WorldWideScience

Sample records for oxygen desorption rate

  1. Oxygen Sorption and Desorption Properties of Selected Lanthanum Manganites and Lanthanum Ferrite Manganites

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Skou, Eivind M.; Jacobsen, Torben

    2015-01-01

    Temperature‐programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid‐oxide fuel cell (SOFC) cathode materials (La0.85Sr0.15)0.95MnO3+δ (LSM) and La0.60Sr0.40Fe0.80Mn0.20O3‐δ (LSFM). The powders were characterized...... by X‐ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over...... time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second‐order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate‐determining step...

  2. Oxygen desorption from YBa2Cu3O(7-x) and Bi2CaSr2Cu2O(8 + delta) superconductors

    Science.gov (United States)

    Mesarwi, A.; Levenson, L. L.; Ignatiev, A.

    1991-01-01

    Oxygen desorption experiments from YBa2Cu3O(7-x) (YBCO) and Bi2CaSr2Cu2O(8 + delta) (BSCCO) superconductors were carried out using a quadrupole mass spectrometer for monitoring the desorbing species and X-ray photoemission spectroscopy for surface characterization. Molecular oxygen was found to desorb from both superconductors following photoirradiation with ultraviolet/optical radiation and subsequent heating at over 150 C. Both YBCO and BSCCO were found to have similar oxygen desorption rates and similar activation energies. The desorption data as well as the X-ray photoemission data indicate that the oxygen desorption is not intrinsic to the superconductors but rather due to molecular oxygen entrapped in the material.

  3. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  4. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    Science.gov (United States)

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  5. Low energy electron stimulated desorption from DNA films dosed with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Cloutier, Pierre; Massey, Sylvain; Sanche, Leon [Groupe en sciences des radiations, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-06-21

    Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O{sub 2}. The OH{sup -} desorption yields increase markedly with exposure to O{sub 2} at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O{sup -}, attributable to dissociative electron attachment to trapped O{sub 2} molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O{sub 2} shows that this surprising increase in OH{sup -} desorption, at elevated temperatures, arises from the reaction of O{sub 2} with damaged DNA sites. These results thus appear to be a manifestation of the so-called 'oxygen fixation' effect, well known in radiobiology.

  6. Coverage-dependent adsorption and desorption of oxygen on Pd(100)

    Energy Technology Data Exchange (ETDEWEB)

    Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra; Juurlink, Ludo B. F., E-mail: l.juurlink@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden (Netherlands); Berg, Otto T. [Department of Chemistry, California State University Fresno, 2555 E. San Ramon Ave., Fresno, California 93740 (United States)

    2016-06-28

    We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediate temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.

  7. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  8. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  9. Electron stimulated desorption study of oxygen adsorption on tungsten

    International Nuclear Information System (INIS)

    Prince, R.H.; Floyd, G.R.

    1978-01-01

    The adsorption of oxygen on a polycrystalline tungsten surface at approximately 800 K has been studied by means of electron stimulated desorption (ESD). Although precision gas dosing was not employed, the initial sticking probability for dissociative adsorption appears to be essentially unity, while the variation with coverage suggests that a high degree of order exists and that precursor state kinetics are significant. A most noticeable and reproducible discontinuity in ESD parameters occurs at a fractional coverage theta approximately 0.8 (exposure approximately 1.4 X 10 15 molecules/cm 2 incident) which is interpreted as an order-disorder transition within a single (β 1 ) chemisorption state, and results in an increase in the ionic desorption cross-section by a factor of approximately 1.26. A discussion of the adsorption kinetics and the disorder transition is given in terms of current models of dissociative adsoption which include the effects of nearest neighbour lateral interactions. (Auth.)

  10. Desorption, dissociation and orientation of oxygen admolecules on a reconstructed platinum(110)(1x2) surface studied by thermal desorption and near-edge X-ray-absorption fine-structure

    International Nuclear Information System (INIS)

    Ohno, Yuichi; Matsushima, Tatsuo; Tanaka, Shin-ichiro; Kamada, Masao

    1993-01-01

    The desorption, dissociation and orientation of oxygen admolecules on a reconstructed Pt(110)(1x2) were studied by means of TDS combined with isotope tracer, NEXAFS, and angle-resolved TDS. The admolecules below half a monolayer lie on the bottom of the trough, being oriented along it. The molecules adsorbed additionally are lying on declining terraces. The desorption flux of the former species shows a simple cosine distribution, suggesting that the molecule is not localized on the bottom in the desorption event. (author)

  11. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A. [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S.D.; Paterson, P.J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D. [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M. [Australian National Univ., Canberra, ACT (Australia)

    1996-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  12. Electron stimulated desorption of positive and negative oxygen ions from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, A [Technion-Israel Inst. of Tech., Haifa (Israel). Solid State Inst.; Moss, S D; Paterson, P J.K. [Royal Melbourne Inst. of Tech., VIC (Australia); McCubbery, D [La Trobe Univ., Bundoora, VIC (Australia); Petravic, M [Australian National Univ., Canberra, ACT (Australia)

    1997-12-31

    The electron stimulated desorption (ESD) of positive and negative oxygen ion from superconducting YBa{sub 2}Cu{sub 3}O{sub 7} surfaces was studied. Based on ion desorption yield measurements as function of electron kinetic energy, primary excitations leading to positive and negative oxygen ion desorption are suggested. To the best of the authors` knowledge this is the first study on electron energy dependent ESD from YBa{sub 2}Cu{sub 3}O{sub 7} surfaces. The YBa{sub 2}Cu{sub 3}O{sub 7} samples were prepared from BaCO{sub 3}, Y{sub 2}O{sub 3} and CuO using standard high temperature sintering and annealing procedures. Slices 2 mm thick were cut and further annealed at 400 C in flowing oxygen for 24 hours prior to insertion into the ultrahigh vacuum (UHV) chamber for ESD. The near surface composition and chemical state of the annealed sample after exposure to air was examined by Auger and XPS analysis. These measurements suggest that the ESD experiments were performed on samples of similar near surface and bulk composition with some OH- chemisorbed groups and Cl surface contaminations and that negative and positive oxygen ion desorption may be initiated via a primary core level ionization. 10 refs., 3 figs.

  13. Counterion adsorption and desorption rate of a charged macromolecule

    Science.gov (United States)

    Shi, Yu; Yang, Jingfa; Zhao, Jiang

    The rate constant of counterion adsorption to and desorption from a synthetic polyelectrolyte, polystyrene sulfonate (PSS-), is measured in aqueous solution by single molecule fluorescence spectroscopy. The results show that both adsorption and desorption rate of counterions have strong dependence on polymer concentration, salt concentration as well as the molecular weight of polyelectrolytes. The results clearly demonstrate that the contribution of electrostatic interaction and the translational entropy to the distribution of counterions of a polyelectrolyte molecule. The information is helpful to the understanding of polyelectrolyte physics. National Natural Science Foundation of China.

  14. Oxygen isotopic fractionation of O₂ during adsorption and desorption processes using molecular sieve at low temperatures.

    Science.gov (United States)

    Ahn, Insu; Kusakabe, Minoru; Lee, Jong Ik

    2014-06-15

    Cryogenic trapping using molecular sieves is commonly used to collect O2 extracted from silicates for (17)O/(16)O and (18)O/(16)O analyses. However, gases which interfere with (17)O/(16)O analysis, notably NF3, are also trapped and their removal is essential for accurate direct measurement of the (17)O/(16)O ratio. It is also necessary to identify and quantify any isotopic fractionation associated with the use of cryogenic trapping using molecular sieves. The oxygen isotopic compositions of O2 before and after desorption from, and adsorption onto, 13X and 5A molecular sieves (MS13X and MS5A) at 0°C, -78°C, -114°C, and -130°C were measured in order to determine the oxygen isotopic fractionation at these temperatures. We also investigated whether isotopic fractionation occurred when O2 gas was transferred sequentially into a second cold finger, also containing molecular sieve. It was confirmed that significant oxygen isotopic fractionation occurs between the gaseous O2 and that adsorbed onto molecular sieve, if desorption and adsorption are incomplete. As the fraction of released or untrapped O2 becomes smaller with decreasing trapping temperature (from 0 to -130°C), the isotopic fractionation becomes larger. Approximately half of the total adsorbed O2 is released from the molecular sieve during desorption at -114°C, which is the temperature recommended for separation from NF3 (retained on the molecular sieve), and this will interfere with (17)O/(16)O measurements. The use of a single cold finger should be avoided, because partial desorption is accompanied by oxygen isotopic fractionation, thereby resulting in inaccurate isotopic data. The use of a dual cold finger arrangement is recommended because, as we have confirmed, the transfer of O2 from the first trap to the second is almost 100%. However, even under these conditions, a small isotopic fractionation (0.18 ± 0.05‰ in δ(17)O values and 0.26 ± 0.06‰ in δ(18)O values) occurred, with O2 in

  15. Carbon tetrachloride desorption from activated carbon

    International Nuclear Information System (INIS)

    Jonas, L.A.; Sansone, E.B.

    1981-01-01

    Carbon tetrachloride was desorbed from a granular activated carbon subsequent to its adsorption under various vapor exposure periods. The varied conditions of exposure resulted in a range of partially saturated carbon beds which, when followed by a constant flow rate for desorption, generated different forms of the desorbing concentration versus time curve. A method of analyzing the desorption curves is presented which permits extraction of the various desorbing rates from the different desorption and to relate this to the time required for such regeneration. The Wheeler desorption kinetic equation was used to calculate the pseudo first order desorption rate constant for the carbon. The desorption rate constant was found to increase monotonically with increasing saturation of the bed, permitting the calculation of the maximum desorption rate constant for the carbon at 100% saturation. The Retentivity Index of the carbon, defined as the dimensionless ratio of the adsorption to the desorption rate constant, was found to be 681

  16. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hui; Schimmelmann, Arndt [Indiana University, Dept. of Geological Sciences, Bloomington, IN 47405-1405 (United States); Mastalerz, Maria [Indiana University, Indiana Geological Survey, Bloomington, IN 47405-2208 (United States); Pope, James [CRL Energy Ltd., 123 Blenheim Road, Christchurch (New Zealand); University of Canterbury, Dept. of Geological Sciences, Christchurch (New Zealand); Moore, Tim A. [University of Canterbury, Dept. of Geological Sciences, Christchurch (New Zealand); P.T. Arrow Energy Indonesia, Wisma Anugraha, Jl. Taman Kemang No. 32B, Jakarta Selatan (Indonesia)

    2010-01-07

    Desorption canisters are routinely employed to quantify coalbed gas contents in coals. If purging with inert gas or water flooding is not used, entrapment of air with {proportional_to} 78.08 vol.% nitrogen (N{sub 2}) in canisters during the loading of coal results in contamination by air and subsequent overestimates of N{sub 2} in desorbed coalbed gas. Pure coalbed gas does not contain any elemental oxygen (O{sub 2}), whereas air contamination originally includes {proportional_to} 20.95 vol.% O{sub 2} and has a N{sub 2}/O{sub 2} volume ratio of {proportional_to} 3.73. A correction for atmospheric N{sub 2} is often attempted by quantifying O{sub 2} in headspace gas and then proportionally subtracting atmospheric N{sub 2}. However, this study shows that O{sub 2} is not a conservative proxy for air contamination in desorption canisters. Time-series of gas chromatographic (GC) compositional data from several desorption experiments using high volatile bituminous coals from the Illinois Basin and a New Zealand subbituminous coal document that atmospheric O{sub 2} was rapidly consumed, especially during the first 24 h. After about 2 weeks of desorption, the concentration of O{sub 2} declined to near or below GC detection limits. Irreversible loss of O{sub 2} in desorption canisters is caused by biological, chemical, and physical mechanisms. The use of O{sub 2} as a proxy for air contamination is justified only immediately after loading of desorption canisters, but such rapid measurements preclude meaningful assessment of coalbed gas concentrations. With increasing time and progressive loss of O{sub 2}, the use of O{sub 2} content as a proxy for atmospheric N{sub 2} results in overestimates of N{sub 2} in desorbed coalbed gas. The indicated errors for nitrogen often range in hundreds of %. Such large analytical errors have a profound influence on market choices for CBM gas. An erroneously calculated N{sub 2} content in CBM would not meet specifications for most pipeline

  17. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality

    International Nuclear Information System (INIS)

    Jin, Hui; Schimmelmann, Arndt; Mastalerz, Maria; Pope, James; Moore, Tim A.

    2010-01-01

    Desorption canisters are routinely employed to quantify coalbed gas contents in coals. If purging with inert gas or water flooding is not used, entrapment of air with ∝ 78.08 vol.% nitrogen (N 2 ) in canisters during the loading of coal results in contamination by air and subsequent overestimates of N 2 in desorbed coalbed gas. Pure coalbed gas does not contain any elemental oxygen (O 2 ), whereas air contamination originally includes ∝ 20.95 vol.% O 2 and has a N 2 /O 2 volume ratio of ∝ 3.73. A correction for atmospheric N 2 is often attempted by quantifying O 2 in headspace gas and then proportionally subtracting atmospheric N 2 . However, this study shows that O 2 is not a conservative proxy for air contamination in desorption canisters. Time-series of gas chromatographic (GC) compositional data from several desorption experiments using high volatile bituminous coals from the Illinois Basin and a New Zealand subbituminous coal document that atmospheric O 2 was rapidly consumed, especially during the first 24 h. After about 2 weeks of desorption, the concentration of O 2 declined to near or below GC detection limits. Irreversible loss of O 2 in desorption canisters is caused by biological, chemical, and physical mechanisms. The use of O 2 as a proxy for air contamination is justified only immediately after loading of desorption canisters, but such rapid measurements preclude meaningful assessment of coalbed gas concentrations. With increasing time and progressive loss of O 2 , the use of O 2 content as a proxy for atmospheric N 2 results in overestimates of N 2 in desorbed coalbed gas. The indicated errors for nitrogen often range in hundreds of %. Such large analytical errors have a profound influence on market choices for CBM gas. An erroneously calculated N 2 content in CBM would not meet specifications for most pipeline-quality gas. (author)

  18. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    Science.gov (United States)

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  19. Measurements on the gas desorption yield of the oxygen-free copper irradiated with low-energy Xe10+ and O+

    Science.gov (United States)

    Dong, Z. Q.; Li, P.; Yang, J. C.; Yuan, Y. J.; Xie, W. J.; Zheng, W. H.; Liu, X. J.; Chang, J. J.; Luo, C.; Meng, J.; Wang, J. C.; Wang, Y. M.; Yin, Y.; Chai, Z.

    2017-10-01

    Heavy ion beam lost on the accelerator vacuum wall will release quantity of gas molecules and make the vacuum system deteriorate seriously. This phenomenon is called dynamic vacuum effect, observed at CERN, GSI and BNL, leading to the decrease of beam lifetime when increasing beam intensity. Heavy ion-induced gas desorption, which results in dynamic vacuum effect, becomes one of the most important problems for future accelerators proposed to operate with intermediate charge state beams. In order to investigate the mechanism of this effect and find the solution method for the IMP future project High Intensity heavy-ion Accelerator Facility (HIAF), which is designed to extract 1 × 1011 uranium particles with intermediate charge state per cycle, two dedicated experiment setups have been installed at the beam line of the CSR and the 320 kV HV platform respectively. Recently, experiment was performed at the 320 kV HV platform to study effective gas desorption with oxygen-free copper target irradiated with continuous Xe10+ beam and O+ beam in low energy regime. Gas desorption yield in this energy regime was calculated and the link between gas desorption and electronic energy loss in Cu target was proved. These results will be used to support simulations about dynamic vacuum effect and optimizations about efficiency of collimators to be installed in the HIAF main synchrotron BRing, and will also provide guidance for future gas desorption measurements in high energy regime.

  20. STM-Induced Hydrogen Desorption via a Hole Resonance

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Thirstrup, C.; Sakurai, M.

    1998-01-01

    We report STM-induced desorption of H from Si(100)-H(2 X 1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes...... with the Si-H 5 sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum...

  1. Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors

    DEFF Research Database (Denmark)

    Geslin, E.; Risgaard-Petersen, N.; Lombard, Fabien

    2011-01-01

    of the foraminiferal specimens. The results show a wide range of oxygen respiration rates for the different species (from 0.09 to 5.27 nl cell−1 h−1) and a clear correlation with foraminiferal biovolume showed by the power law relationship: R = 3.98 10−3 BioVol0.88 where the oxygen respiration rate (R) is expressed......Oxygen respiration rates of benthic foraminifera are still badly known, mainly because they are difficult to measure. Oxygen respiration rates of seventeen species of benthic foraminifera were measured using microelectrodes and calculated on the basis of the oxygen fluxes measured in the vicinity...... groups (nematodes, copepods, ostracods, ciliates and flagellates) suggests that benthic foraminifera have a lower oxygen respiration rates per unit biovolume. The total contribution of benthic foraminifera to the aerobic mineralisation of organic matter is estimated for the studied areas. The results...

  2. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    Science.gov (United States)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  3. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  4. Aquatic respiration rate measurements at low oxygen concentrations.

    Directory of Open Access Journals (Sweden)

    Moritz Holtappels

    Full Text Available Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX, optical sensors (optodes, and mass spectrometry in combination with (18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L(-1 h(-1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L(-1 h(-1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.

  5. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  6. Optimizing contaminant desorption and bioavailability in dense slurry systems. 2. PAH bioavailability and rates of degradation.

    Science.gov (United States)

    Kim, Han S; Weber, Walter J

    2005-04-01

    The effects of mechanical mixing on rates of polycyclic aromatic hydrocarbon (PAH) biodegradation in dense geosorbent slurry (67% solids content, w/w) systems were evaluated using laboratory-scale intermittently mixed batch bioreactors. A PAH-contaminated soil and a phenanthrene-sorbed mineral sorbent (alpha-Al2O3) were respectively employed as slurry solids in aerobic and anaerobic biodegradation studies. Both slurries exhibited a characteristic behavior of pseudoplastic non-Newtonian fluids, and the impeller revolution rate and its diameter had dramatic impacts on power and torque requirements in their laminar flow mixing. Rates of phenanthrene biodegradation were markedly enhanced by relatively low-level auger mixing under both aerobic and anaerobic (denitrifying) conditions. Parameters for empirical models correlating biodegradation rate coefficient (k(b)) values to the degree of mixing were similar to those for correlations between mass transfer (desorption) rate coefficient (k(r)) values for rapidly desorbing fractions of soil organic matter and degree of mixing reported in a companion study, supporting a conclusion that performance-efficient and cost-effective enhancements of PAH mass transfer (desorption) and its biodegradation processes can be achieved by the introduction of optimal levels of reactor-scale mechanical mixing.

  7. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  8. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Oberg, H. [Stockholm Univ., Stockholm (Sweden); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gladh, J. [Stockholm Univ., Stockholm (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Ostrom, H. [Stockholm Univ., Stockholm (Sweden); Pettersson, L. G. M. [Stockholm Univ., Stockholm (Sweden); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stockholm Univ., Stockholm (Sweden); Ablid-Pedersen, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-04-16

    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

  9. Application of Nanosize Zeolite Molecular Sieves for Medical Oxygen Concentration

    Directory of Open Access Journals (Sweden)

    Mingfei Pan

    2017-07-01

    Full Text Available The development of a portable oxygen concentrator is of prime significance for patients with respiratory problems. This paper presents a portable concentrator prototype design using the pressure/vacuum swing adsorption (PVSA cycle with a deep evacuation step (−0.82 barg instead of desorption with purge flow to simplify the oxygen production process. The output of the oxygen concentrator is a ~90 vol % enriched oxygen stream in a continuous adsorption and desorption cycle (cycle time ~90 s. The size of the adsorption column is 3 cm in diameter and 20 cm in length. A Li+ exchanged 13X nanosize zeolite is used as the adsorbent to selectively adsorb nitrogen from air. A dynamic model of the pressure and vacuum swing adsorption units was developed to study the pressurization and depressurization process inside the microporous area of nanosized zeolites. The describing equations were solved using COMSOL Multiphysics Chemical Engineering module. The output flow rate and oxygen concentration results from the simulation model were compared with the experimental data. Velocity and concentration profiles were obtained to study the adsorption process and optimize the operational parameters.

  10. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  11. Effect of oxygen treatment on heart rate after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg-Adamsen, S; Lie, C; Bernhard, A

    1999-01-01

    BACKGROUND: Cardiac complications are common during the postoperative period and may be associated with hypoxemia and tachycardia. Preliminary studies in high-risk patients after operation have shown a possible beneficial effect of oxygen therapy on arterial oxygen saturation and heart rate....... METHODS: The authors studied the effect of oxygen therapy on arterial oxygen saturation and heart rate in 100 consecutive unselected patients randomly and double blindly allocated to receive air or oxygen therapy between the first and fourth day after major abdominal surgery. RESULTS: The median arterial...... oxygen saturation rate increased significantly from 96% to 99% (P heart rate decreased significantly from 85 beats/min to 81 beats/min (P heart rate occurred...

  12. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  13. Chemisorption of oxygen and subsequent reactions on low index surfaces of β-Mo2C

    DEFF Research Database (Denmark)

    Shi, Xue Rong; Wang, Shengguang; Wang, Jianguo

    2016-01-01

    to the carbon vacancy were identified. We examined the effect of oxygen coverage on the morphology of β-Mo2C by plotting the equilibrium crystal shape. Thermodynamic effect of temperature and reactant or product pressure on the CO/CO2 desorption were investigated. The CO/CO2 desorption is more favorable...... at the saturated oxygen coverage than the low oxygen coverage thermodynamically. The subsequent oxygen diffusion to the carbon vacancy after CO/CO2 desorption may happen depending on the surfaces and oxygen coverage....

  14. Modification of pure oxygen absorption equipment for concurrent stripping of carbon dioxide

    Science.gov (United States)

    Watten, B.J.; Sibrell, P.L.; Montgomery, G.A.; Tsukuda, S.M.

    2004-01-01

    The high solubility of carbon dioxide precludes significant desorption within commercial oxygen absorption equipment. This operating characteristic of the equipment limits its application in recirculating water culture systems despite its ability to significantly increase allowable fish loading rates (kg/(L min)). Carbon dioxide (DC) is typically removed by air stripping. This process requires a significant energy input for forced air movement, air heating in cold climates and water pumping. We developed a modification for a spray tower that provides for carbon dioxide desorption as well as oxygen absorption. Elimination of the air-stripping step reduces pumping costs while allowing dissolved nitrogen to drop below saturation concentrations. This latter response provides for an improvement in oxygen absorption efficiency within the spray tower. DC desorption is achieved by directing head-space gases from the spray tower (O2, N2, CO2) through a sealed packed tower scrubber receiving a 2 N NaOH solution. Carbon dioxide is selectively removed from the gas stream, by chemical reaction, forming the product Na 2CO3. Scrubber off-gas, lean with regard to carbon dioxide but still rich with oxygen, is redirected through the spray tower for further stripping of DC and absorption of oxygen. Make-up NaOH is metered into the scrubbing solution sump on an as needed basis as directed by a feedback control loop programmed to maintain a scrubbing solution pH of 11.4-11.8. The spent NaOH solution is collected, then regenerated for reuse, in a batch process that requires relatively inexpensive hydrated lime (Ca(OH)2). A by-product of the regeneration step is an alkaline filter cake, which may have use in bio-solids stabilization. Given the enhanced gas transfer rates possible with chemical reaction, the required NaOH solution flow rate through the scrubber represents a fraction of the spray tower water flow rate. Further, isolation of the water being treated from the atmosphere (1

  15. Nano-nitride cathode catalysts of Ti, Ta, and Nb for polymer electrolyte fuel cells: Temperature-programmed desorption investigation of molecularly adsorbed oxygen at low temperature

    KAUST Repository

    Ohnishi, Ryohji

    2013-01-10

    TiN, NbN, TaN, and Ta3N5 nanoparticles synthesized using mesoporous graphitic (mpg)-C3N4 templates were investigated for the oxygen reduction reaction (ORR) as cathode catalysts for polymer electrolyte fuel cells. The temperature-programmed desorption (TPD) of molecularly adsorbed O2 at 120-170 K from these nanoparticles was examined, and the resulting amount and temperature of desorption were key factors determining the ORR activity. The size-dependent TiN nanoparticles (5-8 and 100 nm) were then examined. With decreasing particle size, the density of molecularly adsorbed O2 per unit of surface area increased, indicating that a decrease in particle size increases the number of active sites. It is hard to determine the electrochemical active surface area for nonmetal electrocatalysts (such as oxides or nitrides), because of the absence of proton adsorption/desorption peaks in the voltammograms. In this study, O2-TPD for molecularly adsorbed O2 at low temperature demonstrated that the amount and strength of adsorbed O2 were key factors determining the ORR activity. The properties of molecularly adsorbed O2 on cathode catalysts are discussed against the ORR activity. © 2012 American Chemical Society.

  16. Long-term desorption of trichloroethylene from flint clay using multiplexed optical detection

    International Nuclear Information System (INIS)

    Stager, M.P.; Perram, G.P.

    1999-01-01

    The long-term desorption of trichloroethylene (TCE) from powdered flint clay was examined using a multiplexed, phase sensitive infrared technique which provided a gas phase detection limit of 0.0045 torr for continuous monitoring of the desorption process for at least 3 days. The vapor phase TCE concentrations as a function of desorption time exhibit a significant deviation from Langmuir kinetics. The desorption process is adequately described by bonding sites with a gamma distribution for the desorption rate coefficients. The mean desorption rate for powdered flint clay at 25°C is k d = 0.50 ± 0.02 h −1 . (author)

  17. Non-isothermal desorption and nucleate boiling in a water-salt droplet LiBr

    Directory of Open Access Journals (Sweden)

    Misyura Sergey Ya.

    2018-01-01

    Full Text Available Experimental data on desorption and nucleate boiling in a droplet of LiBr-water solution were obtained. An increase in salt concentration in a liquid-layer leads to a considerable decrease in the rate of desorption. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Evaporation rate of distillate droplet is constant for a long time period. At nucleate boiling of a water-salt solution of droplet several characteristic regimes occur: heating, nucleate boiling, desorption without bubble formation, formation of the solid, thin crystalline-hydrate film on the upper droplet surface, and formation of the ordered crystalline-hydrate structures during the longer time periods. For the final stage of desorption there is a big difference in desorption rate for initial salt concentration, C0, 11% and 51%. This great difference in the rate of desorption is associated with significantly more thin solution film for C0 = 11% and higher heat flux.

  18. TPD and XPS study on thermal behavior of absorbed oxygen in La sub(1-x)Sr sub(x)CoO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Yamazoe, N; Teraoka, Y; Seiyama, T [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1981-12-01

    Two types of oxygen desorption from La sub(1-x)Sr sub(x)CoO/sub 3/ were revealed by the appearance of a broad desorption peak (..cap alpha..) below ca. 800/sup 0/C and a sharp one (..beta..) around 820/sup 0/C. The binding energy of O is level for absorbed oxygen was clearly different from that for lattice oxygen. Close examination shows that ..cap alpha.. is ascribable to the desorption of the absorbed oxygen while ..beta.. may be the desorption of a part of lattice oxygen.

  19. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  20. The formation of non-oxidic oxygen phases on Ru(0001). From the first stages of the oxygen take-up to oxidation

    International Nuclear Information System (INIS)

    Blume, R.

    2005-01-01

    The aim of the thesis presented here was the investigation of the formation of non oxidic oxygen phases on the Ru(0001) surface. Smooth and defect rich surfaces were exposed to high oxygen pressures (up to 1 bar) at moderate temperatures (550 K). The characterisation was performed under UHV conditions using Thermal Desorption Spectroscopy (TDS), Scanning Photoemission Microscopy (SPEM), Thermal Energy Atomic Scattering (TEAS), Ultraviolett Photoelectron Spectroscopy (UPS) and Low Energy Electron Diff raction (LEED) as well as In situ by the In Situ X-Ray Photoelectron Spectroscopy (In Situ XPS). The application of this Low Temperature preparation procedure (LT) leads to an Oxygen uptake up to 3 MLE of ''subsurface'' oxygen into a smooth Ru(0001) surface without the typical indications of oxidation (MLE: Monolayer Equivalent). The accumulation of oxygen beneath the surface starts immediatly after the completion of a full chemisorbed layer. Here, the local saturation of the adsorbed oxygen is the decisive step. Diff usion of oxygen directly through the chemisorbed layer only slightly contributes to the overall uptake. Oxygen is mostly accomodated in the vicinity of the surface via surface defects which has been shown on defect rich surfaces created by mild Ar+ sputtering. The maximum oxygen capacity is 10 Atoms/Defect. The uptake is thermally activated with an activation energy of 0.15 eV. The oxygen uptake causes a massive structural change of at least the top two ruthenium layers. Whereas the ruthenium atoms of the first layer are coordinated with up to four, those of the second layer are coordinated with up to two oxygen atoms. These binding condition are metastable and can be changed by annealing the surface. With reaching the desorption temperature two distinct desorption peaks are observed with TDS. For an accumulation of about 0.5 MLE of ''subsurface'' oxygen the desorption proceeds exclusively at the characteristic temperature of the chemisorbed layer at 1040

  1. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  2. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  3. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  4. An infrared measurement of chemical desorption from interstellar ice analogues

    Science.gov (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  5. Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode

    DEFF Research Database (Denmark)

    Pitois, A.; Pilenga, A.; Pfrang, A.

    2010-01-01

    techniques. The temperature dependence of the CO desorption process on this system has been investigated using isotopic exchange experiments. The CO desorption kinetics have been studied as a function of temperature and flow rate. Desorption rate constants have been measured for a temperature range between...... degrees C. The dependence in temperature of the desorption rate constants for the novel Pt-on-Au/C system is however much lower than that observed for the Pt/C system. This suggests that the nature of the substrate has a significant influence on the catalyst surface properties. It shows that, in surface...... 25 and 150 degrees C. These desorption rate constants have been compared with the benchmarking desorption rate data obtained for the commercial Pt/C catalyst under similar experimental conditions. A comparable desorption rate constant for the Pt-on-Au/C and Pt/C systems has been obtained at 25...

  6. Isotope exchange of molecular oxygen with oxygen of La0,7Sr0,3CoO3-δ

    International Nuclear Information System (INIS)

    Vdovin, G.K.; Kuzin, B.L.; Kurumchin, Eh.Kh.

    1991-01-01

    The exchange rate of the oxygen in La 0,7 Sr 0,3 CoO 3-δ has been measured by an isotopic exchange method at temperatures 620-1250 K and pressures 1.6-10 torr. The activation energy and the dependence of the exchange rate on pressures in gas have been defined. It is suggested that the knees on the temperature dependences of the exchange rate are attributed to the appearance of Co 2+ ions on the surface of the sample at elevated temperature as new centres of the exchange reaction. The activation energies of the adsorption and desorption processes on the La 0,7 Sr 0,3 CoO 3-δ surface have been estimated

  7. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, 1

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1984-01-01

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The rate of desorption of uranium did not vary in the range of concentration from 0.3 to 0.5 N, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10 %, the percentage of dissolved titanium (DTI) was below 0.38 % with sulfuric acid, below 0.7 % with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85 %. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  8. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, (1)

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1983-01-01

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The difference of the rate of desorption of uranium in the range of concentration from 0.3 to 0.5N was not found, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10%, the percentage of dissolved titanium (DTI) was below 0.38% with sulfuric acid, below 0.7% with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85%. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  9. Sorption and desorption of tritiated water vapor on piping materials of nuclear fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Ohmori, Rumi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Sorption and desorption of D{sub 2}O on Cr{sub 2}O{sub 3}, NiO, SS316 powders were studied at ambient temperature. When D{sub 2}O were contacted with samples after drying at 303K, broad peak was observed at 2100-2700cm{sup -1} on Cr{sub 2}O{sub 3} and NiO. Sorption and desorption rate depended on wave numbers. Isotope exchange rate with H{sub 2}O vapor was faster than dry desorption rate. By heating pretreatment, sorption amount and desorption rate for Cr{sub 2}O{sub 3} and NiO decreased. For SS316, broad peak was observed only after heating pretreatment at 673K. (author)

  10. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  11. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    Science.gov (United States)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  12. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    International Nuclear Information System (INIS)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M.

    2010-01-01

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H 2 O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  13. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-01-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments

  14. Desorption dynamics of deuterium in CuCrZr alloy

    Science.gov (United States)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  15. Comparison of specific oxygen uptake rates of two beach-scale ...

    African Journals Online (AJOL)

    The determined values of oxygen uptake rate during the endogenous reaction phase (between 0.1054 and 0.3564 mgO2/L.minute) and concentrations of mixed liquor suspended solids (between 1183 and 1957 mgMLSS/L) are comparable to those reported elsewhere in literature. Results of specific oxygen uptake rate of ...

  16. Rate of oxygen isotope exchange between selenate and water.

    Science.gov (United States)

    Kaneko, Masanori; Poulson, Simon R

    2012-04-17

    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  17. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  18. Rate Parameter Distributions for Isobutane Dehydrogenation and Isobutene Dimerization and Desorption over HZSM-5

    Directory of Open Access Journals (Sweden)

    Trevor C. Brown

    2013-11-01

    Full Text Available Deconvolution of the evolved isobutene data obtained from temperature-programmed, low-pressure steady-state conversion of isobutane over HZSM-5 has yielded apparent activation energies for isobutane dehydrogenation, isobutene dimerization and desorption. Intrinsic activation energies and associated isobutane collision frequencies are also estimated. A combination of wavelet shrinkage denoising, followed by time-varying flexible least squares of the evolved mass-spectral abundance data over the temperature range 150 to 450 °C, provides accurate, temperature-dependent, apparent rate parameters. Intrinsic activation energies for isobutane dehydrogenation range from 86 to 235.2 kJ mol−1 (average = 150 ± 42 kJ mol−1 for isobutene dimerization from 48.3 to 267 kJ mol−1 (average = 112 ± 74 kJ mol−1 and for isobutene desorption from 64.4 to 97.8 kJ mol−1 (average = 77 ± 12 kJ mol−1. These wide ranges reflect the heterogeneity and acidity of the zeolite surface and structure. Seven distinct locations and sites, including Lewis and Brønsted acid sites can be identified in the profiles. Isobutane collision frequencies range from 10−0.4 to 1022.2 s−1 and are proportional to the accessibility of active sites, within the HZSM-5 micropores or on the external surface.

  19. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.K. [Department of Health and Environment, Kosin University, Dong Sam Dong, Young Do Gu, Busan (Korea, Republic of); Sivakumar, S., E-mail: ssivaphd@yahoo.com [Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 627-706 (Korea, Republic of); Rood, M.J. [Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL (United States); Kim, B.J. [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center (ERDC-CERL), Champaign, IL (United States)

    2016-01-15

    Highlights: • We study the adsorption and desorption of VOCs by an activated carbon fiber cloth. • Desorption concentration was controlled via electrothermal heating. • The desorption rate was successfully equalized and controlled by this system. - Abstract: Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40–900 ppm{sub v}) and superficial gas velocity (6.3–9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  20. The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI-TOF MS spectrum of anaerobic bacteria

    NARCIS (Netherlands)

    Veloo, A. C. M.; Elgersma, P. E.; Friedrich, A. W.; Nagy, E.; van Winkelhoff, A. J.

    2014-01-01

    With matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), bacteria can be identified quickly and reliably. This accounts especially for anaerobic bacteria. Because growth rate and oxygen sensitivity differ among anaerobic bacteria, we aimed to study the

  1. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  2. Sorbent-based Oxygen Production for Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Vijay [Western Research Inst. (WRI), Laramie, WY (United States)

    2017-01-31

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a major advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.

  3. Oxygen consumption rates by different oenological tannins in a model wine solution.

    Science.gov (United States)

    Pascual, Olga; Vignault, Adeline; Gombau, Jordi; Navarro, Maria; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Teissedre, Pierre-Louis; Zamora, Fernando

    2017-11-01

    The kinetics of oxygen consumption by different oenological tannins were measured in a model wine solution using the non-invasive method based on luminiscence. The results indicate that the oxygen consumption rate follows second-order kinetics depending on tannin and oxygen concentrations. They also confirm that the oxygen consumption rate is influenced by temperature in accordance with Arrhenius law. The indications are that ellagitannins are the fastest oxygen consumers of the different oenological tannins, followed in decreasing order by quebracho tannins, skin tannins, seed tannins and finally gallotannins. This methodology can therefore be proposed as an index for determining the effectiveness of different commercial tannins in protecting wines against oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Krypton-85 enrichment by adsorption-desorption process

    International Nuclear Information System (INIS)

    Khan, A.A.; Deshingkar, D.S.; Ramarathinam, K.

    1975-01-01

    The use of activated charcoal columns in conjunction with cryogenic distillation system for concentration of krypton-85 in fuel reprocessing process off-gas stream is reported. Dynamic adsorption of krypton on activated charcoals and its subsequent desorption by applying vacuum were studied. The possible reduction in the quantity of carrier gas to be liquified in the cryogenic system by utilising this process has been discussed on the basis of results of laboratory evaluations. The possibility of elimination of air and oxygen to avoid explosion hazards associated with radiolytic formation and concentration of ozone has also been considered. (author)

  5. Kinetics of Hydrogen Absorption and Desorption in Titanium

    Directory of Open Access Journals (Sweden)

    Suwarno Suwarno

    2017-10-01

    Full Text Available Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD. The present work showed that the path of dehydrogenation of the TiH2 is d®b®a hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 20th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Suwarno, S., Yartys, V.A. (2017. Kinetics of Hydrogen Absorption and Desorption in Titanium. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 312-317  (doi:10.9767/bcrec.12.3.810.312-317

  6. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  7. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  8. Data compilation for particle impact desorption

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeuchi, Fujio.

    1984-05-01

    The desorption of gases from solid surfaces by incident electrons, ions and photons is one of the important processes of hydrogen recycling in the controlled thermonuclear reactors. We have surveyed the literature concerning the particle impact desorption published through 1983 and compiled the data on the desorption cross sections and desorption yields with the aid of a computer. This report presents the results obtained for electron stimulated desorption, the desorption cross sections and yields being given in graphs and tables as functions of incident electron energy, surface temperature and gas exposure. (author)

  9. Effective oxygen-consumption rates in fermentation broths with filamentous organisms

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M; Bajpai, R K; Berke, W

    1982-01-01

    The concept of coupling molecular diffusion and reaction has been applied in the past to various biological systems with clearly defined geometrical properties like pellets and immobilised enzymes/microorganisms. This paper investigates the use of the same principle to characterise the diffusional limitation in suspensions of filamentous microorganisms. Experimental results of oxygen-uptake measurements from Aspergillus niger fermentations in a 50 cu.dm turbine-agitated fermentor are presented with theoretical predictions of coupled diffusion and oxygen kinetics. Results are discussed on the basis of turbulence theory so that the mycelial broth can be structured in hypothetical spherical elements. Consideration of local energy-dissipation rates in the impeller region provides reasonable explanation of the strong influence of the impeller/tank diameter ratio on the effective oxygen-uptake rate at a given power input. (Refs. 18).

  10. The desorptivity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  11. Comparative oxygen consumption rates of subitaneous and delayed hatching eggs of the calanoid copepod Acartia tonsa (Dana)

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Drillet, Guillaume

    2013-01-01

    nanorespirometry to monitor initial oxygen consumption rate of individual eggs of the ubiquitous neritic calanoid copepod Acartia tonsa to distinguish between subitaneous and DHE. We hypothesized that subitaneous eggs exhibit higher initial oxygen consumption rates than DHE, and that initial egg oxygen consumption...... rate is correlated to the time for the individual egg to hatch. Subitaneous eggs exhibited higher initial oxygen consumption rates than DHE and there were no pattern in initial oxygen consumption rates vs. time to hatch or die from the eggs. Variability in initial oxygen consumption rates within...... batches of both subitaneous and DHE, as well as between these egg types, is prevalent. There was a continuum from sluggish- to fast metabolising eggs considering initial oxygen consumption rates most likely reflecting phenotypic variation within cohorts. No matter the individual initial egg oxygen...

  12. Adsorption and desorption of plant growth regulator 14C-PP333 in various soils

    International Nuclear Information System (INIS)

    Yu Fengyi; Zhang Ping; Yang Xiu

    1995-01-01

    Adsorption, desorption and residue of 14 C-PP333 with 4 concentrations in various soils were studied by radioactive isotopic tracer. The results showed that the adsorption rates in 6 soils were different. The lowest adsorption rate of fluvo-aquatic soil from Shanxi was 15.22%, the highest adsorption rate of black soil from Heilongjiang was 22.53%. The relation between the C.E.C., O.M. and adsorption rate in soil was correlative. Adsorption rate in soil increased with an increase in C.E.C.. 14 C-PP3333 adsorbed in 6 soils could be desorbed by water. The desorption rate in soils was high. There is residue of 14 C-PP333 in soil desorbed by water. There was a negative relationship between the residue amount and the adsorption rate in soil. Easy desorption of PP333 adsorbed in soil showed that PP333 was movable and diffusible in soil and had influence on agro-ecosystem

  13. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; Kay, Bruce D.; Kim, Yu Kwon

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1×1 surface reveal several distinct reaction channels in a temperature range of 50 – 500 K. NO readily reacts on TiO2(110) to form N2O which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a byproduct of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110) surface above 500 K or higher, while the surface may be populated with Oa’s and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.

  14. Hydrogen desorption properties of MgH2–Ni–Ni2Si composites prepared by mechanochemical method

    International Nuclear Information System (INIS)

    Shimada, Motoki; Higuchi, Eiji; Inoue, Hiroshi

    2013-01-01

    Highlights: ► The MgH 2 –Ni composite showed fast hydrogen desorption rate at 250 °C. ► The MgH 2 –Ni–Ni 2 Si composite showed fast hydrogen desorption rate at 220 °C. ► Nanocrystalline Mg 2 Ni and Mg 2 Si were formed between Mg and adjacent Ni or Si. ► Ni 2 Si did not form any alloys and work as a catalyst. -- Abstract: To improve hydrogen desorbability of Mg, some composites were prepared from MgH 2 , Ni and Ni 2 Si mixed powders by the mechanochemical method. The MgH 2 –Ni(2 mol%)–Ni 2 Si(1 mol%) composite was slower in hydrogen desorption rate at 250 °C than the MgH 2 –Ni(2 mol%) composite, while the hydrogen desorption rate at 220 °C for the former was faster than that for the latter. The XRD pattern of the MgH 2 –Ni(2 mol%) composite showed that after hydrogen desorption at 400 °C small diffraction peaks assigned to Mg 2 Ni were observed with peaks assigned to Mg. They shifted to smaller angles after hydrogen absorption at 250 °C and come back to the original positions after hydrogen desorption at 250 °C, suggesting reversible hydrogen absorption/desorption of Mg 2 Ni. In contrast, Ni 2 Si was not changed over the whole processes. These results indicated that Ni 2 Si worked as a catalyst for hydrogen desorption, leading to the improvement of desorbability at 220 °C

  15. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  16. Oxygen transfer rate estimation in oxidation ditches from clean water measurements.

    Science.gov (United States)

    Abusam, A; Keesman, K J; Meinema, K; Van Straten, G

    2001-06-01

    Standard methods for the determination of oxygen transfer rate are based on assumptions that are not valid for oxidation ditches. This paper presents a realistic and simple new method to be used in the estimation of oxygen transfer rate in oxidation ditches from clean water measurements. The new method uses a loop-of-CSTRs model, which can be easily incorporated within control algorithms, for modelling oxidation ditches. Further, this method assumes zero oxygen transfer rates (KLa) in the unaerated CSTRs. Application of a formal estimation procedure to real data revealed that the aeration constant (k = KLaVA, where VA is the volume of the aerated CSTR) can be determined significantly more accurately than KLa and VA. Therefore, the new method estimates k instead of KLa. From application to real data, this method proved to be more accurate than the commonly used Dutch standard method (STORA, 1980).

  17. Effects of extracellular zinc ion on the rate of oxygen consumption of ...

    African Journals Online (AJOL)

    The inhibitory effect of extracellular zinc ion on the rate of oxygen consumption of rat brain mitochondria pre-incubated in 1.0 mM Ca2+EDTA were determined. There was a significant increase [P<0.01] in the rate of oxygen consumption in the rat brain mitochondria pre-incubated in 1.0 mM. Ca2+EDTA in a succinate ...

  18. Investigation of the niobium-oxygen system under low pressure and between 550 K and 2350 K: solid solution, surface overlay and reactivity

    International Nuclear Information System (INIS)

    Jupille, Jacques

    1974-09-01

    This research thesis addresses the behaviour of transition metals when interacting with oxygen, more particularly in the case of phase formation, but also adsorption and desorption which occur in the case of interaction with low pressure oxygen. It focuses on the case of niobium in solid solution. After a description of phases present in the niobium-oxygen system, and a discussion of reactivities of oxygen and water vapour, the author describes the experimental methods (apparatus and installations, samples, measured values), discusses the study of the surface-volume transfer constant of the niobium-oxygen solution, and the niobium-oxygen interaction mechanisms at high (superior to 1700 K) and low (inferior to 1000 K) temperatures: oxide desorption, oxygen reaction kinetics

  19. Measurement of oxygen consumption rate of osteoblasts from ...

    African Journals Online (AJOL)

    The cells were evaluated through live/dead assay, hematoxylin-eosin (HE) and alkaline phosphatase (ALP) staining. Moreover, Von-Kossa staining and Alizarin Red S staining were carried out for mineralized nodule formation. Following this, the oxygen consumption rates of osteoblasts in the earlier mentioned different ...

  20. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.

    Science.gov (United States)

    Clegg, Helen; Riding, Matthew J; Oliver, Robin; Jones, Kevin C; Semple, Kirk T

    2014-08-15

    As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of (14)C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (Frap) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F(slow)). The rapid desorption rate constant (k(fast)) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F(rap). In non-sterile soil, F(rap) was lower resulting in higher F(slow), while desorption rates remained unaffected. Organic matter (OM) reduces F(rap); but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of Oxygen on the Mg-H Reaction

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1984-01-01

    Two identical samples of magnesium powder (purity, 99.58%) were hydrogenated at approximately 30 bar and 380 °C and dehydrogenated under vacuum at the same temperature about 500 times. The first sample was exposed to pure hydrogen (purity, 99.9999%) and the second was exposed to hydrogen containi...... absorption measurement performed after the cycling experiment. Despite the decreased absorption rate, which was mainly observed at higher degrees of reaction, little change in the desorption kinetics was observed....... 85 ppm O and 8 ppm H2O vapour. In both experiments a moderate overall reduction in the amount of hydrogen absorbed and desorbed was observed. This can be ascribed to a reduced absorption rate with increased number of cycles. The effect of oxygen was negligible, and this was confirmed by a precision...

  2. The impact of soil organic matter and soil sterilisation on the bioaccessibility of {sup 14}C-azoxystrobin determined by desorption kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Helen; Riding, Matthew J. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Oliver, Robin [Syngenta, Jealotts Hill Research Station, Bracknell RG42 6ET (United Kingdom); Jones, Kevin C. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2014-08-15

    Highlights: • Desorption of azoxystrobin from soils occurs in a bi-phasic manner. • Soil organic matter, indigenous microorganisms and contact time reduce desorption. • Choice of extractant is important in determining predicting the bioaccessible fraction. - Abstract: As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of {sup 14}C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (F{sub rap}) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F{sub slow}). The rapid desorption rate constant (k{sub fast}) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F{sub rap}. In non-sterile soil, F{sub rap} was lower resulting in higher F{sub slow}, while desorption rates remained unaffected. Organic matter (OM) reduces F{sub rap}; but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil.

  3. Sorption/Desorption Behavior and Mechanism of NH4(+) by Biochar as a Nitrogen Fertilizer Sustained-Release Material.

    Science.gov (United States)

    Cai, Yanxue; Qi, Hejinyan; Liu, Yujia; He, Xiaowei

    2016-06-22

    Biochar, the pyrolysis product of biomass material with limited oxygen, has the potential to increase crop production and sustained-release fertilizer, but the understanding of the reason for improving soil fertility is insufficient, especially the behavior and mechanism of ammonium sulfate. In this study, the sorption/desorption effect of NH4(+) by biochar deriving from common agricultural wastes under different preparation temperatures from 200 to 500 °C was studied and its mechanism was discussed. The results showed that biochar displayed excellent retention ability in holding NH4(+) above 90% after 21 days under 200 °C preparation temperature, and it can be deduced that the oxygen functional groups, such as carboxyl and keto group, played the primary role in adsorbing NH4(+) due to hydrogen bonding and electrostatic interaction. The sorption/desorption effect and mechanism were studied for providing an optional way to dispose of agricultural residues into biochar as a nitrogen fertilizer sustained-release material under suitable preparation temperature.

  4. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)

  5. Influences of oxygen gas flow rate on electrical properties of Ga-doped ZnO thin films deposited on glass and sapphire substrates

    International Nuclear Information System (INIS)

    Makino, Hisao; Song, Huaping; Yamamoto, Tetsuya

    2014-01-01

    The Ga-doped ZnO (GZO) films deposited on glass and c-plane sapphire substrates have been comparatively studied in order to explore the role of grain boundaries in electrical properties. The influences of oxygen gas flow rates (OFRs) during the deposition by ion-plating were examined. The dependences of carrier concentration, lattice parameters, and characteristic of thermal desorption of Zn on the OFR showed common features between glass and sapphire substrates, however, the Hall mobility showed different behavior. The Hall mobility of GZO films on glass increased with increasing OFR of up to 15 sccm, and decreased with further increasing OFR. On the other hand, the Hall mobility of GZO films on c-sapphire increased for up to 25 sccm. The role of grain boundary in polycrystalline GZO films has been discussed. - Highlights: • Ga-doped ZnO films were deposited on glass and c-sapphire by ion-plating. • The epitaxial growth on c-sapphire was confirmed by X-ray diffraction. • Dependence of Hall mobility showed different tendency between glass and sapphire. • Grain boundaries influence transport properties at high O 2 gas flow rate

  6. [Design of Oxygen Saturation, Heart Rate, Respiration Rate Detection System Based on Smartphone of Android Operating System].

    Science.gov (United States)

    Zhu, Mingshan; Zeng, Bixin

    2015-03-01

    In this paper, we designed an oxygen saturation, heart rate, respiration rate monitoring system based on smartphone of android operating system, physiological signal acquired by MSP430 microcontroller and transmitted by Bluetooth module.

  7. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  8. The desorption of caesium from Peach Bottom HTGR steam generator materials

    International Nuclear Information System (INIS)

    Clark, M.J.

    1979-03-01

    The work at Harwell on the Peach Bottom End-of-Life Program in co-operation with the General Atomic Company (U.S.A.) is described. Materials taken from the Economiser, Evaporator and Superheater Sections of the Peach Bottom Unit No. 1. High Temperature Gas Cooled Reactor (HTGR) Heat Exchanger were placed in a reducing atmosphere comparable to the composition of an HTGR helium coolant gas, and the desorption of caesium isotopes measured under known conditions of flow, temperature and oxygen pressure. (author)

  9. Desorption kinetics of ciprofloxacin in municipal biosolids determined by diffusion gradient in thin films.

    Science.gov (United States)

    D'Angelo, E; Starnes, D

    2016-12-01

    Ciprofloxacin (CIP) is a commonly-prescribed antibiotic that is largely excreted by the body, and is often found at elevated concentrations in treated sewage sludge (biosolids) at municipal wastewater treatment plants. When biosolids are applied to soils, they could release CIP to surface runoff, which could adversely affect growth of aquatic organisms that inhabit receiving water bodies. The hazard risk largely depends on the amount of antibiotic in the solid phase that can be released to solution (labile CIP), its diffusion coefficient, and sorption/desorption exchange rates in biosolids particles. In this study, these processes were evaluated in a Class A Exceptional Quality Biosolids using a diffusion gradient in thin films (DGT) sampler that continuously removed CIP from solution, which induced desorption and diffusion in biosolids. Mass accumulation of antibiotic in the sampler over time was fit by a diffusion transport and exchange model available in the software tool 2D-DIFS to derive the distribution coefficient of labile CIP (K dl ) and sorption/desorption rate constants in the biosolids. The K dl was 13 mL g -1 , which equated to 16% of total CIP in the labile pool. Although the proportion of labile CIP was considerable, release rates to solution were constrained by slow desorption kinetics (desorption rate constant = 4 × 10 -6 s -1 ) and diffusion rate (effective diffusion coefficient = 6 × 10 -9  cm 2  s -1 . Studies are needed to investigate how changes in temperature, water content, pH and other physical and chemical characteristics can influence antibiotic release kinetics and availability and mobility in biosolid-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Elizabeth Guthrie [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)], E-mail: elizabeth_nichols@ncsu.edu; Gregory, Samuel T.; Musella, Jennifer S. [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)

    2008-12-15

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C{sub 3}-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k{sub slow} and k{sub veryslow}. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior.

  11. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    International Nuclear Information System (INIS)

    Nichols, Elizabeth Guthrie; Gregory, Samuel T.; Musella, Jennifer S.

    2008-01-01

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C 3 -phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k slow and k veryslow . After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior

  12. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    Science.gov (United States)

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  13. Improving of understanding of beta-hexachlorocyclohexane (HCH) adsorption on activated carbons by temperature-programmed desorption studies.

    Science.gov (United States)

    Passé-Coutrin, Nady; Maisonneuve, Laetitia; Durimel, Axelle; Dentzer, Joseph; Gadiou, Roger; Gaspard, Sarra

    2016-01-01

    In order to understand the interactions between beta-hexachlorocyclohexane (HCH) and chemical groups at activated carbon (AC) surface, the solid samples were hydrogenated aiming to decrease the amounts of oxygenated groups. Two AC samples designated by BagH2O and BagP1.5 were prepared by water vapor activation and phosphoric acid activation, respectively, of sugarcane bagasse used as an AC precursor. A more simple molecule 1,2,3-trichloropropane (TCP) is used as a model of chlorinated compound. The AC were characterized by infrared, X-ray photoelectron spectroscopy (XPS), Raman resonance spectroscopies, as well as temperature-programmed desorption coupled with mass spectrometry (TPD-MS). BagP1.5 and BagH2O AC surface contained oxygenated groups. Upon hydrogenation, a decrease of most of these group amxounts was observed for both samples, while hydroxyl groups increased. On the basis of temperature-programmed desorption data obtained for AC samples contaminated with TCP or HCH, it was possible to determine the type of hydrogen bond formed between each AC and HCH.

  14. Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching

    International Nuclear Information System (INIS)

    Zokaei-Kadijani, S.; Safdari, J.; Mousavian, M.A.; Rashidi, A.

    2013-01-01

    Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor

  15. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parra, Amanda [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Wen-Yee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-05-01

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirred tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.

  16. Heart Rate and Oxygen Uptake Recovery and the Level of Aerobic Capacity in Mountain Bikers

    Directory of Open Access Journals (Sweden)

    Michalik Kamil

    2017-12-01

    Full Text Available Introduction. Since mountain biking involves exercise of varying intensity, competitive performance may be affected by the rate of recovery. The aim of the current study was to determine whether maximal oxygen uptake is associated with the rate of heart rate and oxygen uptake recovery in mountain bike athletes.

  17. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    Science.gov (United States)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  18. Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2016-11-01

    Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R 2 , between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.

  19. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    Science.gov (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  20. Integrating spatial and temporal oxygen data to improve the quantification of in situ petroleum biodegradation rates.

    Science.gov (United States)

    Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D

    2013-03-15

    Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights

  1. Effect of pH on desorption of CO2 from alkanolamine - rich solvents

    Science.gov (United States)

    Du, Min

    2017-08-01

    Adipic acid was used as a pH regulator, which was added to 0.4 mol/L MEA, DEA and MDEA solvents during CO2 desorption process. It is found that when pH value of the solvents swing between 8-10, CO2 desorption rate enhanced, and energy consumption has declined obviously. This research may have reference significance on optimization of alkanolamine CO2 capture process.

  2. Rate of oxygen consumption of hamster melanoma cells as a factor influencing their radioresistance

    International Nuclear Information System (INIS)

    Pajak, S.; Subczynski, W.; Panz, T.; Lukiewicz, S.

    1980-01-01

    It has been reported in recent years that the level of radiosensitivity of neoplasmic cells in vivo and of sphaeroids in vitro can be modified by controlling their rate of oxygen consumption. Thus, an attempt was made to compare this rate in the case of the melanotic and amelanotic lines of Bomirski hamster melanoma in vitro, as it is known that these two lines distinctly differ in their reactivity to ionizing radiations. The measurements carried out by the use of a new ESR method revealed that pigmented and pigmentless cells consume oxygen at significantly different rates. This means that oxygen utilization may contribute to the overall level of radioresistance of melanoma cells. (author)

  3. Optical absorption and oxygen passivation of surface states in III-nitride photonic devices

    Science.gov (United States)

    Rousseau, Ian; Callsen, Gordon; Jacopin, Gwénolé; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2018-03-01

    III-nitride surface states are expected to impact high surface-to-volume ratio devices, such as nano- and micro-wire light-emitting diodes, transistors, and photonic integrated circuits. In this work, reversible photoinduced oxygen desorption from III-nitride microdisk resonator surfaces is shown to increase optical attenuation of whispering gallery modes by 100 cm-1 at λ = 450 nm. Comparison of photoinduced oxygen desorption in unintentionally and n+-doped microdisks suggests that the spectral changes originate from the unpinning of the surface Fermi level, likely taking place at etched nonpolar III-nitride sidewalls. An oxygen-rich surface prepared by thermal annealing results in a broadband Q improvement to state-of-the-art values exceeding 1 × 104 at 2.6 eV. Such findings emphasize the importance of optically active surface states and their passivation for future nanoscale III-nitride optoelectronic and photonic devices.

  4. Radiotracer experiments on the desorption of iodine from paddy soil with and without rice plants

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Uchida, Shigeo; Yoshida, Satoshi

    1991-01-01

    In order to assess the behavior of radioiodine in rice fields, we have performed laboratory experiments, using 125 I tracer, on the desorption phenomena of iodine from soil during rice cultivation. Most of the 125 I added to the soil was adsorbed by the soil solid phase at the beginning of the experiment. However, the iodine started to desorb into the soil solution with the growth of rice plants. The highest desorption rate of iodine was found around the flowering period, i.e. nearly 30% of the 125 I was desorbed from Ando soil into the soil solution. In contrast to this, no particular increase in the iodine desorption was observed from the uncultivated flooded soil. It was suggested that rice plants had some influence upon iodine desorption from soil and the desorption also depended on the soil types. (author)

  5. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  6. Kinetics Study of Gas Pollutant Adsorption and Thermal Desorption on Silica Gel

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-06-01

    Full Text Available Silica gel is a typical porous desiccant material. Its adsorption performance for gaseous air pollutants was investigated to determine its potential contribution to reducing such pollutants. Three gaseous air pollutants, toluene, carbon dioxide, and methane, were investigated in this paper. A thermogravimetric analyzer was used to obtain the equilibrium adsorption capacity of gases on single silica gel particles. The silica gel adsorption capacity for toluene is much higher than that for carbon dioxide and methane. To understand gas pollutant thermal desorption from silica gel, the thermogravimetric analysis of toluene desorption was conducted with 609 ppm toluene vapor at 313 K, 323 K, and 333 K. The overall regeneration rate of silica gel was strongly dependent on temperature and the enthalpy of desorption. The gas pollutant adsorption performance and thermal desorption on silica gel material may be used to estimate the operating and design parameters for gas pollutant adsorption by desiccant wheels.

  7. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    International Nuclear Information System (INIS)

    Prata, Fabio; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges; Lavorenti, Arquimedes

    2003-01-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh 2 PO 4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha -1 of P 2 O 5 , which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L -1 ), with a 14 C radioactivity of 0.233 kBq mL -1 . Four steps of the desorption procedures withCaCl 2 0.01 mol L -1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L -1 ). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm -3 . Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  8. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  9. Data compilation for particle-impact desorption, 2

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeutchi, Fujio.

    1985-07-01

    The particle impact desorption is one of the elementary processes of hydrogen recycling in controlled thermonuclear fusion reactors. We have surveyed the literature concerning the ion impact desorption and photon stimulated desorption published through the end of 1984 and compiled the data on the desorption cross sections and yields with the aid of a computer. This report presents the results of the compilation in graphs and tables as functions of incident energy, surface temperature and surface coverage. (author)

  10. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  11. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and

  12. Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration

    International Nuclear Information System (INIS)

    Njikam, Eloh; Schiewer, Silke

    2012-01-01

    Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO 3 . The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO 3 , desorption was incomplete and the model fit less perfect. Highlights: ► Metal desorption was over 90% complete within 50 min for most desorbents. ► Models for biosorbent desorption kinetics were developed. ► Desorption kinetics best fit a novel first-order model related to remaining metal bound. ► Cd uptake after desorption by HNO 3 was similar to the original uptake. ► The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO 3 , NaNO 3 , Ca(NO 3 ) 2 , EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by nitric acid, but considerably lower for calcium nitrate as the desorbent. While complexing agents were effective desorbents, their cost is higher than that

  13. Determination of rate constants for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A.; Walter, T.; Stimming, U. [Munich Technical Univ., Garching (Germany). Dept. of Physics

    2008-07-01

    The oxygen reduction reaction (ORR) in fuel cells is a complex and fundamental electrochemical reaction. However, greater insight is needed into this multi-electron reaction in order to develop efficient and innovative catalysts. The rotating ring disc electrode (RRDE) is a useful tool for studying reaction intermediates of the ORR and to better understand the reaction pathway. Carbon materials such as carbon nanofilaments-platelets (CNF-PL) have high electrical conductivity and may be considered for fuel cells. In particular Pt and RuSe{sub x}, deposited on CNF-PL materials could act as efficient catalysts in fuel cells. This study used the RRDE to evaluate the oxygen reduction kinetics of these catalysts in oxygen-saturated, diluted sulphuric acid at room temperature. Kinetic data and hydrogen peroxide formation were determined by depositing a thin-film of the catalyst on the Au disc. The values for the constants k1, k2 and k3 were obtained using diagnostic criteria and expressions to calculate the rate constants of the cathodic oxygen reduction reaction for RuSe on new carbon supports. A potential dependency of the constants k1 and k2 for RuSe{sub x}/CNF-PL was observed. The transition of the Tafel slopes for this catalyst was obtained. 4 refs., 1 fig.

  14. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  15. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    Science.gov (United States)

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  16. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effects of an electron beam on adsorption and desorption of ammonia on ruthenium (0001)

    International Nuclear Information System (INIS)

    Danielson, L.R.; Dresser, M.J.; Donaldson, E.E.; Sandstrom, D.R.

    1978-01-01

    The effects of an electron beam on ammonia adsorption and desorption on Ru(0001) have been investigated by Auger electron spectroscopy, low-energy electron diffraction, and thermal flash desorption. Appreciable adsorption at room temperature occurred only on the area of the Ru crystal which had been bombarded by an electron beam during dosing. The adsorption rate was a function of beam current density and ammonia pressure, and an apparent (2x2) diffraction pattern appeared in the area bombarded by the electron beam. Electron bombardment of the molecular γ states of ammonia followed by flash desorption showed that less ammonia and more hydrogen and nitrogen were desorbed as the bombardment time increased. An analysis of this process based on electron-induced dissociation of the ammonia molecule yielded an effective initial dissociation cross section of 3x10 -6 cm 2 . Hydrogen flash desorption spectra after bombardment of the γ states obeying first order kinetics with desorption energies of 0.78 and 1.0 eV. Electron bombardment of the γ states for short times produced the same effects on the ammonia flash desorption spectra as preadsorption of hydrogen. (Auth.)

  18. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  19. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows the

  20. Study of boric acid sorption and desorption processes

    International Nuclear Information System (INIS)

    Czosnowska, B.; Laren, E.

    1978-01-01

    The results are given of the experimental determination of the effect on the boric acid flow and sorption and desorption efficiency of the flow rate of boric acid at different concentrations through an ion exchange column 10.2 cm 2 in cross section. The strongly alkaline VOFATIT RO ion exchanger was used. (B.S.)

  1. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    Energy Technology Data Exchange (ETDEWEB)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.

  2. Influence of Surface Charge/Potential of a Gold Electrode on the Adsorptive/Desorptive Behaviour of Fibrinogen

    International Nuclear Information System (INIS)

    Dargahi, Mahdi; Konkov, Evgeny; Omanovic, Sasha

    2015-01-01

    Highlights: • Adsorptive/desorptive behavior of fibrinogen (FG) on an electrochemically-polarized gold substrate is reported. • The adsorption affinity of FG (afFG) is constant on a negatively-charged substrate surface. • The afFG increases linearly with an increase in positive substrate surface charge. • The FG adsorption kinetics is strongly dependant on substrate surface charge. • The adsorbed FG layer can be desorbed by electrochemical evolution of hydrogen and oxygen. - Abstract: The effect of gold substrate surface charge (potential) on adsorptive/desorptive behaviour of fibrinogen (FG) was studied by employing differential capacitance (DC) and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), in terms of FG adsorption thermodynamics, kinetics, and desorption kinetics. The gold substrate surface charge was modulated in-situ within the electrochemical double-layer region by means of electrochemical potentiostatic polarization in a FG-containing electrolyte, thus avoiding the interference of other physico-chemical properties of the gold surface on FG’s interfacial behaviour. The FG adsorption equilibrium was modeled using the Langmuir isotherm. Highly negative values of apparent Gibbs free energy of adsorption (ranging from from −52.1 ± 0.4 to −55.8 ± 0.8 kJ mol −1 , depending on the FG adsorption potential) indicated a highly spontaneous and strong adsorption of FG onto the gold surface. The apparent Gibbs free energy of adsorption was found to be independent of surface charge when the surface was negatively charged. However, when the gold surface was positively charged, the apparent Gibbs free energy of adsorption exhibited a pronounced linear relationship with the surface charge, shifting to more negative values with an increase in positive electrode potential. The adsorption kinetics of FG was also found to be dependent on gold surface charge in a similar manner to the apparent Gibbs free energy of adsorption

  3. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung-Young; Camillone, Nina R.; Camillone, Nicholas, E-mail: nicholas@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Xu, Pan [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 (United States); White, Michael G. [Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-07-07

    We report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate–adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increases roughly two orders magnitude, and (ii) the adsorbate–substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate–substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, η{sub el}, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of η{sub el} largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.

  4. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  5. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2018-05-03

    The desorption of benzene, 1,3,5-trifluorobenzene (TFB), and hexafluorobenzene (HFB) from a graphene covered Pt(111) substrate was investigated using temperature programmed desorption (TPD). All three species have well resolved monolayer and second layer desorption peaks. The desorption spectra for submonolayer coverages of benzene and hexafluorobenzene are consistent with first order desorption kinetics. In contrast, the submonolayer TPD spectra for 1,3,5-trifluorobenzene align on a common leading-edge which is indicative of zero order desorption kinetics. The desorption behavior of the three molecules can be correlated with the strength of the quadrupole moments. Calculations (second-order Møller-Plesset perturbation and density functional theory) show that the potential minimum for coplanar TFB dimers is more than a factor of two greater than that for either benzene or HFB dimers. The calculations support the interpretation that benzene and HFB are less likely to form the two dimensional islands that are needed for submonolayer zero order desorption kinetics.

  6. Understanding the biological activity of high rate algae ponds through the calculation of oxygen balances.

    Science.gov (United States)

    Arbib, Zouhayr; de Godos Crespo, Ignacio; Corona, Enrique Lara; Rogalla, Frank

    2017-06-01

    Microalgae culture in high rate algae ponds (HRAP) is an environmentally friendly technology for wastewater treatment. However, for the implementation of these systems, a better understanding of the oxygenation potential and the influence of climate conditions is required. In this work, the rates of oxygen production, consumption, and exchange with the atmosphere were calculated under varying conditions of solar irradiance and dilution rate during six months of operation in a real scale unit. This analysis allowed determining the biological response of these dynamic systems. The rates of oxygen consumption measured were considerably higher than the values calculated based on the organic loading rate. The response to light intensity in terms of oxygen production in the bioreactor was described with one of the models proposed for microalgae culture in dense concentrations. This model is based on the availability of light inside the culture and the specific response of microalgae to this parameter. The specific response to solar radiation intensity showed a reasonable stability in spite of the fluctuations due to meteorological conditions. The methodology developed is a useful tool for optimization and prediction of the performance of these systems.

  7. Thermochemical Properties of the Lattice Oxygen in W,Mn-Containing Mixed Oxide Catalysts for the Oxidative Coupling of Methane

    Science.gov (United States)

    Lomonosov, V. I.; Gordienko, Yu. A.; Sinev, M. Yu.; Rogov, V. A.; Sadykov, V. A.

    2018-03-01

    Mixed NaWMn/SiO2 oxide, samples containing individual components (Na, W, Mn) and their double combinations (Na-W, Na-Mn, W-Mn) supported on silica were studied by temperature programmed reduction (TPR) and desorption (TPD), and heat flow calorimetry during their reoxidation with molecular oxygen in pulse mode. The NaWMn/SiO2 mixed oxide was shown to contain two different types of reactive lattice oxygen. The weakly-bonded oxygen can be reversibly released from the oxide in a flow of inert gas in the temperature range of 575‒900°C, while the strongly-bonded oxygen can be removed during the reduction of the sample with hydrogen at 700-900°C. The measured thermal effect of oxygen consumption for these two oxygen forms are 185 and 350 kJ/mol, respectively. The amount of oxygen removed at reduction ( 443 μmol/g) considerably exceeded the amount desorbed in an inert gas flow ( 56 μmol/g). The obtained results suggest that the reversible oxygen desorption is due to the redox process in which manganese ions are involved, while during the temperature programmed reduction, mainly oxygen bonded with tungsten is removed.

  8. Studies of iodine adsorption and desorption on HTGR coolant circuit materials

    International Nuclear Information System (INIS)

    Osborne, M.F.; Compere, E.L.; de Nordwall, H.J.

    1976-04-01

    Safety studies of the HTGR system indicate that radioactive iodine, released from the fuel to the helium coolant, may pose a problem of concern if no attenuation of the amount of iodine released occurs in the coolant circuit. Since information on iodine behavior in this system was incomplete, iodine adsorption on HTGR materials was studied in vacuum as a function of iodine pressure and of adsorber temperature. Iodine coverages on Fe 3 O 4 and Cr 2 O 3 approached maxima of about 2 x 10 14 and 1 x 10 14 atoms/cm 2 , respectively, whereas the iodine coverage on graphite under similar conditions was found to be less by a factor of about 100. Iodine desorption from the same materials into vacuum or flowing helium was investigated, on a limited basis, as a function of iodine coverage, of adsorber temperature, and of dry vs wet helium. The rate of vacuum desorption from Fe 3 O 4 was related to the spectrum of energies of the adsorption sites. A small amount of water vapor in the helium enhanced desorption from iron powder but appeared to have less effect on desorption from the metal oxides

  9. Renal Blood Flow, Glomerular Filtration Rate, and Renal Oxygenation in Early Clinical Septic Shock.

    Science.gov (United States)

    Skytte Larsson, Jenny; Krumbholz, Vitus; Enskog, Anders; Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2018-06-01

    Data on renal hemodynamics, function, and oxygenation in early clinical septic shock are lacking. We therefore measured renal blood flow, glomerular filtration rate, renal oxygen consumption, and oxygenation in patients with early septic shock. Prospective comparative study. General and cardiothoracic ICUs. Patients with norepinephrine-dependent early septic shock (n = 8) were studied within 24 hours after arrival in the ICU and compared with postcardiac surgery patients without acute kidney injury (comparator group, n = 58). None. Data on systemic hemodynamics and renal variables were obtained during two 30-minute periods. Renal blood flow was measured by the infusion clearance of para-aminohippuric acid, corrected for renal extraction of para-aminohippuric acid. Renal filtration fraction was measured by renal extraction of chromium-51 labeled EDTA. Renal oxygenation was estimated from renal oxygen extraction. Renal oxygen delivery (-24%; p = 0.037) and the renal blood flow-to-cardiac index ratio (-21%; p = 0.018) were lower, renal vascular resistance was higher (26%; p = 0.027), whereas renal blood flow tended to be lower (-19%; p = 0.068) in the septic group. Glomerular filtration rate (-32%; p = 0.006) and renal sodium reabsorption (-29%; p = 0.014) were both lower in the septic group. Neither renal filtration fraction nor renal oxygen consumption differed significantly between groups. Renal oxygen extraction was significantly higher in the septic group (28%; p = 0.022). In the septic group, markers of tubular injury were elevated. In early clinical septic shock, renal function was lower, which was accompanied by renal vasoconstriction, a lower renal oxygen delivery, impaired renal oxygenation, and tubular sodium reabsorption at a high oxygen cost compared with controls.

  10. Impact of equilibrating time on phosphate adsorption and desorption behaviour in some selected saline sodic soils

    International Nuclear Information System (INIS)

    Khan, Q.U.; HAN; Khan, M.J.; Rehman, S.; Khan, S.U.

    2012-01-01

    To investigate the effect of equilibrating time on phosphate adsorption and desorption on saline sodic soils a study was carried using three soil series from Dera Ismail Khan (Pakistan) district, namely Zindani, Tikken and Gishkori. These soils are alkaline calcareous in nature with greater Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) values which classify them as saline sodic soils. The equilibrating time for the adsorption study was 8, 12, 16, 20, 24, 48 and 72 hours for two levels (5 mg L/sup -1/ and 100 mg L/sup -1/). For desorption study 1, 2, 3, 4 and 5 hours after 24 hours for low and high dilution. Adsorption and desorption isotherms of phosphate were developed for these soils. The Gishkori soil showed the greatest rate of adsorption as compared with the other two soils. Applying Langmuir and Freundlich models to P adsorption data revealed that Freundlich equation (R2 = 0.99) showed a better fit over the Langmuir equation (R2 =0. 97) in the three soils. The desorption curves varied similarly from each other. The amount of P adsorbed was different from that released back to the soil solution. The amount of adsorption increased with the time. Statistical analysis showed that the rate of adsorption for both 5 and 100 mg P L/sup -1/ was significantly different at P<0.05 at 16 and 20 hours and at P<0.01 beyond 20 hours. However, the rate of desorption was not significantly influenced by the equilibrating time as compared with the theoretical values of the three series. As the P - desorption curve did not coincide the P - adsorption curve, hence the availability of P to plant was adversely affected on its application. (author)

  11. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  12. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  13. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Rate of reaction of dimethylmercury with oxygen atoms in the gas phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge

    1986-01-01

    The rate constant for the reaction of atomic oxygen (O(3P)) with dimethylmercury has been measured at room temperature at a pressure of about 1 Torr using a fast flow system with electron paramagnetic resonance and mass spectrometric detection. Some reaction products were identified. The rate...

  15. Oxygen-storage behavior and local structure in Ti-substituted YMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I., E-mail: igor.levin@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Krayzman, V.; Vanderah, T.A. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Tomczyk, M. [Department of Ceramics and Glass Engineering, University of Aveiro, Aveiro 3810-193 (Portugal); Wu, H. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Tucker, M.G. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Playford, H.Y. [ISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxford (United Kingdom); Woicik, J.C.; Dennis, C.L. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Vilarinho, P.M. [Department of Ceramics and Glass Engineering, University of Aveiro, Aveiro 3810-193 (Portugal)

    2017-02-15

    Hexagonal manganates RMnO{sub 3} (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn{sub 1−x}Ti{sub x})O{sub 3} solid solutions exhibit facile oxygen absorption/desorption via reversible Ti{sup 3+}↔Ti{sup 4+} and Mn{sup 3+}↔Mn{sup 4+} reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn{sup 3+}{sub 1−x-y}Mn{sup 4+}{sub y}Ti{sup 4+}{sub x}O{sub 3+δ}. The presence of Ti promotes the oxidation of Mn{sup 3+} to Mn{sup 4+}, which is almost negligible for YMnO{sub 3} in air, thereby increasing the uptake of oxygen beyond that required for a given Ti{sup 4+} concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO{sub 5}] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO{sub 3} structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO{sub 5}] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti{sup 4+}(and Mn{sup 4+}) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under

  16. Validation of the Nonin 8600V Pulse Oximeter for heart rate and oxygen saturation measurements in rats.

    Science.gov (United States)

    Bernard, Susan L; An, Dowon; Glenny, Robb W

    2004-05-01

    This report validates the use and limitations of the Nonin Pulse Oximeter for measuring heart rate and oxygen saturation in rats. Eight anesthetized Sprague-Dawley rats were intubated and catheterized. Oxygen saturation was directly measured from arterial blood by using a Radiometer OSM3 Hemoximeter adjusted for rat blood as well as indirectly by using the Nonin Pulse Oximeter. Oxygen saturation was changed by varying the level of inhaled oxygen. Heart rate was measured in two ways: 1) by using the signal from the Nonin Pulse Oximeter and 2) by counting the pressure pulses from the transduced blood pressure. There was excellent agreement between heart rate values measured by the Nonin Pulse Oximeter and that measured by counting the pulses from the arterial blood pressure recording. The Nonin Pulse Oximeter underestimated oxygen saturations by about 3% to 5% compared to the Hemoximeter. Overall, the pulse oximeter reflected important trends in oxygen saturations, making it a useful tool for laboratory animal medicine.

  17. Radiative losses and electron cooling rates for carbon and oxygen plasma impurities

    International Nuclear Information System (INIS)

    Marchand, R.; Bonnin, X.

    1992-01-01

    Radiative losses and electron cooling rates are calculated for carbon and oxygen ions under conditions relevant to fusion plasmas. Both rates are calculated with the most recent recommended atomic data. A modified coronal model which includes the effects of metastable states is described and used to calculate the rates. Comparisons with other approaches are also discussed. (author). 36 ref, figs

  18. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    Science.gov (United States)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  19. Nano-nitride cathode catalysts of Ti, Ta, and Nb for polymer electrolyte fuel cells: Temperature-programmed desorption investigation of molecularly adsorbed oxygen at low temperature

    KAUST Repository

    Ohnishi, Ryohji; Takanabe, Kazuhiro; Katayama, Masao; Kubota, Jun; Domen, Kazunari

    2013-01-01

    -programmed desorption (TPD) of molecularly adsorbed O2 at 120-170 K from these nanoparticles was examined, and the resulting amount and temperature of desorption were key factors determining the ORR activity. The size-dependent TiN nanoparticles (5-8 and 100 nm) were

  20. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  1. Sorption, desorption and extraction of uranium from some sands under dynamic conditions

    International Nuclear Information System (INIS)

    Palagyi, S.; Laciok, A.

    2006-01-01

    Sorption, desorption and extraction behavior of uranium in various fluvial sands of domestic origin were investigated in continuous dynamic column experiments. For the sorption of U(VI) an aqueous 10 -4 M UO 2 (NO 3 ) 2 solution was used at a flow rate of about 0.3 cm 3 /min. Desorption was carried out with demineralized water, and the extraction with 10 -2 M Na 2 CO 3 solution following desorption. The retardation coefficients (R) and hydrodynamic dispersion coefficients (D d ), were determined using an ADE equation. From the experimentally determined values of R, bulk density and porosity, the distribution coefficients (K d ) of the UO 2 2+ species have been calculated for the respective processes. The extent of U sorption in sands, as well as the proportion of desorbed and extracted U from these sands, was also calculated. (author)

  2. Coverage dependent desorption dynamics of deuterium on Si(100) surfaces: interpretation with a diffusion-promoted desorption model.

    Science.gov (United States)

    Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A

    2005-01-08

    We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.

  3. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  4. Fluxes and exchange rates of radon and oxygen across an air-sea interface

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; La Torre, M. de

    1986-01-01

    The flux of 222 Rn and O 2 from shallow water off the Bay of Malaga has been measured. The mean value of flux of 222 Rn is evaluated to be 74 atoms/m 2 · s. The Bay is a weak source of oxygen to the atmosphere, where the net production of oxygen is found to be 1.82 mol/m 2 · y. Moreover, the gas exchange rates of 222 Rn and O 2 across the air-sea interface has been determined by the radon method. The gas exchange rates and the wind speed have been estimated. (author)

  5. Oxygen uptake rate (OUR) control strategy for improving avermectin B

    African Journals Online (AJOL)

    Glucose metabolism plays a crucial role in the process of avermectin B1a biosynthesis. Controlling glucose feeding based on oxygen uptake rate (OUR) was established to improve the efficiency of avermectin B1a production. The result showed that avermectin B1a production was greatly enhanced by OUR control strategy.

  6. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    Science.gov (United States)

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    Science.gov (United States)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  8. Initial screening of thermal desorption for soil remediation

    International Nuclear Information System (INIS)

    Yezzi, J.J. Jr.; Tafuri, A.N.; Rosenthal, S.; Troxler, W.L.

    1994-01-01

    Petroleum-contaminated soils--caused by spills, leaks, and accidental discharges--exist at many sites throughout the United States. Thermal desorption technologies which are increasingly being employed to treat these soils, have met soil cleanup criteria for a variety of petroleum products. Currently the United States Environmental Protection Agency is finalizing a technical report entitled Use of Thermal Desorption for Treating Petroleum-Contaminated Soils to assist remedial project managers, site owners, remediation contractors, and equipment vendors in evaluating the use of thermal desorption technologies for petroleum-contaminated soil applications. The report will present a three-level screening method to help a reader predict the success of applying thermal desorption at a specific site. The objective of screening level one is to determine the likelihood of success in a specific application of thermal desorption. It will take into account procedures for collecting and evaluating data on site characteristics, contaminant characteristics, soil characteristics, and regulatory requirements. This level will establish whether or not thermal desorption should be evaluated further for site remediation, whether treatment should occur on-site or off-site, and if on-site is a viable option, what system size will be most cost-effective. The scope of this paper addresses only screening level one which provides a preliminary assessment of the applicability of thermal desorption to a particular site. This topic encompasses worksheets that are an integral part of the ''user friendly'' screening process. Level one screening provides a foundation for the subsequent two levels which follow a similar ''user friendly'' worksheet approach to evaluating thermal desorption technologies and establishing costs for thermal desorption in an overall remediation project

  9. A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David; Sommer-Larsen, Peter

    2010-01-01

    Information on oxygen permeability through polymer films is essential for some applications, especially in food packaging where the control of oxygen levels can be critical in avoiding food spoilage. A permeability testing device using fluorescence-based optical oxygen sensing was developed...... as a potential new instrument for measuring the oxygen permeability of packaging films. The fluorescence-based permeability tester was validated against two existing commercial oxygen permeability measuring devices, the Mocon Ox-Tran 2/20 and PBI-Dansensor OPT-5000. Oxygen transmission rates (OTR) of polylactide...... (PLA) and nanoclay-reinforced PLA films, as well as polyethylene/poly(ethylene terephthalate) (PE/PET) and polypropylene/poly(ethylene terephthalate) (PP/PET) laminated films were determined at 23°C and 50% relative humidity using each of these instruments. No significant differences were observed...

  10. Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates

    Science.gov (United States)

    Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.

    2018-01-01

    There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.

  11. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  12. Study of Perylenetetracarboxylic Acid Dimethylimide Films by Cyclic Thermal Desorption and Scanning Probe Microscopy

    Science.gov (United States)

    Pochtennyi, A. E.; Lappo, A. N.; Il'yushonok, I. P.

    2018-02-01

    Some results of studying the direct-current (DC) conductivity of perylenetetracarboxylic acid dimethylimide films by cyclic oxygen thermal desorption are presented. The microscopic parameters of hopping electron transport over localized impurity and intrinsic states were determined. The bandgap width and the sign of major current carriers were determined by scanning probe microscopy methods (atomic force microscopy, scanning probe spectroscopy, and photoassisted Kelvin probe force microscopy). The possibility of the application of photoassisted scanning tunneling microscopy for the nanoscale phase analysis of photoconductive films is discussed.

  13. Adsorption of atomic oxygen on PdAg/Pd(111) surface alloys and coadsorption of CO

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Arnold P. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Reaction Kinetics Research Group, University of Szeged, Chemical Research Center of the Hungarian Academy of Sciences, H-6720 Szeged (Hungary); Bansmann, Joachim; Diemant, Thomas; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2011-07-01

    The interaction of dissociated oxygen with structurally well-defined PdAg/Pd(111) surface alloys and the coadsorption of CO was studied by high resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). After oxygen saturation of the non-modified Pd(111) surface at RT, we observed the formation of a prominent peak in the HREEL spectra at 60 meV corresponding to the perpendicular vibration of oxygen atoms adsorbed in threefold hollow sites. Deposition of small Ag amounts does not change the signal intensity of this peak; it decreases only above 20% Ag. Beyond this Ag content, the peak intensity steeply declines and disappears at around 55-60% Ag. CO coadsorption on the oxygen pre-covered surfaces at 120 K leads to the formation of additional features in HREELS. For a surface alloy with 29% Ag, three loss features due to CO adsorption in on-top, bridge, and threefold-hollow sites can be discriminated already after the lowest CO exposure. Annealing of the co-adsorbed layer to 200 K triggers a decrease of the oxygen concentration due to CO{sub 2} formation. These findings are corroborated by TPD spectra of the CO desorption and CO{sub 2} production.

  14. In situ measurement of the rate of oxygen consumption by the Callovo-Oxfordian argillaceous rock

    International Nuclear Information System (INIS)

    Vinsot, A.; Lundy, M.; Claret, F.; Wechner, S.

    2012-01-01

    fluid to protect the rock from any contact with air. The borehole equipment was installed just after the drilling and isolated the test interval with a packer. The equipment includes several lines, which link the test interval to the drift, and make it possible to circulate gas and collect the pore water flowing from the rock into the test interval. In the drift, a gas circulation module allows to circulate the gas and to monitor its composition. This module includes a circulation pump, an oxygen specific probe and cylinders which can be disconnected for gas sample analyses. In addition, the gas circulation module makes possible the injection of pure oxygen at a controlled flow rate. Another module is dedicated to water extraction at a controlled flow rate and permits water composition monitoring. Before the first oxygen injection, a stable water production flow rate between 30 and 40 mL/day was obtained in the borehole. This flow rate indicates that the test interval wall is presumably saturated with water. The water composition is similar to those previously obtained in the URL. The first oxygen injection was performed by replacing the previous circulating gas by a mixture of gases containing 14% O 2 , 5% He, 5% Ne and 76% Ar at a total pressure close to 1.5 bars. As a result the oxygen partial pressure was close to 0.2 bars just after the gas replacement. Helium and neon served as reference non-reactive gases: the evolution of their content should only depend on the dissolution and diffusion processes in the rock pore water. As a consequence, they will help to calibrate the transport part in a reactive transport model. Following its first injection in the test interval, oxygen totally disappeared in the time frame of less than three days. No immediate effect on the extracted water composition was observed. In October 2011, pure oxygen was added three times to the circulating gas to reach each time more an oxygen partial pressure of 0.2 bars in the test interval

  15. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  16. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  17. The slope of the oxygen pulse curve does not depend on the maximal heart rate in elite soccer players

    Directory of Open Access Journals (Sweden)

    Raphael Rodrigues Perim

    2011-01-01

    Full Text Available INTRODUCTION: It is unknown whether an extremely high heart rate can affect oxygen pulse profile during progressive maximal exercise in healthy subjects. OBJECTIVE: Our aim was to compare relative oxygen pulse (adjusted for body weight curves in athletes at their maximal heart rate during treadmill cardiopulmonary exercise testing. METHODS: A total of 180 elite soccer players were categorized in quartiles according to their maximum heart rate values (n = 45. Oxygen consumption, maximum heart rate and relative oxygen pulse curves in the extreme quartiles, Q1 and Q4, were compared at intervals corresponding to 10% of the total duration of a cardiopulmonary exercise testing. RESULTS: Oxygen consumption was similar among all subjects during cardiopulmonary exercise testing; however subjects in Q1 started to exhibit lower maximum heart rate values when 20% of the test was complete. Conversely, the relative oxygen pulse was higher in this group when cardiopulmonary exercise testing was 40% complete (p<.01. Although the slopes of the lines were similar (p = .25, the regression intercepts differed (p<.01 between Q1 and Q4. During the last two minutes of testing, a flat or decreasing oxygen pulse was identified in 20% of the soccer players, and this trend was similar between subjects in Q1 and Q4. CONCLUSION: Relative oxygen pulse curve slopes, which serve as an indirect and non-invasive surrogate for stroke volume, suggest that the stroke volume is similar in young and aerobically fit subjects regardless of the maximum heart rate reached.

  18. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization

  19. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  20. Determining Permissible Oxygen and Water Vapor Transmission Rate for Non-Retort Military Ration Packaging

    Science.gov (United States)

    2011-11-01

    OXYGEN AND WATER VAPOR TRANSMISSION RATE FOR NON- RETORT MILITARY RATION PACKAGING by Danielle Froio Alan Wright Nicole Favreau and Sarah...ANSI Std. Z39.18 RETORT STORAGE SHELF LIFE RETORT POUCHES SENSORY ANALYSIS OXYGEN CRACKERS PACKAGING SENSORY... Packaging for MRE. (a) MRE Retort Pouch Quad-Laminate Structure; (b) MRE Non- retort Pouch Tri-Laminate Structure

  1. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  2. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization.

    Science.gov (United States)

    Wagner, Shawn

    2014-06-01

    To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.

  3. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    Science.gov (United States)

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  4. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  5. Influence of methanol/sorbitol co-feeding rate on pAOX1 induction in a Pichia pastoris Mut+ strain in bioreactor with limited oxygen transfer rate.

    Science.gov (United States)

    Carly, F; Niu, H; Delvigne, F; Fickers, P

    2016-04-01

    High Pichia pastoris biomass density could be obtained using high co-feeding rate of methanol and sorbitol in a fed-batch or continuous culture, while further higher feeding rate finally leads to oxygen limitation in bioreactor. In the literature, there is lack of report about AOX1 promoter regulation with regard to dissolved oxygen level (DO). Therefore, in this work, chemostat cultures were performed to investigate the cell growth, metabolism and regulation of the AOX1 promoter (pAOX1) regarding co-feeding rate of optimized methanol/sorbitol mixture (methanol fraction 0.60 C-mol/C-mol) using a P. pastoris Mut+/pAOX1-lacZ strain. The oxygen transfer rates (OTR) in bioreactor were kept in the range of typical values of large bioreactor, i.e., 4-8 g/(L h) if DO equals 30 % saturation or 5-10 g/(L h) if DO nears zero. For DO >0, an increase of the carbon fed led to an increase of pAOX1 induction. By contrast, when dissolved oxygen was completely depleted, methanol accumulated, causing a 30 % decrease of pAOX1 induction. However, this decrease is more likely to be lined to methanol accumulation than to low level of dissolved oxygen (sorbitol co-feeding allowed cells to adapt to oxygen transient limitations that often occur at industrial scale with reduced effect on pAOX1 induction. The optimal feeding rate tested here was 6.6 mmol C (DCW h)(-1) at an OTR of 8.28 g O2(L h)(-1) with over fivefold pAOX1 induction (probably directly associated with target protein productivity) compared with previous work.

  6. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Derrick [Colorado School of Mines, Golden, CO (United States)

    2014-12-22

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  7. Investigations on ion-beam induced desorption from cryogenic surfaces; Untersuchungen zu ionenstrahlinduzierter Desorption von kryogenen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Christoph

    2017-07-03

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  8. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry

    2017-08-29

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.

  9. Rates of oxygen uptake increase independently of changes in heart rate in late stages of development and at hatching in the green iguana, Iguana iguana.

    Science.gov (United States)

    Sartori, Marina R; Abe, Augusto S; Crossley, Dane A; Taylor, Edwin W

    2017-03-01

    Oxygen consumption (VO 2 ), heart rate (f H ), heart mass (M h ) and body mass (M b ) were measured during embryonic incubation and in hatchlings of green iguana (Iguana iguana). Mean f H and VO 2 were unvarying in early stage embryos. VO 2 increased exponentially during the later stages of embryonic development, doubling by the end of incubation, while f H was constant, resulting in a 2.7-fold increase in oxygen pulse. Compared to late stage embryos, the mean inactive level of VO 2 in hatchlings was 1.7 fold higher, while f H was reduced by half resulting in a further 3.6 fold increase in oxygen pulse. There was an overall negative correlation between mean f H and VO 2 when data from hatchlings was included. Thus, predicting metabolic rate as VO 2 from measurements of f H is not possible in embryonic reptiles. Convective transport of oxygen to supply metabolism during embryonic incubation was more reliably indicated as an index of cardiac output (CO i ) derived from the product of f H and M h . However, a thorough analysis of factors determining rates of oxygen supply during development and eclosion in reptiles will require cannulation of blood vessels that proved impossible in the present study, to determine oxygen carrying capacity by the blood and arteriovenous oxygen content difference (A-V diff), plus patterns of blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  11. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    Science.gov (United States)

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included. © 2016 The Fisheries Society of the British Isles.

  12. Association of apneic oxygenation with decreased desaturation rates during rapid sequence intubation by a Chinese emergency medicine service.

    Science.gov (United States)

    Mao, Yong; Qin, Zong-He

    2015-01-01

    Rapid and safe airway management has always been of paramount importance in successful management of critically ill and injured patients in the emergency department. The achievement rate of emergency medicine inhabitants in airway management improved enhanced essentially subsequent to finishing anaesthesiology turn. There was a slightly higher rate of quick sequence intubation in the postapneic oxygenation groups (preapneic oxygenation 6.4%; postapneic oxygenation 9.1%). The majority of patients intubated in both groups were men (preapneic oxygenation 72.3%; postapneic oxygenation 63.5%). A higher percentage of patients in the preapneic oxygenation group had a Cormack-Lehane grade III or worse view (23.2% versus 11.8%). Anaesthesiology turns should be considered as an essential component of emergency medicine training programs. A collateral curriculum of this nature should also focus on the acquisition of skills in airway management.

  13. Secondary ion shadow-cone enhanced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chechen Chang (Hawaii Univ., Honolulu (USA). Dept. of Chemistry)

    1990-02-01

    The incident angle dependence of the secondary particle emission process under keV ion bombardment has been investigated. The results from the full molecular dynamics calculations indicate that the flux anisotropy of the incident beam, resulting from the non-uniform impact parameters for the surface atom of a single crystal, affects the particle desorption in a systematic fashion. The enhanced desorption at certain angles of incidence corresponds to the intensive focusing of the incident beam to the near-surface atom and the extended dissipation of momentum by large-angle scattering. This observation has let us to develop a new theoretical model in which the enhanced desorption is described by the distance of closest encounter along the trajectory of the incident particle to the surface atom. The computer time for the simulation of the incident-angle-dependent emission process is significantly reduced. The results from the calculation based on this model are in good agreement both with the results from the full dynamics calculation and with the experimental results. The new model also allows a complementary evaluation of the microscopic dynamics involved in the shadow-cone enhanced desorption. (author).

  14. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    Science.gov (United States)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple

  15. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  16. Adsorption, aggregation, and desorption of proteins on smectite particles.

    Science.gov (United States)

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-07

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.

  17. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    OpenAIRE

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-01-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for c...

  18. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    International Nuclear Information System (INIS)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na + and F + desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H + , Li + , and F + are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N 2 -O 2 multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF 2 and a series of alkali halides are discussed in terms of desorption mechanisms

  19. Oxygen permeation flux through La1-ySryFeO3 limited by the carbon monoxide oxidation rate

    NARCIS (Netherlands)

    van Hassel, B.A.; van Hassel, B.A.; ten Elshof, Johan E.; Bouwmeester, Henricus J.M.

    1995-01-01

    The oxygen permeation flux through La1-ySryFeO3-δ (y = 0.1, 0.2) in a large oxygen partial pressure gradient (air/CO, CO2 mixture) was found to be limited by the carbon monoxide oxidation rate at the low oxygen partial pressure side of the membrane. The oxygen permeation flux through the membrane

  20. Universal scaling for biomolecule desorption induced by swift heavy ions

    International Nuclear Information System (INIS)

    Szenes, G.

    2005-01-01

    A thermal activation mechanism is proposed for the desorption of biomolecules. Good agreement is found with the experiments in a broad range of the electronic stopping power. The activation energies of desorption U are 0.33, 1.57 and 5.35 eV for positive, negative and neutral leucine molecules, respectively, and 2.05 eV for positive ergosterol molecules. The desorption of valine clusters is analyzed. The magnitude of the specific heat shows that the internal degrees of freedom are not excited up to the moment of desorption. The effect of irradiation temperature and of ion velocity on the desorption yield is discussed on the basis of the author's model. The scaling function derived in the model for the desorption of biomolecules is applied also to the sputtering of SiO 2 and U = 0.42 eV is obtained

  1. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  2. Adsorption and desorption of 14C-chlorsulfuron in soils

    International Nuclear Information System (INIS)

    Chen Zuyi; Cheng Wei; Mi Chunyun

    1995-01-01

    The adsorption and desorption of the 4 concentrations of 14 C-chlorsulfuron in 10 soils were studied. As a result the soils had weak adsorptions of chlorsulfuron and the adsorptions varied with different type of soils tested. Adsorption rate of paddy soil (infant red earth) from Hunan and latosol red earth from Hainan was 3%∼4%; Yellow-brown earth from Nanjing and red earth from Jiangxi was 6%∼9%; black soil from Jilin, paddy soil (infant red earth) from Jiangxi and red earth from Anhui was 10%∼14%; Albic bleached soil from Jilin and yellow fluvo-aquatic soil from Jiangsu was 19%∼23%. pH value had an influence on the adsorption and organic matter had not obvious influence on the adsorption. Chlorsulfuron absorbed in soil could be desorbed through water. The relation between the adsorption and desorption was negative. The weak adsorption in soil shows that chlorsulfuron is active movable and diffusible and likely to pollute the ecological environment

  3. High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method

    International Nuclear Information System (INIS)

    Sakai, Tetsuya; Kuniyoshi, Yuji; Aoki, Wataru; Ezoe, Sho; Endo, Tatsuya; Hoshi, Yoichi

    2008-01-01

    High-rate deposition of titanium dioxide (TiO 2 ) film was attempted using oxygen plasma assisted reactive evaporation (OPARE) method. Photocatalytic properties of the film were investigated. During the deposition, the substrate temperature was fixed at 400 deg. C. The film deposition rate can be increased by increasing the supply of titanium atoms to the substrate, although oversupply of the titanium atoms causes oxygen deficiency in the films, which limits the deposition rate. The film structure depends strongly on the supply ratio of oxygen molecules to titanium atoms O 2 /Ti and changes from anatase to rutile structure as the O 2 /Ti supply ratio increased. Consequently, the maximum deposition rates of 77.0 nm min -1 and 145.0 nm min -1 were obtained, respectively, for the anatase and rutile film. Both films deposited at such high rates showed excellent hydrophilicity and organic decomposition performance. Even the film with rutile structure deposited at 145.0 nm min -1 had a contact angle of less than 2.5 deg. by UV irradiation for 5.0 h and an organics-decomposition performance index of 8.9 [μmol l -1 min -1 ] for methylene blue

  4. Polymer growth rate in a wire chamber with oxygen, water, or alcohol gas additives

    International Nuclear Information System (INIS)

    Boyarski, Adam M.

    2009-01-01

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium:isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a scanning electron microscope/energy dispersive X-ray (SEM/EDX) instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build-up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water, or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is trapped in the polymer layer and that a high electric field is necessary to remove the charge.

  5. Determination of respiration rates in water with sub-micromolar oxygen concentrations

    Directory of Open Access Journals (Sweden)

    Emilio Garcia-Robledo

    2016-11-01

    Full Text Available It is crucial for our study and understanding of element transformations in low-oxygen waters that we are able to reproduce the in situ conditions during laboratory incubations to an extent that does not result in unacceptable artefacts. In this study we have explored how experimental conditions affect measured rates of O2 consumption in low-O2 waters from the anoxic basin of Golfo Dulce (Costa Rica and oceanic waters off Chile-Peru. High-sensitivity optode dots placed within all-glass incubation containers allowed for high resolution O2 concentration measurements in the nanomolar and low µmolar range and thus also for the determination of rates of oxygen consumption by microbial communities. Consumption rates increased dramatically (from 3 and up to 60 times by prolonged incubations, and started to increase after 4-5 hours in surface waters and after 10-15 h in water from below the upper mixed layer. Estimated maximum growth rates during the incubations suggest the growth of opportunistic microorganism with doubling times as low as 2.8 and 4.6 h for the coastal waters of Golfo Dulce (Costa Rica and oceanic waters off Chile and Peru, respectively. Deoxygenation by inert gas bubbling led to increases in subsequently determined rates, possibly by liberation of organics from lysis of sensitive organisms, particle or aggregate alterations or other processes mediated by the strong turbulence. Stirring of the water during the incubation led to an about 50% increase in samples previously deoxygenated by bubbling, but had no effect in untreated samples. Our data indicate that data for microbial activity obtained by short incubations of minimally manipulated water are most reliable, but deoxygenation is a prerequisite for many laboratory experiments, such as determination of denitrification rates, as O2 contamination by sampling is practically impossible to avoid.

  6. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  7. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    Science.gov (United States)

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  8. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  9. Effect of cathode porosity on the Lithium-air cell oxygen reduction reaction – A rotating ring-disk electrode investigation

    International Nuclear Information System (INIS)

    Seo, Jeongwook; Sankarasubramanian, Shrihari; Singh, Nikhilendra; Mizuno, Fuminori; Takechi, Kensuke; Prakash, Jai

    2017-01-01

    The kinetics of the oxygen reduction reaction (ORR) on the practical air cathode in a Lithium-air cell, which is conventionally composed of porous carbon with or without catalysts supported on it, was investigated. The mechanism and kinetics of the oxygen reduction reaction (ORR) was studied on a porous carbon electrode in an oxygen saturated solution of 0.1 M Lithium bis-trifluoromethanesulfonimide (LiTFSI) in Dimethoxyethane (DME) using cyclic voltammetery (CV) and the rotating ring-disk electrode (RRDE) technique. The oxygen reduction and evolution reactions were found to occur at similar potentials to those observed on a smooth, planar glassy carbon (GC) electrode. The effect of porosity and the resultant increase in surface area were readily observed in the increase in the transient time required for the intermediates to reach the ring and the much larger disk currents (compared to smooth, planar GC) recorded respectively. The RRDE data was analyzed using a kinetic model previously developed by us and the rate constants for the elementary reactions were calculated. The rates constant for the electrochemical reactions were found to be similar in magnitude to the rate constants calculated for smooth GC disks. The porosity of the electrode was found to decrease the rate of desorption of the intermediate and the product and delay their diffusion by shifting it from a Fickian regime in the electrolyte bulk to the Knudsen regime in the film pores. Thus, it is shown that the effect of the electrode porosity on the kinetics of the ORR is physical rather than electrochemical.

  10. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    Science.gov (United States)

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.

  11. Methanol Formation via Oxygen Insertion Chemistry in Ices

    Science.gov (United States)

    Bergner, Jennifer B.; Öberg, Karin I.; Rajappan, Mahesh

    2017-08-01

    We present experimental constraints on the insertion of oxygen atoms into methane to form methanol in astrophysical ice analogs. In gas-phase and theoretical studies this process has previously been demonstrated to have a very low or nonexistent energy barrier, but the energetics and mechanisms have not yet been characterized in the solid state. We use a deuterium UV lamp filtered by a sapphire window to selectively dissociate O2 within a mixture of O2:CH4 and observe efficient production of CH3OH via O(1D) insertion. CH3OH growth curves are fit with a kinetic model, and we observe no temperature dependence of the reaction rate constant at temperatures below the oxygen desorption temperature of 25 K. Through an analysis of side products we determine the branching ratio of ice-phase oxygen insertion into CH4: ˜65% of insertions lead to CH3OH, with the remainder leading instead to H2CO formation. There is no evidence for CH3 or OH radical formation, indicating that the fragmentation is not an important channel and that insertions typically lead to increased chemical complexity. CH3OH formation from O2 and CH4 diluted in a CO-dominated ice similarly shows no temperature dependence, consistent with expectations that insertion proceeds with a small or nonexistent barrier. Oxygen insertion chemistry in ices should therefore be efficient under low-temperature ISM-like conditions and could provide an important channel to complex organic molecule formation on grain surfaces in cold interstellar regions such as cloud cores and protoplanetary disk midplanes.

  12. Methanol Formation via Oxygen Insertion Chemistry in Ices

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Jennifer B. [Harvard University Department of Chemistry and Chemical Biology, 10 Oxford Street, Cambridge, MA 02138 (United States); Öberg, Karin I.; Rajappan, Mahesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-08-10

    We present experimental constraints on the insertion of oxygen atoms into methane to form methanol in astrophysical ice analogs. In gas-phase and theoretical studies this process has previously been demonstrated to have a very low or nonexistent energy barrier, but the energetics and mechanisms have not yet been characterized in the solid state. We use a deuterium UV lamp filtered by a sapphire window to selectively dissociate O{sub 2} within a mixture of O{sub 2}:CH{sub 4} and observe efficient production of CH{sub 3}OH via O({sup 1}D) insertion. CH{sub 3}OH growth curves are fit with a kinetic model, and we observe no temperature dependence of the reaction rate constant at temperatures below the oxygen desorption temperature of 25 K. Through an analysis of side products we determine the branching ratio of ice-phase oxygen insertion into CH{sub 4}: ∼65% of insertions lead to CH{sub 3}OH, with the remainder leading instead to H{sub 2}CO formation. There is no evidence for CH{sub 3} or OH radical formation, indicating that the fragmentation is not an important channel and that insertions typically lead to increased chemical complexity. CH{sub 3}OH formation from O{sub 2} and CH{sub 4} diluted in a CO-dominated ice similarly shows no temperature dependence, consistent with expectations that insertion proceeds with a small or nonexistent barrier. Oxygen insertion chemistry in ices should therefore be efficient under low-temperature ISM-like conditions and could provide an important channel to complex organic molecule formation on grain surfaces in cold interstellar regions such as cloud cores and protoplanetary disk midplanes.

  13. Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2011-12-01

    Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption

  14. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    Science.gov (United States)

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies.

  15. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    Science.gov (United States)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  16. Cs-137 sorption and desorption in relation to properties of 17 soils

    International Nuclear Information System (INIS)

    Kerpen, W.

    1988-01-01

    For Cs-137 sorption and desorption studies material of Ap and Ah horizons from 17 soils with wide varying soil properties was selected. The soils were: Podsol, Luvisol, Chernozem, Cambisol, Phaeozem, Arenosol, Gleysol and other soils. The Cs-137 sorption and desorption experiments were carried out in aqueous solution (20 g of soil) under standardized conditions for two reasons: (1) to determine the amounts of Cs-137 sorption, desorption and remains as a function of different soils and (2) to evaluate the soil parameters which govern the sorption, desorption processes. Concerning the second point the sorption values, the amount of 137 Cs desorbed within four desorption cycles and the 137 Cs remains after four desorption cycles were correlated with pH, grain size, sorption capacity (CEC), and other soil properties. It will be shown that generally Cs-137 sorption, desorption and remains depend primarily on the pH of the soil. The middle sand proved to be an indicator for the strenght of sorption, and desorption processes. Sorption and desorption studies lead to the same results as found in biotest experiments

  17. Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Zawierucha, I [Institute of Chemistry and Environment Protection, Jan Dlugosz University of Czestochowa, Waszyngtona 4/8, 42-200 Czestochowa (Poland); Malina, G, E-mail: iwona_zawierucha@o2.pl [Faculty of Hydrogeology and Geology Engineering, Department of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow (Poland)

    2011-04-01

    Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O{sub 2} supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H{sub 2}O{sub 2} and KMnO{sub 4}. The biodegradation was evaluated on the basis of O{sub 2} uptake and CO{sub 2} production. The O{sub 2} consumption and CO{sub 2} production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O{sub 2} uptake and CO{sub 2} production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO{sub 4} in concentration of 20 g L{sup -1} was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H{sub 2}O{sub 2} caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H{sub 2}O{sub 2} decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.

  18. Effects of oxygen supply condition and specific biofilm interfacial area on phenol removal rate in a three-phase fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, A.; Meutia, A. A.; Osawa, M.; Arai, M.; Tsuneda, S. [Waseda Univ., Dept. of Chemical Engineering, Tokyo (Japan)

    2000-02-01

    A theoretical and experimental evaluation of the effects of superficial gas velocity, oxygen concentration in the gas phase, and specific biofilm interfacial area on the volumetric removal rate of phenol is described. The reaction rate was found to follow first order reaction kinetics with respect to oxygen, and zero-order reaction kinetics with respect to phenol. A semi-theoretical equation was developed which is capable of predicting the volumetric removal rate and is used to explain the overall removal rate of phenol. Biological reaction as the rate-controlling step and oxygen absorption are both explicable by this equation. 14 refs., 5 figs.

  19. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    Science.gov (United States)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  20. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  1. Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity

    Science.gov (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun

    2018-05-01

    We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.

  2. Nature of the concentration thresholds of europium atom yield from the oxidized tungsten surface under electron stimulated desorption

    CERN Document Server

    Davydov, S Y

    2002-01-01

    The nature of the electron-stimulated desorption (ESD) of the europium atoms by the E sub e irradiating electrons energies, equal to 50 and 80 eV, as well as peculiarities of the Eu atoms yield dependence on their concentration on the oxidized tungsten surface are discussed. It is shown, that the ESD originates by the electron transition from the interval 5p- or 5s shell of the tungsten surface atom onto the oxygen external unfilled 2p-level

  3. Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells.

    Science.gov (United States)

    Bibby, Susan R S; Jones, Deborah A; Ripley, Ruth M; Urban, Jill P G

    2005-03-01

    In vitro measurements of metabolic rates of isolated bovine nucleus pulposus cells at varying levels of oxygen, glucose, and pH. To obtain quantitative information on the interactions between oxygen and glucose concentrations and pH, and the rates of oxygen and glucose consumption and lactic acid production, for disc nucleus cells. Disc cells depend on diffusion from blood vessels at the disc margins for supply of nutrients. Loss of supply is thought to lead to disc degeneration, but how loss of supply affects nutrient concentrations in the disc is not known; nutrient concentrations within discs can normally only be calculated, because concentration measurements are invasive. However, realistic predictions cannot be made until there are data from measurements of metabolic rates at conditions found in the disc in vivo, i.e., at low levels of oxygen, glucose, and pH. A metabolism chamber was designed to allow simultaneous recording of oxygen and glucose concentrations and of pH. These concentrations were measured electrochemically with custom-built glucose and oxygen sensors; lactic acid was measured biochemically. Bovine nucleus pulposus cells were isolated and inserted into the chamber, and simultaneous rates of oxygen and glucose consumption and of lactic acid production were measured over a range of glucose, oxygen, and pH levels. There were strong interactions between rates of metabolism and oxygen consumption and pH. At atmospheric oxygen levels, oxygen consumption rate at pH 6.2 was 32% of that at pH 7.4. The rate fell by 60% as oxygen concentration was decreased from 21 to 5% at pH 7.4, but only by 20% at pH 6.2. Similar interactions were seen for lactic acid production and glucose consumption rates; we found that glycolysis rates fell at low oxygen and glucose concentrations and low pH. Equations were derived that satisfactorily predict the effect of nutrient and metabolite concentrations on rates of lactic acid production rate and oxygen consumption. Disc

  4. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  5. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems

    International Nuclear Information System (INIS)

    Castro, F.J.

    2000-01-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models consider simultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  6. Insights into the importance of oxygen functional groups in carbon reactions with oxygen containing gases

    International Nuclear Information System (INIS)

    John Zhu, Max Lu

    2005-01-01

    The role of pore structure of carbon in carbon-related adsorptions and reactions has been extensively investigated. However the studies on the role of surface chemistry of carbon are limited. In this paper, we present the importance of oxygen functional groups in carbon reactions with oxygen-containing gases. It is found that there is a good correlation between the electronic structures and reactivities of carbon edge sites. Zigzag sites are more active in oxygen adsorption because of the unpaired electrons and armchair sites are less active in oxygen adsorption due to the triple character. However, the desorption of semi-quinone oxygen from zigzag sites needs a bond energy ca. 30% higher than that of o-quinone oxygen from armchair edge sites. CO 2 and H 2 O adsorb on carbon surface much less favorably than O 2 . H 2 O is first physically adsorbed on the virgin graphite surface followed by chemisorption through oxygen atom approaching the carbon edge site and the movements of two hydrogen atoms to produce H 2 . The adsorption mechanism of H 2 O is different from that for CO 2 , but the final result is quite similar, i.e. producing only semi-quinone oxygen. Based upon the above studies, a new generalized mechanism, as shown in Fig. 1, is developed and can account for all the important kinetic phenomena of carbon-gas reactions. The key point is that in CO 2 /H 2 O-carbon reaction only semi-quinone formed; while, in O 2 -carbon reaction, semi-quinone, o-quinone (at lower pressure), and off-plane epoxy oxygen (at relatively higher pressure) can be formed. This is the main reason for the different reaction kinetics of O 2 -carbon reaction and CO 2 /H 2 O-carbon reactions as observed experimentally. The oxygen functional groups of carbon can be characterized by XPS, PZC (point of zero charge), IEP (isoelectric point) and TPD (temperature-programmed desorption), which were used in our previous studies. We treated the carbon surface with different acids, finding that HNO 3

  7. The role of electron-stimulated desorption in focused electron beam induced deposition

    DEFF Research Database (Denmark)

    van Dorp, Willem F.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor it is observed that the growt......, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for desorption....... experiments compared to literature values is consistent with earlier findings by other authors. The discrepancy is attributed to electron-stimulated desorption, which is known to occur during electron irradiation. The data suggest that, of the W(CO)6 molecules that are affected by the electron irradiation...

  8. The relationship between heart rate and rate of oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at two different temperatures.

    Science.gov (United States)

    Butler, Patrick J; Frappell, Peter B; Wang, Tobias; Wikelski, Martin

    2002-07-01

    To enable the use of heart rate (fH) for estimating field metabolic rate (FMR) in free-ranging Galapagos marine iguanas Amblyrhynchus cristatus, we determined the relationships between fH and mass-specific rate of oxygen consumption (sVO2) in seven iguanas before and during exercise on a treadmill and during the post-exercise period. The experiments were conducted at 27 and 35 degrees C, which are the temperatures that represent the lowest and highest average body temperatures of these animals in the field during summer. There were linear and significant relationships between fH and sVO2 at both temperatures (r(2)=0.86 and 0.91 at 27 degrees C and 36 degrees C, respectively). The slopes of the two regression lines did not differ, but there were significant differences in their intercepts. Thus, while heart rate can be used to predict FMR, the effects of temperature on the intercept of the regression must be taken into account when converting fH to sVO2. On the basis of our data, this can be achieved by applying the following formula: sVO2=0.0113fH-0.2983Q(10)((T(b)-27)/10). The increase in sVO2 with elevated body temperature results from an increase in fH, with no significant change in mass-specific oxygen pulse (sO(2) pulse; cardiac stroke volume times the difference in oxygen content between arterial and mixed venous blood). However, during exercise at both temperatures, increases in fH are insufficient to provide all of the additional O(2) required and there are also significant increases in the sO(2) pulses. This creates the situation whereby the same fH at the two temperatures can represent different values of sVO2.

  9. The oxygen consumption rates of different life stages of the endoparasitic nematode

    Directory of Open Access Journals (Sweden)

    Willie van Aardt

    2010-01-01

    Full Text Available The oxygen consumption rates of different life stages of the endoparasitic nematode, Pratylenchus zeae (Nematoda: Tylenchida during non- and post-anhydrobiosisPratylenchus zeae, widely distributed in tropical and subtropical regions, is an endoparasite in roots of maize and other crop plants. The nematode is attracted to plant roots by CO2 and root exudates and feeds primarily on cells of the root cortex, making channels and openings where the eggs are deposited, with the result that secondary infection occurs due to bacteria and fungi. Nothing is known about the respiration physiology of this nematode and how it manages to survive during dry seasons. To measure the oxygen consumption rate (VO2 of individual P. zeae (less than half a millimeter long, a special measuring technique namely Cartesian diver micro-respirometry was applied. The Cartesian divers were machined from Perspex, and proved to be more accurate to measure VO2 compared with heavier glass divers used in similar experiments on free living nematodes. An accuracy of better than one nanoliter of oxygen consumed per hour was achieved with a single P. zeae inside the diver. Cartesian diver micro-respirometry measurements are based in principle on the manometric changes that occur in a fl otation tube in a manometer set-up when oxygen is consumed by P. zeae and CO2 from the animal is chemically absorbed. VO2 was measured for eggs (length: < 0.05 mm, larvae (length: 0.36 mm and adults (length: 0.47 mm before induction to anhydrobiosis. P. zeae from infected maize roots were extracted and exposed aseptically to in vitro maize root cultures in a grow cabinet at 50 % to 60% relative humidity at 28 ºC using eggs, larvae and adults. VO2 was also measured for post-anhydrobiotic eggs, larvae and adults by taking 50 individuals, eggs and larvae from the culture and placing them in Petri-dishes with 1% agar/water to dry out for 11 days at 28 ºC and 50% relative humidity. The VO2 was measured

  10. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    Science.gov (United States)

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  11. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    Science.gov (United States)

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  12. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes.

    Science.gov (United States)

    De Bénédittis, J; Bertrand-Krajewski, J L

    2005-01-01

    The paper presents the principle of a method to measure infiltration rates in sewer systems based on the use of oxygen isotopes and its application in Lyon (France). In the urban area of Lyon, significant differences in delta 18O that can reach 3 per thousand are observed between the oxygen isotopic compositions of groundwater originating from Rhone, Saone and from their associated alluvial aquifers. Drinking water supplying Lyon results mainly from pumping in the Rhone alluvial aquifer. Therefore, in some areas, the difference of isotopic composition between wastewater resulting from the consumption of drinking water and local groundwater can be used to measure infiltration in sewer systems. The application in the catchment of Ecully shows that the infiltration flow rate presents strong fluctuations at an hourly scale: it varies between 15 and 40 m3/h. This variability could be explained by non-constant discharges of pumping and by variations of the water level in the sewer.

  13. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  14. Analysis of hydrogen distribution on Mg-Ni alloy surface by scanning electron-stimulated desorption ion microscope (SESDIM)

    International Nuclear Information System (INIS)

    Yamaga, Atsushi; Hibino, Kiyohide; Suzuki, Masanori; Yamada, Masaaki; Tanaka, Kazuhide; Ueda, Kazuyuki

    2008-01-01

    Hydrogen distribution and behavior on a Mg-Ni alloy surface are studied by using a time-of-flight electron-stimulated desorption (TOF-ESD) microscopy and a scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). The desorbed hydrogen ions are energy-discriminated and distinguished into two characters in the adsorbed states, which belong to Mg 2 Ni grains and the other to oxygen-contaminated Mg phase at the grain boundaries. Adsorbed hydrogen is found to be stable up to 150 deg. C, but becomes thermally unstable around at 200 deg. C

  15. Lyoluminescence of irradiated carbohydrates - the role of dissolution rate and oxygen

    International Nuclear Information System (INIS)

    Baugh, P.J.; Laflin, P.

    1980-01-01

    The lyoluminescent emission from γ-irradiated carbohydrates is shown to be strictly controlled by the rate of dissolution of the solid and the availability of oxygen for reaction during dissolution. These effects are explained in terms of oxidation of trapped radicals diffusing from the dissolving carbohydrate which react in an 'active volume' set up at the onset of dissolution at the crystal-water interface. At irradiation doses greater than 82.5 krad for mannose there is a suppression of the emission which results from an incomplete oxidation of the diffusing radicals due to insufficient O 2 in the active volume leading to a reaction involving unoxidised radicals and peroxyl radicals which are believed to be the precursors of the emission. This reaction is suppressed when the oxygen supply to the 'active volume' is increased. This can be achieved by increasing the oxygen content of the injector gas and indirectly by decreasing the solubility of the carbohydrate. Under these conditions the linear dose range of the lyoluminescence response is extended to ca. 330 krad close to the dose at which trapped radicals saturate in the irradiated solid carbohydrate. Although lyoluminescence is a liquid surface-layer effect as expected the generation of the emission is greatly influenced by oxygen present in the injection atmosphere. Quenching of lyoluminescence by adding peroxyl radical quenchers Cu(II) ions and hydroquinone, suggests that the reaction involving these quenchers also occurs in the 'active volume'. The results generally can be interpreted in terms of a diffusion model. (author)

  16. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  17. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  18. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  19. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  20. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 {sup o}C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO{sub 3} and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater.

  1. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    International Nuclear Information System (INIS)

    Gupta, V.K.; Rastogi, A.

    2008-01-01

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 o C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO 3 and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater

  2. Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles

    International Nuclear Information System (INIS)

    Jafari, Seyed Ali; Jamali, Abbas

    2016-01-01

    Packed-bed column process efficiency for cadmium adsorption from aqueous solution was investigated under different bed heights (2.6 to 7.5 cm) and feed flow rates (15 to 30 ml min -1 ). The column was filled with brown seaweed, Sargassum angustifolium. Three simplified models, including Bed Depth Service Time, Thomas, and Yoon- Nelson were employed for describing the experimental breakthrough curves as well as achieving design parameters. Bed lifetime was also evaluated in several consecutive sorption-desorption cycles. Cadmium concentration of 0.005mg l−1, as a standard limit for potable water, was considered as the breakthrough concentration. The maximum column performance was achieved 81% at 7.5 cm bed length and flow rate of 15 ml min -1 . Indeed, increasing the bed height increased the sorption performance and service time, while increasing the feed flow rate had a negative effect. Maximum sorption capacity value remained almost constant by the bed height changes; however, increase in the feed flow rate slightly decreased it. The modeling results revealed that the Yoon-Nelson model was more accurate than Thomas for describing the experimental breakthrough data, especially at low flow rates. Column service time predictions were surprisingly achieved using the Bed Depth Service Time model even at extrapolations. 20% reduction in column adsorption efficiency was observed at the end of four consecutive sorption-desorption cycles; however, desorption efficiencies were achieved more than 99% in each cycle.

  3. Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, Seyed Ali; Jamali, Abbas [Persian Gulf Research Institute, Persian Gulf University, 75169, Bushehr (Iran, Islamic Republic of)

    2016-04-15

    Packed-bed column process efficiency for cadmium adsorption from aqueous solution was investigated under different bed heights (2.6 to 7.5 cm) and feed flow rates (15 to 30 ml min{sup -1}). The column was filled with brown seaweed, Sargassum angustifolium. Three simplified models, including Bed Depth Service Time, Thomas, and Yoon- Nelson were employed for describing the experimental breakthrough curves as well as achieving design parameters. Bed lifetime was also evaluated in several consecutive sorption-desorption cycles. Cadmium concentration of 0.005mg l−1, as a standard limit for potable water, was considered as the breakthrough concentration. The maximum column performance was achieved 81% at 7.5 cm bed length and flow rate of 15 ml min{sup -1}. Indeed, increasing the bed height increased the sorption performance and service time, while increasing the feed flow rate had a negative effect. Maximum sorption capacity value remained almost constant by the bed height changes; however, increase in the feed flow rate slightly decreased it. The modeling results revealed that the Yoon-Nelson model was more accurate than Thomas for describing the experimental breakthrough data, especially at low flow rates. Column service time predictions were surprisingly achieved using the Bed Depth Service Time model even at extrapolations. 20% reduction in column adsorption efficiency was observed at the end of four consecutive sorption-desorption cycles; however, desorption efficiencies were achieved more than 99% in each cycle.

  4. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  5. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    Science.gov (United States)

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  7. Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Clark, E.P.; Michaels, H.B.; Peterson, E.C.; Epp, E.R.

    1983-01-01

    The response of cultured CHO cells to ultrahigh-dose-radiation (approx.10 9 Gy/sec) has been previously studied extensively using the thin-layer cell-handling technique developed in this laboratory. When the cells are equilibrated with a low concentration of oxygen, e.g., 0.44% O 2 , a breaking survival curve, due to radiolytic depletion of the oxygen, is observed. Hypoxic cells irradiated in the presence of the nitroimidazoles (e.g., misonidazole) are sensitized at ultrahigh dose rates in a dose-modifying manner, similar to that observed at conventional dose rates. These radiosensitizer compounds, if present in cells equilibrated with a low concentration of oxygen, prevent the breaking behavior of the survival curve, an observation believed to be due to the sensitizer interfering with the oxygen depletion process, leaving oxygen free to sensitize. Such experiments have recently been extended to studies with diamide, which, unlike the other sensitizers tested, acts primarily as a shoulder-modifying rather than a dose-modifying agent in hypoxic mammalian cells. These data indicate that diamide is active as a sensitizer at ultrahigh dose rates in a manner similar to that observed at conventional dose rates, and does modify the shape of the breaking survival curve observed with low concentrations of oxygen

  8. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni79.1Co18.6Cu2.3 alloy using resistometry

    International Nuclear Information System (INIS)

    Spasojević, M.; Maričić, A.; Ribić Zelenović, L.; Krstajić, N.; Spasojević, P.

    2013-01-01

    Highlights: ► Nanostructured Ni 79.1 Co 18.6 Cu 2.3 powder was obtained by electrochemical deposition. ► Correlation observed between electrical conductivity and absorbed hydrogen amount. ► Hydrogen absorption/desorption mechanism was determined. - Abstract: Ni 79.1 Co 18.6 Cu 2.3 powder was obtained by electrochemical deposition from an ammonium sulfate bath. The structure and surface morphology of the powder were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically obtained Ni 79.1 Co 18.6 Cu 2.3 alloy contained an amorphous phase and nanocrystals with an average size of 6.8 nm of FCC phase of the solid solution of cobalt and copper in nickel. Nanocrystals were characterized by a high average microstrain value and high minimum density of chaotically distributed dislocations. X-ray analysis also showed that powder hydrogenation at an elevated temperature of up to 200 °C did not change unit cell parameters and mean crystallite size value. SEM images show the formation of two shapes of powder particles: large cauliflower-like particles and small dendritic ones. Powder pressing at 10 MPa and at 25 °C gave samples that were analyzed for hydrogen absorption/desorption within the temperature range of 160–200 °C. Changes in electrical resistivity during absorption/desorption were monitored. The reciprocal value of resistivity (electrical conductivity) was found to increase linearly with increasing amount of absorbed hydrogen. The experimental results were used to propose an absorption/desorption mechanism. The adsorbed hydrogen molecule dissociates on alloy surface, forming adsorbed atoms. Adatoms penetrate and diffuse into the bulk of the alloy, simultaneously donating their electrons to the conduction band of the alloy. The increase in the concentration of free electrons induces a decrease in electrical resistivity. The overall absorption rate during initial absorption is determined by the

  9. EFFECTS OF IMMOBILIZATION IN Ba-ALGINATE ON NITRILE-DEPENDENT OXYGEN UPTAKE RATES OF CANDIDA GUILLIERMONDII

    Directory of Open Access Journals (Sweden)

    Dias João Carlos Teixeira

    2001-01-01

    Full Text Available Yeast cells immobilized by entrapment in Ba-alginate gel were investigated for growth pattern and respiratory activity. The oxygen uptake rates (OUR of cells entrapped in gels with 4% alginate were 5.2 and 23% lower than the OUR of 2% alginate and free cells, respectively. The mass-transfer resistance offered by the matrix and growth of the entrapped cells determine a gradient of nutrients throughout the gel which is responsible for both a lower specific growth rate of immobilized cells with respect to that of free ones, and a heterogeneous biomass distribution, with progressively increasing cellular density from the inside to the outside of the matrix. Gel-matrix polymer concentration affected the maximum oxygen uptake of immobilized growing yeast cells.

  10. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    Science.gov (United States)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  11. Sn doped TiO{sub 2} nanotube with oxygen vacancy for highly efficient visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinliang; Xu, Xingtao [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, Department of Physics, East China Normal University, Shanghai 200062 (China); Liu, Xinjuan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Yu, Caiyan; Yan, Dong; Sun, Zhuo [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, Department of Physics, East China Normal University, Shanghai 200062 (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, Department of Physics, East China Normal University, Shanghai 200062 (China)

    2016-09-15

    Sn doped TiO{sub 2} nanotube with oxygen vacancy (V{sub o}-Sn−TiO{sub 2}) was successfully synthesized via a facile hydrothermal process and subsequent annealing in nitrogen atmosphere. The morphology, structure and photocatalytic performance of V{sub o}-Sn−TiO{sub 2} in the degradation of nitrobenzene were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, UV–vis absorption spectroscopy, nitrogen adsorption-desorption and electrochemical impedance spectra, respectively. The inner diameter, outer diameter and specific surface area of V{sub o}-Sn−TiO{sub 2} are about 5 nm, 15 nm and 235.54 m{sup 2} g{sup −1}, respectively. The experimental results show that the V{sub o}-Sn−TiO{sub 2} exhibits excellent photocatalytic performance with a maximum degradation rate of 92% in 300 min for nitrobenzene and 94% in 100 min for Rhodamine B and corresponding mineralization rates of 68% and 70% under visible light irradiation. The improved photocatalytic performance is ascribed to the enhanced light absorption and specific surface area as well as the reduced electron-hole pair recombination with the presence of oxygen vacancy and Sn doping in the TiO{sub 2} nanotube. - Highlights: • Photocatalysis is an environmental-friendly technology for nitrobenzene removal. • Sn doped TiO{sub 2} nanotube with oxygen vacancy is fabricated for the first time. • It exhibits excellent photocatalytic performance in degradation of nitrobenzene. • A high degradation rate of 92% is achieved under visible light irradiation.

  12. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  13. Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils.

    Science.gov (United States)

    Azcarate, Mariela P; Montoya, Jorgelina C; Koskinen, William C

    2015-01-01

    The sulfonylurea (SUs) herbicides are used to control broadleaf weeds and some grasses in a variety of crops. They have become popular because of their low application rates, low mammalian toxicity and an outstanding herbicidal activity. Sorption is a major process influencing the fate of pesticides in soil. The objective of this study was to characterize sorption-desorption of four sulfonylurea herbicides: metsulfuron-methyl (methyl 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl)]benzoate), sulfometuron-methyl (methyl 2-[(4,6-dimethylpyrimidin-2-yl)carbamoylsulfamoyl]benzoate), rimsulfuron (1-(4,6-dimethoxypyrimidin-2-yl)-3-(3-ethylsulfonyl-2-pyridylsulfonyl)urea) and nicosulfuron (2-[(4,6-dimethoxypyrimidin-2-yl)carbamoylsulfamoyl]-N,N-dimethylnicotinamide) from different soil horizons of different landscape positions. Sorption was studied in the laboratory by batch equilibration method. Sorption coefficients (K(d-SE)) showed that rimsulfuron (K(d-SE) = 1.18 to 2.08 L kg(-1)) and nicosulfuron (K(d-SE) = 0.02 to 0.47 L kg(-1)) were more highly sorbed than metsulfuron-methyl (K(d-SE) = 0.00 to 0.05 L kg(-1)) and sulfometuron-methyl (K(d-SE) = 0.00 to 0.05 L kg(-1)). Sorption coefficients (K(d-SE)) were correlated with pH and organic carbon content. All four herbicides exhibited desorption hysteresis where the desorption coefficients (K(d-D)) > K(d-SE). To estimate the leaching potential, K(oc) and ground-water ubiquity score (GUS) were used to calculate the half-life (t1/2) required to be classified as "leacher" or "nonleacher". According to the results, rimsulfuron and nicosulfuron herbicides would be classified as leachers, but factors such as landscape position, soil depth and the rate of decomposition in surface and subsurface soils could change the classification. In contrast, these factors do not affect classification of sulfometuron-methyl and metsulfuron-methyl; they would rank as leachers.

  14. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-01-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl_2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl_2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. - Highlights: • Metal availability, desorption, and speciation were tested during phytoextraction. • Metal availability showed an initial sharp decline then a slight change in acid soils. • Metal availability changed little during

  15. Various causes behind the desorption hysteresis of carboxylic acids on mudstones.

    Science.gov (United States)

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-02-01

    Adsorption desorption is a key factor for leaching, migration and (bio)degradation of organic pollutants in soils and sediments. Desorption hysteresis of apolar organic compounds is known to be correlated with adsorption/diffusion into soil organic matter. This work focuses on the desorption hysteresis of polar organic compounds on a natural mudstone sample. Acetic, citric and ortho-phthalic acids displayed adsorption-desorption hysteresis on Callovo-Oxfordian mudstone. The non-reversible behaviours resulted from three different mechanisms. Adsorption and desorption kinetics were evaluated using 14C- and 3H-labelled tracers and an isotopic exchange method. The solid-liquid distribution ratio of acetate decreased using a NaN 3 bactericide, indicating a rapid bacterial consumption compared with negligible adsorption. The desorption hysteresis of phthalate was apparent and suppressed by the equilibration of renewal pore water with mudstone. This confirms the significant and reversible adsorption of phthalate. Finally, persistent desorption hysteresis was evidenced for citrate. In this case, a third mechanism should be considered, such as the incorporation of citrate in the solid or a chemical perturbation, leading to strong desorption resilience. The results highlighted the different pathways that polar organic pollutants might encounter in a similar environment. Data on phthalic acid is useful to predict the retarded transport of phthalate esters and amines degradation products in sediments. The behaviour of citric acid is representative of polydentate chelating agents used in ore and remediation industries. The impact of irreversible adsorption on solid/solution partitioning and transport deserves further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Adsorption and desorption of radioactive inert gases in various materials

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Peculiarities of the 85 Kr and 133 Xe adsorption and desorption processes in active carbon and paraffin are considered in the work. During the desorption process, the distribution of 85 Kr and 133 Xe atoms in active carbon particles is uneven: atoms in narrow micropores desorb the last. It is shown that by changing adsorption conditions the presence time of radioactive inert gases in an active carbon can be prolonged. The adsorption and desorption processes change in the adsorbent, which changes its aggregation state: adsorption occurs in a liquid absorbent and desorption - in a solid absorbent. Paraffin is just such an absorbent changing its aggregation state with low energy losses. It has been obtained that 133 Xe accumulates less in liquid paraffin that in an active carbon. The absorption of 85 Kr in paraffin is larger than in an active carbon (at 18-20 degrees Celsius), while desorption is slower. The velocity of radioactive inert gas atom motion in different places of a solid paraffin sample is different - it increases approaching the borders of the sample. Prolongation of the desorption time of radioactive inert gases from adsorbents and adsorbents in many cases is of a practical importance. In this work, it has been shown by model experiments that the intensity of adsorption and desorption processes for the same sorbents can be changed. Desorption intensity changes are related to the distribution of gas atoms on the surface of particles and in micropores. Desorption velocity decreases if inert gas atoms having entered micropores are 'closed' by condensed liquids in the environment. In this case an inert gas atom diffuses within the whole particle volume or through the condensed liquid. Radioactive inert gases 85 Kr and 133 Xe are absorbed not only in liquid paraffin but in solid one as well. Therefore, after a paraffin sample is hermetically closed in a glass dish, 85 Kr (gas) having diffused from this sample is repeatedly absorbed in it. The 85 Kr

  17. Acoustic emission during hydrogen absorption and desorption in palladium

    International Nuclear Information System (INIS)

    Ramesh, R.; Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  18. Upscaling of U (VI) desorption and transport from decimeter‐scale heterogeneity to plume‐scale modeling

    Science.gov (United States)

    Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin A.; Day-Lewis, Frederick D.

    2015-01-01

    Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.

  19. Desorption of large organic molecules by laser-induced plasmon excitation

    International Nuclear Information System (INIS)

    Lee, I.; Callcott, T.A.

    1991-01-01

    Ejection of large organic molecules from surfaces by laser-induced electronic-excited desorption has attracted considerable interest in recent years. In addition to the importance of this effect for fundamental investigations of the ejection process, this desorption technique has been applied to the study of large, fragile molecules by mass spectrometry. In this paper, we present a new method to induce electronic excitation on the metal surface for the desorption of large organic molecules. 3 refs., 3 figs

  20. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  1. Effect of temperature, of oxygen content and the downstream effect on corrosion rate of structural materials in liquid sodium

    International Nuclear Information System (INIS)

    Ilincev, G.

    1988-01-01

    The effects were experimentally tested of temperature and of oxygen content on the corrosion rate of structural materials in liquid sodium and on reducing the corrosion rate down the sodium stream. The results of the experiments are shown in graphs and tables and are discussed in detail. The duration of all tests was standard 1,000 hours. The test parameters were set such as to determine the effect of temperature on corrosion of a quantity of various materials in sodium with a low oxygen content (1.2 to 2 ppm) at temperatures of 500 to 800 degC and in sodium with a high oxygen content (345 ppm) at temperatures of 500 to 700 degC. More experiments served the determination of the effect of a different oxygen content varying between 1.2 and 2 ppm at a constant temperature of 600 degC. The materials being tested included main structural materials used for fast reactor construction and materials allowing to establish the effect of main alloying elements on their corrosion in liquid sodium of different temperatures and purity grades. The relationships showing the effects of temperature and oxygen content in sodium on the rate of corrosion of various structural materials in hot parts of the installation and on the reduction in the rate of corrosion downstream due to sodium saturation with corrosion products were constructed using the experimental results. (Z.M.). 15 figs., 2 tabs., 7 refs

  2. Mineralogic Residence and Desorption Rates of Sorbed 90Sr in Contaminated Subsurface Sediments: Implications to Future Behavior and In-Ground Stability

    International Nuclear Information System (INIS)

    PIs: John M. Zachara; Jim P. McKinley; S. M. Heald; Chongxuan Liu; Peter C. Lichtner

    2006-01-01

    The project is investigating the adsorption/desorption process of 90Sr in coarse-textured pristine and contaminated Hanford sediment with the goal to define a generalized reaction-based model for use in reactive transport calculations. While it is known that sorbed 90Sr exists in an ion exchangeable state, the mass action relationships that control the solid-liquid distribution and the mineral phases responsible for adsorption have not been defined. Many coarse-textured Hanford sediment display significant sorptivity for 90Sr, but contain few if any fines that may harbor phyllosilicates with permanent negative charge and associated cation exchange capacity. Moreover, it is not known whether the adsorption-desorption process exhibits time dependence within context of transport, and if so, the causes for kinetic behavior

  3. A novel zincum-doped perovskite-type ceramic membrane for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xinzhi; Liu Hongfei; Wei Yanying [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, 510640 Guangzhou (China); Caro Juergen [Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3-3A D-30179 Hannover (Germany); Wang Haihui, E-mail: hhwang@scut.edu.c [School of Chemistry and Chemical Engineering, South China University of Technology, No. 381 Wushan Road, 510640 Guangzhou (China)

    2009-09-18

    Zincum-doped ceramic membrane materials based on BaCo{sub 0.4}Fe{sub 0.4}Zn{sub x}Zr{sub (0.2-x)}O{sub 3-delta} with 0 <= x <= 0.2 were synthesized by combining citric acid and ethylene-diamine-tetraacetic acid (EDTA) complexing method. X-ray diffraction (XRD) patterns show that the BaCo{sub 0.4}Fe{sub 0.4}Zn{sub 0.2}O{sub 3-delta} ceramic oxide exhibits a pure cubic perovskite structure. Oxygen temperature-programmed desorption (O{sub 2}-TPD) profile indicates that BaCo{sub 0.4}Fe{sub 0.4}Zn{sub 0.2}O{sub 3-delta} possesses a good phase reversibility. An oxygen permeation flux of 0.65 ml/min cm{sup 2} was obtained at 950 deg. C and a single activation energy of 67 kJ/mol was observed for the oxygen permeation in the temperature range of 600-950 deg. C. No decline was found during more than 100 h oxygen permeation.

  4. Oxygen Passivation Mediated Tunability of Trion and Excitons in MoS2

    KAUST Repository

    Gogoi, Pranjal Kumar

    2017-08-17

    Using wide spectral range in situ spectroscopic ellipsometry with systematic ultrahigh vacuum annealing and in situ exposure to oxygen, we report the complex dielectric function of MoS2 isolating the environmental effects and revealing the crucial role of unpassivated and passivated sulphur vacancies. The spectral weights of the A (1.92 eV) and B (2.02 eV) exciton peaks in the dielectric function reduce significantly upon annealing, accompanied by spectral weight transfer in a broad energy range. Interestingly, the original spectral weights are recovered upon controlled oxygen exposure. This tunability of the excitonic effects is likely due to passivation and reemergence of the gap states in the band structure during oxygen adsorption and desorption, respectively, as indicated by ab initio density functional theory calculation results. This Letter unravels and emphasizes the important role of adsorbed oxygen in the optical spectra and many-body interactions of MoS2.

  5. Oxygen Passivation Mediated Tunability of Trion and Excitons in MoS2

    Science.gov (United States)

    Gogoi, Pranjal Kumar; Hu, Zhenliang; Wang, Qixing; Carvalho, Alexandra; Schmidt, Daniel; Yin, Xinmao; Chang, Yung-Huang; Li, Lain-Jong; Sow, Chorng Haur; Neto, A. H. Castro; Breese, Mark B. H.; Rusydi, Andrivo; Wee, Andrew T. S.

    2017-08-01

    Using wide spectral range in situ spectroscopic ellipsometry with systematic ultrahigh vacuum annealing and in situ exposure to oxygen, we report the complex dielectric function of MoS2 isolating the environmental effects and revealing the crucial role of unpassivated and passivated sulphur vacancies. The spectral weights of the A (1.92 eV) and B (2.02 eV) exciton peaks in the dielectric function reduce significantly upon annealing, accompanied by spectral weight transfer in a broad energy range. Interestingly, the original spectral weights are recovered upon controlled oxygen exposure. This tunability of the excitonic effects is likely due to passivation and reemergence of the gap states in the band structure during oxygen adsorption and desorption, respectively, as indicated by ab initio density functional theory calculation results. This Letter unravels and emphasizes the important role of adsorbed oxygen in the optical spectra and many-body interactions of MoS2 .

  6. Oxygen Passivation Mediated Tunability of Trion and Excitons in MoS2

    KAUST Repository

    Gogoi, Pranjal Kumar; Hu, Zhenliang; Wang, Qixing; Carvalho, Alexandra; Schmidt, Daniel; Yin, Xinmao; Chang, Yung-Huang; Li, Lain-Jong; Sow, Chorng Haur; Neto, A.  H. Castro; Breese, Mark B.  H.; Rusydi, Andrivo; Wee, Andrew T.  S.

    2017-01-01

    Using wide spectral range in situ spectroscopic ellipsometry with systematic ultrahigh vacuum annealing and in situ exposure to oxygen, we report the complex dielectric function of MoS2 isolating the environmental effects and revealing the crucial role of unpassivated and passivated sulphur vacancies. The spectral weights of the A (1.92 eV) and B (2.02 eV) exciton peaks in the dielectric function reduce significantly upon annealing, accompanied by spectral weight transfer in a broad energy range. Interestingly, the original spectral weights are recovered upon controlled oxygen exposure. This tunability of the excitonic effects is likely due to passivation and reemergence of the gap states in the band structure during oxygen adsorption and desorption, respectively, as indicated by ab initio density functional theory calculation results. This Letter unravels and emphasizes the important role of adsorbed oxygen in the optical spectra and many-body interactions of MoS2.

  7. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  8. Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces

    CERN Document Server

    Tratnik, H; Hilleret, Noël

    2005-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which in°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly in°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can a®ect the operation of the accelerator by modifying th...

  9. Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction

    International Nuclear Information System (INIS)

    Leppaenen, Matti T.; Kukkonen, Jussi V.K.

    2006-01-01

    The success of the rapidly desorbing fraction as an available fraction was challenged by using sediment ingesting and non-ingesting oligochaetes (Lumbriculus variegatus) together with passive samplers (semipermeable membrane devices, SPMDs) in accumulation and kinetic modelling exercises for carbon-14 labelled model compounds (pyrene, benzo[a]pyrene and 3,4,3',4'-tetrachlorobiphenyl). Passive samplers clearly produced lower uptake rate constants and steady state factors than either of the oligochaete treatments when residue concentrations were based on animal lipid or total SPMD weight. The rapidly desorbing chemical fractions in sediments did not show a significant relationship with the biota sediment accumulation factors or SPMD accumulation factors. A distinctly better relationship was observed between the accumulation factors and the desorption rate constants. The results support the assumption that desorption plays an important role in bioavailability, although animal behaviour and the diffusional limitations of hydrophobic contaminants in sediment together probably affect the actual available pool. - Desorption and animal behaviour play major roles in the availability of hydrophobic organics in sediments

  10. An effective device for gas-liquid oxygen removal in enclosed microalgae culture.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2010-01-01

    A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(A)(La,CO(2)) for the absorption of gaseous CO(2) and K(A)(La,O(2)) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.

  11. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  12. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  13. Kinetics and mechanism of oxygen reduction reaction at CoPd system synthesized on XC72

    International Nuclear Information System (INIS)

    Tarasevich, M.R.; Chalykh, A.E.; Bogdanovskaya, V.A.; Kuznetsova, L.N.; Kapustina, N.A.; Efremov, B.N.; Ehrenburg, M.R.; Reznikova, L.A.

    2006-01-01

    Studies are presented of the kinetics and mechanism of oxygen electroreduction reaction on CoPd catalysts synthesized on carbon black XC72. As shown both in model conditions and in the tests within the cathodes of hydrogen-oxygen fuel cells with proton conducting electrolyte, CoPd/C system features a higher activity, as compared to Co/C. The highest activity in the oxygen reduction reaction is demonstrated by the catalysts with the Pd:Co atomic ratio being 7:3 and 4:1. The structural studies (XPS and XRD, and also the data of CO desorption measurements) evidence the CoPd alloy formation, which is reflected in the negative shift of the bonding energy maximum as compared to Pd/C and in the appearance of the additional CO desorption maximums on the voltammograms. It is found by means of structural research that CoPd alloy is formed in the course of the catalyst synthesis which features a higher catalytic activity of the binary systems. Besides, CoPd/C catalyst is more stable in respect to corrosion than Pd supported on carbon black. The measurements on the rotating disc electrode and rotating ring-disc electrode evidence that CoPd/C system provides the predominant oxygen reduction to water in the practically important range of potentials (E > 0.7 V). The proximity of kinetic parameters of the oxygen reduction reaction on CoPd/C and Pt/C catalysts points to the similar reaction mechanism. The slow step of the reaction is the addition of the first electron to the adsorbed and previously protonated O 2 molecule. The assumptions are offered about the reasons causing the higher activity and selectivity of the binary catalyst towards oxygen reduction to water, as compared to Co/C. The studies of the most active catalysts within the fuel cell cathodes are performed

  14. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter, Fabiano André; Ferreira, Tamara Santos; Sinhorin, Adilson Paulo; Lima, Larissa Borges de; Morais, Leidimar Alves de; Pacheco, Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diu...

  15. Bile salts at the air-water interface: adsorption and desorption.

    Science.gov (United States)

    Maldonado-Valderrama, J; Muros-Cobos, J L; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2014-08-01

    Bile salts (BS) are bio-surfactants which constitute a vital component in the process of fat digestion. Despite the importance of the interfacial properties in their biological role, these have been scarcely studied in the literature. In this work, we present the adsorption-desorption profiles of two BS (NaTC and NaGDC) including dilatational rheology. Findings from this study reveal very different surface properties of NaTC and NaGDC which originate from different complexation properties relevant to the digestion process. Dynamic adsorption curves show higher adsorption rates for NaTC and suggest the existence of various conformational regimes in contrast to NaGDC which presents only one conformational regime. This is corroborated by analysis of the adsorption isotherms and more in detail by the rheological behaviour. Accordingly, the dilatational response at 1Hz displays two maxima of the dilatational modulus for NaTC as a function of bulk concentration, in contrast to NaGDC which displays only one maximum. The desorption profiles reveal that NaTC adopts an irreversibly adsorbed form at high surface coverage whereas NaGDC fully desorbs from the surface within the whole range of concentrations used. Analysis of the adsorption-desorption profiles provides new insight into the surface properties of BS, suggesting a surface complexation of NaTC. This knowledge can be useful since through interfacial engineering we might control the extent of lipolysis providing the basis for the rational design of food products with tailored digestibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Sorption-desorption dynamics of radiocaesium in organic matter soils

    International Nuclear Information System (INIS)

    Valcke, E.; Cremers, A.

    1994-01-01

    A systematic study has been carried out on the radiocaesium sorption properties of 25 soils (forest, peat) covering organic matter (OM) contents in the range of 10-97%. Predictions are made for radiocaesium partitioning between micaceous Frayed Edge Sites (FES) and regular exchange sites (RES) on the basis of specific radiocaesium interception potentials of the soil and overall exchange capacity. It is shown that for soils with a very high OM content (>80%), significant fractions are present in a readily reversible form in the OM phase. In soils of low-medium OM content (<40%), only a very minor fraction is present in the OM exchange complex. Experimental findings, based on a desorption screening with a variety of desorption agents are in agreement with these predictions. On the basis of a study of sorption kinetics, some additional tools are available for identifying problem soils. In cases of very high OM content, radiocaesium adsorption is completed within hours demonstrating the involvement of the OM sites. In soils for which interception occurs in the FES, sorption continues to proceed for periods of 2-3 weeks. In conclusion, some examples are presented on radiocaesium desorption using ion exchangers as radiocaesium sinks in promoting desorption. For a peaty soil, near quantitative desorption is accomplished. For forest soils with OM contents in a range of 10-40%, fixation levels of 30-50% are demonstrated

  17. Effects of H2O and H2O2 on thermal desorption of tritium from stainless steel

    International Nuclear Information System (INIS)

    Quinlan, M. J.; Shmayda, W. T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroeder, W. U.

    2008-01-01

    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H 2 O or H 2 O 2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals. (authors)

  18. Adsorption-desorption and leaching of pyraclostrobin in Indian soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-01-01

    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  19. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  20. Desorption of absorbed iron in bean root and leaf tissues

    International Nuclear Information System (INIS)

    Jooste, J.H.; De Bruyn, J.A.

    1979-01-01

    The effect of different desorption media on the amount of absorbed Fe (from a solution of FeCl 3 in 0,5 mM CaCl 2 ) retained by leaf discs and excised root tips of bean plants was investigated. Attempts were also made to determine the effect of desorption on the intracellular distribution of Fe. Desorption in water or an FeCl 3 solution had no pronounced effect on the amount of absorbed Fe retained by either the leaf or root tissues. However, Na 2 -EDTA was able to desorb a considerable portion of the absorbed Fe, especially in root tissue. This applies to Fe absorbed from solutions of FeCl 3 and Fe-EDDHA. Desorption by the chelate removed Fe from practically all the different particulate fractions of both root and leaf tissues, but desorption following the longer absorption periods resulted in an increase in the Fe content of the 'soluble' fraction. The possibility that Na 2 -EDTA causes an increased permeability of cell membranes seems likely. The view that removal of Ca by the chelate causes this increase in permeability could not be confirmed [af

  1. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  2. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  3. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro

    Directory of Open Access Journals (Sweden)

    Karl Schoknecht

    2017-09-01

    Full Text Available Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABAA antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH2 ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control than interictal activity (~15% above control. Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  4. Positron-annihilation-induced ion desorption from TiO2(110)

    Science.gov (United States)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  5. Inelastic surface collisions and the desorption of massive molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, R D [Texas A and M Univ., College Station (USA). Dept. of Chemistry

    1983-01-01

    The interaction of high energy ions in the region of electronic stopping (1 MeV u/sup -1/) stimulates the desorption of massive molecular ions of biomolecules such as insulin. The experimental details of the measurements are given with some examples of application for analytical mass spectrometry. Studies on the role of the incident ion (accelerator beam experiments) are reviewed as well as the contribution of the matrix to the desorption-ionization process. How the electronic relaxation process couples to desorption-ionization is a central question in understanding the overall mechanism of the process.

  6. Catalitic effect of Co on hydrogen desorption form nanostucturated magnesium hydride

    Directory of Open Access Journals (Sweden)

    Matović Ljiljana Lj.

    2008-01-01

    Full Text Available To study the influence of 3d transition metal addition on desorption kinetics of MgH2 ball milling of MgH2-Co blends was performed under Ar. Microstructural and morphological characterization, performed by XRD and SEM, show a huge correlation with thermal stability and hydrogen desorption properties investigated by DSC. A complex desorption behavior is correlated with the dispersion of the metal additive particles on hydride matrix. The activation energy for H2 desorption from MgH2-Co composite was calculated from both non-isothermal and isothermal methods to be 130 kJ/mol which means that mutually diffusion and nucleation and growth of new phase control the dehydration process.

  7. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  8. A Stirred Microchamber for Oxygen Consumption Rate Measurements With Pancreatic Islets

    Science.gov (United States)

    Papas, Klearchos K.; Pisania, Anna; Wu, Haiyan; Weir, Gordon C.; Colton, Clark K.

    2010-01-01

    Improvements in pancreatic islet transplantation for treatment of diabetes are hindered by the absence of meaningful islet quality assessment methods. Oxygen consumption rate (OCR) has previously been used to assess the quality of organs and primary tissue for transplantation. In this study, we describe and characterize a stirred microchamber for measuring OCR with small quantities of islets. The device has a titanium body with a chamber volume of about 200 µL and is magnetically stirred and water jacketed for temperature control. Oxygen partial pressure (pO2) is measured by fluorescence quenching with a fiber optic probe, and OCR is determined from the linear decrease of pO2 with time. We demonstrate that measurements can be made rapidly and with high precision. Measurements with βTC3 cells and islets show that OCR is directly proportional to the number of viable cells in mixtures of live and dead cells and correlate linearly with membrane integrity measurements made with cells that have been cultured for 24 h under various stressful conditions. PMID:17497731

  9. Moisture sorption–desorption characteristics and the corresponding thermodynamic properties of carvedilol phosphate

    Directory of Open Access Journals (Sweden)

    Ravikiran Allada

    2017-01-01

    Full Text Available Aims: Carvedilol phosphate (CDP is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption–desorption characteristics and thermodynamic properties of CDP have been investigated. Materials and Methods: The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%–90% relative humidity and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C. The experimental sorption data determined were fitted to various models, namely, Brunauer–Emmett–Teller; Guggenheim-Anderson-De Boer (GAB; Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. Statistical Analysis Used: The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P, correlation (Correl, root mean square error, and model efficiency were considered as the criteria to select the best fit model. Results: The sorption–desorption isotherms have sigmoidal shape – confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. Conclusions: The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption–desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  10. Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

    OpenAIRE

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo; De Brabandere, Loreto; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E.; DeLong, Edward

    2014-01-01

    A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O[subscript 2] and the sensitivity of the anaerobic N[subscript 2]-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O[subscript 2] at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification w...

  11. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  12. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials

    International Nuclear Information System (INIS)

    Bender, Markus

    2008-01-01

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  13. Temperature dependences in electron-stimulated desorption of neutral europium

    CERN Document Server

    Ageev, V N; Madey, T E

    2003-01-01

    The electron-stimulated desorption (ESD) yield for neutral europium (Eu) atoms from Eu layers adsorbed on oxygen-covered tungsten surfaces has been measured as a function of electron energy, europium coverage and degree of oxidation of tungsten, with an emphasis on effects of substrate temperature. The measurements have been carried out using a time-of-flight method and surface ionization detector. We expand on an earlier report, and compare ESD of multivalent Eu with ESD of monovalent alkali atoms, studied previously. The Eu atom ESD is a complicated function of Eu coverage, electron energy and substrate temperature. In the coverage range 0.05-0.35 monolayer (ML), overlapping resonant-like Eu atom yield peaks are observed at electron energies E sub e of 36 and 41 eV that might be associated with Eu or W shallow core level excitations. Additional resonant-like peaks are seen at E sub e of 54 and 84 eV that are associated with W 5p and 5s level excitations. The Eu atom yield peaks at 36 and 41 eV are seen only...

  14. Dust appearance rates during neutral beam injection and after oxygen bake in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Yu, J.H.; Smirnov, R.D.; Rudakov, D.L.

    2011-01-01

    A simple model to quantify source and sink terms of dust observed in tokamaks using fast visible imaging is presented. During neutral beam injection (NBI), dust appearance rates increase in front of the neutral beam port by up to a factor of 5. The images show dust streaming from the port box as previously settled dust becomes mobilized during beam injection. Following an oxygen bake and vent, the dust observation rate is a factor of 2 lower than that after a vessel entry vent with no oxygen bake. Detected dust levels decay on a shot-to-shot basis in a roughly exponential fashion, with a decay time of approximately 20 s of plasma exposure. Appearance rates of dust mass are estimated using assumed lognormal and power law functional forms for the dust size distribution. The two dust size distributions differ significantly on the amount the dust material carried by the largest particles, highlighting the need for further dust studies in order to make accurate forecasts to ITER.

  15. The F-16 Onboard Oxygen Generating System: Performance Evaluation and Man Rating

    Science.gov (United States)

    1983-08-01

    OXYGEN GENERATING , YSTEM: PERFORMANCE EVALUATION AND MAN RATING Thomas C. Horch , Captain, USAF Richard L. Miller, Ph.D. John B. Bomar, Jr...C. Horch , Capt, USAF; R. L. Miller, 8. CONTRACT OR GRANT NUMBER(i) Ph.D.; J. B. Bomar, Jr., Lt Col, IJSAF, BSC; J. B. Tedor, Maj, USAF, BSC; R. D...limitation (as of 1983); however, the information may no longer need protection since it is 14 years. At the time of its publication, Capt Thomas Horch

  16. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  17. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions

    International Nuclear Information System (INIS)

    Wang, Xueqian; Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei

    2012-01-01

    Highlights: ► Carbonyl sulfide can be catalytic oxidized by micro-oxygen in the off-gas. ► How to use the trace oxygen for the oxidation of carbonyl sulfide was a challenge. ► The SO 4 2− species in the adsorbent sample were generated by a catalytic oxidation process. - Abstract: Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO 3 ) 2 –CoPcS–KOH (denoted as Cu–Co–KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60 °S and 30% relative humidity with 1.0% oxygen is shown in Cu–Co–KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO 3 ) 2 –CoPcS–KOH appears to improve the COS removal capacity significantly, during which, SO 4 2− is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO 2 and COS are detected in the effluent gas generated from exhausted Cu–Co–KW (denoted Cu–Co–KWE). According to the current study results, the activated carbon impregnated with Cu(NO 3 ) 2 –CoPcS–KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  18. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xueqian, E-mail: wxqian3000@yahoo.com.cn [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Qiu, Juan; Ning, Ping; Ren, Xiaoguang; Li, Ziyan; Yin, Zaifei; Chen, Wei; Liu, Wei [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Carbonyl sulfide can be catalytic oxidized by micro-oxygen in the off-gas. Black-Right-Pointing-Pointer How to use the trace oxygen for the oxidation of carbonyl sulfide was a challenge. Black-Right-Pointing-Pointer The SO{sub 4}{sup 2-} species in the adsorbent sample were generated by a catalytic oxidation process. - Abstract: Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO{sub 3}){sub 2}-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60 Degree-Sign S and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO{sub 3}){sub 2}-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO{sub 4}{sup 2-} is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO{sub 2} and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO{sub 3}){sub 2}-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.

  19. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  20. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  1. Effects of oxygen and catalyst on tetraphenylborate decomposition rate

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Previous studies indicate that palladium catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Oxygen inhibits the reaction at low temperature (25 C), presumably by preventing activation of the catalyst. The present study investigated oxygen's inhibiting effectiveness at higher temperature (45 C) and catalyst concentrations

  2. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    Science.gov (United States)

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  3. Adsorption/desorption properties of vacuum materials for the 6 GeV synchrotron

    International Nuclear Information System (INIS)

    Krauss, A.R.

    1985-01-01

    Considerable attention must be paid to the vacuum and adsorption/desorption properties of all materials installed inside the vacuum envelope if the design goals of the 6 GeV synchrotron are to be met. Unfortunately, the data is very sparse in several key areas. Additionally, some procedures normally associated with good vacuum practice, such as air baking, may prove to be totally unsuitable on the basis of desorption properties. We present here a brief discussion of the adsorption, outgassing, electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD) properties of vacuum materials as they relate to the design of a 6 GeV synchrotron

  4. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  5. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    International Nuclear Information System (INIS)

    Jourdan, J.

    2009-11-01

    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  6. Investigations on ion-beam induced desorption from cryogenic surfaces

    International Nuclear Information System (INIS)

    Maurer, Christoph

    2017-01-01

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  7. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    Science.gov (United States)

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  8. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  9. Desorption of organic molecules with fast incident atomic and polyatomic ions

    International Nuclear Information System (INIS)

    Hunt, J.E.; Salehpour, M.; Fishel, D.L.

    1989-01-01

    In 1974, Macfarlane and coworkers introduced a new mass spectrometric technique based on desorption-ionization of sample molecules from solid targets by the impact of fast heavy ions (fission fragments) from 252 Cf. The process of ion-induced desorption of molecular ions from surfaces is not yet fully understood, although a large amount of experimental data related to the mechanism has been published. This paper concerns the use of fast incident polyatomic ions to induce desorption of secondary molecular ions of valine and chlorophyll from surfaces. Polyatomic ions are unique in that they are a collection of temporally and spatially correlated atoms. The main finding in this study is that incident polyatomic ions produce drastic enhancements in the secondary ion yields over atomic ions. Also, two types of nonlinear effects in desorption have been observed and will be discussed

  10. Kinetics of oxygen uncoupling of a copper based oxygen carrier

    International Nuclear Information System (INIS)

    Hu, Wenting; Donat, Felix; Scott, S.A.; Dennis, J.S.

    2016-01-01

    Highlights: • The kinetics of a Cu-based oxygen carrier was determined using a TGA. • A diffusion model was applied to remove mass transfer effects from rate parameters. • Thermodynamics are separated from kinetics, usually difficult for the CLOU reaction. • The rate parameters correctly described the behaviour in a fluidised bed. • The rate parameters can be used to predict performance of large CLOU systems. - Abstract: Here, an oxygen carrier consisting of 60 wt% CuO supported on a mixture of Al_2O_3 and CaO (23 wt% and 17 wt% respectively) was synthesised by wet-mixing powdered CuO, Al(OH)_3 and Ca(OH)_2, followed by calcination at 1000 °C. Its suitability for chemical looping with oxygen uncoupling (CLOU) was investigated. After 25 repeated redox cycles in either a thermogravimetric analyser (TGA) or a laboratory-scale fluidised bed, (with 5 vol% H_2 in N_2 as the fuel, and air as the oxidant) no significant change in either the oxygen uncoupling capacity or the overall oxygen availability of the carrier was found. In the TGA, it was found that the rate of oxygen release from the material was controlled by intrinsic chemical kinetics and external transfer of mass from the surface of the particles to the bulk gas. By modelling the various resistances, values of the rate constant for the decomposition were obtained. The activation energy of the reaction was found to be 59.7 kJ/mol (with a standard error of 5.6 kJ/mol) and the corresponding pre-exponential factor was 632 m"3/mol/s. The local rate of conversion within a particle was assumed to occur either (i) by homogeneous chemical reaction, or (ii) in uniform, non-porous grains, each reacting as a kinetically-controlled shrinking core. Upon cross validation against a batch fluidised bed experiment, the homogeneous reaction model was found to be more plausible. By accurately accounting for the various artefacts (e.g. mass transfer resistances) present in both TGA and fluidised bed experiments, it was

  11. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  12. Response of Microbial Soil Carbon Mineralization Rates to Oxygen Limitations

    Science.gov (United States)

    Keiluweit, M.; Denney, A.; Nico, P. S.; Fendorf, S. E.

    2014-12-01

    The rate of soil organic matter (SOM) mineralization is known to be controlled by climatic factors as well as molecular structure, mineral-organic associations, and physical protection. What remains elusive is to what extent oxygen (O2) limitations impact overall rates of microbial SOM mineralization (oxidation) in soils. Even within upland soils that are aerobic in bulk, factors limiting O2 diffusion such as texture and soil moisture can result in an abundance of anaerobic microsites in the interior of soil aggregates. Variation in ensuing anaerobic respiration pathways can further impact SOM mineralization rates. Using a combination of (first) aggregate model systems and (second) manipulations of intact field samples, we show how limitations on diffusion and carbon bioavailability interact to impose anaerobic conditions and associated respiration constraints on SOM mineralization rates. In model aggregates, we examined how particle size (soil texture) and amount of dissolved organic carbon (bioavailable carbon) affect O2 availability and distribution. Monitoring electron acceptor profiles (O2, NO3-, Mn and Fe) and SOM transformations (dissolved, particulate, mineral-associated pools) across the resulting redox gradients, we then determined the distribution of operative microbial metabolisms and their cumulative impact on SOM mineralization rates. Our results show that anaerobic conditions decrease SOM mineralization rates overall, but those are partially offset by the concurrent increases in SOM bioavailability due to transformations of protective mineral phases. In intact soil aggregates collected from soils varying in texture and SOM content, we mapped the spatial distribution of anaerobic microsites. Optode imaging, microsensor profiling and 3D tomography revealed that soil texture regulates overall O2 availability in aggregate interiors, while particulate SOM in biopores appears to control the fine-scale distribution of anaerobic microsites. Collectively, our

  13. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  14. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  15. Using rates of oxygen and nitrate reduction to map the subsurface distribution of groundwater denitrification

    Science.gov (United States)

    Kolbe, T.; De Dreuzy, J. R.; Abbott, B. W.; Aquilina, L.; Babey, T.; Green, C. T.; Fleckenstein, J. H.; Labasque, T.; Laverman, A.; Marçais, J.; Peiffer, S.; Thomas, Z.; Pinay, G.

    2017-12-01

    Widespread fertilizer application over the last 70 years has caused serious ecological and socioeconomic problems in aquatic and estuarine ecosystems. When surplus nitrogen leaches as nitrate (a major groundwater pollutant) to the aquifer, complex flow dynamics and naturally occurring degradation processes control its transport. Under the conditions of depleted oxygen and abundant electron donors, microorganisms reduce NO3- to N2 (denitrification). Denitrification rates vary over orders of magnitude among sites within the same aquifer, complicating estimation of denitrification capacity at the catchment scale. Because it is impractical or impossible to access the subsurface to directly quantify denitrification rates, reactivity is often assumed to occur continuous along flowlines, potentially resulting in substantial over- or underestimation of denitrification. Here we investigated denitrification in an unconfined crystalline aquifer in western France using a combination of common tracers (chlorofluorocarbons, O2, NO3-, and N2) measured in 16 wells to inform a time-based modeling approach. We found that spatially variable denitrification rates arise from the intersection of nitrate rich water with reactive zones defined by the abundance of electron donors (primarily pyrite). Furthermore, based on observed reaction rates of the sequential reduction of oxygen and nitrate, we present a general framework to estimate the location and intensity of the reactive zone in aquifers. Accounting for the vertical distribution of reaction rates results in large differences in estimations of net denitrification rates that assume homogeneous reactivity. This new framework provides a tractable approach for quantifying catchment and regional groundwater denitrification rates that could be used to improve estimation of groundwater resilience to nitrate pollution and develop more realistic management strategies.

  16. Organometallics and quaternary ammonium salts affect calcium ion desorption from lecithin liposome membranes

    International Nuclear Information System (INIS)

    Kral, T.E.; Kuczera, J.; Przestalski, S.

    2001-01-01

    The objective of the present work was to compare the effects of groups of tin and lead organometallic compounds and their mixtures with amphiphilic quaternary ammonium salts (QAS) on the process of calcium ion desorption from lecithin liposome membranes, as dependent on the properties of the hydrophilic and hydrophobic parts of QAS. In the investigations the method of radioactive labels was applied. Synergism and antagonism in the action of both groups of compounds were found. The effectiveness of the cooperation depended more on chain length of QAS compounds than on the size and polarity of their hydrophobic parts. The most effective of all compounds studied was a the mixture of benzyldimethylammonium chloride in a mixture with tripropyltin. Since the rate of calcium desorption proved to be a good measure of efficacy of biologically active surfactants, it seems that the conclusions reached in this paper may be useful for choosing compounds which are able to decontaminate the environment polluted with heavy metals. (orig.)

  17. Study on hydrogen absorption/desorption properties of uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen absorption/desorption properties of two U-Mn intermetallic compounds, U{sub 6}Mn and UMn{sub 2}, were investigated. U{sub 6}Mn absorbed hydrogen and the hydrogen desorption pressure of U{sub 6}Mn obtained from this experiment was higher than that of U, which was considered to be the effect of alloying, whereas UMn{sub 2} was not observed to absorb hydrogen up to 50 atm at room temperature. (author)

  18. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  19. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    Science.gov (United States)

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  20. Understanding the Oxygen Reduction Reaction on a Y/Pt(111) Single Crystal

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Johansson, Tobias Peter; Malacrida, Paolo

    2014-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the oxygen reduction reaction (ORR) at the PEMFC cathode, prevents the commercialisation of this tec......Polymer electrolyte membrane fuel cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the oxygen reduction reaction (ORR) at the PEMFC cathode, prevents the commercialisation...... using electrochemical measurements, low energy electron diffraction, ion scattering spectroscopy, angle resolved X-ray photoelectron spectroscopy, temperature programmed desorption of CO, and synchrotron based X-ray absorption spectroscopy and surface sensitive X-ray diffraction. These measurements were...

  1. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  2. Oxygen consumption rate and Na+/K+-ATPase activity in early developmental stages of the sea urchin Paracentrotus lividus Lam.

    Science.gov (United States)

    Tomšić, Sanja; Stanković, Suzana; Lucu, Čedomil

    2011-09-01

    Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein-1 h-1 in unfertilized eggs to 0.38 μmol O2 mg protein-1 h-1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h-1 mg protein-1 in the late blastula stage and slightly lower values in the early and late pluteus stages.

  3. Incremental rate of prefrontal oxygenation determines performance speed during cognitive Stroop test: the effect of ageing.

    Science.gov (United States)

    Endo, Kana; Liang, Nan; Idesako, Mitsuhiro; Ishii, Kei; Matsukawa, Kanji

    2018-02-19

    Cognitive function declines with age. The underlying mechanisms responsible for the deterioration of cognitive performance, however, remain poorly understood. We hypothesized that an incremental rate of prefrontal oxygenation during a cognitive Stroop test decreases in progress of ageing, resulting in a slowdown of cognitive performance. To test this hypothesis, we identified, using multichannel near-infrared spectroscopy, the characteristics of the oxygenated-hemoglobin concentration (Oxy-Hb) responses of the prefrontal cortex to both incongruent Stroop and congruent word-reading test. Spatial distributions of the significant changes in the three components (initial slope, peak amplitude, and area under the curve) of the Oxy-Hb response were compared between young and elderly subjects. The Stroop interference time (as a difference in total periods for executing Stroop and word-reading test, respectively) approximately doubled in elderly as compared to young subjects. The Oxy-Hb in the rostrolateral, but not caudal, prefrontal cortex increased during the Stroop test in both age groups. The initial slope of the Oxy-Hb response, rather than the peak and area under the curve, had a strong correlation with cognitive performance speed. Taken together, it is likely that the incremental rate of prefrontal oxygenation may decrease in progress of ageing, resulting in a decline in cognitive performance.

  4. Laser-Induced Fluorescence Decay of 2-Methyl-, 2-Methoxy-, and 2-Ethylnaphthlene on α-Alumina during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Bradly B. Baer

    2013-01-01

    Full Text Available The decay of electronically excited molecular films of 2-methylnaphthalene (2-MN, 2-methoxynaphthalene (2-MeON, and 2-ethylnaphthalene (2-EN on a crystal of α-alumina was monitored as a function of temperature with temperature programmed desorption (TPD experiments. By assuming an exponential decay, the rate constants of the relaxation to the ground state were observed to have two components (±20% by laser induced fluorescence (LIF. For the 2-MeON, 2-MN, and 2-EN excimer, the longer components were 35, 25, and 23 × 106 s−1, respectively. Rate constants for the trap fluorescence for 2-MeON, 2-MN, and 2-EN were 100, 44, and 23×106 s−1, respectively. In separate experiments, the effect of a molecule that does not fluoresce and has a lower desorption temperature than the fluorophores was studied by deposition of a bilayer. 1-Chlorohexane (1-CH was chosen as the second layer to the fluorophore and the results gave clues to the complexity of the surface dynamics that occur as the surface is heated. For these bilayer systems, a second excimer formed during the TPD subsequent to the desorption of 1-CH, and their rates are given in parenthesis: for 2-MeON, 2-MN, and 2-EN, the long components were 30 (36, 25 (45, and 23 (42 × 106 s−1, respectively.

  5. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Scherwitzl, Boris, E-mail: b.scherwitzl@tugraz.at; Resel, Roland; Winkler, Adolf [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  6. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    Science.gov (United States)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  7. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    Science.gov (United States)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly

  8. Simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in humans and other animal models using a single light source

    Science.gov (United States)

    Dent, Paul; Tun, Sai Han; Fillioe, Seth; Deng, Bin; Satalin, Josh; Nieman, Gary; Wilcox, Kailyn; Searles, Quinn; Narsipur, Sri; Peterson, Charles M.; Goodisman, Jerry; Mostrom, James; Steinmann, Richard; Chaiken, J.

    2018-02-01

    We previously reported a new algorithm "PV[O]H" for continuous, noninvasive, in vivo monitoring of hematocrit changes in blood and have since shown its utility for monitoring in humans during 1) hemodialysis, 2) orthostatic perturbations and 3) during blood loss and fluid replacement in a rat model. We now show that the algorithm is sensitive to changes in hemoglobin oxygen saturation. We document the phenomenology of the effect and explain the effect using new results obtained from humans and rat models. The oxygen sensitivity derives from the differential absorption of autofluorescence originating in the static tissues by oxy and deoxy hemoglobin. Using this approach we show how to perform simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in mammals using a single light source. We suspect that monitoring of changes in this suite of vital signs can be provided with improved time response, sensitivity and precision compared to existing methodologies. Initial results also offer a more detailed glimpse into the systemic oxygen transport in the circulatory system of humans.

  9. Study of adsorption and desorption of water on Li4SiO4

    International Nuclear Information System (INIS)

    Schauer, V.; Schumacher, G.; Kernforschungszentrum Karlsruhe GmbH

    1989-01-01

    Lithium orthosilicate is one of the candidate materials for tritium breeding in a fusion reactor blanket. The release of tritium from this material depens on diffusion in the bulk and on desorption from the surface of the material which is usually covered by adsorbed water. Adsorption and desorption of water was examined to gain an insight into the release of tritium from the surface. Temperature controlled desorption experiments with lithium orthosilicate powder show desorption peaks which are assigned to the desorption of physisorbed water. At temperatures above 390 K and partial pressures up to 1.6 mbar water is absorbed in the first layer on the surface only. Immersion experiments gave much too high values of the heat of immersion for spray dried powder but reasonable 82 kJ/mol of water for spheres of 0.5 mm diameter produced from molten orthosilicate. (orig.)

  10. Thermal desorption of deuterium implanted into beryllium

    International Nuclear Information System (INIS)

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P.

    1995-01-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, Φ, from 1x10 20 D/m 2 to 1x10 21 D/m 2 proceeds in one high temperature stage B, while at Φ ≥ 1.2x10 21 D/m 2 one more stage A is added. The desorption maximum A is narrow and consists of two peaks A 1 and A 2 at about 460 K and 490 K, respectively. Peak A 1 is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak A 2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences

  11. Limitations of potentiometric oxygen sensors operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2011-01-01

    The electrochemical processes that limit the range of oxygen partial pressures in which potentiometric oxygen sensors can be used, were analysed using a theoretical and an experimental approach. Electrochemical impedance spectroscopy was performed on porous Pt/yttria stabilised zirconia (YSZ......) electrodes between 10−6 and 0.2 bar and at temperatures between 500 and 950 °C. The flow of oxide ions and electron holes through a sensor cell, with a YSZ electrolyte, were calculated under similar conditions. The oxygen permeation of the sensor cell was insignificant at an oxygen partial pressure of 10......−6 bar for an inlet flow rate higher than 2 L h−1 between 600 and 800 °C. The polarisation resistance measured between 10−6 and 10−4 bar was found to be inversely proportional to the oxygen partial pressure, nearly temperature independent and inversely proportional to the inlet gas flow rate, which shows...

  12. Probe-Substrate Distance Control in Desorption Electrospray Ionization

    Science.gov (United States)

    Yarger, Tyler J.; Yuill, Elizabeth M.; Baker, Lane A.

    2018-03-01

    We introduce probe-substrate distance (Dps)-control to desorption electrospray ionization (DESI) and report a systematic investigation of key experimental parameters. Examination of voltage, flow rate, and nebulizing gas pressure suggests as Dps decreases, the distance-dependent spray current increases, until a critical point. At the critical point the relationship inverts, and the spray current decreases as the probe moves closer to the surface due to constriction of solution flow by the nebulizing gas. Dps control was used to explore the use of spray current as a signal for feedback positioning, while mass spectrometry imaging was performed simultaneously. Further development of this technique is expected to find application in study of structure-function relationships for clinical diagnostics, biological investigation, and materials characterization. [Figure not available: see fulltext.

  13. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Oxygen and SO2 Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition.

    Science.gov (United States)

    Carrascón, Vanesa; Bueno, Mónica; Fernandez-Zurbano, Purificación; Ferreira, Vicente

    2017-11-01

    This Article addresses the study of O 2 and SO 2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O 2 was monitored periodically; SO 2 , color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO 2 consumption rates were highly diverse between wines and were positively related to free SO 2 , Mn, and pH, among others. In the last saturations, SO 2 consumption took place regardless of O 2 consumption, implying that SO 2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation.

  15. Photo-stimulated desorption from water and methane clusters on the surface of solid neon

    International Nuclear Information System (INIS)

    Arakawa Ichiri; Matsumoto Dairo; Takekuma Shinichi; Tamura Reimi; Miura Takashi

    2012-01-01

    Photo-stimulated desorption of ions from methane and water heterocluster on the surface of solid neon was studied. The desorption yields of the variety of photo-desorbed species showed strong dependence on the composition and the size of the mother cluster. It was found that the presence of a water molecule in the cluster significantly enhanced, or was almost essential for, the desorption of any species observed. Systematic investigation of the correlation between the cluster size and the desorption yield of each ion has revealed the mother cluster which yields the each desorbed ion.

  16. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.

    Science.gov (United States)

    Cheng, Hefa; Reinhard, Martin

    2006-06-01

    Hydrophobic micropores can play a significant role in controlling the long-term release of organic contaminants from geosorbents. We describe a technique for quantifying the total and the hydrophobic mineral micropore volumes based on the mass of trichloroethylene (TCE) sorbed in the slow-releasing pores under dry and wet conditions, respectively. Micropore desorption models were used to differentiate the fast- and slow-desorbing fractions in desorption profiles. The micropore environment in which organic molecules were sorbed in the presence of water was probed by studying the transformation of a water-reactive compound (2,2-dichloropropane or 2,2-DCP). For sediment from an alluvial aquifer, the total and hydrophobic micropore volumes estimated using this technique were 4.65 microL/g and 0.027 microL/g (0.58% of total), respectively. In microporous silica gel A, a hydrophobic micropore volume of 0.038 microL/g (0.035% of reported total) was measured. The dehydrohalogenation rate of 2,2-DCP sorbed in hydrophobic micropores of the sediment was slower than that reported in bulk water, indicating an environment of low water activity. The results suggest that hydrolyzable organic contaminants sorbed in hydrophobic micropores react slower than in bulk water, consistent with the reported persistence of reactive contaminants in natural soils.

  17. Desorption isotherms of cementitious materials: study of an accelerated protocol and estimation of RVE

    International Nuclear Information System (INIS)

    Wu, Qier

    2014-01-01

    In the framework of French radioactive waste management and storage, the durability evaluation and prediction of concrete structures requires the knowledge of desorption isotherm of concrete. The aim of the present study is to develop an accelerated experimental method to obtain desorption isotherm of cementitious materials more quickly and to estimate the Representative Volume Element (RVE) size related to the desorption isotherm of concrete. In order to ensure that experimental results can be statistically considered representative, a great amount of sliced samples of cementitious materials with three different thicknesses (1 mm, 2 mm and 3 mm) have been de-saturated. The effect of slice thickness and the saturation condition on the mass variation kinetics and the desorption isotherms is analyzed. The influence of the aggregate distribution on the water content and the water saturation degree is also analyzed. A method based on statistical analysis of water content and water saturation degree is proposed to estimate the RVE for water desorption experiment of concrete. The evolution of shrinkage with relative humidity is also followed for each material during the water desorption experiment. A protocol of cycle of rapid desaturation-re-saturation is applied and shows the existence of hysteresis between desorption and adsorption. (author)

  18. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} alloy using resistometry

    Energy Technology Data Exchange (ETDEWEB)

    Spasojevic, M., E-mail: ljiljana.spasojevic51@yahoo.com [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Faculty of Agronomy Cacak, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Republic of Serbia (Serbia); Maricic, A. [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Ribic Zelenovic, L. [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Faculty of Agronomy Cacak, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Republic of Serbia (Serbia); Krstajic, N.; Spasojevic, P. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Republic of Serbia (Serbia)

    2013-02-25

    electrons induces a decrease in electrical resistivity. The overall absorption rate during initial absorption is determined by the dissociation of adsorbed hydrogen molecules. At a later stage, the diffusion of H{sup +} ions into the alloy bulk was found to be the rate determining step. The rate of the desorption reaction during the initial stage is governed by the recombination of adsorbed hydrogen atoms. Over time, H{sup +} diffusion becomes the slowest step in the mechanism, hence determining the desorption rate.

  19. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Science.gov (United States)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  1. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  2. Oxygen transfer rate identifies priming compounds in parsley cells.

    Science.gov (United States)

    Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen

    2015-11-25

    In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin

  3. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    International Nuclear Information System (INIS)

    Inanaga, S.; Rahman, F.; Khanom, F.; Namiki, A.

    2005-01-01

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and β 2 -channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and β 1 -TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it can well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T s exhibits a clear anti-correlation with the bulk dangling bond density versus T s curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed

  4. Study of the mechanisms of matrix assisted laser desorption / ionization

    International Nuclear Information System (INIS)

    Manuelli, Pascal

    1995-01-01

    This research thesis aims at a better knowledge of some aspects of a complex mechanism: the matrix-assisted laser desorption/ionization (MALDI). The author first proposes a comparative analysis of results obtained by time-of-flight (TOF) mass spectrometry and by Fourier transform mass spectrometry. He reports the study of the matrix role (notably a polymeric matrix) as a matter submitted to laser desorption. In this respect, the influence of the incident wavelength has been studied. The author also reports a comparative of ions produced by matrix laser desorption (study performed by Fourier transform mass spectrometry) and of neutral molecules (study performed by flash pyrolysis coupled with gas chromatography and with mass spectrometry). Finally, results obtained on derivatives and complexes based on beta-cyclodextrins highlight benefits as well as limitations of this technique [fr

  5. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states...... of chemisorbed hydrogen in the desorption process. Very slow velocities of 700 and 400  ms-1 for H and D atoms are associated with the desorption out of the highest vibrational state of a barrierless potential....

  6. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  7. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary

    International Nuclear Information System (INIS)

    Li, Y.-H.

    1979-01-01

    The pronounced desorption of Ba and 226 Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and 226 Ra by one and nine times, respectively. The desorption flux of 226 Ra from estuaries accounts for 17-43% of the total 226 Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed. (Auth.)

  8. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    Science.gov (United States)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  9. Real-time detection of sub-monolayer desorption phenomena during electrochemical reactions: Instrument development and applications

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard

    , making it highly suitable for electrochemistry studies. Incorporating the membrane chip into a stagnant thin-layer electrochemistry cell, 100% collection efficiency is ensured, which makes it possible to utilize the full dynamic range of a standard MS, and thereby analyze desorption phenomena during...... are made possible by the transient and steady-state introduction CO reactant gas, respectively, through the membrane. A mass transport model is used to describe the analytetransport from the surface of an electrode, through the stagnant thin-layer cell, through the membrane chip and into the mass...... reaction pathway towards methane production is temporarily established. The phenomenon is shown only to affect the formation of methane, leaving ethylene and hydrogen formation unaffected. Using density functional theory (DFT) it is demonstrated that adsorbed oxygen on surface sites adjacent...

  10. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Clanet, M

    1987-06-18

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO/sub 2/), oxygen extraction (EO/sub 2/) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO/sub 2/ and often a decrease in CMRO/sub 2/, whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO/sub 2/, EO/sub 2/ and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis.

  11. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    International Nuclear Information System (INIS)

    Clanet, M.

    1987-01-01

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO 2 ), oxygen extraction (EO 2 ) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO 2 and often a decrease in CMRO 2 , whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO 2 , EO 2 and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis [fr

  12. Adsorption and desorption characteristics of crystal violet in bottom ash column

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-06-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  13. ADSORPTION AND DESORPTION CHARACTERISTICS OF CRYSTAL VIOLET IN BOTTOM ASH COLUMN

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-01-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  14. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  15. Measurement of the variable track-etch rate of hydrogen, carbon and oxygen Ions in CR-39

    International Nuclear Information System (INIS)

    Lengar, I.; Skvarc, J.; Ilic, R.

    2003-01-01

    The ratio of the track-etch rate to the bulk-etch rate for hydrogen, carbon and oxygen ions was studied for the CR-39 detector with addition of dioctylphthalate. The response was reconstructed from etch-pit growth curves obtained by the multi-step etching technique. A theoretical analysis of the correctness of the method due to the 'missing track segment' is assessed and utilisation of the results obtained for the calibration of fast neutron dosimetry is discussed. (author)

  16. A model for oxygen conservation associated with titration during pediatric oxygen therapy.

    Directory of Open Access Journals (Sweden)

    Grace Wu

    Full Text Available Continuous oxygen treatment is essential for managing children with hypoxemia, but access to oxygen in low-resource countries remains problematic. Given the high burden of pneumonia in these countries and the fact that flow can be gradually reduced as therapy progresses, oxygen conservation through routine titration warrants exploration.To determine the amount of oxygen saved via titration during oxygen therapy for children with hypoxemic pneumonia.Based on published clinical data, we developed a model of oxygen flow rates needed to manage hypoxemia, assuming recommended flow rate at start of therapy, and comparing total oxygen used with routine titration every 3 minutes or once every 24 hours versus no titration.Titration every 3 minutes or every 24 hours provided oxygen savings estimated at 11.7% ± 5.1% and 8.1% ± 5.1% (average ± standard error of the mean, n = 3, respectively. For every 100 patients, 44 or 30 kiloliters would be saved-equivalent to 733 or 500 hours at 1 liter per minute.Ongoing titration can conserve oxygen, even performed once-daily. While clinical validation is necessary, these findings could provide incentive for the routine use of pulse oximeters for patient management, as well as further development of automated systems.

  17. WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK

    Directory of Open Access Journals (Sweden)

    Edgar M. Soteras

    2014-03-01

    Full Text Available The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model of Guggenheim, Anderson and Boer (GAB. For both, adsorption and desorption, a good model fit was observed. The isotherms showed very similar shapes between them and, by comparing adsorption and desorption isotherms, the phenomenon of hysteresis was confirmed.

  18. Water Induced Surface Reconstruction of the Oxygen (2x1) covered Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Sabine; Cabrera-Sanfelix, Pepa; Stass, Ingeborg; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

    2010-08-06

    Low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) were used to study the adsorption of water on a Ru(0001) surface covered with half monolayer of oxygen. The oxygen atoms occupy hcp sites in an ordered structure with (2x1) periodicity. DFT predicts that water is weakly bound to the unmodified surface, 86 meV compared to the ~;;200 meV water-water H-bond. Instead, we found that water adsorption causes a shift of half of the oxygen atoms from hcp sites to fcc sites, creating a honeycomb structure where water molecules bind strongly to the exposed Ru atoms. The energy cost of reconstructing the oxygen overlayer, around 230 meV per displaced oxygen atom, is more than compensated by the larger adsorption energy of water on the newly exposed Ru atoms. Water forms hydrogen bonds with the fcc O atoms in a (4x2) superstructure due to alternating orientations of the molecules. Heating to 185 K results in the complete desorption of the water layer, leaving behind the oxygen honeycomb structure, which is metastable relative to the original (2x1). This stable structure is not recovered until after heating to temperatures close to 260K.

  19. Islet oxygen consumption rate (OCR) dose predicts insulin independence for first clinical islet allotransplants

    Science.gov (United States)

    Kitzmann, JP; O’Gorman, D; Kin, T; Gruessner, AC; Senior, P; Imes, S; Gruessner, RW; Shapiro, AMJ; Papas, KK

    2014-01-01

    Human islet allotransplant (ITx) for the treatment of type 1 diabetes is in phase III clinical registration trials in the US and standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose stimulated insulin release (GSIR), and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following one transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. In this paper we report on the assessment of clinical islet allograft preparations using islet oxygen consumption rate (OCR) dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. Results showed that OCR dose was most predictive of CTO. IE dose was also highly predictive, while GSIR and membrane integrity stains were not. In conclusion, OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical ITx. PMID:25131089

  20. Bulk-mediated surface diffusion: non-Markovian desorption dynamics

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Prato, Domingo; Wio, Horacio S

    2005-01-01

    Here we analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework, when the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption as well as its motion in the bulk is governed by Markovian dynamics. We study the diffusion of particles in both semi-infinite and finite cubic lattices, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The results are compared with known Markovian cases showing the differences that can be exploited to distinguish between Markovian and non-Markovian desorption mechanisms in experimental situations

  1. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    International Nuclear Information System (INIS)

    Bartram, Michael E.; Creighton, J. Randall

    1999-01-01

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N 15 H 3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N 2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia

  2. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    Science.gov (United States)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  3. Chemisorption-induced n-doping of MoS2 by oxygen

    International Nuclear Information System (INIS)

    Qi, Long; Wang, Ying; Wu, Yihong; Shen, Lei

    2016-01-01

    Both chemisorption and physisorption affect the electronic properties of two-dimensional materials, such as MoS 2 , but it remains a challenge to probe their respective roles experimentally. Through repeated in-situ electrical measurements of few-layer MoS 2 field-effect transistors in an ultrahigh vacuum system with well-controlled oxygen partial pressure (6 × 10 −8 mbar–3 × 10 −7 mbar), we were able to study the effect of chemisorption on surface defects separately from physically adsorbed oxygen molecules. It is found that chemisorption of oxygen results in n-doping in the channel but negligible effect on mobility and on/off ratio of the MoS 2 transistors. These results are in disagreement with the previous reports on p-doping and degradation of the device's performance when both chemisorption and physisorption are present. Through the analysis of adsorption-desorption kinetics and the first-principles calculations of electronic properties, we show that the experimentally observed n-doping effect originates from dissociative adsorption of oxygen at the surface defects of MoS 2 , which lowers the conduction band edge locally and makes the MoS 2 channel more n-type-like as compared to the as-fabricated devices

  4. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  5. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  6. Thermal desorption of deuterium from Be, and Be with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V.; Van Veen, A.; Busker, G.J. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    1998-01-01

    Deuterium desorption measurements carried out on a single-crystalline beryllium sample are presented. Deuterium ions were implanted at room temperature at the energy of 0.7 and 1.2 keV up to doses ranging from 10{sup 19} to 3.6 x 10{sup 21} m{sup -2}. In order to eliminate the influence of the beryllium-oxide surface layer, before the implantation the surface of the sample was cleaned by argon sputtering. After the implantation the sample was annealed up to 1200 K at a constant rate of 10 K/s. Deuterium released from the sample was monitored by a calibrated quadrupole mass-spectrometer. The desorption spectra revealed two different contributions. One is a well defined and very narrow peak centered around 450 K. This peak is observed only at high implantation doses > 7.8 x 10{sup 20} m{sup -2}, which is close to the deuterium saturation limit of 0.3 D/Be and is related to deuterium release from blisters or interconnected bubbles. The activation energy of 1.1 eV and the threshold implantation dose are consistent with the values reported in literature. The second contribution in the release spectra is found in the temperature range from 600 to 900 K and is present throughout the whole range of the implantation doses. The activation energies corresponding to this release lie in the range between 1.8 and 2.5 eV and are ascribed to the release from deuterium-vacancy type of defects. In a number of experiments the deuterium implantation was preceded by helium implantation followed by partial annealing to create helium bubbles. The resulting deuterium desorption spectra indicate that deuterium detrapping from helium bubbles is characterized by an activation energy of 2.7 eV. (author)

  7. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    Science.gov (United States)

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  8. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  9. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  10. First-principles calculations of helium and neon desorption from cavities in silicon

    International Nuclear Information System (INIS)

    Eddin, A Charaf; Pizzagalli, L

    2012-01-01

    Combining density functional theory, the nudged elastic band technique, and the ultradense fluid model, we investigated the desorption process of He and Ne in silicon. Our results show that the internal surfaces of gas-filled bubbles are not a limiting factor during desorption experiments, since the surface reconstruction opens diffusion paths easier than in the bulk. We show that the vibrational contribution to the energy of helium in the bulk has to be considered in order to determine realistic pressures in the bubbles, when comparing experiments and simulations. At the maximum of desorption, an average pressure of 1-2 GPa is computed. (paper)

  11. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.

  12. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  13. Unconventional resource's production under desorption-induced effects

    Directory of Open Access Journals (Sweden)

    S. Sina Hosseini Boosari

    2016-06-01

    We have developed a numerical model to study the effect of changes in porosity, permeability and compaction on four major U.S. shale formations considering their Langmuir isotherm desorption behavior. These resources include; Marcellus, New Albany, Barnett and Haynesville Shales. First, we introduced a model that is a physical transport of single-phase gas flow in shale porous rock. Later, the governing equations are implemented into a one-dimensional numerical model and solved using a fully implicit solution method. It is found that the natural gas production is substantially affected by desorption-induced porosity/permeability changes and geomechancis. This paper provides valuable insights into accurate modeling of unconventional reservoirs that is more significant when an even small correction to the future production prediction can enormously contribute to the U.S. economy.

  14. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

    Science.gov (United States)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.

    2018-04-01

    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine

  15. Thermal desorption spectroscopy of boron/carbon films after keV deuterium irradiation

    International Nuclear Information System (INIS)

    Yamaki, T.; Gotoh, Y.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.

    1994-01-01

    Thermal desorption spectroscopy (TDS) of D 2 and CD 4 was done on boron/carbon films (B/(B+C)=0-74%), after 3 keV D 3 + irradiation to 4.5x10 17 D/cm 2 at 473 K. The D 2 desorption peaks were observed at 1050, 850 and 650 K. For a sputter B/C film (0%), only the 1050 K peak was observed. With increasing boron concentration to 3%, a sharp peak appeared at 850 K, the intensity of which was found to increase with increasing boron concentration to 23%, and then to decrease at 74%. The 650 K shoulder, which was observed for high boron concentration specimens, was speculated to be deuterium trapped by boron atoms in the boron clusters. The relative amount of CD 4 desorption was found to decrease with increasing boron concentration, which was attributed to the decrease in the trapped deuterium concentration in the implantation layer at temperatures at which CD 4 desorption proceeds. ((orig.))

  16. Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen.

    Science.gov (United States)

    Al-Abdul-Wahid, M Sameer; Verardi, Raffaello; Veglia, Gianluigi; Prosser, R Scott

    2011-09-01

    In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 Å. The transmembrane helix was found to have an average immersion depth of 5.4 Å, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.

  17. Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen

    International Nuclear Information System (INIS)

    Al-Abdul-Wahid, M. Sameer; Verardi, Raffaello; Veglia, Gianluigi; Prosser, R. Scott

    2011-01-01

    In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 Å. The transmembrane helix was found to have an average immersion depth of 5.4 Å, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.

  18. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  19. The feasibility of desorption on Zeolite-water pair using dry gas

    Science.gov (United States)

    Oktariani, E.; Nakashima, K.; Noda, A.; Xue, B.; Tahara, K.; Nakaso, K.; Fukai, J.

    2018-04-01

    The increase in temperature, reduction in partial pressure, reduction in concentration, purging with an inert fluid, and displacement with a more strongly adsorbing species are the basic things that occur in the practical method of desorption. In this study, dry gas at constant temperature and pressure was employed as the aid to reduce the partial pressure in the water desorption on the zeolite 13X. The objective of this study is to confirm the feasibility of desorption using dry gas experimentally and numerically. The implication of heat and mass transfers were numerically investigated to find the most influential. The results of numerical simulation agree with the experimental ones for the distribution of local temperature and average water adsorbed in the packed bed.

  20. Matrix Assisted and/or Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of WO3 Clusters Formation in Gas Phase. Nanodiamonds, Fullerene, and Graphene Oxide Matrices

    Science.gov (United States)

    Ausekar, Mayuri Vilas; Mawale, Ravi Madhukar; Pazdera, Pavel; Havel, Josef

    2018-03-01

    The formation of W x O y +●/-● clusters in the gas phase was studied by laser desorption ionization (LDI) and matrix assisted laser desorption ionization (MALDI) of solid WO3. LDI produced (WO3) n + ●/- ● ( n = 1-7) clusters. In MALDI, when using nano-diamonds (NDs), graphene oxide (GO), or fullerene (C60) matrices, higher mass clusters were generated. In addition to (WO3) n -● clusters, oxygen-rich or -deficient species were found in both LDI and MALDI (with the total number of clusters exceeding one hundred ≈ 137). This is the first time that such matrices have been used for the generation of(WO3) n + ●/-● clusters in the gas phase, while new high mass clusters (WO3) n -● ( n = 12-19) were also detected. [Figure not available: see fulltext.

  1. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  2. Study of defects near molybdenum surface using thermal desorption spectrometer

    International Nuclear Information System (INIS)

    Naik, P.K.

    1980-01-01

    Thermal desorption spectrometry is utilized to study the migration of atoms and defects near molybdenum surface. The thermal desorption spectra of inert gas ions (neon, argon and krypton) injected with various energies (430-1950 eV) into a polycrystalline molybdenum target with various dosages (6.4 x 10sup(12) - 3.9 x 10sup(14) ions/cmsup(2)) are investigated. Four different states of binding of the trapped atoms corresponding to the activation energies for desorption have been revealed from the spectra. The activation energies are found to be relatively insensitive to the species of the bombarding ion, incident ion energy and the dosage. The patterns of the spectra are strongly influenced by the mean projected range of the ions into the solid. The activation energies deduced are in good agreement with those reported for the migration of atoms and defects in molybdenum. (auth.)

  3. Electron stimulated desorption of gases at technological surfaces of aluminium

    International Nuclear Information System (INIS)

    Ding, M.Q.; Williams, E.M.

    1989-01-01

    The release of gas by electron bombardment at aluminium alloy surfaces in vacuum -9 torr has been investigated for a range of treatments including bakeout and glow discharge cleaning. Particular attention has been given to the role of continuous electron bombardment, with current densities and electron energies of up to 1.5 mA cm -2 and 2.0 keV, respectively, over the 10 cm 2 of surface area under irradiation. The observations of desorption efficiency, defined as the number of desorbed molecules per incident electron, conform to a model involving a dynamic balance between adsorption and desorption, with contributions to adsorption from both surface and sub-surface gas. Continuous electron bombardment promotes a surface with low desorption efficiency, -5 mol/electron, however, the conditioning cycle is accelerated significantly by glow discharge treatment. There is evidence of some short-term memory when the samples are exposed to air. (author)

  4. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    Science.gov (United States)

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  5. Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site

    Directory of Open Access Journals (Sweden)

    R. H. R. Stanley

    2012-06-01

    Full Text Available We present three years of Apparent Oxygen Utilization Rates (AOUR estimated from oxygen and tracer data collected over the ocean thermocline at monthly resolution between 2003 and 2006 at the Bermuda Atlantic Time-series Study (BATS site. We estimate water ages by calculating a transit time distribution from tritium and helium-3 data. The vertically integrated AOUR over the upper 500 m, which is a regional estimate of export, during the three years is 3.1 ± 0.5 mol O2 m−2 yr−1. This is comparable to previous AOUR-based estimates of export production at the BATS site but is several times larger than export estimates derived from sediment traps or 234Th fluxes. We compare AOUR determined in this study to AOUR measured in the 1980s and show AOUR is significantly greater today than decades earlier because of changes in AOU, rather than changes in ventilation rates. The changes in AOU are likely a methodological artefact associated with problems with early oxygen measurements.

  6. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  7. Adsorption and desorption of phosphorus in ceramic capsules

    International Nuclear Information System (INIS)

    Almeida, J.R.F. de.

    1983-01-01

    Experiments were carried out in order to analyse the capacity of adsorving P from water using ceramic capsules with 32P, in the presence and absence of water flow through the capsule. Also studied was the desorption of 32 P from the capsule in water, with and without water flow. The desorption of residual 32 P was analysed by isotopic exchange with 31 P, also with and without water flow. It was observed that, in the presence of a flow, the capsule retained 32 P from the solution, which was weakly desorbed by water but was isotopically exchanged with 31 P. In the absence of a flow, the capsule was not an efficient P adsorber. (Author) [pt

  8. Effects of levosimendan on glomerular filtration rate, renal blood flow, and renal oxygenation after cardiac surgery with cardiopulmonary bypass: a randomized placebo-controlled study.

    Science.gov (United States)

    Bragadottir, Gudrun; Redfors, Bengt; Ricksten, Sven-Erik

    2013-10-01

    Acute kidney injury develops in a large proportion of patients after cardiac surgery because of the low cardiac output syndrome. The inodilator levosimendan increases cardiac output after cardiac surgery with cardiopulmonary bypass, but a detailed analysis of its effects on renal perfusion, glomerular filtration, and renal oxygenation in this group of patients is lacking. We therefore evaluated the effects of levosimendan on renal blood flow, glomerular filtration rate, renal oxygen consumption, and renal oxygen demand/supply relationship, i.e., renal oxygen extraction, early after cardiac surgery with cardiopulmonary bypass. Prospective, placebo-controlled, and randomized trial. Cardiothoracic ICU of a tertiary center. Postcardiac surgery patients (n=30). The patients were randomized to receive levosimendan, 0.1 µg/kg/min after a loading dose of 12 µg/kg (n=15), or placebo (n=15). The experimental procedure started 4-6 hours after surgery in the ICU during propofol sedation and mechanical ventilation. Systemic hemodynamic were evaluated by a pulmonary artery thermodilution catheter. Renal blood flow and glomerular filtration rate were measured by the renal vein retrograde thermodilution technique and by renal extraction of Cr-EDTA, respectively. Central venous pressure was kept constant by colloid/crystalloid infusion. Compared to placebo, levosimendan increased cardiac index (22%), stroke volume index (15%), and heart rate (7%) and decreased systemic vascular resistance index (21%), whereas mean arterial pressure was not affected. Levosimendan induced significant increases in renal blood flow (12%, prenal vascular resistance (18%, prenal oxygen consumption, or renal oxygen extraction, compared to placebo. After cardiac surgery with cardiopulmonary bypass, levosimendan induces a vasodilation, preferentially of preglomerular resistance vessels, increasing both renal blood flow and glomerular filtration rate without jeopardizing renal oxygenation. Due to its

  9. Sorption – desorption of imidacloprid insecticide on Indian soils of five different locations

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2013-07-01

    Full Text Available Sorption-desorption processes govern the movement of all chemicals including pesticides in soils. The present investigation was undertaken to study the sorption-desorption of imidacloprid, using a batch method, on soils of five different location of India. Sorption data were fitted to Freundlich isotherm. The log K value was the highest for loam type soil (1.830 and the lowest for clay type soil (1.661. The value of 1/n was the maximum for silt loam soil (0.909 but minimum for loam soil (0.723. Simple correlation analysis indicated that among soil properties only electrical conductivity showed a higher but marginally non-significant negative correlation with log K (r = -0.826 indicating that higher concentration of solutes solutes are conducive to low sorption capacity of soil. The desorption data conformed to two surfaces Freundlich desorption isotherm. The values of 1/n1' corresponding to easily desorbed fraction of imidacloprid showed significant negative correlation with soil pH (r = -0.886, significant at p ≤0.05 but significant positive correlation with clay content (r = 0.980, significant at p ≤0.01. The desorption index for easily desorbed fraction of imidacloprid (n1’/n also had significant negative correlation with soil pH (r = 0.953, significant at p ≤0.05. From cumulative desorption data, it appeared that bioavailability of imidacloprid would be lower in neutral soil than acidic or alkaline soils.

  10. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  11. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    International Nuclear Information System (INIS)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G.

    2013-01-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg −1 ) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. -- Highlights: •Phenanthrene desorption and mineralization compared in soils with activated carbon, charcoal or compost. •Only activated charcoal and biochar hindered both desorption and mineralization. •A linear relationship was found between the extents desorbed and mineralized. •Modelling indicated that bacterial activity was not limiting but that desorption was. -- Extraction into an exhaustive silicone sink measures the maximum phenanthrene desorption from soils with amendments, and this is reflected in the extent of mineralization

  12. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.

    2010-01-01

    The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite......, and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important....

  13. Desorption isotherms and isosteric heat of 'cajuzinho-do-cerrado' achenes

    Directory of Open Access Journals (Sweden)

    Karine F. Barbosa

    2016-05-01

    Full Text Available ABSTRACT The objective of this study was to determine the desorption isotherms of 'cajuzinho-do-cerrado' achenes (Anacardium humile St. Hil. in various conditions of temperature and water activity, as well as to select the one that best represents the phenomenon and to determine the isosteric heat of desorption. The fruits were collected at the Emas National Park, in the municipality of Mineiros-GO, Brazil, pulped and then subjected to drying in silica gel at temperature of 25 ± 2 °C until the moisture contents of 17.6, 13.6, 11.1, 8.7 and 5.3 (d.b.%. After drying, the desorption isotherms were determined by the indirect static method. The water activity (Aw was determined at different temperatures, and the achenes were placed in a B.O.D. chamber, regulated at 10, 20, 30 and 40 °C. Data of hygroscopic equilibrium moisture content were fitted to different mathematical models through non-linear regression analysis, using the Gauss-Newton method. The Copace model was the one that best represented the hygroscopicity of 'cajuzinho-do-cerrado' achenes, while the integral isosteric heat of desorption of 'cajuzinho-do-cerrado' achenes for the moisture content range of 4.51 to 13.40 (% d.b. varied from 2,734.82 to 2,548.49 kJ kg-1.

  14. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W; Gaboury, B [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1977-03-01

    Cellular membranes have been suggested as possible loci for the development of the oxygen effect in radiobiology. Unsaturated lipids from membranes are subject to very efficient radiation-induced peroxidation, and the deleterious effects generally associated with lipid autoxidation could be initiated by ionizing radiation. Oxidative damage in lipids was characterized not only by high yields but also by a profound dose-rate effect. At dose-rates of x irradiation below 100 rad/min, a very sharp rise occurred in oxidative damage. This damage has been quantified spectrophotometrically in terms of diene conjugation (O.D. 234 mm) and chromatographically in terms of specific 9- and 13-hydroperoxide formation in linoleic acid micelles. Radical scavenging experiments indicated that hydroxyl radical attack initiated the oxidative damage. Dimethyl sulphoxide is exceptional in that it did not protect, but sensitized, linoleic acid to radiation-induced peroxidation. The yields of hydroperoxides were substantial (G = 10 to 40) and could be related to biological changes known to be effected by autoxidizing lipids.

  15. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  16. Modelling deuterium release during thermal desorption of D{sup +}-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada)], E-mail: tonyhaasz@utias.utoronto.ca; Davis, J.W. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada)

    2008-03-15

    Thermal desorption profiles were modelled based on SIMS measurements of implantation profiles and using the multi-trap diffusion code TMAP7 [G.R. Longhurst, TMAP7: Tritium Migration Analysis Program, User Manual, Idaho National Laboratory, INEEL/EXT-04-02352 (2004)]. The thermal desorption profiles were the result of 500 eV/D{sup +} irradiations on single crystal tungsten at 300 and 500 K to fluences of 10{sup 22}-10{sup 24} D{sup +}/m{sup 2}. SIMS depth profiling was performed after irradiation to obtain the distribution of trapped D within the top 60 nm of the surface. Thermal desorption spectroscopy (TDS) was performed subsequently to obtain desorption profiles and to extract the total trapped D inventory. The SIMS profiles were calibrated to give D concentrations. To account for the total trapped D inventory measured by TDS, SIMS depth distributions were used in the near-surface (surface to 30 nm), NRA measurements [V.Kh. Alimov, J. Roth, M. Mayer, J. Nucl. Mater. 337-339 (2005) 619] were used in the range 1-7 {mu}m, and a linear drop in the D distribution was assumed in the intermediate sub-surface region ({approx}30 nm to 1 {mu}m). Traps were assumed to be saturated so that the D distribution also represented the trap distribution. Three trap energies, 1.07 {+-} 0.03, 1.34 {+-} 0.03 and 2.1 {+-} 0.05 eV were required to model the 520, 640 and 900 K desorption peaks, respectively. The 1.34 and 1.07 eV traps correspond to trapping of a first and second D atom at a vacancy, respectively, while the 2.1 eV trap corresponds to atomic D trapping at a void. A fourth trap energy of 0.65 eV was used to fit the 400 K desorption peak observed by Quastel et al. [A.D. Quastel, J.W. Davis, A.A. Haasz, R.G. Macaulay-Newcombe, J. Nucl. Mater. 359 (2006) 8].

  17. Modelling of Convective Process of Water Desorption from Polystyrene

    International Nuclear Information System (INIS)

    Stakic, M.; Nikolic, A.

    2008-01-01

    This study presents a mathematical model developed to evaluate the influence of structural and operational factors on convective dehydration process (desorption of liquid phase from capillary-porous material), as well as the possibility to utilize this model for the case of water desorption from polystyrene cation resin CG-8. The model accounts for unsteady one-dimensional simultaneous heat and mass transfer between the gas (air) and the solid phase (resin). The identification of effective transport properties for the considered fixed bed of material (resin CG 8) is discussed. To this purpose available data from the literature are used. (author)

  18. Anomalous low-temperature desorption from preirradiated rare gas solids

    International Nuclear Information System (INIS)

    Savchenko, E.V.; Gumenchuk, G.B.; Yurtaeva, E.M.; Belov, A.G.; Khyzhniy, I.V.; Frankowski, M.; Beyer, M.K.; Smith-Gicklhorn, A.M.; Ponomaryov, A.N.; Bondybey, V.E.

    2005-01-01

    The role for the exciton-induced defects in the stimulation of anomalous low-temperature desorption of the own lattice atoms from solid Ar and Ne preirradiated by an electron beam is studied. The free electrons from shallow traps-structural defects-was monitored by the measurements of a yield of the thermally induced exoelectron emission (TSEE). The reaction of recombination of self-trapped holes with electrons is considered as a source of energy needed for the desorption of atoms from the surface of preirradiated solids. A key part of the exciton-induced defects in the phenomenon observed is demonstrated

  19. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  20. The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI-TOF MS spectrum of anaerobic bacteria.

    Science.gov (United States)

    Veloo, A C M; Elgersma, P E; Friedrich, A W; Nagy, E; van Winkelhoff, A J

    2014-12-01

    With matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), bacteria can be identified quickly and reliably. This accounts especially for anaerobic bacteria. Because growth rate and oxygen sensitivity differ among anaerobic bacteria, we aimed to study the influence of incubation time, exposure to oxygen and sample preparation on the quality of the spectrum using the Bruker system. Also, reproducibility and inter-examiner variability were determined. Twenty-six anaerobic species, representing 17 genera, were selected based on gram-stain characteristics, growth rate and colony morphology. Inter-examiner variation showed that experience in the preparation of the targets can be a significant variable. The influence of incubation time was determined between 24 and 96 h of incubation. Reliable species identification was obtained after 48 h of incubation for gram-negative anaerobes and after 72 h for gram-positive anaerobes. Exposure of the cultures to oxygen did not influence the results of the MALDI-TOF MS identifications of all tested gram-positive species. Fusobacterium necrophorum and Prevotella intermedia could not be identified after >24 h and 48 h of exposure to oxygen, respectively. Other tested gram-negative bacteria could be identified after 48 h of exposure to oxygen. Most of the tested species could be identified using the direct spotting method. Bifidobacterium longum and Finegoldia magna needed on-target extraction with 70% formic acid in order to obtain reliable species identification and Peptoniphilus ivorii a full extraction. Spectrum quality was influenced by the amount of bacteria spotted on the target, the homogeneity of the smear and the experience of the examiner. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  1. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  2. Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study

    DEFF Research Database (Denmark)

    Wendt, Stefan; Schaub, Renald; Matthiesen, Jesper

    2005-01-01

    From an interplay between high-resolution scanning tunneling microscopy (STM) and density functional theory (DFT) we discuss the origin of various point defects on reduced rutile TiO2(110)–(1 × 1) surfaces. By means of adsorption and desorption experiments using water and oxygen as probe molecules...

  3. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter,Fabiano André; Ferreira,Tamara Santos; Sinhorin,Adilson Paulo; Lima,Larissa Borges de; Morais,Leidimar Alves de; Pacheco,Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorpti...

  4. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  5. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  6. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  7. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    Science.gov (United States)

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  8. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils

    International Nuclear Information System (INIS)

    Chen Wei; Hou Lei; Luo Xiaoli; Zhu Lingyan

    2009-01-01

    In situ chemical oxidation is a commonly applied soil and groundwater remediation technology, but can have significant effects on soil properties, which in turn might affect fate and transport of organic contaminants. In this study, it was found that oxidation treatment resulted mainly in breakdown of soil organic matter (SOM) components. Sorption of naphthalene and phenanthrene to the original soils and the KMnO 4 -treated soils was linear, indicating that hydrophobic partitioning to SOM was the predominant mechanism for sorption. Desorption from the original and treated soils was highly resistant, and was well modeled with a biphasic desorption model. Desorption of residual naphthalene after treating naphthalene-contaminated soils with different doses of KMnO 4 also followed the biphasic desorption model very well. It appears that neither changes of soil properties caused by chemical oxidation nor direct chemical oxidation of contaminated soils had a noticeable effect on the nature of PAH-SOM interactions. - Chemical oxidation of soils had little effect on the mechanisms controlling sorption and desorption of PAHs.

  9. Diffusion and solubility of oxygen in γ-ray irradiated polymer insulation materials

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Yamamoto, Yasuaki.

    1986-03-01

    The effects of 60 Co γ-rays irradiation on diffusion and solubility of oxygen in polymer materials for electric cable insulation materials were investigated. The polymers were polyethylene, ethylene-propylene rubber, chlorinated polyethylene, chlorosulphonated polyethylene, and chloroprene rubber. They were pure grade and several types of formulation grade. The sheets of these polymers were irradiated up to 5 - 200 Mrad under vacuum or in oxygen under pressure of 3 - 15 atm at room temperature or at 70 deg C. By a method of gas desorption, the diffusion coefficient (D) and solubility coefficient (S) of oxygen or argon in polymer materials were determined at various temperatures of 10 - 80 deg C. The D and S decreased with increase of dose, and the decrease by irradiation with oxidation was more remarkable than that by irradiation without oxidation. However, the decreases of D and S by irradiation were reduced by the formulation of polymers. The additives in formulated polymers would reduce the reactions of crosslinking or oxidation by γ-ray irradiation. The activation energy of D was scarcely changed by irradiations with and without oxidation. (author)

  10. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    Science.gov (United States)

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  11. The Absorption-Desorption of Hydrogen by 1.5 g Depleted Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Si-Hyung; Kim, Kwang-Rag; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sohn, Soon Hwan; Song, Kyu Min [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    The form of metal tritides is one of the most popular methods for the storage of hydrogen isotopes. Particularly when metal is in a powder form, the storage capacity of hydrogen isotopes become the maximum value. Here, a 1.5g depleted uranium metal was decrepitated into a powder upon an absorption and desorption of hydrogen gas. The conditions for an activation, absorption-desorption of the hydrogen were defined.

  12. The Absorption-Desorption of Hydrogen by 1.5 g Depleted Uranium

    International Nuclear Information System (INIS)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Si-Hyung; Kim, Kwang-Rag; Ahn, Do-Hee; Sohn, Soon Hwan; Song, Kyu Min

    2008-01-01

    The form of metal tritides is one of the most popular methods for the storage of hydrogen isotopes. Particularly when metal is in a powder form, the storage capacity of hydrogen isotopes become the maximum value. Here, a 1.5g depleted uranium metal was decrepitated into a powder upon an absorption and desorption of hydrogen gas. The conditions for an activation, absorption-desorption of the hydrogen were defined

  13. Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.

    Science.gov (United States)

    Dong, Haoran; Guan, Xiaohong; Lo, Irene M C

    2012-09-01

    Nano zero-valent iron (NZVI) offers a promising approach for arsenic remediation, but the spent NZVI with elevated arsenic content could arouse safety concerns. This study investigated the fate of As(V)-treated NZVI (As-NZVI), by examining the desorption potential of As under varying conditions. The desorption kinetics of As from As-NZVI as induced by phosphate was well described by a biphasic rate model. The effects of As(V)/NZVI mass ratio, pH, and aging time on arsenic desorption from As-NZVI by phosphate were investigated. Less arsenic desorption was observed at lower pH or higher As(V)/NZVI mass ratio, where stronger complexes (bidentate) formed between As(V) and NZVI corrosion products as indicated by FTIR analysis. Compared with the fresh As-NZVI, the amount of phosphate-extractable As significantly decreased in As-NZVI aged for 30 or 60 days. The results of the sequential extraction experiments demonstrated that a larger fraction of As was sorbed in the crystalline phases after aging, making it less susceptible to phosphate displacement. However, at pH 9, a slightly higher proportion of phosphate-extractable As was observed in the 60-day sample than in the 30-day sample. XPS results revealed the transformation of As(V) to more easily desorbed As(III) during aging and a higher As(III)/As(V) ratio in the 60-day sample at pH 9, which might have resulted in the higher desorption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.; Gundel, LaraA.

    2005-05-01

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water mass uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.

  15. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior

    DEFF Research Database (Denmark)

    Li, Jiying; Crowe, Sean Andrew; Miklesh, David

    2012-01-01

    To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep ...... volume-specific carbon degradation rates were 0.3–1.5 µmol cm−3 d−1; bioturbation coefficient near the sediment surface was 3–8 cm2 yr−1. These results indicate that carbon cycling in large freshwater systems conforms to many of the same trends as in marine systems.......To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep......, suggesting that temporal variability in deeply oxygenated sediments may be greater than previously acknowledged. The oxygen uptake rates (4.4–7.7 mmol m−2 d−1, average 6.1 mmol m−2 d−1) and carbon mineralization efficiency (∼ 90% of deposited carbon) were similar to those in marine hemipelagic and pelagic...

  16. Oxygen segregation and its impact on the absorption of hydrogen in vanadium; Einfluss der Sauerstoffsegregation auf die Absorption von Wasserstoff in Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, H.; Lammers, M. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany); Mueller, K.H. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany)]|[Paderborn Univ. (Gesamthochschule), Soest (Germany). Fachbereich 16 - Elektrische Energietechnik; Kiss, G.; Kemeny, Z. [Technical Univ. Budapest (Hungary)

    1998-12-31

    The impact of the dissolved oxygen on the hydrogen absorption in vanadium was analysed with an UHV apparatus. The vanadium specimen with an oxygen content of 230 ppm was treated by a variety of heat treatments. The depth distributions of the induced concentrations of segregated oxygen in the specimen were analysed by SIMS. It was found that the amount of segregated oxygen increases with rising final temperature and tempering period. In a further experiment, the specimen was exposed after each segregation process to a H{sub 2}-pressure of 2.2 x 10{sup -4} Pa for a period of 1800 sec. The hydrogen amounts absorbed in the specimen were determined by thermal desorption mass spectrometry (TDMS). It was found that segregation of oxygen close to the surface of the specimen likewise hampers the absorption of hydrogen. (orig./CB) [Deutsch] Der Einfluss des im Volumen geloesten Sauerstoffs auf die Wasserstoff-Absorption in Vanadium wurde in einer UHV-Apparatur untersucht. Zunaechst wurde die V-Probe mit einem Sauerstoffgehalt von 230 ppm unterschiedlichen thermischen Behandlungen ausgesetzt. Die sich einstellenden Konzentrationstiefenverteilungen des an der Oberflaeche segregierten Sauerstoffs wurden anschliessend mit SIMS untersucht. Dabei nimmt die Menge des segregierten Sauerstoffs mit der Hoehe der Endtemperatur sowie der Temperzeit zu. In einem weiteren Experiment wurde die Probe nach jeder Segregationsprozedur fuer eine Zeit von 1800 sec einem H{sub 2}-Druck von 2.2 x 10{sup -4} Pa ausgesetzt. Die Mengen des dabei aufgenommenen Wasserstoffs wurden mit Hilfe der thermischen Desorptions-Massenspektrometrie TDMS bestimmt. Dabei zeigt sich, dass auch die Segregation von Sauerstoff im oberflaechennahen Bereich die Wasserstoffaufnahme in Vanadium behindert. (orig.)

  17. Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS.

    Science.gov (United States)

    Brüggemann, Martin; Karu, Einar; Hoffmann, Thorsten

    2016-02-01

    Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Desorption dynamics of deuterium molecules from the Si(100)-(3×1) dideuteride surface

    OpenAIRE

    Niida, T; Tsurumaki, Hiroshi; Namiki, Akira

    2006-01-01

    We measured polar angle ()-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3×1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of 0.25 eV, which is mostly independent of the desorption angles for 0°30°. The observed desorption dynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  19. Improving rate capability and reducing over-potential of lithium-oxygen batteries through optimization of Dimethylsulfoxide-N/N-dimethylacetamide mixed electrolyte

    International Nuclear Information System (INIS)

    Chen, Chunguang; Li, Liangyu; Su, Junming; Zhang, Congcong; Chen, Xiang; Huang, Tao; Yu, Aishui

    2017-01-01

    Although dimethylsulfoxide (DMSO) solvent has been widely researched in rechargeable lithium-oxygen (Li-O 2 ) batteries, high polarization voltage and low rate capability limited its application. In this work, we reported a DMSO-based electrolyte system by adding N, N-dimethylacetamide (DMA) to adjust its physical and electrochemical properties. The ionic conductivity, viscosity, oxygen solubility and diffusion coefficient of the mixed electrolytes as well as their electrochemical performance in Li-O 2 batteries are researched. The electrochemical tests show that the optimized DMSO/DMA volume ratio is 30 to 70 based on the rate performance and polarization voltage of the cell. Compared with that of the pure DMSO-based electrolyte, the cell with the mixed electrolyte shows improved rate capability and reduced charge-discharge over-potential. When increasing current density from 0.2 to 0.5 mA cm −2 , the capability retention improves from 32% to 59%. Meanwhile, the charge-discharge voltage gap drops from 1.4V to 0.9V at a current density of 0.2 mA cm −2 . The improved electrochemical performance could be attributed to low viscosity, high oxygen solubility and diffusion coefficient as well as the low charge-transfer resistance with the mixed electrolyte.

  20. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  1. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  2. X-ray induced gas desorption within a prototype LEP vacuum chamber

    International Nuclear Information System (INIS)

    Williams, E.M.; Le Normand, F.; Hilleret, N.; Dominichini, G.

    1982-12-01

    The present report is concerned with an experimental simulation of the process of photon induced desorption within an aluminium vacuum chamber of the same basic form as proposed for the LEP accelerator. The objectives in the work can be described in the following three-fold manner: Firstly, to establish the levels of photon induced desorption efficiency for identified gas species. Secondly, to examine the contribution of surface treatments as bakeout and glow discharge cleaning, and to correlate these responses with changes in surface activity induced by beam cleaning. Thirdly, to gain insight into the energy dependence of the desorption process so as to provide a reasonable basis for predicting conditions at the levels of critical energy in excess of 100 keV which are applicable at the full design energy of the LEP accelerator. (orig./HSI)

  3. Experimental Study on Methane Desorption from Lumpy Coal under the Action of Hydraulic and Thermal

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2018-01-01

    Full Text Available Moisture and thermal are the key factors for influencing methane desorption during CBM exploitation. Using high-pressure water injection technology into coalbed, new fractures and pathways are formed to transport methane. A phenomenon of water-inhibiting gas flow existed. This study is focused on various water pressures impacted on gas-adsorbed coal samples, and then the desorption capacity could be revealed under different conditions. And the results are shown that methane desorption capacity was decreased with the increase in water pressure at room temperature and the downtrend would be steady until water pressure was large enough. Heating could promote gas desorption capacity effectively, with the increasing of water injection pressures, and the promotion of thermal on desorption became more obvious. These results are expected to provide a clearer understanding of theoretical efficiency of heat water or steam injection into coalbed, and they can provide some theoretical and experimental guidance on CBM production and methane control.

  4. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    International Nuclear Information System (INIS)

    Cermak, J.; Kral, L.

    2013-01-01

    Highlights: ► Beneficial effect of graphitic carbon was observed. ► The effect is optimal up to c opt . ► Above c opt , phase decomposition occurs. ► Indium in studied Mg–Ni-based alloys prevents oxidation. - Abstract: In the present paper, hydrogen desorption kinetics from hydrided Mg–Ni–In–C alloys was investigated. A chemical composition that substantially accelerates hydrogen desorption was found. It was observed that carbon improves the hydrogen desorption kinetics significantly. Its beneficial effect was found to be optimum close to the carbon concentration of about c C ≅ 5 wt.%. With this composition, stored hydrogen can be desorbed readily at temperatures down to about 485 K, immediately after hydrogen charging. This can substantially shorten the hydrogen charging/discharging cycle of storage tanks using Mg–Ni-based alloys as hydrogen storage medium. For higher carbon concentrations, unwanted phases precipitated, likely resulting in deceleration of hydrogen desorption and lower hydrogen storage capacity.

  5. Kinetic behaviour of the adsorption and desorption of phosphorus-32 on aluminium hydroxide

    International Nuclear Information System (INIS)

    Ribeiro, E.M.G.

    1993-01-01

    Great amount of phosphate fertilizers are used in agriculture. Soil fertility have been studied using fertilizer labelled with phosphorus 32 to improve agronomic practices by increasing the efficient use of phosphate fertilizer. Previous research work have been published suggesting the potential use of kinetics parameters to characterize phosphorus in soil and to diagnosis the phosphate level. In this work the kinetic behaviour of the absorption and desorption of phosphorus-32 on a synthetic aluminium hydroxide was studied attempting to detect the formation of a precipitated phase on the hydroxide surface. The kinetic data for adsorption was adjusted with the Elovich and Fardeau equations for isotopic exchange. It was verified a change in the kinetic behaviour when the surface was approximately 80% saturated. This change suggested the formation of a precipitate. The kinetic data for desorption was fitted with the Fardeau equation, and it was verified the desorption kinetics slower than the desorption. (B.C.A.). 40 refs, 17 figs, 5 tabs

  6. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  8. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS

    International Nuclear Information System (INIS)

    Zahid, H. J.; Dima, G. I.; Kewley, L. J.; Erb, D. K.; Davé, R.

    2012-01-01

    In this contribution, we present the first census of oxygen in star-forming galaxies in the local universe. We examine three samples of galaxies with metallicities and star formation rates (SFRs) at z = 0.07, 0.8, and 2.26, including the Sloan Digital Sky Survey (SDSS) and DEEP2 survey. We infer the total mass of oxygen produced and mass of oxygen found in the gas-phase from our local SDSS sample. The star formation history is determined by requiring that galaxies evolve along the relation between stellar mass and SFR observed in our three samples. We show that the observed relation between stellar mass and SFR for our three samples is consistent with other samples in the literature. The mass-metallicity relation is well established for our three samples, and from this we empirically determine the chemical evolution of star-forming galaxies. Thus, we are able to simultaneously constrain the SFRs and metallicities of galaxies over cosmic time, allowing us to estimate the mass of oxygen locked up in stars. Combining this work with independent measurements reported in the literature, we conclude that the loss of oxygen from the interstellar medium of local star-forming galaxies is likely to be a ubiquitous process with the oxygen mass loss scaling (almost) linearly with stellar mass. We estimate the total baryonic mass loss and argue that only a small fraction of the baryons inferred from cosmological observations accrete onto galaxies.

  9. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.

    Science.gov (United States)

    Super, Alexandre; Jaccard, Nicolas; Cardoso Marques, Marco Paulo; Macown, Rhys Jarred; Griffin, Lewis Donald; Veraitch, Farlan Singh; Szita, Nicolas

    2016-09-01

    Oxygen plays a key role in stem cell biology as a signaling molecule and as an indicator of cell energy metabolism. Quantification of cellular oxygen kinetics, i.e. the determination of specific oxygen uptake rates (sOURs), is routinely used to understand metabolic shifts. However current methods to determine sOUR in adherent cell cultures rely on cell sampling, which impacts on cellular phenotype. We present real-time monitoring of cell growth from phase contrast microscopy images, and of respiration using optical sensors for dissolved oxygen. Time-course data for bulk and peri-cellular oxygen concentrations obtained for Chinese hamster ovary (CHO) and mouse embryonic stem cell (mESCs) cultures successfully demonstrated this non-invasive and label-free approach. Additionally, we confirmed non-invasive detection of cellular responses to rapidly changing culture conditions by exposing the cells to mitochondrial inhibiting and uncoupling agents. For the CHO and mESCs, sOUR values between 8 and 60 amol cell(-1) s(-1) , and 5 and 35 amol cell(-1) s(-1) were obtained, respectively. These values compare favorably with literature data. The capability to monitor oxygen tensions, cell growth, and sOUR, of adherent stem cell cultures, non-invasively and in real time, will be of significant benefit for future studies in stem cell biology and stem cell-based therapies. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Engelund, Emil Tang; Thygesen, Lisbeth G.

    2011-01-01

    It is a commonly accepted notion that the equilibrium moisture content (EMC) of wood at a given relative humidity (RH) is highest during initial desorption of green wood due to an irreversible loss of hygroscopicity during the 1st desorption. The basis for this notion is investigated by assessing...

  11. Nuclear stimulated desorption as a potential tool for surface study

    International Nuclear Information System (INIS)

    Nir, Dror.

    1993-03-01

    The described research work constitutes a base for an experimental method to be implemented in the study of solid surfaces. Nuclear Stimulated Desorption (NSD) is a new mode of experimentation in thin film and surface physics. It Is based on the interplay between nuclear phenomena (reactions and spontaneous decays), and atomic - scale induced effects on surfaces and very thin films. One may distinguish between two generically different relationships between the two. First, the dynamics of the nuclear reaction -primarily the recoil of the nucleus - may effect the position of the atom or molecule containing it. Second, the nuclear reaction (or decay) may serve as an analytical indicator of the whereabouts of the atom, or molecule, in question. In nuclear stimulated desorption, both thee aspects combine in an essential way. Namely, one employs a series of two consecutive decays (normally weak decays or isomeric transition) . The first of these decays causes the nucleus to desorb from a surface onto which it had been placed; the second serves to determine the position of the daughter and thereby the characteristics of the primary desorption . The essential feature in NSD is that it occurs almost exclusively from the outermost surface layer. This is because we choose to work with nuclei whose recoil energy Is of the same order of magnitude of the binding energy of the atom to the surface . Furthermore, the desorption probability and its angular (and temporal) characteristics, depend on the features (topology, morphology) of its immediate neighborhood. This work describes experiments which were designed to give relevant, phenomenological information about the outgoing flux of the radioactive daughters (for specifically chosen nuclear species) , and in particular the magnitude of the flux, its time dependence and its charged state. In addition. the basic phenomena itself is being distinguished from competing processes (thermal desorption, in particular). We will now

  12. Sorption and desorption kinetics of diuron, fluometuron, prometryn and pyrithiobac sodium in soils.

    Science.gov (United States)

    Baskaran, S; Kennedy, I R

    1999-11-01

    The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.

  13. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    microcopy (STEM) to measure size and structure, energy dispersive X-ray spectroscopy (EDS) to measure atomic composition, X-ray absorption spectroscopy (XAS) to measure oxidation state and metal coordination, Fourier transform infrared spectroscopy (FTIR) to study adsorbed species, laser Raman spectroscopy to probe metal oxide promoters, and temperature programmed reaction/desorption to study the energetics of adsorption and desorption processes. We have studied our bimetallic catalysts for the selective cleavage of carbon-oxygen bonds, and we have studied the effects of adding metal oxide promoters to supported platinum and gold catalysts for water-gas shift (i.e., the production of hydrogen by reaction of carbon monoxide with water). We anticipate that the knowledge obtained from our studies will allow us to identify promising directions for new catalysts that show high activity, selectivity, and stability for important reactions, such as the conversion of biomass-derived oxygenated hydrocarbons to fuels and chemicals.

  14. Desorption of Water from Distinct Step Types on a Curved Silver Crystal

    Directory of Open Access Journals (Sweden)

    Jakrapan Janlamool

    2014-07-01

    Full Text Available We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111 × (100] via (111 to [5(111 × (110]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model.

  15. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lanlan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Yue; Xu Fugang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Li Zhuang, E-mail: zli@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China)

    2011-05-15

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/{mu}L. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  16. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Sun Lanlan; Zhao Dongxu; Zhang Yue; Xu Fugang; Li Zhuang

    2011-01-01

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/μL. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  17. Determination of the Minimal Fresh Gas Flow to Maintain a Therapeutic Inspired Oxygen Concentration in a Semi-Closed Anesthesia Circle System Using an Oxygen Concentrator as the Oxygen Source

    National Research Council Canada - National Science Library

    Grano, Joan

    2001-01-01

    The purpose of this study was to determine the rate of oxygen dilution, resulting from argon accumulation, using 3 low fresh gas flow rates using an oxygen concentrator in a semi-closed anesthesia circle system...

  18. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  19. Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; van den Berg, A.H.J.; Smithers, Mark A.; Smithers, M.A.

    2006-01-01

    The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material,

  20. The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production

    DEFF Research Database (Denmark)

    Quinlan, Casey L; Perevoschikova, Irina V; Goncalves, Renata L S

    2013-01-01

    Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS...... production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from...

  1. Multisample matrix-assisted laser desorption source for molecular beams of neutral peptides

    International Nuclear Information System (INIS)

    Lupulescu, C.; Abd El Rahim, M.; Antoine, R.; Barbaire, M.; Broyer, M.; Dagany, X.; Maurelli, J.; Rayane, D.; Dugourd, Ph.

    2006-01-01

    We developed and tested a multisample laser desorption source for producing stable molecular beams of neutral peptides. Our apparatus is based on matrix-assisted laser desorption technique. The source consists of 96 different targets which may be scanned by a software control procedure. Examples of molecular beams of neutral peptides are presented, as well as the influence of the different source parameters on the jet

  2. Electron-stimulated desorption of lithium ions from lithium halide thin films

    International Nuclear Information System (INIS)

    Markowski, Leszek

    2007-01-01

    Electron-stimulated desorption of positive lithium ions from thin layers of lithium halides deposited onto Si(1 1 1) are investigated by the time-of-flight technique. The determined values of isotope effect of the lithium ( 6 Li + / 7 Li + ) are 1.60 ± 0.04, 1.466 ± 0.007, 1.282 ± 0.004, 1.36 ± 0.01 and 1.33 ± 0.01 for LiH, LiF, LiCl, LiBr and LiI, respectively. The observed most probable kinetic energies of 7 Li + are 1.0, 1.9, 1.1, 0.9 and 0.9 eV for LiH, LiF, LiCl, LiBr and LiI, respectively, and seem to be independent of the halide component mass. The values of lithium ion emission yield, lithium kinetic energy and lithium isotope effect suggest that the lattice relaxation is only important in the lithium ion desorption process from the LiH system. In view of possible mechanisms and processes involved into lithium ion desorption the obtained results indicate that for LiH, LiCl, LiBr and LiI the ions desorb in a rather classical way. However, for LiF, ion desorption has a more quantum character and the modified wave packet squeezing model has to be taken into account

  3. Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Gersing, Alexandra S.; Schwaiger, Benedikt J. [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Ankenbrank, Monika; Toth, Vivien; Bauer, Jan S.; Zimmer, Claus [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Janssen, Insa [Technical University Munich, Department of Neurosurgery, Munich (Germany); Kooijman, Hendrik [Philips Healthcare, Hamburg (Germany); Wunderlich, Silke [Technical University Munich, Department of Neurology, Munich (Germany); Preibisch, Christine [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Technical University Munich, Department of Neurology, Munich (Germany)

    2015-12-15

    MR-derived cerebral metabolic rate of oxygen utilization (CMRO{sub 2}) has been suggested to be analogous to PET-derived CMRO{sub 2} and therefore may be used for detection of viable tissue at risk for infarction. The purpose of this study was to evaluate MR-derived CMRO{sub 2} mapping in acute ischemic stroke in relation to established diffusion- and perfusion-weighted imaging. In 23 patients (mean age 63 ± 18.7 years, 11 women) with imaging findings for acute ischemic stroke, relative oxygen extraction fraction was calculated from quantitative transverse relaxation times (T2, T2*) and relative cerebral blood volume using a quantitative blood oxygenation level dependent (BOLD) approach in order to detect a local increase of deoxyhemoglobin. Relative CMRO{sub 2} (rCMRO{sub 2}) maps were calculated by multiplying relative oxygen extraction fraction (rOEF) by cerebral blood flow, derived from PWI. After co-registration, rCMRO{sub 2} maps were evaluated in comparison with apparent diffusion coefficient (ADC) and time-to-peak (TTP) maps. Mean rCMRO{sub 2} values in areas with diffusion-restriction or TTP/ADC mismatch were compared with rCMRO{sub 2} values in the contralateral tissue. In tissue with diffusion restriction, mean rCMRO{sub 2} values were significantly decreased compared to perfusion-impaired (17.9 [95 % confidence interval 10.3, 25.0] vs. 58.1 [95 % confidence interval 50.1, 70.3]; P < 0.001) and tissue in the contralateral hemisphere (68.2 [95 % confidence interval 61.4, 75.0]; P < 0.001). rCMRO{sub 2} in perfusion-impaired tissue showed no significant change compared to tissue in the contralateral hemisphere (58.1 [95 % confidence interval 50.1, 70.3] vs. 66.7 [95 % confidence interval 53.4, 73.4]; P = 0.34). MR-derived CMRO{sub 2} was decreased within diffusion-restricted tissue and stable within perfusion-impaired tissue, suggesting that this technique may be adequate to reveal different pathophysiological stages in acute stroke. (orig.)

  4. Effect of membranes on oxygen transfer rate and consumption within a newly developed three-compartment bioartificial liver device: Advanced experimental and theoretical studies.

    Science.gov (United States)

    Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F

    2014-01-01

    A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  5. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    Science.gov (United States)

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems

    Science.gov (United States)

    2013-09-01

    quantum effects by incorporating Zero- Point Energy ( ZPE ) in the initial conditions [19; 108]. Desorption calculations, in order to be incorporated...TST Transition State Theory TTPD Threshold Temperature-Programmed Desorption UHV Ultra-High Vacuum XHV Extreme-High Vacuum ZPE Zero-Point Energy 141

  7. Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    DEFF Research Database (Denmark)

    Murphy, Shane; Strebel, Christian Ejersbo; Vendelbo, Søren Bastholm

    2011-01-01

    Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles.......Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles....

  8. Desorption of organophosphorous pesticides from soil with wastewater and surfactant solutions

    International Nuclear Information System (INIS)

    Hernandez-Soriano, M. C.; Mingorance, M. D.; Pena, A.

    2009-01-01

    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e. g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity, has been evaluated in the presence of different surfactant aqueous solutions and municipal wastewater. (Author)

  9. Effect of equilibration time on Pu desorption from goethite

    International Nuclear Information System (INIS)

    Wong, Jennifer C.; Powell, Brian A.; Zavarin, Mavrik; Begg, James D.; Kersting, Annie B.

    2015-01-01

    It has been suggested that strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time which has implications for near- and far-field transport of Pu. Batch adsorption-desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethite was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.

  10. Theoretical evidence of the observed kinetic order dependence on temperature during the N(2)O decomposition over Fe-ZSM-5.

    Science.gov (United States)

    Guesmi, Hazar; Berthomieu, Dorothee; Bromley, Bryan; Coq, Bernard; Kiwi-Minsker, Lioubov

    2010-03-28

    The characterization of Fe/ZSM5 zeolite materials, the nature of Fe-sites active in N(2)O direct decomposition, as well as the rate limiting step are still a matter of debate. The mechanism of N(2)O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [Fe(II)(mu-O)(mu-OH)Fe(II)](+) inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches. The overall calculated path of N(2)O decomposition involves the oxidation of binuclear Fe(II) core sites by N(2)O (atomic alpha-oxygen formation) and the recombination of two surface alpha-oxygen atoms leading to the formation of molecular oxygen. Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N(2)O decomposition are strongly dependent on the temperature. This theoretical result was compared to the experimentally observed steady state kinetics of the N(2)O decomposition and temperature-programmed desorption (TPD) experiments. A switch of the reaction order with respect to N(2)O pressure from zero to one occurs at around 800 K suggesting a change of the rate determining step from the alpha-oxygen recombination to alpha-oxygen formation. The TPD results on the molecular oxygen desorption confirmed the mechanism proposed.

  11. Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents

    International Nuclear Information System (INIS)

    Liu Wenxin; Cheng Fangfang; Li Weibo; Xing Baoshan; Tao Shu

    2012-01-01

    Desorption kinetic and isothermal characteristics of BDE-28 and BDE-47 were investigated using natural soils with different organic carbon fractions. The results indicated that a two-compartment first-order model with dominant contribution of slow desorption could adequately describe the released kinetics of studied PBDEs. Desorption isotherms of different samples could be fitted well by linear distribution model or nonlinear Freundlich model. Moreover, most desorption procedures roughly exhibited hysteresis with respect to preceding sorption ones. At the statistically significant level of 0.05 or 0.1, total organic carbon content (f OC ) exhibited significant correlations with the fitted parameters by the isothermal models. The correlations of f OC and SOM fractions (e.g., fulvic acid and humin) with the single point desorption coefficients at lower aqueous concentrations of studied PBDEs were significant; while at higher aqueous concentrations, the relationships were less significant or insignificant. Our findings may facilitate a comprehensive understanding on behaviors of PBDEs in soil systems. - Highlights: ► A two-compartment first-order kinetic model for the PBDEs studied was established. ► Isotherm was fitted well by a linear distribution or a nonlinear Freundlich model. ► Desorption commonly exhibited somewhat hysteresis relative to sorption. ► Soil organic carbon fractions showed close correlations with the model parameters. - Two-compartment first-order model, and linear distribution model or nonlinear Freundlich model could well elucidate desorption kinetics and isotherms of PBDEs in natural soils, respectively.

  12. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  13. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  14. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments...... tetracycline > oxytetracycline > chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline > chlortetracycline > oxytetracycline in soil 2. The desorption sequences were oxytetracycline > tetracycline > chlortetracycline in soil 1 and oxytetracycline...... > chlortetracycline > tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics...

  15. ε-Polylysine-based thermo-responsive adsorbents for immunoglobulin adsorption-desorption under mild conditions.

    Science.gov (United States)

    Maruyama, Masashi; Shibuya, Keisuke

    2017-08-22

    Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.

  16. The use of angle resolved electron and photon stimulated desorption for the determination of molecular structure at surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Stockbauer, R.

    1983-01-01

    A brief review of recent data related to the use of angle-resolved electron stimulated desorption and photon stimulated desorption in determining the structures of molecules at surfaces is made. Examples include a variety of structural assignments based on ESIAD (electron stimulated desorption ion angular distributions), the observation of short-range local ordering effects induced in adsorbed molecules by surface impurities, and the application of photon stimulated desorption to both ionic and covalent adsorbate systems. (Author) [pt

  17. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment.

    Science.gov (United States)

    Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting

    2017-05-01

    High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process

  18. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment

    Science.gov (United States)

    Xue, Q.; Tang, J., Sr.; Chen, H.

    2017-12-01

    High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pHleaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.

  19. Competitive metal sorption and desorption onto Kappaphycus alvarezii, seaweed waste biomass

    International Nuclear Information System (INIS)

    Lee, K.O.; Nazaruddin Ramli; Mamot Said; Musa Ahmad; Suhaimi Mohd Yasir; Arbakariya Ariff

    2011-01-01

    Competitive metal sorption and desorption onto Kappaphycus alvarezii waste biomass were investigated. Metal sorption capacities were 0.82 mg Cr (III)/ g, 0.73 mg Ni (II)/ g, 0.67 mg Cd (II)/ g, 0.65 mg Cu( II)/ g and 0.64 mg Zn (II)/ g in multi metal system. Whereas, desorption efficiencies were 66.08 %, 71.50 % and 80.44 % using 0.1 M HNO 3 , 0.1 M HCl and 0.1 M H 2 SO 4 , respectively. The metal sorption sequence were Cr(III) > Ni(II) > Cd(II) > Cu(II) > Zn(II), while metal desorption sequence were Cd(II) > Zn(II) > Cu(II) > Ni(II) > Cr(III). Fourier transformed infrared spectroscopy (FTIR) technique was used to characterize the seaweed waste biomass. FTIR analysis shown that carbonyl (-C-O) and nitrile (-C≡N) groups interact with the metal ions. The experiments result revealed that Kappaphycus alvarezii waste biomass represent an attractive candidate to remove multi metal ions. (author)

  20. Thermal desorption of deuterium from polycrystalline nickel pre-implanted with helium

    International Nuclear Information System (INIS)

    Shi, S.Q.; Abramov, E.; Thompson, D.A.

    1990-01-01

    The thermal desorption technique has been used to study the trapping of deuterium atoms in high-purity polycrystalline nickel pre-implanted with helium for 1 x 10 19 to 5 x 10 20 ions/m 2 . The effect of post-implantation annealing at 703 K and 923 K on the desorption behavior was investigated. Measured values of the total amount of detrapped deuterium (Q T ) and helium concentration were used in a computer simulation of the desorption curve. It was found that the simulation using one or two discrete trap energies resulted in an inadequate fit between the simulated and the measured data. Both experimental and simulation results are explained using a stress-field trapping model. The effective binding energy, E b eff , was estimated to be in the range of 0.4-0.6 eV. Deuterium charging was found to stimulate a release of helium at a relatively low temperature

  1. Competitive metal sorption and desorption onto Kappaphycus alvarezii, seaweed waste biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K O; Ramli, Nazaruddin; Said, Mamot; Ahmad, Musa [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, selangor (Malaysia); Yasir, Suhaimi Mohd [School of Sciences and Technology, Universiti Malaysia Sabah (UMS), Sabah (Malaysia); Arbakariya Ariff, E-mail: naza@ukm.my [Faculty of Biotechnology and Biomolecular science, Universiti Putra Malaysia (UPM), Serdang, Selangor (Malaysia)

    2011-07-15

    Competitive metal sorption and desorption onto Kappaphycus alvarezii waste biomass were investigated. Metal sorption capacities were 0.82 mg Cr (III)/ g, 0.73 mg Ni (II)/ g, 0.67 mg Cd (II)/ g, 0.65 mg Cu( II)/ g and 0.64 mg Zn (II)/ g in multi metal system. Whereas, desorption efficiencies were 66.08 %, 71.50 % and 80.44 % using 0.1 M HNO{sub 3}, 0.1 M HCl and 0.1 M H{sub 2}SO{sub 4}, respectively. The metal sorption sequence were Cr(III) > Ni(II) > Cd(II) > Cu(II) > Zn(II), while metal desorption sequence were Cd(II) > Zn(II) > Cu(II) > Ni(II) > Cr(III). Fourier transformed infrared spectroscopy (FTIR) technique was used to characterize the seaweed waste biomass. FTIR analysis shown that carbonyl (-C-O) and nitrile (-C{identical_to}N) groups interact with the metal ions. The experiments result revealed that Kappaphycus alvarezii waste biomass represent an attractive candidate to remove multi metal ions. (author)

  2. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  3. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  4. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection...... differently to oxygen. When normalized to a housekeeping gene (rpoB), the expression of 4 out of 9 N-cycle-genes changed with increasing oxygen concentration: The expression of ammonium monooxygenase (amoC) was stimulated, whereas expression of nitrite reductase (nirS), nitric oxide reductase (nor...

  5. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  6. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.

    1999-01-01

    signal changes were measured simultaneously using the flow-sensitive alternating inversion recovery (FAIR) technique. During hypercapnia established by an end-tidal CO2 increase of 1.46 kPa, CBF in the visual cortex increased by 47.3 +/- 17.3% (mean +/- SD; n = 9), and deltaR2* was -0.478 +/- 0.147 sec......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...

  7. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  8. [Study of blood oxygen saturation, heart rate changes and plateau reaction of the Antarctic Kunlun station investigation team in different plateau environments].

    Science.gov (United States)

    Zhao, Shun-yun; Wu, Xin-min; Guo, Ya-min; Zhang, Shu-shun; An, Yan-ming; Li, Bing; Wang, Hao

    2013-06-11

    To explore the blood oxygen saturation and heart rate changes of the Antarctic explorers. During August 2010 to April 2011, the changes in blood oxygen saturation, heart rate and plateau reaction of 16 Antarctic expedition team in different plateau environments (Tibetan plateau versus Antarctic plateau) were monitored with the noninvasive pulse oximeter MD300-C. The extent of acute mountain sickness was determined according to the Lake Louise Consensus acute mountain reaction symptom scores and judgment method. The changes of blood oxygen saturation, heart rate at different altitudes of 110, 3650, 4300 m (96.8% ± 1.2%,89.1% ± 1.2%, 86.1% ± 2.0%, (75.0 ± 5.4) times/min, (104.0 ± 4.3) times/min, (113.0 ± 5.2) times/min,F = 214.155, 240.088,both P rate at different altitudes of 2000, 2500, 3000, 3500 and 4087 m(91.9% ± 1.3%,90.5% ± 1.3%,87.6% ± 1.4%,85.0% ± 1.8%,81.5% ± 2.2%, (85.9 ± 3.2) times/min, (90.6 ± 2.8) times/min, (97.8 ± 4.1) times/min, (102.0 ± 3.4) times/min, (106.3 ± 3.9) times/min, F = 105.418, 90.174, both P rate were both correlated with the risk of altitude sickness (r = -0.446 and 0.565, both P rate of the Antarctic explorers. And with the increases of altitude, the risk of altitude sickness gradually increases.

  9. An experimental and modeling study of grain-scale uranium desorption from field-contaminated sediments and the potential influence of microporosity on mass-transfer

    Science.gov (United States)

    Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.

    2012-12-01

    The aquifer below the 300-Area of the Hanford site (Richland, WA, USA) is plagued by a persistent plume of dissolved uranium (U(VI)) in excess of the Environmental Protection Agency drinking water maximum contamination level even after the removal of highly contaminated sediments. The aquifer sediments in the seasonally saturated lower vadose zone act as both a source and sink for uranium during stage changes in the nearby Columbia River. Diffusion limitation of uranium mass-transfer within these sediments has been cited as a potential cause of the plume's persistence. Equilibrium U(VI) sorption is a strong function of variable chemical conditions, especially carbonate, hydrogen, and uranyl ion activities. Field-contaminated sediments from the site require up to 1,000 hours to reach equilibrium in static batch reactors. Increases in U(VI) concentrations over longer time-scales result from changes in chemical conditions, which drive reactions with sediments that favor U(VI) desorption. Grain-scale U(VI) sorption/desorption rates are slow, likely owing to diffusion of U(VI) and other solutes through intra-granular pore domains. In order to improve understanding of the impact of intra-granular diffusion and chemical reactions controlling grain-scale U(VI) release, experiments were conducted on individual particle size fractions of a single set of constant chemical conditions with multiple stop-flow events, were similar for all size fractions displacement from equilibrium and multiple diffusion domains were described with a two-parameter lognormal distribution of mass-transfer rate coefficients. Parameters describing mass transfer were the same for all size fractions reaction models calibrated with individual size fractions predicted U(VI) and chemical composition as a function of time for the bulk sediment sample. Volumes of pores less than 2.4 nm, quantified using nitrogen adsorption-desorption isotherms, were the same for all size fractions < 2 mm, nearly double

  10. Extrapolation studies on desorption of thorium and uranium at different solution compositions on contaminated soil sediments (Malaysia)

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma

    2000-01-01

    By means of batch desorption experiments, the thorium and uranium desorption properties of contaminated soil sediments are investigated as a function of the effect of cations present in the groundwater. A phenomenological correlation between the desorption coefficient and the concentration of Ca and Mg in the water is determined. Kd Thorium -0.15849 ± 0.03237 log (Ca + Mg) + 5.06715 ± 0.09106; Kd Uranium = -0.11984 ± 0.03237 log (Ca + Mg) + 2.99909 ± 0.09105. By these models the sorption/desorption behaviour of soils can be predicted phenomenologically as function of the groundwater composition. (author)

  11. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  12. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils.

    Science.gov (United States)

    Liu, Yihua; Xu, Zhenzhen; Wu, Xiaoguang; Gui, Wenjun; Zhu, Guonian

    2010-06-15

    The adsorption-desorption behaviors of diuron were investigated in six cultivated soils of China. The effect of system pH and temperature were also studied. The data fitted the Freundlich equation very well. The adsorption K(F) values indicated the adsorption of diuron in the six soils was in the sequence of black soil (D)>yellow earth (F)>paddy soil (B)>yellow-brown soil (C)>yellow-cinnamon soil (A)>lateritic red earth (E). The adsorption K(F) and Freundlich exponents n were decreased when temperature was increased from 298 K to 318 K. However, the Gibb's free energy values were found less negative with the increasing temperature. Meanwhile, the extent of diuron adsorption on soil was at rather high level under low pH value conditions and decreased with increasing pH value. In addition, the desorption behavior of diuron in the six soils was in the sequence of lateritic red earth (E)>yellow-cinnamon soil (A)>paddy soil (B)>yellow earth (F)>yellow-brown soil (C)>black soil (D). At the same time, desorption hysteresis of diuron were observed in all of the tested soils. And the soil organic matter content may play an important role in the adsorption-desorption behavior. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Oxygen consumption rates in hovering hummingbirds reflect substrate-dependent differences in P/O ratios: carbohydrate as a 'premium fuel'.

    Science.gov (United States)

    Welch, Kenneth C; Altshuler, Douglas L; Suarez, Raul K

    2007-06-01

    The stoichiometric relationship of ATP production to oxygen consumption, i.e. the P/O ratio, varies depending on the nature of the metabolic substrate used. The latest estimates reveal a P/O ratio approximately 15% higher when glucose is oxidized compared with fatty acid oxidation. Because the energy required to produce aerodynamic lift for hovering is independent of the metabolic fuel oxidized, we hypothesized that the rate of oxygen consumption, VO2, should decline as the respiratory quotient, RQ (VCO2/VO2), increases from 0.71 to 1.0 as hummingbirds transition from a fasted to a fed state. Here, we show that hovering VO2 values in rufous (Selasphorus rufus) and Anna's hummingbirds (Calypte anna) are significantly greater when fats are metabolized (RQ=0.71) than when carbohydrates are used (RQ=1.0). Because hummingbirds gained mass during our experiments, making mass a confounding variable, we estimated VO2 per unit mechanical power output. Expressed in this way, the difference in VO2 when hummingbirds display an RQ=0.71 (fasted) and an RQ=1.0 (fed) is between 16 and 18%, depending on whether zero or perfect elastic energy storage is assumed. These values closely match theoretical expectations, indicating that a combination of mechanical power estimates and ;indirect calorimetry', i.e. the measurement of rates of gas exchange, enables precise estimates of ATP turnover and metabolic flux rates in vivo. The requirement for less oxygen when oxidizing carbohydrate suggests that carbohydrate oxidation may facilitate hovering flight in hummingbirds at high altitude.

  14. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2004-05-01

    Using a computer model of oxidative phosphorylation developed previously [Korzeniewski and Mazat (1996) Biochem. J. 319, 143-148; Korzeniewski and Zoladz (2001) Biophys. Chem. 92, 17-34], we analyse the effect of several factors on the oxygen-uptake kinetics, especially on the oxygen consumption rate (VO2) and half-transition time t(1/2), at the onset of exercise in skeletal muscles. Computer simulations demonstrate that an increase in the total creatine pool [PCr+/-Cr] (where Cr stands for creatine and PCr for phosphocreatine) and in glycolytic ATP supply lengthen the half-transition time, whereas increase in mitochondrial content, in parallel activation of ATP supply and ATP usage, in oxygen concentration, in proton leak, in resting energy demand, in resting cytosolic pH and in initial alkalization decrease this parameter. Theoretical studies show that a decrease in the activity of creatine kinase (CK) [displacement of this enzyme from equilibrium during on-transient (rest-to-work transition)] accelerates the first stage of the VO2 on-transient, but slows down the second stage of this transient. It is also demonstrated that a prior exercise terminated a few minutes before the principal exercise shortens the transition time. Finally, it is shown that at a given ATP demand, and under conditions where CK works near the thermodynamic equilibrium, the half-transition time of VO2 kinetics is determined by the amount of PCr that has to be transformed into Cr during rest-to-work transition; therefore any factor that diminishes the difference in [PCr] between rest and work at a given energy demand will accelerate the VO2 on-kinetics. Our conclusions agree with the general idea formulated originally by Easterby [(1981) Biochem. J. 199, 155-161] that changes in metabolite concentrations determine the transition times between different steady states in metabolic systems.

  15. Measurement of oxygen transfer from air into organic solvents

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Mayr, Torsten; Hobisch, Mathias

    2016-01-01

    biological reactions require the supply of oxygen, most normally from air. However, reliable on-line measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due limitations in the current analytical methods. Results...... applications). Subsequently, we measured the oxygen transfer rates from air into these organic solvents. Conclusion The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen...... For the first time, we demonstrate on-line oxygen measurements in non-aqueous media using a novel optical sensor. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological...

  16. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  17. Sample and plume luminescence in fast heavy ion induced desorption

    International Nuclear Information System (INIS)

    Tuszynski, W.; Koch, K.; Hilf, E.R.

    1996-01-01

    The luminescence arising in 252 Cf-fission fragment induced desorption events has been measured using the time-correlated single photon counting technique. Photons emitted from the sample have been guided from a plasma desorption ion source to a photodetector by an optical fibre. Spectra and decay functions have been obtained using thin layers of Coronene or POPOP as samples. The results are strongly dependent on the acceleration field applied for ion extraction. Approximately 10 photons per fission fragment have been produced when applying no accelerating voltage. The results clearly show that these photons come from radiative electronic relaxations of molecules in the solid sample. Considerably more photons per fission fragment have been produced when applying a positive acceleration voltage. The intensity increases almost linearly for acceleration fields below 10 kV/cm and saturates at a nearly 10-fold higher value when compared to no acceleration. The intensity is also affected by the homogeneity of the accelerating field. These additional photons are attributed to radiative electronic relaxations of desorbed neutral molecules in the plume excited by inelastic collisions with accelerated positive ions. No additional photons have been observed when extracting negative ions. The negative ions produced do obviously not hit and/or excite desorbed neutral molecules, presumably due to their specific desorption characteristics. The experimental data have been analyzed by comparing with the cw and time-resolved sample luminescence obtained by optical excitation. The findings demonstrate that valuable information on ion-solid interactions, on specific desorption quantities and on processes in the plume can be obtained by measuring and analyzing the luminescence induced by the impact of high energy primary ions. (orig.)

  18. Theory of oxygen isotope exchange

    NARCIS (Netherlands)

    den Otter, M.W.; Boukamp, Bernard A.; Bouwmeester, Henricus J.M.

    2001-01-01

    Transients for oxygen molecular mass numbers 32, 34 and 36 are derived which can be used for the interpretation of oxygen isotope exchange data based on measurement of concentrations of 16O2, 16O18O and 18O2 in the gas phase. Key parameters in the theory are the rate at which oxygen molecules are

  19. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    Science.gov (United States)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  20. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Boellinghaus, Th.

    2007-01-01

    The focus of this paper is the investigation of the combined influence of hydrogen and pre-plastic deformation on hydrogen's absorption/desorption behavior, the microstructure and microhardness of a single-phased β-21S alloy. In this study, thermal desorption analyses (TDS) evaluation of various desorption and trapping parameters provide further insight on the relationships between hydrogen absorption/desorption processes and deformation, and their mutual influence on the microstructure and the microhardness of β-21S alloy. TDS spectra were supported by other experimental techniques, such as X-ray diffraction, scanning and transmission electron microscopy, hydrogen quantity analyses and microhardness tests. Pre-plastic deformation, performed before the electrochemical hydrogenation of the alloy, increased significantly the hydrogen absorption capacity. Its influence was also evident on the notably expanded lattice parameter of β-21S alloy after hydrogenation. However, no hydride precipitation was observed. An interesting softening effect of the pre-deformed hydrogenated alloy was revealed by microhardness tests. TDS demonstrated the significant effect of pre-plastic deformation on the hydrogen evolution process. Hydrogen desorption temperature and the activation energy for hydrogen release increased, additional trap states were observed and the amount of desorbed hydrogen decreased

  1. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    Science.gov (United States)

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  2. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    Science.gov (United States)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  3. Oxygen transfer rates and requirements in oxidative biocatalysis

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard; Rehn, Gustav; Woodley, John

    2015-01-01

    Biocatalytic oxidation reactions offer several important benefits such as regio- and stereoselectivity, avoiding the use of toxic metal based catalysts and replacing oxidizing reagents by allowing the use of oxygen. However, the development of biocatalytic oxidation processes is a complex task......-up is relatively straight forward (Gabelman and Hwang, 1999), and membrane contactors are implemented for various industrial applications (Klaassen et al., 2005)....

  4. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  5. Desorption of trihalomethanes in gas liquid contactors

    International Nuclear Information System (INIS)

    Ramirez Quesada, Kenneth

    2000-01-01

    Updated studies show that gastric cancer is related with the existence of trihalomethanes (THMs) in the drinking water. The trihalomethanes are sub products from the degradation of humic acids and your reaction with chlorine and bromine used like decontaminates. The desorption process is used to eliminate the THMs with air in contact with the water. The experimental design was used in three contactors. The contactors selected were: the bubbling's column, the packed column and the shaken tank without screen. There were selected three variable: initial concentration of THMs, the residence time and the turbulence degree (measured with the Reynolds number). The concentrations were made with a gas chromatograph. The objective of this project is to do a comparison with the gas liquid contactors more used in the industrial level to determinate which ones are the best in the desorption process. The conclusion of the experimental design is that the tank is the equipment with the best capacity to eliminate THMs. Too it includes other techniques to eliminate THMs of the water and your treatment [es

  6. 14 CFR 25.1441 - Oxygen equipment and supply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oxygen equipment and supply. 25.1441... Oxygen equipment and supply. (a) If certification with supplemental oxygen equipment is requested, the... oxygen available in each source of supply. (d) The oxygen flow rate and the oxygen equipment for...

  7. Desorption and ionization processes in laser mass spectrometry

    International Nuclear Information System (INIS)

    Peyl, G.J.Q. van der.

    1984-01-01

    In this thesis results are reported from a study on the desorption- and ionization process initiated by infra-red laser irradiation (LDMS) or ion bombardment (SIMS) of thin organic sample layers. The study is especially focused on the formation of quasimolecular ions under these conditions. Results of these investigations can be used for a better optimization of the LDMS and SIMS techniques in organic mass spectrometry. First, an overview is given of laser desorption mass spectrometry. Next, the coupling of the laser energy into the organic sample layer is investigated. It is concluded that the laser energy is primarily absorbed by the substrate material and not by the organic overlayer. The formation of quasi-molecular ions, either in the gas phase or in the substrate surface is investigated. The final section reports kinetic energy distributions for ions sputtered from organic solids and liquids. (Auth.)

  8. Sorption and desorption reactions of radionuclides with a crushed basalt-bentonite packing material

    International Nuclear Information System (INIS)

    Barney, G.S.; Lane, D.L.; Allen, C.C.; Jones, T.E.

    1985-04-01

    Current design of waste packages for disposal of high-level radioactive wastes in underground basalt formations includes a layer of packing material that surrounds the waste container. One of the functions of this material is to limit the release of radionuclides from a breached container into groundwater by providing a low hydraulic conductivity zone and by sorbing dissolved radionuclides. The objective of this study was to assess the radionuclide sorption capability of a proposed packing material composed of 25% sodium bentonite and 75% crushed basalt (by weight). Sorption and desorption reactions of several important waste radioelements (neptunium, uranium, plutonium, technetium, selenium, and radium) were investigated in the absence of air at 90 0 C. Uranium and neptunium were sorbed by slow reactions that follow first-order kinetics. The reaction rates are probably controlled by reduction of weakly sorbed uranium(VI) and neptunium(V) by ferrous iron in the crushed basalt component. Technetium(VII) was not reduced or sorbed under these conditions. Freundlich sorption and desorption isotherms for a given radionuclide were non-singular and show a strong tendency for sorption hysteresis. Applying the isotherm data to a one-dimensional transport model indicated that hysteretic sorption on the packing material provides an important safety factor in controlling releases of some radionuclides

  9. Biomarkers’ Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM

    Directory of Open Access Journals (Sweden)

    Gretchen L. W. Heavner

    2018-02-01

    Full Text Available Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1TM, including several reductive dehalogenases (RDases and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR as a targeted approach for quantifying transcript copies in the KB-1TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10−12 to 5.9 × 10−10 microelectron equivalents per cell per hour (μeeq/cell∙h. Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA and the hydrogenase HupL (R2 = 0.83 and 0.88, respectively, but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1TM. Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1TM. The addition of oxygen induced cell stress that caused respiration

  10. Biomarkers' Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM.

    Science.gov (United States)

    Heavner, Gretchen L W; Mansfeldt, Cresten B; Debs, Garrett E; Hellerstedt, Sage T; Rowe, Annette R; Richardson, Ruth E

    2018-02-08

    Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR) rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC) containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1 TM , including several reductive dehalogenases (RDases) and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs) and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR) as a targeted approach for quantifying transcript copies in the KB-1 TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1 TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10 -12 to 5.9 × 10 -10 microelectron equivalents per cell per hour (μeeq/cell∙h). Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA) and the hydrogenase HupL (R² = 0.83 and 0.88, respectively), but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1 TM . Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1 TM . The addition of oxygen induced cell stress that caused respiration rates

  11. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  12. Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M., E-mail: marco.minissale@obspm.fr; Congiu, E.; Dulieu, F. [LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex (France)

    2014-02-21

    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O{sub 2} and O{sub 3} produced via two pathways: O + O and O{sub 2} + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O{sub 2} + O reactions is ∼150 K/k{sub b}. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley–Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O{sub 3} formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O{sub 3} is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO{sub 2} and H{sub 2}O in the ices.

  13. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils.

    Science.gov (United States)

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments. We used the stirred flow chamber (SFC) procedure to achieve this goal. All three antibiotics showed high affinity for both soils, with greater adsorption intensity for soil 1, the one with the highest organic matter and Al and Fe oxides contents. Desorption was always  oxytetracycline > chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline > chlortetracycline > oxytetracycline in soil 2. The desorption sequences were oxytetracycline > tetracycline > chlortetracycline in soil 1 and oxytetracycline > chlortetracycline > tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics on soils and other media, thus increasing knowledge on the behavior and evolution of these pharmaceutical residues in the environment.

  14. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effects of oxygen content and heating rate on phase transition behavior in Bi2(V0.95Ti0.05)O5.475-x

    International Nuclear Information System (INIS)

    Taninouchi, Yu-ki; Uda, Tetsuya; Ichitsubo, Tetsu; Awakura, Yasuhiro; Matsubara, Eiichiro

    2011-01-01

    Highlights: → Phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and physical forms. → At the same heating rate of 10 K min -1 , Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. → α f directly transformed to β f at fast heating rates. At a slower heating rate of 2 K min -1 , β f precipitated from α f due to the sufficient diffusion of Ti and oxygen vacancies. - Abstract: The phase transition behavior of oxide-ion conductor Bi 2 (V 0.95 Ti 0.05 )O 5.475-x , which has various thermal histories and sample forms, has been studied by means of differential scanning calorimetry. Thermogravimetric analysis revealed that the oxygen content per compositional formula varied with the applied thermal treatment, although no significant structural difference was observed by X-ray diffraction (XRD) analysis. The phase transition behavior from α f to β f and from β f to γ f , observed at a heating rate of 10 K min -1 , are markedly affected by the sample preparation. For example, the endothermic peak of the transition from α f to β f appeared at around 400 deg. C for quenched powder and at around 320 deg. C for powder cooled at 0.5 K min -1 . The trend of the transition temperatures can be qualitatively explained in terms of oxygen content, i.e., Bi 2 (V 0.95 Ti 0.05 )O 5.475-x with less oxygen content exhibits the transition from α f to β f at a higher temperature and the transition from β f to γ f at a lower temperature. We confirmed the two types of transition behavior from α f to β f depending on heating rate of DSC and high-temperature X-ray diffraction (HT-XRD) analysis. At rapid heating rates of 10 and 40 K min -1 , α f transformed to β f directly. Meanwhile, at a slow heating rate of 2 K min -1 , the β f precipitated from α f because slow heating

  16. Performance and Stability Enhancement of Perovskite-Type Nanomaterials Applied for Carbon Capture Utilizing Oxyfuel Combustion

    Directory of Open Access Journals (Sweden)

    Qiuwan Shen

    2017-02-01

    Full Text Available A new series of Ba-Co-Operovskite-type oxygen carriers has been successfully synthesized by the microwave-assisted sol-gel method and further applied for producing an O2/CO2 mixture gas. The oxygen adsorption/desorption performance of synthesized samples was studied in a fixed-bed reactor system. Effects of A/B-site substitution on the oxygen desorption performance of Ba-Co-O–based perovskites are also included. Furthermore, the effects of operating conditions including the adsorption time and temperature as well as the desorption temperature on oxygen production performance were investigated in detail. The results indicated that BaCoO3-δ exhibited an excellent oxygen desorption performance among the synthesized A/B-site–substituted ACoO3-δ and BaBO3-δ samples, and that the optimal adsorption time, adsorption temperature and desorption temperatureforBaCoO3-δ were determined to be 20min, 850◦Cand850◦C, respectively, in this study.

  17. Rapid screening of pharmaceutical drugs using thermal desorption – SALDI mass spectrometry

    International Nuclear Information System (INIS)

    Grechnikov, A A; Kubasov, A E; Borodkov, A S; Georgieva, V B; Nikiforov, S M; Simanovsky, Ya O; Alimpiev, S S

    2012-01-01

    A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.

  18. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    Science.gov (United States)

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  19. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    NARCIS (Netherlands)

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; Visser, De Pieter H.B.; Marcelis, Leo F.M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of

  20. Retention of Nickel in Soils: Sorption-Desorption and Extended X-ray Absorption Fine Structure Experiments

    Science.gov (United States)

    Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...

  1. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition.

    Science.gov (United States)

    Marrufo-Curtido, Almudena; Carrascón, Vanesa; Bueno, Mónica; Ferreira, Vicente; Escudero, Ana

    2018-05-15

    The rates at which wine consumes oxygen are important technological parameters for whose measurement there are not accepted procedures. In this work, volumes of 8 wines are contacted with controlled volumes of air in air-tight tubes containing oxygen-sensors and are further agitated at 25 °C until O 2 consumption is complete. Three exposure levels of O 2 were used: low (10 mg/L) and medium or high (18 or 32 mg/L plus the required amount to oxidize all wine SO 2 ). In each oxygen level, 2-4 independent segments following pseudo-first order kinetics were identified, plus an initial segment at which wine consumed O 2 very fast. Overall, multivariate data techniques identify six different Oxygen-Consumption-Rates (OCRs) as required to completely define wine O 2 consumption. Except the last one, all could be modeled from the wine initial chemical composition. Total acetaldehyde, Mn, Cu/Fe, blue and red pigments and gallic acid seem to be essential to determine these OCRs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  4. Adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem in Malaysia.

    Science.gov (United States)

    Ismail, B S; Ooi, K E

    2012-05-01

    Laboratory experiments were conducted to evaluate adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem consisting of the Bernam, Selangor, Rengam and Bongor soil series. The lowest adsorption of metsulfuron-methyl occurred in the Bongor soil (0.366 ml g(-1)), and the highest in the Bemam soil (2.837 ml g(-1). The K(fads) (Freundlich) values of metsulfuron-methyl were 0.366, 0.560, 1.570 and 2.837 ml g(-1) in Bongor, Rengam, Selangor and Bemam soil, respectively. The highest K(fdes) value of metsulfuron-methyl, observed in the Bemam soil, was 2.563 indicating low desorption 0.280 (relatively strong retention). In contrast, the lowest K(fdes) value of 0.564 was observed for the Bongor soil, which had the lowest organic matter (1.43%) and clay content (13.2%). Soil organic matter and clay content were the main factors affecting the adsorption of metsulfuron-methyl. The results of the soil column leaching studies suggested that metsulfuron-methyl has a moderate potential for mobility in the Bernam and Bongor soil series with 19.3% and 39%, respectively for rainfall at 200 mm. However, since metsulfuron-methyl is applied at a very low rate (the maximum field application rate used was 30 g ha(-1)) and is susceptible to biodegradation, the potential forground water contamination is low.

  5. Hydrogen absorption-desorption properties of UZr0.29 alloy

    International Nuclear Information System (INIS)

    Shuai Maobing; Su Yongjun; Wang Zhenhong; Zhang Yitao

    2001-01-01

    Hydrogen absorption-desorption properties of UZr 0.29 alloy are investigated in detail at hydrogen pressures up to 0.4 MPa and over the temperature range of 300 to 723 K. It absorbs hydrogen up to 2.3 H atoms per F.U. (formula unit) by only one-step reaction and hence each desorption isotherm has a single plateau over nearly the whole hydrogen composition range. The enthalpy and entropy changes of the dissociation reaction are of -78.9 kJ·mol -1 H 2 and 205.3 J·(K·mol H 2 ) -1 , respectively. The alloy shows high durability against powdering upon hydrogenation and may have good heat conductivity. It is predicted that UZr 0.29 alloy may be a suitable material for tritium treatment and storage

  6. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  7. Changes of heart rate variability and prefrontal oxygenation during Tai Chi practice versus arm ergometer cycling

    OpenAIRE

    Lu, Xi; Hui-Chan, Christina Wan-Ying; Tsang, William Wai-Nam

    2016-01-01

    [Purpose] Exercise has been shown to improve cardiovascular fitness and cognitive function. Whether the inclusion of mind over exercise would increase parasympathetic control of the heart and brain activities more than general exercise at a similar intensity is not known. The aim of this study was to compare the effects of Tai Chi (mind-body exercise) versus arm ergometer cycling (body-focused exercise) on the heart rate variability and prefrontal oxygenation level. [Subjects and Methods] A T...

  8. Adsorção e dessorção aniônicas individuais por gibbsita pedogenética Individual anionic adsorption and desorption by pedogenic gibbsite

    Directory of Open Access Journals (Sweden)

    Adélia A. A. Pozza

    2009-01-01

    Full Text Available Anion adsorption/desorption dynamics was studied as individual processes on surface of particles of a gibbsitic clay. The data suggest a remarkable gibbsite role as nitrate leaching retardant in soil. The opposite behavior of gibbsite towards adsorption/desorption of silicate and phosphate suggests the need of an adequate compromise solution regarding interval and rate applications of anions in cultivated gibbsitic soils. The high P adsorption verified in pH values lower than that reported for the point of zero charge of synthetic Al-hydroxides implies that this process takes place in pedogenic gibbsites through inner sphere complexation.

  9. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  10. Optical detection of CO and CO2 temperature dependent desorption from carbon nanotube clusters

    International Nuclear Information System (INIS)

    Chistiakova, M V; Armani, A M

    2014-01-01

    The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system. (paper)

  11. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis

    Science.gov (United States)

    Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting

    2008-02-01

    The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.

  12. Laser induced desorption as hydrogen retention diagnostic method

    Energy Technology Data Exchange (ETDEWEB)

    Zlobinski, Miroslaw

    2016-07-15

    binding energy. Such effects can lead to the observed desorption fractions as simulations (TMAP7 code) of heat and H diffusion during the laser pulse show. These experiments are performed in a vacuum chamber outside the tokamak, where the desorbed gases are quantified by a quadrupole mass spectrometer, thus representing the ex situ method LID-QMS. In the tokamak TEXTOR the in situ diagnostic method LIDS is used utilizing the same physics for heating, desorption and surface modifications. Understanding the latter becomes important to mitigate material release into the plasma. Here, the quantification of the desorbed hydrogen is done by passive spectroscopy of the Balmer H{sub α} and D{sub α} light (656 nm) observed coaxially to the laser beam as a double line by a spectrometer and from the side by a camera with gated image intensifier using a narrow-band H and D filter. A simplified data evaluation has been developed which determines the plasma radius of the light intensity maximum of the LIDS light, takes the electron density and temperature at this radius measured by edge plasma diagnostics and looks up the corresponding quotient of ionisation to excitation rate {sup S}/{sub XB}(n{sub e},T{sub e}) in a database (ADAS). A second factor takes into account the dominant plasma processes which yield only one atom from one hydrogen molecule for pure hydrogen release and even less for desorbed hydrocarbons. The combined light-to-particle conversion factor is ca. 30 H atoms/H{sub α} photons which agrees with simulations of the LIDS light (ERO code). While the simulated spatial light distribution is very sensitive to the details of the plasma edge profiles, the total photon amount stays very constant, thus justifying the simplified data evaluation. The experimental FWHM of the light in toroidal/poloidal direction is 30-40 mm and has an e-folding decay length of 15-20 mm in radial direction. Its intensity maximum is typically at n{sub e} ∼ 4.10{sup 18} {sup e{sup -}}/{sub m

  13. Laser induced desorption as hydrogen retention diagnostic method

    International Nuclear Information System (INIS)

    Zlobinski, Miroslaw

    2016-01-01

    . Such effects can lead to the observed desorption fractions as simulations (TMAP7 code) of heat and H diffusion during the laser pulse show. These experiments are performed in a vacuum chamber outside the tokamak, where the desorbed gases are quantified by a quadrupole mass spectrometer, thus representing the ex situ method LID-QMS. In the tokamak TEXTOR the in situ diagnostic method LIDS is used utilizing the same physics for heating, desorption and surface modifications. Understanding the latter becomes important to mitigate material release into the plasma. Here, the quantification of the desorbed hydrogen is done by passive spectroscopy of the Balmer H α and D α light (656 nm) observed coaxially to the laser beam as a double line by a spectrometer and from the side by a camera with gated image intensifier using a narrow-band H and D filter. A simplified data evaluation has been developed which determines the plasma radius of the light intensity maximum of the LIDS light, takes the electron density and temperature at this radius measured by edge plasma diagnostics and looks up the corresponding quotient of ionisation to excitation rate S / XB (n e ,T e ) in a database (ADAS). A second factor takes into account the dominant plasma processes which yield only one atom from one hydrogen molecule for pure hydrogen release and even less for desorbed hydrocarbons. The combined light-to-particle conversion factor is ca. 30 H atoms/H α photons which agrees with simulations of the LIDS light (ERO code). While the simulated spatial light distribution is very sensitive to the details of the plasma edge profiles, the total photon amount stays very constant, thus justifying the simplified data evaluation. The experimental FWHM of the light in toroidal/poloidal direction is 30-40 mm and has an e-folding decay length of 15-20 mm in radial direction. Its intensity maximum is typically at n e ∼ 4.10 18 e - / m 3 and k B T e ∼ 60 eV close to the last closed flux surface. A

  14. Equilibrium adsorption data from temperature-programmed desorption measurements

    NARCIS (Netherlands)

    Foeth, F.; Mugge, J.M.; van der Vaart, R.; van der Vaart, Rick; Bosch, H.; Reith, T.

    1996-01-01

    This work describes a novel method that enables the calculation of a series of adsorption isotherms basically from a single Temperature-Programmed Desorption (TPD) experiment. The basic idea is to saturate an adsorbent packed in a fixed bed at a certain feed concentration and temperature and to

  15. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon

    Science.gov (United States)

    Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.

    2018-04-01

    This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.

  16. Modeling photo-desorption in high current storage rings

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1991-01-01

    High luminosity flavor factories are characterized by high fluxes of synchrotron radiation that lead to thermal management difficulties. The associated photo-desorption from the vacuum chamber walls presents an additional design challenge, providing a vacuum system suitable for maintaining acceptable beam-gas lifetimes and low background levels of scattered radiation in the detector. Achieving acceptable operating pressures (1-10 nTorr) with practical pumping schemes requires the use of materials with low photodesorption efficiency operating in a radiation environment beyond that of existing storage rings. Extrapolating the existing photo-desorption data base to the design requirements of high luminosity colliders requires a physical model of the differential cleaning in the vacuum chamber. The authors present a simple phenomenological model of photodesorption that includes effects of dose dependence and diffuse photon reflection to compute the leveling of gas loads in beamlines of high current storage rings that typify heavy flavor factories. This model is also used to estimate chamber commissioning times

  17. Hydrogen absorption-desorption properties of U2Ti

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Tanaka, Satoru; Yamawaki, Michio

    1990-01-01

    Hydrogen absorption-desorption properties of U 2 Ti intermetallic compound was examined over the temperature range of 298 to 973 K and at hydrogen pressures below 10 5 Pa. It absorbs hydrogen up to 7.6 atoms per F.U. (formula unit) by two step reactions and hence each desorption isotherm is separated into two plateau regions. In the first plateau, a newly-found ternary hydride is formed, where the hydrogen concentration, c H , reaches 2.4 H atoms/F.U. In the second plateau, UH 3 is formed and c H reaches 7.6 H atoms/F.U. The specimen is disintegrated into fine powder in the second plateau, while in the first plateau the ternary hydride which was identified to be UTi 2 H x (x=4.8 to 6.2) showed high durability against powdering. It is predicted that UTi 2 can be suitable material for tritium storage. (orig.)

  18. Oxygen consumption and heart rate responses to isolated ballet exercise sets.

    Science.gov (United States)

    Rodrigues-Krause, Josianne; Dos Santos Cunha, Giovani; Alberton, Cristine Lima; Follmer, Bruno; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2014-01-01

    Ballet stage performances are associated with higher cardiorespiratory demand than rehearsals and classes. Hence, new interest is emerging to create periodized training that enhances dancers' fitness while minimizing delayed exercise-induced fatigue and possible injuries. Finding out in what zones of intensity dancers work during different ballet movements may support the use of supplemental training adjusted to the needs of the individual dancer. Therefore, the main purpose of this study was to describe dancers' oxygen consumption (VO2) and heart rate (HR) responses during the performance of nine isolated ballet exercise sets, as correlated with their first and second ventilatory thresholds (VT1 and VT2). Twelve female ballet dancers volunteered for the study. Their maximum oxygen consumption (VO2max), VT1, and VT2 were determined by use of an incremental treadmill test. Nine sets of ballet movements were assessed: pliés, tendus, jetés, rond de jambes, fondus, grand adage (adage), grand battements, temps levés, and sautés. The sets were randomly executed and separated by 5 minute rest periods. ANOVA for repeated measurements followed by the Bonferroni Post-hoc test were applied (p ballet sets. This stratification followed closely, but not exactly, the variation in HR. For example, rond de jambes (156.8 ± 19 b·min(-1)) did not show any significant difference from all the other ballet sets, nor VT1 or VT2. It is concluded that the workloads of isolated ballet sets, based on VO2 responses, vary between low and moderate aerobic intensity in relation to dancers' VT1 and VT2. However, ballet set workloads may be higher when based on HR responses, due to the intermittent and isometric components of dance.

  19. Catalytic properties of oxygen adsorbed on NiO-Sm/sub 2/O/sub 3/ binary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tadasu, Y.; Niwa, H.; Matsuda, Y.

    1978-02-01

    Various rare earths were screened as promoters for a nickel oxidation catalyst, and samarium (Sm) was selected for further studies. The activity of a physical mixture of NiO/Sm/sub 2/O/sub 3/ and SiC for the oxidation of 500 ppm nitric oxide with 5% oxygen in nitrogen to nitrogen dioxide at 320/sup 0/C went through a maximum with increasing Sm/sub 2/O/sub 3/ content of the catalyst. The most active catalyst, which contained 3.75% Sm/sub 2/O/sub 3/, was 3.7 times as active as pure nickel oxide. Temperature-programed desorption of oxygen from the catalysts revealed three peaks, ..cap alpha.. at 220/sup 0/-230/sup 0/C ..beta.. at 370/sup 0/-380/sup 0/C, and ..gamma.. at 530/sup 0/-540/sup 0/C, for all catalysts except pure Sm/sub 2/O/sub 3/. The amount of adsorbed oxygen increased with increasing Sm/sub 2/O/sub 3/ content to 3.75%, and then decreased with further Sm/sub 2/O/sub 3/ increases. The catalytic activity was correlated to oxygen in the ..beta..-state. Graphs, spectra, and table.

  20. Thermal desorption of toluene from Vanadium-containing catalysts coated onto various carriers

    Directory of Open Access Journals (Sweden)

    Z. Zheksenbaeva

    2012-12-01

    Full Text Available The method temperature-programmed desorption has been studied the state of toluene on the surface-modified vanadium catalysts on different carriers. Among the investigated carriers the most active in the reaction of partial oxidation of toluene is anatase structural titanium dioxide. For the partial oxidation of toluene on modified vanadium-containing catalysts deposited on TiO2 was tested. It was found that on the catalyst 20%V2O5-5%MoO3-2%Sb2O3/TiO2 at a temperature of 673K, volume rate of 15 thousand hours-1 oxidation of toluene is 80% c yield of benzoic acid with a selectivity of  70% of 87.5%.