: 674 microg/day for 1 day, and 301 microg/day for 30 days. X-ray photoelectron spectroscopy (XPS) results show copper(II) as the main copper oxidation state at pH 8.0; and copper(I) and metallic copper at pH 6.3. The presence of albumin up to 35 g/L, accelerates copper dissolution. For high albumin content a stabilisation on the copper dissolution takes place. Corrosion product layer morphology is poorly protective, showing paths through which copper ions can release.

  5. The electrode kinetics of the evolution and dissolution of oxygen at the urania-zirconia interfaces

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Bevan, D.J.M.; Bockris, J.O'M.

    1980-01-01

    In order to assess the potential of urania-yttria fluorite-type solid solutions as electrodes for high-temperature electrolysis of steam, oxygen evolution and dissolution reactions have been studied at the (Usub(0.7)Ysub(0.3))Osub (2+x)/YSZ interface. A current-interruption technique was used to separate overpotential and resistive potential drop. In oxygen and air the overpotential-current curves obey the Tafel law, suggesting that a charge-transfer process is rate determining. Activation energies of 120 kJ mole -1 and 165 kJ mole -1 were obtained for the cathodic reaction in oxygen and air respectively. The capacitance obtained from galvanostatic transients varied with potential, temperature, and oxygen partial pressure. The average value of n, the number of electrons involved in the overall charge-transfer reaction, was determined to be 4.01 from reversible potential measurements. The overpotential losses are small for porous electrodes at high psub(O 2 ). A mechanism for the oxygen transfer reaction has been proposed and its limitations discussed. (author)

  6. Dissolution and reactive oxygen species generation of inhaled cemented tungsten carbide particles in artificial human lung fluids

    International Nuclear Information System (INIS)

    Stefaniak, A B; Leonard, S S; Hoover, M D; Virji, M A; Day, G A

    2009-01-01

    Inhalation of both cobalt (Co) and tungsten carbide (WC) particles is associated with development of hard metal lung disease (HMD) via generation of reactive oxygen species (ROS), whereas Co alone is sufficient to cause asthma via solubilization and hapten formation. We characterized bulk and aerodynamically size-separated W, WC, Co, spray dryer (pre-sintered), and chamfer grinder (post-sintered) powders. ROS generation was measured in the murine RAW 264.7 cell line using electron spin resonance. When dose was normalized to surface area, hydroxyl radical generation was independent of particle size, which suggests that particle surface chemistry may be an important exposure factor. Chamfer grinder particles generated the highest levels of ROS, consistent with the hypothesis that intimate contact of metals is important for ROS generation. In artificial extracellular lung fluid, alkylbenzyldimethylammonium chloride (ABDC), added to prevent mold growth during experiments, did not influence dissolution of Co (44.0±5.2 vs. 48.3±6.4%); however, dissolution was higher (p<0.05) in the absence of phosphate (62.0±5.4 vs. 48.3±6.4%). In artificial macrophage phagolysosomal fluid, dissolution of Co (36.2±10.4%) does not appear to be influenced (p=0.30) by the absence of glycine (29.8±2.1%), phosphate (39.6±8.6%), or ABDC (44.0±10.5%). These results aid in assessing and understanding Co and W inhalation dosimetry.

  7. Catalyst Stability Benchmarking for the Oxygen Evolution Reaction: The Importance of Backing Electrode Material and Dissolution in Accelerated Aging Studies.

    Science.gov (United States)

    Geiger, Simon; Kasian, Olga; Mingers, Andrea M; Nicley, Shannon S; Haenen, Ken; Mayrhofer, Karl J J; Cherevko, Serhiy

    2017-09-18

    In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    International Nuclear Information System (INIS)

    Minamikawa, Kazunori; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito; Takahashi, Masayoshi

    2015-01-01

    A remarkable feature of nanobubbles (<10 –6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH 4 ), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p < 0.05) reduced cumulative CH 4 emission during the rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH 4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p < 0.001). At the end of the experiment, the NB water significantly lowered the soil pH in the 0–5 cm layer, probably because of the raised redox potential. The population of methanogenic Archaea (mcrA copy number) in the 0–5 cm layer was significantly increased by the NB water, but we found no correlation between the mcrA copy number and the cumulative CH 4 emission (r = –0.08, p = 0.85). In pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH 4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils. (letter)

  9. Efficient oxidative dissolution of V2O3 by the in situ electro-generated reactive oxygen species on N-doped carbon felt electrodes

    International Nuclear Information System (INIS)

    Xue, Yudong; Wang, Yunting; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-01-01

    Highlights: • Novel alkaline electro-Fenton-like was applied for V 2 O 3 oxidative dissolution. • N-doped carbon felt electrode was fabricated for the two-electron ORR. • ROS including ·OH and HO 2 − was in-situ generated from the electrochemical system. • A significant enhancement of V 2 O 3 dissolution was achieved due to the ROS. - Abstract: Oxidative dissolution is a critical step for the efficient remediation of heavy metal oxides in large-scale solid wastes. In the present study, a novel electro-oxidative dissolution process of V 2 O 3 to VO 4 3− is achieved by the in-situ generated reactive oxygen species on the N-doped carbon felt cathode in alkaline media. The electro-catalytic HO 2 − generation and hydrophilic behavior were significantly enhanced by the introduction of nitrogen-containing functional groups. Besides, the mechanism of electrochemical vanadium conversion is systematically illustrated, and a vanadium self-induced electro-Fenton-like reaction is proposed. By employing the radical quenching and ESR measurements, the contributions for V(III) dissolution is determined to be 43.5% by HO 2 − and 56.5% by hydroxyl radicals, respectively. It should be noted that the V 2 O 3 solid particles can be efficiently dissolved via adsorption-reaction scheme on the carbon felt electrode. This novel electrochemical strategy provides a promising solution for the heavy metal oxide treatment and further understanding for the in situ reactive oxygen species.

  10. Joint dissolution and oxidation behaviour of 316LN steel at 550 C. in liquid sodium containing low concentration of oxygen - 15417

    International Nuclear Information System (INIS)

    Courouau, J.L.; Rivollier, M.; Lorentz, V.; Tabarant, M.

    2015-01-01

    The sodium cooled fast reactor is selected in France as the 4. generation of nuclear power plant. 4. generation's reactor vessel, primary loop structures and heat exchangers will be made of austenitic stainless steels (316LN). To assess reactor service life time, corrosion of austenitic stainless steel by liquid sodium is studied in normal operating conditions as well as in transient conditions either expected or not. Oxygen, one of the main impurities, but present in trace amounts (1 to 10 μg/g or ppm weight), plays a major role on corrosion phenomena of the steel, although not totally understood yet. Literature reports an increased dissolution rate of steel or even of pure iron with increasing oxygen content although no thermodynamically stable iron oxide exists at low oxygen content. Oxygen is only known to form sodium chromite scale (NaCrO 2 ), those behaviour is, however, little documented. Based on corrosion tests performed in the static sodium test device (CorroNa) at 550 C. degrees for an oxygen content initially of about 1 ppm in weight or lower, and about 5-10 ppm after 4600 h of test, either a really small dissolution rate or small sodium chromite scale formation (NaCrO 2 ) are observed. Dissolution and carburation are observed for specimen immersed since the beginning of the test, while oxidation is the main feature observed for the specimen immersed during the last periods of the test. Some aspects of the morphologies of this oxide scale obtained by scanning electron microscopy (SEM) or transmission electron microscopy (TEM) as well as by Glow Discharge Optical Emission Spectroscopy (GD-OES) are presented. Discussions and explanations of these apparently opposing results are given based on thermodynamic analysis, as well as their possible consequences for reactor operation. (authors)

  11. Dissolution processes

    International Nuclear Information System (INIS)

    Silver, G.L.

    1976-01-01

    This review contains more than 100 observations and 224 references on the dissolution phenomenon. The dissolution processes are grouped into three categories: methods of aqueous attack, fusion methods, and miscellaneous observations on phenomena related to dissolution problems

  12. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    Science.gov (United States)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  13. Microstructure and phase morphology during thermochemical processing of {alpha}{sub 2}-based titanium aluminide castings

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, M. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering; Apgar, L.S. [Dayton Univ., OH (United States). Graduate Materials Engineering; Eylon, D. [Dayton Univ., OH (United States). Graduate Materials Engineering; Weiss, I. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering

    1995-12-31

    Changes in the microstructure, volume fraction and distribution of phases during different stages of thermochemical processing of Ti-25Al-10Nb-3V-1Mo (at.%) castings were investigated. Up to 14.5 at.% (0.35 wt.%) of hydrogen was introduced into the material by gas charging at temperatures between 650 and 980 C for times up to 20 h. The material was subsequently dehydrogenated by vacuum annealing at 650 C for 48 h. Investment cast Ti-25Al-10Nb-3V-1Mo alloy, hot isostatically pressed (HIP) at 1175 C at 260 MPa for 6 h, was used as the starting material. The microstructure of the as-HIP material consists of {alpha}{sub 2}, B2 and orthorhombic phases. The {alpha}{sub 2} phase exists in equiaxed, Widmanstaeten and cellular morphologies. The B2 phase is observed mainly along {alpha}{sub 2}/{alpha}{sub 2} boundaries. Some {alpha}{sub 2} Widmanstaeten also contain very fine orthorhombic phase in a plate-like morphology. Hydrogenation of the material modified the microstructure; however, the morphology of the {alpha}{sub 2} and B2 phases did not change. Furthermore, hydride precipitation and a higher volume fraction of the orthorhombic phase were observed compared with the as-HIP material. Following dehydrogenation, the hydrogen level in the material was found to be less than 0.1 at.% (0.0025wt.%). Transmission electron microscopy of the dehydrogenated material did not reveal the presence of hydride precipitates; however, the high volume fraction of the orthorhombic phase was found to persist following dehydrogenation. (orig.)

  14. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Sansing, Hope A. [Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center-New Orleans, School of Dentistry, New Orleans, LA (United States); Sarkeshik, Ali; Yates, John R. [Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA (United States); Patel, Vyomesh; Gutkind, J. Silvio [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Berrier, Allison L., E-mail: allison.berrier@gmail.com [Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center-New Orleans, School of Dentistry, New Orleans, LA (United States)

    2011-03-11

    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomics screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.

  15. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    Science.gov (United States)

    Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito

    2015-08-01

    A remarkable feature of nanobubbles (pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.

  16. Contribution to the study of the interactions between residual stresses and oxygen dissolution in a reactive deformable solid

    International Nuclear Information System (INIS)

    Raceanu, Laura

    2011-01-01

    The aim of this PhD work is to highlight the interactions between the mechanical stress and the chemical composition within diffusion of matter process for a reactive solid. The chronological evolution of our work goes from a parametric numerical study to an experimental study and reveals the role of mechanical stresses on the oxygen diffusion process. Different origins of mechanical stress were first numerically analysed from the point of view of their impacts on the process of oxygen diffusion into a metal (Zr) or a ceramic (UO 2 ) subjected to an oxidizing environment. This approach allowed us: - to identify a surface treatment (shot-peening) able to generate a residual specific stress field, as a starting point for an experimental study implementation in order to validate the numerical study conclusions; - to highlight the ability of the stress field on the stabilisation of the morphology of an undulated metal/oxide interface (case of Zr). In the experimental approach, different techniques were used to characterize the material (GDOS, SEM, TGA, hole-drilling method, micro-hardness tests). They permitted the detection of a strong influence of shot-peening on the oxidation rate. The comparison of experimental and numerical simulation results reveals strong interactions between stress and compositions fields induced by the different treatments (shot-peening and/or pre-oxidation). This study opens up many opportunities in the understanding of multi-physics coupling effects being very useful for the optimization of mechanical and chemical surface-treatments, able furthermore to favour the diffusion (nitriding, cementation) or to slow it down (corrosion). (author) [fr

  17. Transpassive dissolution of alloy 625, chromium, nickel, and molybdenum in high-temperature solutions containing hydrochloric acid and oxygen

    International Nuclear Information System (INIS)

    Kritzer, P.; Boukis, N.; Dinjus, E.

    2000-01-01

    Coupons of nickel, molybdenum, chromium, and the nickel-based Alloy 625 (UNS 06625) were corroded in strongly oxidizing hydrochloric acid (HCl) solutions at 350 C and a pressure (p) of 24 MPa, with reaction times between 0.75 h and 50 h. For Alloy 625, the effect of surface roughness also was investigated. Nickel and molybdenum showed strong material loss after only 5 h of reaction as a result of the instability of the solid oxides formed under experimental conditions. The attack on chromium started at the grain boundaries. At longer reaction times, thick, spalling oxide layers formed on the surface. The attack on Alloy 625 also started at the grain boundaries and at inclusions leading to the formation of small pits. On polished surfaces, the growth of these pits occurred faster than on nonpolished surfaces, but fewer pits grew. Corrosion products formed at the surface consisted of oxygen and chromium. On isolated spots, nickel- and chlorine-containing products also were found

  18. Dissolution kinetics of UO2: Flow-through tests on UO2.00 pellets and polycrystalline schoepite samples in oxygenated, carbonate/bicarbonate buffer solutions at 25 degree C

    International Nuclear Information System (INIS)

    Nguyen, S.N.; Weed, H.C.; Leider, H.R.; Stout, R.B.

    1991-10-01

    The modelling of radionuclide release from waste forms is an important part of the performance assessment of a potential, high-level radioactive waste repository. Since spent fuel consists of UO 2 containing actinide elements and other fission products, it is necessary to determine the principal parameters affecting UO 2 dissolution and quantify their effects on the dissolution rate before any prediction of long term release rates of radionuclides from the spent fuel can be made. As part of a complex matrix to determine the dissolution kinetics of UO 2 as a function of time, pH, carbonate/bicarbonate concentration and oxygen activity, we have measured the dissolution rates at 25 degrees C of: (1) UO 2 pellets; (2) UO 2.00 powder and (3) synthetic dehydrated schoepite, UO 3 .H 2 O using a single-pass flow through system in an argon-atmosphere glove box. Carbonate, carbonate/bicarbonate, and bicarbonate buffers with concentrations ranging from 0.0002 M to 0.02 M and pH values form 8 to 11 have been used. Argon gas mixtures containing oxygen (from 0.002 to 0.2 atm) and carbon dioxide (from 0 to 0.011 atm) were bubbled through the buffers to stabilize their pH values. 12 refs., 2 tabs

  19. Immunohistochemical and radioimmunological demonstration of alpha/sub 1/-fetoprotein in nonmalignant changes of human gastric mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Falser, N; Lederer, B; Reissigl, H [Innsbruck Univ. (Austria). Pathologisch-Anatomisches Lab.; Innsbruck Univ. (Austria). Gastroenterologisches Lab.)

    1977-07-01

    The occurence of ..cap alpha../sub 1/ fetoprotein in nonmalignant changes of the gastric mucosa was investigated by means of immunohistochemistry and radioimmunonoassay. The investigations were performed in tissue sections, cytological imprint preparations as well as in homogenized tissue samples (obtained by gastroscopy). ..cap alpha../sub 1/ fetoprotein could be demonstrated by immuno-histochemistry in about 90% of the samples originating from the surroundings of gastric ulcer and the region of gastrojejunostomy after B II-resection. The RIA was positive in about 75% of the tissue samples, whereas from gastric juice only 40% of positive results could be obtained. No ..cap alpha../sub 1/ fetoprotein-activity could be demonstrated in serum samples. These investigations indicate that ..cap alpha../sub 1/ fetoprotein is not exclusively synthesized by embryonic or neoplastic tissues and also can be synthesized also by regenerating cell-systems. It may be supposed that this synthesis represents an unspecific answer to growth-stimulation.

  20. Determination of {alpha}{sub s} and m{sub c} in deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, Sergey; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, Sven-Olaf [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2013-07-15

    We describe the determination of the strong coupling constant {alpha}{sub s}(M{sub Z}{sup 2}) and of the charm-quark mass m{sub c}(m{sub c}) in the MS-scheme, based on the QCD analysis of the unpolarized World deep-inelastic scattering data. At NNLO the values of {alpha}{sub s}(M{sub Z}{sup 2})=0.1134{+-}0.001(exp) and m{sub c}(m{sub c})=1.24{+-}0.03(exp){sup +0.03}{sub -0.02}(scale){sup +0.00}{sub -0.07}(th) are obtained and are compared with other determinations, also clarifying discrepancies.

  1. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor {alpha}{sub 7} subtype

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Mikako [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan); Nishiyama, Shingo; Tsukada, Hideo [PET Center, Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu (Japan); Hatano, Kentaro [National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu (Japan); Fuchigami, Takeshi [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan); Yamaguchi, Hiroshi [National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu (Japan); Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan); Matsushima, Yoshitaka [Department of Chemistry, Hamamatsu University School of Medicine, Hamamatsu (Japan); Ito, Kengo [National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu (Japan); Magata, Yasuhiro [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan); Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu (Japan)], E-mail: magata@hama-med.ac.jp

    2010-04-15

    Introduction: The nicotinic acetylcholine receptor (nAChR) {alpha}7 subtype ({alpha}{sub 7} nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled {alpha}{sub 7} nAChR ligands, (R)-2-[{sup 11}C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([{sup 11}C](R)-MeQAA) and its isomer (S)-[{sup 11}C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[{sup 11}C]MeQAA for in vivo imaging of {alpha}{sub 7} nAChR in the brain was evaluated in mice and monkeys. Methods: The binding affinity for {alpha}{sub 7} nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. Results: The affinity for {alpha}{sub 7} nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([{sup 11}C](R)-MeQAA: 7.68 and [{sup 11}C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [{sup 11}C](R)-MeQAA was slow in the hippocampus ({alpha}{sub 7} nAChR-rich region) but was rapid in the cerebellum ({alpha}{sub 7} nAChR-poor region). On the other hand, the clearance was fast for [{sup 11}C](S)-MeQAA in all regions. The brain uptake of [{sup 11}C](R)-MeQAA was decreased by methyllycaconitine ({alpha}{sub 7} nAChR antagonist) treatment. In monkeys, {alpha}{sub 7} nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [{sup 11}C](R)-MeQAA, while the uptake was rather homogeneous for [{sup 11}C](S)-MeQAA. Conclusions: [{sup 11}C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for {alpha}{sub 7} nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain {alpha}{sub 7} nAChRs in vivo.

  2. The rat acute-phase protein {alpha}{sub 2}-macroglobulin plays a central role in amifostine-mediated radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Mirjana, Mihailovic; Goran, Poznanovic; Nevena, Grdovic; Melita, Vidakovic; Svetlana, Dinic; Ilijana, Grigorov; Desanka, Bogojevic, E-mail: mista@ibiss.bg.ac.r [Department of Molecular Biology, Institute for Biological Research ' Sinisa Stankovic' , University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade (Serbia)

    2010-09-15

    Previously we reported that elevated circulating concentrations of the acute-phase (AP) protein {alpha}{sub 2}-macroglobulin ({alpha}{sub 2}M), either as typically occurring in pregnant female rats or after administration to male rats, provides radioprotection, displayed as 100% survival of experimental animals exposed to total-body irradiation with 6.7 Gy (LD{sub 50/30}) x-rays, that is as effective as that afforded by the synthetic radioprotector amifostine. The finding that amifostine administration induces a 45-fold increase in {alpha}{sub 2}M in the circulation led us to hypothesise that {alpha}{sub 2}M assumes an essential role in both natural and amifostine-mediated radioprotection in the rat. In the present work we examined the activation of cytoprotective mechanisms in rat hepatocytes after the exogenous administration of {alpha}{sub 2}M and amifostine. Our results showed that the IL6/JAK/STAT3 hepatoprotective signal pathway, described in a variety of liver-injury models, upregulated the {alpha}{sub 2}M gene in amifostine-pretreated animals. In both {alpha}{sub 2}M- and amifostine-pretreated rats we observed the activation of the Akt signalling pathways that mediate cellular survival. At the cellular level this was reflected as a significant reduction of irradiation-induced DNA damage that allowed for the rapid and complete restoration of liver mass and ultimately at the level of the whole organism the complete restoration of body weight. We conclude that the selective upregulation of {alpha}{sub 2}M plays a central role in amifostine-provided radioprotection.

  3. Regional distribution of ventilation and perfusion in patients with obstructive pulmonary disease and alpha/sub 1/-antitrypsin deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, A B.M.G.; Tulley, N J; Harding, L K; Stockley, R A

    1983-08-01

    Regional distribution of pulmonary ventilation and perfusion has been determined of 13 patients with chronic obstructive pulmonary disease (COPD). Eight patients had alpha/sub 1/-antitrypsin deficiency (..cap alpha../sub 1/ATD). Ventilation studies were carried out using xenon-133 (/sup 133/Xe) and krypton-81m (sup(81m)Kr) gases. Trapping indices were determined from the wash-out part of the xenon ventilation studies. Results obtained from patients were compared with those of normal controls. Ventilation studies with sup(81m)Kr showed pulmonary changes more clearly than did /sup 133/Xe studies and the trapping of radio-xenon was more extensive in lung bases than in apices whether or not the patients had ..cap alpha../sub 1/ ATD. The distribution of perfusion followed a pattern similar to that of ventilation, but did not differ statistically from that of the normal controls.

  4. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    Science.gov (United States)

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  5. UO2 dissolution rates: A review

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-09-01

    This report reviews literature data on UO 2 dissolution kinetics and provides a framework for guiding future experimental studies as well as theoretical modeling studies. Under oxidizing conditions, UO 2 dissolution involves formation of an oxidized surface layer which is then dissolved by formation of aqueous complexes. Higher oxygen pressures or other oxidants are required at higher temperatures to have dissolution rates independent of oxygen pressure. At high oxygen pressures (1-5 atm, 25-70 C), the dissolution rate has a one-half order dependence on oxygen pressure, whereas at oxygen pressures below 0.2 atm, Grandstaff (1976), but nobody else, observed a first-order dependence on dissolution rate. Most people found a first-order dependence on carbonate concentration; Posey-Dowty (1987) found independence of carbonate at pH 7 to 8.2. Dissolution rates increase with temperature except in experiments involving granitic groundwater. Dissolution rates were generally greater under acid or basic conditions than near neutral pH

  6. Inclusive-jet photoproduction at HERA and determination of {alpha}{sub s}

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2012-03-15

    Inclusive-jet cross sections have been measured in the reaction ep{yields}e+jet+X for photon virtuality Q{sup 2}<1 GeV{sup 2} and {gamma}p centre-of-mass energies in the region 14217 GeV and -1<{eta}{sup jet}<2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of E{sub T}{sup jet} in different regions of {eta}{sup jet}. Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E{sub T}{sup jet} and high {eta}{sup jet}. The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O({alpha}{sub s}{sup 2}) terms. Values of {alpha}{sub s}(MZ) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of {alpha}{sub s}(MZ) extracted from the measurements based on the k{sub T} jet algorithm is {alpha}{sub s}(MZ) = 0.1206{sub -0.0022}{sup +0.0023}(exp.){sub -0.0035}{sup +0.0042}(th.); the results from the anti-k{sub T} and SIScone algorithms are compatible with this value and have a similar precision.

  7. Transverse energy-energy correlations in next-to-leading order in {alpha}{sub s} at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed; Wang, Wei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Barreiro, Fernando; Llorente, Javier [Universidad Autonoma de Madrid (Spain). Dept. de Fisica

    2012-05-15

    We compute the transverse energy-energy correlation (EEC) and its asymmetry (AEEC) in next-to-leading order (NLO) in {alpha}{sub s} in proton-proton collisions at the LHC with the center-of-mass energy E{sub c.m.}=7 TeV. We show that the transverse EEC and the AEEC distributions are insensitive to the QCD factorization- and the renormalization-scales, structure functions of the proton, and for a judicious choice of the jet-size, also the underlying minimum bias events. Hence they can be used to precisely test QCD in hadron colliders and determine the strong coupling {alpha}{sub s}. We illustrate these features by defining the hadron jets using the anti-k{sub T} jet algorithm and an event selection procedure employed in the analysis of jets at the LHC and show the {alpha}{sub s}(M{sub Z})-dependence of the transverse EEC and the AEEC in the anticipated range 0.11{<=} {alpha}{sub s}(M{sub Z}){<=}0.13.

  8. Contribution to the study of {sup 12}C excited levels resulting from the reactions {sup 11}B (P/ {alpha}{sub 0}) and {sup 11}B (p, {alpha}{sub 1}); Contribution a l'etude des niveaux excites du {sup 12}C obtenus par les reactions {sup 11}B (p, {alpha}{sub 0}) et {sup 11}B (p, {alpha}{sub l})

    Energy Technology Data Exchange (ETDEWEB)

    Longequeue, J P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-11-15

    This work is made up of two parts. In the first part the differential cross-sections have been determined of the reactions {sup 11}B (p,{alpha}) from 130 to 500 keV thus confirming, at the 163 keV resonance, the (2{sup +}) characteristics of the 16.11 MeV level of {sup 12}C. Furthermore, the experimental results in the neighbourhood of the 163 keV resonance can be explained by the interference of the {sup 12}C levels: 2{sup +} at 16.11 MeV and 1{sup -} at 17.23 MeV for the {alpha}{sub 0}, 2{sup +} at 16.11 MeV and 2{sup -} at 16.58 MeV for the {alpha}{sub 1}. In the second part the ({alpha}{sup -8Be}) disintegration process of {sup 12}C has been studied in the neighbourhood of the 16.11 MeV level. It is shown that, if the ({alpha}{sup -8Be}) mode of disintegration is preponderant outside the E{sub p} = 163 keV resonance, it is also preponderant at this same resonance; a direct disintegration of the {sup 12}C to 3 {alpha}, with an approximate magnitude of 40 per cent has however not been excluded. (author) [French] Ce travail comprend deux parties: Dans la premiere, on a determine la section efficace differentielle des reactions {sup 11}B (p,{alpha}) de 130 a 500 keV, confirmant, a la resonance de 163 keV, les caracteristiques (2{sup +}) du niveau de 16,11 MeV du {sup 12}C. En outre, les resultats experimentaux au voisinage de la resonance de 163 keV sont explicables par l'interference des niveaux du {sup 12}C: 2{sup +} a 16,11 MeV et 1{sup -} a 17,23 MeV pour les {alpha}{sub 0}, 2{sup +} a 16,11 MeV et 2{sup -} a 16,58 MeV pour les {alpha}{sub 1}. Dans la deuxieme partie, on a etudie le mode de desintegration ({alpha}{sup -8Be}) du {sup 12}C au voisinage du niveau de 16,11 MeV. On a montre que, si le mode de desintegration ({alpha}{sup -8Be}) est preponderant en dehors de la resonance E{sub p} = 163 keV, il est egalement preponderant a cette resonance; une desintegration directe en 3{alpha} du {sup 12}C, dont l'ordre de grandeur maximum serait de 40 pour cent, n

  9. Effect of oxygen fugacity on OH dissolution in olivine under peridotite-saturated conditions: An experimental study at 1.5-7 GPa and 1100-1300 °C

    Science.gov (United States)

    Yang, Xiaozhi

    2016-01-01

    The dissolution of OH in olivine by experimental studies at simulated conditions has attracted increasing interest over the past three decades, and the influence of pressure, temperature and composition has been relatively well constrained. Oxygen fugacity is highly heterogeneous in the upper mantle, on both temporal and spatial scales, and is an important parameter in characterizing many chemical and physical processes in the mantle. However, less attention has been devoted to the effect of oxygen fugacity on OH dissolution in olivine, and the only few available reports on this topic have led to significant inconsistency and debate. In this study, the correlation between oxygen fugacity and OH solubility in Fe-bearing olivine has been systematically investigated by conducting experiments at 1.5-7 GPa and 1100-1300 °C and under peridotite- and fluid-saturated conditions, with natural gem-quality olivine single crystals and fresh peridotite xenoliths as starting materials and with oxygen fugacity controlled by the Fe-FeO, Ni-NiO and Fe2O3-Fe3O4 oxygen buffer pairs. The water concentrations were determined by polarized analyses using a Fourier-transform infrared spectroscopy. The results show that, at all the experimental conditions, the OH bands at both high frequency (∼3650-3450 cm-1) and low frequency (∼3450-3100 cm-1) are prominent. The intensity of OH bands at ∼3355 and 3325 cm-1 increases positively with oxygen fugacity, suggesting a dominant role of Fe3+ in their incorporation. Under otherwise identical conditions, the water content is gradually enhanced with increasing pressure, temperature or oxygen fugacity. The effect of oxygen fugacity on the enhancement of OH solubility appears not sensitive to temperature (1100-1300 °C) at a given pressure, but becomes progressively stronger with increasing pressure from 1.5 to 7 GPa given the temperature. Relative to oxygen fugacity buffers, the OH solubility is on average increased by ∼50% between Fe-FeO and

  10. Dissolution of aluminium

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Pereira Sanchez, G.

    1968-01-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  11. Measurement of the strong coupling constant {alpha}{sub s} with hadronic jets in deep inelastic scattering; Mesure de la constante de couplage forte {alpha}{sub s} avec les jets hadroniques en diffusion inelastique profonde

    Energy Technology Data Exchange (ETDEWEB)

    Gouzevitch, Maxime

    2008-12-15

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant {alpha}{sub s}. The jets have been selected in the NC DIS events at large momentum transvers 1505. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on {alpha}{sub s}(m{sub Z}) has been obtained with the combination ob the three observables at Q{sup 2}>150 GeV{sup 2}: {alpha}{sub s}(m{sub Z})=0.1180{+-}0.0007(exp.){sub -0.0034}{sup +0.0050}(th.){+-}0.0017(pdf.).

  12. Status of {alpha}{sub s} determinations from the non-perturbatively renormalised three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. [Liverpool Univ. (United Kingdom). Dept. of Math. Sci.; Richards, D.G. [Dept. of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Alles, B. [Dept. di Fisica, Sezione Teorica, Universita di Milano, Via Celoria 16, 20133-Milano (Italy); Panagopoulos, H. [Department of Natural Sciences, University of Cyprus, 1678 Nicosia (Cyprus); Pittori, C. [L.P.T.H.E., Universite de Paris Sud, Centre d`Orsay, 91405 Orsay (France)

    1998-04-01

    We demonstrate the feasibility of computing {alpha}{sub s} from the lattice three-gluon vertex in the Landau gauge. Data from 16{sup 4} and 24{sup 4} quenched lattices at {beta}=6.0 are presented. Our main result is that 2-loop asymptotic scaling is observed for momenta in the range 1.8-2.3 GeV, where lattice artifacts appear to be under control. (orig.). 6 refs.

  13. A study of jet rates and measurement of [alpha][sub S] at the Z[sup 0] resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, J.A.

    1993-02-01

    This experiment was performed with the SLD detector at the Stanford Linear Accelerator Center. Only charged tracks measured in the central drift chamber were used for the measurement of the jet production rates. The value of the strong coupling [alpha][sub s](M[sub Z][sup o]) is determined from the production rates of jets in hadronic Z[sup 0] decays in e[sup +] e[sup [minus

  14. A study of jet rates and measurement of {alpha}{sub S} at the Z{sup 0} resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, J.A.

    1993-02-01

    This experiment was performed with the SLD detector at the Stanford Linear Accelerator Center. Only charged tracks measured in the central drift chamber were used for the measurement of the jet production rates. The value of the strong coupling {alpha}{sub s}(M{sub Z}{sup o}) is determined from the production rates of jets in hadronic Z{sup 0} decays in e{sup +} e{sup {minus}} annihilations. The relative jet rates are obtained using the JADE-type algorithms. The results are compared with the jet rates obtained from a new jet algorithm proposed by N. Brown et al. called the ``Durham`` algorithm. The data can be well described by O({alpha}{sub s}{sup 2}) QCD calculations and by QCD shower model calculations. A fit of the theoretical predictions to the data taken with the SLD yields a value, {alpha}{sub s}(M{sub Z}{sup o}) = 0.120 {plus_minus} 0.002(stat.) {plus_minus} 0.003(exp.){sub {minus}0.009}{sup +0.011}(theor.). The error is dominated by the theoretical uncertainties. The measurement is compared with results from other experiments and it is shown that the value obtained for {alpha}{sub s} agrees well with these results and furthermore supports the evidence for the running of the strong coupling, consistent with the non-Abelian nature of QCD. The Stanford Linear Collider (SLC) can deliver partially longitudinally polarized electrons to the interaction point. Jet production rates and values for {alpha}{sub s} are calculated both for right-handed and left-handed initial state electrons. All results are consistent with the unpolarized result, as predicted by the Standard Model.

  15. Dissolution Methods Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — For a drug product that does not have a dissolution test method in the United States Pharmacopeia (USP), the FDA Dissolution Methods Database provides information on...

  16. Synthesis and evaluation of [{sup 125}I]I-TSA as a brain nicotinic acetylcholine receptor {alpha}{sub 7} subtype imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Mikako [Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192 (Japan); Tatsumi, Ryo [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Fujio, Masakazu [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Katayama, Jiro [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Magata, Yasuhiro [Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192 (Japan)]. E-mail: magata@hama-med.ac.jp

    2006-04-15

    Introduction: Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) {alpha}{sub 7} subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3'] oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for {alpha}{sub 7} nAChRs. Therefore we synthesized (R)-3'-(5-[{sup 125}I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'- [1',3']oxazolidin]-2'-one ([{sup 125}I]I-TSA) and evaluated its potential for the in vivo detection of {alpha}{sub 7} nAChR in brain. Methods: In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [{sup 125}I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 {mu}l, i.c.v.) or nonradioactive I-TSA (50 {mu}mol/kg, i.v.). Results: I-TSA exhibited a high affinity and selectivity for the {alpha}{sub 7} nAChR (K {sub i} for {alpha}{sub 7} nAChR=0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus ({alpha}{sub 7} nAChR-rich region) and was rather rapid in the cerebellum ({alpha}{sub 7} nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Conclusion: Despite its high affinity and selectivity, [{sup 125}I]I-TSA does not appear to be a suitable tracer for in vivo {alpha}{sub 7} nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.

  17. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  18. Jet production in ep collisions at low Q{sup 2} and determination of {alpha}{sub s}

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Aldaya Martin, M. [DESY Hamburg (Germany); Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (RO)] (and others)

    2009-10-15

    The production of jets is studied in deep-inelastic e{sup +}p scattering at low negative four momentum transfer squared 5 < Q{sup 2} < 100 GeV{sup 2} and at inelasticity 0.2 < y < 0.7 using data recorded by the H1 detector at HERA in the years 1999 and 2000, corresponding to an integrated luminosity of 43.5 pb{sup -1}. Inclusive jet, 2-jet and 3-jet cross sections as well as the ratio of 3-jet to 2-jet cross sections are measured as a function of Q{sup 2} and jet transverse momentum. The 2-jet cross section is also measured as a function of the proton momentum fraction {xi}. The measurements are well described by perturbative quantum chromodynamics at next-to-leading order corrected for hadronisation effects and are subsequently used to extract the strong coupling {alpha}{sub s}. (orig.)

  19. Jet production in ep collisions at low Q {sup 2} and determination of {alpha}{sub s}

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kosior, E.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E. [DESY, Hamburg (Germany); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Podgorica (ME); Baghdasaryan, A.; Volchinski, V.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [Universites Paris VI et VII, CNRS/IN2P3, LPNHE, Paris (France); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D. [Univ. of Birmingham, School of Physics and Astronomy (United Kingdom)] [and others

    2010-05-15

    The production of jets is studied in deep-inelastic e {sup +} p scattering at low negative four momentum transfer squared 5alpha}{sub s}. (orig.)

  20. Noninvasive visualization and quantification of tumor {alpha}{sub V{beta}3} integrin expression using a novel positron emission tomography probe, {sup 64}Cu-cyclam-RAFT-c(-RGDfK-){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhao-Hui [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Furukawa, Takako, E-mail: tfuru@nirs.go.j [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Galibert, Mathieu; Boturyn, Didier [Departement de Chimie Moleculaire, UMR 5250, CNRS-Universite Joseph Fourier, 38041 Grenoble Cedex 9 (France); Coll, Jean-Luc [INSERM U823, Institut Albert Bonniot and Universite Joseph Fourier, 38706 La Tronche Cedex, Grenoble (France); Fukumura, Toshimitsu; Saga, Tsuneo [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Dumy, Pascal [Departement de Chimie Moleculaire, UMR 5250, CNRS-Universite Joseph Fourier, 38041 Grenoble Cedex 9 (France); Fujibayashi, Yasuhisa [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)

    2011-05-15

    Introduction: The {alpha}{sub V{beta}3} integrin is a well-known transmembrane receptor involved in tumor invasion, angiogenesis and metastasis. Our aim was to evaluate a novel positron emission tomography (PET) probe, {sup 64}Cu-cyclam-RAFT-c(-RGDfK-){sub 4}, for noninvasive visualization and quantification of {alpha}{sub V{beta}3} integrin expression. Methods: RAFT-c(-RGDfK-){sub 4}, a tetrameric cyclic Arg-Gly-Asp (RGD)-based peptide, was conjugated with a bifunctional chelator, 1,4,8,11-tetraazacyclotetradecane (cyclam), radiolabeled with the positron emitter {sup 64}Cu and evaluated in vitro by cell binding and competitive inhibition assays and in vivo by biodistribution and receptor blocking studies, and PET imaging. The following cell lines, human embryonic kidney HEK293({beta}{sub 1}) [{alpha}{sub V{beta}3}-negative] and HEK293({beta}{sub 3}) [{alpha}{sub V{beta}3}-overexpressing] and human glioblastoma U87MG [naturally expressing {alpha}{sub V{beta}3}], together with their subcutaneous xenografts in athymic nude mice, were used for the present study. The expression levels of {alpha}{sub V{beta}3} on these cell lines and tumor xenografts were analyzed by flow cytometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography, respectively. Results: {sup 64}Cu-cyclam-RAFT-c(-RGDfK-){sub 4} demonstrated the in vitro and in vivo specificity for the {alpha}{sub V{beta}3} integrin and displayed rapid blood clearance, predominantly renal excretion and low uptake in nontumor tissues. Tumor uptake of {sup 64}Cu-cyclam-RAFT-c(-RGDfK-){sub 4} (3 h postinjection) in HEK293({beta}{sub 3}) (high levels of {alpha}{sub V{beta}3}), U87MG (moderate levels of {alpha}{sub V{beta}3}) and HEK293({beta}{sub 1}) (undetectable levels of {alpha}{sub V{beta}3}) tumors was 9.35%{+-}1.19%, 3.46%{+-}0.45% and 1.18%{+-}0.30% injected dose per gram, respectively, with a strong and positive correlation with the tumor {alpha}{sub V{beta}3} expression levels

  1. Dissolution experiments of unirradiated uranium dioxide pellets

    International Nuclear Information System (INIS)

    Ollila, K.

    1985-01-01

    The purpose of this study was to measure the dissolution rate of uranium from unirradiated uranium dioxide pellets in deionized water and natural groundwater. Moreover, the solubility limit of uranium in natural groundwater was measured. Two different temperatures, 25 and 60 deg C were used. The low oxygen content of deep groundwater was simulated. The dissolution rate of uranium varied from 10 -7 to 10 -8 g cm -2 d -1 . The rate in reionized water was one order of magnitude lower than in groundwater. No great difference was observed between the natural groundwaters with different composition. Temperature seems to have effect on the dissolution rate. The solubility limit of uranium in natural groundwater in reducing conditions, at 25 deg C, varied from 20 to 600 μg/l and in oxidizing conditions, at 60 deg C, from 4 to 17 mg/l

  2. Dissolution of nuclear fuels

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Rainey, R.

    1968-01-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO 2 , PuO 2 and PuO 2 -UO 2 pellets in boiling nitric acid alone and with additives. The uranium metal and UO 2 dissolved readily in nitric acid alone; PuO 2 dissolved slowly even with the addition of fluoride; PuO 2 -UO 2 pellets containing as much as 35% PuO 2 in UO 2 gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO 2 -UO 2 pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs

  3. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    Ollila, K.

    1993-11-01

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  4. PET imaging of {alpha}{sub v}{beta}{sub 3} integrin expression in tumours with {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Ingrid; Franssen, Gerben M.; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Yim, Cheng-Bin [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Utrecht University, Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht (Netherlands); Schuit, Robert C. [VU University Medical Centre, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); Luurtsema, Gert [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30.001, Groningen (Netherlands); Liu, Shuang [Purdue University, School of Health Sciences, West Lafayette, IN (United States)

    2011-01-15

    Due to the restricted expression of {alpha}{sub v}{beta}{sub 3} in tumours, {alpha}{sub v}{beta}{sub 3} is considered a suitable receptor for tumour targeting. In this study the {alpha}{sub v}{beta}{sub 3}-binding characteristics of {sup 68}Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their {sup 111}In-labelled counterparts. A monomeric (E-c(RGDfK)), a dimeric (E-[c(RGDfK)]{sub 2}) and a tetrameric (E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2}) RGD peptide were synthesised, conjugated with DOTA and radiolabelled with {sup 68}Ga. In vitro {alpha}{sub v}{beta}{sub 3}-binding characteristics were determined in a competitive binding assay. In vivo {alpha}{sub v}{beta}{sub 3}-targeting characteristics of the compounds were assessed in mice with subcutaneously growing SK-RC-52 xenografts. In addition, microPET images were acquired using a microPET/CT scanner. The IC{sub 50} values for the Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]{sub 2} and DOTA-E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2} were 23.9 {+-} 1.22, 8.99 {+-} 1.20 and 1.74 {+-} 1.18 nM, respectively, and were similar to those of the In(III)-labelled mono-, di- and tetrameric RGD peptides (26.6 {+-} 1.15, 3.34 {+-} 1.16 and 1.80 {+-} 1.37 nM, respectively). At 2 h post-injection, tumour uptake of the {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides (3.30 {+-} 0.30, 5.24 {+-} 0.27 and 7.11 {+-} 0.67%ID/g, respectively) was comparable to that of their {sup 111}In-labelled counterparts (2.70 {+-} 0.29, 5.61 {+-} 0.85 and 7.32 {+-} 2.45%ID/g, respectively). PET scans were in line with the biodistribution data. On all PET scans, the tumour could be clearly visualised. The integrin affinity and the tumour uptake followed the order of DOTA-tetramer > DOTA-dimer > DOTA-monomer. The {sup 68}Ga-labelled tetrameric RGD peptide has excellent characteristics for imaging of {alpha}{sub v} {beta}{sub 3} expression with PET. (orig.)

  5. Can effective atomic polarizability {alpha}{sub d} determine the ionization of {sup 99}tc{sup m} - diaminedithiol alkylamine radioligand derivatives?; Polarizabilidade atomica efetiva {alpha}{sub d} pode ditar a ionizacao de radioligantes {sup 99}Tc{sup m} - diaminoditiol alquilaminicos?

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Marcos Moises; Fraceto, Leonardo Fernandes; Vila, Marta Maria Duarte Carvalho; Oliveira, Robson Vicente Machado de [Universidade de Sorocaba, SP (Brazil). Curso de Farmacia]. E-mail: marcos.goncalves@uniso.br

    2006-09-15

    Polarizability correlates well with organic ion stabilization in solution and can be defined as a measure of the relative ease of the distortion of the electronic cloud of a dipolar system exposed to an external electric field. The effective atomic polarizability, {alpha}{sub d}, has a fundamental influence on chemical reactivity in the gas phase and in solution. In terms of chemical reactivity the charge is generated within the molecule as a positive charge due to protonation, ionization or resulting from the attack of a nucleophilic anion. In this paper, lipoidal diaminedithiol (DADT) perfusion radioligands based on {sup 99}Tc{sup m} and possessing an alkylamine side chain have been used to check the influence of {alpha}{sub d} on their brain uptake. Some new DADT derivatives, respectively DADT-DIPA (diaminedithiol-diisopropylamine), DADT DIBA (diaminedithiol - diisobutylamine), DADT-PR (diaminedithiol-branched piperidine), have been designed to have high nitrogen alkylamine {alpha}{sub d} values. In spite of the fact of higher {alpha}{sub d} values having been correlated to higher brain uptakes, there is not a clear mechanism able to trap these radioligands into the brain space. (author)

  6. New {alpha}{sub 1}-adrenoceptor antagonists derived from the antipsychotic sertindole - carbon-11 labelling and pet examination of brain uptake in the cynomolgus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Balle, Thomas E-mail: tb@dfuni.dk; Halldin, Christer; Andersen, Linus; Hjorth Alifrangis, Lene; Badolo, Lassina; Gjervig Jensen, Klaus; Chou, Y.-W.; Andersen, Kim; Perregaard, Jens; Farde, Lars

    2004-04-01

    Central {alpha}{sub 1}-adrenergic receptors are potential targets for recently developed antipsychotic drugs. Two new 11C labeled potent and selective {alpha}{sub 1}-adrenoceptor antagonists, 1- [2- [4-[1-(4-fluorophenyl)-5-(2-[{sup 11}C]methyl-tetrazol-5-yl)-1H-indol-3-yl]-1- pipridinyl]ethyl]-imidazolidin-2-one ([{sup 11}C]2) and 1- [2- [4-[1-(4-fluorophenyl)-5-(1-[{sup 11}C]methyl-(1,2,3-triazol-4-yl) -1H-indol-3-yl]- 1-piperidinyl]ethyl]-imidazolidin-2-one ([{sup 11}C]3) were prepared and evaluated for imaging of central {alpha}{sub 1}-adrenergic receptors in the cynomolgus monkey brain. For both compounds, the total brain radioactivity was only about 0.6% of the radioactivity injected i.v. There was no evident binding in regions known to contain {alpha}{sub 1}-adrenoceptors. This observation suggests that the affinity of the radioligands in primates in vivo is not sufficient to provide a signal for specific binding that can be differentiated from the background. In addition, active efflux by P-glycoprotein may be responsible for the low total brain-uptake of the two radioligands. Both compounds showed a highly polarised and verapamile sensitive transport across monolayers of Caco-2 cells. The total brain-uptake of [{sup 3}H]2 was 6 times higher in mdr1a(-/-) knock-out mice lacking the gene encoding P-glycoprotein compared to wild type mice. Pretreatment of one monkey with Cyclosporin A (15 mg/kg) resulted in 40% higher brain uptake for [{sup 11}C]3 when compared with baseline. These observations support the view that efflux by P-glycoprotein can be of quantitative importance for the total brain-uptake of some PET radioligands.

  7. Iron oxides photochemical dissolution

    International Nuclear Information System (INIS)

    Blesa, M.A.; Litter, M.I.

    1987-01-01

    This work was intended to study the light irradiation influence of diverse wave-lengths on iron oxides dissolution in aqueous solutions. The objectives of this work were: the exploration of photochemical processes with the aim of its eventual application in: a) decontamination and chemical cleaning under special conditions; b) materials for solar energy conversion. (Author)

  8. 8 Dissolution Kinetics

    African Journals Online (AJOL)

    user

    Experiments measuring the dissolution rates of stilbite (NaCa [Al Si O ].14H O) in pH-buffered ... The rate law was established as R = k (a ) , where k is ... crystalline hydrated aluminosilicate minerals ..... from the crushing process, thin edges or.

  9. Plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Gray, J.H.

    1992-01-01

    Several processing options for dissolving plutonium oxide (PuO 2 ) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO 2 typically generated by burning plutonium metal and PuO 2 produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO 2 in canyon dissolvers. The options involve solid solution formation of PuO 2 With uranium oxide (UO 2 ) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO 2 with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO 2 materials may warrant further study

  10. Determinants of marriage dissolution

    Science.gov (United States)

    Rahim, Mohd Amirul Rafiq Abu; Shafie, Siti Aishah Mohd; Hadi, Az'lina Abdul; Razali, Nornadiah Mohd; Azid @ Maarof, Nur Niswah Naslina

    2015-10-01

    Nowadays, the number of divorce cases among Muslim couples is very worrisome whereby the total cases reported in 2013 increased by half of the total cases reported in the previous year. The questions on the true key factors of dissolution of marriage continue to arise. Thus, the objective of this study is to reveal the factors that contribute to the dissolution of marriage. A total of 181 cases and ten potential determinants were included in this study. The potential determinants considered were age at marriage of husband and wife, educational level of husband and wife, employment status of husband and wife, income of husband and wife, the number of children and the presence at a counseling session. Logistic regression analysis was used to analyze the data. The findings revealed that four determinants, namely the income of husband and wife, number of children and the presence at a counselling session were significant in predicting the likelihood of divorce among Muslim couples.

  11. Collective dissolution of microbubbles

    Science.gov (United States)

    Michelin, Sébastien; Guérin, Etienne; Lauga, Eric

    2018-04-01

    A microscopic bubble of soluble gas always dissolves in finite time in an undersaturated fluid. This diffusive process is driven by the difference between the gas concentration near the bubble, whose value is governed by the internal pressure through Henry's law, and the concentration in the far field. The presence of neighboring bubbles can significantly slow down this process by increasing the effective background concentration and reducing the diffusing flux of dissolved gas experienced by each bubble. We develop theoretical modeling of such diffusive shielding process in the case of small microbubbles whose internal pressure is dominated by Laplace pressure. We first use an exact semianalytical solution to capture the case of two bubbles and analyze in detail the shielding effect as a function of the distance between the bubbles and their size ratio. While we also solve exactly for the Stokes flow around the bubble, we show that hydrodynamic effects are mostly negligible except in the case of almost-touching bubbles. In order to tackle the case of multiple bubbles, we then derive and validate two analytical approximate yet generic frameworks, first using the method of reflections and then by proposing a self-consistent continuum description. Using both modeling frameworks, we examine the dissolution of regular one-, two-, and three-dimensional bubble lattices. Bubbles located at the edge of the lattices dissolve first, while innermost bubbles benefit from the diffusive shielding effect, leading to the inward propagation of a dissolution front within the lattice. We show that diffusive shielding leads to severalfold increases in the dissolution time, which grows logarithmically with the number of bubbles in one-dimensional lattices and algebraically in two and three dimensions, scaling respectively as its square root and 2 /3 power. We further illustrate the sensitivity of the dissolution patterns to initial fluctuations in bubble size or arrangement in the case

  12. Solubility limits on radionuclide dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  13. Biorelevant dissolution media

    DEFF Research Database (Denmark)

    Ilardia-Arana, David; Kristensen, Henning G; Müllertz, Anette

    2006-01-01

    Biorelevant dissolution media containing bile salt and lecithin at concentrations appropriate for fed and fasted state are useful when testing oral solid formulations of poorly water-soluble drugs. Dilution of amphiphile solutions affects the aggregation state of the amphiphiles because bile salt...... is partitioned between the aqueous phase and the aggregates. The aim of the investigation was to study the effect of dilution on the size distribution of aggregates and its effect on the solubilization capacity. Clear buffered solutions of four intestinal amphiphiles (sodium glycocholate, lecithin, monoolein...

  14. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  15. Dissolution and alteration of uraninite under reducing conditions

    International Nuclear Information System (INIS)

    Janeczek, J.; Ewing, R.C.

    1992-01-01

    The behavior of uraninite under hydrothermal, reducung conditions is discussed on the basis of data in the literature and the authors' investigation of samples from two natural analogue sites: Oklo, Gabon and Cigar Lake, Canada. Uraninite under reducing conditions, in the presence of saline hydrothermal solutions may be altered through dissolution, preferential loss of lead and/or Y + HREE, and coffinitization. Textural features indicative of dissolution or uraninite include embayed grain boundaries, corroded relicts of uraninite embedded in a clay matrix, and replacement of uraninite by clays and sulfides. The alteration textures and phase chemistries at Oklo and Cigar Lake are remarkably similar. Dissolution of uraninite at Cigar Lake and Oklo was associated with the precipitation or illite and was probably caused by saline, uraninite moderately acidic solutions at approximately 200deg C. Increased oxygen fugacity may have occured locally due to release of excess oxygen from uraninite during dissolution or by α-radiolysis of the solution. The formation of Pb-rich (up to 18 wt% Pb, uraninite-I) and Pb-depleted (approximately 7-8 wt% Pb, uraninite-II) uraninites at both Oklo and Cigar Lake resulted from the loss of Pb due to predominantly episodic volume diffusion related to regional geologic events. Lead loss was not associated with U mobilization. In addition to uraninite dissolution, coffinitization resulted in U, Pb and REE release. (orig.)

  16. Development of Dissolution Test Method for Drotaverine ...

    African Journals Online (AJOL)

    Development of Dissolution Test Method for Drotaverine ... Methods: Sink conditions, drug stability and specificity in different dissolution media were tested to optimize a dissolution test .... test by Prism 4.0 software, and differences between ...

  17. Oxidation and dissolution of UO{sub 2} in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Clarens, F. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Casas, I. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Rovira, M. [CTM Centre Tecnologic, Avda. Bases de Manresa 1. 08240 Manresa (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Bruno, J. [Enresa-Enviros Environmental Science and Waste Management Chair, UPC, Jordi Girona 1-3 B2, 08034 Barcelona (Spain)

    2005-10-15

    The objective of this work is to study the UO{sub 2} oxidation by O{sub 2} and dissolution in bicarbonate media and to extrapolate the results obtained to improve the knowledge of the oxidative dissolution of spent nuclear fuel. The results obtained show that in the studied range the oxygen consumption rate is independent on the bicarbonate concentration while the UO{sub 2} dissolution rate does depend on. Besides, at 10{sup -4} mol dm{sup -3} bicarbonate concentration, the oxygen consumption rate is almost two orders of magnitude higher than the UO{sub 2} dissolution rate. These results suggest that at low bicarbonate concentration (<10{sup -2} mol dm{sup -3}) the alteration of the spent nuclear fuel cannot be directly derived from the measured uranium concentrations in solution. On the other hand, the study at low bicarbonate concentrations of the evolution of the UO{sub 2} surface at nanometric scale by means of the SFM technique shows that the difference between oxidation and dissolution rates is not due to the precipitation of a secondary solid phase on UO{sub 2}.

  18. Mathematical modeling of drug dissolution.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dissolution of FFTF vendor fuel

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone

  20. Dissolution of FFTF vendor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone.

  1. Dissolution glow curve in LLD

    International Nuclear Information System (INIS)

    Haverkamp, U.; Wiezorek, C.; Poetter, R.

    1990-01-01

    Lyoluminescence dosimetry is based upon light emission during dissolution of previously irradiated dosimetric materials. The lyoluminescence signal is expressed in the dissolution glow curve. These curves begin, depending on the dissolution system, with a high peak followed by an exponentially decreasing intensity. System parameters that influence the graph of the dissolution glow curve, are, for example, injection speed, temperature and pH value of the solution and the design of the dissolution cell. The initial peak does not significantly correlate with the absorbed dose, it is mainly an effect of the injection. The decay of the curve consists of two exponential components: one fast and one slow. The components depend on the absorbed dose and the dosimetric materials used. In particular, the slow component correlates with the absorbed dose. In contrast to the fast component the argument of the exponential function of the slow component is independent of the dosimetric materials investigated: trehalose, glucose and mannitol. The maximum value, following the peak of the curve, and the integral light output are a measure of the absorbed dose. The reason for the different light outputs of various dosimetric materials after irradiation with the same dose is the differing solubility. The character of the dissolution glow curves is the same following irradiation with photons, electrons or neutrons. (author)

  2. Dissolution of aluminium; Disolucion de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A; Berberana Eizmendi, M; Pereira Sanchez, G

    1968-07-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  3. Dissolution Threats and Legislative Bargaining

    DEFF Research Database (Denmark)

    Becher, Michael; Christiansen, Flemming Juul

    2015-01-01

    Chief executives in many parliamentary democracies have the power to dissolve the legislature. Despite a well-developed literature on the endogenous timing of parliamentary elections, political scientists know remarkably little about the strategic use of dissolution power to influence policymaking....... To address this gap, we propose and empirically evaluate a theoretical model of legislative bargaining in the shadow of executive dissolution power. The model implies that the chief executive's public support and legislative strength, as well as the time until the next constitutionally mandated election...

  4. Actor bonds after relationship dissolution

    DEFF Research Database (Denmark)

    Skaates, Maria Anne

    2000-01-01

    Most of the presented papers at the 1st NoRD Workshop can be classified as belonging to the business marketing approach to relationship dissolution. Two papers were conceptual, and the remaining six were empirical studies. The first conceptual study by Skaates (2000) focuses on the nature...... of the actor bonds that remain after a business relationship has ended. The study suggests that an interdisciplinary approach would provide a richer understanding of the phenomenon; this could be achieved by using e.g. Bourdieu's sociological concepts in dissolution research....

  5. Modeling of UO2 aqueous dissolution over a wide range of conditions

    International Nuclear Information System (INIS)

    Steward, S.A.; Weed, H.C.

    1993-11-01

    Previously it was not possible to predict reliably the rate at which spent fuel would react with groundwater because of conflicting data in the literature. The dissolution of the UO 2 spent fuel matrix is a necessary step for aqueous release of radioactive fission products. Statistical experimental design was used to plan a set of UO 2 dissolution experiments to examine systematically the effects of temperature (25--75C), dissolved oxygen (0.002--0.2 atm overpressure), pH (8--10) and carbonate (2-200x10 -4 molar) concentrations on UO 2 dissolution. The average uranium dissolution rate was 4.3 mg/m 2 /day. The regression fit of the data indicate an Arrhenius type activation energy of 8750 cal/mol and a half-power dependence on dissolved oxygen in the simulated groundwater

  6. Comparison of uranium dissolution rates from spent fuel and uranium dioxide

    International Nuclear Information System (INIS)

    Steward, S.A.; Gray, W.J.

    1994-01-01

    Two similar sets of dissolution experiments, resulting from a statistical experimental design were performed in order to examine systematically the effects of temperature (25--75 degree C), dissolved oxygen (0.002-0.2 atm overpressure), pH (8--10) and carbonate concentrations (2--200 x 10 -4 molar) on aqueous dissolution of UO 2 and spent fuel. The average dissolution rate was 8.6 mg/m 2 ·day for UO 2 and 3.1 mg/m 2 ·day for spent fuel. This is considered to be an insignificant difference; thus, unirradiated UO 2 and irradiated spent fuel dissolved at about the same rate. Moreover, regression analyses indicated that the dissolution rates of UO 2 and spent fuel responded similarly to changes in pH, temperature, and carbonate concentration. However, the two materials responded very differently to dissolved oxygen concentration. Approximately half-order reaction rates with respect to oxygen concentration were found for UO 2 at all conditions tested. At room temperature, spent fuel dissolution (reaction) rates were nearly independent of oxygen concentration. At 75 degree C, reaction orders of 0.35 and 0.73 were observed for spent fuel, and there was some indication that the reaction order with respect to oxygen concentration might be dependent on pH and/or carbonate concentration as well as on temperature

  7. {alpha}{sub v}{beta}{sub 3} imaging can accurately distinguish between mature teratoma and necrosis in {sup 18}F-FDG-negative residual masses after treatment of non-seminomatous testicular cancer: a preclinical study

    Energy Technology Data Exchange (ETDEWEB)

    Aide, Nicolas [Francois Baclesse Cancer Centre and Caen University, Bioticla Team, EA1772, IFR 146 ICORE, GRECAN, Caen (France); Caen University Hospital and Francois Baclesse Cancer Centre, PET Unit, Caen (France); Centre Francois Baclesse, Service de Medecine Nucleaire, Caen (France); Briand, Melanie; Dutoit, Soizic; Deslandes, Edwiges; Poulain, Laurent [Francois Baclesse Cancer Centre and Caen University, Bioticla Team, EA1772, IFR 146 ICORE, GRECAN, Caen (France); Bohn, Pierre; Rouvet, Jean; Modzelewski, Romain; Vera, Pierre [Henri Becquerel Cancer Center and Rouen University Hospital and QuantIF- LITIS (EA4108), Department of Nuclear Medicine, Rouen (France); Lasnon, Charline [Caen University Hospital and Francois Baclesse Cancer Centre, PET Unit, Caen (France); Chasle, Jacques [Francois Baclesse Cancer Centre and Caen University, Pathology Department, Caen (France); Vela, Antony [Francois Baclesse Cancer Centre and Caen University, Radiophysics Unit, Caen (France); Carreiras, Franck [Universite de Cergy Pontoise, UFR Sciences et Techniques, ERRMECe, EA 1391, Institut des materiaux, Cergy-Pontoise (France)

    2011-02-15

    We assessed whether imaging {alpha}{sub v}{beta}{sub 3} integrin could distinguish mature teratoma from necrosis in human non-seminomatous germ cell tumour (NSGCT) post-chemotherapy residual masses. Human embryonal carcinoma xenografts (six/rat) were untreated (controls) or treated to form mature teratomas with low-dose cisplatin and all-trans retinoic acid (ATRA) over a period of 8 weeks. In another group, necrosis was induced in xenografts with high-dose cisplatin plus etoposide (two cycles).{sup 18}F-Fluorodeoxyglucose ({sup 18}F-FDG) small animal positron emission tomography (SA PET) imaging was performed in three rats (one control and two treated for 4 and 8 weeks with cisplatin+ATRA). Imaging of {alpha}{sub v}{beta}{sub 3} expression was performed in six rats bearing mature teratomas and two rats with necrotic lesions on a microSPECT/CT device after injection of the tracer [{sup 99m}Tc]HYNIC-RGD [6-hydrazinonicotinic acid conjugated to cyclo(Arg-Gly-Asp-D-Phe-Lys)]. Correlative immunohistochemistry studies of human and mouse {alpha}{sub v}{beta}{sub 3} expression were performed. Cisplatin+ATRA induced differentiation of the xenografts. After 8 weeks, some glandular structures and mesenchymal cells were visible; in contrast, control tumours showed undifferentiated tissues. SA PET imaging showed that mature teratoma had very low avidity for {sup 18}F-FDG [mean standardised uptake value (SUV{sub mean}) = 0.48 {+-} 0.05] compared to untreated embryonal carcinoma (SUV{sub mean} = 0.92 {+-} 0.13) (p = 0.005). {alpha}{sub v}{beta}{sub 3} imaging accurately distinguished mature teratoma (tumour to muscle ratio = 4.29 {+-} 1.57) from necrosis (tumour to muscle ratio = 1.3 {+-} 0.26) (p = 0.0002). Immunohistochemistry studies showed that {alpha}{sub v}{beta}{sub 3} integrin expression was strong in the glandular structures of mature teratoma lesions and negative in host stroma. Imaging {alpha}{sub v}{beta}{sub 3} integrin accurately distinguished mature teratoma from

  8. Marital dissolution: an economic analysis.

    Science.gov (United States)

    Hunter, K A

    1984-01-01

    A longitudinal analysis of factors affecting marital dissolution in the United States is presented using data from the Coleman-Rossi Retrospective Life History. Factors considered include labor force participation of both spouses, wage growth, size of family unit, age at marriage, and educational status. The study is based on the economic analysis approach developed by Gary S. Becker and others.

  9. An autoclave system for uranium oxide dissolution experiments

    International Nuclear Information System (INIS)

    Nykyri, Mikko

    1985-05-01

    According to the decision in principle of the Council of State of Finland the nuclear energy producers must provide preparedness for carrying out the final disposal of spent nuclear fuel in Finland. By the present principal concept the spent fuel will be disposed deep into the granitic bedrock. A parameter needed by risk analysis models is the dissolution rate of the uranium oxide matrix in the fuel pellets. In order to approach conditions prevailing deep in the groundwater, and autoclave system for dissolution experiments was developed at the Technical Research Centre of Finland. The low oxygen content and high pressure at elevated temperatures are simulated in the system. 20 MPa and 100 deg C are the upper operation limits of pressure and temperature. Water can be changed in the experiment autoclave without remarkable pressure and temperature variations. This has been arranged by using three pressure vessels: a supply vessel, a dissolution vessel and a depletion vessel. The extreme vessels serve pressure balancing purposes during water exchange. The water is deoxygenated during a preparation phase in the supply vessel by flushing it with nitrogen gas. Polytetrafluoroethylene is the principal material in contact with the water. A redox electrode couple was developed for potential measurements inside the dissolution vessel. The reference electrode is of Ag/AgCl-type with saturated KC1 electrolyte. A platinum wire operates as a measuring electrode

  10. Dissolution test for glibenclamide tablets

    Directory of Open Access Journals (Sweden)

    Elisabeth Aparecida dos Santos Gianotto

    2007-10-01

    Full Text Available The aim of this work is to develop and validate a dissolution test for glibenclamide tablets. Optimal conditions to carry out the dissolution test are 500 mL of phosphate buffer at pH 8.0, paddles at 75 rpm stirring speed, time test set to 60 min and using equipment with six vessels. The derivative UV spectrophotometric method for determination of glibenclamide released was developed, validated and compared with the HPLC method. The UVDS method presents linearity (r² = 0.9999 in the concentration range of 5-14 µg/mL. Precision and recoveries were 0.42% and 100.25%, respectively. The method was applied to three products commercially available on the Brazilian market.

  11. Molecular nuclear imaging of tumoral angio genesis using a rgd-containing tracer, Raft-RGD, targeted at the neo vessel-specific integrin {alpha}{sub v}{beta}{sub 3}; Evaluation d'un radioligand de l'integrine {alpha}{sub v}{beta}{sub 3} (RAFT-RGD) pour l'imagerie moleculaire de l'angiogenese tumorale

    Energy Technology Data Exchange (ETDEWEB)

    Sancey, L

    2006-06-15

    Tumoral neo-angio genesis targeting is currently a major field of research for the diagnostic and treatment of solid tumors. Endothelial cells from neo vessels over express several specific markers such as the {alpha}{sub v}{beta}{sub 3} integrin, which binds RGD (-Arg-Gly-Asp-)- containing peptides. We evaluated the potential of a novel radiotracer - RAFT-RGD - for the molecular nuclear imaging of neo vessels. In vitro, the coupling of 4 c(RGDfK) to the RAFT platform resulted in an increased cellular uptake of the tracer by {alpha}{sub v}{beta}{sub 3} positive cells when compared to c(RGDfK). Furthermore, RAFTRGD has a higher affinity than c(RGDfK) and similar properties for angio genesis inhibition. In vivo, both {alpha}{sub v}{beta}{sub 3} positive and negative tumors were visible by non invasive whole body planar and tomographic imaging from 30 min to 24 h post-injection, using a gamma camera dedicated to small animal imaging. Despite a lack of significant contrast improvement compare with c(RGDfK), RAFT-RGD could represent a promising tracer for tumoral angio genesis since it could provide invaluable information about tumor development and treatment efficacy in Nuclear Medicine departments. Furthermore, thanks to its chemical structure, RAFT-RGD can be labelled with a variety of radioisotopes including {gamma} and {beta}{sup -} emitters, allowing interesting therapeutical applications such as internal targeted radiotherapy. (author)

  12. The dissolution of chalcopyrite in chloride media

    International Nuclear Information System (INIS)

    Ibanez, T.; Velasquez, L.

    2013-01-01

    The aim of this investigation is to determinate the effects of parameters and additives on the kinetics of dissolution of chalcopyrite on moderated conditions by means of dissolutions test with chalcopyrite concentrate and pure chalcopyrite in shake flasks and instrumented stirred reactors. A study of the dissolution of chalcopyrite in chloride solutions has demonstrated that the rate of dissolution of chalcopyrite is strongly dependent on the potential of the solution within a range of 540 to 630 mV (versus SHE). Leaching at pH around 2.5 results in increased rates of copper dissolution suggesting the possibility to keep the solution potential within the range. Both pyrite and silver ions enhance the dissolution of chalcopyrite and this effect increases when both species are present. The MnO 2 has a negative effect on the dissolution increasing the solution potential to values where the rate decreases considerably. (Author)

  13. Organic ligand-induced dissolution kinetics of antimony trioxide

    Institute of Scientific and Technical Information of China (English)

    Xingyun Hu; Mengchang He

    2017-01-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb2O3 was investigated.Some representative LMWDOMs with carboxyl,hydroxyl,hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen,namely oxalic acid,citric acid,tartaric acid,EDTA,salicylic acid,phthalandione,glycine,thiolactic acid,xylitol,glucose and catechol.These LMWDOMs were dissolved in inert buffers at pH =3.7,6.6 and 8.6 and added to powdered Sb2O3 in a stirred,thermostatted reactor (25℃).The addition of EDTA,tartaric acid,thiolactic acid,citric acid and oxalic acid solutions at pH 3.7 and catechol at pH 8.6 increased the rate of release of antimony.In the 10 mmol/L thiolactic acid solution,up to 97% by mass of the antimony was released after 120 min reaction.There was no effect on the dissolution of Sb2O3 for the other ligands.A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found.All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb2O3 was not determined by the stability of the dissolved complex,but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface.This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands,but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals.

  14. Organic ligand-induced dissolution kinetics of antimony trioxide.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang

    2017-06-01

    The influence of low-molecular-weight dissolved organic matter (LMWDOM) on the dissolution rate of Sb 2 O 3 was investigated. Some representative LMWDOMs with carboxyl, hydroxyl, hydrosulfuryl and amidogen groups occurring naturally in the solution were chosen, namely oxalic acid, citric acid, tartaric acid, EDTA, salicylic acid, phthalandione, glycine, thiolactic acid, xylitol, glucose and catechol. These LMWDOMs were dissolved in inert buffers at pH=3.7, 6.6 and 8.6 and added to powdered Sb 2 O 3 in a stirred, thermostatted reactor (25°C). The addition of EDTA, tartaric acid, thiolactic acid, citric acid and oxalic acid solutions at pH3.7 and catechol at pH8.6 increased the rate of release of antimony. In the 10mmol/L thiolactic acid solution, up to 97% by mass of the antimony was released after 120min reaction. There was no effect on the dissolution of Sb 2 O 3 for the other ligands. A weak correlation between dissolution rate with the dissociation constant of ligands and the stability of the dissolved complex was also found. All the results showed that the extent of the promoting effect of ligands on the dissolution of Sb 2 O 3 was not determined by the stability of the dissolved complex, but by the dissociation constant of ligands and detachment rate of surface chelates from the mineral surface. This study can not only help in further understanding the effect of individual low-molecular-weight organic ligands, but also provides a reference to deduce the effect of natural organic matters with oxygen-bearing functional groups on the dissolution of antimony oxide minerals. Copyright © 2016. Published by Elsevier B.V.

  15. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  16. Anodic dissolution and corrosion of alloy Cu30Ni in chloride solutions

    International Nuclear Information System (INIS)

    Zolotarev, E.I.

    1989-01-01

    The anodic and corrosion behavior of alloy Cu30Ni is studied in a solution of 3 N NaCl + 0.01 N HCl by a radiometric method using gamma isotopes of 58 Co (as a marker for Ni) and 64 Cu in combination with electrochemical measurements. It was established that under stationary conditions there was uniform dissolution of the alloy both during free corrosion and anodic polarization. The authors obtained partial anodic dissolution curves for the components of the alloy. It was shown that the dissolution kinetics differed from the mechanisms controlling dissolution of the corresponding pure metals. During corrosion of the alloy in an oxygen atmosphere a back precipitation of copper on the surface of the alloy was not observed. The characteristics observed in the corrosion-electrochemical behavior of the alloy in concentrated chloride solutions can be explained by the presence of Ni on the surface of the dissolving alloy

  17. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Science.gov (United States)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  18. Biodistribution and radiation dosimetry of the {alpha}{sub 7} nicotinic acetylcholine receptor ligand [{sup 11}C]CHIBA-1001 in humans

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Muneyuki [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Wu, Jin; Toyohara, Jun [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Ishikawa, Masatomo [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan); Hashimoto, Kenji [Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Ishiwata, Kiichi, E-mail: ishiwata@pet.tmig.or.j [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo 173-0022 (Japan)

    2011-04-15

    Introduction: 4-[{sup 11}C]Methylphenyl 2,4-diazabicyclo[3.2.2]nonane-2-carboxylate ([{sup 11}C]CHIBA-1001) is a newly developed positron emission tomography (PET) ligand for mapping {alpha}{sub 7} nicotinic acetylcholine receptors. We investigated whole-body biodistribution and radiation dosimetry of [{sup 11}C]CHIBA-1001 in humans and compared the results with those obtained in mice. Methods: Dynamic whole-body PET was carried out for three human subjects after administering a bolus injection of [{sup 11}C]CHIBA-1001. Emission scans were collected in two-dimensional mode over five bed positions. Regions of interest were placed over 12 organs. Radiation dosimetry was estimated from the residence times of these source organs using the OLINDA program. Biodistribution data from mice were also used for the prediction of radiation dosimetry in humans, and results with and those without accommodation of different proportions of organ-to-total-body mass were compared with the results from the human PET study. Results: In humans, the highest accumulation was observed in the liver, whereas in mice, the highest accumulation was observed in the urinary bladder. The estimated effective dose from the human PET study was 6.9 {mu}Sv/MBq, and that from mice was much underestimated. Conclusion: Effective dose estimates for [{sup 11}C]CHIBA-1001 were compatible with those associated with other common nuclear medicine tests. Absorption doses among several organs were considerably different between the human and mouse studies. Human dosimetry studies for the investigation of radiation safety are desirable as one of the first clinical trials of new PET probes before their application in subsequent clinical investigations.

  19. Dissolution mechanism of austenitic stainless steels in lead-bismuth eutectic at 500 deg. C

    International Nuclear Information System (INIS)

    Roy, M.

    2012-01-01

    In the framework of the future nuclear power plants studies, lead-bismuth eutectic (LBE) is foreseen as a coolant in the primary or the secondary circuit in three nuclear systems. The use of this liquid alloy induces corrosion issues for structural steels. In liquid lead alloys, steels can undergo two corrosion phenomena: dissolution or oxidation depending on the temperature and the dissolved oxygen content in LBE. The goal of this study is to identify the dissolution mechanisms of austenitic steels in LBE at 500 deg. C. Four Fe-Cr-Ni model austenitic steels, the 316L steel and five other industrial steels were corroded in LBE up to, respectively, 3000, 6000 and 200 h. The dissolution mechanism is identical for all steels: it starts by a preferential dissolution of chromium and nickel. This dissolution leads to the formation of a ferritic corrosion layer penetrated by LBE and containing between 5 and 10 at% of chromium and almost no nickel. This study demonstrates that dissolutions of nickel and chromium are linked. Otherwise, the corrosion kinetics is linear whatever the tested austenitic steel. The controlling steps of the austenitic steels' corrosion rates have been identified. Natural convection in the LBE bath leads to the formation of a diffusion boundary layer at the steel surface. Chromium diffusion in this diffusion boundary layer seems to control the corrosion rates of the model and industrial austenitic steels except the 316L steel. Indeed, the corrosion rate of the 316L steel is controlled by an interfacial reaction which is either the simultaneous dissolution of nickel and chromium in Ni, Cr compounds or the nickel and chromium dissolution catalyzed by the dissolved oxygen in LBE. This study has permitted to highlight the major role of chromium on the corrosion mechanisms and the corrosion rates of austenitic steels: the corrosion rate increases when chromium activity increases. Finally, the impact of the dissolved oxygen and the minor alloying

  20. The dissolution phenomenon of lysozyme crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Ulrich, J. [Martin Luther University Halle-Wittenberg, Department of Thermal Separation Processes, Centre of Engineering Science, Halle/Saale (Germany)

    2012-02-15

    Dissolution studies on lysozyme crystals were carried out since the observed dissolution pattern look different from non-protein dissolved crystals. The Tetragonal, High Temperature and Low Temperature Orthorhombic morphologies, crystallized using sodium chloride, were chosen and the influence of different pH, salt and protein concentration on their dissolution was investigated. An increase in pH and/or salt concentration can modify the dissolution behaviour. The pattern of the crystals during the dissolution process will, therefore, develop differently. Frequently a skeleton like crystal pattern followed by a falling apart of the crystals is observed. The multi-component character of the lysozyme crystal (protein, water, buffer, salt) as well as ''solvatomorphism'' gives first insights in the phenomena happening in the dissolution process. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Plutonium dioxide dissolution in glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  2. Plutonium dioxide dissolution in glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy's (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation's defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO 2 feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO 2 dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides

  3. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  4. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Ivan Stupák

    2017-11-01

    Full Text Available Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus—Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium, we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  5. Dissolution of lignin in green urea aqueous solution

    Science.gov (United States)

    Wang, Jingyu; Li, Ying; Qiu, Xueqing; Liu, Di; Yang, Dongjie; Liu, Weifeng; Qian, Yong

    2017-12-01

    The dissolution problem is the main obstacle for the value-added modification and depolymerization of industrial lignin. Here, a green urea aqueous solution for complete dissolution of various lignin is presented and the dissolution mechanism is analyzed by AFM, DLS and NMR. The results show that the molecular interaction of lignin decreases from 32.3 mN/m in pure water to 11.3 mN/m in urea aqueous solution. The immobility of 1H NMR spectra and the shift of 17O NMR spectra of urea in different lignin/urea solutions indicate that the oxygen of carbonyl in urea and the hydrogen of hydroxyl in lignin form new hydrogen bonds and break the original hydrogen bonds among lignin molecules. The shift of 1H NMR spectra of lignin and the decrease of interactions in model compound polystyrene indicate that urea also breaks the π-π interactions between aromatic rings of lignin. Lignin dissolved in urea aqueous has good antioxidant activity and it can scavenge at least 63% free radicals in 16 min.

  6. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  7. Emotional and Cognitive Coping in Relationship Dissolution

    Science.gov (United States)

    Wrape, Elizabeth R.; Jenkins, Sharon Rae; Callahan, Jennifer L.; Nowlin, Rachel B.

    2016-01-01

    Dissolution of a romantic relationship can adversely affect functioning among college students and represents one primary reason for seeking campus counseling. This study examined the associations among common coping strategies and distress following relationship dissolution. Avoidance and repetitive negative thinking (RNT) were significantly…

  8. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    Science.gov (United States)

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  9. Theoretical study of the dissolution kinetics of galena and cerussite in an abandoned mining area (Zaida mine, Morocco)

    Science.gov (United States)

    El Alaoui, Lamiae; Dekayir, Abdelilah

    2018-05-01

    In the abandoned mine in Zaida, the pit lakes filled with water constitute significant water reserves. In these lakes, the waters are permanently in contact with ore deposit (cerussite and galena). The modelling of the interaction of waters with this mineralization shows that cerussite dissolves more rapidly than galena. This dissolution is controlled by the pH and dissolved oxygen concentration in solution. The lead concentrations recorded in these lakes come largely from the dissolution of cerussite.

  10. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  11. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  12. Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique.

    Science.gov (United States)

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong

    2016-11-05

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked (202)Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μgL(-1), while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Science.gov (United States)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  14. The effect of fuel chemistry on UO{sub 2} dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda, E-mail: amanda.casella@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-25, Richland, WA 99352 (United States); Hanson, Brady, E-mail: brady.hanson@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-27, Richland, WA 99352 (United States); Miller, William [University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2016-08-01

    The dissolution rate of both unirradiated UO{sub 2} and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO{sub 2} under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO{sub 2} and UO{sub 2} doped with varying concentrations of Gd{sub 2}O{sub 3}, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO{sub 2} and had a larger effect on pure UO{sub 2} than on those doped with Gd{sub 2}O{sub 3}. Oxygen dependence was observed in the UO{sub 2} samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO{sub 2} matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O{sub 2} concentrations in the leachate where the rates would typically be elevated. - Highlights: • UO{sub 2} dissolution rates were measured for a matrix of repository relevant conditions. • Dopants in the UO{sub 2} matrix lowered the dissolution rate. • Reduction in rates by dopants were increased at elevated temperature and O{sub 2} levels. • UO{sub 2} may be overly

  15. Mechanistic Basis of Cocrystal Dissolution Advantage.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Dissolution rate of BTEX contaminants in water

    International Nuclear Information System (INIS)

    Njobuenwu, D.O.; Amadi, S.A.; Ukpaka, P.C.

    2005-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) and substituted benzenes are the most common aromatic compounds in petroleum. BTEX components are the most soluble and mobile fraction of crude oil and many petroleum products, and frequently enter soil, sediments and aquatic environments because of accidental spills, leaks and improper oil waste disposal practices. The mass transfer process of hydrocarbons in aquatic mediums has received considerable attention in the literature. This paper focused on the molecular mass transfer rate of BTEX in water, with the aim of understanding and predicting contaminant fate and transport. A comprehensive model was developed to simulate the molecular dissolution rate of BTEX in a natural water stream. The model considered the physicochemical properties of the BTEX compounds and physical processes relevant to the spreading of contaminants in the sea. The dissolution rate was a function of oil slick area, dissolution mass transferability and oil solubility in water. The total dissolution rate N was calculated and the dissolution mass transfer coefficient K was given as the point value of mass transfer coefficient. Results for the dissolution rate based on the solubility of the components in the water were compared with analytical solutions from previous studies and showed good agreement. The model showed that benzene had the largest dissolution rate, while o-xylene had the lowest rate because of its lower fraction. Benzene dissolution rate was approximately 2.6, which was 20.6 times that of toluene and ethylbenzene. It was concluded that the model is useful in predicting and monitoring the dissolution rate of BTEX contaminants in soil and water systems. 22 refs., 2 tabs., 3 figs

  17. Chemical dissolution of sulfide minerals

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  18. Dissolution of metallic uranium in alkalis

    International Nuclear Information System (INIS)

    Mondino, Angel V.; Wilkinson, Maria V.; Manzini, Alberto C.

    1999-01-01

    The dissolution of U metallic foils has been studied in the framework of the development of an improved 99 Mo-production process. The best conditions for the dissolution of uranium foils of approximately 150 μm are the following: a) NaClO concentrations of 0.20 and 0.23 M with NaOH of 0.27 and 0.31 M respectively; b) temperature of the solution, 70 C degrees; c) volume of the solution, 15 ml / cm 2 of uranium foil; d) dissolution time, 30 minutes. (author)

  19. Dissolution of minerals with rough surfaces

    Science.gov (United States)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate

  20. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  1. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Lambrinou, Konstantina, E-mail: klambrin@sckcen.be [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Charalampopoulou, Evangelia [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van der Donck, Tom [KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, 3001 Leuven (Belgium); Delville, Rémi [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Schryvers, Dominique [University of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2017-07-15

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10{sup −8} mass%) static liquid lead-bismuth eutectic (LBE) for 253–3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack. - Highlights: •Dissolution corrosion was more severe in cold-deformed than solution-annealed 316L steels. •LBE penetration occurred along preferential paths in the steel microstructure. •The maximum dissolution rate was inversely proportionate to the depth of dissolution.

  2. [Phytobezoar dissolution with Coca-Cola].

    Science.gov (United States)

    Martínez de Juan, F; Martínez-Lapiedra, C; Picazo, V

    2006-05-01

    The treatment of phytobezoar is empiric. The various therapeutic choices include dietary modifications, prokinetic drugs, gastric lavage, enzymatic dissolution, endoscopic treatment, and surgery. We present two cases of phytobezoar with successful outcome after Coca-Cola administration.

  3. Dissolution studies of synthetic soddyite and uranophane

    International Nuclear Information System (INIS)

    Casas, I.; Perez, I.; Torrero, E.; Bruno, J.; Cera, E.; Duro, L.

    1997-09-01

    The dissolution of synthetically obtained soddyite and uranophane has been studied in solutions of low ionic strength. These are the likely final phases of the oxidative alternation pathway of uranium dioxide. The thermodynamic and kinetic dissolution properties of these phases have been determined at different bicarbonate concentrations. The solubilities determined in the experiments with soddyite correspond fairly well to the theoretical model calculated with a log K 0 s0 =3.9±0.7. For uranophane, the best fitting was obtained for a log K 0 s0 =11.7±0.6. The dissolution rate in the presence of bicarbonate gave for soddyite an average value of 6.8(±4.4) 10 -10 mol m -2 s -1 . For uranophane, under the same experimental conditions, the following dissolution rate equation has been derived: r 0 (mol m -2 s -1 )=10 -9±2. [HCO 3 - ] 0.69±0.09 2

  4. Simfuel dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J.; Sandino, A.; Ollila, K.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwater at 25 deg C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend to congruent dissolution with the SIMFUEL matrix after a higher initial fractional release. Yttrium release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rates of dissolution of uranium has been observed

  5. Improvement of database on glass dissolution

    International Nuclear Information System (INIS)

    Hayashi, Maki; Sasamoto, Hiroshi; Yoshikawa, Hideki

    2008-03-01

    In geological disposal system, high-level radioactive waste (HLW) glass is expected to retain radionuclide for the long term as the first barrier to prevent radionuclide release. The advancement of its performance assessment technology leads to the reliability improvement of the safety assessment of entire geological disposal system. For this purpose, phenomenological studies for improvement of scientific understanding of dissolution/alteration mechanisms, and development of robust dissolution/alteration model based on the study outcomes are indispensable. The database on glass dissolution has been developed for supporting these studies. This report describes improvement of the prototype glass database. Also, this report gives an example of the application of the database for reliability assessment of glass dissolution model. (author)

  6. Low temperature dissolution flowsheet for plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO2 production utilizes boiling HNO3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  7. SIMFUEL dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J; Sandino, A.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwaters at 25 degrees C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend of congruent dissolution with the SIMFUEL matrix after a higher initial fractional release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rate of dissolution of uranium has been observed. (au)

  8. Status report on dissolution model development

    International Nuclear Information System (INIS)

    Jackson, D.D.

    1983-07-01

    The computer program PROTOCOL models the dissolution reactions of chemical species in water. It is being developed particularly to study the dissolution of proposed nuclear waste forms and related phases. Experimentally derived leaching rate functions are coupled to thermochemical equilibrium calculations and water flow rates. The program has been developed over a period of years. This report describes improvements that have been done in the past year

  9. Dissolution of the Mors salt dome

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1982-01-01

    Regardless of the interpretation of the measured salinity profiles above the Mors salt dome, they can at most be the result of dissolution rates of about 0.004 mm per year. This means that it would take more than 2.5 mill. years to dissolve 10 m of salt. Variations in groun water velocity and cap rock porosity will not significantly change this condition. The stability of the Mors salt dome is therefore not affected by dissolution of the dome. (EG)

  10. Dissolution of UO2 in redox conditions

    International Nuclear Information System (INIS)

    Casas, I.; Pablo de, J.; Rovira, M.

    1998-01-01

    The performance assessment of the final disposal of the spent nuclear fuel in geological formations is strongly dependent on the spent fuel matrix dissolution. Unirradiated uranium (IV) dioxide has shown to be very useful for such purposes. The stability of UO 2 is very dependent on vault redox conditions. At reducing conditions, which are expected in deep groundwaters, the dissolution of the UO 2 -matrix can be explained in terms of solubility, while under oxidizing conditions, the UO 2 is thermodynamically unstable and the dissolution is kinetically controlled. In this report the parameters which affect the uranium solubility under reducing conditions, basically pH and redox potential are discussed. Under oxidizing conditions, UO 2 dissolution rate equations as a function of pH, carbonate concentration and oxidant concentration are reported. Dissolution experiments performed with spent fuel are also reviewed. The experimental equations presented in this work, have been used to model independent dissolution experiments performed with both unirradiated and irradiated UO 2 . (Author)

  11. Evaluating the role of re-adsorption of dissolved Hg{sup 2+} during cinnabar dissolution using isotope tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Li, Yanbin [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100 (China); Liu, Guangliang [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Yang, Guidi [College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002 (China); Lagos, Leonel [Applied Research Center, Florida International University, Miami, FL 33199 (United States); Yin, Yongguang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Gu, Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States); Jiang, Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Cai, Yong, E-mail: cai@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States)

    2016-11-05

    Highlights: • Develop a new method to study Hg re-adsorption in cinnabar. • Both isotope dilution and tracer techniques were adopted. • The presence of O{sub 2} can significantly enhance the dissolution of cinnabar. • Prove the necessity of including re-adsorption in estimating cinnabar dissolution. - Abstract: Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked {sup 202}Hg{sup 2+}. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μg L{sup −1}, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.

  12. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution.

    Science.gov (United States)

    Takeuchi, Susumu; Tsume, Yasuhiro; Amidon, Gregory E; Amidon, Gordon L

    2014-11-01

    In vitro dissolution tests are performed for new formulations to evaluate in vivo performance, which is affected by the change of gastrointestinal (GI) physiology, in the GI tract. Thus, those environmental changes should be introduced to an in vitro dissolution test. Many studies have successfully shown the improvement of in vitro-in vivo correlations (IVIVC) by introducing those physiological changes into dissolution tests. The gastrointestinal simulator (GIS), a multicompartment in vitro dissolution apparatus, was developed to evaluate in vivo drug dissolution. A gastric-emptying rate along with transit rate are key factors to evaluate in vivo drug dissolution and, hence, drug absorption. Dissolution tests with the GIS were performed with Biopharmaceutical Classification System class I drugs at five different gastric-emptying rates in the fasted state. Computational models were used to determine in vivo gastric-emptying time for propranolol and metoprolol based on the GIS dissolution results. Those were compared with published clinical data to determine the gastric half-emptying time. In conclusion, the GIS is a practical tool to assess dissolution properties and can improve IVIVC. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Dissolution process for advanced-PWR-type fuels

    International Nuclear Information System (INIS)

    Black, D.E.; Decker, L.A.; Pearson, L.G.

    1979-01-01

    The new Fluorinel Dissolution Process and Fuel Storage (FAST) Facility at ICPP will provide underwater storage of spent PWR fuel and a new head-end process for fuel dissolution. The dissolution will be two-stage, using HF and HNO 3 , with an intermittent H 2 SO 4 dissolution for removing stainless steel components. Equipment operation is described

  14. Development and Validation of a Dissolution Test Method for ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a dissolution test method for dissolution release of artemether and lumefantrine from tablets. Methods: A single dissolution method for evaluating the in vitro release of artemether and lumefantrine from tablets was developed and validated. The method comprised of a dissolution medium of ...

  15. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  16. MicroPET/CT imaging of {alpha}{sub v}{beta}{sub 3} integrin via a novel {sup 68}Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, Luca; Kusmic, Claudia; Panetta, Daniele; Petroni, Debora; Salvadori, Piero A. [CNR-Institute of Clinical Physiology (IFC), Pisa (Italy); Arosio, Daniela; Manzoni, Leonardo [CNR-Institute of Molecular Science and Technologies (ISTM), Milan (Italy); Matteucci, Marco [Scuola Superiore Sant' Anna, Pisa (Italy); Casagrande, Cesare [University of Milan, Department of Chemistry, Milan (Italy); L' Abbate, Antonio [CNR-Institute of Clinical Physiology (IFC), Pisa (Italy); Scuola Superiore Sant' Anna, Pisa (Italy)

    2013-08-15

    The {alpha}{sub v}{beta}{sub 3} integrin is expressed in angiogenic vessels and is a potential target for molecular imaging of evolving pathological processes. Its expression is upregulated in cancer lesions and metastases as well as in acute myocardial infarction (MI) as part of the infarct healing process. The purpose of our study was to determine the feasibility of a new imaging approach with a novel {sup 68}Ga-2,2',2''-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (NOTA)-arginine-glycine-aspartic acid (RGD) construct to assess integrin expression in the evolving MI. A straightforward labelling chemistry to attach the radionuclide {sup 68}Ga to a NOTA-based chelating agent conjugated with a cyclic RGD peptidomimetic is described. Affinity for {alpha}{sub v}{beta}{sub 3} integrin was assessed by in vitro receptor binding assay. The proof-of-concept in vivo studies combined the {sup 68}Ga-NOTA-RGD with the flow tracer {sup 13}N-NH{sub 3} imaging in order to obtain positron emission tomography (PET)/CT imaging of both integrin expression and perfusion defect at 4 weeks after infarction. Hearts were then processed for immunostaining of integrin {beta}{sub 3}. NOTA-RGD conjugate displayed a binding affinity for {alpha}{sub v}{beta}{sub 3} integrin of 27.9 {+-} 6.8 nM. {sup 68}Ga-NOTA-RGD showed stability without detectable degradation or formation of by-products in urine up to 2 h following injection in the rat. MI hearts exhibited {sup 68}Ga-NOTA-RGD uptake in correspondence to infarcted and border zone regions. The tracer signal drew a parallel with vascular remodelling due to ischaemia-induced angiogenesis as assessed by immunohistochemistry. As compared to similar imaging approaches using the {sup 18}F-galacto-derivative, we documented for the first time with microPET/CT imaging the {sup 68}Ga-NOTA-RGD derivative that appears eligible for PET imaging in animal models of vascular remodelling during evolving MI. The simple chemistry employed to

  17. Spent fuel. Dissolution and oxidation

    International Nuclear Information System (INIS)

    Grambow, B.

    1989-03-01

    Data from studies of the low temperature air oxidation of spent fuel were retrieved in order to provide a basis for comparison between the mechanism of oxidation in air and corrosion in water. U 3 O 7 is formed by diffusion of oxygen into the UO 2 lattice. A diffusion coefficient of oxygen in the fuel matric was calculated for 25 degree C to be in the range of 10 -23 to 10 -25 m 2 /s. The initial rates of U release from spent fuel and from UO 2 appear to be similar. The lowest rates (at 25 degree c >10 -4 g/(m 2 d)) were observed under reducing conditions. Under oxidizing conditions the rates depend mainly of the nature and concentraion of the oxidant and/or on corbonate. In contact with air, typical initial rates at room temperature were in the range between 0.001 and 0.1 g/(m 2 d). A study of apparent U solubility under oxidizing conditions was performed and it was suggested that the controlling factor is the redox potential at the UO 2 surface rather than the E h of the bulk solution. Electrochemical arguments were used to predict that at saturation, the surface potential will eventually reach a value given by the boundaries at either the U 3 O 7 /U 3 O 8 or the U 3 O 7 /schoepite stability field, and a comparison with spent fuel leach data showed that the solution concentration of uranium is close to the calculated U solubility at the U 3 O 7 /U 3 O 8 boundary. The difference in the cumulative Sr and U release was calculated from data from Studsvik laboratory. The results reveal that the rate of Sr release decreases with the square root of time under U-saturated conditions. This time dependence may be rationalized either by grain boundary diffusion or by diffusion into the fuel matrix. Hence, there seems to be a possibility of an agreement between the Sr release data, structural information and data for oxygen diffusion in UO 2 . (G.B.)

  18. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jerden, James L., E-mail: jerden@anl.gov [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Frey, Kurt [University of Notre Dame, Notre Dame, IN 46556 (United States); Ebert, William [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • This model accounts for chemistry, temperature, radiolysis, U(VI) minerals, and hydrogen effect. • The hydrogen effect dominates processes determining spent fuel dissolution rate. • The hydrogen effect protects uranium oxide spent fuel from oxidative dissolution. - Abstract: The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO{sub 2} and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO{sub 2} and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO{sub 2} and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H{sub 2}O{sub 2} and O{sub 2}). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit

  19. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  20. Correlation Study of Magnetite Dissolution in Hybrid Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon-Byeong; Won, Hui-Jun; Park, Jung-Sun; Park, Sang-Yoon; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the operating plants, the localized corrosion on SG tubes which are transporters of thermal energy to the secondary side lowers the reduction heat transfer efficiency as well as degrades the lifetime of SG. Magnetite, Fe3O4, is a commonly found corrosion product on the inner surface of reactor coolant system. Simply magnetite can be reduced to hematite, Fe{sub 2}O{sub 3}, and further to iron when oxygen is limited or ample reducing agents are supplied. Along this line, number of decontamination processes has been developed since 1970s and most of them contain organic acid and additive chelating agents. However, many reports have pointed out the negative environmental effect of those chemicals, and currently there are new approaches to overcome the limited decontamination efficiency and large volume of secondary waste from other alternate processes without using such those organic chemicals. In present study, we investigated the magnetite dissolution in HyBRID solution as newly developing decontamination process. As a preliminary study for empirical modeling of decontamination by HyBRID solution, simply correlation study between variable and magnetite dissolution was introduced with studied mechanism and experimental results.

  1. Dissolution testing of orally disintegrating tablets.

    Science.gov (United States)

    Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif

    2012-07-01

    For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  2. Crystal modifications and dissolution rate of piroxicam.

    Science.gov (United States)

    Lyn, Lim Yee; Sze, Huan Wen; Rajendran, Adhiyaman; Adinarayana, Gorajana; Dua, Kamal; Garg, Sanjay

    2011-12-01

    Piroxicam is a nonsteroidal anti-inflammatory drug with low aqueous solubility which exhibits polymorphism. The present study was carried out to develop polymorphs of piroxicam with enhanced solubility and dissolution rate by the crystal modification technique using different solvent mixtures prepared with PEG 4000 and PVP K30. Physicochemical characteristics of the modified crystal forms of piroxicam were investigated by X-ray powder diffractometry, FT-IR spectrophotometry and differential scanning calorimetry. Dissolution and solubility profiles of each modified crystal form were studied and compared with pure piroxicam. Solvent evaporation method (method I) produced both needle and cubic shaped crystals. Slow crystallization from ethanol with addition of PEG 4000 or PVP K30 at room temperature (method II) produced cubic crystal forms. Needle forms produced by method I improved dissolution but not solubility. Cubic crystals produced by method I had a dissolution profile similar to that of untreated piroxicam but showed better solubility than untreated piroxicam. Cubic shaped crystals produced by method II showed improved dissolution, without a significant change in solubility. Based on the XRPD results, modified piroxicam crystals obtained by method I from acetone/benzene were cube shaped, which correlates well with the FTIR spectrum; modified needle forms obtained from ethanol/methanol and ethanol/acetone showed a slight shift of FTIR peak that may be attributed to differences in the internal structure or conformation.

  3. Aqueous dissolution rates of uranium oxides

    International Nuclear Information System (INIS)

    Steward, S.A.; Mones, E.T.

    1994-10-01

    An understanding of the long-term dissolution of waste forms in groundwater is required for the safe disposal of high level nuclear waste in an underground repository. The main routes by which radionuclides could be released from a geological repository are the dissolution and transport processes in groundwater flow. Because uranium dioxide is the primary constituent of spent nuclear fuel, the dissolution of its matrix in spent fuel is considered the rate-limiting step for release of radioactive fission products. The purpose of our work has been to measure the intrinsic dissolution rates of uranium oxides under a variety of well-controlled conditions that are relevant to a repository and allow for modeling. The intermediate oxide phase U 3 O 8 , triuranium octaoxide, is quite stable and known to be present in oxidized spent fuel. The trioxide, UO 3 , has been shown to exist in drip tests on spent fuel. Here we compare the results of essentially identical dissolution experiments performed on depleted U 3 O 8 and dehyrated schoepite or uranium trioxide monohydrate (UO 3 ·H 2 O). These are compared with earlier work on spent fuel and UO 2 under similar conditions

  4. Catalysed electrolytic metal oxide dissolution processes

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  5. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  6. Waste form dissolution in bedded salt

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1980-01-01

    A model was devised for waste dissolution in bedded salt, a hydrologically tight medium. For a typical Spent UnReprocessed Fuel (SURF) emplacement, the dissolution rate wll be diffusion limited and will rise to a steady state value after t/sub eq/ approx. = 250 (1+(1-epsilon 0 ) K/sub D//epsilon 0 ) (years) epsilon 0 is the overpack porosity and K/sub d/ is the overpack sorption coefficient. The steady state dissolution rate itself is dominated by the solubility of UO 2 . Steady state rates between 5 x 10 -5 and .5 (g/year) are achievable by SURF emplacements in bedded salt without overpack, and rates between 5 x 10 -7 and 5 x 10 -3 (g/year) with an overpack having porosity of 10 -2

  7. Magnetic resonance imaging of tablet dissolution.

    Science.gov (United States)

    Nott, Kevin P

    2010-01-01

    Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.

  8. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  9. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  10. Microbially mediated barite dissolution in anoxic brines

    International Nuclear Information System (INIS)

    Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren; Renock, Devon

    2017-01-01

    Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO_4, has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO_4. The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic

  11. Saltcake dissolution FY 1998 status report

    International Nuclear Information System (INIS)

    HERTING, D.L.

    1999-01-01

    A laboratory scouting study was completed on the dissolution characteristics of Hanford waste from three single-shell waste tanks: 241-BY-102, 241-BY-106, and 241-B-106. Gross dissolution behavior (percent undissolved solids as a function of dilution) is explained in terms of characteristics of individual salts in the waste. The percentage of the sodium inventory retrievable from the tanks by dissolving saltcake at reasonable dilution levels is estimated at 86% of the total sodium for tank BY-102, 98% for BY-106, and 79% for B-106

  12. Chrysotile dissolution rates: Implications for carbon sequestration

    International Nuclear Information System (INIS)

    Thom, James G.M.; Dipple, Gregory M.; Power, Ian M.; Harrison, Anna L.

    2013-01-01

    Highlights: • Uncertainties in serpentine dissolution kinetics hinder carbon sequestration models. • A pH dependent, far from equilibrium dissolution rate law for chrysotile. • F chrysotile (mol/m 2 /s) = 10 −0.21pH−10.57 at 22 °C over pH 2–10. • Laboratory dissolution rates consistent with mine waste weathering observations. • Potential for carbon sequestration in mine tailings and aquifers is assessed. - Abstract: Serpentine minerals (e.g., chrysotile) are a potentially important medium for sequestration of CO 2 via carbonation reactions. The goals of this study are to report a steady-state, far from equilibrium chrysotile dissolution rate law and to better define what role serpentine dissolution kinetics will have in constraining rates of carbon sequestration via serpentine carbonation. The steady-state dissolution rate of chrysotile in 0.1 m NaCl solutions was measured at 22 °C and pH ranging from 2 to 8. Dissolution experiments were performed in a continuously stirred flow-through reactor with the input solutions pre-equilibrated with atmospheric CO 2 . Both Mg and Si steady-state fluxes from the chrysotile surface, and the overall chrysotile flux were regressed and the following empirical relationships were obtained: F Mg =-0.22pH-10.02;F Si =-0.19pH-10.37;F chrysotile =-0.21pH-10.57 where F Mg , F Si , and F chrysotile are the log 10 Mg, Si, and molar chrysotile fluxes in mol/m 2 /s, respectively. Element fluxes were used in reaction-path calculations to constrain the rate of CO 2 sequestration in two geological environments that have been proposed as potential sinks for anthropogenic CO 2 . Carbon sequestration in chrysotile tailings at 10 °C is approximately an order of magnitude faster than carbon sequestration in a serpentinite-hosted aquifer at 60 °C on a per kilogram of water basis. A serpentinite-hosted aquifer, however, provides a larger sequestration capacity. The chrysotile dissolution rate law determined in this study has

  13. Oxygen Therapy

    Science.gov (United States)

    ... their breathing to dangerously low levels. Will I need oxygen when I sleep? Usually if you use supplemental oxygen during the ... your health care provider tells you you only need to use oxygen for exercise or sleep. Even if you feel “fine” off of your ...

  14. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.

    Science.gov (United States)

    Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir

    2004-01-01

    Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.

  15. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  16. A kinetic model for borosilicate glass dissolution based on the dissolution affinity of a surface alteration layer

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Peiffer, D.W.; Knauss, K.G.; McKeegan, K.D.; Smith, D.K.

    1989-11-01

    A kinetic model for the dissolution of borosilicate glass is used to predict the dissolution rate of a nuclear waste glass. In the model, the glass dissolution rate is controlled by the rate of dissolution of an alkali-depleted amorphous surface (gel) layer. Our model predicts that all components concentrated in the surface layer, affect glass dissolution rates. The good agreement between predicted and observed elemental dissolution rates suggests that the dissolution rate of the gel layer limits the overall rate of glass dissolution. The model predicts that the long-term rate of glass dissolution will depend mainly on ion concentrations in solution, and therefore on the secondary phases which precipitate and control ion concentrations. 10 refs., 5 figs., 1 tab

  17. Oxygen Therapy

    Directory of Open Access Journals (Sweden)

    Bonnie Solmes

    2000-01-01

    Full Text Available LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood oxygen will often be able to accomplish more with less fatigue with the help of supplemental oxygen therapy. Shortness of breath is a mechanical problem resulting from the effects of chronic obstructive pulmonary disease. Oxygen therapy may or may not reduce shortness of breath, but it will help the lungs and heart to function with less stress.

  18. Physicochemical characterization and dissolution properties of ...

    African Journals Online (AJOL)

    calorimetry (DSC), powder x-ray diffractometry (PXRD) and Fourier transform infrared (FT-IR) spectroscopy. Phase solubility studies revealed an AL-type diagram indicating a 1:1 stoichiometric inclusion complex and a stability constant value of 914 M-1. Solubility and dissolution rates of PYR and the binary systems were ...

  19. Dissolution enhancement of Tibolone by micronization technique

    Directory of Open Access Journals (Sweden)

    Kailash Bansal

    2012-01-01

    Conclusion: Micronization technique has a significant impact on the dissolution of Tibolone. The experimental findings suggest that micronization can be used for the preparation of rapidly dissolving formulations of Tibolone, and could potentially lead to improvement in the in-vivo bioavailability of Tibolone oral tablets.

  20. Sodium tetraphenylborate solubility and dissolution rates

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.; Swingle, R.F.; Reeves, C.T.

    1995-01-01

    The rate of solid sodium tetraphenylborate (NaTPB) dissolution in In-Tank Precipitation salt solutions has been experimentally determined. The data indicates that the dissolution rate of solid NaTPB is a minor contributor the lag time experienced in the 1983 Salt Decontamination Demonstration Test and should not be considered as the rate determining step. Current analytical models for predicting the time to reach the composite lower flammability limit assume that the lag time is not more than 6 hours, and the data supports this assumption (i.e., dissolution by itself requires much less than 6 hours). The data suggests that another step--such as mass transport, the reaction of a benzene precursor or the mixing behavior--is the rate determining factor for benzene release to the vapor space in Tank 48H. In addition, preliminary results from this program show that the degree of agitation employed is not a significant parameter in determining the rate of NaTPB dissolution. As a result of this study, an improved equation for predicting equilibrium tetraphenylborate solubility with respect to temperature and sodium ion concentration has been determined

  1. Efavirenz Dissolution Enhancement I: Co-Micronization

    Directory of Open Access Journals (Sweden)

    Helvécio Vinícius Antunes Rocha

    2012-12-01

    Full Text Available AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV, one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS and polyvinylpyrrolidone (PVP. The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25 proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level.

  2. Modeling of Dissolution Effects on Waterflooding

    DEFF Research Database (Denmark)

    Alexeev, Artem; Shapiro, Alexander; Thomsen, Kaj

    2015-01-01

    reaction rates) may exhibit rapid increase of porosity and permeability near the inlet probably indicating a formation of high permeable channels (wormholes). Water saturation in the zone of dissolution increases due to an increase in the bulk volume accessible for the injected fluid. Volumetric non...

  3. 25 CFR 11.605 - Dissolution.

    Science.gov (United States)

    2010-04-01

    ... Domestic Relations § 11.605 Dissolution. (a) The Court of Indian Offenses shall enter a decree of... supported by evidence that (i) the parties have lived separate and apart for a period of more than 180 days..., or provided for child custody, the support of any child entitled to support, the maintenance of...

  4. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  5. Physicochemical characterization and dissolution properties of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... 1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria. .... were carefully and homogenously blended in a mortar, to prepare ... different binary systems with HP-β-CD were carried out by adding an excess ..... Overall, the rank order of dissolution rates of.

  6. Toward a consistent model for glass dissolution

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Bourcier, W.L.

    1994-01-01

    Understanding the process of glass dissolution in aqueous media has advanced significantly over the last 10 years through the efforts of many scientists around the world. Mathematical models describing the glass dissolution process have also advanced from simple empirical functions to structured models based on fundamental principles of physics, chemistry, and thermodynamics. Although borosilicate glass has been selected as the waste form for disposal of high-level wastes in at least 5 countries, there is no international consensus on the fundamental methodology for modeling glass dissolution that could be used in assessing the long term performance of waste glasses in a geologic repository setting. Each repository program is developing their own model and supporting experimental data. In this paper, we critically evaluate a selected set of these structured models and show that a consistent methodology for modeling glass dissolution processes is available. We also propose a strategy for a future coordinated effort to obtain the model input parameters that are needed for long-term performance assessments of glass in a geologic repository. (author) 4 figs., tabs., 75 refs

  7. Dissolution of two NWCF calcines: Extent of dissolution and characterization of undissolved solids

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    A study was undertaken to determine the dissolution characteristics of two NWCF calcine types. A two-way blended calcine made from 4 parts nonradioactive aluminum nitrate and one part WM-102 was studied to determine the extent of dissolution for aluminum-type calcines. A two-way blend of 3.5 parts fluorinel waste from WM-187 and 1 part sodium waste from WM-185 was used to determine the extent of dissolution for zirconium-type calcines. This study was necessary to develop suitable aqueous separation flowsheets for the partitioning of actinides and fission products from ICPP calcines and to determine the disposition of the resulting undissolved solids (UDS). The dissolution flowsheet developed by Herbst was used to dissolve these two NWCF calcine types. Results show that greater than 95 wt% of aluminum and zirconium calcine types were dissolved after a single batch contact with 5 M HNO 3 . A characterization of the UDS indicates that the weight percent of TRU elements in the UDS resulting from both calcine type dissolutions increases by approximately an order of magnitude from their concentrations prior to dissolution. Substantial activities of cesium and strontium are also present in the UDS resulting from the dissolution of both calcine types. Multiple TRU, Cs, and Sr analyses of both UDS types show that these solids are relatively homogeneous. From this study, it is estimated that between 63.5 and 635 cubic meters of UDS will be generated from the dissolution of 3800 M 3 of calcine. The significant actinide and fission product activities in these UDS will preclude their disposal as low-level waste. If the actinide and fission activity resulting from the UDS is the only considered source in the dissolved calcine solutions, an estimated 99.9 to 99.99 percent of the solids must be removed from this solution for it to meet non-TRU Class A low-level waste

  8. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid.

    Science.gov (United States)

    Rao, K R S Sambasiva; Nagabhushanam, M V; Chowdary, K P R

    2011-03-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid.

  9. A study of the dissolution mechanism by chemical and electrochemical oxidation-reduction of actinide dioxides (UO2, NpO2, PuO2, and AmO2) in an acid aqueous medium

    International Nuclear Information System (INIS)

    Berger, P.

    1991-01-01

    The plan followed to describe our study will be as follows: In a first part, we will review the general properties of MO 2 oxides (M = U, Np, Pu, and Am), as well as the dissolution methods known so far. We will emphasize, in particular, the great similarities in their structures, properties, and methods of dissolution, which justifies a parallel study of these oxides using an electrochemical method. The second part will concern the experimental study of the dissolution under electrolysis. We will, first of all, investigate its thermodynamic aspect, with the calculation of the free enthalpies of dissolution; and we will next show the phenomena of oxidizing dissolution and reducing dissolution using carbon paste electrodes. In a third part, we will present the test results on oxidizing dissolution in solutions that are highly enriched with oxygen-18. The isotopic analysis of the oxygen in the actinyl ions formed, deduced from the Raman spectra of the solutions, will make it possible to demonstrate the existence of a first oxidation step involving the participation of the solid. In the fourth part, we will summarize the experimental observations that might contribute to a better understanding of the mechanisms of oxidizing dissolution. A fifth and last part will be devoted to the presentation of a simple model of the dissolution of oxides in a carbon paste electrode under a constant current

  10. Development and validation of dissolution test for Metoprolol ...

    African Journals Online (AJOL)

    The dissolution method which uses USP apparatus I (Basket) with rotating at 100 rpm, 900 ml of different dissolution medium, ultra violet spectroscopy for quantification was demonstrated to be robust, discriminating and transferable. Dissolution tests conditions were selected after it was demonstrated that the Metoprolol ...

  11. Investigation of dissolution kinetics of a Nigerian columbite in ...

    African Journals Online (AJOL)

    Investigation of dissolution kinetics of a Nigerian columbite in hydrofluoric acid using the shrinking core model. ... Experimental results indicate that the dissolution rate is chemical reaction controlled, with reaction order of 0.57. Dissolution of over 90 % of the columbite was achieved in 5 h, using 20 M HF at 90 oC with 100 ...

  12. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhong; Xu, Lejin [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe{sup 2+}] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization.

  13. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    International Nuclear Information System (INIS)

    Wan, Zhong; Xu, Lejin; Wang, Jianlong

    2015-01-01

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe 2+ ] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization

  14. The Dissolution of Double Holliday Junctions

    DEFF Research Database (Denmark)

    Bizard, Anna H; Hickson, Ian D

    2014-01-01

    as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding......Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known......) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions....

  15. Study of dissolution process and its modelling

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available The use of mathematical concepts and language aiming to describe and represent the interactions and dynamics of a system is known as a mathematical model. Mathematical modelling finds a huge number of successful applications in a vast amount of science, social and engineering fields, including biology, chemistry, physics, computer sciences, artificial intelligence, bioengineering, finance, economy and others. In this research, we aim to propose a mathematical model that predicts the dissolution of a solid material immersed in a fluid. The developed model can be used to evaluate the rate of mass transfer and the mass transfer coefficient. Further research is expected to be carried out to use the model as a base to develop useful models for the pharmaceutical industry to gain information about the dissolution of medicaments in the body stream and this could play a key role in formulation of medicaments.

  16. Aggregation, sedimentation, dissolution and bioavailability of ...

    Science.gov (United States)

    To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly polydispersed. Their sedimentation rates in seawater were measured to be 4–10 mm/day. Humic acid (HA), further increased their size and polydispersity, and slowed sedimentation. Light increased their dissolution and release of dissolved Cd. The ZnS shell also slowed release of Cd ions. With sufficient light, HA increased the dissolution of QDs, while with low light, HA alone did not change their dissolution. The benthic zone in estuarine systems is the most probable long-term destination of QDs due to aggregation and sedimentation. The bioavailability of was evaluated using the mysid Americamysis bahia. The 7-day LC50s of particulate and dissolved QDs were 290 and 23 μg (total Cd)/L, respectively. For mysids, the acute toxicity appears to be from Cd ions; however, research on the effects of QDs should be conducted with other organisms where QDs may be lodged in critical tissues such as gills or filtering apparatus and Cd ions may be released and delivered directly to those tissues. Because of their increasing use and value to society, cadmium-based quantum dots (QDs) will inevitably find their way into marine systems. In an effort to understand the fate and transport of CdSe QDs in estuar

  17. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    Science.gov (United States)

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  18. Saltcake Dissolution FY 2000 Status Report

    International Nuclear Information System (INIS)

    HERTING, D.L.

    2000-01-01

    Laboratory tests were completed on the dissolution characteristics of Hanford saltcake waste from single-shell waste tanks 241-TX- 113, 241-BY-102, 241-BY-106, 241-A-101, and 241-S-102 (henceforth referred to as TX-113, BY-102, BY-106, A-101, and S-102, respectively). This work was funded by the Tanks Focus Area (EM-50) under Technical Task Plan Number RL0-8-WT-41, ''PHMC Pretreatment--Saltcake Dissolution''. The tests performed on saltcake from tank TX-113 were similar in scope to those completed in previous years on waste from tanks BY-102, BY-106, B-106, A-101, and S-102 (Herting 1998, 1999). In addition to the ''standard'' dissolution tests, new types of tests were performed this year related to feed stability and radionuclide distribution. The River Protection Project (RPP) is tasked with retrieving waste from double-shell and single-shell tanks to provide feed for vitrification. The RPP organization needs chemical and physical data to evaluate technologies for retrieving the waste. Little significant laboratory testing has been done to evaluate in-tank dissolution parameters for the various types of saltcake wastes that exist in single-shell tanks. A computer modeling program known as the Environmental Simulation Program (ESP), produced by OLI Systems, Inc of Morris Plains, New Jersey, is being used by the RPP organization to predict solubilities during dilution and retrieval of all tank waste types. Data from this task are provided to ESP users to support evaluation, refinement, and validation of the ESP model

  19. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  20. Relationships with former stepgrandparents after remarriage dissolution.

    Science.gov (United States)

    Sanner, Caroline; Coleman, Marilyn; Ganong, Lawrence

    2018-03-01

    Increases in stepfamily formation and longevity suggest that more children have stepgrandparent relationships than ever before. Because remarriages end in divorce more often than first marriages, many children experience the involuntary dissolution of stepgrandparent ties. Little is known about stepgrandparent relationships in general, and even less is known about how these relationships are affected by remarriage dissolution. Guided by symbolic interaction theory, the purpose of this study was to understand how stepgrandchildren make sense of their relationships with former stepgrandparents. We explored their perceptions of why relationships were or were not maintained and the impact of continued or dissolved ties on their personal well-being. Former stepgrandchildren (N = 29) aged 18 to 37 were interviewed about their former stepgrandparents. The quality and continuity of these relationships were contingent on stepgrandchildren's relationships with former stepparents, biological parents' relationships with former stepgrandparents, and efforts by former stepgrandparents to remain involved. Losing ties with former stepgrandparents was upsetting, especially when relationships with biological grandparents were not close. Individuals who maintained relationships with former stepgrandparents benefitted from continued access to valuable resources (e.g., positive role models, additional sources of love and support). Our findings have important implications for clinicians' and researchers' understanding of the effects of remarriage dissolution on children as well as the intergenerational efforts that may be critical for preserving meaningful stepfamily ties. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Dissolution of Marriage According to Canon Law

    Directory of Open Access Journals (Sweden)

    MSc. Sulejman Ahmedi

    2013-12-01

    Full Text Available In the Canon law, dissolution of marriage is not allowed since it was considered sacred and as such cannot break until the two spouses are alive, except only if one of the spouses passes away. But throughout history we find cases when allowed dissolution of the marriage and causes specific conditions set by the church. Thus, according to the Old Testament, if, a man married to a woman, didn’t like something about his wife, should write a request for divorce and allow her to leave his home. Meanwhile according to the New Testament records, divorce is prohibited. Although most Protestants continue to espouse the view that marriage was sacred and as such should not be divorced, from those who had supported the idea of granting the divorce. One of them was Luther, who in his remarks before his preachers said: "In my opinion, the issue of divorce belongs to the law, are not they to whom called for regulation of parental relationships, why not have they the authority to regulate the relations between spouses". Protestant churches allow the dissolution of marriage: a Because of adultery by the wife; allowed by Jesus, b Unjustified abandonment of the marital community; c If there were other reasons: if one spouse refuses to have sexual marriage, if the husband abuses his wife     repeatedly and without cause, severe illness of one spouse.

  2. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  3. Dissolution rates of DWPF glasses from long-term PCT

    International Nuclear Information System (INIS)

    Ebert, W.L.; Tam, S.W.

    1996-01-01

    We have characterized the corrosion behavior of several Defense Waste Processing Facility (DWPF) reference waste glasses by conducting static dissolution tests with crushed glasses. Glass dissolution rates were calculated from measured B concentrations in tests conducted for up to five years. The dissolution rates of all glasses increased significantly after certain alteration phases precipitated. Calculation of the dissolution rates was complicated by the decrease in the available surface area as the glass dissolves. We took the loss of surface area into account by modeling the particles to be spheres, then extracting from the short-term test results the dissolution rate corresponding to a linear decrease in the radius of spherical particles. The measured extent of dissolution in tests conducted for longer times was less than predicted with this linear dissolution model. This indicates that advanced stages of corrosion are affected by another process besides dissolution, which we believe to be associated with a decrease in the precipitation rate of the alteration phases. These results show that the dissolution rate measured soon after the formation of certain alteration phases provides an upper limit for the long-term dissolution rate, and can be used to determine a bounding value for the source term for radionuclide release from waste glasses. The long-term dissolution rates measured in tests at 20,000 per m at 90 degrees C in tuff groundwater at pH values near 12 for the Environmental Assessment glass and glasses made with SRL 131 and SRL 202 frits, respectively

  4. Study of the kinetics and mechanism of the dissolution of PUO2 by Cr(II) ion in acidic medium

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1991-11-01

    The study of the dissolution of actinides oxides is a topic of particular importance in nuclear energy production. The present study deals with the understanding of the reductive dissolution of PuO 2 in sulfuric acid media under the action of Cr 2+ aq ion. In the first chapter of the document, crystallographic and electronic properties of PuO 2 are described, followed by informations related to its dissolution in acidic media. The second chapter concerns the presentation of the different theories usable to interpret the kinetics of heterogeneous reaction and those for the understanding of electronic transfer applied to semi-conductors. With the help of the above mathematical tools an empirical law rate is established and a reactional model proposed. It appears that the electronic transfer is purely of the heterogenous nature and that the limiting step of the overall process corresponds certainly to the rupture of plutonium oxygen bond [fr

  5. Modelling of the UO2 dissolution mechanisms in synthetic groundwater solutions. Dissolution experiments carried out under oxic conditions

    International Nuclear Information System (INIS)

    Cera, E.; Grive, M.; Bruno, J.; Ollila, K.

    2001-02-01

    The analytical data generated during the last three years within the 4th framework program of the European Community at VTT Chemical Technology concerning UO 2 dissolution under oxidising conditions have been modelled in the present work. The modelling work has been addressed to perform a kinetic study of the dissolution data generated by Ollila (1999) under oxidising conditions by using unirradiated uranium dioxide as solid sample. The average of the normalised UO 2 dissolution rates determined by using the initial dissolution data generated in all the experimental tests is (6.06 ± 3.64)* 10 -7 mol m -2 d -1 . This dissolution rate agrees with most of the dissolution rates reported in the literature under similar experimental conditions. The results obtained in this modelling exercise show that the same bicarbonate promoted oxidative dissolution processes operate for uranium dioxide, as a chemical analogue of the spent fuel matrix, independently of the composition of the aqueous solution used. (orig.)

  6. Dissolution rate enhancement of piroxicam by ordered mixing.

    Science.gov (United States)

    Saharan, Vikas Anand; Choudhury, Pratim Kumar

    2012-07-01

    Micronized piroxicam was mixed with lactose, mannitol, sorbitol, maltitol and sodium chloride to produce ordered mixture in a glass vial by manual hand shaking method. The effect of excipients, surfactant, superdisintegrant, drug concentration and carrier particle size on dissolution rate was investigated. Dissolution rate studies of the prepared ordered mixtures revealed that all water soluble excipients increased the dissolution rate of piroxicam when compared to the dissolution rate of piroxicam or its suspension. Ordered mixture formulation PLF4, consisting of lactose as water soluble excipient, SSG (8% w/s) and SLS (1% w/w), released piroxcam at a very fast rate so much so that about 90% of the composition had passed into solution within 2 min. The order of the dissolution rate enhancement for ordered mixtures of various water soluble excipients was: lactose > mannitol > maltitol > sorbitol > sodium chloride. Carrier granules of size 355-710 µm were most effective in increasing the dissolution rate of drug from ordered mixtures. Decreasing the carrier particle size reduced drug dissolution from ordered mixtures. The dissolution rate of ordered mixtures consisting of 1-5% w/w piroxicam was superior to dissolution rate of piroxicam suspension. The dissolution data fitting and the resulting regression parameters indicated Hixson Crowell, cube root law, as the best fit to drug release data of ordered mixtures.

  7. Uranothorite solid solutions: From synthesis to dissolution

    International Nuclear Information System (INIS)

    Costin, Dan-Tiberiu

    2012-01-01

    USiO 4 coffinite appears as one of the potential phases formed in the back-end of the alteration of spent fuel, in reducing storage conditions. A study aiming to assess the thermodynamic data associated with coffinite through an approach based on the preparation of Th 1-x U x SiO 4 uranothorite solid solutions was then developed during this work. First, the preparation of uranothorite samples was successfully undertaken in hydrothermal conditions. However, the poly-phased samples systematically formed for x ≥ 0,2 underlined the kinetic hindering linked with the preparation of uranium-enriched samples, including coffinite end-member. Nevertheless, the characterization of the various samples led to confirm the formation of an ideal solid solution and allowed the constitution of a spectroscopic database. The purification of the samples was then performed by the means of different protocols based on physical (dispersion-centrifugation) or chemical (selective dissolution of secondary phases) methods. This latter led to a complete of the impurities (Th 1-y U y O 2 mixed oxide and amorphous silica) through successive washing steps in acid then basic media. Finally, dissolution experiments were undertaken on uranothorite samples (0 ≤ xexp. ≤ 0,5) and allowed pointing out the influence of composition, pH and temperature on the normalized dissolution rate of the compounds. Also, the associated thermodynamic data, such as activation energy, indicate that the reaction is controlled by surface reactions. Once the equilibrium is reached, the analogous solubility constants were determined for each composition studied, then allowing the extrapolation to coffinite value. It was then finally possible to conclude on the inversion of coffinitisation reaction with temperature. (author) [fr

  8. Dissolution of LMFBR fuel-sodium aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.

    1979-01-01

    Plutonium dioxide, normally insoluble in biological fluids, becomes much more soluble when mixed with sodium as the aerosol is formed. Sodium-fuel aerosols are approximately 20 times less soluble in simulated lung fluid than in distilled water. Solubility of sodium-fuel aerosols increases when Na 2 CO 3 are added to the distilled-water dissolution fluid. Mixed-oxide fuel aerosols without sodium present are relatively insoluble in distilled water, simulated lung fluid, and distilled water with Na 2 CO 3 and NaHCO 3 added

  9. System and process for dissolution of solids

    Science.gov (United States)

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  10. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  11. Use of partial dissolution techniques in geochemical exploration

    Science.gov (United States)

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  12. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Tsouris, Costas

    2006-01-01

    Carbon dioxide dissolution at intermediate ocean depths was studied using physical and mass transfer models. Particle density and hydrate layer thickness were determined using existing field data. Pseudo-homogeneous and heterogeneous mass transfer models were proposed to study the dissolution process. Pseudo-homogeneous models do not seem to represent the dissolution process well. Although heterogeneous models interpret the physical behavior better, unresolved issues related to hydrate dissolution still remain. For example, solid hydrate forms on one side of the hydrate film while it dissolves on the other. Dissolution is a complex process that comprises at least two sequential steps. The global process is controlled by mass transfer inside the hydrate layer or by a dissolution reaction at the hydrate-water interface

  13. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics

    Science.gov (United States)

    Jeschke, Alexander A.; Vosbeck, Katrin; Dreybrodt, Wolfgang

    2001-01-01

    The effective dissolution rates of gypsum are determined by mixed kinetics, where the rate constants of dissolution at the surface and the transport constant of molecular diffusion of dissolved material are similar. To obtain the surface reaction rate law it is necessary to know the transport constant. We have determined the surface rate law for monocrystalline selenite by using a rotating disc set-up, where the transport coefficients are well known. As a result, up to a calcium concentration of 0.6 · ceq, we find a nearly linear rate law Rs = ksl (1- cs/ ceq) n1, where cs is the total calcium concentration at the surface and ceq the equilibrium concentration with respect to gypsum, n1 = 1.2 ± 0.2, and ksl = 1.1 · 10 -4 mmol cm -2 s -1 ± 15%. We also employed batch-experiments for selenite, alabaster and gypsum rock samples. The result of these experiments were interpreted by using a transport constant determined by NaCl dissolution experiments under similar physical conditions. The batch experiments reveal a dissolution rate law Rs = ksl (1- cs/ ceq) n1, ksl = 1.3 · 10 -4 mmol · cm -2 s -1, n1 = 1.2 ± 0.2 for c ≤ 0.94 · ceq. Close to equilibrium a nonlinear rate law, Rs = ks2 (1- cs/ ceq) n2, is observed, where ks2 is in the order of 10 mmol · cm -2 s -1 and n2 ≈ 4.5. The experimentally observed gypsum dissolution rates from the batch experiments could be accurately fitted, with only minor variations of the surface reaction constant obtained from the rotating disk experiment and the transport coefficient from the NaCl dissolution batch experiment. Batch experiments on pure synthetic gypsum, reveal a linear rate law up to equilibrium. This indicates inhibition of dissolution in natural samples close to equilibrium, as is known also for calcite minerals.

  14. Bench Scale Saltcake Dissolution Test Report

    International Nuclear Information System (INIS)

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-01-01

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird(reg s ign) sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method

  15. A Study on the Anodic Dissolution of Aluminum(II)

    International Nuclear Information System (INIS)

    Nam, C. W.; Park, C. S.; Park, C. S.

    1978-01-01

    In many cases oxide films formed on metals in atmosphere or aqueous solution are chemically inactive, especially it is the case with aluminum. In this study, anodic dissolution of aluminum was done using various electrolyte and cathode, mechanism of which was examined. As a consequence, oxide film on aluminum surface was dissolved together with the dissolution reaction of metal by the anodic current. It was shown that the dissolution reaction due to the contact between electrolyte and metal happened in the same time

  16. Dissolution Model Development: Formulation Effects and Filter Complications

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2016-01-01

    This study describes various complications related to sample preparation (filtration) during development of a dissolution method intended to discriminate among different fenofibrate immediate-release formulations. Several dissolution apparatus and sample preparation techniques were tested. The fl....... With the tested drug–formulation combination, the best in vivo–in vitro correlation was found after filtration of the dissolution samples through 0.45-μm hydrophobic PTFE membrane filters....

  17. Oxidative dissolution of chromium from Hanford tank sludges under alkaline conditions

    International Nuclear Information System (INIS)

    Rapko, B.M.; Delegard, C.H.; Wagner, M.J.

    1997-08-01

    Alkaline oxidative leaching has been performed on caustic leached sludges from the three following Hanford waste tanks: BY-110, S-107, and SX-108. These samples were chosen because they represent types of waste where significant amounts of Cr are located and show relatively poor dissolution of Cr during standard caustic leaching. The experiments involved tests with three chemical oxidants, permanganate, ozone and oxygen, and a blank, argon. The effects of varying the hydroxide concentration of the leachate (from 0.1 M to 3 M) and of time and temperature (from room temperature to 80 degrees C) were also examined

  18. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  19. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  20. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  1. Dissolution of uranium oxide TBP-HNO3 complex

    International Nuclear Information System (INIS)

    Mizuno, Mineo; Kosaka, Yuji; Mori, Yukihide; Shimada, Takashi

    2002-12-01

    As a head end process for the pulverization of the spent fuel, the mechanical method (the shredder method) and the pyro-chemical method (oxidisation heat-treatment) have been examined. UO 2 is a main ingredient of Uranium oxide powder by the mechanical method, and U 3 O 8 is that by the pyro-chemical method. Moreover, the particle size of the pulverized powder depend on the conditions of the pulverizing process. As it was considered that the difference of dissolution rates of samples was caused by the difference of sample chemical forms and dissolution temperature, parametric surveys on chemical form and particle size of powder and dissolution temperature were carried out, and the following results were obtained. 1) The remarkable difference of dissolution rate between U 3 O 8 powder (average particle size 3.7 μm) and UO 2 powder (average particle size 2.4 μm) which have comparatively similar particle size was not observed. 2) It was confirmed that the dissolution rate became lower according to the particle size increase (average particle size 2.4 μm-1 mm). And it was considered that dissolution rate had strong dependency on particle size, according to the results that the powder with 1 mm particle size did not dissolute completely after 5 hours test. 3) The temperature dependency of the dissolution rate was confirmed by dissolution test with UO 2 powder (average particle size 2.4 μm-1 mm). The higher dissolution rate was obtained in the higher dissolution temperature, and 11 kcal/mol was obtained as activation energy of dissolution. 4) In the dissolution test of UO 2 powder, the nitric acid concentration started to change earlier than that of U 3 O 8 powder and concentration change range became larger compared with that in the dissolution test of U 3 O 8 powder. It was considered that those differences were caused by difference in mole ratio of Uranium and nitric acid which are consumed in the dissolution reaction (3:7 for U 3 O 8 , 3:8 for UO 2 ). 5) In case

  2. Frogging It: A poetic Analysis of Relationship Dissolution

    Directory of Open Access Journals (Sweden)

    Sandra L. Faulkner

    2012-10-01

    Full Text Available Often, themes in work and life intertwine; the author recognized that a cadre of poems she had written during the past several years were about relationship dissolution. The poems concerned romantic and friendship dissolution and the aspects of identity creation and loss this entails. The author presents the poems and makes an explicit connection to interpersonal relationship dissolution literature through the technique of poetic analysis. This analysis serves as an exemplar for how poetry as performative writing offers a valuable addition to interpersonal communication research through the poeticizing of relational dissolution as an everyday relational challenge.

  3. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  4. Do Workplace Sex Ratios Affect Partnership Formation and Dissolution?

    DEFF Research Database (Denmark)

    Svarer, Michael

    In this paper, I analyse the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios are not ......In this paper, I analyse the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios...

  5. Effect of alteration phase formation on the glass dissolution rate

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1997-01-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests

  6. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  7. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W L [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  8. Mathematical methods for quantification and comparison of dissolution testing data.

    Science.gov (United States)

    Vranić, Edina; Mehmedagić, Aida; Hadzović, Sabira

    2002-12-01

    In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methods of analysis described by Moore and Flanner. These authors have described difference factor (f1) and similarity factor (f2), which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations).

  9. Investigation of Ruthenium Dissolution in Advanced Membrane Electrode Assemblies for Direct Methanol Based Fuel Cell Stacks

    Science.gov (United States)

    Valdez, Thomas I.; Firdosy, S.; Koel, B. E.; Narayanan, S. R.

    2005-01-01

    Dissolution of ruthenium was observed in the 80-cell stack. Duration testing was performed in single cell MEAs to determine the pathway of cell degradation. EDAX analysis on each of the single cell MEAs has shown that the Johnson Matthey commercial catalyst is stable in DMFC operation for 250 hours, no ruthenium dissolution was observed. Changes in the hydrophobicity of the cathode backing papers was minimum. Electrode polarization analysis revealed that the MEA performance loss is attributed to changes in the cathode catalyst layer. Ruthenium migration does not seem to occur during cell operation but can occur when methanol is absent from the anode compartment, the cathode compartment has access to air, and the cells in the stack are electrically connected to a load (Shunt Currents). The open-to-air cathode stack design allowed for: a) The MEAs to have continual access to oxygen; and b) The stack to sustain shunt currents. Ruthenium dissolution in a DMFC stack can be prevented by: a) Developing an internally manifolded stacks that seal reactant compartments when not in operation; b) Bringing the cell voltages to zero quickly when not in operation; and c) Limiting the total number of cells to 25 in an effort to limit shunt currents.

  10. Determination of sulfur in steels by isotope dilution mass spectrometry after dissolution with sealed tube

    International Nuclear Information System (INIS)

    Watanabe, Kazuo

    1981-01-01

    The scaled tube dissolution technique was studied for the complete conversion of sulfur in steels to sulfate. Isotope dilution mass spectrometry was used for the determination of sulfur in the sulfate. Sample (0.5 g) was dissolved in nitric acid (7 ml) and hydrochloric acid (3 ml) in a scaled borosilicate glass tube on being heated above 180 0 C overnight. Nitrate ions were removed by repeated evaporation with hydrochloric acid. The residue was dissolved in hydrochloric acid. Sulfate was reduced with a mixture of hydrochloric, hydroiodic and hypophosphorous acids; hydrogen sulfide evolved was absorbed in cadmium acetate solution, then converted to silver sulfide, which was burned to sulfur dioxide in pure oxygen at low pressure, for isotopic analysis. Analytical blank in whole procedure was 0.8 μg of sulfur. This technique was applied to the determination of sulfur in NBS low alloy steels. The principal cause of low values obtained by the open beaker dissolution technique was evaporation losses of sulfur as sulfur dioxide during the dissolution. (author)

  11. Oxygen safety

    Science.gov (United States)

    ... sure you have working smoke detectors and a working fire extinguisher in your home. If you move around the house with your oxygen, you may need more than one fire extinguisher in different locations. Smoking can be very dangerous. No one should smoke ...

  12. The dissolution rate constant of magnetite in water at different temperatures and pH conditions

    International Nuclear Information System (INIS)

    Mohajery, Khatereh; Deydier de Pierrefeu, Laurent; Lister, Derek H.

    2012-09-01

    chemistry. For most determinations, a jet of water conditioned to the required chemistry but stripped of dissolved iron with ion-exchange is directed onto a pellet of magnetite and the dissolution monitored; the high velocity of the jet ensures that mass transfer effects are minimised. The magnetite is synthesised by a solid-state method involving heating a mixture of haematite and iron under vacuum at 600 deg. C, compacting under pressure and sintering into a pellet under argon at 1,100 deg. C. The product has an appropriate consistency and resistance to erosion. Most experiments have measured the average dissolution rate by estimating the amount of magnetite lost from the pellet by surface analysis and profilometry after exposure for a given time. Concomitant electrochemical information is obtained by electrically isolating the pellet from the loop and connecting it to a potentiostat, along with a counter-electrode and reference electrode strategically mounted in the loop test section. Detailed kinetic data are obtained by irradiating the magnetite before installation in the loop and monitoring on-line with gamma spectrometry the transport of dissolved, radioactive 59 Fe. Preliminary determinations had used radioactive magnetite precipitated under galvanostatic conditions from a solution of irradiated FeSO 4 in EDTA onto a platinum coupon. The coupon was then mounted axially in the loop test section and subjected to a range of imposed potentials during exposure; however, this coupon technique gave dissolution results confounded by the release of magnetite crystallites, so we concentrated on the pellet technique. The paper presents the results of exposures carried out over a range of temperatures and alkalinities at oxygen concentrations between 0 and 20 ppb. It shows how dissolution rate constants obtained under CANDU primary coolant conditions of 310 deg. C and pH 25C 10.5 (with LiOH) fall between published values, which were obtained with a different technique under

  13. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  14. Glass dissolution rate measurement and calculation revisited

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Maxime, E-mail: maxime.fournier@cea.fr [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Ull, Aurélien; Nicoleau, Elodie [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France); Inagaki, Yaohiro [Department of Applied Quantum Physics & Nuclear Engineering, Kyushu University, Fukuoka, 819-0395 (Japan); Odorico, Michaël [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule, BP17171, F-30207, Bagnols sur Cèze (France); Frugier, Pierre; Gin, Stéphane [CEA, DEN, DTCD, SECM, F-30207, Bagnols sur Cèze (France)

    2016-08-01

    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (S{sub geo}) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (S{sub BET}) may be due to small physical features at the atomic scale—contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a S{sub BET}/S{sub geo} ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to S{sub geo} should be divided by 1.3 and rates normalized to S{sub BET} should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%. - Highlights: • Initial dissolution

  15. Dissolution and compaction instabilities in geomaterials

    Science.gov (United States)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  16. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  17. Oxygen therapy - infants

    Science.gov (United States)

    ... breathe increased amounts of oxygen to get normal levels of oxygen in their blood. Oxygen therapy provides babies with the extra oxygen. Information Oxygen is a gas that the cells in your body need to work properly. The ...

  18. Handbook of divorce and relationship dissolution

    CERN Document Server

    Fine, Mark A

    2013-01-01

    This Handbook presents up-to-date scholarship on the causes and predictors, processes, and consequences of divorce and relationship dissolution. Featuring contributions from multiple disciplines, this Handbook reviews relationship termination, including variations depending on legal status, race/ethnicity, and sexual orientation. The Handbook focuses on the often-neglected processes involved as the relationship unfolds, such as infidelity, hurt, and remarriage. It also covers the legal and policy aspects, the demographics, and the historical aspects of divorce. Intended for researchers, practitioners, counselors, clinicians, and advanced students in psychology, sociology, family studies, communication, and nursing, the book serves as a text in courses on divorce, marriage and the family, and close relationships.

  19. Stratigraphy and dissolution of the Rustler Formation

    International Nuclear Information System (INIS)

    Bachman, G.O.

    1985-01-01

    The Rustler Formation is the uppermost evaporite-bearing unit in the Permian Ochoan series in southeastern New Mexico. It rests on the Salado Formation which includes the salt beds where the mined facility for the Waste Isolation Pilot Plant (WIPP) is being constructed. An understanding of the physical stratigraphy of the Rustler Formation is pertinent to studies of the WIPP site because some portions of the Rustler are water-bearing and may provide paths for circulating waters to come into contact with, and dissolve, evaporites within the Ochoan sequence. Knowledge of the processes, magnitude, and history of evaporite dissolution in the vicinity of the WIPP site is important to an evaluation of the integrity of the site. 2 refs., 2 figs

  20. Uranium Metal Analysis via Selective Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  1. Studies on the dissolution of antimony doped ferrites

    International Nuclear Information System (INIS)

    Keny, S.J.; Kumbhar, A.G.; Sanjukta, A.; Pandey, S.; Venkateswaran, G.; Ramanathan, S.

    2008-01-01

    Antimony (Sb) present in the PHT (primary heat transport) pump seals and bearings of PHWRs (Pressurized Heavy Water Reactor) is released during operation of the reactor and gets deposited on the in-core zircaloy surfaces. Neutron flux in the reactor core activates this Sb to 122 Sb (t 1/2 2.6 days) and 124 Sb (t 1/2 60 days). Release of this Sb (radioactive antimony) and its deposition on out of core surfaces occurs due to oxygen ingress in the system during shutdown periods and off normal conditions. Sb deposition on the magnetite bearing carbon steel surface of the PHT system results in increase of radiation fields. The consequence of this is low apparent decontamination factors observed after system decontamination. Once Sb is deposited on bare carbon steel (CS) surface or magnetite bearing carbon steel surface it is not amenable for removal by normal reductive decontamination process. It has to decay by its own half-life or has to be removed by oxidative dissolution. To understand the role of antimony and its removal on the ion exchange column, antimony doped ferrites were prepared and their dissolution in CNA (citric acid, NTA, Ascorbic acid; 1.4+1.4+1.7 mM) formulation was studied. The time taken for the dissolution of antimony-doped ferrites was found to increase with increasing Sb content in the ferrite. The point of zero charge (pzc) value of Sb substituted magnetite was determined to understand its adsorption on carbon steel surfaces of the PHT system. The pzc values for Fe 3 O 4 and Sb 2 O 3 , with H + / OH - as only potential determining ions in the aqueous medium, were 6.5 and 1.7 respectively. While, pzc of magnetite in typical decontamination formulations was below 3. The pzc for aqueous suspension of antimony-substituted magnetite (sintered at 1173 K) was 4.4. On the other hand, in CEA (citric acid, EDTA, Ascorbic acid) formulation up to a pH of 1.5, surface charge on the antimony-substituted magnetite was negative. Hence, even at this low pH, pzc

  2. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    Science.gov (United States)

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  3. Overview of chemical modeling of nuclear waste glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1991-02-01

    Glass dissolution takes place through metal leaching and hydration of the glass surface accompanied by development of alternation layers of varying crystallinity. The reaction which controls the long-term glass dissolution rate appears to be surface layer dissolution. This reaction is reversible because the buildup of dissolved species in solution slows the dissolution rate due to a decreased dissolution affinity. Glass dissolution rates are therefore highly dependent on silica concentrations in solution because silica is the major component of the alteration layer. Chemical modeling of glass dissolution using reaction path computer codes has successfully been applied to short term experimental tests and used to predict long-term repository performance. Current problems and limitations of the models include a poorly defined long-term glass dissolution mechanism, the use of model parameters determined from the same experiments that the model is used to predict, and the lack of sufficient validation of key assumptions in the modeling approach. Work is in progress that addresses these issues. 41 refs., 7 figs., 2 tabs

  4. Frogging It: A Poetic Analysis of Relationship Dissolution

    Science.gov (United States)

    Faulkner, Sandra L.

    2012-01-01

    Often, themes in work and life intertwine; the author recognized that a cadre of poems she had written during the past several years were about relationship dissolution. The poems concerned romantic and friendship dissolution and the aspects of identity creation and loss this entails. The author presents the poems and makes an explicit connection…

  5. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu; Santamarina, Carlos

    2016-01-01

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  6. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.

    Science.gov (United States)

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B

    1997-06-01

    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  7. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    International Nuclear Information System (INIS)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-01-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm −2 , 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP–AES, LECO and SEM–EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO 3 concentration

  8. Uranium carbide dissolution in nitric solution: Sonication vs. silent conditions

    Science.gov (United States)

    Virot, Matthieu; Szenknect, Stéphanie; Chave, Tony; Dacheux, Nicolas; Moisy, Philippe; Nikitenko, Sergey I.

    2013-10-01

    The dissolution of uranium carbide (UC) in nitric acid media is considered by means of power ultrasound (sonication) or magnetic stirring. The induction period required to initiate UC dissolution was found to be dramatically shortened when sonicating a 3 M nitric solution (Ar, 20 kHz, 18 W cm-2, 20 °C). At higher acidity, magnetic stirring offers faster dissolution kinetics compared to sonication. Ultrasound-assisted UC dissolution is found to be passivated after ∼60% dissolution and remains incomplete whatever the acidity which is confirmed by ICP-AES, LECO and SEM-EDX analyses. In general, the kinetics of UC dissolution is linked to the in situ generation of nitrous acid in agreement with the general mechanism of UC dissolution; the nitrous acid formation is reported to be faster under ultrasound at low acidity due to the nitric acid sonolysis. The carbon balance shared between the gaseous, liquid, and solid phases is strongly influenced by the applied dissolution procedure and HNO3 concentration.

  9. Mathematical methods for quantification and comparison of dissolution testing data

    Directory of Open Access Journals (Sweden)

    Edina Vranić

    2002-02-01

    Full Text Available In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolutionoccurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematicalformulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methodsof analysis described by Moore and Flanner. These authors have described difference factor (f1 and similarity factor (f2, which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations.

  10. Nuclear Criticality Safety Assessment for Tank 38H Salt Dissolution

    International Nuclear Information System (INIS)

    Davis, P.L.

    1996-01-01

    This assessment report of sample results of the accumulating insoluble solids from Tank 38H demonstrates that an inherent subcritical condition for nuclear criticality safety exists during saltcake dissolution. This report also defines criteria for future sampling of Tank 38H for continued verification of the inherent subcritical condition as saltcake dissolution proceeds

  11. Effect of Bulk and Interfacial Rheological Properties on Bubble Dissolution

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Meinders, M.

    2001-01-01

    This paper describes theoretical calculations of the combined effect of bulk and interracial rheological properties on dissolution behavior of a bubble in an infinite medium at saturated conditions. Either bulk or interracial elasticity can stop the bubble dissolution process, and stability criteria

  12. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu

    2016-06-11

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  13. Dissolution enhancement of drugs. part i: technologies and effect of ...

    African Journals Online (AJOL)

    and steam aided granulation. In these techniques carrier plays an important role in improving solubility and dissolution rate. Polymers, superdisintegrants, surfactants are extensively studied in recent years for dissolution enhancement in drugs. This part of this review discusses technological overview and effect of polymers,

  14. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  15. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  16. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  17. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  18. Thermodynamic and structural models compared with the initial dissolution rates of SON glass samples

    International Nuclear Information System (INIS)

    Tovena, I.; Advocat, T.; Ghaleb, D.; Vernaz, E.

    1993-01-01

    The experimentally determined initial dissolution rate R 0 of nuclear glass was correlated with thermodynamic parameters and structural parameters. The initial corrosion rates of six ''R7T7'' glass samples measured at 100 deg C in a Soxhlet device were correlated with the glass free hydration energy and the glass formation enthalpy. These correlations were then tested with a group of 26 SON glasses selected for their wide diversity of compositions. The thermodynamic models provided a satisfactory approximation of the initial dissolution rate determined under Soxhlet conditions for SON glass samples that include up to 15 wt% of boron and some alumina. Conversely, these models are inaccurate if the boron concentration exceeds 15 wt% and the glass contains no alumina. Possible correlations between R 0 and structural parameters, such as the boron coordination number and the number of nonbridging oxygen atoms, were also investigated. The authors show that R 0 varies inversely with the number of 4-coordinate boron atoms; conversely, the results do not substantiate published reports of a correlation between R 0 and the number of nonbridging oxygen atoms. (authors). 13 refs., 2 figs., 4 tabs

  19. Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO2 surfaces

    International Nuclear Information System (INIS)

    Wang, R.

    1981-03-01

    Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO 2 matrix material, specifically with single-crystal UO 2 , to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H 2 O 2 . In addition, the effects of temperature on dissolution of UO 2 were studied in autoclaves at 75 and 150 0 C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO 2 are proposed as follows: The UO 2 surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O 2 , or H 2 O 2 , to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO 3 hydrates. The thickness and porosity of the deposited UO 3 hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties

  20. The dissolution rate of UO2 in the alkaline regime under oxidizing conditions using a simplified ground water analog

    International Nuclear Information System (INIS)

    Leider, H.R.; Nguyen, S.N.; Weed, H.C.; Steward, S.A.

    1992-01-01

    The major factor controlling the long term release of radionuclides from spent fuel in a geologic repository is the leaching/dissolution by groundwater of the UO 2 matrix, since more than 90% of the radionuclide waste is contained in the fuel matrix. The objective of this investigation is to provide experimental dissolution rates for UO 2 samples which can be used to develop a mechanistic release model (or models) for UO 2+x (x≥0) under repository conditions. Several types of data will be obtained from this study: (1) the dissolution rates of UO 2 as a function of pI-L temperature, carbonate and oxygen fugacity; (2) the comparison of the steady state dissolution rates of ''not-reduced'' versus ''reduced'' UO 2 samples and of single crystal versus polycrystalline UO 2 under identical experimental conditions; (3) the pre- and post-test surface analyses of the samples to provide information on the surface phases that may be formed under experimental conditions

  1. Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL; WindischJr., Charles F. [Pacific Northwest National Laboratory (PNNL); Burton, Sarah D. [Pacific Northwest National Laboratory (PNNL); Bovaird, Chase C. [Pacific Northwest National Laboratory (PNNL)

    2010-01-01

    As part of ongoing studies to evaluate relationships between structure and rates of dissolution of silicate glasses in aqueous media, sodium borosilicate glasses of composition Na2O xB2O3 (3 x)SiO2, with x 1 (Na2O/B2O3 ratio 1), were analyzed using deep-UV Raman spectroscopy. Results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. The Q3 fractionwas found to increase with increasing Na2O content, in agreement with studies on related glasses, and, as long as the value of x was not too high, this contributed to higher rates of dissolution in single pass flow-through testing. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity, and appeared to grow larger upon further reduction of the Q3 fraction. Results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.

  2. In vitro acellular dissolution of mineral fibres: A comparative study.

    Science.gov (United States)

    Gualtieri, Alessandro F; Pollastri, Simone; Bursi Gandolfi, Nicola; Gualtieri, Magdalena Lassinantti

    2018-05-04

    The study of the mechanisms by which mineral fibres promote adverse effects in both animals and humans is a hot topic of multidisciplinary research with many aspects that still need to be elucidated. Besides length and diameter, a key parameter that determines the toxicity/pathogenicity of a fibre is biopersistence, one component of which is biodurability. In this paper, biodurability of mineral fibres of social and economic importance (chrysotile, amphibole asbestos and fibrous erionite) has been determined for the first time in a systematic comparative way from in vitro acellular dissolution experiments. Dissolution was possible using the Gamble solution as simulated lung fluid (pH = 4 and at body temperature) so to reproduce the macrophage phagolysosome environment. The investigated mineral fibres display very different dissolution rates. For a 0.25 μm thick fibre, the calculated dissolution time of chrysotile is in the range 94-177 days, very short if compared to that of amphibole fibres (49-245 years), and fibrous erionite (181 years). Diffraction and SEM data on the dissolution products evidence that chrysotile rapidly undergoes amorphization with the formation of a nanophasic silica-rich fibrous metastable pseudomorph as first dissolution step whereas amphibole asbestos and fibrous erionite show minor signs of dissolution even after 9-12 months.

  3. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  4. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    Science.gov (United States)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  5. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.

    2015-12-22

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  6. Cytotoxicity and intracellular dissolution of nickel nanowires.

    Science.gov (United States)

    Perez, Jose E; Contreras, Maria F; Vilanova, Enrique; Felix, Laura P; Margineanu, Michael B; Luongo, Giovanni; Porter, Alexandra E; Dunlop, Iain E; Ravasi, Timothy; Kosel, Jürgen

    2016-09-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis, and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage, and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 μm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  7. Germany, Austria and dissolution of Yugoslavia

    Directory of Open Access Journals (Sweden)

    Vuković Slobodan V.

    2001-01-01

    Full Text Available The article deals with one of the causes of dissolution/breakdown of Yugoslavia. The author first analyses writing of German and Austrian press which has, at the very beginning of the crisis, taken a strong anti-Serb standing, as in 1914 and 1941. Author then analyses the reasons that led Austrian and German diplomacy and governments to actively forging the crisis and then breaking down a sovereign country. Those reasons could be summarized as follows: German and Austrian revenge for two wars lost in these territories; improvement of conditions for fulfillment of old German dream to advance toward Middle East; in order to become a world power Germany 'had to' to annul some of the consequences of the First and Second World War on the symbolic level and acquire a possibility to test its powers, and breaking down Yugoslavia, with help of its internal allies Germany broke down its army without military engagement and removed an obstacle for advancement towards East.

  8. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.; Contreras, Maria F.; Vidal, Enrique Vilanova; Felix Servin, Laura P.; Margineanu, Michael B.; Luongo, Giovanni; Porter, Alexandra E.; Dunlop, Iain E.; Ravasi, Timothy; Kosel, Jü rgen

    2015-01-01

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  9. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  10. Mongol Warfare in the Pre-Dissolution Period »

    Directory of Open Access Journals (Sweden)

    Timothy May

    2015-01-01

    Full Text Available Although the Mongols used many of the tactics and strategies that steppe nomads had used for centuries, the Mongols refined steppe warfare so that this style of warfare reached its apogee during the Mongol Empire. Furthermore, the Mongols developed a style of warfare that made them possibly the greatest military force in history. This work examines several facets of the pre-dissolution period (1200–1260. With the dissolution of the Mongol Empire, Mongol warfare once again changed. In some areas it remained complex while in others it regressed to traditional forces of steppe warfare, still potent but not as effective as the pre-dissolution period.

  11. Dissolution behaviour of silicon nitride coatings for joint replacements

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Maria [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Bryant, Michael [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Schmidt, Susann [Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping (Sweden); Engqvist, Håkan [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Hall, Richard M. [Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Neville, Anne [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Persson, Cecilia, E-mail: cecilia.persson@angstrom.uu.se [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden)

    2016-05-01

    In this study, the dissolution rate of SiN{sub x} coatings was investigated as a function of coating composition, in comparison to a cobalt chromium molybdenum alloy (CoCrMo) reference. SiN{sub x} coatings with N/Si ratios of 0.3, 0.8 and 1.1 were investigated. Electrochemical measurements were complemented with solution (inductively coupled plasma techniques) and surface analysis (vertical scanning interferometry and x-ray photoelectron spectroscopy). The dissolution rate of the SiN{sub x} coatings was evaluated to 0.2–1.4 nm/day, with a trend of lower dissolution rate with higher N/Si atomic ratio in the coating. The dissolution rates of the coatings were similar to or lower than that of CoCrMo (0.7–1.2 nm/day). The highest nitrogen containing coating showed mainly Si–N bonds in the bulk as well as at the surface and in the dissolution area. The lower nitrogen containing coatings showed Si–N and/or Si–Si bonds in the bulk and an increased formation of Si–O bonds at the surface as well as in the dissolution area. The SiN{sub x} coatings reduced the metal ion release from the substrate. The possibility to tune the dissolution rate and the ability to prevent release of metal ions encourage further studies on SiN{sub x} coatings for joint replacements. - Graphical abstract: Dissolution rates of SiN{sub 0.3}, SiN{sub 0.8}, and SiN{sub 1.1} coatings on CoCrMo compared to uncoated CoCrMo. Dissolution rates were obtained from i) electrochemical measurements of I{sub corr}, ii) the step height between covered and solution-exposed surfaces, measured using VSI, and iii) the ion concentration in the solution, measured with ICP. - Highlights: • The dissolution of SiN{sub x} coatings was investigated in comparison to (bulk) CoCrMo. • The coatings gave a lower or similar dissolution rate to CoCrMo, of 0.2–1.2 nm/day. • An increased nitrogen content in the coatings gave lower dissolution rates. • SiN{sub x} coatings on CoCrMo reduced the metal ion release

  12. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  13. Dissolution of cellulose in ionic liquid: A review

    Science.gov (United States)

    Mohd, N.; Draman, S. F. S.; Salleh, M. S. N.; Yusof, N. B.

    2017-02-01

    Dissolution of cellulose with ionic liquids (IL) and deep eutectic solvent (DES) lets the comprehensive dissolution of cellulose. Basically, cellulose can be dissolved, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Chloride based ionic liquids are suitable solvents for cellulose dissolution. Although the ILs is very useful in fine chemical industry, its application in the pharmaceutical and food industry have been very limited due to issues with toxicity, purity, and high cost. Seeing to these limitations, new green alternative solvent which is DES was used. This green solvents, may be definitely treated as the next-generation reagents for more sustainable industrial development. Thus, this review aims to discuss the dissolution of cellulose either with ionic liquids or DES and its application.

  14. Dissolution of heavy metals from electrostatic precipitator (ESP) dust ...

    African Journals Online (AJOL)

    SIBOO

    Key words: Fungal leaching, sponge iron, electrostatic precipitator (ESP) dust, metal dissolution. INTRODUCTION ... ability of micro organisms to transform solid compounds ..... of metals from spent lithium ion secondary batteries using A.

  15. wax matrix tablets and its implication on dissolution prof

    African Journals Online (AJOL)

    acetaminophen-wax matrix tablet and hence its implication on dissolution profile. Acetaminophen-wax ... inertness, cost effectiveness, non- toxicity and more importantly their ... Liver Poole, England) at constant load (30 arbitrary units on the ...

  16. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  17. Influence of the Efavirenz Micronization on Tableting and Dissolution

    Directory of Open Access Journals (Sweden)

    Lucio Mendes Cabral

    2012-09-01

    Full Text Available The purpose of this study was to propose an analytical procedure that provides the effects of particle size and surface area on dissolution of efavirenz. Five different batches obtained by different micronization processes and with different particle size distribution and surface area were studied. The preformulation studies and dissolution curves were used to confirm the particle size distribution effect on drug solubility. No polymorphic variety or amorphization was observed in the tested batches and the particle size distribution was determined as directly responsible for the improvement of drug dissolution. The influence of the preparation process on the tablets derived from efavirenz was observed in the final dissolution result in which agglomeration, usually seen in non-lipophilic micronized material, was avoided through the use of an appropriate wet granulation method. For these reasons, micronization may represent one viable alternative for the formulation of brick dust drugs.

  18. Stability and drug dissolution evaluation of Qingkailing soft/hard ...

    African Journals Online (AJOL)

    HPLC-DAD) method was developed ... stability and drug dissolution, which may affect the biopharmaceutics and the clinical effects of the drug. ... behavior may also affect the pharmacokinetic ..... of enzymes and intrinsic factors in stomach and.

  19. Study on the dissolution of uranium dibutyl phosphate deposits

    International Nuclear Information System (INIS)

    Rufus, A.L.; Sathyaseelan, V.S.; Velmurugan, S.; Narasimhan

    2008-01-01

    An insoluble sticky complex of uranium dibutyl phosphate (U-DBP) formed on the inner surfaces of a reprocessing facility can host radioactive nuclides resulting in radiation exposure hazard. Removal of this layer will greatly result in the reduction of radiation field. Hence, dissolution studies with synthetically prepared U-DBP were carried out. A two-step dissolution process consisting of an initial oxidation with acid permanganate followed by reduction with NAC (NTA, Ascorbic acid and Citric acid) was used. Oxidation kinetics of DBP by permanganate, dissolution of synthetic U-DBP complex as a powder and also as a film over SS surface was studied. XRF and SEM techniques were used to monitor the process of dissolution. Material compatibility of welded SS-304 specimens was also studied. It was found that the two-step process was more efficient when compared to either permanganate or NAC treatment alone. (author)

  20. investigation of dissolution kinetics of a nigerian columbite

    African Journals Online (AJOL)

    user

    1,2 DEPARTMENT OF CHEMICAL ENGINEERING, OBAFEMI AWOLOWO UNIVERSITY, ILE-IFE, OSUN STATE NIGERIA. E-mail addresses: ... Experimental results indicate that the dissolution rate is chemical reaction ..... Nuclear Instruments.

  1. The effect of sentencing types on singlehood and relationship dissolution

    DEFF Research Database (Denmark)

    Fallesen, Peter; Andersen, Lars Højsgaard

    Prior research shows that imprisonment may matter for the risk of experiencing divorce or other types of relationship dissolution, as imprisonment implies separation and the social stigma of criminal conviction. Despite these straightforward theoretical mechanisms, we currently lack empirical...

  2. Predicting the dissolution kinetics of silicate glasses using machine learning

    Science.gov (United States)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  3. Biologically mediated dissolution of volcanic glass in seawater

    NARCIS (Netherlands)

    Staudigel, H; Yayanos, A; Chastain, R; Davies, G.T.; Verdurmen, E.A Th; Schiffmann, P; Bourcier, R; de Baar, H.J.W.

    1998-01-01

    We studied the effects of biological mediation on the dissolution of basaltic glass in seawater. Experiments with typical seawater microbial populations were contrasted with a sterile control, and reactions were monitored chemically and isotopically. Biologically mediated experiments produce twice

  4. Dissolution and transport of plutonium from oxide particles in soils

    International Nuclear Information System (INIS)

    Brown, D.A.

    1978-01-01

    This report contains a summary of methods and data on plutonium dissolution and movement in four soils, plus a copy of a manuscript describing the automatic sample changer for alpha radiation detection which has been submitted for publication

  5. In vivo dissolution measurement with indium-111 summation peak ratios

    International Nuclear Information System (INIS)

    Jay, M.; Woodward, M.A.; Brouwer, K.R.

    1985-01-01

    Dissolution of [ 111 In]labeled tablets was measured in vivo in a totally noninvasive manner by using a modification of the perturbed angular correlation technique known as the summation peak ratio method. This method, which requires the incorporation of only 10-12 microCi into the dosage form, provided reliable dissolution data after oral administration of [ 111 In]lactose tablets. These results were supported by in vitro experiments which demonstrated that the dissolution rate as measured by the summation peak ratio method was in close agreement with the dissolution rate of salicylic acid in a [ 111 In]salicylic acid tablet. The method has the advantages of using only one detector, thereby avoiding the need for complex coincidence counting systems, requiring less radioactivity, and being potentially applicable to a gamma camera imaging system

  6. Controlled dissolution of colossal quantities of nitrogen in stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The solubility of nitrogen in austenitic stainless steel was investigated thermogravimetrically by equilibrating thin foils of AISI 304 and AISI 316 in ammonia/hydrogen gas mixtures. Controlled dissolution of colossal amounts of nitrogen under metastable equilibrium conditions was realized...

  7. Evaluation of disintegration and dissolution of chloroquine tablets in ...

    African Journals Online (AJOL)

    Evaluation of disintegration and dissolution of chloroquine tablets in some States in Northern Nigeria. ... This study seeks to assess the quality of chloroquine tablets in some States in Northern Nigeria by determining ... HOW TO USE AJOL.

  8. Study on the dissolution of uranium dibutyl phosphate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Rufus, A.L.; Sathyaseelan, V.S.; Velmurugan, S.; Narasimhan [Bhabha Atomic Research Centre Facilities, Water and Steam Chemistry Div., Kalpakkam (India)], E-mail: svn@igcar.gov.in

    2008-07-01

    An insoluble sticky complex of uranium dibutyl phosphate (U-DBP) formed on the inner surfaces of a reprocessing facility can host radioactive nuclides resulting in radiation exposure hazard. Removal of this layer will greatly result in the reduction of radiation field. Hence, dissolution studies with synthetically prepared U-DBP were carried out. A two-step dissolution process consisting of an initial oxidation with acid permanganate followed by reduction with NAC (NTA, Ascorbic acid and Citric acid) was used. Oxidation kinetics of DBP by permanganate, dissolution of synthetic U-DBP complex as a powder and also as a film over SS surface was studied. XRF and SEM techniques were used to monitor the process of dissolution. Material compatibility of welded SS-304 specimens was also studied. It was found that the two-step process was more efficient when compared to either permanganate or NAC treatment alone. (author)

  9. Dissolution rate enhancement of repaglinide by solid dispersion

    African Journals Online (AJOL)

    Keywords: Diabetes, Solid dispersion, Repaglinide, Solubility, Dissolution, Burst release. Tropical Journal of ... high lipophilicity (logP = 3.97) and relatively low oral bioavailability (56 .... II drug, i.e., low soluble and high permeable in nature. As.

  10. TANK 12 SLUDGE CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION

    International Nuclear Information System (INIS)

    Reboul, S.; Hay, Michael; Zeigler, Kristine; Stone, Michael

    2009-01-01

    A 3-L sludge slurry sample from Tank 12 was characterized and then processed through an aluminum dissolution demonstration. The dominant constituent of the sludge was found to be aluminum in the form of boehmite. The iron content was minor, about one-tenth that of the aluminum. The salt content of the supernatant was relatively high, with a sodium concentration of ∼7 M. Due to these characteristics, the yield stress and plastic viscosity of the unprocessed slurry were relatively high (19 Pa and 27 cP), and the settling rate of the sludge was relatively low (∼20% settling over a two and a half week period). Prior to performing aluminum dissolution, plutonium and gadolinium were added to the slurry to simulate receipt of plutonium waste from H-Canyon. Aluminum dissolution was performed over a 26 day period at a temperature of 65 C. Approximately 60% of the insoluble aluminum dissolved during the demonstration, with the rate of dissolution slowing significantly by the end of the demonstration period. In contrast, approximately 20% of the plutonium and less than 1% of the gadolinium partitioned to the liquid phase. However, about a third of the liquid phase plutonium became solubilized prior to the dissolution period, when the H-Canyon plutonium/gadolinium simulant was added to the Tank 12 slurry. Quantification of iron dissolution was less clear, but appeared to be on the order of 1% based on the majority of data (a minor portion of the data suggested iron dissolution could be as high as 10%). The yield stress of the post-dissolution slurry (2.5 Pa) was an order of magnitude lower than the initial slurry, due most likely to the reduced insoluble solids content caused by aluminum dissolution. In contrast, the plastic viscosity remained unchanged (27 cP). The settling rate of the post-dissolution slurry was higher than the initial slurry, but still relatively low compared to settling of typical high iron content/low salt content sludges. Approximately 40% of the

  11. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    International Nuclear Information System (INIS)

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO 3 Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90 degrees C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO 4 ) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated

  12. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-10-11

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  13. Dissolution of Kansas evaporites: the radioactive waste disposal problem

    International Nuclear Information System (INIS)

    Smith, B.J.

    1977-01-01

    The radioactive waste repository at Lyons, Kansas, focused attention on the problem of evaporite dissolution. More study is needed in the determination of the mechanisms responsible for deterioration. Also, recent water-use policies have been questioned with the need pointed out for increased effectiveness in planning. Good water planning has to take into account the role of evaporite dissolution in water quality. 23 references

  14. A porous silica rock ("tripoli") in the footwall of the Jurassic Úrkút manganese deposit, Hungary: composition, and origin through carbonate dissolution

    Science.gov (United States)

    Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen

    2005-01-01

    The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.

  15. Dissolution of nuclear fuels; Disolucion de combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A; Berberana Eizmendi, M; Rainey, R

    1968-07-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO{sub 2}, PuO{sub 2} and PuO{sub 2}-UO{sub 2} pellets in boiling nitric acid alone and with additives. The uranium metal and UO{sub 2} dissolved readily in nitric acid alone; PuO{sub 2} dissolved slowly even with the addition of fluoride; PuO{sub 2}-UO{sub 2} pellets containing as much as 35% PuO{sub 2} in UO{sub 2} gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO{sub 2}-UO{sub 2} pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs.

  16. Dissolution of ion exchange resin by hydrogen peroxide

    International Nuclear Information System (INIS)

    Lee, S.C.

    1981-08-01

    The resin dissolution process was conducted successfully in full-scale equipment at the SRL Semiworks. A solution containing 0.001M Fe 2+ , or Fe 3+ , and 3 vol % H 2 O 2 in 0.1M HNO 3 is sufficient to dissolve up to 40 vol % resin slurry (Dowex 50W-X8). Foaming and pressurization can be eliminated by maintaining the dissolution temperature below 99 0 C. The recommended dissolution temperature range is 85 to 90 0 C. Premixing hydrogen peroxide with all reactants will not create a safety hazard, but operating with a continual feed of hydrogen peroxide is recommended to control the dissolution rate. An air sparging rate of 1.0 to 1.5 scfm will provide sufficient mixing. Spent resin from chemical separation contains DTPA (diethylenetriaminepentaacetic acid) residue, and the resin must be washed with 0.1M NH 4 OH to remove excess DTPA before dissolution. Gamma irradiation of resin up to 4 kW-hr/L did not change the dissolution rate significantly

  17. Dissolution of metal and metal oxide nanoparticles in aqueous media

    International Nuclear Information System (INIS)

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-01-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. - Highlights: • Three different techniques used simultaneously to measure NPs dissolution. • ZnO-NPs are the most soluble, followed by CuO-NPs, carbon coated Cu-NPs and Ag-NPs. • Dissolution is an important process affecting the fate of nanoparticles. • Complementary techniques are needed to precisely determine dissolution of NPs. - Dissolution of several types of nanoparticles was examined in aqueous media using three complementary techniques

  18. On-line monitoring of lithium carbonate dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhu; Song, Xingfu; Wang, Jin; Luo, Yan; Yu, Jianguo [National Engineering Research Center for Integrated Utilization Salt Lake Resources, East China University of Science and Technology, Shanghai (China)

    2009-11-15

    Dissolution of lithium carbonate (Li{sub 2}CO{sub 3}) in aqueous solution was investigated using three on-line apparatuses: the concentration of Li{sub 2}CO{sub 3} was measured by electrical conductivity equipment; CLD (Chord Length Distribution) was monitored by FBRM (Focused Beam Reflectance Measurement); crystal image was observed by PVM (Particle Video Microscope). Results show dissolution rate goes up with a decrease of particle size, and with an increase in temperature; stirring speed causes little impact on dissolution; ultrasound facilitates dissolution obviously. The CLD evolution and crystal images of Li{sub 2}CO{sub 3}powders in stirred fluid were observed detailedly by FBRM and PVM during dissolution. Experimental data were fitted to Avrami model, through which the activation energy was found to be 34.35 kJ/mol. PBE (Population Balance Equation) and moment transform were introduced to calculate dissolution kinetics, obtaining correlation equations of particle size decreasing rate as a function of temperature and undersaturation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Phosphorous availability influences the dissolution of apatite by soil fungi

    Science.gov (United States)

    Rosling, A.; Suttle, K. B.; Johansson, E.; van Hees, P. W.; Banfield, J. F.

    2007-12-01

    We conducted mineral dissolution experiments using fungi isolated from a grassland soil in northern California to determine the response of fungi to different levels of phosphorus availability and to identify pathways of apatite dissolution by fungal exudates. Fluorapatite dissolution experiments were performed either with fungi present or under abiotic conditions using cell-free liquid media conditioned by fungal growth at different phosphorus and calcium availabilities. Among biogeochemically active soil fungal isolates apatite dissolution was either active in response to phosphorus limiting growth conditions or passive as a result of mycelial growth. Zygomycete isolates in the order of Mucorales acidify their growth media substrate in the presence of phosphorus, mainly through production of oxalic acid. Cell-free exudates induced fluorapatite dissolution at a rate of 10 -0.9 ± 0.14 and 10 -1.2 ± 0.22 mmol P/m2/s. The Ascomycete isolate, in the family Trichocomaceae, induced fluorapatite dissolution at a rate of 10 - 1.1 ± 0.05 mmol P/m2/s by lowering the pH of the media under phosphorus-limited conditions, without producing significant amounts of low molecular weight organic acids (LMWOAs). Oxalate strongly etches fluorapatite along channels parallel to [001], forming needle like features, while exudates from Trichocomaceae induced surface rounding. We conclude that while LMWOAs are well-studied weathering agents these does not appear to be produced by fungi in response to phosphorus limiting growth conditions.

  20. Dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Sanyoshi, H.; Nishina, H.; Toyota, O.; Yamamoto, R.; Nemoto, S.; Okamoto, F.; Togashi, A.; Kawata, T.; Hayashi, S.

    1991-01-01

    At the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the Chemical Processing Facility (CPF) has been continuing operation since 1982 for laboratory scale hot experiments on reprocessing of FBR mixed oxide fuel. As a part of these experiments, dissolution experiments have been performed to define the key parameters affecting dissolution rates such as concentration of nitric acid, temperature and burnup and also to confirm the amount of insoluble residue. The dissolution rate of the irradiated fuel was determined to be in proportion to the 1.7 power of the nitric acid concentration. The activation energy determined from the experiments varied from 6 to 11 kcal/mol depending on the method of dissolution. The dissolution rate decreased as the fuel burnup increased in low nitric acid media below 5 mol/l. However, it was found that the effect of the burnup became negligible in a high concentration of nitric acid media. The amount of insoluble residue and its constituents were evaluated by changing the dissolution condition. (author)

  1. Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, Charles F.; Pierce, Eric M.; Burton, Sarah D.; Bovaird, Chase C.

    2011-03-24

    As part of ongoing studies to evaluate the relationships between structural variations in silicate glasses and rates of glass dissolution in aqueous media, molecular structures present in sodium borosilicate glasses of composition Na2O.xB2O3.(3-x)SiO2, with x 1 (Na2O/B2O3 ratio 1), were analyzed using deep-UV Raman spectroscopy. The results were quantified in terms of the fraction of SiO4 tetrahedra with one non-bridging oxygen (Q3) and then correlated with Na2O and B2O3 content. Increasing Na2O was found to raise the fraction of Q3 units in the glasses systematically, in agreement with studies on related glasses, and, as long as the value of x was not too high, contribute to higher rates of dissolution in single pass flow-through testing. The finding was obtained across more than one series of silica-rich glasses prepared for independent dissolution studies. In contrast, dissolution rates were less strongly determined by the Q3 fraction when the value of x was near unity and appeared to grow larger upon further reduction of the Q3 fraction. The results were interpreted to indicate the increasingly important role of network hydrolysis in the glass dissolution mechanism as the BO4 tetrahedron replaces the Q3 unit as the charge-compensating structure for Na+ ions. Finally, the use of deep-UV Raman spectroscopy was found to be advantageous in studying finely powdered glasses in cases where visible Raman spectroscopy suffered from weak Raman scattering and fluorescence interference.

  2. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    Science.gov (United States)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations

  3. Structural characterization of M(IV)1-xLn(III)xO2-x/2 (M = Ce, Th) mixed-oxides prepared from oxalate precursors. Multi-parametric study of dissolution and microstructural evolution

    International Nuclear Information System (INIS)

    Horlait, D.

    2011-01-01

    In the framework of Gen IV program development, several physico-chemical properties of some foreseen fuels, including the chemical durability, have to be evaluated. In this aim, a study was undertaken on M(IV) 1-x Ln(III) x O 2 (M=Ce,Th) model compounds prepared from oxalate precursors. The fluorite-type structure of CeO 2 and ThO 2 remains stable up to x ≅ 0.4, the substitution of M(IV) by Ln(III) occurring simultaneously to the formation of oxygen vacancies. For higher x values, a cubic superstructure is formed as a result of oxygen vacancies ordering. The normalized dissolution rates of such solids were found to be strongly enhanced by the Ln(III) fraction. On the contrary, the nature of the M(IV) and Ln(III) elements did not modify significantly the normalized dissolution rates. The effect of temperature and acid concentration suggested the existence of surface-controlling dissolution reactions. Simultaneously, the microstructural evolution of both powdered and sintered samples revealed some important changes in the reactive surface during dissolution tests. ESEM images allowed observing the existence of preferential dissolution sites located at grains boundaries and around crystalline defects, leading to the formation of corrosion pits. In addition, the formation of gelatinous phases, acting as diffusion barriers (thus slowing down the dissolution process) was also evidenced. (author) [fr

  4. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    Science.gov (United States)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  5. Development of a kinetic model for the dissolution of the UO2 spent nuclear fuel. Application of the model to the minor radionuclides

    International Nuclear Information System (INIS)

    Bruno, J.; Cera, E.; Duro, L.; Pon, J.; Pablo, J. de; Eriksen, Trygve

    1998-05-01

    A kinetic model has been developed in order to explain the evolution of the spent fuel matrix/groundwater system. Mass balance equations have been used to follow the evolution of the system with time. The model has been calibrated by using experimental dissolution data from spent fuel leaching tests from Studsvik and KTH and from synthetic unirradiated UO 2 dissolution tests from VTT. The results of the testing exercise indicate that the combination of mass balance equations together with the kinetic rate laws constitute a useful tool to model and explain experimental dissolution data available in the literature for UO 2 solid phases, including uraninites, unirradiated UO 2 and spent fuel. Although the key processes are well identified and understood, there are still some remaining uncertainties concerning some of the critical parameters of the model. This is particularly true for the density of UO 2 sites prone to oxidation and the rates and mechanisms of the hydrogen peroxide and the combined oxygen and bicarbonate promoted dissolution of UO 2 for oxidant concentration ranges relevant to the spent fuel disposal system. The mass balance kinetic model developed has been extended to minor radionuclides contained in the matrix, i.e. Pu, Tc and Sr. In the case of Pu, the model presented reproduces the behaviour of this critical radionuclide even at early contact times. As it would be expected, Tc seems to follow a different mechanism for its release with respect to the UO 2 matrix dissolution, which is probably linked to the rate of oxidation of Tc metallic inclusions in the fuel. A co- dissolution process of Sr with the UO 2 matrix reproduces the long term dissolution behaviour of this radionuclide, better than the initial Sr release rates

  6. Development of a kinetic model for the dissolution of the UO{sub 2} spent nuclear fuel. Application of the model to the minor radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Cera, E.; Duro, L.; Pon, J. [QuantiSci SL, Barcelona (Spain); Pablo, J. de [UPC, Barcelona (Spain). Dept. Enginyeria Quimica; Eriksen, Trygve [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Nuclear Chemistry

    1998-05-01

    A kinetic model has been developed in order to explain the evolution of the spent fuel matrix/groundwater system. Mass balance equations have been used to follow the evolution of the system with time. The model has been calibrated by using experimental dissolution data from spent fuel leaching tests from Studsvik and KTH and from synthetic unirradiated UO{sub 2} dissolution tests from VTT. The results of the testing exercise indicate that the combination of mass balance equations together with the kinetic rate laws constitute a useful tool to model and explain experimental dissolution data available in the literature for UO{sub 2} solid phases, including uraninites, unirradiated UO{sub 2} and spent fuel. Although the key processes are well identified and understood, there are still some remaining uncertainties concerning some of the critical parameters of the model. This is particularly true for the density of UO{sub 2} sites prone to oxidation and the rates and mechanisms of the hydrogen peroxide and the combined oxygen and bicarbonate promoted dissolution of UO{sub 2} for oxidant concentration ranges relevant to the spent fuel disposal system. The mass balance kinetic model developed has been extended to minor radionuclides contained in the matrix, i.e. Pu, Tc and Sr. In the case of Pu, the model presented reproduces the behaviour of this critical radionuclide even at early contact times. As it would be expected, Tc seems to follow a different mechanism for its release with respect to the UO{sub 2} matrix dissolution, which is probably linked to the rate of oxidation of Tc metallic inclusions in the fuel. A co- dissolution process of Sr with the UO{sub 2} matrix reproduces the long term dissolution behaviour of this radionuclide, better than the initial Sr release rates 49 refs, 22 figs, 2 tables

  7. Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces

    Science.gov (United States)

    Tellier, C. R.

    1990-03-01

    Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.

  8. Investigation of the gas formation in dissolution process of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Zhang Qinfen; Liao Yuanzhong; Chen Yongqing; Sun Shuyun; Fan Yincheng

    1987-12-01

    The gas formation in dissolution process of two kinds of nuclear fuels was studied. The results shows that the maximum volume flow released from dissolution system is composed of two parts. One of them is air remained in dissolver and pushed out by acid vapor. The other is produced in dissolution reaction. The procedure of calculating the gas amount produced in dissolution process has been given. It is based on variation of components of dissolution solution. The gas amount produced in dissolution process of spent UO 2 fuel elements was calculated. The condenser system and loading volume of disposal system of tail gas of dissolution of spent fuel were discussed

  9. Study of dissolution factors of U, Th and Ta

    International Nuclear Information System (INIS)

    Santos, Maristela; Medeiros, Geiza; Zouain, Felipe; Cunha, Kenya Dias da; Pitassi, Gabriel; Lima, Cintia; Leite, Carlos Vieira Barros; Nascimento, Jose Eduardo; Dalia, Kely Cristina

    2009-01-01

    Air pollution can be a problem in industrial processes, but monitoring and controlling the aerosols in the work place is not enough to estimate the occupational risk due to dust particle inhalation. The solubility in lung fluid is considered to estimate this risk. The aim of this study is to determine in vitro specific dissolution parameters for thorium (Th), uranium (U) and tantalum (Ta) associated to crystal lattice of a niobium mineral (pyrochlore). Th, U and Ta dissolution factors in vitro were obtained using the Gamble solution (Simulant Lung Fluid, SLF), PIXE (Particle Induced X ray Emission) and alpha spectrometry as analytical techniques. Ta, Th and U are present in the pyrochlore crystal lattice as oxide; however they have shown different dissolution parameters. The rapid dissolution fraction (fr), rapid dissolution rate (λr); slow dissolution rate (fs) and slow dissolution fraction ((λs) measured for tantalum oxide were equal to 0.1, 0.45 d -1 and 0.00007 d -1 , respectively; for uranium oxide fr was equal to 0.05, (λr equal to 1.1 d -1 ; (λs equal to 0.000068 d -1 ; for thorium oxide fr was 0.025, (λr was 1.5 d -1 and (λs: 0.000065 d -1 . These results show that chemical behavior of these 3 compounds in the SLF could not be represented by the same parameter. The ratio of uranium concentration in urine and feces samples from workers exposed to pyrochlore dust particle was determined. These values agree with the theoretical values of estimated uranium concentration using specific parameters for uranium oxide present in pyrochlore. (author)

  10. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.

    Science.gov (United States)

    Kent, Ronald D; Vikesland, Peter J

    2012-07-03

    Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.

  11. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  12. A kinetic model of the oxidative dissolution of brannerite, UTi2O6

    International Nuclear Information System (INIS)

    Thomas, B.S.; Zhang, Y.

    2003-01-01

    The aqueous dissolution of synthetic brannerite (UTi 2 O 6 ) in an open atmosphere has been investigated. Previous data in the literature have been combined with new experimental work, dealing with the release of uranium from brannerite as a function of solution pH and aqueous carbonate species, in oxygenated solutions. From these data we have developed a conceptual model for uranium release from brannerite consisting of two reaction steps: oxidation of surface uranium(IV) atoms, and subsequent detachment of U(VI) atoms into solution, which is catalysed by surface coordination with protons (acidic media) or carbonate species (alkaline media in equilibrium with the atmosphere). A kinetic rate law is derived for this simple reaction mechanism and fitted to experimental data. The resulting predictive equation for uranium release qualitatively describes the pH-dependent behaviour observed in experiment, and quantitatively gives an upper limit for uranium release from brannerite over a range of conditions and experiment types. (orig.)

  13. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  14. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media

    DEFF Research Database (Denmark)

    Sunesen, Vibeke Hougaard; Pedersen, Betty Lomstein; Kristensen, Henning Gjelstrup

    2005-01-01

    The purpose of the study was to design dissolution tests that were able to distinguish between the behaviour of danazol under fasted and fed conditions, by using biorelevant media. In vitro dissolution of 100mg danazol capsules was performed using the flow-through dissolution method. Flow rates w...

  15. Experimental hydrothermal dissolution of forsterite, enstatite, diopside, and labradorite

    Energy Technology Data Exchange (ETDEWEB)

    Ponader, H.B.

    1989-01-01

    Natural hydrothermal water/rock interactions such as those which occur during mineral dissolution and serpentinization were experimentally duplicated using a flow-through apparatus. Labradorite, forsterite, enstatite, diopside, and lherzolite powders were reached with flowing aqueous fluids ({approximately} 10 ml/day) at 300 C and 300 bars for up to 58 days in order to quantify mineral stabilities and dissolution rates, and to characterize dissolution textures and mechanisms. The principal methods for characterization of the solids included surface sensitive spectroscopies (SAM and SPS), SEM, and XRD; reacted fluids were analyzed for major element chemistry and pH. Chapters 1 and 2 investigate labradorite dissolution by deionized water. The labradorite powder dissolved extensively while boehmite and halloysite precipitated. The SAM results show that, in general, the reacted surfaces are enriched in Al and depleted in Si, Na, and Ca. Chapter 3 describes the experiments that reacted deionized water with diopside, enstatite, forsterite, and lherzolite, from which lizardite {plus minus} chrysotile {plus minus} Fe-oxides precipitated. The reacted diopside and enstatite surfaces appeared highly corroded; their crystal structures, in part, control the mechanisms by which they dissolve. The stabilities of the minerals decrease in the order: lherzolite > diopside > enstatite > forsterite. At near neutral pH, the degree to which total surface areas influence dissolution rates appears greater that the effect of mineral composition and interaction of the primary minerals within the lherzolite.

  16. Kinetics of dissolution of calcium phosphate (Ca-P bioceramics

    Directory of Open Access Journals (Sweden)

    Lukas Brazda

    2008-06-01

    Full Text Available Hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP are widely used bioceramics for surgical or dental applications. This paper is dealing with dissolution kinetics of synthetically prepared β-TCP and four types of HAp granules. Two groups of HAp, treated at different temperatures, each of them with two different granule sizes, were tested. Three corrosive solutions with different pH and simulated body fluid (SBF were used for immersing of the samples. Changes in concentrations of calcium and phosphate ions, pH level and weight changes of the samples were observed. It was found that presence of TRIS buffer enhanced dissolution rate of the β-TCP approximately two times. When exposed to SBF solution, calcium phosphate (most probably hydroxyapatite precipitation predominates over β-TCP dissolution. Results from HAp samples dissolution showed some unexpected findings. Neither heat treatment nor HAp particle size made any major differences in dissolution rate of the same mass of each HAp sample.

  17. The dissolution kinetics of magnetite under regenerative conditions

    International Nuclear Information System (INIS)

    Ranganathan, S.

    2004-01-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H + from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe 3 O 4 in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  18. The dissolution kinetics of magnetite under regenerative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Frederiction (Canada). Dept. of Chemical Engineering; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V. [Water and Steam Chemistry Lab. of Bhabha Atomic Research Centre (BARC) (India)

    2004-07-01

    Dissolution studies of magnetite were carried out under regenerative conditions in dilute chemical decontamination formulations. During regeneration of the formulation, the H{sup +} from the strong acid cation exchange resin gets released and the metal is absorbed on the resin. The efficiency of the regenerative process depends on the stability constants of the complexes involved and the selectivity on the ion exchange column. The regenerative condition helps to maintain a constant chelating agent concentration and pH during the dissolution experiment. Such a condition is ideal for obtaining data on the dissolution behaviour of the corrosion products with special application to actual reactor decontamination. The ethylenediaminetetraacetic acid (EDTA) based formulation used was found to be ineffective due to the high stability constant of Fe(III)-EDTA complex, which is not easily cleaved by the cation exchange resin. Hence, knowledge of the kinetics of magnetite dissolution under regenerative condition is of primary importance. The 2,6-pyridinedicarboxylic acid formulation is found to be better for the dissolution of Fe{sub 3}O{sub 4} in both static and regenerative modes in the presence of reductants than nitrilotriacetic acid and EDTA. (orig.)

  19. Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    Science.gov (United States)

    Antia, A. N.; Suffrian, K.; Holste, L.; Müller, M. N.; Nejstgaard, J. C.; Simonelli, P.; Carotenuto, Y.; Putzeys, S.

    2008-01-01

    Independent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45-55%, 37-53% and 5-22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates.

  20. Optimization of dissolution process parameters for uranium ore concentrate powders

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Reddy, D.M.; Reddy, A.L.V.; Tiwari, S.K.; Venkataswamy, J.; Setty, D.S.; Sheela, S.; Saibaba, N. [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear fuel complex processes Uranium Ore Concentrate (UOC) for producing uranium dioxide powder required for the fabrication of fuel assemblies for Pressurized Heavy Water Reactor (PHWR)s in India. UOC is dissolved in nitric acid and further purified by solvent extraction process for producing nuclear grade UO{sub 2} powder. Dissolution of UOC in nitric acid involves complex nitric oxide based reactions, since it is in the form of Uranium octa oxide (U{sub 3}O{sub 8}) or Uranium Dioxide (UO{sub 2}). The process kinetics of UOC dissolution is largely influenced by parameters like concentration and flow rate of nitric acid, temperature and air flow rate and found to have effect on recovery of nitric oxide as nitric acid. The plant scale dissolution of 2 MT batch in a single reactor is studied and observed excellent recovery of oxides of nitrogen (NO{sub x}) as nitric acid. The dissolution process is automated by PLC based Supervisory Control and Data Acquisition (SCADA) system for accurate control of process parameters and successfully dissolved around 200 Metric Tons of UOC. The paper covers complex chemistry involved in UOC dissolution process and also SCADA system. The solid and liquid reactions were studied along with multiple stoichiometry of nitrous oxide generated. (author)

  1. Laboratory simulation of salt dissolution during waste removal

    International Nuclear Information System (INIS)

    Wiersma, B.J.; Parish, W.R.

    1997-01-01

    Laboratory experiments were performed to support the field demonstration of improved techniques for salt dissolution in waste tanks at the Savannah River Site. The tests were designed to investigate three density driven techniques for salt dissolution: (1) Drain-Add-Sit-Remove, (2) Modified Density Gradient, and (3) Continuous Salt Mining. Salt dissolution was observed to be a very rapid process as salt solutions with densities between 1.38-1.4 were frequently removed. Slower addition and removal rates and locating the outlet line at deeper levels below the top of the saltcake provided the best contact between the dissolution water and the saltcake. It was observed that dissolution with 1 M sodium hydroxide solution resulted in salt solutions that were within the current inhibitor requirements for the prevention of stress corrosion cracking. This result was independent of the density driven technique. However, if inhibited water (0.01 M sodium hydroxide and 0.011 M sodium nitrite) was utilized, the salt solutions were frequently outside the inhibitor requirements. Corrosion testing at conditions similar to the environments expected during waste removal was recommended

  2. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.

    Science.gov (United States)

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H

    2017-04-15

    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dissolution mechanism of UO2 at various parametric conditions

    International Nuclear Information System (INIS)

    Ollila, K.

    1988-04-01

    The aim of this experimental study is to investigate the solubility and dissolution mechanism of uranium dioxide under simulated disposal conditions of spent fuel. Unirradiated UO 2 is used as a surrogate for spent fuel. Two types of synthetic groundwaters were used in these experiments, on simulating the natural conditions deep in granitic bedrock (synthetic groundwater I) and the other simulating the effects of bentonite on groundwater (synthetic groundwater II). The effect of carbonate concentration was investigated by following dissolution in sodium bicarbonate solution as a function of bicarbonate concentration. Deionized wate was used as a reference water. All the experiments were carried out under both air-saturated, oxidizing and anoxic, reducing conditions. A separate test series under anoxic conditions was initiated in order to study the oxidation state of uranium. The experimental uranium solubilities are compared with the solubilities obtained from theoetical calculations by applying the geochemical code PHREEQ. The theoretical solubility values of uranium under oxidizing conditions calculated by PHREEQE are higher when compared to the corresponding experimental solubility values. The reason for the lower solubility values may be the mechanism of dissolution leading for example either to a situation where low dissolution rate is a limiting factor or to formation of some solid phase of uranium with lower solubility. Formation of a surface layer was observed on the pellet after dissolution in synthetic groundwater II. The theoretical solubility values under educing conditions calculated for uranium by PHREEQE appear to be in good agreement with the experimental solubility values

  4. Dissolution Enhancement of Rosuvastatin Calcium by Liquisolid Compact Technique

    Directory of Open Access Journals (Sweden)

    V. J. Kapure

    2013-01-01

    Full Text Available In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT. The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR analysis, X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.

  5. Thoria/thoria-urania dissolution studies for reprocessing application

    International Nuclear Information System (INIS)

    Srinivas, C.; Yalmali, Vrunda; Pente, A.S.; Wattal, P.K.; Misra, S.D.

    2012-06-01

    Thoria dissolution is normally conducted in 13M nitric acid in the presence of 0.03M sodium fluoride or HF as catalyst and 0.1M aluminium nitrate for mitigation of fluoride related corrosion of SS 304L dissolver vessel. Addition of aluminium nitrate in such high concentrations has undesirable consequences in the downstream high level radioactive liquid waste vitrification process at 900-1000 degC. Besides, because of the highly corrosive nature of fluoride ion, lowering its concentration in the dissolution reaction is advantageous in reducing the corrosion of dissolver and other downstream equipments. The present work was done with twin objectives of avoiding aluminium nitrate addition and lowering the fluoride ion concentration during dissolution reaction. High temperature sintered thoria and thoria-4 weight% urania dissolution reactions were investigated in the absence of aluminium nitrate and at reduced fluoride concentrations. Corrosion rates of SS 304L zircaloy in various dissolvent mixtures were studied by weight loss method. These studies clearly showed that aluminium nitrate addition for control of fluoride related corrosion of SS 304L can be avoided when zircaloy-clad thoria/thoria-urania pellets are dissolved. Dissolved zirconium ion was observed to be as effective as aluminium ion. Moreover, dissolution could be achieved with reasonable reaction rates at reduced fluoride concentration of 0.005-0.01M instead of 0.03M by changing the method of addition of the fluoride catalyst. (author)

  6. Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation

    Science.gov (United States)

    Rachmaniar, Revika; Tristiyanti, Deby; Hamdani, Syarif; Afifah

    2018-02-01

    Ketoprofen or [2-(3-benzoylphenyl) propionic acid] is non-steroidal anti-inflammatory (NSAID) and an analgesic which has high permeability and low solubility. The purpose of this work was to improve the solubility and dissolution of poorly water-soluble ketoprofen prepared by emulsification ionic gelation method and utilizing polymer (chitosan) and cross linker (tripolyphosphate, TPP) for particles formulation. The results show that increasing pH value of TPP, higher solubility and dissolution of as-prepared ketoprofen-chitosan was obtained. The solubility in water of ketoprofen-chitosan with pH 6 for TPP increased 2.71-fold compared to untreated ketoprofen. While the dissolution of ketoprofen-chitosan with pH 6 of TPP in simulated gastric fluid without enzyme (0.1 N HCl), pH 4.5 buffer and simulated intestinal fluid without enzyme (phosphate buffer pH 6.8) was increased 1.9-fold, 1.6-fold and 1.2-fold compared to untreated ketoprofen for dissolution time of 30 minutes, respectively. It could be concluded that chitosan and TPP in the emulsification ionic gelation method for ketoprofen preparation effectively increases solubility and dissolution of poorly water-soluble ketoprofen.

  7. Formalization of the kinetics for autocatalytic dissolutions. Focus on the dissolution of uranium dioxide in nitric medium

    International Nuclear Information System (INIS)

    Charlier, F.; Canion, D.; Gravinese, A.; Magnaldo, A.; Lalleman, S.; Borda, G.; Schaer, E.

    2017-01-01

    Uranium dioxide dissolution in nitric acid is a complex reaction. On the one hand, the dissolution produces nitrous oxides (NOX), which makes it a triphasic reaction. On the other hand, one of the products accelerates the kinetic rate; the reaction is hence called autocatalytic.The kinetics for these kinds of reactions need to be formalized in order to optimize and design innovative dissolution reactors. In this work, the kinetics rates have been measured by optical microscopy using a single particle approach. The advantages of this analytical technique are an easier management of species transport in solution and a precise following of the dissolution rate. The global rate is well described by a mechanism considering two steps: a non-catalyzed reaction, where the catalyst concentration has no influence on the dissolution rate, and a catalyzed reaction. The mass transfer rate of the catalyst was quantified in order to discriminate when the reaction was influenced by catalyst accumulated in the boundary layer or uncatalyzed. This first approximation described well the sigmoid dissolution curve profile. Moreover, experiments showed that solutions filled with catalyst proved to lose reactivity over time. Results pointed out that the higher the liquid-gas exchanges, the faster the kinetic rate decreases with time. Thus, it was demonstrated, for the first time, that there is a link between catalyst and nitrous oxides. The outcome of this study leads to new ways for improving the design of dissolvers. Gas-liquid exchanges are indeed a lever to impact dissolution rates. Temperature and catalyst concentration can be optimized to reduce residence times in dissolvers. (authors)

  8. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)

  9. Numerical modelling of glass dissolution: gel layer morphology

    Energy Technology Data Exchange (ETDEWEB)

    Devreux, F. E-mail: fd@pmc.polytechnique.fr; Barboux, P

    2001-09-01

    Numerical simulations of glass dissolution are presented. The glass is modelized as a random binary mixture composed of two species representing silica and soluble oxides, such as boron and alkali oxides. The soluble species are dissolved immediately when they are in contact with the solution. For the species which represents silica, one introduces dissolution and condensation probabilities. It is shown that the morphology and the thickness of the surface hydration layer (the gel) are highly dependent on the dissolution model, especially on the parameter which controls the surface tension. Simulations with different glass surface area to solution volume ratio (S/V) show that this experimental parameter has important effects on both the shrinkage and the gel layer thickness.

  10. Dissolution rate effect upon lyolumenescence of irradiated potassium chloride

    International Nuclear Information System (INIS)

    Leshchinskij, B.L.; Dzelme, Yu.R.; Tiliks, Yu.E.; Bugaenko, L.T.

    1985-01-01

    The paper is aimed at studying dissolution rate effect and concentration of electron acceptor upon lyoluminescence (LL) that occurs during dissolution of solids with radiation defects. For investigation gamma-irradiated potassium chloride monocrystalline disks were used. As a solvent 3x10sup(-6) M solution of C(RH) hodamine in 2.7 KCl aqueous solution is used. It is shown that LL occurs as a result of recombination of radiation defects with the solution and between themselves in two different regions of subsurface layer of the solid. Investigated dependences of LL intensty on dissolution rate are the efficient method of studying the structure of solids-aqueous solution interface and LL mechanism

  11. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  12. Development of in situ ion selective sensors for dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Bohets, Hugo [Antwerp University, Chemistry Department, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Vanhoutte, Koen [Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B-2340 Beerse (Belgium); De Maesschalck, Roy [Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B-2340 Beerse (Belgium); Cockaerts, Paul [Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B-2340 Beerse (Belgium); Vissers, Bert [Antwerp University, Chemistry Department, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Nagels, Luc J. [Antwerp University, Chemistry Department, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)]. E-mail: luc.nagels@ua.ac.be

    2007-01-02

    The dissolution of formulations of the drugs dapoxetine, paliperidone, cinnarizine, tetrazepam, mebeverine, loperamide, galantamine and ibuprofen was studied by an in-line potentiometric measurement system. The transpose of a Nikolskii-Eisenman type function performed the conversion of potential to percentage of dissolution. A novel gradient membrane electrode was developed especially for dissolution, varying continuously in composition from an ionically conducting rubber phase to an electronically conducting solid state PVC/graphite composite. The gradient part had a thickness of 200 {mu}m. The electrodes life span exceeded 6 months. An ion exchange procedure was used to prepare them for one specific drug. This enabled us to use one universal electrode built to measure a wide array of drugs. The system parameters such as accuracy, reproducibility and linearity were presented with the data obtained for the drug dapoxetine. In dissolution, accurate measurements were possible from 10{sup -9} to 10{sup -3} M concentrations, for high log P drugs. The effect of t {sub 90} response times on the measurement error was estimated. The t {sub 90} response times of the electrodes were concentration dependent, and varied between 50 and 10 s for, respectively, 10{sup -6} and 10{sup -3} M concentrations. Potential drift was studied in detail. The measurements performed with these electrodes showed an accuracy of 1%, and inter- and intra electrode variabilities of 0.6 and 1.7%, respectively. The electrodes were successfully applied in colloidal media containing suspended matter, typically formed during dissolution of tablets. The advantages and pitfalls of potentiometry over the presently used techniques for dissolution testing are discussed.

  13. Principles of calcite dissolution in human and artificial otoconia.

    Directory of Open Access Journals (Sweden)

    Leif Erik Walther

    Full Text Available Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV. The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic otoconia (calcite gelatin nanocomposits and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM. Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV.

  14. Development of in situ ion selective sensors for dissolution

    International Nuclear Information System (INIS)

    Bohets, Hugo; Vanhoutte, Koen; De Maesschalck, Roy; Cockaerts, Paul; Vissers, Bert; Nagels, Luc J.

    2007-01-01

    The dissolution of formulations of the drugs dapoxetine, paliperidone, cinnarizine, tetrazepam, mebeverine, loperamide, galantamine and ibuprofen was studied by an in-line potentiometric measurement system. The transpose of a Nikolskii-Eisenman type function performed the conversion of potential to percentage of dissolution. A novel gradient membrane electrode was developed especially for dissolution, varying continuously in composition from an ionically conducting rubber phase to an electronically conducting solid state PVC/graphite composite. The gradient part had a thickness of 200 μm. The electrodes life span exceeded 6 months. An ion exchange procedure was used to prepare them for one specific drug. This enabled us to use one universal electrode built to measure a wide array of drugs. The system parameters such as accuracy, reproducibility and linearity were presented with the data obtained for the drug dapoxetine. In dissolution, accurate measurements were possible from 10 -9 to 10 -3 M concentrations, for high log P drugs. The effect of t 90 response times on the measurement error was estimated. The t 90 response times of the electrodes were concentration dependent, and varied between 50 and 10 s for, respectively, 10 -6 and 10 -3 M concentrations. Potential drift was studied in detail. The measurements performed with these electrodes showed an accuracy of 1%, and inter- and intra electrode variabilities of 0.6 and 1.7%, respectively. The electrodes were successfully applied in colloidal media containing suspended matter, typically formed during dissolution of tablets. The advantages and pitfalls of potentiometry over the presently used techniques for dissolution testing are discussed

  15. Advances in heterogeneous autocatalytic reactions applied to uranium dissolution - 5317

    International Nuclear Information System (INIS)

    Marc, P.; Magnaldo, A.; Godard, J.; Schaer, E.

    2015-01-01

    Dissolution and the solubilization of the chemical elements is a milestone of the head-end of hydrometallurgical processes. When dissolving spent nuclear fuels, additional constraints are added due to the permanent need to strictly control and limit the hold-up. Thus the need for kinetic modeling concerning the dissolution of spent nuclear fuels in nitric acid. This study aims at better understanding the chemical and physical-chemical phenomena of uranium dioxide dissolution reactions in nitric medium. It has been documented that the nitric acid attack of sintering-manufactured uranium dioxide solids occurs through preferential attack sites. This non uniform attack leads to the development of cracks in the solids. Optical microscopy observations show that in some cases, the development of these cracks can lead to the solid cleavage. In this case, we show that the dissolution of the detached fragments is much slower than the time required for the complete cleavage of the solid. These points motivated the measurements of dissolution kinetics using optical microscopy and image processing. A comparison of the measured kinetics with the diffusion kinetics by the mean of the external resistance fraction allows discriminating between measured kinetics corresponding to the chemical reaction or mass-transport limitation. This capability to measure, for the very first time, the 'true' chemical kinetics of the reaction has enabled the confirmation of the highly autocatalytic nature of the reaction, and first evaluation of the constants of the chemical reactions kinetic laws. These data are fundamental to set the kinetic parameters of the chemical reactions in a future model of the dissolution of uranium dioxide sintered pellets. (authors)

  16. Dissolution of anodic zirconium dioxide films in aqueous media

    International Nuclear Information System (INIS)

    Merati, A.; Cox, B.

    1999-01-01

    Zirconium with a low thermal neutron cross section, good corrosion resistance in high-temperature water, and high thermal conductivity is an ideal material for nuclear reactors. Its good resistance to water and steam at reactor temperatures is of the greatest interest to nuclear fuel designers. Dissolution of zirconium dioxide (ZrO 2 ) films in aggressive media was investigated. The extent of uniform and localized dissolution was measured by ultraviolet-visible (UV-VIS) spectrometry and an alternating current (AC) impedance test, respectively. Scanning electron microscopy (SEM) showed the extent of dissolution of ZrO 2 was a function only of the fluoride ion content and pH of the medium. Cathodic polarization was used to identify the preferred sites for localized dissolution of the oxide film. In 0.1 M potassium bifluoride (KHF 2 ), both uniform thinning and local breakdown of the oxide were observed. Within the limits of the investigating techniques, no evidence of dissolution was observed in the other solutions tested: 0.5 M sulfuric acid (H 2 SO 4 ). 1.0 M nitric acid (HNO 3 ), 5 M hydrochloric acid (HCl), or 0.1 M potassium fluoride (KF). In areas around iron-containing particles, fine cracks in the anodic oxide at prior metal grain boundaries and arrays of cracks in the oxide associated with residual scratches from the initial specimen preparation were the preferred spots for localized dissolution of the oxide film. Iron precipitates immediately below the surface of the oxide layer increased the local electrical conductivity. Enrichment of iron in the oxide matrix around these precipitates during the anodization process appeared to cause prospective spots, acting as anodic sites for pH formation

  17. Does the dose-solubility ratio affect the mean dissolution time of drugs?

    Science.gov (United States)

    Lánský, P; Weiss, M

    1999-09-01

    To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.

  18. Kinetics of dissolution of magnetite in PDCA based formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Prince, A.A.M.; Raghavan, P.S.; Gopalan, R.; Srinivasan, M.P.; Narasimhan, S.V.

    1997-01-01

    Magnetite is one of the important corrosion products of pressurized heavy water reactors (PHWRs) where carbon steel is the dominant surface in the primary heat transport system. Designing of formulations capable of dissolving magnetite is important for effective decontamination of such surfaces. The rate of dissolution of synthetically prepared magnetite was studied in low concentrations of PDCA containing acidic formulations. The effect of addition of ascorbic acid, citric acid, Fe 2+ -PDCA complex on the rate was also studied. The effects of pH and the temperature on the dissolution rate were determined. The PDCA as a complexant has some positive factors like low protonation constant and enhanced stability to radiation. (author)

  19. GENERAL CONSIDERATIONS ON THE DISSOLUTION AND LIQUIDATION OF ROMANIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Elena Cristina Baciu

    2012-03-01

    Full Text Available All stakeholders are interested in whether a firm has a good and stable financial situation, even though they all have different stakes in it. However, not all companies can succeed and operate profitably. The purpose of the study is to examine the peculiarities of dissolution and liquidation in Romania and the characteristics of liquidation of companies, according to their legal form. From examining the general causes of dissolution to specifics of different type of companies, all elements have a great importance in understanding how to avoid this procedure.

  20. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  1. Evaluation of a dynamic dissolution/permeation model

    DEFF Research Database (Denmark)

    Sironi, Daniel; Christensen, Mette; Rosenberg, Jörg

    2017-01-01

    -steady state). To this end, a model case was construed: compacts of pure crystalline hydrocortisone methanolate (HC·MeOH) of slow release rates were prepared, and their dissolution and permeation determined simultaneously in a side-by-side setup, separated by a biomimetic barrier (Permeapad...... dissolution rate and flux influenced each other. Interestingly, for all the dynamic scenarios, the incremental flux values obtained correlated nicely with the corresponding actual donor concentrations. Furthermore, donor depletion was tested using a HC solution. The dynamic interplay between decrease in donor...

  2. Effect of alumina on the dissolution rate of glasses

    International Nuclear Information System (INIS)

    Palavit, G.; Montagne, L.

    1997-01-01

    Small alumina addition to silicate glasses improves their chemical durability, but a large amount of alumina can also be beneficial to obtain a high dissolution rate. This paper describes the effect of Al 3+ on the early stage of glass alteration, in relation with its coordination in the glass and also with the reactions involved (hydrolysis and ionic exchange). We describe briefly nuclear magnetic resonance tools available to characterize the aluminum environments in the glasses. The rote of alumina on the dissolution rate of phosphate glasses is also discussed in order to show that the effect of Al 3+ is dependant upon the nature of the glass matrix. (author)

  3. Spent fuel dissolution studies FY 1991 to 1994

    International Nuclear Information System (INIS)

    Gray, W.J.; Wilson, C.N.

    1995-12-01

    Dissolution and transport as a result of groundwater flow are generally accepted as the primary mechanisms by which radionuclides from spent fuel placed in a geologic repository could be released to the biosphere. To help provide a source term for performance assessment calculations, dissolution studies on spent fuel and unirradiated uranium oxides have been conducted over the past few years at Pacific Northwest National Laboratory (PNNL) in support of the Yucca Mountain Site Characterization Project. This report describes work for fiscal years 1991 through 1994. The objectives of these studies and the associated conclusions, which were based on the limited number of tests conducted so far, are described in the following subsections

  4. Glass composition and solution speciation effects on stage III dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Pennsylvania State Univ., University Park, PA (United States); Rice, Jarret A. [Pennsylvania State Univ., University Park, PA (United States); Pantano, Carlo G. [Pennsylvania State Univ., University Park, PA (United States)

    2017-10-03

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  5. In situ monitoring of the electrochemical dissolution of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Krebsz, Melinda [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Kollender, Jan Philipp [Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria); Hassel, Achim Walter [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria)

    2017-09-15

    In the present work, which is aimed to monitor in situ the electrochemical dissolution of tungsten by using a Flow-Type Scanning Droplet Cell Microscope (FT-SDCM) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), novel results are reported. The anodic oxide growth and its dissolution on the surface of W have been monitored in situ. The results of this current study show the importance of coupling electrochemical experiments to ICP-MS. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of

  7. Glass composition and solution speciation effects on stage III dissolution

    International Nuclear Information System (INIS)

    Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.

    2017-01-01

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  8. Anodic dissolution of samarium in acetonitrile solution of acetylacetone

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Trebnikov, A.G.; Shirokij, V.L.

    2003-01-01

    Electrochemical dissolution of metal samarium in acetonitrile medium in the presence of 0.1 M tetraethylammoniumbromide and 0.9 M acetylacetone (HAA) in argon atmosphere under a voltage of 3 V was considered for studying feasibility of electrochemical synthesis of samarium β-diketonates. Using IR and mass spectrometry, thermal and elementary analyses it was ascertained that, depending on cathode and anode areas ratio, anodic dissolution of samarium can give rise to formation of complexes of bi- and trivalent samarium featuring the composition Sm 4 (AA) 8 · 3HAA, Sm(AA) 3 · HAA and Sm(AA) 3 · 4HAA [ru

  9. Waste dissolution with chemical reaction, diffusion and advection

    International Nuclear Information System (INIS)

    Chambre, P.L.; Kang, C.H.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely to the chemical reaction rate. As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. 3 refs., 2 figs

  10. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    Science.gov (United States)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an

  11. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  12. The use of commercial microwave dissolution equipment for the fast and reliable dissolution of high-fired POX and MOX samples

    International Nuclear Information System (INIS)

    Tushingham, J.; McInnes, C.; Firkin, S.

    1998-09-01

    The use of commercially available microwave dissolution equipment for the fast and reliable dissolution of high-fired plutonium dioxide (POX) and mixed oxide (MOX) samples has been evaluated for application to Safeguards Analysis. Under the auspices of the UK R and D Support Programme to the IAEA, equipment has been purchased and tested for the high-pressure microwave dissolution of POX samples fired to 1250 deg. C and MOX samples fired to 1600 deg. C, in concentrated nitric acid and hydrofluoric acid mixture. Considerable problems were encountered during development of procedures for microwave dissolution, resulting largely from sudden changes in pressure within dissolution vessels, which resulted in actuation of safety interlocks designed to prevent overpressurisation. These difficulties were alleviated by controlling the microwave power to reduce the reaction temperature and pressure, and also by introducing additional safety valves into the digestion vessels. Using microwave digestion, dissolution times for high fired POX and MOX samples were substantially reduced. Samples which required ca. 10 hours to dissolve by conventional means could be dissolved in ca. 80 minutes by microwave digestion. Whilst a similar performance in terms of plutonium recovery was achieved for some materials by microwave and conventional dissolution, for other materials microwave dissolution gave higher plutonium recoveries but with poorer precision. This suggests the possible presence of some plutonium oxide within high-fired materials which is more difficult to dissolve than the bulk, and which is perhaps dissolved to an additional but variable degree by the current microwave dissolution procedure. Microwave dissolution has been demonstrated to increase the speed of dissolution of high-fired POX and MOX materials, compared with conventional dissolution. However, the technique has not yet proved satisfactory for the complete dissolution of all high-fired materials tested because of

  13. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  14. Synthesis, characterization, kinetic and thermodynamic studies of the dissolution of ThO2 and of solid solutions Th1-xMxO2 (M = U, Pu)

    International Nuclear Information System (INIS)

    Heisbourg, G.

    2003-12-01

    The aim of this work was to understand the mechanisms of dissolution of ThO 2 and of thorium mixed oxides such as Th 1-x U x O 2 and Th 1-x Pu x O 2 in aqueous, oxygenated or inert media. Several solids have been synthesized by precipitation in oxalic medium: Th 1-x U x O 2 (x= 0.11; 0.24; 0.37; 0.53; 0.67; 0.81 and 0.91) and Th 1-x Pu x O 2 (x= 0.13; 0.32 and 0.66). They have been characterized by XRD, SEM, TEM, XPS, XAS, PIXE and EPMA. The sintering conditions of these materials have been studied and optimized in order to obtain sintered samples with a measured density very near the theoretical densities. A kinetic study of the dissolution of ThO 2 and of solid solutions Th 1-x U x O 2 has been carried out in several aqueous media (HNO 3 , HCl, H 2 SO 4 ) in terms of several parameters: protons concentration, temperature, pH, ionic strength, nature of the electrolyte solution and uranium molar ratio for the solid solutions Th 1-x U x O 2 in order to determine the kinetic laws of dissolution of the solid solutions having different compositions comparatively to ThO 2 . The leaching tests carried out in natural waters of compositions near those of the deep geologic sites considered for the storage of nuclear wastes have shown that the dissolution of the solids was bound to the complexing effect of the constitutional ions of the water considered. The leaching tests carried out on sintered samples of the same composition have led to the same normalized dissolution velocities. The thermodynamic aspect of the dissolution of the solid solutions Th 1-x U x O 2 in nitric medium has been studied at last. (O.M.)

  15. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  16. Aluminium fractionation of European volcanic soils by selective dissolution techniques

    NARCIS (Netherlands)

    Garcia-Rodeja, E.; Novoa, J.C.; Pontevedra, X.; Martinez-Cortizas, A.; Buurman, P.

    2004-01-01

    Several selective dissolution methods were used to differentiate Al forms in 12 soils formed from volcanic materials (64 andic, vitric and organic horizons) in Iceland, Azores (Portugal), Tenerife (Spain) and Italy. The soils differ in many properties because of differences in parent materials,

  17. Pilot-scale tests of HEME and HEPA dissolution process

    International Nuclear Information System (INIS)

    Qureshi, Z.H.; Strege, D.K.

    1996-01-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (BEME's) and High Efficiency Particulate Airfilters (BEPA) were performed on a 1/5th linear scale. These filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these radioactively contaminated filters will be dissolved using caustic solutions. As a result of these tests, a simple dissolution process was developed. In this process, the contaminated filter is first immersed in boiling 5% caustic solution for 24 hours and then water is sprayed on the filter. These steps break down the filter first chemically and then mechanically. The metal cage is rinsed and considered low level waste. The dissolved filter is pumpable and mixed with high level waste. Compared to earlier dissolution studies using caustic-acid-caustic solutions, the proposed method represents a 66% savings in cycle time and amount of liquid waste generated. This paper provides the details of filter mockups and results of the dissolution tests

  18. Little Reason for Being: A Case of School District Dissolution.

    Science.gov (United States)

    Ellis, Pam

    In 1980, Tonnelly Central School District became the first school district in New York State to be dissolved pursuant to Section 1505 of Education Law, marking the first use of dissolution and annexation as a means by which to address the programmatic and management problems encountered in the operation of a central school district. Problems faced…

  19. FY 2000 Saltcake Dissolution and Feed Stability Workshop

    International Nuclear Information System (INIS)

    Hunt, R.D.; McGinnis, C.P.; Weber, C.F.; Welch, T.D.; Jewett, J.R.

    2000-01-01

    The Tanks Focus Area (TFA) continues to work closely with the Office of River Protection (ORP) to better understand the chemistry involved with the retrieval, transport, and pretreatment of nuclear wastes at Hanford. Since a private contractor is currently responsible for the pretreatment and immobilization activities in this remediation effort, the TFA has concentrated on saltcake dissolution and waste transport at the request of the ORP. Researchers at Hanford have performed a series of dissolution experiments on actual saltcake samples. Staff members at Mississippi State University (MSU) continue to model the dissolution results with the Environmental Simulation Program (ESP), which is used extensively by ORP personnel. Several ways to improve the predictive capabilities of the ESP were identified. Since several transfer lines at Hanford have become plugged, TFA tasks at AEA Technologies, Florida International University (FIU), MSU, and Oak Ridge National Laboratory (ORNL) are investigating the behavior of the supernatants and slurries during transport. A combination of experimental and theoretical techniques is used to study the transport chemistry. This effort is expected to develop process control tools for waste transfer. The results from these TFA tasks were presented to ORP personnel during the FY 2000 Saltcake Dissolution and Feed Stability Workshop, which was held on May 16-17 in Richland, Washington. The minutes from this workshop are provided in this report

  20. Stability and drug dissolution evaluation of Qingkailing soft/hard ...

    African Journals Online (AJOL)

    Purpose: To carry out a post-marketing evaluation of the stability and drug dissolution of ... Stability data from long-term studies showed that within 6 months the ... However, fingerprint pattern statistical analysis showed that the soft capsule is ...

  1. Dissolution of organic solvents from painted surfaces into water

    International Nuclear Information System (INIS)

    Wren, J.C.; Jobe, D.J.; Sanipelli, G.G.; Ball, J.M.

    2000-01-01

    The presence of volatile iodine in containment buildings is one of the major safety concerns in the potential event of nuclear reactor accidents. Organic impurities in containment water, originating from various painted structural surfaces and organic materials, could have a significant impact on iodine volatility following an accident. To determine the source and magnitude of organic impurities and their effects on time-dependent iodine volatility, the dissolution for organic constituents from paints used in reactor buildings has been studied under postulated accident conditions. The studies of the organic dissolution from carbon steel coupons coated with zinc-primed vinyl, epoxy-primed polyurethane or epoxy paints over the temperature range 25-90 deg C are reported. Relatively large activation energies were measured for the release of the principal organic compounds from painted surfaces, suggesting it is the release of the solvents from the paint matrix rather than their diffusion through the solution that is the rate determining step for the dissolution mechanism. The similarities in the values of activation energies for the dissolution of different organic compounds from the paints suggest the release rate is independent of the nature of the painted surface or the type of organic being released from the surface. These two observations indicate that it may be possible to write a generalized rate expression for the release of organic compounds from painted surfaces in containment following an accident. The possible implications of these results for predicting iodine volatility in containment are also discussed. (author)

  2. Evaluation of dissolution of nonconventional phosphate fertilizers in ...

    African Journals Online (AJOL)

    Dissolution of phosphate rock (PR) depends on inherent chemical and physical properties of the rock and on external factors such as soils and plants. The objective of this study was to investigate, with a soil incubation experiment, the relationship between selected soil factors and extractable phosphorus (P) in order to ...

  3. Dissolution of basaltic glass in seawater: Mechanism and rate

    International Nuclear Information System (INIS)

    Crovisier, J.L.; Honnorez, J.; Eberhart, J.P.

    1987-01-01

    Basaltic glasses are considered as natural analogues for nuclear waste glasses. Thermodynamic computer codes used to evaluate long term behavior of both nuclear waste and basaltic glasses require the knowledge of the dissolution mechanism of the glass network. The paper presents the results of a series of experiments designed to study the structure and chemical composition of alteration layers formed on the surface of artificial tholeiitic glass altered in artificial seawater. Experiments were performed at 60 degree C, 1 bar and 350 bars in non-renewed conditions. A natural sample from Palagonia (Sicily) has been studied by electron microscopy and comparison between natural and experimental palagonitic layers is made. The behavior of dissolved silica during experiments, and both the structure and the chemical composition of the palagonitic layers, indicate that they form by precipitation of secondary minerals from solution after a total breakdown of the glassy network, i.e., congruent dissolution of the glass. Hence the dissolution equation necessary for thermodynamic modelling of basaltic glass dissolution in seawater at low temperature must be written as a simple stoichiometric process. These experiments indicate that the transformation of glass to palagonitic material is not isovolumetric. Hence it is preferable to use Fe or Ti as conservative elements for chemical budget calculations

  4. Facility for electrochemical dissolution of rejected fuel elements

    International Nuclear Information System (INIS)

    Deniskin, V.P.; Filatov, O.N.; Konovalov, E.A.; Kolesnikov, B.P.; Bukharin, A.D.

    2003-01-01

    A facility for electrochemical dissolution of rejected fuel elements with the stainless steel can and uranium of 90% enrichment is described. The start-adjustment works and trial-commercial tests of the facility are carried out. A s a result its technological parameters are determined [ru

  5. Compaction of porous rock by dissolution on discrete stylolites

    DEFF Research Database (Denmark)

    Angheluta, Luiza; Mathiesen, Joachim; Aharonov, Einat

    2012-01-01

    Compaction of sedimentary porous rock by dissolution and precipitation is a complex deformation mechanism, that is often localized on stylolites and pressure solution seams. We consider a one-dimensional model of compaction near a thin clay-rich stylolite embedded in a porous rock. Under...

  6. Dissolution and Quantification of Tantalum-Containing Compounds ...

    African Journals Online (AJOL)

    NICO

    2The South African Nuclear Energy Corporation Ltd. (Necsa), P.O. Box 582, Pretoria 0001, South Africa. Received 30 ... The success of the different dissolution methods was evaluated on percentage .... Other validation parameters9,10 such as accuracy, precision, ..... pled Plasma-Atomic Emission Spectroscopy. An Atlas of ...

  7. Dissolution of heavy metals from electrostatic precipitator (ESP) dust ...

    African Journals Online (AJOL)

    Coal based sponge iron industries in India generate considerable quantity of solid waste, 40% of which is flue dust produced from the electrostatic precipitator (ESP) connected to rotary kiln. This paper reports the dissolution of Zn, Cu, Pb, Mn and Fe from the ESP dust using three fungal species, Aspergillus niger, ...

  8. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Science.gov (United States)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  9. Aluminium dissolution for spray pulverization with nitric acid

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodrigo Vilaseca, F.; Morales Calvo, G.

    1977-01-01

    A comparative study of the nitric acid dissolution of aluminium, by immersion and spray pulverization has been carried out in laboratory scale. As a result, the optimum operation conditions to control reaction in the plant are fixed. Operation costs are also evaluated. (author) [es

  10. Enhancement of solubility and dissolution rate of atorvastatin ...

    African Journals Online (AJOL)

    Purpose: To investigate the formation of atorvastatin calcium (AC) co-crystal to improve its solubility and dissolution rate. Method: Co-crystallization of AC in equimolar ratio with isonicotinamide (INA) was carried out by slow solvent evaporation method using methanol. The solid obtained was characterized by powder x-ray ...

  11. Dissolution test of herbal medicines containing Passiflora sp.

    Directory of Open Access Journals (Sweden)

    Ane R. T. Costa

    2011-05-01

    Full Text Available The dissolution test is an essential tool to assess the quality of herbal medicines in the solid dosage form for oral use. This work aimed to evaluate the dissolution behavior of three herbal medicines in the form of capsules and tablet containing Passiflora, produced with powder or dried extract. Assay of total flavonoids and dissolution methods were validated and obtained results allowed the quantification of flavonoids with precision, accuracy and selectivity. The percentage of total flavonoids found was 2% for capsule A (containing only powder, 0.97% for capsule B (containing only dried extract and 5.5% for tablet. Although the content was lower, the release of flavonoids present in the capsule containing dried extract was 12% higher over 30 min, with dissolved percentage values of 87 and 75, for the capsules containing extract and powder, respectively. The tablet containing dried extract presented dissolution of 76%, despite the higher content of flavonoids, which may be due to pharmacotechnical problems. Obtained data demonstrated the need to implement these tests in the quality control of herbal medicines, confirming the release of the active ingredients that underlie the pharmacological action of these medicines.

  12. Oxidative dissolution of ADOPT compared to standard UO2 fuel

    International Nuclear Information System (INIS)

    Nilsson, Kristina; Roth, Olivia; Jonsson, Mats

    2017-01-01

    In this work we have studied oxidative dissolution of pure UO 2 and ADOPT (UO 2 doped with Al and Cr) pellets using H 2 O 2 and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO 2 and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO 2 pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO 2. This could be attributed to differences in exposed surface area. However, fission products with low UO 2 solubility display a higher relative release from ADOPT fuel compared to standard UO 2 -fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO 2 which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO 2 fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  13. Enhancement of solubility and dissolution rate of atorvastatin ...

    African Journals Online (AJOL)

    solvent evaporation method using methanol. ... crystal significantly increases in solubility with a dissolution rate 2 - 3 times faster than that of ... considered one of the most effective synthetic .... temperature of 37 ± 0.5 °C. The test was carried.

  14. Peroxide formation and kinetics of sodium dissolution in alcohols

    International Nuclear Information System (INIS)

    Muralidaran, P.; Chandran, K.; Ganesan, V.; Periaswami, G.

    1997-01-01

    Suitable techniques for sodium removal and decontamination of sodium wetted components of Liquid Metal Fast Reactors (LMFRs) are necessary both for repair, reuse and decommissioning of such components. Among the methods followed for sodium removal, alcohol dissolution is usually employed for small components like bellow sealed valves, gripping tools to handle core components and sodium sampling devices (primary and secondary). One of the concerns in the alcohol dissolution method is the possible role of peroxide formation in the ethoxy group during storage and handling leading to explosion. This paper describes the study of peroxide formation in ethyl carbitol and butyl cellosolve as well as some of the results of dissolution kinetic studies carried out in our laboratory using different alcohols. The peroxide formation of ethyl carbitol and butyl cellosolve were studied by iodometric technique. It has been found that the peroxide formation is less in sodium containing alcohol than in pure one. Ethyl carbitol, butyl cellosolve and Jaysol-SS (mixture of ethyl alcohol, methyl alcohol, isopropyl alcohol and methyl isobutyl ketone) were used in dissolution kinetics studies. The effects due to area and orientation of the fresh sodium surface have also been investigated. The reaction rates were studied in the temperature range of 303-343 K. The rate of dissolution was estimated by measuring the sodium content of alcohol at periodic intervals. It is found that the reaction rate varies in the order of ethyl alcohol-water mixture > Jaysol-SS > butyl cellosolve > ethyl carbitol. While cleaning sodium using alcohol, the concentration of alcohol is held essentially constant throughout the process. The rate of reaction depends only on the amount of sodium and follows pseudo-first order kinetics. Increase in surface area has a marked impact on the dissolution rate at lower temperatures while at higher temperatures, the temperature factor overrides the effect due to surface area

  15. The Influence of Milling on the Dissolution Performance of Simvastatin

    Directory of Open Access Journals (Sweden)

    Thomas Rades

    2010-12-01

    Full Text Available Particle size reduction is a simple means to enhance the dissolution rate of poorly water soluble BCS-class II and IV drugs. However, the major drawback of this process is the possible introduction of process induced disorder. Drugs with different molecular arrangements may exhibit altered properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors, as well as factor interactions in a dry ball milling process using simvastatin as model drug, and to optimize the milling procedure with regard to the opposing responses particle size and process induced disorder by application of a central composite face centered design. Particle size was assessed by scanning electron microscopy (SEM and image analysis. Process induced disorder was determined by partial least squares (PLS regression modeling of respective X-ray powder diffractograms (XRPD and Raman spectra. Valid and significant quadratic models were built. The investigated milling factors were milling frequency, milling time and ball quantity at a set drug load, out of which milling frequency was found to be the most important factor for particle size as well as process induced disorder. Milling frequency and milling time exhibited an interaction effect on the responses. The optimum milling settings using the maximum number of milling balls (60 balls with 4 mm diameter was determined to be at a milling frequency of 21 Hz and a milling time of 36 min with a resulting primary particle size of 1.4 μm and a process induced disorder of 6.1% (assessed by Raman spectroscopy and 8.4% (assessed by XRPD, at a set optimization limit of < 2 μm for particle size and < 10% for process induced disorder. This optimum was tested experimentally and the process induced disorder

  16. Dissolution of Si in Molten Al with Gas Injection

    Science.gov (United States)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which

  17. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the

  18. Fundamental data: Solubility of nickel and oxygen and diffusivity of iron and oxygen in molten LBE

    International Nuclear Information System (INIS)

    Abella, J.; Verdaguer, A.; Colominas, S.; Ginestar, K.; Martinelli, L.

    2011-01-01

    Experiments for determining nickel solubility limit and iron diffusion coefficient are presented and their results are discussed. Nickel solubility limit is determined by two methods: ex situ by solid sampling followed by ICP-AES analysis and in situ by Laser Induced Breakdown Spectroscopy and their results are compared. The iron diffusion coefficient is obtained using the technique of rotating specimen dissolution. Also a method to determine the oxygen solubility and diffusivity in LBE is developed and results at 460, 500 and 540 deg. C are presented. It is based on the following electrochemical cell: O 2 (reference mixture), Pt //YSZ//O 2 (LBE) which can work as an oxygen sensor or as a coulometric pump.

  19. Measurement of soluble nuclide dissolution rates from spent fuel

    International Nuclear Information System (INIS)

    Wilson, C.N.; Gray, W.J.

    1990-01-01

    Gaining a better understanding of the potential release behavior of water-soluble radionuclides is the focus of new laboratory spent fuel dissolution studies being planned in support of the Yucca Mountain Project. Previous studies have suggested that maximum release rates for actinide nuclides, which account for most of the long-term radioactivity in spent fuel, should be solubility-limited and should not depend on the characteristics or durability of the spent fuel waste form. Maximum actinide concentrations should be sufficiently low to meet the NRC (Nuclear Regulatory Commission) annual release limits. Potential release rates for soluble nuclides such as 99 Tc, 135 Cs, 14 C and 129 I, which account for about 1-2% of the activity in spent fuel at 1,000 years, are less certain and may depend on processes such as oxidation of the fuel in the repository air environment. Dissolution rates for several soluble nuclides have been measured from spent fuel specimens using static and semi-static methods. However, such tests do not provide a direct measurement of fuel matrix dissolution rates that may ultimately control soluble-nuclide release rates. Flow-through tests are being developed as a potential supplemental method for determining the matrix component of soluble-nuclide dissolution. Advantages and disadvantages of both semi-static and flow-through methods are discussed. Tests with fuel specimens representing a range of potential fuel states that may occur in the repository, including oxidized fuel, are proposed. Preliminary results from flow-through tests with unirradiated UO 2 suggesting that matrix dissolution rates are very sensitive to water composition are also presented

  20. Test Objectives for the Saltcake Dissolution Retrieval Demonstration

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    This document describes the objectives the Saltcake Dissolution Retrieval Demonstration. The near term strategy for single-shell tank waste retrieval activities has shifted from focusing on maximizing the number of tanks entered for retrieval (regardless of waste volume or content) to a focus on scheduling the retrieval of wastes from those single-shell tanks with a high volume of contaminants of concern. These contaminants are defined as mobile, long-lived radionuclides that have a potential of reaching the groundwater and the Columbia River. This strategy also focuses on the performance of key retrieval technology demonstrations, including the Saltcake Dissolution Retrieval Demonstration, in a variety of waste forms and tank farm locations to establish a technical basis for future work. The work scope will also focus on the performance of risk assessment, retrieval performance evaluations (RPE) and incorporating vadose zone characterization data on a tank-by-tank basis, and on updating tank farm closure/post closure work plans. The deployment of a retrieval technology other than Past-Practice Sluicing (PPS) allows determination of limits of technical capabilities, as well as, providing a solid planning basis for future SST retrievals. This saltcake dissolution technology deployment test will determine if saltcake dissolution is a viable retrieval option for SST retrieval. CH2M Hill Hanford Group (CHG) recognizes the SST retrieval mission is key to the success of the River Protection Project (RPP) and the overall completion of the Hanford Site cleanup. The objectives outlined in this document will be incorporated into and used to develop the test and evaluation plan for saltcake dissolution retrievals. The test and evaluation plan will be developed in fiscal year 2001

  1. Solvents effects on crystallinity and dissolution of β-artemether.

    Science.gov (United States)

    Xu, Jianghui; Singh, Vikramjeet; Yin, Xianzhen; Singh, Parbeen; Wu, Li; Xu, Xiaonan; Guo, Tao; Sun, Lixin; Gui, Shuangying; Zhang, Jiwen

    2017-03-01

    β-artemether (ARM) is a widely used anti-malarial drug isolated from the Chinese antimalarial plant, Artemisia annua. The solvent effects on crystal habits and dissolution of ARM were thoroughly investigated and discussed herein. The ARM was recrystallized in nine different solvents of varied polarity, namely, methanol, ethanol, isopropanol, tetrahydrofuran, dichloromethane, trichloromethane, ethyl acetate, acetone and hexane by solvent evaporation method. The obtained crystals were morphologically characterized using scanning electron microscope (SEM). The average sizes of crystals were 1.80-2.64 μm calculated from microscopic images using Image-Pro software. No significant change in chemical structure was noticed after recrystallization and the specific band at 875 cm -1 wavenumber (C-O-O-C) confirmed the presence of most sensitive functional group in the ARM chemical structure. The existence and production of two polymorphic forms, polymorph A and polymorph B, was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The data suggested that the fabrication of polymorph B can be simply obtained from the recrystallization of ARM in a specific solvent. Significant effects of solvent polarity, crystals shapes and sizes on drug dissolution were noticed during in vitro dissolution test. The release kinetics were calculated and well fitted by the Higuchi and Hixon-Crowell models. The ARM-methanol and ARM-hexane showed highest and slowest dissolution, respectively, due to the effects of solvent polarity and crystal morphologies. Overall, proper selection of the solvents for the final crystallization of ARM helps to optimize dissolution and bioavailability for a better delivery of anti-malarial drug.

  2. Thermodynamic and structural models compared with the initial dissolution rates of open-quotes SONclose quotes glass samples

    International Nuclear Information System (INIS)

    Tovena, I.; Advocat, T.; Ghaleb, D.; Vernaz, E.; Larche, F.

    1994-01-01

    The experimentally determined initial dissolution rate R 0 of nuclear glass was correlated with thermodynamic parameters and structural parameters. The initial corrosion rates of six open-quotes R7T7close quotes glass samples measured at 100 degrees C in a Soxhlet device were correlated with the glass free hydration energy and the glass formation enthalpy. These correlations were then tested with a group of 26 SON glasses selected for their wide diversity of compositions. The thermodynamic models provided a satisfactory approximation of the initial dissolution rate determined under Soxhlet conditions for SON glass samples that include up to 15 wt% of boron and some alumina. Conversely, these models are inaccurate if the boron concentration exceeds 15 wt% and the glass contains no alumina. Possible correlations between R 0 and structural parameters, such as the boron coordination number and the number of nonbridging oxygen atoms, were also investigated. The authors show that R 0 varies inversely with the number of 4-coordinate boron atoms; conversely, the results do not substantiate published reports of a correlation between R 0 and the number of nonbridging oxygen atoms

  3. Biorelevant characterisation of amorphous furosemide salt exhibits conversion to a furosemide hydrate during dissolution

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Gordon, Sarah; Pajander, Jari Pekka

    2013-01-01

    , as well as of crystalline furosemide salt and acid showed a higher rate of dissolution of the salt forms in comparison with the two acid forms. The measured dissolution rates of the four furosemide forms from the UV imaging system and from eluted effluent samples were consistent with dissolution rates...... obtained from micro dissolution experiments. Partial least squares-discriminant analysis of Raman spectra of the amorphous acid form during flow through dissolution showed that the amorphous acid exhibited a fast conversion to the crystalline acid. Flow through dissolution coupled with Raman spectroscopy...... showed a conversion of the amorphous furosemide salt to a more stable polymorph. It was found by thermogravimetric analysis and hot stage microscopy that the salt forms of furosemide converted to a trihydrate during dissolution. It can be concluded that during biorelevant dissolution, the amorphous...

  4. Carbonate mineral dissolution kinetics in high pressure experiments

    Science.gov (United States)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  5. Groundwater flow and potential effects on evaporite dissolution in the Paradox Basin, SE Utah

    Science.gov (United States)

    Reitman, N.; Ge, S.; Mueller, K. J.

    2012-12-01

    A hydrogeologic study was conducted in the portion of the Paradox Basin south of the Needles District of Canyonlands National Park, Utah. Geology of the study area comprises fractured and faulted Paleozoic sandstone, limestone, and shale, which are underlain by evaporite cycles of the Paradox Formation. The evaporite deposits deform and dissolve when they come in contact with groundwater, generating land subsidence, saline groundwater, and salt input to the Colorado River. Active faults in the region slip at a rate of approximately 2 mm/year, likely due to evaporite dissolution. The objective of this study is to better understand groundwater flow and solute transport dynamics and to help determine the rate and timing of subsurface salt dissolution, which is an important control on the salt tectonics in the region. Study methods include hydrologic fieldwork, laboratory tests, and numerical modeling. No groundwater wells exist in the study area. Water samples from springs and seeps were collected throughout the study area. Analysis of total dissolved solids (TDS), stable oxygen (δ18O) and deuterium (δD) isotopes, spring and seep locations, and prior data are used to gain a preliminary understanding of the shallow groundwater flow in the region. Stable isotope ratios of oxygen (18O/16O) and deuterium (D/H) are used to constrain the source of spring water. Measured δ values are compared to predicted δ values for precipitation from WaterIsotopes.org for each sample site. Measured isotopic values range from -14.9 ‰ to -10.7 ‰ for δ18O and -108 ‰ to -78 ‰ for δD. The majority of samples from above 2000 m match predicted isotopic values for precipitation. Most samples taken below 2000 m are lighter than predicted isotopic values for precipitation. The TDS of spring samples measured in the lab show they range from 184 mg/L to 1552 mg/L with the majority of samples between 220 - 430 mg/L. TDS shows a weak correlation (R2 = 0.54) with altitude, where lower TDS

  6. Dissolution and Protection of Aluminium Oxide in Corrosive Aqueous Media - An Ellipsometry and Reflectometry Study

    NARCIS (Netherlands)

    Karlsson, P.M.; Postmus, B.R.; Palmqvist, A.E.C.

    2009-01-01

    Dissolution of alumina has been studied from wafers in aqueous solution by means of ellipsometry and reflectometry. It was discovered that the dissolution of aluminium oxide is promoted by ethanol amines like N,N-bis(2-hydroxyethyl)glycine and triethanolamine, and that this dissolution is retarded

  7. 15 CFR 295.23 - Dissolution of joint research and development ventures.

    Science.gov (United States)

    2010-01-01

    ... Development Ventures § 295.23 Dissolution of joint research and development ventures. Upon dissolution of any joint research and development venture receiving funds under these procedures or at a time otherwise... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Dissolution of joint research and...

  8. Surface properties, solubility and dissolution kinetics of bamboo phytoliths

    Science.gov (United States)

    Fraysse, Fabrice; Pokrovsky, Oleg S.; Schott, Jacques; Meunier, Jean-Dominique

    2006-04-01

    Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of "soil" phytoliths ( pKsp0=2.74 at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction (ΔHr25-80°C=10.85kJ/mol) is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pH IEP = 1.2 ± 0.1 and 2.5 ± 0.2 for "soil" (native) and "heated" (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-p K surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ⩽ pH ⩽ 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation: R=k1·{>SiOH2+}n+k2·{>SiOH0}+k3·{>SiO-}m, where {> i} stands for the concentration of the surface species present at the SiO 2-H 2O interface, ki are the rate constants of the three parallel reactions and n and m represent the order of the proton- and hydroxy-promoted reactions, respectively. It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ˜ 3. This can explain their good preservation in the acidic soil horizons of Réunion Island. In terms of silicon biogeochemical cycle, phytoliths represent a large buffering reservoir

  9. Biogeochemistry: Oxygen burrowed away

    NARCIS (Netherlands)

    Meysman, F.J.R.

    2014-01-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  10. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  11. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    Science.gov (United States)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this

  12. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.

    Science.gov (United States)

    Pattnaik, Satyanarayan; Pathak, Kamla

    2017-01-01

    Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Thorium oxide dissolution kinetics for hydroxide and carbonate complexation

    International Nuclear Information System (INIS)

    Jardin, R.; Curran, V.; Czerwinski, K.R.

    2002-01-01

    The purpose of this project was to determine the kinetics and thermodynamics of thorium oxide dissolution in the environment. Solubility is important because it establishes an upper concentration limit on the concentration of a dissolved radionuclide in solution L1. While understanding the behavior of thorium fuels in the proposed repository at Yucca Mountain is most applicable, a more rigorous study of thorium solubility over a wide pH range was performed so that the data could also be used to model the behavior of thorium fuels in any environmental system. To achieve this, the kinetics and thermodynamics of thorium oxide dissolution under both pure argon and argon with P CO2 of 0. 1 were studied under the full pH range available in each atmosphere. In addition, thorium oxide powder remnants were studied after each experiment to examine structural changes that may affect kinetics

  14. Economic incentives for additional critical experimentation applicable to fuel dissolution

    International Nuclear Information System (INIS)

    Mincey, J.F.; Primm, R.T. III; Waltz, W.R.

    1981-01-01

    Fuel dissolution operations involving soluble absorbers for criticality control are among the most difficult to establish economical subcritical limits. The paucity of applicable experimental data can significantly hinder a precise determination of a bias in the method chosen for calculation of the required soluble absorber concentration. Resorting to overly conservative bias estimates can result in excessive concentrations of soluble absorbers. Such conservatism can be costly, especially if soluble absorbers are used in a throw-away fashion. An economic scoping study is presented which demonstrates that additional critical experimentation will likely lead to reductions in the soluble absorber (i.e., gadolinium) purchase costs for dissolution operations. The results indicate that anticipated savings maybe more than enough to pay for the experimental costs

  15. Characterization of spent fuel hulls and dissolution residues

    International Nuclear Information System (INIS)

    Gue, J.P.; Andriessen, H.

    1985-04-01

    The main results obtained within the framework of CEC programmes, by KFK, UKAEA and CEA, are reviewed concerning the characterization of dissolution wastes. The contents were determined of the main radioactive emitters contained in the hulls originating in a whole fuel assembly sampled at the La Hague plant, or from Dounreay PFR fuels. Radiochemical characterizations were carried out by different methods including neutron emission measurement, alpha and beta-gamma spectrometry, and mass spectrometry. Decontamination of the hulls by using rinsings and supplementary treatment were also dealt with. The ignition and explosion risks associated with the zircaloy fines formed during the shearing of LWR fuels were examined, and the ignition properties of irradiated and unirradiated zircaloy powders were determined and compared. The physical properties and compositions of the dissolution residues of PFR fuels were defined, in order to conduct tests on the immobilization of these wastes in cement

  16. Simfuel dissolution studies in granitic groundwater leaching experiments at VTT

    International Nuclear Information System (INIS)

    Ollila, K.

    1992-12-01

    The dissolution behaviour of an irradiated analogue of spent nuclear fuel, SIMFUEL, was studied in synthetic granitic groundwater. The release of uranium and the minor components was monitored during static (bach) leaching experiments in oxic and anoxic (N 2 ) atmosphere at 25 deg C. Molybdenum, ruthenium, barium and zirconium showed a trend to congruent dissolution behaviour with UO 2 matrix towards the end of the experimental time (540 days) under anoxic conditions. Under oxic conditions, molybdenum and strontium had higher release rates relative to the matrix (the exp. time of 220 days). The presence of particulate material in the leachates in anoxic atmosphere was shown by SEM/EDX and XRD analyses. The material retained on membrane after filtration consisted of Ca-rich and U-rich particles in addition to finely divided material. Calcite (CaCO 3 ) and uranium oxide were identified. (orig.)

  17. Kinetics of dissolution of magnetite in PDCA based formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Prince, A.A.M.; Raghavan, P.S.; Gopalan, R. [Madras Christian Coll., Tambaram (India); Srinivasan, M.P.; Narasimhan, S.V.

    1997-08-01

    Magnetite is one of the important corrosion products of pressurized heavy water reactors (PHWRs) where carbon steel is the dominant surface in the primary heat transport system. Designing of formulations capable of dissolving magnetite is important for effective decontamination of such surfaces. The rate of dissolution of synthetically prepared magnetite was studied in low concentrations of PDCA containing acidic formulations. The effect of addition of ascorbic acid, citric acid, Fe{sup 2+}-PDCA complex on the rate was also studied. The effects of pH and the temperature on the dissolution rate were determined. The PDCA as a complexant has some positive factors like low protonation constant and enhanced stability to radiation. (author)

  18. The influence of milling on the dissolution performance of simvastatin

    DEFF Research Database (Denmark)

    Zimper, Ulrike; Aaltonen, Jaakko; Krauel-Goellner, Karen

    2012-01-01

    properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors......, as well as factor interactions in a dry ball milling process using simvastatin as model drug, and to optimize the milling procedure with regard to the opposing responses particle size and process induced disorder by application of a central composite face centered design. Particle size was assessed...... by scanning electron microscopy (SEM) and image analysis. Process induced disorder was determined by partial least squares (PLS) regression modeling of respective X-ray powder diffractograms (XRPD) and Raman spectra. Valid and significant quadratic models were built. The investigated milling factors were...

  19. Comparative evaluation of methods to quantify dissolution of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna B.; Kruse, Susanne; Baun, Anders

    2015-01-01

    Effects and behaviour of nanomaterials in the environment depends on the materials' specific physical and chemical properties and for certain nanomaterials (e.g., Ag, ZnO and CuO) aqueous solubility is of outmost importance. The solubility of metals salts is normally described as a maximum...... dissolved concentration or by the solubility constant (Ksp). For nanomaterials it is essential to also assess solubility kinetics as nanomaterials will often not dissolve instantaneously upon contact with artificial aqueous media or natural waters. Dissolution kinetics will thereby influence their short...... and long-term environmental fate as well as laboratory test results. This highlights the need to evaluate and improve the reliability of methods applied to assess the solubility kinetics of nanomaterials. Based on existing OECD guidelines and guidance documents on aqueous dissolution of metals and metal...

  20. HB-Line Dissolution of Glovebox Floor Sweepings

    International Nuclear Information System (INIS)

    Gray, J.H.

    1998-02-01

    Two candidate flowsheets for dissolving glovebox floor sweepings in the HB-Line Phase I geometrically favorable dissolver have been developed.Dissolving conditions tested and modified during the laboratory program were based on the current processing scheme for dissolving high-fired Pu-238 oxide in HB-Line. Subsequent adjustments made to the HB-Line flowsheet reflected differences in the dissolution behavior between high-fired Pu-238 oxide and the MgO sand/PuF 4 /PuO 2 mixture in glovebox floor sweepings. Although both candidate flowsheets involved two separate dissolving steps and resulted incomplete dissolution of all solids, the one selected for use in HB-Line will require fewer processing operations and resembles the initial flowsheet proposed for dissolving sand, slag, and crucible material in F-Canyon dissolvers. Complete dissolution of glovebox floor sweepings was accomplished in the laboratory by initially dissolving between 55 and 65 degree in a 14 molar nitric acid solution. Under these conditions, partial dissolution of PuF 4 and complete dissolution of PuO 2 and MgO sand were achieved in less than one hour. The presence of free fluoride in solution,uncomplexed by aluminum, was necessary for complete dissolution of the PuO 2 .The remaining PuF 4 dissolved following addition of aluminum nitrate nonahydrate (ANN) to complex the fluoride and heating between 75 and 85 degree C for an additional hour. Precipitation of magnesium and/or aluminum nitrates could occur before, during, and after transfer of product solutions. Both dilution and/or product solution temperature controls may be necessary to prevent precipitation of these salts. Corrosion of the dissolver should not be an issue during these dissolving operations. Corrosion is minimized when dissolving at 55-65 degree C for one to three hours at a maximum uncomplexed free fluoride concentration of 0.07 molar and by dissolving at 75-85 degree C at a one to one aluminum to fluoride mole ratio for another

  1. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    DEFF Research Database (Denmark)

    Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge

    2016-01-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...... of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling...

  2. Dissolution at porous interfaces VI: Multiple pore systems.

    Science.gov (United States)

    Grijseels, H; Crommelin, D J; De Blaey, C J

    1984-12-01

    With the aid of rapidly dissolving sodium chloride particles, cubic pores were made in the surface of a theophylline tablet. The influence of the pores on the dissolution rate of the surface was investigated in a rotating disk apparatus. Like the drilled pores used in earlier studies, downstream on the surface they caused a turbulent flow regimen with the development of a trough due to enhanced erosion. The phenomenon of a critical pore diameter, discovered with single, drilled pores, seems to be applicable to the cubic pores investigated in this study, although a higher degree of surface coverage with pores caused complications, probably due to particles bordering one another and forming larger pores. The behavior of the porous surfaces at different rotation speeds was studied. Due to the presence of pores the laminar character of the boundary layer flow changes to turbulent, which induces locally an increased dissolution flux in the wake of a pore.

  3. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  4. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  5. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu

    2014-01-01

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  6. Dissolution rates of airborne uranium in simulated lung fluid

    International Nuclear Information System (INIS)

    Thein, M.; Maitz, A.H.; Austin, M.A.; Rao, G.R.; Gur, D.

    1982-01-01

    The airborne uranium, collected on three sets of air filter samples at different times, near a uranium fuel fabrication plant, was classified to assess the potential radiological and toxicological hazards of respirable particles with aerodynamic equivalent diameters of less than 15 μm. A model was developed to calculate radiation dose from radionuclides deposited in the lung by inhalation. Knowing the solubility category and dissolution half-time, the likely doses to residents near such plants can be assessed. (U.K.)

  7. A REVIEW ON SOLID DISPERSION: A DISSOLUTION ENHANCEMENT TECHNIQUE

    OpenAIRE

    Ingle U.S.; Gaikwad P.D.; Bankar V.H.; Pawar S.P.

    2011-01-01

    The enhancement of the oral bioavailability is currently one of the greatest challenges in the development of poorly water soluble drugs. To increase the dissolution and hence the bioavaibility it is important to increase the solubility of the poorly water soluble drugs. One of the possible ways to overcome this limitation is the use of solid dispersion technology. This article contains the different methods and mechanism used in the solid dispersion technology also overlooks the various carr...

  8. Dissolution of nuclear fuel samples for analytical purposes. I

    International Nuclear Information System (INIS)

    Krtil, J.

    1983-01-01

    Main attention is devoted to procedures for dissolving fuels based on uranium metal and its alloys, uranium oxides and carbides, plutonium metal, plutonium dioxide, plutonium carbides, mixed PuC-UC carbides and mixed oxides (PuU)O 2 . Data from the literature and experience gained with the dissolution of nuclear fuel samples at the Central Control Laboratory of the Nuclear Research Institute at Rez are given. (B.S.)

  9. Sex Preferences, Marital Dissolution and the Economic Status of Women

    OpenAIRE

    Bedard, Kelly; Deschenes, Olivier

    2003-01-01

    The rise in the divorce rate over the past 40 years is one of the fundamental changes in American society. A seemingly ever-increasing number of women and children spend some fraction of their life in single female-headed households, leading many to be concerned about the economic circumstances of these women their and children. Estimating the cause-to-effect relationship between marital dissolution and female economic status is complicated because the same factors that increase marital insta...

  10. Kinetics of dissolution of thorium and uranium doped britholite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Dacheux, N., E-mail: nicolas.dacheux@univ-montp2.f [Groupe de Radiochimie, Institut de Physique Nucleaire d' Orsay, Bat. 100, Universite Paris-Sud-11, 91406 Orsay (France); Institut de Chimie Separative de Marcoule, UMR 5257 (Universite Montpellier 2/CNRS/CEA/ENSCM), Bat. 426, Centre de Marcoule, BP 17171, 30207 Bagnols sur ceze cedex (France); Du Fou de Kerdaniel, E. [Groupe de Radiochimie, Institut de Physique Nucleaire d' Orsay, Bat. 100, Universite Paris-Sud-11, 91406 Orsay (France); Clavier, N. [Groupe de Radiochimie, Institut de Physique Nucleaire d' Orsay, Bat. 100, Universite Paris-Sud-11, 91406 Orsay (France); Institut de Chimie Separative de Marcoule, UMR 5257 (Universite Montpellier 2/CNRS/CEA/ENSCM), Bat. 426, Centre de Marcoule, BP 17171, 30207 Bagnols sur ceze cedex (France); Podor, R. [Institut de Chimie Separative de Marcoule, UMR 5257 (Universite Montpellier 2/CNRS/CEA/ENSCM), Bat. 426, Centre de Marcoule, BP 17171, 30207 Bagnols sur ceze cedex (France); Institut Jean Lamour - Departement CP2S - Equipe 206, Faculte des Sciences et Techniques - Nancy Universite, BP 70239, 54506 Vandoeuvre les Nancy cedex (France); Aupiais, J. [CEA DAM DIF, 91297 Arpajon (France); Szenknect, S. [Institut de Chimie Separative de Marcoule, UMR 5257 (Universite Montpellier 2/CNRS/CEA/ENSCM), Bat. 426, Centre de Marcoule, BP 17171, 30207 Bagnols sur ceze cedex (France)

    2010-09-01

    In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 x 10{sup -2} g m{sup -2} d{sup -1} to 21.6 g m{sup -2} d{sup -1}. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher R{sub L} values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.

  11. Hydrogen diffusion, dissolution and permeation of nonmetallic solids

    International Nuclear Information System (INIS)

    Elleman, T.S.; Rao, D.; Verghese, K.; Zumwalt, L.

    1979-01-01

    A review of hydrogen diffusion, dissolution and permeation in metal oxides, carbides, nitrides, halides and hydrides is presented. Results are organized by compound and an effort has been made to resolve differences between measured results where wide disparities exist. The document has been prepared to provide needed data for the development of fusion reactor blankets but the results should be generally useful in technologies that involve interactions between hydrogen and non-metals

  12. Percutaneous Dissolution of Gallstones using Methyl Tert-Butyl Ether

    OpenAIRE

    1990-01-01

    Radiolucent cholesterol gallstones can be dissolved rapidly by methyl terc-buryl ether (MTBE) introduced directly into the gallbladder. Percutaneous transhepatic catheter placement is a well established interventional radiology procedure and is the preferred route for MTBE administration. A small number of patients have been treated using nasobiliary placement of a gallbladder catheter. Rapid stirring automatic pump systems allow dissolution of most cholesterol stones, but s...

  13. Analytical applications of superacid dissolution of actinide and lanthanide substrates

    International Nuclear Information System (INIS)

    Avens, L.R.; Eller, P.G.; Asprey, L.B.; Abney, K.D.; Kinkead, S.A.

    1987-01-01

    The superacid system HF/SbF 5 is extraordinarily effective for total dissolution of actinide and lanthanide ceramic oxides, fluorides, and metals. Optical or gamma spectroscopy can be used directly on the solutions. Evaporation of the HF/SbF 5 solvent under vacuum leaves a residue which is easily dissolved by ordinary mineral acids. The resulting aqueous solutions are readily amenable to conventional analytical methods

  14. In vitro dissolution and radiation dosimetry of metal tritides

    International Nuclear Information System (INIS)

    Cheng, Y.S.; Dahl, A.R.; Jow, H.N.

    1993-01-01

    It has been completed to investigate the dissolution behavior of both titanium and erbium tritide particles in simulated biological fluids and in rats. Data from these studies will provide information to estimate the dosimetry of inhaled metal tritides. The dosimetric model can then be used as the technical basis for setting health protection limits, including the annual limit on intake and the derived air concentration for DOE facilities. (3 figs.)

  15. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  16. Aircraft Oxygen Generation

    Science.gov (United States)

    2012-02-01

    An Oxygen Enriched Air System for the AV-8A Harrier (NADC-81198-60).” 70 Horch , T., et. al. “The F-16 Onboard Oxygen Generating System: Performance...Only and Safety Privileged). Horch , T., Miller, R., Bomar, J., Tedor, J., Holden, R., Ikels, K., & Lozano, P. (1983). The F-16 Onboard Oxygen

  17. Numerical modeling of hypolimnetic oxygenation by electrolysis of water

    Directory of Open Access Journals (Sweden)

    Jaćimović Nenad M.

    2017-01-01

    Full Text Available The paper presents a novel method for hypolimnetic oxygenation by electrolysis of water. The performance of the method is investigated by the laboratory and the field experiment. The laboratory experiment is conducted in a 90 L vessel, while the field experiment is conducted at the lake Biwa in Japan. In order to provide a better insight into involved processes, a numerical model for simulation of bubble flow is developed with consideration of gas compressibility and oxygen dissolution. The model simultaneously solves 3-D volume averaged two-fluid governing equations. Developed model is firstly verified by simulation of bubble flow experiments, reported in the literature, where good qualitative agreement between measured and simulated results is observed. In the second part, the model is applied for simulation of conducted water electrolysis experiments. The model reproduced the observed oxygen concentration dynamics reasonably well. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 37009

  18. Development and validation of a dissolution test for diltiazem hydrochloride in immediate release capsules

    Directory of Open Access Journals (Sweden)

    Taciane Ferreira Mendonça

    2011-01-01

    Full Text Available This work describes the development and validation of a dissolution test for 60 mg of diltiazem hydrochloride in immediate release capsules. The best dissolution in vitro profile was achieved using potassium phosphate buffer at pH 6.8 as the dissolution medium and paddle as the apparatus at 50 rpm. The drug concentrations in the dissolution media were determined by UV spectrophotometry and HPLC and a statistical analysis revealed that there were significant differences between HPLC and spectrophotometry. This study illustrates the importance of an official method for the dissolution test, since there is no official monograph for diltiazem hydrochloride in capsules.

  19. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    Science.gov (United States)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  20. Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide

    International Nuclear Information System (INIS)

    Danilova, M.G.; Sveshnikova, L.L.; Stavitskaya, T.A.; Repinskij, S.M.

    1991-01-01

    Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide was investigated. Dependences of change of PbTe dissolution rate on concentration of hydrogen peroxide and alkali in the solution were obtained. It is shown that dissolution rate of lead telluride is affected by dissolution rate of lead oxide, representing the product of ReTe dissolution. The obtained regularities can be explained by change of solution structure with increase of KOH concentration and by the state of hydrogen peroxide in the solution

  1. Transfer of drug dissolution testing by statistical approaches: Case study

    Science.gov (United States)

    AL-Kamarany, Mohammed Amood; EL Karbane, Miloud; Ridouan, Khadija; Alanazi, Fars K.; Hubert, Philippe; Cherrah, Yahia; Bouklouze, Abdelaziz

    2011-01-01

    The analytical transfer is a complete process that consists in transferring an analytical procedure from a sending laboratory to a receiving laboratory. After having experimentally demonstrated that also masters the procedure in order to avoid problems in the future. Method of transfers is now commonplace during the life cycle of analytical method in the pharmaceutical industry. No official guideline exists for a transfer methodology in pharmaceutical analysis and the regulatory word of transfer is more ambiguous than for validation. Therefore, in this study, Gauge repeatability and reproducibility (R&R) studies associated with other multivariate statistics appropriates were successfully applied for the transfer of the dissolution test of diclofenac sodium as a case study from a sending laboratory A (accredited laboratory) to a receiving laboratory B. The HPLC method for the determination of the percent release of diclofenac sodium in solid pharmaceutical forms (one is the discovered product and another generic) was validated using accuracy profile (total error) in the sender laboratory A. The results showed that the receiver laboratory B masters the test dissolution process, using the same HPLC analytical procedure developed in laboratory A. In conclusion, if the sender used the total error to validate its analytical method, dissolution test can be successfully transferred without mastering the analytical method validation by receiving laboratory B and the pharmaceutical analysis method state should be maintained to ensure the same reliable results in the receiving laboratory. PMID:24109204

  2. Plant-scale anodic dissolution of unirradiated IFR fuel pins

    International Nuclear Information System (INIS)

    Gay, E.C.; Tomczuk, Z.; Miller, W.E.

    1993-01-01

    This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500 degrees C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated

  3. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    Science.gov (United States)

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations.

  4. Attenuation of glass dissolution in the presence of natural additives

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing C.; Barkatt, Aaron [Department of Chemistry, The Catholic University of America, Washington, DC (United States); O`Keefe, John A. [National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-11-01

    The dissolution kinetics of silicate glasses in aqueous environments in systems which included a variety of natural crystalline solids in addition to the glass itself and the aqueous phase are reported. The results demonstrate the possibility of a dramatic decrease in the rate of dissolution of silicate glass in the presence of certain varieties of olivine-based materials. This decrease in dissolution rate was shown to be due to the fact that these additives consist mostly of Mg-based material but also contain minor amounts of Al and Ca. The combined presence of Mg with these minor species affected the corrosion rate of the glass as a whole, including its most soluble components such as boron. This study has potentially important implications to the durability of glasses exposed to natural environments. The results may be relevant to the use of active backfill materials in burial sites for nuclear waste glasses, as well as to better understanding of the environmental degradation of natural and ancient glasses.

  5. Dissolution-Enlarged Fractures Imaging Using Electrical Resistivity Tomography (ERT)

    Science.gov (United States)

    Siami-Irdemoosa, Elnaz

    In recent years the electrical imaging techniques have been largely applied to geotechnical and environmental investigations. These techniques have proven to be the best geophysical methods for site investigations in karst terrain, particularly when the overburden soil is clay-dominated. Karst is terrain with a special landscape and distinctive hydrological system developed by dissolution of rocks, particularly carbonate rocks such as limestone and dolomite, made by enlarging fractures into underground conduits that can enlarge into caverns, and in some cases collapse to form sinkholes. Bedding planes, joints, and faults are the principal structural guides for underground flow and dissolution in almost all karstified rocks. Despite the important role of fractures in karst development, the geometry of dissolution-enlarged fractures remain poorly unknown. These features are characterized by an strong contrast with the surrounding formations in terms of physical properties, such as electrical resistivity. Electrical resistivity tomography (ERT) was used as the primary geophysical tool to image the subsurface in a karst terrain in Greene County, Missouri. Pattern, orientation and density of the joint sets were interpreted from ERT data in the investigation site. The Multi-channel Analysis of Surface Wave (MASW) method and coring were employed to validate the interpretation results. Two sets of orthogonal visually prominent joints have been identified in the investigation site: north-south trending joint sets and west-east trending joint sets. However, most of the visually prominent joint sets are associated with either cultural features that concentrate runoff, natural surface drainage features or natural surface drainage.

  6. Thermokinetic model of borosilicate glass dissolution: Contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1990-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Hegelson: v = k + · S · a( H + ) -n · (1 - e -(A/RT) ). It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. The authors prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites

  7. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and geothite

    DEFF Research Database (Denmark)

    Larsen, O.; Postma, Diederik Jan

    2001-01-01

    of the reduction experiments, lepidocrocite crystals were subsampled and the change in crystal habit and size distribution was studied by transmission electron microscopy. The rate of complete dissolution was described by the function J/m0 5 k9(m/m0)g where J is the overall rate of dissolution (mol/s), m0...... for lepidocrocite showed strong etch-pitting of the crystals parallel to the c-axis resulting ultimately in disintegration of the crystals. For the different iron oxides, the initial rate was independent of the specific surface area, emphasizing the importance of the crystal structure for the dissolution rate....... However, among the lepidocrocites the initial rate was proportional to the specific surface area. The exponent, g was found to vary from a value near 1.0 for one of the 2-line ferrihydrites, two of the lepidocrocites and the goethite, to values close to 2.3 for the other 2-line ferrihydrite and the 6-line...

  8. Thermokinetic model of borosilicate glass dissolution: contextual affinity

    International Nuclear Information System (INIS)

    Advocat, T.; Vernaz, E.; Crovisier, J.L.; Fritz, B.

    1989-01-01

    Short and long-term geochemical interactions of R7T7 nuclear glass with water at 100 0 C were simulated with the DISSOL thermokinetic computer code. Both the dissolved glass quantity and the resulting water composition, saturation states and mineral quantities produced were calculated as a function of time. The rate equation used in the simulation was first proposed by Aagaard and Helgeson. It simulates a gradually diminishing dissolution rate as the reaction affinity diminishes. The best agreement with 1-year experimental data was obtained with a reaction affinity calculated from silica activity (Grambow's hypothesis) rather than taking into account the activity of all the glass components as proposed by Jantzen and Plodinec. The concept of residual affinity was introduced by Grambow to express the fact that the glass dissolution rate does not cease. We prefer to replace the term residual affinity by contextual affinity, which expresses the influence on the dissolution rate of three factors: the solution chemistry, the metastability of SiO 2 (m), and the possible precipitation of certain aluminosilicates such as zeolites. 19 refs

  9. Dissolution kinetics of B clusters in crystalline Si

    International Nuclear Information System (INIS)

    De Salvador, D.; Napolitani, E.; Bisognin, G.; Carnera, A.; Bruno, E.; Mirabella, S.; Impellizzeri, G.; Priolo, F.

    2005-01-01

    Boron (B) clustering in crystalline Si induced by interaction with Si self-interstitials is a widely studied phenomenon of fundamental importance for Si micro- and nano-electronic technology. The requested B activation increase brings the B concentration to a very high level and a detailed understanding of B clustering at high concentration is demanded. In the present work we present some recent results regarding the B clustering process starting from B concentration both below and above the B solubility limit. We show that B clusters, produced by self-interstitial interaction with substitutional B in crystalline Si, dissolve under annealing according to two distinct paths with very different characteristic times. The two regimes generally coexist, but while the faster dissolution path is predominant for clusters formed at low B concentration (1 x 10 19 B/cm 3 ), the slower one is characteristic of clusters formed above the solubility limit and dominates the dissolution process at high B concentration (2 x 10 2 B/cm 3 ). The activation energies of both processes are characterized and discussed. It is shown that the faster path can be connected to a direct emission of mobile B from small clusters, while the slower path is demonstrated not to be self-interstitial limited and it is probably related to a more complex cluster dissolution process

  10. Antibacterial effects and dissolution behavior of six bioactive glasses.

    Science.gov (United States)

    Zhang, Di; Leppäranta, Outi; Munukka, Eveliina; Ylänen, Heimo; Viljanen, Matti K; Eerola, Erkki; Hupa, Mikko; Hupa, Leena

    2010-05-01

    Dissolution behavior of six bioactive glasses was correlated with the antibacterial effects of the same glasses against sixteen clinically important bacterial species. Powdered glasses (<45 microm) were immersed in simulated body fluid (SBF) for 48 h. The pH in the solution inside the glass powder was measured in situ with a microelectrode. After 2, 4, 27, and 48 h, the pH and concentration of ions after removing the particles and mixing the SBF were measured with a normal glass pH electrode and ICP-OES. The bacteria were cultured in broth with the glass powder for up to 4 days, after which the viability of the bacteria was determined. The antibacterial effect of the glasses increased with increasing pH and concentration of alkali ions and thus with increased dissolution tendency of the glasses, but it also depended on the bacterium type. The changes in the concentrations of Si, Ca, Mg, P, and B ions in SBF did not show statistically significant influence on the antibacterial property. Bioactive glasses showed strong antibacterial effects for a wide selection of aerobic bacteria at a high sample concentration (100 mg/mL). The antibacterial effects increased with glass concentration and a concentration of 50 mg/mL (SA/V 185 cm(-1)) was required to generate the bactericidal effects. Understanding the dissolution mechanisms of bioactive glasses is essential when assessing their antibacterial effects. Copyright 2009 Wiley Periodicals, Inc.

  11. Dissolution-recrystallization method for high efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Luo, Junsheng; Wan, Zhongquan; Liu, Xingzhao; Jia, Chunyang, E-mail: cyjia@uestc.edu.cn

    2017-06-30

    Highlights: • Dissolution-recrystallization method can improve perovskite crystallization. • Dissolution-recrystallization method can improve TiO{sub 2}/perovskite interface. • The optimal perovskite solar cell obtains the champion PCE of 16.76%. • The optimal devices are of high reproducibility. - Abstract: In this work, a dissolution-recrystallization method (DRM) with chlorobenzene and dimethylsulfoxide treating the perovskite films during the spin-coating process is reported. This is the first time that DRM is used to control perovskite crystallization and improve the device performance. Furthermore, the DRM is good for reducing defects and grain boundaries, improving perovskite crystallization and even improving TiO{sub 2}/perovskite interface. By optimizing, the DRM2-treated perovskite solar cell (PSC) obtains the best photoelectric conversion efficiency (PCE) of 16.76% under AM 1.5 G illumination (100 mW cm{sup −2}) with enhanced J{sub sc} and V{sub oc} compared to CB-treated PSC.

  12. Dissolution of uranium oxide materials in simulated lung fluid

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Soderholm, S.C.

    1985-01-01

    Depleted uranium (DU) oxide aerosols prepared in the laboratory and collected in the field were tested to characterize their dissolution in simulated lung fluid and to determine how dissolution is affected by aerosol preparation. DU, a by-product of the uranium fuel cycle, has been selected by the US military for use in several types of munitions. During development, manufacture, testing, and use of these munitions, opportunities exist for inhalation exposure to various (usually oxide) aerosol forms of DU. The hazard potential associated with such exposures is closely related to the chemical form, the size of the DU aerosol material, and its dissolution properties. Five DU sample materials produced by exposing uranium alloy penetrators to certain controlled oxidation atmospheres were studied (oxidation temperatures ranged from 500 to 900 0 C). In addition, two DU sample materials collected in the field were provided by the US Air Force. All sample materials were generated as aerosols and the respirable fraction was separated and collected. Data suggest that under some conditions a rapidly dissolving U 3 O 8 fraction may be formed concurrent with the production of UO 2

  13. Dissolution behavior of Cu, Fe and Zn from gold sulfide concentrate during pre-oxidation using ozone in neutral media

    Science.gov (United States)

    Kurniawan, Mubarok, M. Zaki

    2018-04-01

    The aim of this work was to observe the dissolution behaviour of Cu, Fe and Zn from gold sulfide concentrate during preoxidation with ozone as the oxidant and distillation water as the media. The preoxidation experiments were carried out in five-necked reactor with variations of retention time, percent solid, particle size and oxygen dosage injected to ozone generator. The retention time was varied at 6 hours, 8 hours, 12 hours and 24 hours. The percent solid was varied at 10%, 20% and 30% while the particle size was varied at P80 -75 mesh dan P80 -20 mesh. The dosage of oxygen injection to ozone generator was varried at 1 liter per minute and 2 liter per minute. The ozone gas was produced by using ozone generator type OZ-03 and injected to the slurry by using Mazzei injector. The soluble Cu, Fe and Zn were measured by using Atomic Absorption Spectrophotometry (AAS). The concentrates were characterized by X-Ray Diffraction (XRD), mineragraphy, fire assay and Inductively Coupled Plasma (ICP). Fire assay, ICP and XRD were used to analyse the residues and froth. The solubilition of metals (Cu, Fe and Zn) was obtained through the formation of sulphate ion and H+ which decreased the pH, released a number of heat and then was continued by the formation of elemental sulphur (S°). The interaction of particles and gas yielded the formation of froth. The highest dissolution percentage of Cu, Fe and Zn was achieved through 24 hours oxidation at 20% (w/w), P80 -20 mesh and one liter per minute of oxygen injection dosage by 83.016%, 24.7303% and 91.6808%, respectively.

  14. The dissolution of chalcopyrite in chloride media; Lixiviacion de la calcopirita en medios clorurados

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, T.; Velasquez, L.

    2013-06-01

    The aim of this investigation is to determinate the effects of parameters and additives on the kinetics of dissolution of chalcopyrite on moderated conditions by means of dissolutions test with chalcopyrite concentrate and pure chalcopyrite in shake flasks and instrumented stirred reactors. A study of the dissolution of chalcopyrite in chloride solutions has demonstrated that the rate of dissolution of chalcopyrite is strongly dependent on the potential of the solution within a range of 540 to 630 mV (versus SHE). Leaching at pH around 2.5 results in increased rates of copper dissolution suggesting the possibility to keep the solution potential within the range. Both pyrite and silver ions enhance the dissolution of chalcopyrite and this effect increases when both species are present. The MnO{sub 2} has a negative effect on the dissolution increasing the solution potential to values where the rate decreases considerably. (Author)

  15. Effect of dissolution on the load–settlement behavior of shallow foundations

    KAUST Repository

    Cha, Minsu

    2016-03-10

    Mineral dissolution and solid-liquid phase change may cause settlement or affect the bearing capacity of shallow foundations. The effect of gradual grain dissolution on small-scale shallow foundation behavior is investigated using the discrete element method. Results show that dissolution is most detrimental during early stages, as initially contacting particles shrink and force chains must reform throughout the medium. Porosity tends to increase during dissolution and force chains evolve into strong localized forces with a honeycomb topology. Higher settlements are required to mobilize bearing resistance in postdissolution sediments than in pre-dissolution ones. Subsurface mineral dissolution beneath a footing under load is the worst condition; in fact, settlements in such cases are higher than when a foundation load is applied on a sediment that has already experienced dissolution. © the author(s) or their institution(s).

  16. Effect of dissolution on the load–settlement behavior of shallow foundations

    KAUST Repository

    Cha, Minsu; Santamarina, Carlos

    2016-01-01

    Mineral dissolution and solid-liquid phase change may cause settlement or affect the bearing capacity of shallow foundations. The effect of gradual grain dissolution on small-scale shallow foundation behavior is investigated using the discrete element method. Results show that dissolution is most detrimental during early stages, as initially contacting particles shrink and force chains must reform throughout the medium. Porosity tends to increase during dissolution and force chains evolve into strong localized forces with a honeycomb topology. Higher settlements are required to mobilize bearing resistance in postdissolution sediments than in pre-dissolution ones. Subsurface mineral dissolution beneath a footing under load is the worst condition; in fact, settlements in such cases are higher than when a foundation load is applied on a sediment that has already experienced dissolution. © the author(s) or their institution(s).

  17. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  18. Optimization of the dissolution of molybdenum disks. FY-16 results

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey D. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Argonne National Laboratory is providing technical development assistance to NorthStar Medical Technologies LLC in its pursuit of two pathways for production of molybdenum-99: the 98Mo(n,γ) 99Mo reaction and the photonuclear reaction, 100Mo(γ,n)99Mo. Processing of irradiated targets, from either production mode, requires dissolution of the target material in H2O2 followed by a concentration step, addition of ferric ion to precipitate impurities, and conversion of the final solution to 5M potassium hydroxide solution of potassium molybdate. Currently, NorthStar is using pressed and sintered Mo disks as targets. Several options are being considered for the design of Mo targets for the production of 99Mo using the (γ,n) reaction. In the current design, the target holder contains a series of sintered Mo disks lined up perpendicular to two incident electron beams, one entering from each side of the target stack. In this configuration, the front-most disks absorb most of the heat from the electron beam and need to be thinner to allow for better cooling, while the middle of the target can be thicker. Distribution of the total mass of Mo allows for larger masses of Mo material and thus larger production batches of 99Mo. A limitation of the sintering approach is the production of very thin disks. Recent advances in 3D printing allow for much thinner target components can be achieved than when the traditional press-and-sinter approach is used. We have demonstrated that several factors can play important roles in dissolution behavior: particle size of Mo metal used for production of targets, sintering conditions, degree of open porosity, and thickness of the sintered Mo targets. Here we report experimental results from studies of small-scale dissolution of sintered Mo disks fabricated from various recycled and commercial Mo materials, and dissolution of 3D-printed Mo disks that were

  19. Investigating dissolution of mechanically activated olivine for carbonation purposes

    International Nuclear Information System (INIS)

    Haug, Tove Anette; Kleiv, Rolf Arne; Munz, Ingrid Anne

    2010-01-01

    Research highlights: → Dissolution of mechanically activated olivine increased with 3 orders of magnitude. → Crystallinity changes of olivine is important for the observed dissolution rates. → Activation probably decreases with the degree of dissolution of each particle. - Abstract: Mineral carbonation is one of several alternatives for CO 2 sequestration and storage. The reaction rates of appropriate minerals with CO 2 , for instance olivine and serpentine with vast resources, are relatively slow in a CO 2 sequestration context and the rates have to be increased to make mineral carbonation a good storage alternative. Increasing the dissolution rate of olivine has been the focus of this paper. Olivine was milled with very high energy intensity using a laboratory planetary mill to investigate the effect of mechanical activation on the Mg extraction potential of olivine in 0.01 M HCl solution at room temperature and pressure. Approximately 30-40% of each sample was dissolved and water samples were taken at the end of each experiment. The pH change was used to calculate time series of the Mg concentrations, which also were compared to the final Mg concentrations in the water samples. Percentage dissolved and the specific reaction rates were estimated from the Mg concentration time series. The measured particle size distributions could not explain the rate constants found, but the specific surface area gave a good trend versus dissolution for samples milled wet and the samples milled with a small addition of water. The samples milled dry had the lowest measured specific surface areas ( 2 /g), but had the highest rate constants. The crystallinity calculated from X-ray diffractograms, was the material parameter with the best fit for the observed differences in the rate constants. Geochemical modelling of mechanically activated materials indicated that factors describing the changes in the material properties related to the activation must be included. The

  20. Dissolution Of 3013-DE Sample 10-16

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.

    2011-01-01

    The HB-Line Facility has a long-term mission to dissolve and disposition legacy fissile materials. HB-Line dissolves plutonium dioxide (PuO 2 ) from K-Area parting support of the 3013 Destructive Examination (DE) program. The PuO 2 -bearing solids originate from a variety of unit operations and processing facilities, but all of the material is assumed to be high-fired (i.e., calcined in air for a minimum of two hours at (ge) 750 C). The Savannah River National Laboratory (SRNL) conducted dissolution flowsheet studies on 3013 DE Sample 10-16 (can R610826), which contains weapons-grade plutonium (Pu) as the fissile material. The dissolution flowsheet study was performed for 4 hours at 108 C on unwashed material using 12 M nitric acid (HNO 3 ) containing 0.20 M potassium fluoride (KF). After 4 hours at 108 C, the 239 Pu Equivalent concentration was 32.5 g/L (gamma, 5.0% uncertainty). The insoluble residue comprised 9.88 wt % of the initial bulk weight, and contained 5.31-5.95 wt % of the initial Pu. The residue contained Pu in the highest concentration, followed by tungsten (W). Analyses detected 2,770 mg/L chloride (Cl - ) in the final dissolver solution (3.28 wt %), which is significantly lower than the amount of Cl - detected by prompt gamma (9.86 wt %) and the 3013 DE Surveillance program (14.7 wt %). A low bias in chloride measurement is anticipated due to volatilization during the experiment. Gas generation studies found approximately 60 mL of gas per gram of sample produced during the first 30 minutes of dissolution. Little to no gas was produced after the first 30 minutes. Hydrogen gas (H 2 ) was not detected in the sample. Based on detection limits and accounting for dilution, the generated gas contained 2 , which is well below the 4.0 vol % flammability limit for H 2 in air. Filtration of the dissolver solution occurred readily. When aluminum nitrate nonahydrate (ANN) was added to the filtered dissolver solution at a 3:1 Al:F molar ratio, and stored at room

  1. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    Science.gov (United States)

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The kinetics of Dissolution of Biologically Formed Calcific Deposits.

    Science.gov (United States)

    Rokidi, Stamatia; Koutsoukos, Petros

    2015-04-01

    The calcification of aortic valves results in the formation of non stoichiometric apatitic deposits which may have serious health implications because of the fact that these minerals adhere tenaciously on tissues like heart valves and arteries causing permanent damage which is partly due to their low solubility. In the present work, calcium phosphate biominerals were extracted from clinically removed tissues and were characterized with respect to their mineralogical constituents and other properties including morphology, specific surface area analyses and thermogravimetric analysis. In all cases, the biominerals may be described as non stoichiometric apatitic materials, although traces of the precursor phase of octacalcium phosphate (Ca8H2(PO4)6•5H2O, OCP) were identified on the basis of their morphological examination. The kinetics of dissolution of the biomineral deposits was investigated in solutions undersaturated with respect to hydroxyapatite (Ca5(PO4)3OH, HAP) at conditions of constant undersaturation at pH 7.40, 37°C, 0.15M NaCl. Synthetic stoichiometric HAP was used as the control mineral. The experiments in the present work used solutions prepared from calcium chloride and sodium hydrogen phosphate and the relative undersaturation, σ, was in the range 0.38-0.74 with respect to HAP and 0.49-0.85 with respect to OCP (σ=1 in water). The dissolution process started immediately upon the introduction of an accurately weighted amount of powdered biomineral in the undersaturated solutions homogenized by magnetic stirring. Inert atmosphere was ensured with the bubbling of water vapor saturated nitrogen through the demineralizing solutions. A glass/Ag/AgCl combination electrode was used as a probe to monitor the process and to control the addition of diluent solutions with the stoichiometry of the dissolving mineral. The measurements of the rates of crystal dissolution, showed a parabolic dependence on the relative solution undersaturation for HAP and higher

  3. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.

    Science.gov (United States)

    Tsume, Yasuhiro; Takeuchi, Susumu; Matsui, Kazuki; Amidon, Gregory E; Amidon, Gordon L

    2015-08-30

    USP apparatus I and II are gold standard methodologies for determining the in vitro dissolution profiles of test drugs. However, it is difficult to use in vitro dissolution results to predict in vivo dissolution, particularly the pH-dependent solubility of weak acid and base drugs, because the USP apparatus contains one vessel with a fixed pH for the test drug, limiting insight into in vivo drug dissolution of weak acid and weak base drugs. This discrepancy underscores the need to develop new in vitro dissolution methodology that better predicts in vivo response to assure the therapeutic efficacy and safety of oral drug products. Thus, the development of the in vivo predictive dissolution (IPD) methodology is necessitated. The major goals of in vitro dissolution are to ensure the performance of oral drug products and the support of drug formulation design, including bioequivalence (BE). Orally administered anticancer drugs, such as dasatinib and erlotinib (tyrosine kinase inhibitors), are used to treat various types of cancer. These drugs are weak bases that exhibit pH-dependent and high solubility in the acidic stomach and low solubility in the small intestine (>pH 6.0). Therefore, these drugs supersaturate and/or precipitate when they move from the stomach to the small intestine. Also of importance, gastric acidity for cancer patients may be altered with aging (reduction of gastric fluid secretion) and/or co-administration of acid-reducing agents. These may result in changes to the dissolution profiles of weak base and the reduction of drug absorption and efficacy. In vitro dissolution methodologies that assess the impact of these physiological changes in the GI condition are expected to better predict in vivo dissolution of oral medications for patients and, hence, better assess efficacy, toxicity and safety concerns. The objective of this present study is to determine the initial conditions for a mini-Gastrointestinal Simulator (mGIS) to assess in vivo

  4. Aluminosilicate Dissolution and Silicate Carbonation during Geologic CO2 Sequestration

    Science.gov (United States)

    Min, Yujia

    Geologic CO2 sequestration (GCS) is considered a promising method to reduce anthropogenic CO2 emission. Assessing the supercritical CO2 (scCO2) gas or liquid phase water (g, l)-mineral interactions is critical to evaluating the viability of GCS processes. This work contributes to our understanding of geochemical reactions at CO 2-water (g, l)-mineral interfaces, by investigating the dissolution of aluminosilicates in CO2-acidified water (l). Plagioclase and biotite were chosen as model minerals in reservoir rock and caprock, respectively. To elucidate the effects of brine chemistry, first, the influences of cations in brine including Na, Ca, and K, have been investigated. In addition to the cations, the effects of abundant anions including sulfate and oxalate were also examined. Besides the reactions in aqueous phase, we also examine the carbonation of silicates in water (g)-bearing supercritical CO2 (scCO2) under conditions relevant to GCS. For the metal carbonation, in particular, the effects of particle sizes, water, temperature, and pressure on the carbonation of wollastonite were systematically examined. For understanding the cations effects in brine, the impacts of Na concentrations up to 4 M on the dissolution of plagioclase and biotite were examined. High concentrations of Na significantly inhibited plagioclase dissolution by competing adsorption with proton and suppressing proton-promoted dissolution. Ca has a similar effect to Na, and their effects did not suppress each other when Na and Ca co-existed. For biotite, the inhibition effects of Na coupled with an enhancing effect due to ion exchange reaction between Na and interlayer K, which cracked the basal surfaces of biotite. The K in aqueous phase significantly inhibited the dissolution. If the biotite is equilibrated with NaCl solutions initially, the biotite dissolved faster than the original biotite and the dissolution was inhibited by Na and K in brine. The outcomes improve our current knowledge of

  5. Monitoring the hydrolyzation of aspirin during the dissolution testing for aspirin delayed-release tablets with a fiber-optic dissolution system

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-10-01

    Full Text Available The purpose of this study was to investigate the hydrolyzation of aspirin during the process of dissolution testing for aspirin delayed-release tablets. Hydrolysis product of salicylic acid can result in adverse effects and affect the determination of dissolution rate assaying. In this study, the technique of differential spectra was employed, which made it possible to monitor the dissolution testing in situ. The results showed that the hydrolyzation of aspirin made the percentage of salicylic acid exceed the limit of free salicylic acid (4.0, and the hydrolyzation may affect the quality detection of aspirin delayed-release tablets. Keywords: Aspirin delayed-release tablets, Drug dissolution test, Fiber-optic dissolution system, UV–vis spectrum

  6. Development and Validation of Discriminating and Biorelevant Dissolution Test for Lornoxicam Tablets.

    Science.gov (United States)

    Anumolu, P D; Sunitha, G; Bindu, S Hima; Satheshbabu, P R; Subrahmanyam, C V S

    2015-01-01

    The establishment of biorelevant and discriminating dissolution procedure for drug products with limited water solubility is a useful technique for qualitative forecasting of the in vivo behavior of formulations. It also characterizes the drug product performance in pharmaceutical development. Lornoxicam, a BCS class-II drug is a nonsteroidal antiinflammatory drug of the oxicam class, has no official dissolution media available in the literature. The objective of present work was to develop and validate a discriminating and biorelevant dissolution test for lornoxicam tablet dosage forms. To quantify the lornoxicam in dissolution samples, UV spectrophotometric method was developed using 0.01M sodium hydroxide solution as solvent at λma×376 nm. After evaluation of saturation solubility, dissolution, sink conditions and stability of lornoxicam bulk drug in different pH solutions and biorelevant media, the dissolution method was optimized using USP paddle type apparatus at 50 rpm rotation speed and 500 ml simulated intestinal fluid as discriminating and biorelevant dissolution medium. The similarity factor (f2) were investigated for formulations with changes in composition and manufacturing variations, values revealed that dissolution method having discriminating power and method was validated as per standard guidelines. The proposed dissolution method can be effectively applied for routine quality control in vitro dissolution studies of lornoxicam in tablets and helpful to pharmacopoeias.

  7. Disintegration of highly soluble immediate release tablets: a surrogate for dissolution.

    Science.gov (United States)

    Gupta, Abhay; Hunt, Robert L; Shah, Rakhi B; Sayeed, Vilayat A; Khan, Mansoor A

    2009-01-01

    The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria.

  8. Dissolution of artemisinin/polymer composite nanoparticles fabricated by evaporative precipitation of nanosuspension.

    Science.gov (United States)

    Kakran, Mitali; Sahoo, Nanda Gopal; Li, Lin; Judeh, Zaher

    2010-04-01

    An evaporative precipitation of nanosuspension (EPN) method was used to fabricate composite particles of a poorly water-soluble antimalarial drug, artemisinin, with a hydrophilic polymer, polyethylene glycol (PEG), with the aim of enhancing the dissolution rate of artemisinin. We investigated the effect of polymer concentration on the physical, morphological and dissolution properties of the EPN-prepared artemisinin/PEG composites. The original artemisinin powder, EPN-prepared artemisinin nanoparticles and artemisinin/PEG composites were characterised by scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), dissolution testing and HPLC. The percentage dissolution efficiency, relative dissolution, time to 75% dissolution and mean dissolution time were calculated. The experimental drug dissolution data were fitted to various mathematical models (Weibull, first-order, Korsemeyer-Peppas, Hixson-Crowell cube root and Higuchi models) in order to analyse the release mechanism. The DSC and XRD studies suggest that the crystallinity of the EPN-prepared artemisinin decreased with increasing polymer concentration. The phase-solubility studies revealed an A(L)-type curve, indicating a linear increase in drug solubility with PEG concentration. The dissolution rate of the EPN-prepared artemisinin and artemisinin/PEG composites increased markedly compared with the original artemisinin powder. EPN can be used to prepare artemisinin nanoparticles and artemisinin/PEG composite particles that have a significantly enhanced dissolution rate. The mechanism of drug release involved diffusion and erosion.

  9. High temperature dissolution of chromium substituted nickel ferrite in nitrilotriacetic acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathyaseelan, V.S.; Chandramohan, P.; Velmurugan, S., E-mail: svelu@igcar.gov.in

    2016-12-01

    High temperature (HT) dissolution of chromium substituted nickel ferrite was carried out with relevance to the decontamination of nuclear reactors by way of chemical dissolution of contaminated corrosion product oxides present on stainless steel coolant circuit surfaces. Chromium substituted nickel ferrites of composition, NiFe{sub (2−x)}Cr{sub x}O{sub 4} (x ≤ 1), was synthetically prepared and characterized. HT dissolution of these oxides was carried out in nitrilotriacetic acid medium at 160 °C. Dissolution was remarkably increased at 160 °C when compared to at 85 °C in a reducing decontamination formulation. Complete dissolution could be achieved for the oxides with chromium content 0 and 0.2. Increasing the chromium content brought about a marked reduction in the dissolution rate. About 40 fold decrease in rate of dissolution was observed when chromium was increased from 0 to 1. The rate of dissolution was not very significantly reduced in the presence of N{sub 2}H{sub 4}. Dissolution of oxide was found to be stoichiometric. - Highlights: • Dissolution of NiFe{sub (2−x)}Cr{sub x}O{sub 4} was remarkably increased at 160 °C in NTA medium. • The dissolution was significantly decreasing with the increase in Cr content in the oxide. • Dissolution rate is dependent on the lability of metal-oxo bonds. • The rate of dissolution was not significantly reduced in the presence of N{sub 2}H{sub 4.} • NTA at high temperature is effective for decontamination of stainless steel surfaces.

  10. Magnesite dissolution and precipitation rates at hydrothermal conditions

    International Nuclear Information System (INIS)

    Saldi, Giuseppe

    2009-01-01

    Magnesite (MgCO 3 ) is the stable anhydrous member of a series of Mg-carbonates with different degrees of hydration. Despite its relative scarcity in the natural environments, it constitutes an important mineral phase for the permanent sequestration of CO 2 as carbonate minerals. Experimental determination of magnesite precipitation and dissolution rates at conditions representative of the storage sites is therefore fundamental for the assessment of magnesite sequestration potential in basaltic and ultramafic rocks and the optimization of the techniques of CO 2 storage. Magnesite precipitation rates have been measured using mixed-flow and batch reactors as a function of temperature (100 ≤ T ≤ 200 deg. C), solution composition and CO 2 partial pressure (up to 30 bar). Rates were found to be independent of aqueous solution ionic strength at 0.1 M 3 2- activity at pH > 8. All rates obtained from mixed flow reactor experiments were found to be consistent with the model of Pokrovsky et al. (1999) where magnesite precipitation rates are proportional to the concentration of the >MgOH 2 + surface species. The study of magnesite crystallization using hydrothermal atomic force microscopy (HAFM) demonstrated the consistency of the rates derived from microscopic measurements with those obtained from bulk experiments and showed that these rates are also consistent with a spiral growth mechanism. According to AFM observations this mechanism controls magnesite growth over a wide range of temperatures and saturation states (15≤ Ω ≤200 for 80 ≤T 2 to accelerate the rate of the overall carbonation process, avoiding the inhibiting effect of carbonate ions on magnesite precipitation and increasing the rates of Mg-silicate dissolution via acidification of reacting solutions. Determination of magnesite dissolution rates by mixed flow reactor at 150 and 200 deg. C and at neutral to alkaline conditions allowed us to improve and extend to high temperatures the surface

  11. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  12. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  13. Role of Adsorption Phenomena in Cubic Tricalcium Aluminate Dissolution.

    Science.gov (United States)

    Myers, Rupert J; Geng, Guoqing; Li, Jiaqi; Rodríguez, Erich D; Ha, Juyoung; Kidkhunthod, Pinit; Sposito, Garrison; Lammers, Laura N; Kirchheim, Ana Paula; Monteiro, Paulo J M

    2017-01-10

    The workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (C 3 A) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in C 3 A dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of C 3 A occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto C 3 A, reducing its zeta potential to negative values at pH >12. The S and Ca K-edge X-ray absorption spectroscopy (XAS) data obtained do not indicate the structural incorporation or specific adsorption of SO 4 2- on the partially dissolved C 3 A solids analyzed. Together with supporting X-ray ptychography and scanning electron microscopy results, a model for C 3 A dissolution inhibition in hydrated PC systems is proposed whereby the formation of an Al-rich leached layer and the complexation of Ca-S ion pairs onto this leached layer provide the key inhibiting effect(s). This model reconciles the results obtained here with the existing literature, including the inhibiting action of macromolecules such as PNS and polyphosphonic acids upon C 3 A dissolution. Therefore, this article advances the understanding of the rate-controlling mechanism in hydrated C 3 A and thus PC systems, which is important to better controlling the workability of fresh PC concrete.

  14. Pilot-scale tests of HEME and HEPA dissolution process

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  15. Pilot-scale tests of HEME and HEPA dissolution process

    International Nuclear Information System (INIS)

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME's) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump

  16. Dissolution enhancement of atorvastatin calcium by co-grinding technique.

    Science.gov (United States)

    Prabhu, Priyanka; Patravale, Vandana

    2016-08-01

    Atorvastatin calcium (AC) is a BCS class II drug which shows poor bioavailability due to inadequate dissolution. Solid dispersions present a promising option to enhance the solubility of poorly soluble drugs. Co-grinding with hydrophilic excipients is an easy and economical technique to improve the solubility of poorly soluble drugs and is free from usage of organic solvents. The aim of the present study was to explore novel carrier VBP-1 (organosulphur compound) for formulating a solid dispersion by using a simple, commercially viable co-grinding technique to enhance the dissolution of AC and to develop an oral formulation of the same. Composition of the solid dispersion was optimized based on the release profile in pH 1.2 buffer. The optimized solid dispersion was further characterized for flow properties, DSC, FTIR spectroscopy, XRD, contact angle, SEM studies and release profile in phosphate buffer pH 6.8. The developed solid dispersion gave similar release profile as the innovator formulation (Lipitor® tablets) in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed solid dispersion was formulated into hard gelatin capsules (size 3). The developed capsules were found to give similar release as the innovator formulation in both pH 1.2 buffer and phosphate buffer pH 6.8. The developed capsules were found to be stable for a period of 6 months. Anti-hyperlipidemic efficacy studies in rats showed higher reduction in cholesterol and triglyceride levels by the developed capsules in comparison to pure AC. In conclusion, novel carrier VBP-1 was successfully employed to enhance the dissolution of AC using co-grinding technique.

  17. Photoelectrochemical etching of gallium nitride surface by complexation dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao-Rong [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Hou, Fei; Wang, Zu-Gang; Zhang, Shao-Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China); Changchun University of Science and Technology, 130022 Changchun (China); Pan, Ge-Bo, E-mail: gbpan2008@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 215123 Suzhou (China)

    2017-07-15

    Graphical abstract: GaN surface was etched by 0.3 M EDTA-2Na. The proposed complexation dissolution mechanism can be applicable to almost all neutral etchants under the prerequisite of strong light and electric field. - Highlights: • GaN surface was etched by EDTA-2Na. • GaN may be dissolved into EDTA-2Na by forming Ga–EDTA complex. • We propose the complexation dissolution mechanism for the first time. - Abstract: Gallium nitride (GaN) surface was etched by 0.3 M ethylenediamine tetraacetic acid disodium (EDTA-2Na) via photoelectrochemical etching technique. SEM images reveal the etched GaN surface becomes rough and irregular. The pore density is up to 1.9 × 10{sup 9} per square centimeter after simple acid post-treatment. The difference of XPS spectra of Ga 3d, N 1s and O 1s between the non-etched and freshly etched GaN surfaces can be attributed to the formation of Ga–EDTA complex at the etching interface between GaN and EDTA-2Na. The proposed complexation dissolution mechanism can be broadly applicable to almost all neutral etchants under the prerequisite of strong light and electric field. From the point of view of environment, safety and energy, EDTA-2Na has obvious advantages over conventionally corrosive etchants. Moreover, as the further and deeper study of such nearly neutral etchants, GaN etching technology has better application prospect in photoelectric micro-device fabrication.

  18. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    Science.gov (United States)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  19. Acceleration and dissolution of stars in the antibang

    International Nuclear Information System (INIS)

    Harrison, E.R.

    1983-01-01

    If the universe is spatially closed, and the simplest cosmological models are valid approximations, then in 10 11 years the universe will recollapse into an antibang. Stars will then accelerate. In this paper, the author calculates the temperatures at which black dwarfs, white dwarfs and neutron stars become maximally relativistic. He also calculates the temperatures at which these stars are subjected to dissolution. It turns out that the maximal relativistic speeds will never be attained. Besides those, the increase of entropy due to the acceleration is calculated. (Auth.)

  20. Improvement of dissolution rate of indomethacin by inkjet printing

    DEFF Research Database (Denmark)

    Wickström, Henrika; Palo, Mirja; Rijckaert, Karen

    2015-01-01

    The aim of this study was to prepare printable inks of the poorly water soluble drug indomethacin (IMC), fabricate printed systems with flexible doses and investigate the effect of ink excipients on the printability, dissolution rate and the solid state properties of the drug. A piezoelectric...... the spectra of the carrier substrate. Yet, the samples retained their yellow color after 6months of storage at room temperature and after drying at elevated temperature in a vacuum oven. This suggests that the samples remained either in a dissolved or an amorphous form. Based on the results from this study...... a formulation guidance for inkjet printing of poorly soluble drugs is also proposed....

  1. Effects of acid rain and sulfur dioxide on marble dissolution

    Science.gov (United States)

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  2. Dissolution flowsheet for high flux isotope reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  3. Dissolution off-gases at the marcoule pilot facility: Iodine trapping and off-gas characterization unit

    International Nuclear Information System (INIS)

    Pouyat, D.; Vignau, B.; Roux, J.P.

    1993-01-01

    The Marcoule Pilot Reprocessing Facility (APM) reprocesses spent fuel from light water reactors and fast breeder reactors. A batch dissolution process is used with an annual throughput capacity of 5 metric tons. The off-gas treatment unit is described together with its characterization laboratory in order to highlight the functions and potential of the facilities. The objectives are consistent with the Marcoule site policy regarding diminished iodine release and investigation of the off-gas treatment process. The equipment used to meet these objectives is described from a functional standpoint. The facility implements measurement techniques to allow continuous quantitative measurements of nitrogen oxides, oxygen, iodine and krypton, as well as continuous monitoring of the demister inlet flow by γ spectrometry. Sorbents used for iodine trapping may be tested over a wide range of operating conditions (temperature, flow rate, iodine concentration) with representative dissolution off-gases. An X-ray and γ counting system is used to assess the activity of the adsorbed radionuclides, notably 129 I

  4. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    Science.gov (United States)

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Late Archean Surface Ocean Oxygenation (Invited)

    Science.gov (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.

    2009-12-01

    , respectively. Mass independent fractionation of S isotopes (Δ33S ≠ 0‰) in the upper Campbellrand Subgroup and Mt. McRae Shale indicates an anoxic atmosphere co-existed with the mildly oxygenated surface ocean. The source of the Re and Mo was likely oxidative subaerial and/or submarine weathering of continental sulphides, which are susceptible to dissolution even if atmospheric pO2 is at 0.001 to 0.0001% present atmospheric level. Dissolved oxygen in the oceans facilitates transport of Re and Mo as conservative ReO4- and MoO42- from the site of oxidation to deeper-water, reducing marine sediments. Thus, the geochemical data are consistent with stratified oceans (with oxygenated shallow waters) developing on continental margins more than 100 M.y. prior to the GOE.

  6. Effect of surface stress state on dissolution property of Alloy 690 in simulated primary water condition

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Hee-Sang; Lee, Eun Hee; Seo, Myung Ji; Han, Jung Ho; Hur, Do Haeng

    2014-01-01

    The dissolution control of nickel is important to reduce the radioactive dose rate and deterioration of fuel performance in the operation of nuclear power plants (PWR). The corrosion properties are affected by the metal surface residual stress introduced in manufacture process such as work hardening. This work studied the effect of surface modification on the release rate of Alloy 690, nickel-base alloy for a steam generator tube, in the test condition of simulated primary water chemistry in PWRs. The surface stress modification was applied by the electro-polishing and shot peening method. Shot peening process was applied using ceramic beads with different intensities through the variation of air pressure. The corrosion release tests performed at 330degC with LiOH 2 ppm and H 3 BO 4 1200 ppm, DH(dissolved hydrogen) 35 cc/kg (STP) and about 20 ppb of DO(dissolved oxygen) condition. The corrosion release rate was evaluated by a gravimetric analysis method and the surface analysed by SEM and optical microscope. The surface residual stress was measured by an X-ray diffractometer, and the distribution of stress state was evaluated by a micro-hardness tester. The metal ion release rate of alloy 690 was evaluated from the influence of the stress state on the metal surface. The oxide property and structure was affected by the residual stress in the oxide layer. (author)

  7. Nonmarital romantic relationship commitment and leave behavior: the mediating role of dissolution consideration.

    Science.gov (United States)

    Vanderdrift, Laura E; Agnew, Christopher R; Wilson, Juan E

    2009-09-01

    Two studies investigated the process by which individuals in nonmarital romantic relationships characterized by low commitment move toward enacting leave behaviors. Predictions based on the behavioral, goal, and implementation intention literatures were tested using a measure of dissolution consideration developed for this research. Dissolution consideration assesses how salient relationship termination is for an individual while one's relationship is intact. Study 1 developed and validated a measure of dissolution consideration and Study 2 was a longitudinal test of the utility of dissolution consideration in predicting the enactment of leave behaviors. Results indicated that dissolution consideration mediates the association between commitment and enacting leave behaviors, is associated with taking more immediate action, and provides unique explanatory power in leave behavior beyond the effect of commitment alone. Collectively, the findings suggest that dissolution consideration is an intermediate step between commitment and stay/leave behavior in close relationships.

  8. Chemical dissolution of spent fuel and cladding using complexed fluoride species

    International Nuclear Information System (INIS)

    Rance, P.J.W.; Freeman, G.A.; Mishin, V.; Issoupov, V.

    2001-01-01

    The dissolution of LWR fuel cladding using two fluoride ion donors, HBF 4 and K 2 ZrF 6 , in combination with nitric acid has been investigated as a potential reprocessing head-end process suitable for chemical decladding and fuel dissolution in a single process step. Maximum zirconium concentrations in the order of 0,75 to 1 molar have been achieved and dissolution found to continue to low F:Zr ratios albeit at ever decreasing rates. Dissolution rates of un-oxidised zirconium based fuel claddings are fast, whereas oxidised materials exhibit an induction period prior to dissolution. Data is presented relating to the rates of dissolution of cladding and UO 2 fuels under various conditions. (author)

  9. Use of micro-reactors to obtain new insights into the factors influencing tricalcium silicate dissolution

    International Nuclear Information System (INIS)

    Suraneni, Prannoy; Flatt, Robert J.

    2015-01-01

    A micro-reactor approach, developed previously, is used to study the early dissolution of tricalcium silicate. This approach uses micron-sized gaps mimicking particles in close contact to understand dissolution, nucleation, and growth processes. The main factors influencing the dissolution kinetics of tricalcium silicate are presented. We show that the presence of defects caused by polishing does not affect the extent of dissolution. A strong effect of aluminum in solution reducing the extent of dissolution is however identified. This effect is highly dependent on the pH, and is much lower above pH 13. We show also that superplasticizers reduce the extent of dissolution; however, the exact reason for this effect is not clear.

  10. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  11. The velocity dependent dissolution of spent nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Nutt, W.M.

    1990-02-01

    A model describing the dissolution of fission products and transuranic isotopes from spent nuclear fuel into flowing ground water has been developed. This model is divided into two parts. The first part of the model calculates the temperature within a consolidated spent fuel waste form at a given time and ground water velocity. This model was used to investigate whether water flowing at rates representative of a geological repository located at Yucca Mountain, Nevada, will cool a wasteform consisting of consolidated spent nuclear fuel pins. Time and velocity dependent temperature profiles were generated. These profiles were input into the second model, which calculates the dissolution rate of waste isotopes from a spent fuel pin. Two dissolution limiting processes were modeled; the processes are dissolution limited by the solubility limit of an isotopes in the ground water, and dissolution limited by the diffusion of waste isotopes from the interior of a spent fuel pin to the surface where dissolution can occur

  12. Mechanisms and kinetics laws of inactive R7T7 reference glass dissolution in water at 90 deg C: initial dissolution rate measurements

    International Nuclear Information System (INIS)

    Advocat, T.; Ghaleb, D.; Vernaz, E.

    1993-02-01

    The initial dissolution rate of inactive R7T7 reference glass was measured at 90 deg C in dilute aqueous solutions first at unspecified pH, then with imposed pH values. In distilled water, R7T7 glass corrosion initially involved preferential extraction of boron and network modifier elements (Li, Na, Ca) as long as the solution pH remained acid. When the solution pH became alkaline, glass dissolution was stoichiometric. These two mechanisms were confirmed by dissolution tests in aqueous solutions at imposed pH values under acid and alkaline conditions. The initial dissolution rate r 0 in mole.cm -3 .s -1 also increased significantly in alkaline media when the pH of the aqueous phase increased: in slightly acid media, selective glass dissolution formed a residual, de-alkalinized, hydrated glass that was characterized by transmission electron microscopy and secondary ion mass spectrometry. Under steady-state dissolution conditions, the initial glass corrosion rate (in mole.cm -3 .s -1 ) was: in acid and alkaline media, amorphous and crystallized alteration products formed after complete dissolution of the silicated glass network. The first products formed consisted mainly of Zr, Rare Earths, Fe and Al. (author). 67 refs., 29 figs., 26 tabs., 21 plates

  13. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.

    Science.gov (United States)

    McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M

    2016-01-01

    Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.

  14. Effect of radiation-induced amorphization on smectite dissolution.

    Science.gov (United States)

    Fourdrin, C; Allard, T; Monnet, I; Menguy, N; Benedetti, M; Calas, G

    2010-04-01

    Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time.

  15. Effect of a cement buffer on spent fuel dissolution

    International Nuclear Information System (INIS)

    Mennecart, Thierry; Cachoir, Christelle; Lemmens, Karel; Gielen, Ben; Vercauter, Regina

    2012-01-01

    The Belgian agency for radioactive waste has selected the super-container design with an Ordinary Portland Cement (OPC) buffer as the reference design for geological disposal of High-Level Waste (HLW) and Spent Fuel (SF) in the Boom Clay formation. In the super-container design, the canisters of HLW or SF will be enclosed by a 30 mm thick carbon steel overpack and a 700 mm thick concrete buffer. The overpack will prevent contact with the (cementitious) pore water during the thermal phase. On the other hand, once the overpack will be locally perforated, the high pH of the incoming water may have an impact on the lifetime of the waste. Most published data and national programs are related to clayey backfill materials, and few studies are reported in alkaline media. Hence, a set of experiments was conducted to evaluate the behavior of spent fuel (UO 2 dissolution rate and UO 2 solubility) in such an environment. The objective was to estimate the spent fuel dissolution rate in super-container conditions for use in preliminary performance assessment calculations

  16. Partnership formation and dissolution among immigrants in the Spanish context

    Directory of Open Access Journals (Sweden)

    Amparo González-Ferrer

    2016-07-01

    Full Text Available Background: The diversification of partnership patterns away from the traditional marriage standard emerged in Spain relatively late. This makes Spain an interesting case for the study of the partnership dynamics of natives and immigrant groups. Objective: This paper analyzes partnership formation and dissolution among immigrant women of various origins, in comparison to natives in Spain. The study aims to identify variations in timing and incidence of partnership transitions. Methods: Data from the Fertility and Values Survey 2006 is used to conduct discrete-time logistic regressions for several union transitions. In a further step, the data are analyzed including cohort interactions to explore the extent to which differences are due to the younger profile of the migrant population. Results: The obtained results lend support to the selection and disruption hypotheses in the case of immigrant women who arrived in Spain before their first union formation. However, when explaining the high propensity of Latin American and EU-15 women to enter cohabiting unions, socialization effects cannot be ruled out. Immigrant women also show higher risk of union dissolution than natives. Conclusions: Immigrant women differ consistently from native Spanish women across the various partnership transitions. They generally display higher risks of forming a union, particularly a cohabiting union, and of separating from their first partner. Models including interactions between birth cohort and migrant status showed that differentials between immigrants and natives are not due to compositional effects.

  17. Boron isotope fractionation in magma via crustal carbonate dissolution.

    Science.gov (United States)

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  18. Modeling surface area to volume effects on borosilicate glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Ebert, W.L.; Feng, X.

    1992-11-01

    We simulated the reaction of SRL-131 glass with equilibrated J-13 water in order to investigate the effects of surface area to volume ratio (SA/V) on glass dissolution. We show that glass-fluid ion exchange causes solution pH to rise to progressively higher values as SA/V increases. Because the ion exchange is rapid relative to the duration of the glass dissolution experiment, the pH effect does not scale with (SA/V)*time. Experiments compared at the same (SA/V)*time value therefore have different pHs, with higher pHs at higher SA/V ratios. Both experimental data and our simulation results show similar trends of increasing reaction rate as a function of SA/V ratio when scaled to (SA/V)*time. Glasses which react in systems of differing SA/V ratio therefore follow different reaction paths and high SA/V ratios cannot be used to generate data which accurately scales to long time periods unless the ion exchange effect is taken into account. We suggest some simple test designs which enable more reliable high. SA/V accelerated tests

  19. Boron isotope fractionation in magma via crustal carbonate dissolution

    Science.gov (United States)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to -41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  20. Dissolution and oral bioavailability enhancement of praziquantel by solid dispersions.

    Science.gov (United States)

    Liu, Yanyan; Wang, Tianzi; Ding, Wenya; Dong, Chunliu; Wang, Xiaoting; Chen, Jianqing; Li, Yanhua

    2018-06-01

    The aim of the present investigation was to enhance the solubility, dissolution, and oral bioavailability of praziquantel (PZQ), a poorly water-soluble BCS II drug (Biopharmaceutical Classification System), using a solid dispersion (SD) technique involving hydrophilic copolymers. The SD formulations were prepared by a solvent evaporation method with PZQ and PEG 4000 (polyethylene glycol 4000), PEG 6000, or P 188 polymers at various weight ratios or a combination of PEG 4000/P 188. The optimized SD formulation, which had the highest solubility in distilled water, was further characterized by its surface morphology, crystallinity, and dissolution in 0.1 M HCl with 0.2% w/v of sodium dodecyl sulfate (SDS). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed the amorphous form of PZQ in the SDs. Moreover, at an oral dosage of 5 mg/kg PZQ, the SDs had higher C max values and areas under the curve (AUCs) compared to those of commercial PZQ tablets. Preparation of PZQ-loaded SDs using PEG 4000/P 188 is a promising strategy to improve the oral bioavailability of PZQ.

  1. Quantitative ultra-fast MRI of HPMC swelling and dissolution.

    Science.gov (United States)

    Chen, Ya Ying; Hughes, L P; Gladden, L F; Mantle, M D

    2010-08-01

    For the first time quantitative Rapid Acquisition with Relaxation Enhancement (RARE) based ultra-fast two-dimensional magnetic resonance imaging has been used to follow the dissolution of hydroxypropylmethyl cellulose (HPMC) in water. Quantitative maps of absolute water concentration, spin-spin relaxation times and water self-diffusion coefficient are obtained at a spatial resolution of 469 microm in less than 3 min each. These maps allow the dynamic development of the medium release rate HPMC/water system to be followed. It is demonstrated that the evolution of the gel layer and, in particular, the gradient in water concentration across it, is significantly different when comparing the quantitative RARE sequence with a standard (nonquantitative) implementation of RARE. The total gel thickness in the axial direction grows faster than that in the radial direction and that the dry core initially expands anisotropically. Additionally, while HPMC absorbs a large amount of water during the dissolution process, the concentration gradient of water within the gel layer is relatively small. For the first time MRI evidence is presented for a transition swollen glassy layer which resides between the outer edge of the dry tablet core and the inner edge of the gel layer. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Modelling the incongruent dissolution of hydrated cement minerals

    International Nuclear Information System (INIS)

    Berner, U.R.

    1988-01-01

    Hydrated calciumsilicates are the main constituents of hydrated portland cements. Their chemistry will strongly influence the longterm behaviour of a concrete system envisioned in use in radioactive waste repositories. Experimental data show that hydrated calciumsilicates dissolve incongruently, depending on the calcium/silicon ratio of the solid. A model that simulates the incongruent dissolution behaviour of these hydrated calciumsilicates is presented. In the model the hydrated calciumcilicates are represented as a mixture of two congruently soluble components. The dissolution of the particular components is described using the concept of variable activities in the solid state. Each component's activity in the solid state is obtained from a large body of solubility data by applying the Gibbs-Duhem equation for nonideal mixtures. Using this approach a simplified set of equations, which describe the solubility of the components as a function of the calcium/silicon ratio of the solid, is derived. As an application, the degradation of a standard portland cement in pure water and in a carbonate-rich groundwater is modelled. (orig.)

  3. Marital Dissolution and Child Educational Outcomes in San Borja, Bolivia.

    Science.gov (United States)

    Snopkowski, Kristin

    2016-12-01

    Serial monogamy is likely an adaptive mating strategy for women when the expected future fitness gains with a different partner are greater than expected future fitness with one's current partner. Using interview data from more than 400 women in San Borja, Bolivia, discrete-time event history analyses and random effects regression analyses were conducted to examine predictors of marital dissolution, separated by remarriage status, and child educational outcomes. Male income was found to be inversely associated with women's risk of "divorce and remarriage," whereas female income is positively associated with women's risk of "divorce, but not remarriage." Children of women who divorce and remarry tend to have significantly lower educational outcomes than children of married parents, but women with higher incomes are able to buffer their children from the negative educational outcomes of divorce and remarriage. Counter to predictions, there is no evidence that women with kin in the community have a significant difference in likelihood of divorce or a buffering effect of child outcomes. In conclusion, predictors of divorce differ depending on whether the woman goes on to remarry, suggesting that male income may be a better predictor of a serial monogamy strategy whereas female income predicts marital dissolution only. Thus, women who are relatively autonomous because of greater income may not benefit from remarriage.

  4. Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels

    Science.gov (United States)

    Huang, Qiuliang; Volkova, Olena; Biermann, Horst; Mola, Javad

    2017-12-01

    The dissolution of Cr-rich carbides formed in the martensitic constituent of a 13 pct Cr stainless steel was studied by dilatometry and correlative electron channeling contrast examinations. The dissolution of carbides subsequent to the martensite reversion to austenite was associated with a net volume expansion which in turn increased the dilatometry-based apparent coefficient of thermal expansion (CTEa) during continuous heating. The effects of carbides fraction and size on the CTEa variations during carbides dissolution are discussed.

  5. Dissolution of intact UO2 pellet in batch and rotary dissolver conditions

    International Nuclear Information System (INIS)

    Jayendra Kumar Gelatar; Bijendra Kumar; Sampath, M.; Shekhar Kumar; Kamachi Mudali, U.; Natarajan, R.

    2015-01-01

    Comparative dissolution of intact un-irradiated UO 2 pellet of PHWR fuel dimensions was performed in batch and dynamic rotary dissolver conditions in aqueous nitric acid solutions at elevated temperatures. The extent of dissolution was estimated by determining the uranium concentration of the resulting aqueous solution. It was observed that rate of dissolution was much faster in dynamic conditions as compared to static batch conditions. (author)

  6. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

    Science.gov (United States)

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu

    2017-11-01

    Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious

  7. Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes

    Science.gov (United States)

    Santschi, Peter H.; Anderson, Robert F.; Fleisher, Martin Q.; Bowles, Walter

    1991-06-01

    of 0.6 and 0.2 cm s-1, respectively, possibly as a result of bottom roughness effects. A case is made for the importance of considering boundary layer dynamical conditions when benthic fluxes are to be measured correctly. When rates of oxygen uptake, carbonate dissolution, and nutrient species uptake or release in regions near the sediment-water interface are fast compared with diffusion rates across the diffusive sublayer, overall rates can become mass transport controlled.

  8. Differences in in vitro dissolution properties of settled and airborne uranium material

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Crist, K.C.; Tillery, M.I.; Soderholm, S.C.

    1984-01-01

    The dissolution behavior of settled and airborne uranium material produced by firing of depleted uranium munitions was studied using an in vitro dissolution technique. Differences in the composition of bulk and respirable fraction samples of these materials were observed. Dissolution analysis results suggest that under some conditions a rapidly dissolving uranium fraction may be formed. This fraction may play an important role in determining hazard potential associated with inhalation exposure to uranium materials. The fact that a larger rapidly dissolving fraction was observed in the airborne material than in the settled material indicates that dissolution analysis should be performed on appropriate size fraction samples. 20 references, 3 figures, 4 tables

  9. Developing a quality by design approach to model tablet dissolution testing: an industrial case study.

    Science.gov (United States)

    Yekpe, Ketsia; Abatzoglou, Nicolas; Bataille, Bernard; Gosselin, Ryan; Sharkawi, Tahmer; Simard, Jean-Sébastien; Cournoyer, Antoine

    2017-11-02

    This study applied the concept of Quality by Design (QbD) to tablet dissolution. Its goal was to propose a quality control strategy to model dissolution testing of solid oral dose products according to International Conference on Harmonization guidelines. The methodology involved the following three steps: (1) a risk analysis to identify the material- and process-related parameters impacting the critical quality attributes of dissolution testing, (2) an experimental design to evaluate the influence of design factors (attributes and parameters selected by risk analysis) on dissolution testing, and (3) an investigation of the relationship between design factors and dissolution profiles. Results show that (a) in the case studied, the two parameters impacting dissolution kinetics are active pharmaceutical ingredient particle size distributions and tablet hardness and (b) these two parameters could be monitored with PAT tools to predict dissolution profiles. Moreover, based on the results obtained, modeling dissolution is possible. The practicality and effectiveness of the QbD approach were demonstrated through this industrial case study. Implementing such an approach systematically in industrial pharmaceutical production would reduce the need for tablet dissolution testing.

  10. Factors affecting the differences in reactivity and dissolution rates between UO2 and spent nuclear fuel

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Tait, J.C.; Sunder, S.; Steward, S.; Russo, R.E.; Rudnicki, J.D.

    1996-08-01

    Strategies for the permanent disposal of spent nuclear fuel are being investigated by the U.S. Department of Energy at the Yucca Mountain site and by Atomic Energy of Canada Limited (AECL) in plutonic rock formations in the Canadian Shield. Uranium dioxide is the primary constituent of spent nuclear fuel and dissolution of the matrix is regarded as a necessary step for the release of radionuclides to repository groundwaters. In order to develop models to describe the dissolution of the U0 2 fuel matrix and subsequent release of radionuclides, it is necessary to understand both chemical and oxidative dissolution processes and how they can be affected by parameters such as groundwater composition, pH, temperature, surface area, radiolysis and redox potential. This report summarizes both published and on-going dissolution studies of U0 2 and both LWR and CANDU spent fuels being conducted at the Pacific Northwest Laboratory, Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory in the U.S. and at AECL's Whiteshell Laboratories in Canada. The studies include both dissolution tests and electrochemical experiments to measure uranium dissolution rates. The report focuses on identifying differences in reactivity towards aqueous dissolution between U0 2 and spent fuel samples as well as estimating bounding values for uranium dissolution rates. This review also outlines the basic tenets for the development of a dissolution model that is based on electrochemical principles. (author). 49 refs., 2 tabs., 11 figs

  11. A Study of Analytical Solution for the Special Dissolution Rate Model of Rock Salt

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available By calculating the concentration distributions of rock salt solutions at the boundary layer, an ordinary differential equation for describing a special dissolution rate model of rock salt under the assumption of an instantaneous diffusion process was established to investigate the dissolution mechanism of rock salt under transient but stable conditions. The ordinary differential equation was then solved mathematically to give an analytical solution and related expressions for the dissolved radius and solution concentration. Thereafter, the analytical solution was fitted with transient dissolution test data of rock salt to provide the dissolution parameters at different flow rates, and the physical meaning of the analytical formula was also discussed. Finally, the influential factors of the analytical formula were investigated. There was approximately a linear relationship between the dissolution parameters and the flow rate. The effects of the dissolution area and initial volume of the solution on the dissolution rate equation of rock salt were computationally investigated. The results showed that the present analytical solution gives a good description of the dissolution mechanism of rock salt under some special conditions, which may provide a primary theoretical basis and an analytical way to investigate the dissolution characteristics of rock salt.

  12. Development of dissolution test method for a telmisartan/amlodipine besylate combination using synchronous derivative spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Panikumar Durga Anumolu

    2014-04-01

    Full Text Available The dissolution process is considered an important in vitro tool to evaluate product quality and drug release behavior. Single dissolution methods for the analysis of combined dosage forms are preferred to simplify quality control testing. The objective of the present work was to develop and validate a single dissolution test for a telmisartan (TEL and amlodipine besylate (AML combined tablet dosage form. The sink conditions, stability and specificity of both drugs in different dissolution media were tested to choose a discriminatory dissolution method, which uses an USP type-II apparatus with a paddle rotating at 75 rpm, with 900 mL of simulated gastric fluid (SGF without enzymes as the dissolution medium. This dissolution methodology provided good dissolution profiles for both TEL and AML and was able to discriminate changes in the composition and manufacturing process. To quantify both drugs simultaneously, a synchronous first derivative spectrofluorimetric method was developed and validated. Drug release was analyzed by a fluorimetric method at 458 nm and 675 nm for AML and TEL, respectively. The dissolution method was validated as per ICH guidance.

  13. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies

    International Nuclear Information System (INIS)

    Misra, Superb K.; Dybowska, Agnieszka; Berhanu, Deborah; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2012-01-01

    Dissolution of nanoparticles (NPs) is an important property that alters their abundance and is often a critical step in determining safety of nanoparticles. The dissolution status of the NPs in exposure media (i.e. whether they remain in particulate form or dissolve — and to what extent), strongly affects the uptake pathway, toxicity mechanisms and the environmental compartment in which NPs will have the highest potential impact. A review of available dissolution data on NPs demonstrates there is a range of potential outcomes depending on the NPs and the exposure media. For example two nominally identical nanoparticles, in terms of size and composition, could have totally different dissolution behaviours, subject to different surface modifications. Therefore, it is imperative that toxicological studies are conducted in conjunction with dissolution of NPs to establish the true biological effect of NPs and hence, assist in their regulation. -- Graphical abstract: Various physicochemical factors affecting dissolution of nanoparticles. Highlights: ► In this study we discuss dissolution of nanoparticles. ► Physicochemical properties of nanoparticles influence dissolution. ► Measuring dissolution of nanoparticles can help to understand their biological response.

  14. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  15. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  16. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Marion, E-mail: marion.roy@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Martinelli, Laure, E-mail: laure.martinelli@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Ginestar, Kevin, E-mail: kevin.ginestar@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Favergeon, Jérôme, E-mail: jerome.favergeon@utc.fr [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Moulin, Gérard [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France)

    2016-01-15

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10{sup −9} and 5 10{sup −4} g kg{sup −1}. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = −57584/T(K) −55.876T(K) + 254546 (R is the gas constant in J mol{sup −1} K{sup −1}). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour. - Highlights: • 10 austenitic steels and Ni rich alloys were tested in LBE at 520 °C with dissolved oxygen content between 10{sup -9} and 5 10{sup -4} wt%. • It is shown that only thermodynamics cannot explain the Ni rich alloys corrosion behaviour in LBE. • The role of oxygen on corrosion behaviour in LBE was highlighted. • An equilibrium line was defined above which only oxidation has occurred on 316L: RTln[O](wt%) = -57584/T(K)-55.876T(K)+254546. • 18Cr-15Ni-3.7Si, 21Cr-11Ni-1.6Si and 14Cr-25Ni-3.5Al

  17. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  18. Benchmarking the Stability of Oxygen Evolution Reaction Catalysts

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Paoli, Elisa Antares; Knudsen, Brian Peter

    2014-01-01

    Because of the rising need for energy storage, potentially facilitated by electrolyzers, improvements to the catalysis of the oxygen evolution reaction (OER) become increasingly relevant. Standardized protocols have been developed for determining critical figures of merit, such as the electrochem......Because of the rising need for energy storage, potentially facilitated by electrolyzers, improvements to the catalysis of the oxygen evolution reaction (OER) become increasingly relevant. Standardized protocols have been developed for determining critical figures of merit...... coupled plasma mass spectrometry (ICP–MS). We show that a meaningful estimation of the stability cannot be achieved based on purely electrochemical tests. On the catalysts tested, the anodic dissolution current was four orders of magnitude lower than the total current. We propose that even if long......-term testing cannot be replaced, a useful evaluation of the stability can be achieved with short-term tests by using EQCM or ICP–MS....

  19. Aqueous dissolution of sodium aluminosilicate geopolymers derived from metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Z., E-mail: zaynab.aly@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Vance, E.R. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Perera, D.S. [School of Materials Science, University of NSW, Kensington, NSW 2052 (Australia)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In dilute solutions, Na, Al and Si releases were not sensitive to pH in range 4-10. Black-Right-Pointing-Pointer On heating from 18 to 90 Degree-Sign C in DIW, Na dissolution rate increased by a factor of {approx}4. Black-Right-Pointing-Pointer Elemental extractions in DIW at 18 Degree-Sign C increased linearly with time over 1-7 days. Black-Right-Pointing-Pointer Na release kinetics in DIW followed a pseudo-second-order kinetic model. Black-Right-Pointing-Pointer Contact with KCl, KHCO{sub 3} and phthalate buffers (pH6 and 10) resulted in Na{sup +} {r_reversible} K{sup +} exchange. - Abstract: In dilute aqueous solutions, the elemental releases of Na, Al and Si from a metakaolin-based sodium aluminosilicate geopolymer were not very sensitive to pH in the range of 4-10 but increased outside this range, particularly on the acidic side. To minimise pH drifts, experiments were carried out using small amounts of graded powders in relatively large volumes of water. In deionised water, the Na dissolution rate in 7 days was dominant and increased by at least a factor of {approx}4 on heating from 18 to 90 Degree-Sign C, with greater increases in the extractions of Al and Si. At 18 Degree-Sign C the elemental extractions in deionised water increased approximately linearly with time over the 1-7 days period. Further exposure led to a slower extraction into solution for Na and Si, with a decrease in extraction of Al. It was deduced that framework dissolution was important in significantly acidic or alkaline solutions, but that contributions from water transfer from pores to elemental extractions were present, even at low temperatures in neutral solutions. It was also deduced from the Na release data that the Na leaching kinetics of geopolymer in deionised water (dilute solutions) followed the pseudo-second-order kinetic model and the pseudo-second-order rate constant evaluated. Contact with KCl, KHCO{sub 3}, and pH {approx}6 and 10

  20. Behavior of iodine in the dissolution of spent nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Tsutomu; Komatsu, Kazunori; Takahashi, A. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    The results of laboratory-scale experiments concerning the behavior of iodine in the dissolution of spent nuclear fuels, which were carried out at the Japan Atomic Energy Research Institute, are summarized. Based on previous and new experimental results, the difference in quantity of residual iodine in the fuel solution between laboratory-scale experiments and reprocessing plants is discussed, Iodine in spent fuels is converted to the following four states: (1) oxidation into I{sub 2} by nitric acid, (2) oxidation into I{sub 2} by nitrous acid generated in the dissolution, (3) formation of a colloid of insoluble iodides such as AgI and PdI{sub 2}, and (4) deposition on insoluble residue. Nitrous acid controls the amount of colloid formed. As a result, up to 10% of iodine in spent fuels is retained in the fuel solution, up to 3% is deposited on insoluble residue, and the balance volatilizes to the off-gas, Contrary to earlier belief, when the dissolution is carried out in 3 to 4 M HNO{sub 3} at 100{degrees}C, the main iodine species in a fuel solution is a colloid, not iodate, Immediately after its formation, the colloid is unstable and decomposes partially in the hot nitric acid solution through the following reaction: AgI(s) + 2HNO{sub 3}(aq) = {1/2}I{sub 2}(aq) + AgNO{sub 3}(aq) + NO{sub 2}(g) + H{sub 2}O(1). For high concentrations of gaseous iodine, I{sub 2}(g), and NO{sub 2}, this reaction is reversed towards formation of the colloid (AgI). Since these concentrations are high near the liquid surface of a plant-scale dissolver, there is a possibility that the colloid is formed there through this reversal, Simulations performed in laboratory-scale experiments demonstrated this reversal, This phenomenon can be one reason the quantity of residual iodine in spent fuels is higher in reprocessing plants than in laboratory-scale experiments. 17 refs., 5 figs., 3 tabs.

  1. Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology.

    Science.gov (United States)

    Xu, Min; Liew, Celine Valeria; Heng, Paul Wan Sia

    2015-01-15

    This study explored the application of 400-DS dissolution apparatus 7 for individual pellet dissolution methodology by a design of experiment approach and compared its capability with that of the USP dissolution apparatus 1 and 2 for differentiating the coat quality of sustained release pellets. Drug loaded pellets were prepared by extrusion-spheronization from powder blends comprising 50%, w/w metformin, 25%, w/w microcrystalline cellulose and 25%, w/w lactose, and then coated with ethyl cellulose to produce sustained release pellets with 8% and 10%, w/w coat weight gains. Various pellet properties were investigated, including cumulative drug release behaviours of ensemble and individual pellets. When USP dissolution apparatus 1 and 2 were used for drug release study of the sustained release pellets prepared, floating and clumping of pellets were observed and confounded the release profiles of the ensemble pellets. Hence, the release profiles obtained did not characterize the actual drug release from individual pellet and the applicability of USP dissolution apparatus 1 and 2 to evaluate the coat quality of sustained release pellets was limited. The cumulative release profile of individual pellet using the 400-DS dissolution apparatus 7 was found to be more precise at distinguishing differences in the applied coat quality. The dip speed and dip interval of the reciprocating holder were critical operational parameters of 400-DS dissolution apparatus 7 that affected the drug release rate of a sustained release pellet during the individual dissolution study. The individual dissolution methodology using the 400-DS dissolution apparatus 7 is a promising technique to evaluate the individual pellet coat quality without the influence of confounding factors such as pellet floating and clumping observed during drug release test with dissolution apparatus 1 and 2, as well as to facilitate the elucidation of the actual drug release mechanism conferred by the applied sustained

  2. Quantification of the resist dissolution process: an in situ analysis using high speed atomic force microscopy

    Science.gov (United States)

    Santillan, Julius Joseph; Shichiri, Motoharu; Itani, Toshiro

    2016-03-01

    This work focuses on the application of a high speed atomic force microscope (HS-AFM) for the in situ visualization / quantification of the resist dissolution process. This technique, as reported in the past, has provided useful pointers on the formation of resist patterns during dissolution. This paper discusses about an investigation made on the quantification of what we refer to as "dissolution unit size" or the basic units of patterning material dissolution. This was done through the establishment of an originally developed analysis method which extracts the difference between two succeeding temporal states of the material film surface (images) to indicate the amount of change occurring in the material film at a specific span of time. Preliminary experiments with actual patterning materials were done using a positive-tone EUV model resist composed only of polyhydroxystyrene (PHS)-based polymer with a molecular weight of 2,500 and a polydispersity index of 1.2. In the absence of a protecting group, the material was utilized at a 50nm film thickness with post application bake of 90°C/60s. The resulting film is soluble in the alkali-based developer even without exposure. Results have shown that the dissolution components (dissolution unit size) of the PHS-based material are not of fixed size. Instead, it was found that aside from one constantly dissolving unit size, another, much larger dissolution unit size trend also occurs during material dissolution. The presence of this larger dissolution unit size suggests an occurrence of "polymer clustering". Such polymer clustering was not significantly present during the initial stages of dissolution (near the original film surface) but becomes more persistently obvious after the dissolution process reaches a certain film thickness below the initial surface.

  3. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  4. Destructive electronics from electrochemical-mechanically triggered chemical dissolution

    International Nuclear Information System (INIS)

    Sim, Kyoseung; Wang, Xu; Yu, Cunjiang; Li, Yuhang; Linghu, Changhong; Song, Jizhou; Gao, Yang

    2017-01-01

    The considerable need to enhance data and hardware security suggest one possible future for electronics where it is possible to destroy them and even make them disappear physically. This paper reports a type of destructive electronics which features fast transience from chemical dissolution on-demand triggered in an electrochemical-mechanical manner. The detailed materials, mechanics, and device construction of the destructive electronics are presented. Experiment and analysis of the triggered releasing and transience study of electronic materials, resistors and metal-oxide-semiconductor field effect transistors illustrate the key aspects of the destructive electronics. The reported destructive electronics is useful in a wide range of areas from security and defense, to medical applications (paper)

  5. Enhancement of dissolution rate of piroxicam by electrospinning technique

    International Nuclear Information System (INIS)

    Begum, S K Raziya; Varma, M Mohan; Raju, D B; Prasad, R G S V; Phani, A R; Jacob, Biju; Salins, Paul C

    2012-01-01

    The use of electrospun nanofibers to enhance dissolution of poorly soluble drugs could be a novel strategy in future for pharmaceutical applications. In the present work electrospun nanofibers were prepared as a novel system for enhancing the delivery of piroxicam, a non-steroidal anti-inflammatory drug (NSAID). These nanofibers were prepared from polyvinyl pyrrolidone (PVP) (pharmaceutical grade), a biodegradable polymer, to obtain a solution with drug:polymer ratio of 1:4. The release rate of the piroxicam nanofibers was studied in simulated gastric fluid. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) are used to evaluate the chemical and physical nature. The results showed that the release rates were twice increased in comparison with the pure drug. However, the blend of drug and polymer could be varied to optimize the release rates depending upon the need and formulation (paper)

  6. Enhancement of dissolution rate of piroxicam by electrospinning technique

    Science.gov (United States)

    Raziya Begum, S. K.; Mohan Varma, M.; Raju, D. B.; Prasad, R. G. S. V.; Phani, A. R.; Jacob, Biju; Salins, Paul C.

    2012-12-01

    The use of electrospun nanofibers to enhance dissolution of poorly soluble drugs could be a novel strategy in future for pharmaceutical applications. In the present work electrospun nanofibers were prepared as a novel system for enhancing the delivery of piroxicam, a non-steroidal anti-inflammatory drug (NSAID). These nanofibers were prepared from polyvinyl pyrrolidone (PVP) (pharmaceutical grade), a biodegradable polymer, to obtain a solution with drug:polymer ratio of 1:4. The release rate of the piroxicam nanofibers was studied in simulated gastric fluid. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) are used to evaluate the chemical and physical nature. The results showed that the release rates were twice increased in comparison with the pure drug. However, the blend of drug and polymer could be varied to optimize the release rates depending upon the need and formulation

  7. Lover and learner: Exploring relational schema change following relationship dissolution.

    Science.gov (United States)

    Brunson, Julie A; Øverup, Camilla S; Acitelli, Linda K

    2018-03-27

    Romantic relationships are known to be very influential, but less is known about how these relationships, and particularly the breakup of these relationships, may affect individuals' relational schemas, or their expectations for relationships. Undergraduate students reported on how their views of themselves, romantic partners, and relationships changed after breaking up with a past partner. Results suggest that relational schemas change following relationship dissolution and that there are both positive and negative aspects to this change. There was also some evidence that aspects of the past relationship predicted change and the valence of change, and that change and the valence of change were related to aspects of current relationship quality. These results are an important first step in understanding how past romantic relationships influence people's expectations about relationships and, by extension, their health and wellbeing.

  8. Study of the discontinuous dissolution of uranium oxides

    International Nuclear Information System (INIS)

    Bueno, L.A.O.; Floh, B.; Araujo, J.A. de.

    1978-01-01

    Dissolution studies of UO 2 and U 3 O 8 particles and pellets in nitric acid were carried out to find the best flowsheet conditions for treatment of irradiated materials. All experiments were accomplished with unirradiated oxides at room-and boiling point temperature of the nitric acid solutions, the acid molarity ranging from 1 up to 12M in stoichiometric-and (100% up to 300%) excess conditions. The UO 2 (10g) and U 3 O 8 (10g) are easily dissolved (10 and 50s), respectively, at boiling point of 6M nitric acid solution. At the same conditions compacted pellets are dissolved in 29 min (U 3 O 8 =5g) and in 330 min (UO 2 =20g) [pt

  9. Modeling of a dissolution system for transuranic compounds

    International Nuclear Information System (INIS)

    Chiba, Z.; Dease, C.

    1991-02-01

    A system is currently being developed at Lawrence Livermore Laboratory to treat transuranic wastes by means of a mediated electrochemical oxidation process. The process involves generating Ag( ++ ) from a solution of silver nitrate and nitric acid in an electrochemical cell. Ag( ++ ) is highly reactive and is capable of attacking many organic and inorganic substances. In particular, if a mixture of particles containing transuranic and other scrap metal oxides is allowed to react with Ag( ++ ) in a nitric acid solution, the transuranic oxides will dissolve and can be removed with the solution leaving the other insoluble oxides behind. The dissolution of the transuranic oxides by reactions with Ag( ++ ) occurs due to further oxidation to higher valence states and the formation of soluble ions such as MO 2 + and MO 2 ++ . 7 refs., 5 figs., 1 tab

  10. Acid Dissolution of Depleted Uranium from Catalyst using Microwave

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Hyun; Jeong, Seong Gi; Park, Kwang Heon [Kyunghee University, Yongin (Korea, Republic of)

    2011-05-15

    The separation process of uranium is one of the most important fields in nuclear industry because uranium is used primary in nuclear power plants. Uranium ores are treated by either acid or alkaline reagents. Uranium can be dissolved by acid or alkaline solutions. There are two oxidation states in which the hexavalent form, the oxide of which is UO{sub 3}, and the tetravalent form, the oxide of which is UO{sub 2}. However, depleted uranium(DU) has also been used as a catalyst in specialized chemical reaction such as ammoxidation. The preferred catalyst for propylene oxidation with ammonia was a uranium oxide-antimony oxide composition. The active phase of catalyst was known as USbO{sub 5} and USb{sub 3}O{sub 10}. There is pentavalent form. Waste catalyst containing DU was generated and stored in chemical industry. In this work, we removed DU from catalyst by acid dissolution

  11. Determination of the dissolution slowness surface by study of etched shapes I. Morphology of the dissolution slowness surface and theoretical etched shapes

    Science.gov (United States)

    Leblois, T.; Tellier, C. R.

    1992-07-01

    We propose a theoretical model for the anisotropic etching of crystals, in order to be applied in the micromachining. The originality of the model is due to the introduction of dissolution tensors to express the representative surface of the dissolution slowness. The knowledge of the equation of the slowness surface allows us to determine the trajectories of all the elements which compose the starting surface. It is then possible to construct the final etched shape by numerical simulation. Several examples are given in this paper which show that the final etched shapes are correlated to the extrema of the dissolution slowness. Since the slowness surface must be determined from experiments, emphasis is placed on difficulties encountered when we correlate theory to experiments. Nous avons modélisé le processus de dissolution anisotrope des cristaux en vue d'une application à la simulation des formes obtenues par photolithogravure chimique. La principale originalité de ce modèle tient à l'introduction de tenseurs de dissolution pour exprimer la surface représentative de la lenteur de dissolution. La connaissance de l'équation de la lenteur de dissolution permet de calculer les trajectoires des différents éléments constituant la surface de départ puis de reconstituer par simulation la forme dissoute. Les simulations démontrent que les formes limites des cristaux dissous sont corrélées aux extrema de la lenteur de dissolution. La détermination de la surface de la lenteur se faisant à partir de mesures expérimetales, nous nous sommes efforcés de montrer toutes les difficultés attachées à cette analyse.

  12. Reductive Dissolution of Goethite and Hematite by Reduced Flavins

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhi; Zachara, John M.; Wang, Zheming; Shi, Liang; Fredrickson, Jim K.

    2013-10-02

    The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive than hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.

  13. Effect of solution saturation state and temperature on diopside dissolution

    Directory of Open Access Journals (Sweden)

    Carroll Susan A

    2007-03-01

    Full Text Available Abstract Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175°C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175°C. At 175°C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface. Fit to the experimental data yields Rate (moldiopsidecm−2s−1=k×10−Ea/2.303RT(aH+2aMg2+n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaieaacqWFsbGucqWFHbqycqWF0baDcqWFLbqzcqqGGaaicqGGOaakcqWFTbqBcqWFVbWBcqWFSbaBcqWFGaaicqWFKbazcqWFPbqAcqWFVbWBcqWFWbaCcqWFZbWCcqWFPbqAcqWFKbazcqWFLbqzcqWFGaaicqWFJbWycqWFTbqBdaahaaWcbeqaaiabgkHiTiabikdaYaaakiab=bcaGiab=nhaZnaaCaaaleqabaGaeyOeI0IaeGymaedaaOGaeiykaKIaeyypa0Jaem4AaSMaey41aqRaeeymaeJaeeimaaZaaWbaaSqabeaacqGHsislcqWGfbqrdaWgaaadbaGaemyyaegabeaaliabc+caViabikdaYiabc6caUiabioda

  14. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    Science.gov (United States)

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  16. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  17. Pathology of oxygen

    National Research Council Canada - National Science Library

    Autor, Anne Pomeroy

    1982-01-01

    This volume has been designed to provide those interested in oxygen toxicity with a working knowledge of advancement in the field with the intention that the topics described in each chapter will be immediately useful...

  18. Using oxygen at home

    Science.gov (United States)

    ... at Home Tell your local fire department, electric company, and telephone company that you use oxygen in your home. They ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  19. Pathology of oxygen

    National Research Council Canada - National Science Library

    Autor, Anne Pomeroy

    1982-01-01

    .... The book is divided into three general sections. The first and smallest section of the book explains the molecular and biochemical basis of our current understanding of oxygen radical toxicity as well as the means by which normal aerobic cells...

  20. Effect of nickel content on the anodic dissolution and passivation of ...

    Indian Academy of Sciences (India)

    The effect of systematic increase of Ni on the anodic dissolution and passivation of Zn–Ni alloys in various concentrations of KOH solution (0.1–1 M) was investigated. The anodic dissolution and passivation behaviour for each pure Zn and Ni in the same studied solutions was also investigated, and the obtained data were ...

  1. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions

    NARCIS (Netherlands)

    Van Drooge, D.J.; Hinrichs, W.L.J.; Frijlink, H.W.

    2004-01-01

    In this study, anomalous dissolution behaviour of tablets consisting of sugar glass dispersions was investigated. The poorly aqueous soluble diazepam was used as a lipophilic model drug. The release of diazepam and sugar carrier was determined to study the mechanisms governing dissolution behaviour.

  2. Specific surface area behavior of a dissolving population of particles. Augmenting Mercer Dissolution Theory

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Rothenberg, S.J.

    1986-01-01

    Specific surface area (Sp) measurements were made on two uranium oxide aerosol materials before and after in vitro dissolution studies were performed on the materials. The results of these Sp measurements were evaluated relative to predictions made from extending Mercer dissolution theory to describe the Sp behavior of a dissolving population of particles

  3. Real-time dissolution behavior of furosemide in biorelevant media as determined by UV imaging

    DEFF Research Database (Denmark)

    Gordon, Sarah; Naelapää, Kaisa; Rantanen, Jukka

    2013-01-01

    M bile salt/phospholipid, pH 6.5) together with corresponding blank buffer were employed. Dissolution rates as a function of flow rate (0.2-1.0 mL/min) were determined directly from UV images, and by analysis of collected effluent using UV spectrophotometry. A good agreement in dissolution rates...

  4. Insights into the early dissolution events of amlodipine using UV imaging and Raman spectroscopy

    DEFF Research Database (Denmark)

    Boetker, Johan P; Savolainen, Marja; Koradia, Vishal

    2011-01-01

    Traditional dissolution testing determines drug release to the bulk, but does not enable an understanding of the events happening close to the surface of a solid or a tablet. UV imaging is a new imaging approach that can be used to study the dissolution behavior of chemical compounds. The UV imag...

  5. Dissolution of short and long rockwool and glasswool fibers by macrophages in flowthrough cell culture.

    Science.gov (United States)

    Luoto, K; Holopainen, M; Kangas, J; Kalliokoski, P; Savolainen, K

    1998-07-01

    Dissolution of MMVF (man-made vitreous fibers) by macrophages has previously been studied utilizing cell cultures in wells. A new, more dynamic method has been developed to explore the effects of macrophages on MMVF dissolution. In this method, the culture medium flows through a membrane on which the macrophages and fibers are placed. The dissolution of short and long rockwool and glasswool fibers was investigated in the present study by macrophages by assessing the dissolution of Si (silicon), Fe (iron), and Al (aluminium) from the fibers. Dissolution of these elements usually increased as a function of time. Generally, the dissolution of elements from the fibers in the flowthrough culture exceeded that observed with the culture in wells system. The dissolution of glasswool fibers was greater in medium than in cell culture, whereas the opposite was true for rockwool fibers. Dissolution of Si was greater from glasswool than from rockwool fibers, while the opposite was true for Fe and Al. Macrophages that had phagocytized fibers in flowthrough culture contained Si, and there were also precipitations with Si in the samples. The fibers in the flowthrough culture also exhibited surface changes such as breakings, pittings, etching, and peeling. The short rockwool fibers tended to fracture more than short glasswool fibers, while long glasswool fibers were more extensively broken than short glasswool fibers. The results with this new, dynamic, flowthrough culture method with macrophages demonstrate that this method provides valuable information on the abilities of macrophages to dissolve MMVF leading to subsequent morphological changes of fibers.

  6. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2007-01-01

    A simple procedure is introduced to use periodic Density Functional Theory calculations to estimate trends in the thermodynamics of surface alloy dissolution in acidic media. With this approach, the dissolution potentials for solute metal atoms embedded in the surface layer of various host metals...

  7. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  8. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  9. A novel microdialysis-dissolution/permeation system for testing oral dosage forms

    DEFF Research Database (Denmark)

    Fong, Sophia Yui Kau; Poulsen, Jessie; Brandl, Martin

    2016-01-01

    A novel microdialysis-dissolution/permeation (M-D/P) system was developed for the biopharmaceutical assessment of oral drug formulations. This system consists of a side-by-side diffusion chamber, a microdialysis unit fixed within the dissolution chamber for continuous sampling, and a biomimetic P...

  10. Dissolution of oxide films on iron in aqueous solutions containing complexing anions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Lee, W.; Owen, D.G.

    1981-01-01

    The dissolution, in oxalic acid and oxalic acid plus ethylenediaminetetraacetate, of magnetite films grown at high temperature on iron has been studied under varying conditions of pH and temperature. For oxalate concentrations greater than about 2 x 10 -3 mol dm -3 , magnetite dissolves by direct chemical dissolution. The mechanism appears to involve adsorption of oxalate ions at ferric ion sites in the oxide lattice, followed by proton attack and desorption of cationic species. Once metal dissolution starts, β-ferrous oxalate dihydrate is precipitated on the electrode, leading to erratic fluctuations in the electrode potential and eventually to inhibition of metal dissolution. For oxalate concentrations -3 mol dm -3 , the predominant dissolution mechanism appears to involve reduction by the metal. Also, once solution penetration to the underlying metal has occurred, and the electrode has returned to the active state, autoreductive dissolution appears to predominate even at higher oxalate concentrations. This change in mechanism from predominantly chemical dissolution to predominantly autoreductive dissolution may be due, at least in part, to the desorption of oxalate ions at the more negative potentials achieved in the active state. (author)

  11. A maturation method of uranium content in resins with acid dissolution

    International Nuclear Information System (INIS)

    Liu Yang

    2010-01-01

    Acid dissolution method is that with intensively oxidation acid to decompose ion exchanging resins and dissolving U and Fe ion in water, then menstruate the U content by titration. Comparing with our current method of filtering wash, acid dissolution menstruation U can get more accurate result and take less time, use more simple device. (authors)

  12. Dissolution of kinetics of nanoscale liquid Pb/Bi inclusions at a grain boundary in aluminium

    DEFF Research Database (Denmark)

    Prokofjev, Sergei I.; Johnson, Erik; Zhilin, Victor M.

    2008-01-01

    of the inclusions was observed until their complete disappearance. Digitized video recordings of the process of dissolution were used to obtain the dependence of the inclusion size with time. The kinetics of the dissolution of the grain boundary inclusions can be described with a model where it is assumed...

  13. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans

    Science.gov (United States)

    Rudolf Jaffe; Yan Ding; Jutta Niggemann; Anssi V. Vahatalo; Aron Stubbins; Robert G. M. Spencer; John Campbell; Thorsten Dittmar

    2013-01-01

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent...

  14. The dissolution of unirradiated UO2 fuel pellets under simulated disposal conditions

    International Nuclear Information System (INIS)

    Ollila, K.; Leino-Forsman, H.

    1993-03-01

    The dissolution behaviour of unirradiated UO 2 pellets was studied as a function of water composition under oxidizing and reducing conditions at 25 deg C. The waters included deionized water as the reference water, sodium bicarbonate solutions with varying bicarbonate content, and two different synthetic groundwaters. The release of uranium was measured during static batch dissolution experiments of long duration (3-4 years)

  15. Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.

    Science.gov (United States)

    Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R

    2015-07-01

    Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.

  16. Working Late: Do Workplace Sex Ratios Affect Partnership Formation and Dissolution?

    Science.gov (United States)

    Svarer, Michael

    2007-01-01

    In this paper, I analyze the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios are not important for the overall transition rate from…

  17. Impact of dissolution on the sedimentary record of the Paleocene-Eocene thermal maximum

    Science.gov (United States)

    Bralower, Timothy J.; Kelly, D. Clay; Gibbs, Samantha; Farley, Kenneth; Eccles, Laurie; Lindemann, T. Logan; Smith, Gregory J.

    2014-09-01

    The input of massive amounts of carbon to the atmosphere and ocean at the Paleocene-Eocene Thermal Maximum (PETM; ˜55.53 Ma) resulted in pervasive carbonate dissolution at the seafloor. At many sites this dissolution also penetrated into the underlying sediment column. The magnitude of dissolution at and below the seafloor, a process known as chemical erosion, and its effect on the stratigraphy of the PETM, are notoriously difficult to constrain. Here, we illuminate the impact of dissolution by analyzing the complete spectrum of sedimentological grain sizes across the PETM at three deep-sea sites characterized by a range of bottom water dissolution intensity. We show that the grain size spectrum provides a measure of the sediment fraction lost during dissolution. We compare these data with dissolution and other proxy records, electron micrograph observations of samples and lithology. The complete data set indicates that the two sites with slower carbonate accumulation, and less active bioturbation, are characterized by significant chemical erosion. At the third site, higher carbonate accumulation rates, more active bioturbation, and possibly winnowing have limited the impacts of dissolution. However, grain size data suggest that bioturbation and winnowing were not sufficiently intense to diminish the fidelity of isotopic and microfossil assemblage records.

  18. Development of a μDissolution-Permeation model with in situ drug concentration monitoring

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Byrialsen, Julie Pelle; Holm, René

    2016-01-01

    state biorelevant medium consisting of HBSS pH 6.5 supplemented with bile salts and lecithin was used as the apical dissolution media, while HBSS pH 7.4 was used as the basolateral medium. The apparent permeability (Papp) and dissolution-time profiles for albendazole, felodipine and fenofibrate were...

  19. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide.......To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  20. Ekstrakorporal oxygenering ved legionellapneumoni

    DEFF Research Database (Denmark)

    Uslu, Bülent; Steensen, Morten

    2009-01-01

    We present a case report with a 49-year-old woman with legionella pneumonia and fulminant respiratory failure. Despite maximal conventional respirator treatment with positive pressure ventilation, 100% oxygen and pharmacological treatment in an intensive care unit, further deterioration with hypo......We present a case report with a 49-year-old woman with legionella pneumonia and fulminant respiratory failure. Despite maximal conventional respirator treatment with positive pressure ventilation, 100% oxygen and pharmacological treatment in an intensive care unit, further deterioration...