WorldWideScience

Sample records for oxygen deprivation optimizing

  1. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  2. Model of Oxygen and Glucose Deprivation in PC12 Cells and Detection of HSP70 Protein

    Science.gov (United States)

    He, Jinting; Yang, Le; Shao, Yankun

    2018-01-01

    Objective: PC12 cell was used to set up a ischemia model by OGD and detected HSP70 protein. Methods: Use of PC12 cells induced by NGF stimulation into nerve cells, oxygen and glucose deprivation to build the nerve cells of oxygen and glucose deprivation model; using Western blot analysis of PC12 cells into neuron-like cells and oxygen-glucose deprivation model established. Results: The application of a final concentration of 50 ng / ml of NGF in DMEM complete mediumPC12 cells showed a typical neuronal morphology with the increase in cell culture time. NGF culture time showed a positive correlation, the establishment of oxygen and glucose deprivation (OGD) training environment, the OGD after nerve element appears different degrees of damage, OGD can effectively induce the expression of HSP70. Conclusion: PC12 cell transformed into cells by NGF; the cell model of OGD was established.

  3. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    Directory of Open Access Journals (Sweden)

    Laurent Chazalviel

    2016-01-01

    Full Text Available Normobaric oxygen (NBO and hyperbaric oxygen (HBO are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO 2 = 1 atmospheres absolute (ATA = 0.1 MPa and HBO (pO 2 = 2.5 ATA = 0.25 MPa through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  4. Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation.

    Science.gov (United States)

    Yu, Zhanyang; Liu, Ning; Zhao, Jianhua; Li, Yadan; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-04-01

    Near infrared radiation (NIR) is known to penetrate and affect biological systems in multiple ways. Recently, a series of experimental studies suggested that low intensity NIR may protect neuronal cells against a wide range of insults that mimic diseases such as stroke, brain trauma and neurodegeneration. However, the potential molecular mechanisms of neuroprotection with NIR remain poorly defined. In this study, we tested the hypothesis that low intensity NIR may attenuate hypoxia/ischemia-induced mitochondrial dysfunction in neurons. Primary cortical mouse neuronal cultures were subjected to 4 h oxygen-glucose deprivation followed by reoxygenation for 2 h, neurons were then treated with a 2 min exposure to 810-nm NIR. Mitochondrial function markers including MTT reduction and mitochondria membrane potential were measured at 2 h after treatment. Neurotoxicity was quantified 20 h later. Our results showed that 4 h oxygen-glucose deprivation plus 20 h reoxygenation caused 33.8 ± 3.4 % of neuron death, while NIR exposure significantly reduced neuronal death to 23.6 ± 2.9 %. MTT reduction rate was reduced to 75.9 ± 2.7 % by oxygen-glucose deprivation compared to normoxic controls, but NIR exposure significantly rescued MTT reduction to 87.6 ± 4.5 %. Furthermore, after oxygen-glucose deprivation, mitochondria membrane potential was reduced to 48.9 ± 4.39 % of normoxic control, while NIR exposure significantly ameliorated this reduction to 89.6 ± 13.9 % of normoxic control. Finally, NIR significantly rescued OGD-induced ATP production decline at 20 min after NIR. These findings suggest that low intensity NIR can protect neurons against oxygen-glucose deprivation by rescuing mitochondrial function and restoring neuronal energetics.

  5. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation.

    Science.gov (United States)

    Xie, Zhi; Ding, Sheng-quan; Shen, Ya-fang

    2014-11-14

    In this study, we explored the cytoprotective potential of silibinin against oxygen-glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Neuron specific metabolic adaptations following multi-day exposures to oxygen glucose deprivation.

    Science.gov (United States)

    Zeiger, Stephanie L H; McKenzie, Jennifer R; Stankowski, Jeannette N; Martin, Jacob A; Cliffel, David E; McLaughlin, BethAnn

    2010-11-01

    Prior exposure to sub toxic insults can induce a powerful endogenous neuroprotective program known as ischemic preconditioning. Current models typically rely on a single stress episode to induce neuroprotection whereas the clinical reality is that patients may experience multiple transient ischemic attacks (TIAs) prior to suffering a stroke. We sought to develop a neuron-enriched preconditioning model using multiple oxygen glucose deprivation (OGD) episodes to assess the endogenous protective mechanisms neurons implement at the metabolic and cellular level. We found that neurons exposed to a five minute period of glucose deprivation recovered oxygen utilization and lactate production using novel microphysiometry techniques. Using the non-toxic and energetically favorable five minute exposure, we developed a preconditioning paradigm where neurons are exposed to this brief OGD for three consecutive days. These cells experienced a 45% greater survival following an otherwise lethal event and exhibited a longer lasting window of protection in comparison to our previous in vitro preconditioning model using a single stress. As in other models, preconditioned cells exhibited mild caspase activation, an increase in oxidized proteins and a requirement for reactive oxygen species for neuroprotection. Heat shock protein 70 was upregulated during preconditioning, yet the majority of this protein was released extracellularly. We believe coupling this neuron-enriched multi-day model with microphysiometry will allow us to assess neuronal specific real-time metabolic adaptations necessary for preconditioning. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  8. Effect of oxygen deprivation on metabolism of arachidonic acid by cultures of rat heart cells

    International Nuclear Information System (INIS)

    Freyss-Beguin, M.; Millanvoye-van Brussel, E.; Duval, D.

    1989-01-01

    To investigate the mechanisms responsible for the impairment of phospholipid metabolism observed in ischemic cells, we have studied the effect of conditions simulating ischemia on the metabolism of arachidonic acid (AA) by muscle (M-) and nonmuscle (F-) cells isolated from newborn rat hearts and cultured separately. In muscle cells, oxygen deprivation induces a significant stimulation of the release of [ 14 C]AA from prelabeled cells associated with a preferential redistribution of [ 14 C]AA into cell triglycerides but not formation of radioactive prostaglandins. Moreover, the fatty acid content of phospholipids, as measured by capillary gas chromatography, appears markedly reduced in ischemic myocardial cells. This fact may be related to phospholipase stimulation during ischemia as suggested by the antagonistic effect of mepacrine or p-bromophenacyl bromide. In contrast, oxygen deprivation failed to induce any significant alteration of AA metabolism in fibroblast-like heart cells. Our results indicate that these cultures of newborn rat heart cells, which exhibit many of the features observed in intact organ during ischemia, may represent a useful experimental model to investigate the pharmacological control of the membrane phospholipid turnover

  9. AP4M1 is abnormally expressed in oxygen-glucose deprived hippocampal neurons.

    Science.gov (United States)

    Zhang, J; Cheng, X Y; Sheng, G Y

    2014-03-20

    AP4M1 mutations have been suggested to be associated with autosomal recessive cerebral palsy syndrome. But the pathogenic mechanism remains uncertain. The purpose of this study is to investigate whether and how AP4M1 expression is changed in injured neurons. Primary cultured hippocampal neurons were prepared for this experiment. They were subjected to oxygen-glucose deprivation (OGD) leading to apoptosis, mimicking brain ischemia. Neuron-specific enolase (NSE) was labeled immunofluorescently to confirm that the purity of neuron was higher than 90%. Real-time PCR and western blotting were performed to measure the gene expression. AP4M1 was labeled with MAP2 or Tau-1 to observe the distribution. We found that the AP4M1 protein levels immediately after the procedure were similar between the OGD group and the sham group. However, down-regulation was observed 12h after the reperfusion, and became more notable at 24h. The real-time PCR showed similar results, except that the down-regulation of mRNA was able to be detected immediately after the OGD. Immunofluorescent labeling revealed AP4M1 distributed in the dendrites of normal neurons, but it redistributed to the axons after the OGD procedure. In conclusion, AP4M1 is not only down-regulated at both the mRNA and protein levels, but also redistributed from dendrites to axons in oxygen-glucose deprived hippocampal neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Oxygen glucose deprivation post-conditioning protects cortical neurons against oxygen-glucose deprivation injury: role of HSP70 and inhibition of apoptosis.

    Science.gov (United States)

    Zhao, Jian-hua; Meng, Xian-li; Zhang, Jian; Li, Yong-li; Li, Yue-juan; Fan, Zhe-ming

    2014-02-01

    In the present study, we examined the effect of oxygen glucose deprivation (OGD) post-conditioning (PostC) on neural cell apoptosis in OGD-PostC model and the protective effect on primary cortical neurons against OGD injury in vitro. Four-h OGD was induced by OGD by using a specialized and humidified chamber. To initiate OGD, culture medium was replaced with de-oxygenated and glucose-free extracellular solution-Locke's medium. After OGD treatment for 4 h, cells were then allowed to recover for 6 h or 20 h. Then lactate dehydrogenase (LDH) release assay, Western blotting and flow cytometry were used to detect cell death, protein levels and apoptotic cells, respectively. For the PostC treatment, three cycles of 15-min OGD, followed by 15 min normal cultivation, were applied immediately after injurious 4-h OGD. Cells were then allowed to recover for 6 h or 20 h, and cell death was assessed by LDH release assay. Apoptotic cells were flow cytometrically evaluated after 4-h OGD, followed by re-oxygenation for 20 h (O4/R20). In addition, Western blotting was used to examine the expression of heat-shock protein 70 (HSP70), Bcl-2 and Bax. The ratio of Bcl-2 expression was (0.44±0.08)% and (0.76±0.10)%, and that of Bax expression was (0.51±0.05)% and (0.39±0.04)%, and that of HSP70 was (0.42±0.031)% and (0.72±0.045)% respectively in OGD group and PostC group. After O4/R6, the rate of neuron death in PostC group and OGD groups was (28.96±3.03)% and (37.02±4.47)%, respectively. Therefore, the PostC treatment could up-regulate the expression of HSP70 and Bcl-2, but down-regulate Bax expression. As compared with OGD group, OGD-induced neuron death and apoptosis were significantly decreased in PostC group (Pneuron death. This neuro-protective effect is likely achieved by anti-apoptotic mechanisms and is associated with over-expression of HSP70.

  11. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana.

    Science.gov (United States)

    Branco-Price, Cristina; Kaiser, Kayla A; Jang, Charles J H; Larive, Cynthia K; Bailey-Serres, Julia

    2008-12-01

    Cellular oxygen deprivation (hypoxia/anoxia) requires an acclimation response that enables survival during an energy crisis. To gain new insights into the processes that facilitate the endurance of transient oxygen deprivation, the dynamics of the mRNA translation state and metabolites were quantitatively monitored in Arabidopsis thaliana seedlings exposed to a short (2 h) or prolonged (9 h) period of oxygen and carbon dioxide deprivation and following 1 h of re-aeration. Hypoxia stress and reoxygenation promoted adjustments in the levels of polyribosomes (polysomes) that were highly coordinated with cellular ATP content. A quantitative comparison of steady-state and polysomal mRNA populations revealed that over half of the cellular mRNAs were restricted from polysome complexes during the stress, with little or no change in abundance. This selective repression of translation was rapidly reversed upon reoxygenation. Comparison of the adjustment in gene transcripts and metabolites demonstrated that profiling of polysomal mRNAs strongly augments the prediction of cellular processes that are altered during cellular oxygen deprivation. The selective translation of a subset of mRNAs promotes the conservation of ATP and facilitates the transition to anaerobic metabolism during low-oxygen stress.

  12. 13C NMR metabolomic evaluation of immediate and delayed mild hypothermia in cerebrocortical slices after oxygen-glucose deprivation.

    Science.gov (United States)

    Liu, Jia; Segal, Mark R; Kelly, Mark J S; Pelton, Jeffrey G; Kim, Myungwon; James, Thomas L; Litt, Lawrence

    2013-11-01

    Mild brain hypothermia (32°-34°C) after human neonatal asphyxia improves neurodevelopmental outcomes. Astrocytes but not neurons have pyruvate carboxylase and an acetate uptake transporter. C nuclear magnetic resonance spectroscopy of rodent brain extracts after administering [1-C]glucose and [1,2-C]acetate can distinguish metabolic differences between glia and neurons, and tricarboxylic acid cycle entry via pyruvate dehydrogenase and pyruvate carboxylase. Neonatal rat cerebrocortical slices receiving a C-acetate/glucose mixture underwent a 45-min asphyxia simulation via oxygen-glucose-deprivation followed by 6 h of recovery. Protocols in three groups of N=3 experiments were identical except for temperature management. The three temperature groups were: normothermia (37°C), hypothermia (32°C for 3.75 h beginning at oxygen--glucose deprivation start), and delayed hypothermia (32°C for 3.75 h, beginning 15 min after oxygen-glucose deprivation start). Multivariate analysis of nuclear magnetic resonance metabolite quantifications included principal component analyses and the L1-penalized regularized regression algorithm known as the least absolute shrinkage and selection operator. The most significant metabolite difference (Pglucose deprivation, compared with delayed starting or no hypothermia, has higher pyruvate carboxylase throughput, suggesting that better glial integrity is one important neuroprotection mechanism of earlier hypothermia.

  13. Neuroprotective effects of ginsenoside Rg1 against oxygen-glucose deprivation in cultured hippocampal neurons.

    Science.gov (United States)

    He, Qing; Sun, Jianguo; Wang, Qin; Wang, Wei; He, Bin

    2014-03-01

    Ginsenoside Rg1 (Rg1) is believed to be one of the main active principles in ginseng, a traditional Chinese medicine extensively used to enhance stamina and deal with fatigue as well as physical stress. It has been reported that Rg1 performs multiple biological activities, including neuroprotective activity. In this study, we investigated the efficacy of ginsenoside Rg1 on ischemia-reperfusion injury in cultured hippocampal cells and also probed its possible mechanisms. To establish a model of oxygen-glucose deprivation (OGD) and reperfusion, cultured hippocampal neurons were exposed to OGD for 2.5 hours, followed by a 24-hour reoxygenation. Cultured hippocampal neurons were randomly divided into control group, model group (vehicle), and ginsenoside Rg1 treatment groups (5μM, 20μM, 60μM). At 24 hours post-OGD, the intracellular free calcium concentration was detected using Furo-3/AM-loaded hippocampal neurons deprived of oxygen and glucose. Neuronal nitric oxide synthase (nNOS) activity was measured by chemical colorimetry. Cell apoptosis was evaluated by Hoechst staining, and the neuron viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Excitotoxic neuronal injury of OGD was demonstrated by the increase of intracellular free calcium concentrations and elevated nNOS activity in the model group compared with the control group. The intracellular free calcium concentrations and the nNOS activity in the groups receiving intermediate and high dose of ginsenoside Rg1 were significantly lower than those of the control group (p cell viability loss (p cell apoptosis induced by OGD. Ginsenoside Rg1 has neuroprotective effect on ischemia-reperfusion injury in cultured hippocampal cells mediated by blocking calcium over-influx into neuronal cells and decreasing the nNOS activity after OGD exposure. We infer that ginsenoside Rg1 may serve as a potential therapeutic agent for cerebral ischemia injury. Copyright © 2014

  14. Neuroprotective Effects of Exogenous Activin A on Oxygen-Glucose Deprivation in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Zhong-Xin Xu

    2011-12-01

    Full Text Available Ischemic cerebrovascular disease is one of the most common causes of death in the World. Exogenous activin A (ActA protects neurons against toxicity and plays a central role in regulating the brain’s response to injury. In the present study, we investigated the mechanisms involved in the neuroprotective effects of ActA in a model of hypoxic-ischemic brain disease. We found that ActA could effectively increase the survival rate of PC12 cells and relieve oxygen-glucose deprivation (OGD damage. To clarify the neuroprotective mechanisms of ActA, the effects of ActA on the ActA/Smad pathway and on the up-regulation of inducible nitric oxide synthase (NOS and superoxide dismutase (SOD were investigated using OGD in PC12 cells. The results showed that ActA could increase the expression of activin receptor IIA (ActRIIA, Smad3 and Smad4 and that 50 ng/mL and 100 ng/mL of ActA could reduce NO levels and increase SOD activity by 78.9% and 79.9%, respectively. These results suggested that the neuroprotective effects of ActA in ischemia could be related to the activation of the ActA/Smad signaling pathway and to its anti-oxidant activities.

  15. Pretreatment with apoaequorin protects hippocampal CA1 neurons from oxygen-glucose deprivation.

    Science.gov (United States)

    Detert, Julia A; Adams, Erin L; Lescher, Jacob D; Lyons, Jeri-Anne; Moyer, James R

    2013-01-01

    Ischemic stroke affects ∼795,000 people each year in the U.S., which results in an estimated annual cost of $73.7 billion. Calcium is pivotal in a variety of neuronal signaling cascades, however, during ischemia, excess calcium influx can trigger excitotoxic cell death. Calcium binding proteins help neurons regulate/buffer intracellular calcium levels during ischemia. Aequorin is a calcium binding protein isolated from the jellyfish Aequorea victoria, and has been used for years as a calcium indicator, but little is known about its neuroprotective properties. The present study used an in vitro rat brain slice preparation to test the hypothesis that an intra-hippocampal infusion of apoaequorin (the calcium binding component of aequorin) protects neurons from ischemic cell death. Bilaterally cannulated rats received an apoaequorin infusion in one hemisphere and vehicle control in the other. Hippocampal slices were then prepared and subjected to 5 minutes of oxygen-glucose deprivation (OGD), and cell death was assayed by trypan blue exclusion. Apoaequorin dose-dependently protected neurons from OGD--doses of 1% and 4% (but not 0.4%) significantly decreased the number of trypan blue-labeled neurons. This effect was also time dependent, lasting up to 48 hours. This time dependent effect was paralleled by changes in cytokine and chemokine expression, indicating that apoaequorin may protect neurons via a neuroimmunomodulatory mechanism. These data support the hypothesis that pretreatment with apoaequorin protects neurons against ischemic cell death, and may be an effective neurotherapeutic.

  16. Exendin-4 improved rat cortical neuron survival under oxygen/glucose deprivation through PKA pathway.

    Science.gov (United States)

    Wang, M-D; Huang, Y; Zhang, G-P; Mao, L; Xia, Y-P; Mei, Y-W; Hu, B

    2012-12-13

    Previous studies demonstrated that exendin-4 (Ex-4) may possess neurotrophic and neuroprotective functions in ischemia insults, but its mechanism remained unknown. Here, by using real-time PCR and ELISA, we identified the distribution of active GLP-1Rs in the rat primary cortical neurons. After establishment of an in vitro ischemia model by oxygen/glucose deprivation (OGD), neurons were treated with various dosages of Ex-4. The MTT assay showed that the relative survival rate increased with the dosage of Ex-4 ranging from 0.2 to 0.8 μg/ml (Pglucose-regulated proteins 78 (GRP78) and reduced C/EBP-homologous protein (CHOP). Western blot analysis demonstrated that, after neurons were treated with Ex-4, GRP78 was up-regulated over time (Pneurons, down-regulated the expression of B-cell lymphoma 2 (Bcl-2) and up-regulated the Bax expression 3h after ODG (Pneurons against OGD by modulating the unfolded protein response (UPR) through the PKA pathway and may serve as a novel therapeutic agent for stroke. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation.

    Science.gov (United States)

    Li, J; Qu, Y; Chen, D; Zhang, L; Zhao, F; Luo, L; Pan, L; Hua, J; Mu, D

    2013-11-12

    Telomerase reverse transcriptase (TERT) is reported to protect neurons from apoptosis induced by various stresses including hypoxia-ischemia (HI). However, the mechanisms by which TERT exerts its anti-apoptotic role in neurons with HI injury remain unclear. In this study, we examined the protective role and explored the possible mechanisms of TERT in neurons with HI injury in vitro. Primary cultured neurons were exposed to oxygen and glucose deprivation (OGD) for 3h followed by reperfusion to mimic HI injury in vivo. Plasmids containing TERT antisense, sense nucleotides, or mock were transduced into neurons at 48h before OGD. Expression and distribution of TERT were measured by immunofluorescence labeling and western blot. The expression of cleaved caspase 3 (CC3), Bcl-2 and Bax were detected by western blot. Neuronal apoptosis was measured with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). The mitochondrial reactive oxygen species (ROS) were measured by MitoSOX Red staining. Fluorescent probe JC-1 was used to measure the mitochondrial membrane potential (ΔΨm). We found that TERT expression increased at 8h and peaked at 24h in neurons after OGD. CC3 expression and neuronal apoptosis were induced and peaked at 24h after OGD. TERT inhibition significantly increased CC3 expression and neuronal apoptosis after OGD treatment. Additionally, TERT inhibition decreased the expression ratio of Bcl-2/Bax, and enhanced ROS production and ΔΨm dissipation after OGD. These data suggest that TERT plays a neuroprotective role via anti-apoptosis in neurons after OGD. The underlying mechanisms may be associated with regulating Bcl-2/Bax expression ratio, attenuating ROS generation, and increasing mitochondrial membrane potential. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation.

    Science.gov (United States)

    Du, Yang; Deng, Wenjun; Wang, Zixing; Ning, MingMing; Zhang, Wei; Zhou, Yiming; Lo, Eng H; Xing, Changhong

    2017-04-01

    Mice and rats are the most commonly used animals for preclinical stroke studies, but it is unclear whether targets and mechanisms are always the same across different species. Here, we mapped the baseline expression of a chemokine/cytokine subnetwork and compared responses after oxygen-glucose deprivation in primary neurons, astrocytes, and microglia from mouse, rat, and human. Baseline profiles of chemokines (CX3CL1, CXCL12, CCL2, CCL3, and CXCL10) and cytokines (IL-1α, IL-1β, IL-6, IL-10, and TNFα) showed significant differences between human and rodents. The response of chemokines/cytokines to oxygen-glucose deprivation was also significantly different between species. After 4 h oxygen-glucose deprivation and 4 h reoxygenation, human and rat neurons showed similar changes with a downregulation in many chemokines, whereas mouse neurons showed a mixed response with up- and down-regulated genes. For astrocytes, subnetwork response patterns were more similar in rats and mice compared to humans. For microglia, rat cells showed an upregulation in all chemokines/cytokines, mouse cells had many down-regulated genes, and human cells showed a mixed response with up- and down-regulated genes. This study provides proof-of-concept that species differences exist in chemokine/cytokine subnetworks in brain cells that may be relevant to stroke pathophysiology. Further investigation of differential gene pathways across species is warranted.

  19. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  20. Single-cell imaging of bioenergetic responses to neuronal excitotoxicity and oxygen and glucose deprivation.

    Science.gov (United States)

    Connolly, Niamh M C; Düssmann, Heiko; Anilkumar, Ujval; Huber, Heinrich J; Prehn, Jochen H M

    2014-07-30

    Excitotoxicity is a condition occurring during cerebral ischemia, seizures, and chronic neurodegeneration. It is characterized by overactivation of glutamate receptors, leading to excessive Ca(2+)/Na(+) influx into neurons, energetic stress, and subsequent neuronal injury. We and others have previously investigated neuronal populations to study how bioenergetic parameters determine neuronal injury; however, such experiments are often confounded by population-based heterogeneity and the contribution of effects of non-neuronal cells. Hence, we here characterized bioenergetics during transient excitotoxicity in rat and mouse primary neurons at the single-cell level using fluorescent sensors for intracellular glucose, ATP, and activation of the energy sensor AMP-activated protein kinase (AMPK). We identified ATP depletion and recovery to energetic homeostasis, along with AMPK activation, as surprisingly rapid and plastic responses in two excitotoxic injury paradigms. We observed rapid recovery of neuronal ATP levels also in the absence of extracellular glucose, or when glycolytic ATP production was inhibited, but found mitochondria to be critical for fast and complete energetic recovery. Using an injury model of oxygen and glucose deprivation, we identified a similarly rapid bioenergetics response, yet with incomplete ATP recovery and decreased AMPK activity. Interestingly, excitotoxicity also induced an accumulation of intracellular glucose, providing an additional source of energy during and after excitotoxicity-induced energy depletion. We identified this to originate from extracellular, AMPK-dependent glucose uptake and from intracellular glucose mobilization. Surprisingly, cells recovering their elevated glucose levels faster to baseline survived longer, indicating that the plasticity of neurons to adapt to bioenergetic challenges is a key indicator of neuronal viability. Copyright © 2014 the authors 0270-6474/14/3410192-14$15.00/0.

  1. Cortical delta-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation.

    Science.gov (United States)

    Chao, Dongman; Donnelly, David F; Feng, Yin; Bazzy-Asaad, Alia; Xia, Ying

    2007-02-01

    Central neurons are extremely vulnerable to hypoxic/ischemic insult, which is a major cause of neurologic morbidity and mortality as a consequence of neuronal dysfunction and death. Our recent work has shown that delta-opioid receptor (DOR) is neuroprotective against hypoxic and excitotoxic stress, although the underlying mechanisms remain unclear. Because hypoxia/ischemia disrupts ionic homeostasis with an increase in extracellular K(+), which plays a role in neuronal death, we asked whether DOR activation preserves K(+) homeostasis during hypoxic/ischemic stress. To test this hypothesis, extracellular recordings with K(+)-sensitive microelectrodes were performed in mouse cortical slices under anoxia or oxygen-glucose deprivation (OGD). The main findings in this study are that (1) DOR activation with [D-Ala(2), D-Leu(5)]-enkephalinamide attenuated the anoxia- and OGD-induced increase in extracellular K(+) and decrease in DC potential in cortical slices; (2) DOR inhibition with naltrindole, a DOR antagonist, completely abolished the DOR-mediated prevention of increase in extracellular K(+) and decrease in DC potential; (3) inhibition of protein kinase A (PKA) with N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide dihydrochloride had no effect on the DOR protection; and (4) inhibition of protein kinase C (PKC) with chelerythrine chloride reduced the DOR protection, whereas the PKC activator (phorbol 12-myristate 13-acetate) mimicked the effect of DOR activation on K(+) homeostasis. These data suggest that activation of DOR protects the cortex against anoxia- or ODG-induced derangement of potassium homeostasis, and this protection occurs via a PKC-dependent and PKA-independent pathway. We conclude that an important aspect of DOR-mediated neuroprotection is its early action against derangement of K(+) homeostasis during anoxia or ischemia.

  2. DL-2-amino-3-phosphonopropionic acid protects primary neurons from oxygen-glucose deprivation induced injury

    Directory of Open Access Journals (Sweden)

    Di Cui

    2017-02-01

    Full Text Available Cerebral infarction is a type of ischemic stroke and is one of the main causes of irreversible brain damage. Although multiple neuroprotective agents have been investigated recently, the potential of DL-2-amino-3-phosphonopropionic acid (DL-AP3 in treating oxygen-glucose deprivation (OGD-induced neuronal injury, has not been clarified yet. This study was aimed to explore the role of DL-AP3 in primary neuronal cell cultures. Primary neurons were divided into four groups: (1 a control group that was not treated; (2 DL-AP3 group treated with 10 μM of DL-AP3; (3 OGD group, in which neurons were cultured under OGD conditions; and (4 OGD + DL-AP3 group, in which OGD model was first established and then the cells were treated with 10 μM of DL-AP3. Neuronal viability and apoptosis were measured using Cell Counting Kit-8 and flow cytometry. Expressions of phospho-Akt1 (p-Akt1 and cytochrome c were detected using Western blot. The results showed that DL-AP3 did not affect neuronal viability and apoptosis in DL-AP3 group, nor it changed p-Akt1 and cytochrome c expression (p > 0.05. In OGD + DL-AP3 group, DL-AP3 significantly attenuated the inhibitory effects of OGD on neuronal viability (p < 0.001, and reduced OGD induced apoptosis (p < 0.01. Additionally, the down-regulation of p-Akt1 and up-regulation of cytochrome c, induced by OGD, were recovered to some extent after DL-AP3 treatment (p < 0.05 or p < 0.001. Overall, DL-AP3 could protect primary neurons from OGD-induced injury by affecting the viability and apoptosis of neurons, and by regulating the expressions of p-Akt1 and cytochrome c.

  3. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.

    Science.gov (United States)

    Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A

    2016-03-01

    Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.

  4. DL-2-amino-3-phosphonopropionic acid protects primary neurons from oxygen-glucose deprivation induced injury.

    Science.gov (United States)

    Cui, Di; Xu, Jun; Xu, Quanyi; Zuo, Guokun

    2017-02-21

    Cerebral infarction is a type of ischemic stroke and is one of the main causes of irreversible brain damage. Although multiple neuroprotective agents have been investigated recently, the potential of DL-2-amino-3-phosphonopropionic acid (DL-AP3) in treating oxygen-glucose deprivation (OGD)-induced neuronal injury, has not been clarified yet. This study was aimed to explore the role of DL-AP3 in primary neuronal cell cultures. Primary neurons were divided into four groups: (1) a control group that was not treated; (2) DL-AP3 group treated with 10 μM of DL-AP3; (3) OGD group, in which neurons were cultured under OGD conditions; and (4) OGD + DL-AP3 group, in which OGD model was first established and then the cells were treated with 10 μM of DL-AP3. Neuronal viability and apoptosis were measured using Cell Counting Kit-8 and flow cytometry. Expressions of phospho-Akt1 (p-Akt1) and cytochrome c were detected using Western blot. The results showed that DL-AP3 did not affect neuronal viability and apoptosis in DL-AP3 group, nor it changed p-Akt1 and cytochrome c expression (p > 0.05). In OGD + DL-AP3 group, DL-AP3 significantly attenuated the inhibitory effects of OGD on neuronal viability (p neurons from OGD-induced injury by affecting the viability and apoptosis of neurons, and by regulating the expressions of p-Akt1 and cytochrome c.

  5. MicroRNA-132 protects hippocampal neurons against oxygen-glucose deprivation-induced apoptosis.

    Science.gov (United States)

    Sun, Zu-Zhen; Lv, Zhan-Yun; Tian, Wen-Jing; Yang, Yan

    2017-09-01

    Hypoxic-ischemic brain injury (HIBI) results in death or long-term neurologic impairment in both adults and children. In this study, we investigated the effects of microRNA-132 (miR-132) dysregulation on oxygen-glucose deprivation (OGD)-induced apoptosis in fetal rat hippocampal neurons, in order to reveal the therapeutic potential of miR-132 on HIBI. MiR-132 dysregulation was induced prior to OGD exposure by transfection of primary fetal rat hippocampal neurons with miR-132 mimic or miR-132 inhibitor. The effects of miR-132 overexpression and suppression on OGD-stimulated hippocampal neurons were evaluated by detection of cell viability, apoptotic cells rate, and the expression of apoptosis-related proteins. Besides, TargetScan database and dual luciferase activity assay were used to seek a target gene of miR-132. As a result, miR-132 was highly expressed in hippocampal neurons following 2 h of OGD exposure. MiR-132 overexpression significantly increased OGD-diminished cell viability and reduced OGD-induced apoptosis at 12, 24, and 48 h post-OGD. MiR-132 overexpression significantly down-regulated the expressions of Bax, cytochrome c, and caspase-9, but up-regulated BCl-2. Caspase-3 activity was also significantly decreased by miR-132 overexpression. Furthermore, FOXO3 was a direct target of miR-132, and it was negatively regulated by miR-132. To conclude, our results provide evidence that miR-132 protects hippocampal neurons against OGD injury by inhibiting apoptosis.

  6. Human endothelial progenitor cells rescue cortical neurons from oxygen-glucose deprivation induced death.

    Science.gov (United States)

    Bacigaluppi, Susanna; Donzelli, Elisabetta; De Cristofaro, Valentina; Bragazzi, Nicola Luigi; D'Amico, Giovanna; Scuteri, Arianna; Tredici, Giovanni

    2016-09-19

    Cerebral ischemia is characterized by both acute and delayed neuronal injuries. Neuro-protection is a major issue that should be properly addressed from a pharmacological point of view, and cell-based treatment approaches are of interest due to their potential pleiotropic effects. Endothelial progenitor cells have the advantage of being mobilized from the bone marrow into the circulation, but have been less studied than other stem cells, such as mesenchymal stem cells. Therefore, the comparison between human endothelial progenitor cells (hEPC) and human mesenchymal progenitor cells (hMSC) in terms of efficacy in rescuing neurons from cell death after transitory ischemia is the aim of the current study, in the effort to address further directions. In vitro model of oxygen-glucose deprivation (OGD) on a primary culture of rodent cortical neurons was set up with different durations of exposure: 1, 2 and 3hrs with assessment of neuron survival. The 2hrs OGD was chosen for the subsequent experiments. After 2hrs OGD neurons were either placed in indirect co-culture with hMSC or hEPC or cultured in hMSC or hEPC conditioned medium and cell viability was evaluated by MTT assay. At day 2 after 2hrs OGD exposure, mean neuronal survival was 47.9±24.2%. In contrast, after treatment with hEPC and hMSC indirect co-culture was 74.1±27.3%; and 69.4±18.8%, respectively. In contrast, treatment with conditioned medium did not provide any advantage in terms of survival to OGD neurons The study shows the efficacy of hEPC in indirect co-culture to rescue neurons from cell death after OGD, comparable to that of hMSC. hEPC deserve further studies given their potential interest for ischemia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Optimal time for initiating extracorporeal membrane oxygenation.

    Science.gov (United States)

    Haile, Dawit T; Schears, Gregory J

    2009-09-01

    The technical evolution of extracorporeal membrane oxygenation (ECMO) coincides with the vast improvement in intensive care medicine of the past 4 decades. Extracorporeal circulatory technology substitutes for acutely failed cardiac or pulmonary function until these organs regain sustainable function through goal-oriented intensive care practice. The technology has been validated to improve survival in select patients who would otherwise have 100% mortality. This is by far the most complex life-sustaining technology employed and thus can contribute significant risks such that the decision to institute ECMO requires prompt risk and benefit analysis. Delaying the institution of ECMO may cause irreversible pulmonary and cardiac injuries in addition to other organs. Therefore, the optimal time of initiating ECMO support is crucial to the survival of a critically ill patient.

  8. Effect of sleep-wake reversal and sleep deprivation on the circadian rhythm of oxygen toxicity seizure susceptibility.

    Science.gov (United States)

    Dexter, J. D.; Hof, D. G.; Mengel, C. E.

    1972-01-01

    Albino Sprague-Dawley rats were exposed in a previously O2 flushed, CO2 free chamber. The exposure began with attainment of 60 psi (gauge) and the end point was the first generalized oxygen toxicity seizure. Animals were exposed to reversal diurnal conditions since weanlings until their sleep-wake cycles had completely reversed, and then divided into four groups of 20 based on the time of day exposed. The time of exposure to oxygen at high pressure prior to seizure was now significantly longer in the group exposed from 1900 to 2000 hr and a reversal of the circadian rhythm of oxygen toxicity seizure susceptibility was noted. Animals maintained on normal diurnal conditions were deprived of sleep on the day of exposure for the 12 hours prior to exposure at 1900 hr, while controls were allowed to sleep. There was no significant differences in the time prior to seizure between the deprived animals and the controls with an n = 40. Thus the inherent threshold in susceptibility to high-pressure oxygen seizures seems not to be a function of sleep itself, but of some biochemical/physiologic event which manifests a circadian rhythm.

  9. Metformin Protects Neurons against Oxygen-Glucose Deprivation/Reoxygenation -Induced Injury by Down-Regulating MAD2B.

    Science.gov (United States)

    Meng, Xianfang; Chu, Guangpin; Yang, Zhihua; Qiu, Ping; Hu, Yue; Chen, Xiaohe; Peng, Wenpeng; Ye, Chen; He, Fang-Fang; Zhang, Chun

    2016-01-01

    Metformin, the common medication for type II diabetes, has protective effects on cerebral ischemia. However, the molecular mechanisms are far from clear. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of the anaphase-promoting complex (APC), is widely expressed in hippocampal and cortical neurons and plays an important role in mediating high glucose-induced neurotoxicity. The present study investigated whether metformin modifies the expression of MAD2B and to exert its neuroprotective effects in primary cultured cortical neurons during oxygen-glucose deprivation/reoxygenation (OGD/R), a widely used in vitro model of ischemia/reperfusion. Primary cortical neurons were cultured, deprived of oxygen-glucose for 1 h, and then recovered with oxygen-glucose for 12 h and 24 h. Cell viability was measured by detecting the levels of lactate dehydrogenase (LDH) in culture medium. The levels of MAD2B, cyclin B and p-histone 3 were measured by Western blot. Cell viability of neurons was reduced under oxygen-glucose deprivation/reoxygenation (OGD/R). The expression of MAD2B was increased under OGD/R. The levels of cyclin B1, which is a substrate of APC, were also increased. Moreover, OGD/R up-regulated the phosphorylation levels of histone 3, which is the induction of aberrant re-entry of post-mitotic neurons. However, pretreatment of neurons with metformin alleviated OGD/R-induced injury. Metformin further decreased the expression of MAD2B, cyclin B1 and phosphorylation levels of histone 3. Metformin exerts its neuroprotective effect through regulating the expression of MAD2B in neurons under OGD/R. © 2016 The Author(s) Published by S. Karger AG, Basel.

  10. A novel method for oxygen glucose deprivation model in organotypic spinal cord slices.

    Science.gov (United States)

    Liu, Jing-Jie; Ding, Xiao-Yan; Xiang, Li; Zhao, Feng; Huang, Sheng-Li

    2017-10-01

    This study aimed to establish a model to closely mimic spinal cord hypoxic-ischemic injury with high production and high reproducibility. Fourteen-day cultured organotypic spinal cord slices were divided into 4 groups: control (Ctrl), oxygen glucose deprived for 30min (OGD 30min), OGD 60min, and OGD 120min. The Ctrl slices were incubated with 1ml propidium iodide (PI) solution (5μg/ml) for 30min. The OGD groups were incubated with 1ml glucose-free DMEM/F12 medium and 5μl PI solution (1mg/ml) for 30min, 60min and 120min, respectively. Positive control slice was fixed by 4% paraformaldehyde for 20min. The culture medium in each group was then collected and the Lactate Dehydrogenase (LDH) level in the medium was tested using Multi-Analyte ELISArray kits. Structure and refraction of the spinal cord slices were observed by light microscope. Fluorescence intensity of PI was examined by fluorescence microscopy and was tested by IPP Software. Morphology of astrocytes was observed by immunofluorescence histochemistry. Caspase 3 and caspase 3 active in different groups were tested by Western blot. In the OGD groups, the refraction of spinal cord slices decreased and the structure was unclear. The changes of refraction and structure in the OGD 120min group were similar to that in the positive control slice. Astrocyte morphology changed significantly. With the increase of OGD time, processes became thick and twisted, and nuclear condensations became more apparent. Obvious changes in morphology were observed in the OGD 60min group, and normal morphology disappeared in the OGD 120min group. Fluorescence intensity of PI increased along with the extension of OGD time. The difference was significant between 30min and 60min, but not significant between 60min and 120min. The intensity at OGD 120min was close to that in the positive control. Compare with the Ctrl group, the OGD groups had significantly higher LDH levels and caspase 3 active/caspase 3 ratios. The values increased

  11. Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9.

    Science.gov (United States)

    Gao, Dakuan; Huang, Tao; Jiang, Xiaofan; Hu, Shijie; Zhang, Lei; Fei, Zhou

    2014-06-01

    It was recently shown that resveratrol exerts neuroprotective effects against cerebral ischemia in mice. The aim of the present study was to further confirm these effects in in vitro primary cortical neuron cultures with transient oxygen-glucose deprivation (OGD), and to investigate whether these effects are due to the inhibition of matrix metalloproteinase-9 (MMP-9) and of cell apoptosis. Neuronal primary cultures of cerebral cortex were prepared from BALB/c mice embryos (13-15 days). Cells from 14- to 16-day cultures were subjected to OGD for 3 h, followed by 21 h of reoxygenation to simulate transient ischemia. Different doses of resveratrol were added into the culture medium during the simulation of transient ischemia. The effect of the extracellular signal-regulated kinase (ERK) inhibitor U0126 was studied by adding U0126 (5 µg/µl, 4 µl) into the culture medium during transient ischemia; as a control, we used treatment of cells with 50 µM of resveratrol. Cell viability was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Cell apoptosis was assessed by flow cytometry. The effects of resveratrol on the expression of MMP-9 were analyzed by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of ERK, phosphorylated (p)-ERK, cleaved caspase-3, Bax and Bcl-2 were measured by western blotting. The results of the MTT assay showed that cell viability is significantly reduced by transient OGD. OGD induced cell apoptosis, the expression of Bax and the activation of caspase-3 and ERK, inhibited the expression of Bcl-2 and increased the expression of MMP-9, while these effects were reversed by treatment with resveratrol. The therapeutic efficacy of resveratrol was shown to be dose-dependent, with the most suitable dose range determined at 50-100 µM. Treatment with U0126 inhibited MMP-9 and Bax expression and caspase-3 activation, while it further promoted the

  12. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    OpenAIRE

    Laurent Chazalviel; Jean-Eric Blatteau; Nicolas Vallée; Jean-Jacques Risso; Stéphane Besnard; Jacques H Abraini

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxy...

  13. Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation

    Directory of Open Access Journals (Sweden)

    Jing-xian Wu

    2015-01-01

    Full Text Available Recent studies have shown that induced expression of endogenous antioxidative enzymes thr-ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2 pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 μM curcumin or post-treated with 5 μM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thioredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neuroprotection after cerebral ischemia.

  14. Effects of PTEN inhibition on the regulation of Tau phosphorylation in rat cortical neuronal injury after oxygen and glucose deprivation.

    Science.gov (United States)

    Zhao, Jing; Chen, Yurong; Xu, Yuxia; Pi, Guanghuan

    2016-01-01

    This report investigated the involvement of the PTEN pathway in the regulation of Tau phosphorylation using an oxygen and glucose deprivation (OGD) model with rat cortical neurons. Primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro. These were randomly divided into control, OGD, bpV+OGD, As+OGD, Se+OGD and Mock treatment groups. The neuron viability was assessed by MTT, the cell apoptosis was detected using TUNEL staining. The expression of Phospho-PTEN/PTEN, Phospho-Tau/Tau, Phospho-Akt/Akt and Phospho-GSK-3β/GSK-3β were detected by Western blotting. OGD induced Tau phosphorylation through PTEN and glycogen synthase kinase-3β (GSK-3β) activation, together with a decrease in AKT activity. Pre-treatment with bpv, a potent PTEN inhibitor, and PTEN antisense nucleotides decreased PTEN and GSK-3β activity and caused alterations in Tau phosphorylation. Neuronal apoptosis was also reduced. The PTEN/Akt/GSK-3β/Tau pathway is involved in the regulation of neuronal injury, providing a novel route for protecting neurons following neonatal HI.

  15. Morphine Preconditioning Downregulates MicroRNA-134 Expression Against Oxygen-Glucose Deprivation Injuries in Cultured Neurons of Mice.

    Science.gov (United States)

    Meng, Fanjun; Li, Yan; Chi, Wenying; Li, Junfa

    2016-07-01

    Brain protection by narcotics such as morphine is clinically relevant due to the extensive use of narcotics in the perioperative period. Morphine preconditioning induces neuroprotection in neurons, but it remains uncertain whether microRNA-134 (miR-134) is involved in morphine preconditioning against oxygen-glucose deprivation-induced injuries in primary cortical neurons of mice. The present study examined this issue. After cortical neurons of mice were cultured in vitro for 6 days, the neurons were transfected by respective virus vector, such as lentiviral vector (LV)-miR-control-GFP, LV-pre-miR-134-GFP, LV-pre-miR-134-inhibitor-GFP for 24 hours; after being normally cultured for 3 days again, morphine preconditioning was performed by incubating the transfected primary neurons with morphine (3 μM) for 1 hour, and then neuronal cells were exposed to oxygen-glucose deprivation (OGD) for 1 hour and oxygen-glucose recovery for 12 hours. The neuronal cells survival rate and the amount of apoptotic neurons were determined by MTT assay or TUNEL staining at designated time; and the expression levels of miR-134 were detected using real-time reverse transcription polymerase chain reaction at the same time. The neuronal cell survival rate was significantly higher, and the amount of apoptotic neurons was significantly decreased in neurons preconditioned with morphine before OGD than that of OGD alone. The neuroprotection induced by morphine preconditioning was partially blocked by upregulating miR-134 expression, and was enhanced by downregulating miR-134 expression. The expression of miR-134 was significantly decreased in morphine-preconditioned neurons alone without transfection. By downregulating miR-134 expression, morphine preconditioning protects primary cortical neurons of mice against injuries induced by OGD.

  16. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivation in neurons.

    Science.gov (United States)

    Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun

    2014-09-25

    The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Optimization of burners in oxygen-gas fired glass furnace

    NARCIS (Netherlands)

    Kersbergen, M.J. van; Beerkens, R.G.C.; Sarmiento-Darkin, W.; Kobayashi, H.

    2012-01-01

    The energy efficiency performance, production stability and emissions of oxygen-fired glass furnaces are influenced by the type of burner, burner nozzle sizes, burner positions, burner settings, oxygen-gas ratios and the fuel distribution among all the burners. These parameters have been optimized

  18. Oxygen-Glucose-Deprivation/Reoxygenation-Induced Autophagic Cell Death Depends on JNK-Mediated Phosphorylation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Jin Fan

    2016-03-01

    Full Text Available Background/Aims: The purpose of this study was to investigate the role of autophagy in oxygen-glucose-deprivation/reoxygenation (OGD/R injury in rat neurons. Methods and results: Cortical neurons were isolated from Sprague-Dawley rats and identified by immunofluorescence. The cortical neurons were randomly assigned to one of four groups: control group (I, experimental group (OGD/R group, II, JNK inhibitor pretreatment group (III and JNK inhibitor pretreatment + OGD/R group (IV. Neuronal cell viability significantly decreased after 6h and 12h of reoxygenation in Group IV (P P Conclusion: The regulation of the JNK/Bcl-2/Beclin-1 signaling pathway may be one of the mechanisms underlying the OGD/R-induced autophagic cell death of neurons.

  19. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  20. Optimizing Oxygenation in the Mechanically Ventilated Patient: Nursing Practice Implications.

    Science.gov (United States)

    Barton, Glenn; Vanderspank-Wright, Brandi; Shea, Jacqueline

    2016-12-01

    Critical care nurses constitute front-line care provision for patients in the intensive care unit (ICU). Hypoxemic respiratory compromise/failure is a primary reason that patients require ICU admission and mechanical ventilation. Critical care nurses must possess advanced knowledge, skill, and judgment when caring for these patients to ensure that interventions aimed at optimizing oxygenation are both effective and safe. This article discusses fundamental aspects of respiratory physiology and clinical indices used to describe oxygenation status. Key nursing interventions including patient assessment, positioning, pharmacology, and managing hemodynamic parameters are discussed, emphasizing their effects toward mitigating ventilation-perfusion mismatch and optimizing oxygenation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Kainate toxicity in energy-compromised rat hippocampal slices: differences between oxygen and glucose deprivation.

    Science.gov (United States)

    Schurr, A; Rigor, B M

    1993-06-18

    The effects of kainate (KA) on the recovery of neuronal function in rat hippocampal slices after hypoxia or glucose deprivation (GD) were investigated and compared to those of (R,S)-alpha-amino-3-hydroxy-5-methyl-4- isoxazoleproprionate (AMPA). KA and AMPA were found to be more toxic than either N-methyl-D-aspartate (NMDA), quinolinate, or glutamate, both under normal conditions and under states of energy deprivation. Doses as low as 1 microM KA or AMPA were sufficient to significantly reduce the recovery rate of neuronal function in slices after a standardized period of hypoxia or GD. The enhancement of hypoxic neuronal damage by both agonists could be partially blocked by the antagonist kynurenate, by the NMDA competitive antagonist AP5, and by elevating [Mg2+] in or by omitting Ca2+ from the perfusion medium. The AMPA antagonist glutamic acid diethyl ester was ineffective in preventing the enhanced hypoxic neuronal damage by either KA or AMPA. The antagonist of the glycine modulatory site on the NMDA receptor, 7-chlorokynurenate, did not block the KA toxicity but was able to block the toxicity of AMPA. 2,3-Dihydroxyquinoxaline completely blocked the KA- and AMPA-enhanced hypoxic neuronal damage. The KA-enhanced, GD-induced neuronal damage was prevented by Ca2+ depletion and partially antagonized by kynurenate but not by AP5 or elevated [Mg2+]. The results of the present study indicate that the KA receptor is involved in the mechanism of neuronal damage induced by hypoxia and GD, probably allowing Ca2+ influx and subsequent intracellular Ca2+ overload.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Immature rat brain slices exposed to oxygen-glucose deprivation as an in vitro model of neonatal hypoxic-ischemic encephalopathy.

    Science.gov (United States)

    Fernández-López, David; Martínez-Orgado, José; Casanova, Ignacio; Bonet, Bartolomé; Leza, Juan Carlos; Lorenzo, Pedro; Moro, Maria Angeles; Lizasoain, Ignacio

    2005-06-30

    To analyze whether exposure to oxygen-glucose deprivation (OGD) of immature rat brain slices might reproduce the main pathophysiologic events leading to neuronal death in neonatal hypoxic-ischemic encephalopathy (NHIE), 500 microm-thick brain slices were obtained from 7-day-old Wistar rats, and incubated in oxygenated physiological solution. In OGD group, oxygen and glucose were removed from the medium for 10-30 min (n = 25); then, slices were re-incubated in normal medium. In control group the medium composition remained unchanged (CG, n = 30). Medium samples were obtained every 30 min for 3 h. To analyze neuronal damage, slices were stained with Nissl and CA1 area of hippocampus and cortex were observed under microscopy. In addition, neuronal death was quantified as LDH released to the medium determined by spectrophotometry. Additionally, medium glutamate (Glu) levels were determined by HPLC and those of TNFalpha by ELISA, whereas inducible nitric oxide synthase expression was determined by Western blot performed on slices homogenate. Optimal OGD time was established in 20 min. After OGD, a significant decrease in the number of neurones in hippocampus and cortex was observed. LDH release was maximal at 30 min, when it was five-fold greater than in CG. Furthermore, medium Glu concentrations were 200 times greater than CG levels at the end of OGD period. A linear relationship between Glu and LDH release was demonstrated. Finally, 3 h after OGD a significant induction of iNOS as well as an increase in TNFalpha release were observed. In conclusion, OGD appears as a feasible and reproducible in vitro model, leading to a neuronal damage, which is physiopathologically similar to that found in NHIE.

  3. Protective Effect of Diospyros kaki against Glucose-Oxygen-Serum Deprivation-Induced PC12 Cells Injury

    Directory of Open Access Journals (Sweden)

    Fatemeh Forouzanfar

    2016-01-01

    Full Text Available Ischemic cerebrovascular disease is one of the most common causes of death in the world. Recent interests have been focused on natural antioxidants and anti-inflammatory agents as potentially useful neuroprotective agents. Diospyros kaki (persimmon has been shown to exert anti-inflammatory, antioxidant, and antineoplastic effects. However, its effects on ischemic damage have not been evaluated. Here, we used an in vitro model of cerebral ischemia and studied the effects of hydroalcoholic extract of peel (PeHE and fruit pulp (PuHE of persimmon on cell viability and markers of oxidative damage mainly intracellular reactive oxygen species (ROS induced by glucose-oxygen-serum deprivation (GOSD in PC12 cells. GOSD for 6 h produced significant cell death which was accompanied by increased levels of ROS. Pretreatment with different concentrations of PeHE and PuHE (0–500 μg/mL for 2 and 24 h markedly restored these changes only at high concentrations. However, no significant differences were seen in the protection against ischemic insult between different extracts and the time of exposure. The experimental results suggest that persimmon protects the PC12 cells from GOSD-induced injury via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of persimmon for managing cerebral ischemic and other neurodegenerative disorders.

  4. Cooperation of HIF- and NCAM-mediated mechanisms in cell viability of hippocampal cultures after oxygen-glucose deprivation.

    Science.gov (United States)

    Lushnikova, Iryna; Nikandrova, Yelyzaveta; Skibo, Galyna

    2017-10-01

    Neurodegenerative diseases of different genesis are the result of cellular damages including those caused by oxygen and glucose deficit. Neuronal survival or death in brain pathologies depends on a variety of interrelated molecular mechanisms. A key role in modulation of neuron viability belongs to HIF (hypoxia-inducible factor) and NCAM (neural cell adhesion molecules) signaling pathways. In this work, we used organotypic and dissociated hippocampal cultures to analyze cell viability and HIF-1α immunopositive (HIF-1α + ) signal after 30 min oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation in the presence of FGL (synthetic NCAM-derived mimetic peptide). According to LDH- and MTS-assay of cell viability, FGL showed a neuroprotective effect, which was attributed to the association with FGFR. We showed that these effects correlated with changes of the HIF-1α + level suggesting the communications of HIF and NCAM signaling pathways. These data extend our knowledge of neurodegeneration mechanisms and open additional potential for the development of neuroprotection strategies. © 2017 International Federation for Cell Biology.

  5. Ebselen Induced C6 Glioma Cell Death in Oxygen and Glucose Deprivation

    OpenAIRE

    Shi, Honglian; Liu, Shimin; Miyake, Minoru; Liu, Ke Jian

    2006-01-01

    Studies have shown that ebselen is an anti-inflammatory and antioxidative agent. Its protective effect has been investigated in oxidative stress related diseases such as cerebral ischemia in recent years. However, experimental evidence also shows that ebselen causes cell death in several different cell types. Whether ebselen will have beneficial or detrimental effect on cells under ischemic condition is not known. Herein, we studied the effect of ebselen on C6 glioma cell under oxygen and glu...

  6. Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways.

    Science.gov (United States)

    Guan, Junhong; Du, Shaonan; Lv, Tao; Qu, Shengtao; Fu, Qiang; Yuan, Ye

    2016-01-01

    Bone morphogenetic protein (BMP)-7 mediated neuroprotective effect of cerebral ischemic preconditioning (IPC) has been studied in an ischemic animal model, but the underlying cellular mechanisms have not been clearly clarified. In this study, primary cortical neurons and the SH-SY5Y cell line were used to investigate the role of BMP-7 and its downstream signals in the neuroprotective effects of oxygen-glucose deprivation preconditioning (OGDPC). Immunocytochemistry was used to detect the expression of neurofilament in neurons. MTT and lactate dehydrogenase activity assays were used to measure the cytotoxicity. Western blot was used to detect the protein expression of BMP-7 and downstream signals. BMP inhibitor, mitogen-activated protein kinase inhibitors, Smad inhibitor and siRNA of Smad 1 were used to investigate the role of corresponding signalling pathways in the OGDPC. Results showed that OGDPC-induced overexpression of BMP-7 in primary cortical neurons and SH-SY5Y cells. Both of endogenous and exogenous BMP-7 could replicate the neuroprotective effects seen in OGDPC pretreatment. In addition, extracellular regulated protein kinases, p38 and Smad signalling pathway were found to be involved in the neuroprotective effects mediated by OGDPC via BMP-7. This study primarily reveals the cellular mechanisms of the neuroprotection mediated by OGDPC, and provides evidence for better understanding of this intrinsic factor against ischemia. © 2015 Wiley Publishing Asia Pty Ltd.

  7. Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding.

    Science.gov (United States)

    Shabala, Sergey; Shabala, Lana; Barcelo, Juan; Poschenrieder, Charlotte

    2014-10-01

    This review provides a comprehensive assessment of a previously unexplored topic: elucidating the role that plasma- and organelle-based membrane transporters play in plant-adaptive responses to flooding. We show that energy availability and metabolic shifts under hypoxia and anoxia are critical in regulating membrane-transport activity. We illustrate the high tissue and time dependence of this regulation, reveal the molecular identity of transporters involved and discuss the modes of their regulation. We show that both reduced oxygen availability and accumulation of transition metals in flooded roots result in a reduction in the cytosolic K(+) pool, ultimately determining the cell's fate and transition to programmed cell death (PCD). This process can be strongly affected by hypoxia-induced changes in the amino acid pool profile and, specifically, ϒ-amino butyric acid (GABA) accumulation. It is suggested that GABA plays an important regulatory role, allowing plants to proceed with H2 O2 signalling to activate a cascade of genes that mediate plant adaptation to flooding while at the same time, preventing the cell from entering a 'suicide program'. We conclude that progress in crop breeding for flooding tolerance can only be achieved by pyramiding the numerous physiological traits that confer efficient energy maintenance, cytosolic ion homeostasis, and reactive oxygen species (ROS) control and detoxification. © 2014 John Wiley & Sons Ltd.

  8. Oxygen-Glucose Deprivation Induces G2/M Cell Cycle Arrest in Brain Pericytes Associated with ERK Inactivation.

    Science.gov (United States)

    Wei, Wenjie; Yu, Zhiyuan; Xie, Minjie; Wang, Wei; Luo, Xiang

    2017-01-01

    Growing evidence has revealed that brain pericytes are multifunctional and contribute to the pathogenesis of a number of neurological disorders. However, the role of pericytes in cerebral ischemia, and especially the pathophysiological alterations in pericytes, remains unclear. In the present study, our aim was to determine whether the proliferation of pericytes is affected by cerebral ischemia and, if so, to identify the underlying mechanism(s). Cultured brain pericytes subjected to oxygen-glucose deprivation (OGD) were used as our model of cerebral ischemia; the protein expression levels of cyclin D1, cyclin E, cdk4, and cyclin B1 were determined by Western blot analysis, and cell cycle analysis was assessed by flow cytometry. The OGD treatment reduced the brain pericyte proliferation by causing G2/M phase arrest and downregulating the protein levels of cyclin D1, cyclin E, cdk4, and cyclin B1. Further studies demonstrated a simultaneous decrease in the activity of extracellular regulated protein kinases (ERK), suggesting a critical role of the ERK signaling cascade in the inhibition of OGD-induced pericyte proliferation. We suggest that OGD inhibition of the proliferation of brain pericytes is associated with the inactivation of the ERK signaling pathway, which arrests them in the G2/M phase.

  9. Overexpression of Cdk5 or non-phosphorylatable retinoblastoma protein protects septal neurons from oxygen-glucose deprivation.

    Science.gov (United States)

    Panickar, Kiran S; Nonner, Doris; White, Michael G; Barrett, John N

    2008-09-01

    Activation of cyclin dependent kinases (Cdks) contributes to neuronal death following ischemia. We used oxygen-glucose deprivation (OGD) in septal neuronal cultures to test for possible roles of cell cycle proteins in neuronal survival. Increased cdc2-immunoreactive neurons were observed at 24 h after the end of 5 h OGD. Green fluorescent protein (GFP) or GFP along with a wild type or dominant negative form of the retinoblastoma protein (Rb), or cyclin-dependent kinase5 (Cdk5), were overexpressed using plasmid constructs. Following OGD, when compared to controls, neurons expressing both GFP and dominant negative Rb, RbDeltaK11, showed significantly less damage using microscopy imaging. Overexpression of Rb-wt did not affect survival. Surprisingly, overexpression of Cdk5-wild type significantly protected neurons from process disintegration but Cdk5T33, a dominant negative Cdk5, gave little or no protection. Thus phosphorylation of the cell cycle regulator, Rb, contributes to death in OGD in septal neurons but Cdk5 can have a protective role.

  10. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    Science.gov (United States)

    Rau, Thomas F.; Lu, Qing; Sharma, Shruti; Sun, Xutong; Leary, Gregory; Beckman, Matthew L.; Hou, Yali; Wainwright, Mark S.; Kavanaugh, Michael; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD. PMID:22984394

  11. Enhanced differentiation of neural stem cells to neurons and promotion of neurite outgrowth by oxygen-glucose deprivation.

    Science.gov (United States)

    Wang, Qin; Yang, Lin; Wang, Yaping

    2015-06-01

    Stroke has become the leading cause of mortality worldwide. Hypoxic or ischemic insults are crucial factors mediating the neural damage in the brain tissue of stroke patients. Neural stem cells (NSCs) have been recognized as a promising tool for the treatment of ischemic stroke and other neurodegenerative diseases due to their inducible pluripotency. In this study, we aim to mimick the cerebral hypoxic-ischemic injury in vitro using oxygen-glucose deprivation (OGD) strategy, and evaluate the effects of OGD on the NSC's neural differentiation, as well as the differentiated neurite outgrowth. Our data showed that NSCs under the short-term 2h OGD treatment are able to maintain cell viability and the capability to form neurospheres. Importantly, this moderate OGD treatment promotes NSC differentiation to neurons and enhances the performance of the mature neuronal networks, accompanying increased neurite outgrowth of differentiated neurons. However, long-term 6h and 8h OGD exposures in NSCs lead to decreased cell survival, reduced differentiation and diminished NSC-derived neurite outgrowth. The expressions of neuron-specific microtubule-associated protein 2 (MAP-2) and growth associated protein 43 (GAP-43) are increased by short-term OGD treatments but suppressed by long-term OGD. Overall, our results demonstrate that short-term OGD exposure in vitro induces differentiation of NSCs while maintaining their proliferation and survival, providing valuable insights of adopting NSC-based therapy for ischemic stroke and other neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Taurine Protected Against the Impairments of Neural Stem Cell Differentiated Neurons Induced by Oxygen-Glucose Deprivation.

    Science.gov (United States)

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Liu, Sining; Ji, Cheng

    2015-11-01

    Cell transplantation of neural stem cells (NSCs) is a promising approach for neurological recovery both structurally and functionally. However, one big obstacle is to promote differentiation of NSCs into neurons and the followed maturation. In the present study, we aimed to investigate the protective effect of taurine on the differentiation of NSCs and subsequent maturation of their neuronal lineage, when exposed to oxygen-glucose deprivation (OGD). The results suggested that taurine (5-20 mM) promoted the viability and proliferation of NSCs, and it protected against 8 h of OGD induced impairments. Furthermore, 20 mM taurine promoted NSCs to differentiate into neurons after 7 days of culture, and it also protected against the suppressive impairments of 8 h of OGD. Consistently, taurine (20 mM) promoted the neurite sprouting and outgrowth of the NSC differentiated neurons after 14 days of differentiation, which were significantly inhibited by OGD (8 h). At D21, the mushroom spines and spine density were promoted or restored by 20 mM taurine. Taken together, the enhanced viability and proliferation of NSCs, more differentiated neurons and the promoted maturation of neurons by 20 mM taurine support its therapeutic application during stem cell therapy to enhance neurological recovery. Moreover, it protected against the impairments induced by OGD, which may highlight its role for a more direct therapeutic application especially in an ischemic stroke environment.

  13. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    Science.gov (United States)

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation.

    Science.gov (United States)

    Porrini, Vanessa; Sarnico, Ilenia; Benarese, Marina; Branca, Caterina; Mota, Mariana; Lanzillotta, Annamaria; Bellucci, Arianna; Parrella, Edoardo; Faggi, Lara; Spano, Pierfranco; Imbimbo, Bruno Pietro; Pizzi, Marina

    2017-01-18

    CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer's disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia.

  15. Resveratrol Enhances Neurite Outgrowth and Synaptogenesis Via Sonic Hedgehog Signaling Following Oxygen-Glucose Deprivation/Reoxygenation Injury

    Directory of Open Access Journals (Sweden)

    Fanren Tang

    2017-09-01

    Full Text Available Background/Aims: Neurite outgrowth and synaptogenesis are critical steps for functional recovery after stroke. Resveratrol promotes neurite outgrowth and synaptogenesis, but the underlying mechanism is not well understood, although the Sonic hedgehog (Shh signaling pathway may be involved. Given that resveratrol activates sirtuin (Sirt1, the present study examined whether this is mediated by Shh signaling. Methods: Primary cortical neuron cultures were pretreated with drugs before oxygen-glucose deprivation/reoxygenation (OGD/R. Cell viability and apoptosis were evaluated with Cell Counting Kit 8 and by terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Neurite outgrowth and synaptogenesis were assessed by immunocytochemistry and western blotting, which was also used to examine the expression of Sirt1 and Shh signaling proteins. Results: Resveratrol and the Smoothened (Smo agonist purmophamine, which activates Shh signaling, increased viability, reduced apoptosis, and stimulated neurite outgrowth after OGD/R injury. Moreover, the expression of growth-associated protein(GAP-43, synaptophysin, Shh, Patched (Ptc-1, Smo, glioma-associated oncogene homolog (Gli-1, and Sirt1 were upregulated under these conditions. These effects were reversed by treatment with the Smo inhibitor cyclopamine, whereas the Sirt1 inhibitor sirtinol reduced the levels of Shh, Ptc-1, Smo, and Gli-1. Conclusions: Resveratrol reduces neuronal injury following OGD/R injury and enhances neurite outgrowth and synaptogenesis by activating Shh signaling, which in turn induces Sirt1.

  16. [Screening of Active Fractions from Huanglian Jiedu Decoction against Primary Neuron Injury after Oxygen-Glucose Deprivation].

    Science.gov (United States)

    Huang, Zhu-yan; Pan, Bei-bei; Huang, Chun-yan; Ye, Yi-lu; Liu, Dan-dan; Yu, Yue-ping; Zhang, Qi

    2015-08-01

    To observe the protective effect of active fractions of Huanglian Jiedu Decoction (HJD) on primary cortical neuron injury after oxygen-glucose deprivation (OGD)/reperfusion (R) injury. Methods Using macroporous resin method, HJDFE30, HJDFE50, HJDFE75, and HJDFE95 with 30%, 50%, 75%, and 95% alcohol were respectively prepared. Then the content of active components in different HJD fractions was determined with reverse phase high-performance liquid chromatography (RP-HPLC). The OGD/R injury model was induced by sodium dithionite on primary cortical neurons in neonate rats. MTT assay was used to observe the effect of four fractions (HJDFE30, HJDFE50, HJDFE75, and HJDFE95) and seven index components of HJD on the neuron viability. RP-HPLC showed active component(s) contained in HJDFE30 was geniposide; baicalin, palmatine, berberine, and wogonside contained in HJDFE50; baicalin, berberine, baicalein, and wogonin contained in HJDFE75. The neuron viability was decreased after OGD for 20 min and reperfusion for 1 h, (P neuron viability (P neuron injury after OGD/R. Furthermore, geniposide, baicalin, and baicalein were main active components of HJD.

  17. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in tr......PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD......) and in transient global cerebral ischemia in gerbils. For in vitro studies, hippocampal slice cultures derived from 7-day-old mice and grown for 14 days, were submersed in oxygen-glucose deprived medium for 30 min and exposed to PNQX for 24 h, starting together with OGD, immediately after OGD, or 2 h after OGD...... stained for the neurodegeneration marker Fluoro-Jade B and immunostained for the astroglial marker glial fibrillary acidic protein revealed a significant PNQX-induced decrease in neuronal cell death and astroglial activation. We conclude that, PNQX provided neuroprotection against both global cerebral...

  18. Phospho-Rb mediating cell cycle reentry induces early apoptosis following oxygen-glucose deprivation in rat cortical neurons.

    Science.gov (United States)

    Yu, Ying; Ren, Qing-Guo; Zhang, Zhao-Hui; Zhou, Ke; Yu, Zhi-Yuan; Luo, Xiang; Wang, Wei

    2012-03-01

    The aim of this study was to investigate the relationship between cell cycle reentry and apoptosis in cultured cortical neurons following oxygen-glucose deprivation (OGD). We found that the percentage of neurons with BrdU uptake, TUNEL staining, and colocalized BrdU uptake and TUNEL staining was increased relative to control 6, 12 and 24 h after 1 h of OGD. The number of neurons with colocalized BrdU and TUNEL staining was decreased relative to the number of TUNEL-positive neurons at 24 h. The expression of phosphorylated retinoblastoma protein (phospho-Rb) was significantly increased 6, 12 and 24 h after OGD, parallel with the changes in BrdU uptake. Phospho-Rb and TUNEL staining were colocalized in neurons 6 and 12 h after OGD. This colocalization was strikingly decreased 24 h after OGD. Treatment with the cyclin-dependent kinase inhibitor roscovitine (100 μM) decreased the expression of phospho-Rb and reduced neuronal apoptosis in vitro. These results demonstrated that attempted cell cycle reentry with phosphorylation of Rb induce early apoptosis in neurons after OGD and there must be other mechanisms involved in the later stages of neuronal apoptosis besides cell cycle reentry. Phosphoralated Rb may be an important factor which closely associates aberrant cell cycle reentry with the early stages of neuronal apoptosis following ischemia/hypoxia in vitro, and pharmacological interventions for neuroprotection may be useful directed at this keypoint.

  19. Quercetin promotes proliferation and differentiation of oligodendrocyte precursor cells after oxygen/glucose deprivation-induced injury.

    Science.gov (United States)

    Wu, Xiuxiang; Qu, Xuebin; Zhang, Qiang; Dong, Fuxing; Yu, Hongli; Yan, Chen; Qi, Dashi; Wang, Meng; Liu, Xuan; Yao, Ruiqin

    2014-04-01

    The aim of this study was to investigate quercetin's (Qu) ability to promote proliferation and differentiation of oligodendrocyte precursor cells (OPCs) under oxygen/glucose deprivation (OGD)-induced injury in vitro. The results showed that after OGD, OPCs survival rate was significantly increased by Qu as measured by Cell Counting Kit-8. Furthermore, Qu treatment reduced apoptosis of OPCs surveyed by Hoechst 33258 nuclear staining. Qu at 9 and 27 μM promoted the proliferation of OPCs the most by Brdu and Olig2 immunocytochemical staining after OGD 3 days. Also, Qu treatment for 8 days after OGD, the differentiation of OPCs to oligodendrocyte was detected by immunofluorescence staining showing that O4, Olig2, and myelin basic protein (MBP) positive cells were significantly increased compared to control group. Additionally, the protein levels of Olig2 and MBP of OPCs were quantified using western blot and mRNA levels of Olig2 and Inhibitor of DNA binding 2 (Id2) were measured by RT-PCR. Western blot showed a significant increase in Olig2 and MBP expression levels compared with controls after OGD and Qu treatment with a linear does-response curve from 3 to 81 μM. After treatment with Qu compared to its control group, Olig2 mRNA level was significantly up-regulated, whereas Id2 mRNA level was down-regulated. In conclusion, Qu at 3-27 μM can promote the proliferation and differentiation of OPCs after OGD injury and may regulate the activity of Olig2 and Id2.

  20. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Pelin Cengiz

    Full Text Available Hypoxia ischemia (HI-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na(+/H(+ exchanger isoform 1 (NHE1 protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX. 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H(+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1-5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na(+ and Ca(2+ overload. The latter was mediated by reversal of Na(+/Ca(2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα during 1-24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na(+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H(+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na(+ and Ca(2+ homeostasis, which reduces Na(+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.

  1. Troxerutin and Cerebroprotein Hydrolysate Injection Protects Neurovascular Units from Oxygen-Glucose Deprivation and Reoxygenation-Induced Injury In Vitro

    Directory of Open Access Journals (Sweden)

    Hóngyi Zhào

    2018-01-01

    Full Text Available Cerebral ischemia/reperfusion (I/R injury involves complex events of cellular and molecular processes. Previous studies suggest that a neurovascular unit (NVU acts as an intricate network to maintain the neuronal homeostatic microenvironment. The present study established an NVU model for oxygen-glucose deprivation and reoxygenation (OGD/R damage, trying to target the major components of the NVU using a coculture of rat neurons, astrocytes, and rat brain microvascular endothelial cells (rBMECs to investigate the therapeutic effects of troxerutin and cerebroprotein hydrolysate injections (TCHis. The study observed that OGD/R downregulated the expressions of GAP-43, Claudin-5, and AQP-4 obviously detected by Western blotting and immunocytochemical analysis, respectively, while TCHi ameliorated the effect of OGD/R significantly. Meanwhile, TCHi alleviated the abnormalities of ultrastructure of neurons and rBMECs induced by OGD/R. Furthermore, both levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α and cell adhesion molecules (VCAM-1 and ICAM-1 detected by ELISA in NVU supernatant were found elevated significantly through OGD/R, but TCHi ameliorated the trend. In addition, TCHi also mitigated the increase of proapoptotic factors (Bax, p53, and caspase-3 induced by OGD/R in NVU model statistically. All these findings demonstrated that TCHis played a protective role, which was reflected in anti-inflammation, antiapoptosis, and blood–brain barrier maintenance. The results of the study concluded that the NVU is an ideal target and TCHi acts as a neuroprotective agent against cerebral I/R injuries.

  2. Neuroprotective effects of oxysophocarpine on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion.

    Science.gov (United States)

    Zhu, Qing-Luan; Li, Yu-Xiang; Zhou, Ru; Ma, Ning-Tian; Chang, Ren-Yuan; Wang, Teng-Fei; Zhang, Yi; Chen, Xiao-Ping; Hao, Yin-Ju; Jin, Shao-Ju; Ma, Lin; Du, Juan; Sun, Tao; Yu, Jian-Qiang

    2014-08-01

    Oxysophocarpine (OSC), a quinolizidine alkaloid extracted from leguminous plants of the genus Robinia, is traditionally used for various diseases including neuronal disorders. This study investigated the protective effects of OSC on neonatal rat primary-cultured hippocampal neurons were injured by oxygen-glucose deprivation and reperfusion (OGD/RP). Cultured hippocampal neurons were exposed to OGD for 2 h followed by a 24 h RP. OSC (1, 2, and 5 μmol/L) and nimodipine (Nim) (12 μmol/L) were added to the culture after OGD but before RP. The cultures of the control group were not exposed to OGD/RP. MTT and LDH assay were used to evaluate the protective effects of OSC. The concentration of intracellular-free calcium [Ca(2+)]i and mitochondrial membrane potential (MMP) were determined to evaluate the degree of neuronal damage. Morphologic changes of neurons following OGD/RP were observed with a microscope. The expression of caspase-3 and caspase-12 mRNA was examined by real-time quantitative PCR. The IC50 of OSC was found to be 100 μmol/L. Treatment with OSC (1, 2, and 5 μmol/L) attenuated neuronal damage (p < 0.001), with evidence of increased cell viability (p < 0.001) and decreased cell morphologic impairment. Furthermore, OSC increased MMP (p < 0.001), but it inhibited [Ca(2+)]i (p < 0.001) elevation in a dose-dependent manner at OGD/RP. OSC (5 μmol/L) also decreased the expression of caspase-3 (p < 0.05) and caspase-12 (p < 0.05). The results suggested that OSC has significant neuroprotective effects that can be attributed to inhibiting endoplasmic reticulum (ER) stress-induced apoptosis.

  3. 24S-hydroxycholesterol and 25-hydroxycholesterol differentially impact hippocampal neuronal survival following oxygen-glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Min-Yu Sun

    Full Text Available N-methyl-D-aspartate receptors (NMDARs, a major subtype of glutamate receptor mediating excitatory transmission throughout the CNS, participate in ischemia-induced neuronal death. Unfortunately, undesired side effects have limited the strategy of inhibiting/blocking NMDARs as therapy. Targeting endogenous positive allosteric modulators of NMDAR function may offer a strategy with fewer downsides. Here, we explored whether 24S-hydroxycholesterol (24S-HC, an endogenous positive NMDAR modulator characterized recently by our group, participates in NMDAR-mediated excitotoxicity following oxygen-glucose deprivation (OGD in primary neuron cultures. 24S-HC is the major brain cholesterol metabolite produced exclusively in neurons near sites of glutamate transmission. By selectively potentiating NMDAR current, 24S-HC may participate in NMDAR-mediated excitotoxicity following energy failure, thus impacting recovery after stroke. In support of this hypothesis, our findings indicate that exogenous application of 24S-HC exacerbates NMDAR-dependent excitotoxicity in primary neuron culture following OGD, an ischemic-like challenge. Similarly, enhancement of endogenous 24S-HC synthesis reduced survival rate. On the other hand, reducing endogenous 24S-HC synthesis alleviated OGD-induced cell death. We found that 25-HC, another oxysterol that antagonizes 24S-HC potentiation, partially rescued OGD-mediated cell death in the presence or absence of exogenous 24S-HC application, and 25-HC exhibited NMDAR-dependent/24S-HC-dependent neuroprotection, as well as NMDAR-independent neuroprotection in rat tissue but not mouse tissue. Our findings suggest that both endogenous and exogenous 24S-HC exacerbate OGD-induced damage via NMDAR activation, while 25-HC exhibits species dependent neuroprotection through both NMDAR-dependent and independent mechanisms.

  4. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis.

    Science.gov (United States)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-07-18

    14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen-glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Neuroglobin overexpression inhibits oxygen-glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons.

    Science.gov (United States)

    Yu, Zhanyang; Liu, Ning; Li, Yadan; Xu, Jianfeng; Wang, Xiaoying

    2013-08-01

    Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury.

    Science.gov (United States)

    He, Guoqian; Xu, Wenming; Tong, Linyan; Li, Shuaishuai; Su, Shiceng; Tan, Xiaodan; Li, Changqing

    2016-04-01

    Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.

  7. Cordyceps sinensis Oral Liquid Inhibits Damage Induced by Oxygen and Glucose Deprivation in SH-SY5Y Cells.

    Science.gov (United States)

    Zou, Ying-Xin; Liu, Yu-Xiang; Ruan, Ming-Hua; Zhou, Yi; Wang, Jia-Chun; Chu, Zhi-Yong

    2016-01-01

    Cordyceps sinensis has been used in traditional Chinese medicine for thousands of years. It has been demonstrated to have a variety of biological activities, and an extract of it has been demonstrated to possess a protective effect in occlusion-induced focal cerebral ischemia of the middle cerebral artery in rats. It could be explored as an agent for treatment of ischemic stroke, and the mechanisms need to be studied further. The study intended to investigate the protective effects of the Cordyceps sinensis oral liquid (CSOL) against damage induced by oxygen and glucose deprivation (OGD) in SH-SY5Y cells. DESIGN • The research team designed an in vitro study. The study occurred at the Naval Medical Research Institute in Shanghai, China. SH-SY5Y cells were exposed to CSOL in doses of 0.01, 0.03, 0.10, 0.30, and 1.00 mg/mL, creating 5 intervention groups. The OGD condition was induced by transfer of the cells from high-glucose Dulbecco's Modified Eagle's medium (DMEM) in a box gassed with air containing 5% CO2 to glucose-free DMEM in a box gassed with 94% N2, 5% CO2, and 1% O2. Like the cells for the interventions groups, the cells for a model group were cultured with high-glucose DMEM and were transferred to the OGD, but they received no dose of COSL. Cells in a control group were cultured with high-glucose DMEM, were not transferred to the OGD condition, and did not receive any dose of COSL. Cell viability was assayed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The apoptosis and the mitochondrial membrane potential (MMP) were detected by flow cytometry, and the protein expression of caspase-3 was observed by western blot. After exposure to OGD, the cell viability of cells treated with 0.01, 0.03, 0.10, 0.30, and 1.00 mg/mL of CSOL increased in a dose-effect relationship. Compared with the cells in the model group, the treatment of CSOL at all the experimental concentrations significantly inhibited both the cell apoptosis

  8. [Establishment of oxygen and glucose deprive model of in vitro cultured hippocampal neuron and effect of ligustrazine on intracellular Ca+ level in model neurons].

    Science.gov (United States)

    Wan, Hai-tong; Wang, Yu; Yang, Jie-hong

    2007-03-01

    To establish the oxygen and glucose deprive (OGD) model in cultured hippocampal neuron and study the effect of ligustrazine on intracellular Ca2+ level in the model neurons. The OGD model was established in cultured hippocampal neuron, and the intracellular Ca2+ level in it was detected by laser scanning confocal microscope (LSCM). The OGD model was successfully established in cultured hippocampal neurons; the intracellular Ca2+ level in the OGD model group was significantly higher than that in the blank control group (P neuron, which could be antagonized by ligustrazine, indicating that ligustrazine has a protective effect on hippocampal neuron from hypoxic-ischemic injury.

  9. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Kurosh Ameri

    2015-02-01

    Full Text Available Hypoxia-inducible gene domain family member 1A (HIGD1A is a survival factor induced by hypoxia-inducible factor 1 (HIF-1. HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.

  10. [Protective effects of luteolin on neurons against oxygen-glucose deprivation/reperfusion injury via improving Na+/K+ -ATPase activity].

    Science.gov (United States)

    Fang, Lumei; Zhang, Mingming; Ding, Yuemin; Fang, Yuting; Yao, Chunlei; Zhang, Xiong

    2010-04-01

    Luteolin, a flavone, has considerable neuroprotective effects by its anti-oxidative mechanism. However, it is still unclear whether luteolin can protect neurons against oxygen-glucose deprivation/reperfusion (OGD/R) induced injury. After 2 hours oxygen-glucose deprivation and 24 hours reperfusion treatment in primary cultured hippocampal neurons, the neuron viability, survival rate and apoptosis rate were evaluated by MTT assay, lactate dehydrogenase (LDH) leakage assay and Hoechst staining, respectively. The activity of Na+/K+ -ATPase was examined in cultured neurons or in the hippocampus of SD rats treated by 10 minutes global cerebral ischemia and followed 24 hours reperfusion. Treatment by OGD/R markedly reduced neuronal viability, increased LDH leakage rate and increased apoptosis rate. Application of luteolin (10-100 micromol x L(-1)) during OGD inhibited OGD/R induced neuron injury and apoptosis in a dose-dependent manner. Compared to the control group or OGP/R-treated neurons, the activity of Na+/K+ -ATPase was significantly suppressed in global ischemia/reperfusion group or OGD/R-treated neurons. Application of luteolin during ischemia or OGD preserved the Na+/K+ -ATPase activity. Furthermore, inhibition of Na+/K+ -ATPase with ouabain attenuated the protective effect afforded by luteolin. The data provide the evidence that luteolin has neuroprotective effect against OGD/R induced injury and the protective effect may be associated with its ability to improve Na+/K+ -ATPase activity after OGD/R.

  11. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  12. External beam radiation therapy for clinically localized prostate cancer: when and how we optimize with concurrent hormonal deprivation.

    Science.gov (United States)

    Koontz, Bridget F; Lee, W Robert

    2011-10-01

    Androgen deprivation plays a major role in the treatment of prostate cancer.Preclinical studies have shown that androgen deprivation provides both an independent cytotoxic effect and radiosensitization on prostate tumors. For men with non-metastatic prostate cancer, the addition of androgen deprivation to radiotherapy has been shown to improve survival for intermediate and high risk disease compared to radiation alone.This review discusses the clinical trial data regarding combination of androgen deprivation and radiation and provides recommendations for its use in men undergoing radiotherapy for localized prostate cancer.

  13. Oxygen and Glucose Deprivation Induces Bergmann Glia Membrane Depolarization and Ca2+ Rises Mainly Mediated by K+ and ATP Increases in the Extracellular Space

    Directory of Open Access Journals (Sweden)

    Romain Helleringer

    2017-11-01

    Full Text Available During brain ischemia, intense energy deficiency induces a complex succession of events including pump failure, acidosis and exacerbated glutamate release. In the cerebellum, glutamate is the principal mediator of Purkinje neuron anoxic depolarization during episodes of oxygen and glucose deprivation (OGD. Here, the impact of OGD is studied in Bergmann glia, specialized astrocytes closely associated to Purkinje neurons. Patch clamp experiments reveal that during OGD Bergmann glial cells develop a large depolarizing current that is not mediated by glutamate and purinergic receptors but is mainly due to the accumulation of K+ in the extracellular space. Furthermore, we also found that increases in the intracellular Ca2+ concentration appear in Bergmann glia processes several minutes following OGD. These elevations require, in an early phase, Ca2+ mobilization from internal stores via P2Y receptor activation, and, over longer periods, Ca2+ entry through store-operated calcium channels. Our results suggest that increases of K+ and ATP concentrations in the extracellular space are primordial mediators of the OGD effects on Bergmann glia. In the cerebellum, glial responses to energy deprivation-triggering events are therefore highly likely to follow largely distinct rules from those of their neuronal counterparts.

  14. Curcumin protects cortical neurons against oxygen and glucose deprivation/reoxygenation injury through flotillin-1 and extracellular signal-regulated kinase1/2 pathway.

    Science.gov (United States)

    Lu, Zhengyu; Liu, Yanping; Shi, Yang; Shi, Xinjie; Wang, Xin; Xu, Chuan; Zhao, Hong; Dong, Qiang

    2018-02-05

    In this study, we provided evidence that curcumin could be a promising therapeutic agent for ischemic stroke by activating neuroprotective signaling pathways. Post oxygen and glucose deprivation/reoxygenation (OGD/R), primary mouse cortical neurons treated with curcumin exhibited a significant decrease in cell death, LDH release and enzyme caspase-3 activity under OGD/R circumstances, which were abolished by flotillin-1 downregulation or extracellular signal-regulated kinase (ERK) inhibitor. Moreover, flotillin-1 knockdown led to suppression of curcumin-mediated ERK phosphorylation under OGD/R condition. Based on these findings, we concluded that curcumin could confer neuroprotection against OGD/R injury through a novel flotillin-1 and ERK1/2 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Comparative Study of the Effect of Baicalin and Its Natural Analogs on Neurons with Oxygen and Glucose Deprivation Involving Innate Immune Reaction of TLR2/TNFα

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2012-01-01

    Full Text Available This work is to study the baicalin and its three analogs, baicalin, wogonoside, and wogonin, on the protective effect of neuron from oxygen-glucose deprivation (OGD and toll-like receptor 2 (TLR2 expression in OGD damage. The results showed that baicalin and its three analogs did protect neurons from OGD damage and downregulated protein level of TLR2. D-Glucopyranosiduronic acid on site 7 in the structure played a core of cytotoxicity of these flavonoid analogs. The methoxyl group on carbon 8 of the structure had the relation with TLR2 protein expression, as well as the anti-inflammation. In addition, we detected caspase3 and antioxidation capability, to investigate the effect of four analogs on cell apoptosis and total antioxidation competence in OGD model.

  16. Pitavastatin treatment induces neuroprotection through the BDNF-TrkB signalling pathway in cultured cerebral neurons after oxygen-glucose deprivation.

    Science.gov (United States)

    Cui, Xiaoyan; Fu, Zhenqiang; Wang, Menghan; Nan, Xiaofei; Zhang, Boai

    2018-05-01

    Along with their lipid-lowering effect, statins have been reported to have neuroprotective function in both in vivo and in vitro models of neurodegenerative diseases. We conducted this study in order to uncover the he neuroprotective effect of the lipophilic statin pitavastatin (PTV) and investigate the underlying molecular mechanisms using primary cultured cerebral neurons exposed to oxygen-glucose deprivation (OGD). The primary cultured cerebral neurons were randomly assigned into four groups: the control group, the pitavastatin treatment group, the OGD group and the OGD + pitavastatin treatment group. The pitavastatin's concentration were set as follows: 1μM, 15μM, 30μM. After 3 hours OGD treatment, we use MTT method to assessment cell viability, immunofluorescence to observe neuron morphology and western blot method analysis the BDNF, TrkB. PTV at concentrations of 1 μM and 15 μM elevated the survival rate of cortical neurons exposed to OGD, whereas 30 μM PTV did not show such an effect. Moreover, PTV promoted neuronal dendrite growth at concentrations of 1 μM and 15 μM. Increased expression levels of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were observed in both of the following two scenarios: when neurons were treated with PTV for 48 hours and when PTV was added after the OGD procedure. Pitavastatin treatment induces neuroprotection in cultured cerebral neurons after oxygen-glucose deprivation this neuroprotection induced by PTV involves the BDNF-TrkB signalling pathway.

  17. Superoxide dismutase/catalase mimetics but not MAP kinase inhibitors are neuroprotective against oxygen/glucose deprivation-induced neuronal death in hippocampus.

    Science.gov (United States)

    Zhou, Miou; Dominguez, Reymundo; Baudry, Michel

    2007-12-01

    Although oxygen/glucose deprivation (OGD) has been widely used as a model of ischemic brain damage, the mechanisms underlying acute neuronal death in this model are not yet well understood. We used OGD in acute hippocampal slices to investigate the roles of reactive oxygen species and of the mitogen-activated protein kinases (MAPKs) in neuronal death. In particular, we tested the neuroprotective effects of two synthetic superoxide dismutase/catalase mimetics, EUK-189 and EUK-207. Acute hippocampal slices prepared from 2-month-old or postnatal day 10 rats were exposed to oxygen and glucose deprivation for 2 h followed by 2.5 h reoxygenation. Lactate dehydrogenase (LDH) release in the medium and propidium iodide (PI) uptake were used to evaluate cell viability. EUK-189 or EUK-207 applied during the OGD and reoxygenation periods decreased LDH release and PI uptake in slices from 2-month-old rats. EUK-189 or EUK-207 also partly blocked OGD-induced ATP depletion and extracellular signal-regulated kinases 1 and 2 (ERK1/2) dephosphorylation, and completely eliminated reactive oxygen species generation. The MEK inhibitor U0126 applied together with EUK-189 or EUK-207 completely blocked ERK1/2 activation, but had no effect on their protective effects against OGD-induced LDH release. U0126 alone had no effect on OGD-induced LDH release. EUK-207 had no effect on OGD-induced p38 or c-Jun N-terminal kinase dephosphorylation, and when the p38 inhibitor SB203580 was applied together with EUK-207, it had no effect on the protective effects of EUK-207. SB203580 alone had no effect on OGD-induced LDH release either. In slices from p10 rats, OGD also induced high-LDH release that was partly reversed by EUK-207; however, neither OGD nor EUK-207 produced significant changes in ERK1/2 and p38 phosphorylation. OGD-induced spectrin degradation was not modified by EUK-189 or EUK-207 in slices from p10 or 2-month-old rats, suggesting that their protective effects was not mediated through

  18. Optimal duration of androgen deprivation therapy following radiation therapy in intermediate- or high-risk non-metastatic prostate cancer: a systematic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Frederico; Figueiredo, Maximiliano Augusto Novis de; Sasse, Andre Deeke, E-mail: sasse@cevon.com.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2015-05-15

    Objectives: to investigate current evidence on the optimal duration of adjuvant hormone deprivation for prostate cancer treated with radiation therapy with curative intent. Materials and Methods: A systematic search was performed in electronic databases. Data from randomized trials comparing different durations of hormone blockade was collected for pooled analysis. Overall survival, disease-free survival, disease-specific survival and toxicity were the outcomes of interest. Meta-analyses were performed using random-effects model. Results: Six studies met the eligibility criteria. For overall survival, the pooled data from the studies demonstrated a statistically significant benefit for longer hormone deprivation (Hazard Ratio 0.84; 95% CI 0.74 - 0.96). A statistically significant benefit was also found for disease-free survival (Hazard Ratio 0.74; 95% CI 0.62 - 0.89), and disease-specific survival (Hazard Ratio 0.73; 95% CI 0.62 - 0.85). Studies with longer blockade duration arm demonstrated greater benefit. Toxicity was low, with no increase in cardiovascular events. Conclusions: Longer duration of androgen deprivation combined to radiotherapy prolongs OS, DFS and DSS in patients with intermediate and high-risk non-metastatic prostate cancer. However, this evidence is based on trials using older radiation techniques, and further research of combination of androgen deprivation and new RT technologies may be warranted. (author)

  19. Rubia cordifolia, Fagonia cretica linn and Tinospora cordifolia exert neuroprotection by modulating the antioxidant system in rat hippocampal slices subjected to oxygen glucose deprivation

    Directory of Open Access Journals (Sweden)

    Biswas Saibal K

    2004-08-01

    Full Text Available Abstract Background The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis and ultimately cell death. Rubia cordifolia (RC, Fagonia cretica linn (FC and Tinospora cordifolia (TC have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. However, their mechanism of action was largely unknown. We therefore selected these herbs for the present study to test their neuroprotective ability and the associated mechanism in rat hippocampal slices subjected to oxygen-glucose deprivation (OGD. Methods Hippocampal Slices were subjected to OGD (oxygen glucose deprivation and divided into 3 groups: control, OGD and OGD + drug treated. Cytosolic Cu-Zn superoxide dismutase (Cu-Zn SOD, reduced glutathione (GSH, glutathione peroxidase (GPx, nitric oxide (NO was measured as nitrite (NO2 in the supernatant and protein assays were performed in the respective groups at various time intervals. EPR was used to establish the antioxidant effect of RC, FC and TC with respect to superoxide anion (O2.-, hydroxyl radicals (. OH, nitric oxide (NO radical and peroxynitrite anion (ONOO generated from pyrogallol, menadione, DETA-NO and Sin-1 respectively. RT-PCR was performed for the three groups for GCLC, iNOS, Cu-Zn SOD and GAPDH gene expression. Results All the three herbs were effective in elevating the GSH levels, expression of the gamma-glutamylcysteine ligase and Cu-Zn SOD genes. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as studied by electron paramagnetic resonance spectroscopy. In addition all the three herbs significantly diminished the expression of iNOS gene after 48 hours which plays a major role in neuronal injury during hypoxia/ischemia. Conclusions RC, FC and TC therefore attenuate oxidative stress mediated cell injury during OGD

  20. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices

    International Nuclear Information System (INIS)

    Rawal, Avinash; Muddeshwar, Manohar; Biswas, Saibal

    2004-01-01

    The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO 2 )]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O2-), hydroxyl radicals (OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO - ) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of γ-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage

  1. Edaravone protects against oxygen-glucose-serum deprivation/restoration-induced apoptosis in spinal cord astrocytes by inhibiting integrated stress response

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2017-01-01

    Full Text Available We previously found that oxygen-glucose-serum deprivation/restoration (OGSD/R induces apoptosis of spinal cord astrocytes, possibly via caspase-12 and the integrated stress response, which involves protein kinase R-like endoplasmic reticulum kinase (PERK, eukaryotic initiation factor 2-alpha (eIF2α and activating transcription factor 4 (ATF4. We hypothesized that edaravone, a low molecular weight, lipophilic free radical scavenger, would reduce OGSD/R-induced apoptosis of spinal cord astrocytes. To test this, we established primary cultures of rat astrocytes, and exposed them to 8 hours/6 hours of OGSD/R with or without edaravone (0.1, 1, 10, 100 μM treatment. We found that 100 μM of edaravone significantly suppressed astrocyte apoptosis and inhibited the release of reactive oxygen species. It also inhibited the activation of caspase-12 and caspase-3, and reduced the expression of homologous CCAAT/enhancer binding protein, phosphorylated (p-PERK, p-eIF2α, and ATF4. These results point to a new use of an established drug in the prevention of OGSD/R-mediated spinal cord astrocyte apoptosis via the integrated stress response.

  2. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cheng

    2016-01-01

    Full Text Available The opening of mitochondrial permeability transition pore (mPTP is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS and glycogen synthase kinase 3β (GSK-3β, in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9 phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9 was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation.

  3. PERK pathway is involved in oxygen-glucose-serum deprivation-induced NF-kB activation via ROS generation in spinal cord astrocytes.

    Science.gov (United States)

    Liu, Jinbo; Du, Lijian

    2015-11-13

    Mitochondrial dysfunction is a direct target of hypoxic/ischemic stress in astrocytes, which results in the increased production of reactive oxygen species (ROS). Previous reports showed that ROS can activate NF-kB in spinal cord astrocytes, which occurs as a secondary injury during the pathological process of spinal cord injury (SCI). Protein kinase RNA (PKR)-like ER kinase (PERK) plays an important role in mitochondrial dysfunction. To elucidate the specific role of PERK in hypoxic/ischemic-induced NF-kB activation in spinal astrocytes, we utilized an in vitro oxygen-glucose deprivation (OGD) model, which showed an enhanced formation of ROS and NF-kB activation. Knockdown of PERK resulted in reduced activation of PERK and ROS generation in astrocytes under OGD conditions. Notably, the knockdown of PERK also induced NF-kB activation in astrocytes. These data suggest that PERK is required for the hypoxic/ischemic-induced-dependent regulation of ROS and that it is involved in NF-kB activation in the astrocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    Science.gov (United States)

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. [Effects of naloxone on the expression of stem cell factor and C-kit receptor in combined oxygen-glucose deprivation of primary cultured human embryonic neuron in vitro].

    Science.gov (United States)

    Zhu, Bo; Li, Lan-ying; Lü, Guo-yi; Xue, Yu-liang; Ye, Tie-hu

    2010-04-01

    To explore the effects of naloxone on the expression of c-kit receptor (c-kit R) and its ligand stem cell factor (SCF) in human embryo neuronal hypoxic injury. Serum-free cerebral cortical cultures prepared from embryonic human brains were deprived of both oxygen and glucose which would set up an environment more likely with that of in vivo ischemic injury. Neurons in 24-well culture plates were randomly divided into four groups: control group, hypoxia group, naloxone 0.5 microg/ml group and naloxone 10 microg/ml group. MTT assay and biological analysis were performed to study the cell death and the changes of extracellular concentrations of lactate dehydrogenase (LDH) after combined oxygen-glucose deprivation. Neurons in 25 ml culture flasks were also randomly allocated into four groups as previously described. Intracellular total RNA were extracted at different time points: pre-hypoxia, immediately after hypoxia, and 3, 6, 12, and 24 hours after reoxygenation. The changes of SCF/c-kit R mRNA expression in hypoxic neurons treated with different concentrations of naloxone pre and post oxygen-glucose deprivation were determined with RT-PCR. The cell vitality detected by MTT assay decreased significantly in hypoxia group and naloxone 0.5 microg/ml group when compared with control group (Pcontrol group. Extracellular concentration of LDH significantly increased in hypoxia group (Pcontrol group, between naloxone 0.5 microg/ml and hypoxia group, or between naloxone 10 microg/ml and control group (all P>0.05). Immediately after oxygen-glucose deprivation, the expression of SCF/c-kit R mRNA increased significantly (Pcontrol group (Pglucose deprivation. Naloxone 0.5 microg/ml can attenuate cell injuries and regulate the expression of SCF/c-kit R. Naloxone may protect neurons by modulating the expressions of some cytokines.

  6. 1,8-Cineole ameliorates oxygen-glucose deprivation/reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia.

    Science.gov (United States)

    Ryu, Sangwoo; Park, Hyeon; Seol, Geun Hee; Choi, In-Young

    2014-12-01

    1,8-Cineole, the main monoterpene in many essential oils, has been used as an ingredient in flavourings and medicine. 1,8-Cineole has been shown to possess pharmacological properties, including anti-oxidative, anti-inflammatory and anti-nociceptive actions. However, to date, no studies have examined the potential of 1,8-cineole to protect against cerebral ischaemic injury. In this study, we investigated the neuroprotective effects of 1,8-cineole against cortical neuronal/glial cell injury caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in an in-vitro model of ischaemia. 1,8-Cineole significantly attenuated OGD/R-induced cortical cell injury, as well as reduced n-methyl-d-aspartate (NMDA)-induced cell injury. However, it did not inhibit NMDA-induced cytosolic calcium overload. Nevertheless, 1,8-cineole significantly reduced the OGD/R- and NMDA-induced overproduction of reactive oxygen species (ROS). These results indicate that 1,8-cineole exerts neuroprotection through its anti-oxidative rather than its anti-excitotoxic, properties. The decrease in OGD/R-induced intracellular superoxide in 1,8-cineole-treated cortical cells was associated with the upregulation of superoxide dismutase activity. Moreover, 1,8-cineole showed direct ROS scavenging activity in an assay of oxygen radical absorbance capacity. Collectively, these results suggest 1,8-cineole as a potentially effective neuroprotective and anti-oxidative candidate for the treatment of patients with ischaemic stroke. © 2014 Royal Pharmaceutical Society.

  7. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    International Nuclear Information System (INIS)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-01-01

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1

  8. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zheng, Ruimao, E-mail: rmzheng@pku.edu.cn [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zhu, Shigong, E-mail: sgzhu@bjmu.edu.cn [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China)

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  9. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    Science.gov (United States)

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human

  10. The cholinergic pathway alleviates acute oxygen and glucose deprivation induced renal tubular cell injury by reducing the secretion of inflammatory medium of macrophages

    Directory of Open Access Journals (Sweden)

    Ming WU

    2017-10-01

    Full Text Available Objective To investigate the effects of cholinergic pathway on acute renal tubular cell injury induced by acute oxygen and glucose deprivation. Methods Rat kidney macrophages were isolated and cultured for constructing macrophages and renal epithelial cells co-cultivating model of oxygen-glucose deprivation (OGD, and the model cells were divided into three groups: OGD alone group, acetylcholine (ACh 100μmol/L+OGD group and ACh + galantamine (Gal 10μmol/L+OGD group. The cells underwent OGD treatment for 1 hour, and normally cultured for 24 hours. The expressions of TNF alpha, IL-1 beta, and IL-10 in supernatant fluid were detected by ELISA, the renal tubular cell viability was determined by MTT assay, the expression of acetylcholine esterase (AChE mRNA and protein were determined by RT-qPCR and Western blotting. The activity of AChE was determined by colorimetric method. Results The expressions of TNF alpha (pg/ml in OGD, Ach+OGD group, Ach+Gal+OGD groups were 140.2±44.81, 119.46±4.42 and 103.31±1.62 respectively (P0.05; The values of renal tubular cell proliferation were 55.02%±6.28%, 66.65%±6.47%, and 79.75%±4.22% respectively (P0.05; those of AchE protein were 0.66±0.07, 0.74±0.04 and 0.67±0.06 respectively (P>0.05; The activity of AChE (kU/L was 0.51±0.02, 0.35±0.05 and 0.32±0.04 respectively (P=0.001, 0.001 and 0.368. Conclusions ACh and Gal could inhibit the secretion of inflammatory mediators and cholinesterase activity and can reduce the acute hypoxic renal tubular cell injury. The modulation of the cholinergic pathway in macrophages may be the important treatment method for acute renal injury in the future. DOI: 10.11855/j.issn.0577-7402.2017.08.01

  11. High glutamate attenuates S100B and LDH outputs from rat cortical slices enhanced by either oxygen-glucose deprivation or menadione.

    Science.gov (United States)

    Demircan, Celaleddin; Gül, Zülfiye; Büyükuysal, R Levent

    2014-07-01

    One hour incubation of rat cortical slices in a medium without oxygen and glucose (oxygen-glucose deprivation, OGD) increased S100B release to 6.53 ± 0.3 ng/ml/mg protein from its control value of 3.61 ± 0.2 ng/ml/mg protein. When these slices were then transferred to a medium containing oxygen and glucose (reoxygenation, REO), S100B release rose to 344 % of its control value. REO also caused 192 % increase in lactate dehydrogenase (LDH) leakage. Glutamate added at millimolar concentration into the medium decreased OGD or REO-induced S100B release and REO-induced LDH leakage. Alpha-ketoglutarate, a metabolic product of glutamate, was found to be as effective as glutamate in decreasing the S100B and LDH outputs. Similarly lactate, 2-ketobutyrate and ethyl pyruvate, a lipophilic derivative of pyruvate, also exerted a glutamate-like effect on S100B and LDH outputs. Preincubation with menadione, which produces H2O2 intracellularly, significantly increased S100B and LDH levels in normoxic medium. All drugs tested in the present study, with the exception of pyruvate, showed a complete protection against menadione preincubation. Additionally, each OGD-REO, menadione or H2O2-induced mitochondrial energy impairments determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining and OGD-REO or menadione-induced increases in reactive oxygen substances (ROS) determined by 2,7-dichlorofluorescin diacetate (DCFH-DA) were also recovered by glutamate. Interestingly, H2O2-induced increase in fluorescence intensity derived from DCFH-DA in a slice-free physiological medium was attenuated significantly by glutamate and alpha-keto acids. All these drug actions support the conclusion that high glutamate, such as alpha-ketoglutarate and other keto acids, protects the slices against OGD- and REO-induced S100B and LDH outputs probably by scavenging ROS in addition to its energy substrate metabolite property.

  12. Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes.

    Science.gov (United States)

    Xia, Xun; Ma, Yuan; Yang, Li-Bin; Cheng, Jing-Ming; Yang, Tao; Fan, Ke-Xia; Li, Yun-Ming; Liu, En-Yu; Cheng, Lin; Huang, Hai-Dong; Gu, Jian-Wen; Kuang, Yong-Qin

    2016-08-01

    Heat shock protein A 12B (HSPA12B) is a newly discovered member of the heat shock protein 70 family. Preclinical evidence indicates that HSPA12B helps protect the brain from ischemic injury, although its specific function remains unclear. The aim of this study is to investigate whether HSPA12B overexpression can protect astrocytes from oxygen-glucose-serum deprivation/restoration (OGD/R) injury. We analyzed the effects of HSPA12B overexpression on spinal cord ischemia-reperfusion injury and spinal astrocyte survival. After ischemia-reperfusion injury, we found that HSPA12B overexpression decreased spinal cord water content and infarct volume. MTT assay showed that HSPA12B overexpression increased astrocyte survival after OGD/R treatment. Flow cytometry results showed a marked inhibition of OGD/R-induced astrocyte apoptosis. Western blot assay showed that HSPA12B overexpression significantly increased regulatory protein B-cell lymphocyte 2 (Bcl-2) levels, whereas it decreased expression of the Bax protein, which forms a heterodimer with Bcl-2. Measurements of the level of activation of caspase-3 by Caspase-Glo®3/7 Assay kit showed that HSPA12B overexpression markedly inhibited caspase-3 activation. Notably, we demonstrated that the effects of HSPA12B on spinal astrocyte survival depended on activation of the PI3K/Akt signal pathway. These findings indicate that HSPA12B protects against spinal cord ischemia-reperfusion injury and may represent a potential treatment target.

  13. [TRPM8 mediates PC-12 neuronal cell apoptosis induced by oxygen-glucose deprivation through cAMP-PKA/UCP4 signaling].

    Science.gov (United States)

    Li, Hong-Wei; Zhou, Bin; Zhang, Hai-Hong

    2016-08-20

    To explore the molecular mechanism responsible for apoptosis of PC-12 neuronal cells induced by oxygen-glucose deprivation (OGD). PC12 cells were exposed to OGD for 24 h to simulate ischemia-reperfusion injury. Flow cytometry was employed detect the cell apoptosis, and the expresions of TRPM8, UCP4, cAMP and PKA in the exposed cells were detected with RT-PCR and Western blotting. The changes in the expressions of Bax, Bcl-2, cAMP, PKA and UCP4 proteins were detected in the exposed cells in resposne to inhibition of TRPM8 and cAMP-PKA signal or over-expression of UCP4. OGD for 24 induced obvious apoptosis in PC-12 cells and caused TRPM8 over-expression and inhibition of UCP4 and cAMP-PKA signaling. Inhibiting TRPM8 expression reduced the cell apoptosis and up-regulated cAMP, p-PKA and UCP4 in the cells exposed to OGD. In cells exposed to OGD, inhibition of TRPM8 and cAMP-PKA signaling suppressed the expressio of UCP4 and increased the cell apoptosis. TRPM8 mediates OGD-induced PC12 cell apoptosis through cAMP-PKA/UCP4 signaling.

  14. Let-7i attenuates human brain microvascular endothelial cell damage in oxygen glucose deprivation model by decreasing toll-like receptor 4 expression.

    Science.gov (United States)

    Xiang, Wei; Tian, Canhui; Peng, Shunli; Zhou, Liang; Pan, Suyue; Deng, Zhen

    2017-11-04

    The let-7 family of microRNAs (miRNAs) plays an important role on endothelial cell function. However, there have been few studies on their role under ischemic conditions. In this study, we demonstrate that let-7i, belonging to the let-7 family, rescues human brain microvascular endothelial cells (HBMECs) in an oxygen-glucose deprivation (OGD) model. Our data show that the expression of let-7 family miRNAs was downregulated after OGD. Overexpression of let-7i significantly alleviated cell death and improved survival of OGD-treated HBMECs. Let-7i also protected permeability in an in vitro blood brain barrier (BBB) model. Further, let-7i downregulated the expression of toll-like receptor 4 (TLR4), an inflammation trigger. Moreover, overexpression of let-7i decreased matrix metallopeptidase 9 (MMP9) and inducible nitric oxide synthase (iNOS) expression under OGD. Upon silencing TLR4 expression in HBMECs, the anti-inflammatory effect of let-7i was abolished. Our research suggests that let-7i promotes OGD-induced inflammation via downregulating TLR4 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Activated microglia induce bone marrow mesenchymal stem cells to produce glial cell-derived neurotrophic factor and protect neurons against oxygen-glucose deprivation injury

    Directory of Open Access Journals (Sweden)

    Bingke Lv

    2016-12-01

    Full Text Available In this study, we investigated interactions among microglia (MG, bone marrow mesenchymal stem cells (BMSCs and neurons in cerebral ischemia and the potential mechanisms using an in vitro oxygen-glucose deprivation (OGD model. Rat BMSCs were incubated with conditioned medium (CM from in vitro cultures of OGD-activated rat MG and murine BV2 MG cells. Effects of glial cell-derived neurotrophic factor (GDNF on rat neuron viability, apoptosis, lactate dehydrogenase (LDH leakage and mitochondrial membrane potential (MMP were analyzed in this model. OGD-activated MG promoted GDNF production by BMSCs (P < 0.01. TNFα, but not IL6 or IL1β, promoted GDNF production by BMSCs (P < 0.001. GDNF or CM pre-treated BMSCs elevated neuronal viability and suppressed apoptosis (P < 0.05 or P < 0.01; these effects were inhibited by the RET antibody. GDNF activated MEK/ERK and PI3K/AKT signaling but not JNK/c-JUN. Furthermore, GDNF upregulated B cell lymphoma 2 (BCL2 and heat shock 60 kDa protein 1 (HSP60 levels, suppressed LDH leakage, and promoted MMP. Thus, activated MG produce TNFα to stimulate GDNF production by BMSCs, which prevents and repairs OGD-induced neuronal injury, possibly via regulating MEK/ERK and PI3K/AKT signaling. These findings will facilitate the prevention and treatment of neuronal injury by cerebral ischemia.

  16. Effects of Ginkgo biloba extract on the apoptosis of oxygen and glucose-deprived SH-SY5Y cells and its mechanism.

    Science.gov (United States)

    Ba, Xiao-Hong; Min, Lian-Qiu

    2015-01-01

    The aim was to observe the effects of the extract of Ginkgo biloba (EGb761) on the apoptosis of oxygen and glucose-deprived (OGD) human neuroblastoma cells (SH-SY5Y) cells and explore its mechanism. SH-SY5Y cells were divided into normal control group, OGD group, OGD for 4 h and EGb761-pretreated groups including very low-concentration (20 μg/ml), low-concentration group (25 μg/ml), moderate-concentration group (50 μg/ml) and high-concentration group (100 μg/ml). Twenty four hours after reoxygenation, cell viability was determined with 3-[4, 5-dimehyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide assay, apoptosis rate was detected with annexin V-fluorescein isothiocyanate/propidium iodide double staining flow cytometry and the protein level of apoptosis-inducing factor (AIF) was observed with immunofluorescence technique in each group. Cell viability was significantly lower in OGD group than in EGb761-pretreated groups, especially in moderate-concentration group (50 μg/ml) (P cells probably through inhibiting AIF nuclear translocation. This study provides a theoretical basis for the application of EGb761 in clinical practice.

  17. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation.

    Science.gov (United States)

    Cross, Jane L; Boulos, Sherif; Shepherd, Kate L; Craig, Amanda J; Lee, Sharon; Bakker, Anthony J; Knuckey, Neville W; Meloni, Bruno P

    2012-07-01

    In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  18. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    Science.gov (United States)

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  19. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux.

    Science.gov (United States)

    Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan

    2017-09-15

    Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.

  20. Hsp20 Protects against Oxygen-Glucose Deprivation/Reperfusion-Induced Golgi Fragmentation and Apoptosis through Fas/FasL Pathway

    Directory of Open Access Journals (Sweden)

    Bingwu Zhong

    2015-01-01

    Full Text Available Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.

  1. Evaluation of Connexin 43 Redistribution and Endocytosis in Astrocytes Subjected to Ischemia/Reperfusion or Oxygen-Glucose Deprivation and Reoxygenation

    Directory of Open Access Journals (Sweden)

    Hongyan Xie

    2017-01-01

    Full Text Available Connexin 43 (Cx43 is the major component protein in astrocytic gap junction communication. Recent studies have shown the cellular processes of gap junction internalization and degradation, but many details remain unknown. This study investigated the distribution of Cx43 and its mechanism after ischemic insult. Astrocyte culture system and a model of ischemia/reperfusion (IR or oxygen-glucose deprivation and reoxygenation (OGDR were established. Cx43 distribution was observed by laser scanning confocal microscopy under different cultivation conditions. Western blot and RT-PCR assays were applied to quantify Cx43 and MAPRE1 (microtubule-associated protein RP/EB family member 1 expression at different time points. The total number of Cx43 was unchanged in the normal and IR/OGDR groups, but Cx43 particles in the cytoplasm of the IR/OGDR group were significantly greater than that of the normal group. Particles in the cytoplasm were significantly fewer after endocytosis was blocked by dynasore. There was no difference among the groups at each time point regarding protein or gene expression of MAPRE1. We concluded that internalization of Cx43 into the cytoplasm occurred during ischemia, which was partially mediated through endocytosis, not by the change of Cx43 quantity. Moreover, internalization was not related to microtubule transport.

  2. PirB Overexpression Exacerbates Neuronal Apoptosis by Inhibiting TrkB and mTOR Phosphorylation After Oxygen and Glucose Deprivation Injury.

    Science.gov (United States)

    Zhao, Zhao-Hua; Deng, Bin; Xu, Hao; Zhang, Jun-Feng; Mi, Ya-Jing; Meng, Xiang-Zhong; Gou, Xing-Chun; Xu, Li-Xian

    2017-05-01

    Previous studies have proven that paired immunoglobulin-like receptor B (PirB) plays a crucial suppressant role in neurite outgrowth and neuronal plasticity after central nervous system injury. However, the role of PirB in neuronal survival after cerebral ischemic injury and its mechanisms remains unclear. In the present study, the role of PirB is investigated in the survival and apoptosis of cerebral cortical neurons in cultured primary after oxygen and glucose deprivation (OGD)-induced injury. The results have shown that rebarbative PirB exacerbates early neuron apoptosis and survival. PirB gene silencing remarkably decreases early apoptosis and promotes neuronal survival after OGD. The expression of bcl-2 markedly increased and the expression of bax significantly decreased in PirB RNAi-treated neurons, as compared with the control- and control RNAi-treated ones. Further, phosphorylated TrkB and mTOR levels are significantly downregulated in the damaged neurons. However, the PirB silencing markedly upregulates phosphorylated TrkB and mTOR levels in the neurons after the OGD. Taken together, the overexpression of PirB inhibits the neuronal survival through increased neuron apoptosis. Importantly, the inhibition of the phosphorylation of TrkB and mTOR may be one of its mechanisms.

  3. [Protective effect of pretreatment of Salvia miltiorrhiza Bunge. f. alba plasma against oxygen-glucose deprivation-induced injury of cultured rat hippocampal neurons by inhibiting apoptosis].

    Science.gov (United States)

    Li, Mei-Yi; Zhang, Yan-Bo; Zuo, Huan; Liu, Li-Li; Niu, Jing-Zhong

    2012-02-25

    The present study was to investigate the effect of Salvia miltiorrhiza Bunge. f. alba (SMA) pharmacological pretreatment on apoptosis of cultured hippocampal neurons from neonate rats under oxygen-glucose deprivation (OGD). Cultured hippocampal neurons were randomly divided into five groups (n = 6): normal plasma group, low dose SMA plasma (2.5%) group, middle dose SMA plasma (5%) group, high dose SMA plasma (10%) group and control group. The hippocampal neurons were cultured and treated with plasma from adult Wistar rats intragastrically administered with saline or aqueous extract of SMA. The apoptosis of neurons was induced by glucose-free Earle's solution containing 1 mmol/L Na2S2O4 and labeled by MTT and Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in control group, whereas the number of apoptotic cells was greatly increased in normal plasma group and low dose SMA plasma group. Both middle and high dose SMA plasma could protect cultured hippocampal neurons from apoptosis induced by OGD (P control, normal plasma and low dose SMA plasma groups, middle and high dose SMA plasma groups both showed significantly higher levels of Bcl-2 (P neurons by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax.

  4. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro.

    Science.gov (United States)

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca 2+ -activated K + channel (BK Ca ) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca 2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BK Ca channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BK Ca channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca 2+ and preventing neuronal apoptosis, and this is mediated by BK Ca channel activation.

  5. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen-glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures

    DEFF Research Database (Denmark)

    Montero, Maria; Rom Poulsen, Frantz; Noraberg, Jens

    2007-01-01

    of hematopoietic bioactivity, is the chemically modified, EPO-derivative carbamylerythropoietin (CEPO). For comparison of the neuroprotective effects of CEPO and EPO, we subjected organotypic hippocampal slice cultures to oxygen-glucose deprivation (OGD) or N-methyl-d-aspartate (NMDA) excitotoxicity. Hippocampal...... slice cultures were pretreated for 24 h with 100 IU/ml EPO (=26 nM) or 26 nM CEPO before OGD or NMDA lesioning. Exposure to EPO and CEPO continued during OGD and for the next 24 h until histology, as well as during the 24 h exposure to NMDA. Neuronal cell death was quantified by cellular uptake...... of propidium iodide (PI), recorded before the start of OGD and NMDA exposure and 24 h after. In cultures exposed to OGD or NMDA, CEPO reduced PI uptake by 49+/-3 or 35+/-8%, respectively, compared to lesion-only controls. EPO reduced PI uptake by 33+/-5 and 15+/-8%, respectively, in the OGD and NMDA exposed...

  6. Near infrared radiation protects against oxygen-glucose deprivation-induced neurotoxicity by down-regulating neuronal nitric oxide synthase (nNOS) activity in vitro.

    Science.gov (United States)

    Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying

    2015-06-01

    Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.

  7. Effects of acetylpuerarin on hippocampal neurons and intracellular free calcium subjected to oxygen-glucose deprivation/reperfusion in primary culture.

    Science.gov (United States)

    Liu, Rui; Wei, Xin-bing; Zhang, Xiu-Mei

    2007-05-25

    This study was undertaken to find out the effects of acetylpuerarin on hippocampal neurons and intracellular free calcium in primary culture subjected to oxygen-glucose deprivation/reperfusion. According to different reperfusion time (1 h, 6 h, 12 h, 24 h), three concentrations (1.6 micromol l(-1), 0.4 micromol l(-1), 0.1 micromol l(-1)) of acetylpuerarin, and MK-801 (10 micromol l(-1)), a positive control drug, neurons were randomly divided into 21 groups. Each group was observed by inverted phase contrast microscope; neuron viability was measured by the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT); intracellular Ca(2+) was observed by Fura-2/AM ester through fluorospectrophotometer. The injured neurons were protected and degeneration and necrosis were alleviated in treatment groups of acetylpuerarin and MK-801. Acetylpuerarin increased the neuron viability at high, middle and low concentrations. Fluorescence detection results showed that the calcium concentration in the group treated with acetylpuerarin and MK-801 was lowered in each reperfusion time. Our results demonstrated that acetylpuerarin could protect the hippocampal neurons from ischemia-reperfusion injury in rats by alleviating the morphological damage, increasing neuron viability and decreasing calcium concentration in neuron.

  8. [Lessening effect of hypoxia-preconditioned rat cerebrospinal fluid on oxygen-glucose deprivation-induced injury of cultured hippocampal neurons in neonate rats and possible mechanism].

    Science.gov (United States)

    Niu, Jing-Zhong; Zhang, Yan-Bo; Li, Mei-Yi; Liu, Li-Li

    2011-12-25

    The present study was to investigate the effect of cerebrospinal fluid (CSF) from the rats with hypoxic preconditioning (HPC) on apoptosis of cultured hippocampal neurons in neonate rats under oxygen glucose deprivation (OGD). Adult Wistar rats were exposed to 3 h of hypoxia for HPC, and then their CSF was taken out. Cultured hippocampal neurons from the neonate rats were randomly divided into four groups (n = 6): normal control group, OGD group, normal CSF group and HPC CSF group. OGD group received 1.5 h of incubation in glucose-free Earle's solution containing 1 mmol/L Na2S2O4, and normal and HPC CSF groups were subjected to 1 d of corresponding CSF treatments followed by 1.5 h OGD. The apoptosis of neurons was analyzed by confocal laser scanning microscope and flow cytometry using Annexin V/PI double staining. Moreover, protein expressions of Bcl-2 and Bax were detected by immunofluorescence. The results showed that few apoptotic cells were observed in normal control group, whereas the number of apoptotic cells was greatly increased in OGD group. Both normal and HPC CSF could decrease the apoptosis of cultured hippocampal neurons injured by OGD (P neurons by up-regulating expression of Bcl-2 and down-regulating expression of Bax.

  9. Naoxintong Protects Primary Neurons from Oxygen-Glucose Deprivation/Reoxygenation Induced Injury through PI3K-Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2016-01-01

    Full Text Available Naoxintong capsule (NXT, developed from Buyang Huanwu Decoction, has shown the neuroprotective effects in cerebrovascular diseases, but the neuroprotection mechanisms of NXT on ischemia/reperfusion injured neurons have not yet been well known. In this study, we established the oxygen-glucose deprivation/reoxygenation (OGD/R induced neurons injury model and treat the neurons with cerebrospinal fluid containing NXT (BNC to investigate the effects of NXT on OGD/R induced neurons injury and potential mechanisms. BNC improved neuron viability and decreased apoptotic rate induced by OGD/R. BNC attenuated OGD/R induced cytosolic and mitochondrial Ca2+ overload, ROS generation, intracellular NO levels and nNOS mRNA increase, and cytochrome-c release when compared with OGD/R group. BNC significantly inhibited both mPTP opening and ΔΨm depolarization. BNC increased Bcl-2 expression and decreased Bax expression, upregulated the Bcl-2/Bax ratio, downregulated caspase-3 mRNA and caspase-9 mRNA expression, and decreased cleaved caspase-3 expression and caspase-3 activity. BNC increased phosphorylation of Akt following OGD/R, while LY294002 attenuated BNC induced increase of phosphorylated Akt expression. Our study demonstrated that NXT protected primary neurons from OGD/R induced injury by inhibiting calcium overload and ROS generation, protecting mitochondria, and inhibiting mitochondrial apoptotic pathway which was mediated partially by PI3K-Akt signaling pathway activation.

  10. Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures.

    Science.gov (United States)

    Gao, Chen; Zhou, Liya; Zhu, Wenxia; Wang, Hongyun; Wang, Ruijuan; He, Yunfei; Li, Zhiyun

    2015-05-06

    Hypoxic and low-glucose stressors contribute to neuronal death in many brain diseases. Astrocytes are anatomically well-positioned to shield neurons from hypoxic injury. During hypoxia/ischemia, lactate released from astrocytes is taken up by neurons and stored for energy. This process is mediated by monocarboxylate transporters (MCTs) in the central nervous system. In the present study, we investigated the ability of astrocytes to protect neurons from oxygen- and glucose-deprivation (OGD) injury via an MCT-dependent mechanism in vitro. Primary cultures of neurons, astrocytes, and astrocytes-neurons derived from rat hippocampus were subjected to OGD, MCT inhibition with small interfering (si)RNA. Cell survival and expression of MCT4, MCT2, glial fibrillary acidic protein, and neuronal nuclear antigen were evaluated. OGD significantly increased cell death in neuronal cultures and up-regulated MCT4 expression in astrocyte cultures, but no increased cell death was observed in neuron-astrocyte co-cultures or astrocyte cultures. However, neuronal cell death in co-cultures was increased by exposure to MCT4- or MCT2-specific siRNA, and this effect was attenuated by the addition of lactate into the extracellular medium of neuronal cultures prior to OGD. These findings demonstrate that resistance to OGD injury in astrocyte-neuron co-cultures occurs via an MCT-dependent mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. IL-10 Promotes Neurite Outgrowth and Synapse Formation in Cultured Cortical Neurons after the Oxygen-Glucose Deprivation via JAK1/STAT3 Pathway.

    Science.gov (United States)

    Chen, Hongbin; Lin, Wei; Zhang, Yixian; Lin, Longzai; Chen, Jianhao; Zeng, Yongping; Zheng, Mouwei; Zhuang, Zezhong; Du, Houwei; Chen, Ronghua; Liu, Nan

    2016-07-26

    As a classic immunoregulatory and anti-inflammatory cytokine, interleukin-10 (IL-10) provides neuroprotection in cerebral ischemia in vivo or oxygen-glucose deprivation (OGD)-induced injury in vitro. However, it remains blurred whether IL-10 promotes neurite outgrowth and synapse formation in cultured primary cortical neurons after OGD injury. In order to evaluate its effect on neuronal apoptosis, neurite outgrowth and synapse formation, we administered IL-10 or IL-10 neutralizing antibody (IL-10NA) to cultured rat primary cortical neurons after OGD injury. We found that IL-10 treatment activated the Janus kinase 1 (JAK1)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. Moreover, IL-10 attenuated OGD-induced neuronal apoptosis by down-regulating the Bax expression and up-regulating the Bcl-2 expression, facilitated neurite outgrowth by increasing the expression of Netrin-1, and promoted synapse formation in cultured primary cortical neurons after OGD injury. These effects were partly abolished by JAK1 inhibitor GLPG0634. Contrarily, IL-10NA produced opposite effects on the cultured cortical neurons after OGD injury. Taken together, our findings suggest that IL-10 not only attenuates neuronal apoptosis, but also promotes neurite outgrowth and synapse formation via the JAK1/STAT3 signaling pathway in cultured primary cortical neurons after OGD injury.

  12. Sirtuin7 is involved in protecting neurons against oxygen-glucose deprivation and reoxygenation-induced injury through regulation of the p53 signaling pathway.

    Science.gov (United States)

    Lv, Jianrui; Tian, Junbin; Zheng, Guoxi; Zhao, Jing

    2017-10-01

    Sirtuin7 (SIRT7) is known to regulate apoptosis and stress responses. So far, very little is known about the role of SIRT7 in cerebral ischemia/reperfusion injury. In this study, we aimed to investigate the potential role of SIRT7 in regulating oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury in neurons. We found a significant increase of SIRT7 expression in neurons in response to OGD/R treatment. Knockdown of SIRT7 aggravated OGD/R-induced injury. Knockdown of SIRT7 augmented the levels of total and acetylated p53 protein. Moreover, knockdown of SIRT7 markedly increased the transcriptional activity of p53 toward apoptosis and activated the p53-mediated proapoptotic signaling pathway. By contrast, overexpression of SIRT7 showed the opposite effects. Taken together, the results of our study suggest that SIRT7 is involved in protecting neurons against OGD/R-induced injury, possibly through regulation of the p53-mediated proapoptotic signaling pathway, indicating a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  13. The p38/CYLD Pathway is Involved in Necroptosis Induced by Oxygen-glucose Deprivation Combined with ZVAD in Primary Cortical Neurons.

    Science.gov (United States)

    Feng, Tao; Chen, WeiWei; Zhang, CaiYi; Xiang, Jie; Ding, HongMei; Wu, LianLian; Geng, DeQin

    2017-08-01

    Recently, necroptosis, a form of programmed necrosis, has been widely studied. It has previously been shown that knockout of lysine 63 deubiquitinase CYLD significantly inhibits necroptosis in other cell lines, and serum response factor (SRF) could regulate CYLD gene expression through p38 mitogen-activated protein kinase (p38 MAPK). In the following study, we show oxygen-glucose deprivation (OGD) combined with a caspase inhibitor, ZVAD (OGD/ZVAD), induced CYLD protein expression in a time-dependent manner. Immunofluorescence studies showed that CYLD was localized strongly to the nucleus and weakly to the cytoplasm of neurons. The expression of CYLD in the cytoplasm, but not in the nucleus, was increased significantly upon OGD treatment. SB203580 (a p38 MAPK inhibitor) protected against neuronal injury induced by OGD/ZVAD treatment. More importantly, SB203580 decreased CYLD protein levels by inhibiting SRF phosphorylation and indirectly prevented SRF from binding to a CYLD promoter. We also found that cells with knockdown of SRF by short interfering RNA in a lentivirus vector tolerated OGD/ZVAD-induced necroptosis, when the expression of CYLD protein decreased. The results show that SB203580 prevented necroptosis induced by OGD/ZVAD injury by blocking a p38/CYLD dependent pathway.

  14. Cocaine- and amphetamine-regulated transcript facilitates the neurite outgrowth in cortical neurons after oxygen and glucose deprivation through PTN-dependent pathway.

    Science.gov (United States)

    Wang, Y; Qiu, B; Liu, J; Zhu, Wei-Guo; Zhu, S

    2014-09-26

    Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide that plays neuroprotective roles in cerebral ischemia and reperfusion (I/R) injury in animal models or oxygen and glucose deprivation (OGD) in cultured neurons. Recent data suggest that intranasal CART treatment facilitates neuroregeneration in stroke brain. However, little is known about the effects of post-treatment with CART during the neuronal recovery after OGD and reoxygenation in cultured primary cortical neurons. The present study was to investigate the role of CART treated after OGD injury in neurons. Primary mouse cortical neurons were subjected to OGD and then treated with CART. Our data show that post-treatment with CART reduced the neuronal apoptosis caused by OGD injury. In addition, CART repaired OGD-impaired cortical neurons by increasing the expression of growth-associated protein 43 (GAP43), which promotes neurite outgrowth. This effect depends on pleiotrophin (PTN) as siRNA-mediated PTN knockdown totally abolished the increase in CART-stimulated GAP43 protein levels. In summary, our findings demonstrate that CART repairs the neuronal injury after OGD by facilitating neurite outgrowth through PTN-dependent pathway. The role for CART in neurite outgrowth makes it a new potential therapeutic agent for the treatment of neurodegenerative diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway.

    Science.gov (United States)

    Yang, Guang; Qian, Chen; Wang, Ning; Lin, Chenyu; Wang, Yan; Wang, Guangyun; Piao, Xinxin

    2017-05-01

    Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.

  16. Curcumin protects neurons against oxygen-glucose deprivation/reoxygenation-induced injury through activation of peroxisome proliferator-activated receptor-γ function.

    Science.gov (United States)

    Liu, Zun-Jing; Liu, Hong-Qiang; Xiao, Cheng; Fan, Hui-Zhen; Huang, Qing; Liu, Yun-Hai; Wang, Yu

    2014-11-01

    The turmeric derivative curcumin protects against cerebral ischemic injury. We previously demonstrated that curcumin activates peroxisome proliferator-activated receptor-γ (PPARγ), a ligand-activated transcription factor involved in both neuroprotective and anti-inflammatory signaling pathways. This study tested whether the neuroprotective effects of curcumin against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury of rat cortical neurons are mediated (at least in part) by PPARγ. Curcumin (10 μM) potently enhanced PPARγ expression and transcriptional activity following OGD/R. In addition, curcumin markedly increased neuronal viability, as evidenced by decreased lactate dehydrogenase release and reduced nitric oxide production, caspase-3 activity, and apoptosis. These protective effects were suppressed by coadministration of the PPARγ antagonist 2-chloro-5-nitrobenzanilide (GW9662) and by prior transfection of a small-interfering RNA (siRNA) targeting PPARγ, treatments that had no toxic effects on healthy neurons. Curcumin reduced OGD/R-induced accumulation of reactive oxygen species and inhibited the mitochondrial apoptosis pathway, as indicated by reduced release of cytochrome c and apoptosis-inducing factor and maintenance of both the mitochondrial membrane potential and the Bax/Bcl-2 ratio. Again, GW9662 or PPARγ siRNA transfection mitigated the protective effects of curcumin on mitochondrial function. Curcumin suppressed IκB kinase phosphorylation and IκB degradation, thereby inhibiting nuclear factor-κ B (NF-κB) nuclear translocation, effects also blocked by GW9662 or PPARγ siRNA. Immunoprecipitation experiments revealed that PPARγ interacted with NF-κB p65 and inhibited NF-κB activation. The present study provides strong evidence that at least some of the neuroprotective effects of curcumin against OGD/R are mediated by PPARγ activation. Copyright © 2014 Wiley Periodicals, Inc.

  17. 17β-Estradiol prevents cell death and mitochondrial dysfunction by estrogen receptor-dependent mechanism in astrocytes following oxygen-glucose deprivation/reperfusion

    Science.gov (United States)

    Guo, Jiabin; Duckles, Sue P.; Weiss, John H.; Li, Xuejun; Krause, Diana N.

    2012-01-01

    17β-estradiol (E2) has been shown to protect against ischemic brain injury, yet its targets and the mechanisms are unclear. E2 may exert multiple regulatory actions on astrocytes that may greatly contribute to its ability to protect the brain. Mitochondria are recognized to play central roles in the development of injury during ischemia. Increasing evidence indicates that mitochondrial mechanisms are critically involved in E2-mediated protection. In this study, the effect of E2 and the role of mitochondria were evaluated in primary cultures of astrocytes subjected to an ischemia-like condition of oxygen-glucose deprivation (OGD)/reperfusion. We showed that E2 treatment significantly protects against OGD/reperfusion-induced cell death as determined by cell viability, apoptosis and lactate dehydrogenase leakage. The protective effects of E2 on astrocytic survival were blocked by an estrogen receptor (ER) antagonist (ICI 182,780), and were mimicked by an estrogen receptor (ER) agonist selective for ERα (PPT), but not by an ER agonist selective for ERβ (DPN). OGD/reperfusion provoked mitochondria dysfunction as manifested by an increase of cellular reactive oxygen species production, loss of mitochondrial membrane potential and depletion of ATP. E2 pretreatment significantly inhibited OGD/reperfusion-induced mitochondrial dysfunction, and this effect was also blocked by ICI 182,780. Therefore, we concluded that E2 provides direct protection to astrocytes from ischemic injury by an ER-dependent mechanism, highlighting an important role for ERα. Estrogen protects against mitochondria dysfunction at the early phase of ischemic injury. However, overall implications for protection against brain ischemia and its complex sequelae await further exploration. PMID:22554613

  18. 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion.

    Science.gov (United States)

    Guo, Jiabin; Duckles, Sue P; Weiss, John H; Li, Xuejun; Krause, Diana N

    17β-Estradiol (E2) has been shown to protect against ischemic brain injury, yet its targets and the mechanisms are unclear. E2 may exert multiple regulatory actions on astrocytes that may greatly contribute to its ability to protect the brain. Mitochondria are recognized as playing central roles in the development of injury during ischemia. Increasing evidence indicates that mitochondrial mechanisms are critically involved in E2-mediated protection. In this study, the effects of E2 and the role of mitochondria were evaluated in primary cultures of astrocytes subjected to an ischemia-like condition of oxygen-glucose deprivation (OGD)/reperfusion. We showed that E2 treatment significantly protects against OGD/reperfusion-induced cell death as determined by cell viability, apoptosis, and lactate dehydrogenase leakage. The protective effects of E2 on astrocytic survival were blocked by an estrogen receptor (ER) antagonist (ICI-182,780) and were mimicked by an ER agonist selective for ERα (PPT), but not by an ER agonist selective for ERβ (DPN). OGD/reperfusion provoked mitochondrial dysfunction as manifested by an increase in cellular reactive oxygen species production, loss of mitochondrial membrane potential, and depletion of ATP. E2 pretreatment significantly inhibited OGD/reperfusion-induced mitochondrial dysfunction, and this effect was also blocked by ICI-182,780. Therefore, we conclude that E2 provides direct protection to astrocytes from ischemic injury by an ER-dependent mechanism, highlighting an important role for ERα. Estrogen protects against mitochondrial dysfunction at the early phase of ischemic injury. However, overall implications for protection against brain ischemia and its complex sequelae await further exploration. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Roles of Neuroglobin Binding to Mitochondrial Complex III Subunit Cytochrome c1 in Oxygen-Glucose Deprivation-Induced Neurotoxicity in Primary Neurons.

    Science.gov (United States)

    Yu, Zhanyang; Zhang, Yu; Liu, Ning; Yuan, Jing; Lin, Li; Zhuge, Qichuan; Xiao, Jian; Wang, Xiaoying

    2016-07-01

    Neuroglobin (Ngb) is a tissue globin specifically expressed in brain neurons. Recent studies by our laboratory and others have demonstrated that Ngb is protective against stroke and related neurological disorders, but the mechanisms remain poorly understood. We previously identified cytochrome c1 (Cyc1) as an Ngb-interacting molecule by yeast two-hybrid screening. Cyc1 is a subunit of mitochondria complex III, which is a component of mitochondrial respiratory chain and a major source of reactive oxygen species (ROS) production under both physiological and pathological conditions. In this study, we for the first time defined Ngb-Cyc1 binding, and investigated its roles in oxygen-glucose deprivation (OGD)/reoxygenation-induced neurotoxicity and ROS production in primary neurons. Immunocytochemistry and co-immunoprecipitation validated Ngb-Cyc1 binding, which was significantly increased by OGD and Ngb overexpression. We found 4 h OGD with/without 4 h reoxygenation significantly increased complex III activity, but this activity elevation was significantly attenuated in three groups of neurons: Ngb overexpression, specific complex III inhibitor stigmatellin, or stigmatellin plus Ngb overexpression, whereas there was no significant differences between these three groups, suggesting Ngb-Cyc1 binding may function in suppressing OGD-mediated complex III activity elevation. Importantly, these three groups of neurons also showed significant decreases in OGD-induced superoxide anion generation and neurotoxicity. These results suggest that Ngb can bind to mitochondrial complex III subunit Cyc1, leading to suppression of OGD-mediated complex III activity and subsequent ROS production elevation, and eventually reduction of OGD-induced neurotoxicity. This molecular signaling cascade may be at least part of the mechanisms of Ngb neuroprotection against OGD-induced neurotoxicity.

  20. Response of the JAK-STAT signaling pathway to oxygen deprivation in the red eared slider turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Bansal, Saumya; Biggar, Kyle K; Krivoruchko, Anastasia; Storey, Kenneth B

    2016-11-15

    The red-eared slider turtle, Trachemys scripta elegans, is a model organism commonly used to study the environmental stress of anoxia. It exhibits multiple biochemical adaptations to ensure its survival during the winter months where quantities of oxygen are largely depleted. We proposed that JAK-STAT signaling would display stress responsive regulation to mediate the survival of the red-eared slider turtle, Trachemys scripta elegans, during anoxic stress. Importantly, the JAK-STAT signaling pathway is involved in transmitting extracellular signals to the nucleus resulting in the expression of select genes that aid cell survival and growth. Immunoblotting was used to compare the relative phosphorylation levels of JAK proteins, STAT proteins, and two of its inhibitors, SOCS and PIAS, in response to anoxia. A clear activation of the JAK-STAT pathway was observed in the liver tissue while no significant changes were found in the skeletal muscle. To further support our findings we also found an increase in mRNA transcripts of downstream targets of STATs, namely bcl-xL and bcl-2, using PCR analysis in the liver tissues. These findings suggest an important role for the JAK-STAT pathway in exhibiting natural anoxia tolerance by the red-eared slider turtle. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.

    Science.gov (United States)

    Tian, Tian; Zeng, Junan; Zhao, Guangyu; Zhao, Wenjing; Gao, Songyi; Liu, Li

    2018-01-01

    Orientin (luteolin-8-C-glucoside) is a phenolic compound found abundantly in millet, juice, and peel of passion fruit and has been shown to have antioxidant properties. In the present study, we explored the effects of orientin on oxygen-glucose deprivation/reperfusion (OGD/RP)-induced cell injury in primary culture of rat cortical neurons using an in vitro model of neonatal ischemic brain injury. The reduced cell viability and elevated lactate dehydrogenase leakage were observed after OGD/RP exposure, which were then reversed by orientin (10, 20, and 30 µM) pretreatment in a dose-dependent manner. Additionally, OGD/RP treatment resulted in significant oxidative stress, accompanied by enhanced intracellular reactive oxygen species (ROS) generation, and obvious depletion in the activities of intracellular Mn-superoxide dismutase, catalase, and glutathione peroxidase antioxidases. However, these effects were dose dependently restored by orientin pretreatment. We also found that orientin pretreatment dose dependently suppressed [Ca 2+ ] i increase and mitochondrial membrane potential dissipation caused by OGD/RP in primary culture of rat cortical neurons. Western blot analysis showed that OGD/RP exposure induced a distinct decrease of Bcl-2 protein and a marked elevation of Bax, caspase-3, and cleaved caspase-3 proteins; whereas these effects were dose dependently reversed by orientin incubation. Both the caspase-3 activity and the apoptosis rate were increased under OGD/RP treatment, but was then dose dependently down-regulated by orientin (10, 20, and 30 µM) incubation. Moreover, orientin pretreatment dose dependently inhibited OGD/RP-induced phosphorylation of JNK and ERK1/2. Notably, JNK inhibitor SP600125 and ERK1/2 inhibitor PD98059 also dramatically attenuated OGD/RP-induced cell viability loss and ROS generation, and further, orientin failed to protect cortical neurons with the interference of JNK activator anisomycin or ERK1/2 activator FGF-2. Taken

  2. Modeling the ischemic blood-brain barrier; the effects of oxygen-glucose deprivation (OGD) on endothelial cells in culture

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... pathways across the barrier in ischemic and postischemic brain endothelium is important for developing new medical therapies capable to exploit the barrier changes occurring during/after ischemia to permeate in the brain and treat this devastating disease. Materials and Methods - Primary cultures...... the wall of brain capillaries. The restrictive nature of the BBB is due to the tight junctions (TJs), which seal the intercellular clefts, limiting the paracellular diffusion, efflux transporters, which extrude xenobiotics, and metabolizing enzymes, which may break down or convert molecules during...

  3. Nitro-oleic acid ameliorates oxygen and glucose deprivation/re-oxygenation triggered oxidative stress in renal tubular cells via activation of Nrf2 and suppression of NADPH oxidase.

    Science.gov (United States)

    Nie, Huibin; Xue, Xia; Liu, Gang; Guan, Guangju; Liu, Haiying; Sun, Lina; Zhao, Long; Wang, Xueling; Chen, Zhixin

    2016-01-01

    Nitroalkene derivative of oleic acid (OA-NO 2 ), due to its ability to mediate revisable Michael addition, has been demonstrated to have various biological properties and become a therapeutic agent in various diseases. Though its antioxidant properties have been reported in different models of acute kidney injury (AKI), the mechanism by which OA-NO 2 attenuates intracellular oxidative stress is not well investigated. Here, we elucidated the anti-oxidative mechanism of OA-NO 2 in an in vitro model of renal ischemia/reperfusion (I/R) injury. Human tubular epithelial cells were subjected to oxygen and glucose deprivation/re-oxygenation (OGD/R) injury. Pretreatment with OA-NO 2 (1.25 μM, 45 min) attenuated OGD/R triggered reactive oxygen species (ROS) generation and subsequent mitochondrial membrane potential disruption. This action was mediated via up-regulating endogenous antioxidant defense components including superoxide dismutase (SOD1), heme oxygenase 1 (HO-1), and γ-glutamyl cysteine ligase modulatory subunits (GCLM). Moreover, subcellular fractionation analyses demonstrated that OA-NO 2 promoted nuclear translocation of nuclear factor-E2- related factor-2 (Nrf2) and Nrf2 siRNA partially abrogated these protective effects. In addition, OA-NO 2 inhibited NADPH oxidase activation and NADPH oxidase 4 (NOX4), NADPH oxidase 2 (NOX2) and p22 phox up-regulation after OGD/R injury, which was not relevant to Nrf2. These results contribute to clarify that the mechanism of OA-NO 2 reno-protection involves both inhibition of NADPH oxidase activity and induction of SOD1, Nrf2-dependent HO-1, and GCLM.

  4. Performance optimization of a PEM hydrogen-oxygen fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate t...

  5. β-Adrenoceptor activation depresses brain inflammation and is neuroprotective in lipopolysaccharide-induced sensitization to oxygen-glucose deprivation in organotypic hippocampal slices

    Directory of Open Access Journals (Sweden)

    Cilio Corrado

    2010-12-01

    Full Text Available Abstract Background Inflammation acting in synergy with brain ischemia aggravates perinatal ischemic brain damage. The sensitizing effect of pro-inflammatory exposure prior to hypoxia is dependent on signaling by TNF-α through TNF receptor (TNFR 1. Adrenoceptor (AR activation is known to modulate the immune response and synaptic transmission. The possible protective effect of α˜ and β˜AR activation against neuronal damage caused by tissue ischemia and inflammation, acting in concert, was evaluated in murine hippocampal organotypic slices treated with lipopolysaccharide (LPS and subsequently subjected to oxygen-glucose deprivation (OGD. Method Hippocampal slices from mice were obtained at P6, and were grown in vitro for 9 days on nitrocellulose membranes. Slices were treated with β1(dobutamine-, β2(terbutaline-, α1(phenylephrine- and α2(clonidine-AR agonists (5 and 50 μM, respectively during LPS (1 μg/mL, 24 h -exposure followed by exposure to OGD (15 min in a hypoxic chamber. Cell death in the slice CA1 region was assessed by propidium iodide staining of dead cells. Results Exposure to LPS + OGD caused extensive cell death from 4 up to 48 h after reoxygenation. Co-incubation with β1-agonist (50 μM during LPS exposure before OGD conferred complete protection from cell death (P -/- and TNFR2-/- slices exposed to LPS followed by OGD. Conclusions Our data demonstrate that activation of both β1- and β2-receptors is neuroprotective and may offer mechanistic insights valuable for development of neuro-protective strategies in neonates.

  6. DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release.

    Science.gov (United States)

    He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun

    2009-01-28

    Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.

  7. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    2011-02-01

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  8. Inhibition of oxygen-glucose deprivation-induced apoptosis of human adipose-derived stem cells by genetic modification with antiapoptotic protein bcl-2.

    Science.gov (United States)

    Cui, Ziwei; Shen, Liangyun; Lin, Yue; Wang, Shuqin; Zheng, Dongfeng; Tan, Qian

    2014-08-01

    Adipose-derived stem cells (ADSCs) have become a promising tool for a wide range of cell-based therapies. However, transplanted ADSCs do not survive well under ischemic conditions. In this study we aimed to inhibit oxygen-glucose deprivation (OGD)-induced apoptosis of human ADSCs by genetic modification with antiapoptotic protein Bcl-2. After isolation and culture, the phenotypes of human ADSCs at passage 3 were analyzed by flow cytometry. Then, genetic modification of ADSCs with Bcl-2 was carried out. Bcl-2 gene transfection was verified by Western blot analysis and multipotent differentiation properties were evaluated in Bcl-2-modified ADSCs (Bcl-2-ADSCs). Apoptosis was evaluated by a TUNEL assay under ischemic conditions induced by OGD. Apoptotic nuclei were also assessed and quantified by Hoechst staining. The cultured ADSCs expressed stem cell-associated markers CD29, CD34, CD44, and CD90, but not fibroblast marker HLA-DR or hematopoietic stem cell marker CD133. The Bcl-2 gene was transferred into ADSCs efficiently, and Bcl-2-ADSCs differentiated into adipocytes, chondrocytes, and osteoblasts. In addition, Bcl-2 overexpression reduced the percentage of apoptotic Bcl-2-ADSCs by 38 % under OGD. Our results indicate that Bcl-2 overexpression through gene transfection inhibits apoptosis of ADSCs under ischemic conditions. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. Exacerbation of oxygen-glucose deprivation-induced blood-brain barrier disruption: potential pathogenic role of interleukin-9 in ischemic stroke.

    Science.gov (United States)

    Tan, Sha; Shan, Yilong; Wang, Yuge; Lin, Yinyao; Liao, Siyuan; Deng, Zhezhi; Zhou, Li; Cai, Wei; Zeng, Qin; Zhang, Lei; Zhang, Bingjun; Men, Xuejiao; Li, Haiyan; Hu, Xueqiang; Wu, Changyou; Peng, Lisheng; Lu, Zhengqi

    2017-07-01

    Interleukin (IL)-9 exerts a variety of functions in autoimmune diseases. However, its role in ischemic brain injury remains unknown. The present study explored the biological effects of IL-9 in ischemic stroke (IS). We recruited 42 patients newly diagnosed with IS and 22 age- and sex-matched healthy controls. The expression levels of IL-9 and percentages of IL-9-producing T cells, including CD3 + CD4 + IL-9 + and CD3 + CD8 + IL-9 + cells, were determined in peripheral blood mononuclear cells (PBMCs) obtained from patients and control individuals. We also investigated the effects of IL-9 on the blood-brain barrier (BBB) following oxygen-glucose deprivation (OGD) and the potential downstream signaling pathways. We found that patients with IS had higher IL-9 expression levels and increased percentages of IL-9-producing T cells in their PBMCs. The percentages of CD3 + CD4 + IL-9 + and CD3 + CD8 + IL-9 + T cells were positively correlated with the severity of illness. In in vitro experiments using bEnd.3 cells, exogenously administered IL-9 exacerbated the loss of tight junction proteins (TJPs) in cells subjected to OGD plus reoxygenation (RO). This effect was mediated via activation of IL-9 receptors, which increased the level of endothelial nitric oxide synthase (eNOS), as well as through up-regulated phosphorylation of signal transducer and activator of transcription 1 and 3 and down-regulated phosphorylated protein kinase B/phosphorylated phosphatidylinositol 3-kinase signaling. These results indicate that IL-9 has a destructive effect on the BBB following OGD, at least in part by inducing eNOS production, and raise the possibility of targetting IL-9 for therapeutic intervention in IS. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Derong Cui

    Full Text Available Propofol exerts protective effects on neuronal cells, in part through the inhibition of programmed cell death. Autophagic cell death is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. We therefore studied whether propofol could attenuate the formation of autophagosomes, and if so, whether the inhibition of autophagic cell death mediates the neuroprotective effects observed with propofol.The cell model was established by depriving the cells of oxygen and glucose (OGD for 6 hours, and the rat model of ischemia was introduced by a transient two-vessel occlusion for 10 minutes. Transmission electron microscopy (TEM revealed that the formation of autophagosomes and autolysosomes in both neuronal PC12 cells and pyramidal rat hippocampal neurons after respective OGD and ischemia/reperfusion (I/R insults. A western blot analysis revealed that the autophagy-related proteins, such as microtubule-associated protein 1 light chain 3 (LC3-II, Beclin-1 and class III PI3K, were also increased accordingly, but cytoprotective Bcl-2 protein was decreased. The negative effects of OGD and I/R, including the formation of autophagosomes and autolysosomes, the increase in LC3-II, Beclin-1 and class III PI3K expression and the decline in Bcl-2 production were all inhibited by propofol and specific inhibitors of autophagy, such as 3-methyladenine (3-MA, LY294002 and Bafilomycin A1 (Baf,. Furthermore, in vitro OGD cultures and in vivo I/R rats showed an increase in cell survival following the administration of propofol, as assessed by an MTT assay or histochemical analyses.Our data suggest that propofol can markedly attenuate autophagic processes via the decreased expression of autophagy-related proteins in vitro and in vivo. This inhibition improves cell survival, which provides a novel explanation for the pleiotropic effects of propofol that benefit the nervous system.

  11. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons.

    Science.gov (United States)

    Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G

    2017-12-08

    Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. NMDA receptor dependent PGC-1alpha up-regulation protects the cortical neuron against oxygen-glucose deprivation/reperfusion injury.

    Science.gov (United States)

    Luo, Yun; Zhu, Wenjing; Jia, Jia; Zhang, Chenyu; Xu, Yun

    2009-09-01

    The peroxisome proliferator activated receptor coactivator 1 alpha (PGC-1alpha) is a nuclear transcriptional coactivator that is widely expressed in the brain areas. Over-expression of PGC-1alpha can protect neuronal cells from oxidant-induced injury. The purpose of the current study is to investigate the role of PGC-1alpha in the oxygen (anoxia) deprivation (OGD) neurons. The PGC-1alpha mRNA and protein level between control and OGD neurons were examined by real-time PCR and Western blot. More PGC-1alpha expression was found in the OGD neurons compared with the normal group. Over-expression of PGC-1alpha suppressed cell apoptosis while inhibition of the PGC-1alpha expression induced cell apoptosis in OGD neurons. Furthermore, increase of PGC-1alpha resulted in activation of N-methyl-D-aspartate (NMDA) receptor, p38, and ERK mitogen-activated protein kinase (MAPK) pathway. The blocking of the NMDA receptor by its antagonists MK-801 reduced PGC-1alpha mRNA expression in OGD neurons, while NMDA itself can directly induce the expression of PGC-1alpha in neuronal cells. At the same time, PD98059 (ERK MAPK inhibitor) and SB203580 (P38 MAPK inhibitor) also prevented the up-regulation of PGC-1alpha in OGD neurons and MK801 can inhibit the expression of P38 and ERK MAPK. These data suggested that the expression of PGC-1alpha was up-regulated in OGD mice cortical neurons, which protected the neurons against OGD injury. Moreover, this effect was correlated to the NMDA receptor and the ERK and P38 MAPK pathway. The protective effect of PGC-1alpha on OGD cortical neurons may be useful for stroke therapy.

  13. Protection against Oxygen-Glucose Deprivation/Reperfusion Injury in Cortical Neurons by Combining Omega-3 Polyunsaturated Acid with Lyciumbarbarum Polysaccharide.

    Science.gov (United States)

    Shi, Zhe; Wu, Di; Yao, Jian-Ping; Yao, Xiaoli; Huang, Zhijian; Li, Peng; Wan, Jian-Bo; He, Chengwei; Su, Huanxing

    2016-01-13

    Ischemic stroke, characterized by the disturbance of the blood supply to the brain, is a severe worldwide health threat with high mortality and morbidity. However, there is no effective pharmacotherapy for ischemic injury. Currently, combined treatment is highly recommended for this devastating injury. In the present study, we investigated neuroprotective effects of the combination of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and Lyciumbarbarum polysaccharide (LBP) on cortical neurons using an in vitro ischemic model. Our study demonstrated that treatment with docosahexaenoic acid (DHA), a major component of the ω-3 PUFAs family, significantly inhibited the increase of intracellular Ca(2+) in cultured wild type (WT) cortical neurons subjected to oxygen-glucose deprivation/reperfusion (OGD/R) injury and promoted their survival compared with the vehicle-treated control. The protective effects were further confirmed in cultured neurons with high endogenous ω-3 PUFAs that were isolated from fat-1 mice, in that a higher survival rate was found in fat-1 neurons compared with wild-type neurons after OGD/R injury. Our study also found that treatment with LBP (50 mg/L) activated Trk-B signaling in cortical neurons and significantly attenuated OGD/R-induced cell apoptosis compared with the control. Notably, both combining LBP treatment with ω-3 PUFAs administration to WT neurons and adding LBP to fat-1 neurons showed enhanced effects on protecting cortical neurons against OGD/R injury via concurrently regulating the intracellular calcium overload and neurotrophic pathway. The results of the study suggest that ω-3 PUFAs and LBP are promising candidates for combined pharmacotherapy for ischemic stroke.

  14. Specific rescue by ortho-hydroxy atorvastatin of cortical GABAergic neurons from previous oxygen/glucose deprivation: role of pCREB.

    Science.gov (United States)

    Guirao, Verónica; Martí-Sistac, Octavi; DeGregorio-Rocasolano, Núria; Ponce, Jovita; Dávalos, Antoni; Gasull, Teresa

    2017-11-01

    The statin atorvastatin (ATV) given as a post-treatment has been reported beneficial in stroke, although the mechanisms involved are not well understood so far. Here, we investigated in vitro the effect of post-treatment with ATV and its main bioactive metabolite ortho-hydroxy ATV (o-ATV) on neuroprotection after oxygen and glucose deprivation (OGD), and the role of the pro-survival cAMP response element-binding protein (CREB). Post-OGD treatment of primary cultures of rat cortical neurons with o-ATV, but not ATV, provided neuroprotection to a specific subset of cortical neurons that were large and positive for glutamic acid decarboxylase (large-GAD (+) neurons, GABAergic). Significantly, only these GABAergic neurons showed an increase in phosphorylated CREB (pCREB) early after neuronal cultures were treated post-OGD with o-ATV. We found that o-ATV, but not ATV, increased the neuronal uptake of glutamate from the medium; this provides a rationale for the specific effect of o-ATV on pCREB in large-GABAergic neurons, which have a higher ratio of synaptic (pCREB-promoting) vs extrasynaptic (pCREB-reducing) N-methyl-D-aspartate (NMDA) receptors (NMDAR) than that of small-non-GABAergic neurons. When we pharmacologically increased pCREB levels post-OGD in non-GABAergic neurons, through the selective activation of synaptic NMDAR, we observed as well long-lasting neuronal survival. We propose that the statin metabolite o-ATV given post-OGD boosts the intrinsic pro-survival factor pCREB in large-GABAergic cortical neurons in vitro, this contributing to protect them from OGD. © 2017 International Society for Neurochemistry.

  15. Neuroserpin Protects Rat Neurons and Microglia-Mediated Inflammatory Response Against Oxygen-Glucose Deprivation- and Reoxygenation Treatments in an In Vitro Study

    Directory of Open Access Journals (Sweden)

    Xuelian Yang

    2016-04-01

    Full Text Available Background/Aims: Neuroserpin (NSP is known for its neuroprotective role in cerebral ischemic animal models and patients. Our laboratory conducted a series of investigations on the neuroprotection of NSP in different cells in the brain. In the present study, we further observe the effects of NSP on neurons and microglia-mediated inflammatory response following oxygen-glucose deprivation (OGD, and explore possible mechanisms related to neuroprotection of OGD in the central nervous system (CNS. Methods: Neurons and microglia from neonatal rats were treated with OGD followed by reoxygenation (OGD/R. To confirm the effects of NSP, the neuronal survival, neuronal apoptosis, and lactate dehydrogenase (LDH release were measured in cultured neurons. Furthermore, the levels of IL-1β and nitric oxide (NO release were also detected in cultured microglia. The possible mechanisms for the neuroprotective effect of NSP were explored using Western blot analysis. Results: NSP administration can reverse abnormal variations in neurons and microglia-mediated inflammatory response induced by OGD/R processes. The neuronal survival rate, neuronal apoptosis rate, and LDH release were significantly improved by NSP administration in neurons. Simultaneously, the release of IL-1β and NO were significantly reduced by NSP in microglia. Western blot showed that the expression of ERK, P38, and JNK was upregulated in microglia by the OGD/R treatment, and these effects were significantly inhibited by NSP. Conclusion: These data verified the neuroprotective effects of NSP on neurons and microglia-mediated inflammatory response. Inhibition of the mitogen-activated protein kinase (MAPK signaling pathways might play a potential role in NSP neuroprotection on microglia-mediated inflammatory response, which needs further verification.

  16. KLF5 overexpression attenuates cardiomyocyte inflammation induced by oxygen-glucose deprivation/reperfusion through the PPARγ/PGC-1α/TNF-α signaling pathway.

    Science.gov (United States)

    Li, Yang; Li, Jian; Hou, Zhiwen; Yu, Yang; Yu, Bo

    2016-12-01

    The primary physiological function of Krüppel-like zinc-finger transcription factor (KLF5) is the regulation of cardiovascular remodeling. Vascular remodeling is closely related to the amelioration of various ischemic diseases. However, the underlying correlation of KLF5 and ischemia is not clear. In this study, we aim to investigate the role of KLF5 in myocardial ischemia reperfusion (IR) injury and the potential mechanisms involved. Cultured H9C2 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/Rep) to mimic myocardial IR injury in vivo. Expressions of KLF5 and PPARγ were distinctly inhibited, and PGC-1α expression was activated at 24h after myocardial OGD/Rep injury. After myocardial OGD/Rep injury, we found that KLF5 overexpression down-regulated levels of TNF-α, IL-1β, IL-6 and IL-8. Through the analysis of lactate dehydrogenase (LDH) release, we demonstrate that KLF5 overexpression reduced the release of OGD/Rep-induced LDH. KLF5 overexpression significantly enhanced cell activity and decreased cell apoptosis during OGD/Rep injury. Compared with the OGD/Rep group, cells overexpressing KLF5 showed anti-apoptotic effects, such as decreased expression of Bax and cleaved caspase-3 as well as increased Bcl-2 expression. KLF5 overexpression activated PPARγ, a protein involved in OGD/Rep injury, and increased levels of PGC-1α, while TNF-α expression was remarkably inhibited. In addition, GW9662, a PPARγ receptor antagonist, reversed the expression of PPARγ/PGC-1α/TNF-α and cell activity induced by KLF5 overexpression. The effects of KLF5 overexpression on PPARγ/PGC-1α/TNF-α and cell activity were abolished by co-treatment with GW9662. Taken together, these results suggest that KLF5 can efficiently alleviate OGD/Rep-induced myocardial injury, perhaps through regulation of the PPARγ/PGC-1α/TNF-α pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Effects of activin A and its downstream ERK1/2 in oxygen and glucose deprivation after isoflurane-induced postconditioning.

    Science.gov (United States)

    Wang, Qin; Yin, Jiangwen; Wang, Sheng; Cui, Di; Lin, Hong; Ge, Mingyue; Dai, Zhigang; Xie, Liping; Si, Junqiang; Ma, Ketao; Li, Li; Zhao, Lei

    2016-12-01

    Isoflurane postconditioning (ISPOC) plays a neuroprotection role in the brain. Previous studies confirmed that isoflurane postconditioning can provide better protection than preconditioning in acute hypoxic-ischemic brain damage, such as acute craniocerebral trauma and ischemic stroke. Numerous studies have reported that activin A can protect rat's brain from cell injury. However, whether activin A and its downstream ERK1/2 were involved in isoflurane postconditioning-induced neuroprotection is unknown. A total of 80 healthy Sprague-Dawley rats weighing 50-70g were randomly divided into 10 groups of 8: normal control, oxygen and glucose deprivation (OGD), 1.5% ISPOC, 3.0% ISPOC, 4.5% ISPOC, blocker of activin A (SB431542), blocker of ERK1/2 (U0126), 3.0% ISPOC+SB431542, 3.0% ISPOC+U0126, and vehicle (dimethyl sulfoxide(DMSO)) group. Blockers (SB431542 and U0126) were used in each concentration of isoflurane before OGD. Hematoxylin-eosin staining, 2,3,5-triphenyl tetrazolium chloride staining, and propidium iodide (PI) staining were conducted to assess the reliability in the brain slices. Immunofluorescence, Western blot, and quantitative real-time PCR(Q-PCR) were performed to validate the protein expression levels of activin A, Smad2/3, P-Smad2/3, ERK1/2, and phosphorylation ERK1/2 (P-ERK1/2). The number of damaged neurons and mean fluorescence intensity(MFI) of PI staining increased, but formazan generation, expression levels of activin A and P-ERK1/2 protein, and mRNA synthesis level of activin A decreased in the OGD group compared with the normal control group (pneurons and MFI of PI staining decreased, but formazan production, expression levels of activin A, P-Smad2/3, and P-ERK1/2, and mRNA synthesis level of activin A increased significantly in the 1.5% ISPOC and 3.0% ISPOC groups (pneuron and MFI of PI staining increased, but formazan production, expression levels of activin A, P-Smad2/3, and P-ERK1/2, and mRNA synthesis level of activin A decreased in the 4

  18. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  19. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  20. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design.

    Science.gov (United States)

    Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; McGowan, Francis X; Kheir, John N

    2014-08-01

    Tissue hypoxia is a final common pathway that leads to cellular injury and death in a number of critical illnesses. Intravenous injections of self-assembling, lipid-based oxygen microbubbles (LOMs) can be used to deliver oxygen gas, preventing organ injury and death from systemic hypoxemia. However, current formulations exhibit high polydispersity indices (which may lead to microvascular obstruction) and poor shelf-lives, limiting the translational capacity of LOMs. In this study, we report our efforts to optimize LOM formulations using a mixture response surface methodology (mRSM). We study the effect of changing excipient proportions (the independent variables) on microbubble diameter and product loss (the dependent variables). By using mRSM analysis, the experimental data were fit using a reduced Scheffé linear mixture model. We demonstrate that formulations manufactured from 1,2-distearoyl-sn-glycero-3-phosphocholine, corn syrup, and water produce micron-sized microbubbles with low polydispersity indices, and decreased product loss (relative to previously described formulations) when stored at room temperature over a 30-day period. Optimized LOMs were subsequently tested for their oxygen-releasing ability and found to have similar release kinetics as prior formulations. © 2014 Wiley Periodicals, Inc.

  1. Optimization measurement of muscle oxygen saturation under isometric studies using FNIRS

    Science.gov (United States)

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to investigate hemodynamic response in human muscle. These non-invasive technologies have been widely used to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to quantify the oxygenation level of haemoglobin and myoglobin in human muscle. The goal of this paper is to optimize the measurement of muscle oxygen saturation during isometric exercise using functional near infrared spectroscopy (fNIRS). The experiment was carried out on 15 sedentary healthy male volunteers. All volunteers are required to perform an isometric exercise at three assessment of muscular fatigue's level on flexor digitalis (FDS) muscle in the human forearm using fNIRS. The slopes of the signals have been highlighted to evaluate the muscle oxygen saturation of regional muscle fatigue. As a result, oxygen saturation slope from 10% exercise showed steeper than the first assessment at 30%-50% of fatigues level. The hemodynamic signal response showed significant value (p=0.04) at all three assessment of muscular fatigue's level which produce a p-value (p<0.05) measured by fNIRS. Thus, this highlighted parameter could be used to estimate fatigue's level of human and could open other possibilities to study muscle performance diagnosis.

  2. Drugs for stroke: action of nitrone (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide on rat cortical neurons in culture subjected to oxygen-glucose-deprivation.

    Science.gov (United States)

    Arce, Carmen; Diaz-Castroverde, Sabela; Canales, María J; Marco-Contelles, José; Samadi, Abdelouahid; Oset-Gasque, María J; González, María P

    2012-09-01

    The action of (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide (RP6) on rat cortical neurons in culture, under oxygen-glucose-deprivation conditions, is reported. Cortical neurons in culture were treated during 1 h with OGD. After, they were placed under normal conditions during 24 h (reperfusion) in absence and presence of RP6. Different parameters were measured under each condition (control, 1 h OGD and 1 h OGD + reperfusion in absence and presence of RP6). RP6 protects neurons against ROS generation, lipid peroxidation levels, LDH release and mitochondrial membrane potential alteration, when administered during reperfusion after the OGD damage. Consequently, these results show that nitrone RP6 protects cells against ischemia injury produced during the reoxygenation, and could be a potential drug for the ictus therapy. Copyright © 2012. Published by Elsevier Masson SAS.

  3. Optimizing oxygenation and intubation conditions during awake fibre-optic intubation using a high-flow nasal oxygen-delivery system.

    Science.gov (United States)

    Badiger, S; John, M; Fearnley, R A; Ahmad, I

    2015-10-01

    Awake fibre-optic intubation is a widely practised technique for anticipated difficult airway management. Despite the administration of supplemental oxygen during the procedure, patients are still at risk of hypoxia because of the effects of sedation, local anaesthesia, procedural complications, and the presence of co-morbidities. Traditionally used oxygen-delivery devices are low flow, and most do not have a sufficient reservoir or allow adequate fresh gas flow to meet the patient's peak inspiratory flow rate, nor provide an adequate fractional inspired oxygen concentration to prevent desaturation should complications arise. A prospective observational study was conducted using a high-flow humidified transnasal oxygen-delivery system during awake fibre-optic intubation in 50 patients with anticipated difficult airways. There were no episodes of desaturation or hypercapnia using the high-flow system, and in all patients the oxygen saturation improved above baseline values, despite one instance of apnoea resulting from over-sedation. All patients reported a comfortable experience using the device. The high-flow nasal oxygen-delivery system improves oxygenation saturation, decreases the risk of desaturation during the procedure, and potentially, optimizes conditions for awake fibre-optic intubation. The soft nasal cannulae uniquely allow continuous oxygenation and simultaneous passage of the fibrescope and tracheal tube. The safety of the procedure may be increased, because any obstruction, hypoventilation, or periods of apnoea that may arise may be tolerated for longer, allowing more time to achieve ventilation in an optimally oxygenated patient. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The optimization of iloprost inhalation under moderate flow of oxygen therapy in severe pulmonary arterial hypertension.

    Science.gov (United States)

    Nakayama, Kazuhiko; Emoto, Noriaki; Tamada, Naoki; Okano, Mitsumasa; Shinkura, Yuto; Yanaka, Kenichi; Onishi, Hiroyuki; Hiraishi, Mana; Yamada, Shinichiro; Tanaka, Hidekazu; Shinke, Toshiro; Hirata, Ken-Ichi

    2018-01-01

    Inhaled iloprost efficiently improves pulmonary hemodynamics, exercise capacity, and quality of life in patients with pulmonary arterial hypertension (PAH). However, the process of inhalation is laborious for patients suffering from resting dyspnea. We describe a 75-year-old man with idiopathic PAH and a low gas transfer. Investigations excluded significant parenchymal lung disease and airflow obstruction (presuming FEV1/FVC ration > 70%). The patient struggled to complete iloprost inhalation due to severe dyspnea and hypoxemia. As such, we optimized the methods of oxygen supply from the nasal cannula to the trans-inhalator during the inhalation. We successfully shortened the inhalation duration that effectively reduced the laborious efforts required of patients. We also recorded pulmonary hemodynamics during inhalation of nebulized iloprost. This revealed significant hemodynamic improvement immediately following inhalation but hemodynamics returned to baseline within 2 hours. We hope that this optimization will enable patients with severe PAH to undergo iloprost inhalation.

  5. Ginsenoside Rb1 Attenuates Oxygen-Glucose Deprivation-Induced Apoptosis in SH-SY5Y Cells via Protection of Mitochondria and Inhibition of AIF and Cytochrome c Release

    Directory of Open Access Journals (Sweden)

    Pengfei Ge

    2013-10-01

    Full Text Available To investigate the role of mitochondria in the protective effects of ginsenoside Rb1 on cellular apoptosis caused by oxygen-glucose deprivation, in this study, MTT assay, TUNEL staining, flow cytometry, immunocytochemistry and western blotting were used to examine the cellular viability, apoptosis, ROS level, mitochondrial membrane potential, and the distribution of apoptosis inducing factor, cytochrome c, Bax and Bcl-2 in nucleus, mitochondria and cytoplasm. We found that pretreatment with GRb1 improved the cellular viability damaged by OGD. Moreover, GRb1 inhibited apoptosis in SH-SY5Y cells induced by OGD. Further studies showed that the elevation of cellular reactive oxygen species levels and the reduction of mitochondrial membrane potential caused by OGD were both counteracted by GRb1. Additionally, GRb1 not only suppressed the translocation of apoptosis inducing factor into nucleus and cytochrome c into cytoplasm, but also inhibited the increase of Bax within mitochondria and alleviated the decrease of mitochondrial Bcl-2. Our study indicates that the protection of GRb1 on OGD-induced apoptosis in SH-SY5Y cells is associated with its protection on mitochondrial function and inhibition of release of AIF and cytochrome c.

  6. Enzymatic scavenging of oxygen dissolved in water: Application of response surface methodology in optimization of conditions

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available In this work, removal of dissolved oxygen in water through reduction by glucose, which was catalyzed by glucose oxidase – catalase enzyme, was studied. Central composite design (CCD technique was applied to achieve optimum conditions for dissolved oxygen scavenging. Linear, square and interactions between effective parameters were obtained to develop a second order polynomial equation. The adequacy of the obtained model was evaluated by the residual plots, probability-value, coefficient of determination, and Fisher’s variance ratio test. Optimum conditions for activity of two enzymes in water deoxygenation were obtained as follows: pH=5.6, T=40°C, initial substrate concentration [S] = 65.5 mmol/L and glucose oxidase activity [E] = 252 U/Lat excess amount of catalase. The deoxygenation process during 30 seconds, in the optimal conditions, was predicted 98.2%. Practical deoxygenation in the predicted conditions was achieved to be 95.20% which was close to the model prediction.

  7. Thermal analysis, optimization and design of a Martian oxygen production plant

    Science.gov (United States)

    Iyer, Venkatesh A.; Sridhar, K. R.

    1991-01-01

    The objective is to optimally design the thermal components of a system that uses carbon dioxide (CO2) from the Martian atmosphere to produce oxygen (O2) for spacecraft propulsion and/or life-support. Carbon dioxide is thermally decomposed into carbon monoxide (CO) and O2 followed by the electrochemical separation of O2. The design of the overall system and its various individual components depends on, among other things, the fraction of the stoichiometric yield of O2 that can be realized in the system and the temperature of operation of the electrochemical separation membrane. The analysis indicates that a substantial reduction could be obtained in the mass and power requirements of the system if the unreacted CO2 were to be recycled. The concepts of an optimum temperature of the zirconia cell and impracticality of plant operation at low cell efficiencies are also discussed. The design of the thermal equipment is such that the mass and power requirements of the individual components and of the overall system are optimized.

  8. Synergistic Use of Geniposide and Ginsenoside Rg1 Balance Microglial TNF-α and TGF-β1 following Oxygen-Glucose Deprivation In Vitro: A Genome-Wide Survey

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-01-01

    Full Text Available Ischemia-activated microglia are like a double-edged sword, characterized by both neurotoxic and neuroprotective effects. The aim of this study was to reveal the synergistic effect of geniposide and ginsenoside Rg1 based on tumor necrosis factor- (TNF- α and transforming growth factor- (TGF- β1 balance of microglia. BV2 microglial cells were divided into 5 groups: control, model (oxygen-glucose deprivation (OGD, geniposide-treated, ginsenoside-Rg1-treated, and combination-treated. A series of assays were used to detect on (i cell viability; (ii NO content; (iii expression (content of TNF-α and TGF-β1; and (iv gene expression profiles. The results showed that integrated use of geniposide and ginsenoside Rg1 significantly inhibited NO level and protected cell viability, improved the content and expression of TGF-β1, and reduced the content and expression of TNF-α. Separated use of geniposide or ginsenoside Rg1 showed different effects at different emphases. Next-generation sequencing showed that Fcγ-receptor-mediated phagocytosis pathway played a key regulatory role in the balance of TNF-α and TGF-β1 when cotreated with geniposide and ginsenoside Rg1. These findings suggest that synergistic drug combination of geniposide and ginsenoside Rg1 in the treatment of stroke is a feasible avenue for the application.

  9. Synthetic Oligodeoxynucleotides Containing Multiple Telemeric TTAGGG Motifs Suppress Inflammasome Activity in Macrophages Subjected to Oxygen and Glucose Deprivation and Reduce Ischemic Brain Injury in Stroke-Prone Spontaneously Hypertensive Rats.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available The immune system plays a fundamental role in both the development and pathobiology of stroke. Inflammasomes are multiprotein complexes that have come to be recognized as critical players in the inflammation that ultimately contributes to stroke severity. Inflammasomes recognize microbial and host-derived danger signals and activate caspase-1, which in turn controls the production of the pro-inflammatory cytokine IL-1β. We have shown that A151, a synthetic oligodeoxynucleotide containing multiple telemeric TTAGGG motifs, reduces IL-1β production by activated bone marrow derived macrophages that have been subjected to oxygen-glucose deprivation and LPS stimulation. Further, we demonstrate that A151 reduces the maturation of caspase-1 and IL-1β, the levels of both the iNOS and NLRP3 proteins, and the depolarization of mitochondrial membrane potential within such cells. In addition, we have demonstrated that A151 reduces ischemic brain damage and NLRP3 mRNA levels in SHR-SP rats that have undergone permanent middle cerebral artery occlusion. These findings clearly suggest that the modulation of inflammasome activity via A151 may contribute to a reduction in pro-inflammatory cytokine production by macrophages subjected to conditions that model brain ischemia and modulate ischemic brain damage in an animal model of stroke. Therefore, modulation of ischemic pathobiology by A151 may have a role in the development of novel stroke prevention and therapeutic strategies.

  10. Protosappanin B protects PC12 cells against oxygen-glucose deprivation-induced neuronal death by maintaining mitochondrial homeostasis via induction of ubiquitin-dependent p53 protein degradation.

    Science.gov (United States)

    Zeng, Ke-Wu; Liao, Li-Xi; Zhao, Ming-Bo; Song, Fang-Jiao; Yu, Qian; Jiang, Yong; Tu, Peng-Fei

    2015-03-15

    Protosappanin B (PTB) is a bioactive dibenzoxocin derivative isolated from Caesalpinia sappan L. Here, we investigated the neuroprotective effects and the potential mechanisms of PTB on oxygen-glucose deprivation (OGD)-injured PC12 cells. Results showed that PTB significantly increased cell viability, inhibited cell apoptosis and up-regulated the expression of growth-associated protein 43 (a marker of neural outgrowth). Moreover, our study revealed that PTB effectively maintained mitochondrial homeostasis by up-regulation of mitochondrial membrane potential (MMP), inhibition of cytochrome c release from mitochondria and inactivation of mitochondrial caspase-9/3 apoptosis pathway. Further study showed that PTB significantly promoted cytoplasmic component degradation of p53 protein, a key negative regulator for mitochondrial function, resulting in a release of Bcl-2 from p53-Bcl-2 complex and an enhancing translocation of Bcl-2 to mitochondrial outer membrane. Finally, we found the degradation of p53 protein was induced by PTB via activation of a MDM2-dependent ubiquitination process. Taken together, our findings provided a new viewpoint of neuronal protection strategy for anoxia and ischemic injury with natural small molecular dibenzoxocin derivative by activating ubiquitin-dependent p53 protein degradation as well as increasing mitochondrial function. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Lycium barbarum polysaccharide protects against oxygen glucose deprivation/reoxygenation-induced apoptosis and autophagic cell death via the PI3K/Akt/mTOR signaling pathway in primary cultured hippocampal neurons.

    Science.gov (United States)

    Yu, Yang; Wu, Xiuquan; Pu, Jingnan; Luo, Peng; Ma, Wenke; Wang, Jiu; Wei, Jialiang; Wang, Yuanxin; Fei, Zhou

    2018-01-01

    Lycium barbarum polysaccharide (LBP) is the main active ingredient of Lycium barbarum, which exhibits several beneficial effects, including neuroprotection, anti-aging and anti-oxidation. However, the mechanism by which LBP protects against cerebral ischemia/reperfusion-induced injury remains obscure. In this study, we found that LBP pretreatment greatly attenuated oxygen glucose deprivation/reperfusion (OGD/R) injury in primary cultured hippocampal neurons. LBP also suppressed OGD/R-induced lactate dehydrogenase (LDH) leakage, and ameliorated oxidative stress. In addition, LBP significantly reduced OGD/R-induced apoptosis and autophagic cell death. LBP caused the down-regulation of cleaved Caspase-3/Caspase-3, LC3II/LC3I and Beclin 1, as well as up-regulation of Bcl-2/Bax and p62. Furthermore, mechanistic studies indicated that LBP pretreatment increased p-Akt and p-mTOR levels after OGD/R. In summary, our results indicated that LBP protects against OGD/R-induced neuronal injury in primary hippocampal neurons by activating the PI3K/Akt/mTOR signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    Science.gov (United States)

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-07-01

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  13. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Science.gov (United States)

    Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong

    2014-01-01

    Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  14. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Gu Gong

    Full Text Available Tetramethylpyrazine (TMP has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD. The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32 induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  15. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro

    Institute of Scientific and Technical Information of China (English)

    Fang Su; An-Chen Guo; Wei-Wei Li; Yi-Long Zhao; Zheng-Yi Qu; Yong-Jun Wang; Qun Wang; Yu-Lan Zhu

    2017-01-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion;however,the underlying mechanism has not been elucidated.In the present study,we showed that expression of the neuronal large-conductance,Ca2+-activated K+ channel (BKCa) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivatior/reoxygenation (OGD/R) compared with controls.Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R,attenuated the OGD/R-induced elevation of cytosolic Ca2+ levels,and reduced the number of apoptotic neurons.Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax.The protective effect of ethanol preconditioning was antagonized by a BKCa channel inhibitor,paxilline.Inside-out patches in primary neurons also demonstrated the direct activation of the BKCa channel by 10 mmol/L ethanol.The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca2+ and preventing neuronal apoptosis,and this is mediated by BKCa channel activation.

  16. An efficient optimization method to improve the measuring accuracy of oxygen saturation by using triangular wave optical signal

    Science.gov (United States)

    Li, Gang; Yu, Yue; Zhang, Cui; Lin, Ling

    2017-09-01

    The oxygen saturation is one of the important parameters to evaluate human health. This paper presents an efficient optimization method that can improve the accuracy of oxygen saturation measurement, which employs an optical frequency division triangular wave signal as the excitation signal to obtain dynamic spectrum and calculate oxygen saturation. In comparison to the traditional method measured RMSE (root mean square error) of SpO2 which is 0.1705, this proposed method significantly reduced the measured RMSE which is 0.0965. It is notable that the accuracy of oxygen saturation measurement has been improved significantly. The method can simplify the circuit and bring down the demand of elements. Furthermore, it has a great reference value on improving the signal to noise ratio of other physiological signals.

  17. Oxygen/glucose deprivation increases the integration of recombinant P2X7 receptors into the plasma membrane of HEK293 cells

    International Nuclear Information System (INIS)

    Milius, Doreen; Groeger-Arndt, Helke; Stanchev, Doychin; Lange-Dohna, Christine; Rossner, Steffen; Sperlagh, Beata; Wirkner, Kerstin; Illes, Peter

    2007-01-01

    Recombinant human P2X 7 receptors, C-terminally labelled with enhanced green fluorescent protein (P2X 7 -EGFP), were transiently expressed in HEK293 cells. Activation of these receptors by their preferential agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) induced inward currents and propidium ion uptake indicating the opening of cationic channels and of large pores permeable for dye molecules, respectively. Two mutants of P2X 7 receptors (P2X 7 -EGFP-I568N, -E496A) representing polymorphisms in the P2X 7 gene known to interfere with normal receptor-trafficking and with optimal assembly of its subunits, responded with much lower current amplitudes to BzATP than their wild-type counterpart. Similarly, the normal propidium ion uptake induced by BzATP at the wild-type P2X 7 receptor was abolished by the two mutants. Confocal laser scanning microscopy indicated that in vitro ischemia of 12 h duration increased the integration of P2X 7 -EGFP, but not of its two mutants, into the plasma membrane of HEK293 cells. Further, this ischemic stimulus facilitated the current response to BzATP in HEK293 cells permanently transfected with P2X 7 receptors. Finally, the fluorescence intensity per cell measured by flow cytometry and P2X 7 antibodies directed against an extracellular, but not an intracellular epitope of the receptor, were also increased. In conclusion, P2X 7 receptors may alter their trafficking properties during ischemia and thereby contribute to the ATP-induced damage of various cell-types including neurons

  18. Partridgeberry polyphenols protect rat primary cortical neurons from oxygen-glucose deprivation-reperfusion-induced injury via suppression of inflammatory adipokines and regulation of HIF-1α and PPARγ.

    Science.gov (United States)

    Bhullar, Khushwant S; Rupasinghe, H P Vasantha

    2016-07-01

    The aim of this study was to investigate the neuroprotective ability of partridgeberry polyphenols in rat primary cortical neurons against oxygen-glucose deprivation/reperfusion (OGD/R) injury in vitro and explore the underlying therapeutic mechanism(s). The OGD/R injury was induced in rat primary cortical neurons by incubation with deoxygenated glucose-free medium in a hypoxia chamber. The strongest activity in this regard was exhibited by partridgeberry-derived PPF2 and PPF3, i.e. the flavan-3-ol- and flavonol-rich polyphenol fractions of partridgeberry (P ≤ 0.05). Moreover, partridgeberry polyphenol pre-treatment reduced the membrane damage in primary neurons, as measured by the lactose dehydrogenase (LDH) release assay (P ≤ 0.05). Furthermore, PPF2 and PPF3 pre-treatment (100 µg ml(-1)) for 24 hours, before OGD/R, resulted in the strongest suppression of interleukin (IL)-6 and tumor necrosis factor-α induction by OGD/R injury, compared with the control group (P ≤ 0.05). Additionally, the protein levels of hypoxia-inducible factor (HIF-1α) and PPARγ, quantified by ELISA presented a significant modulation following PPFs treatment (100 µg ml(-1)), favorably toward neuroprotection, compared with the respective controls after OGD/R injury in vitro (P ≤ 0.05). In summary, partridgeberry polyphenols at concentrations of 1-100 µg ml(-1), significantly induced a decline in OGD/R injury-triggered apoptosis in vitro, suppressed the inflammatory biomarkers in primary neurons, and modulated the activity of HIF-1α and proliferator-activated receptor gamma (PPARγ) following hypoxic injury.

  19. Was cultural deprivation in fact sensory deprivation? Deprivation, retardation and intervention in the USA.

    Science.gov (United States)

    Raz, Mical

    2011-01-01

    In the 1950s, the term "deprivation" entered American psychiatric discourse. This article examines how the concept of deprivation permeated the field of mental retardation, and became an accepted theory of etiology. It focuses on sensory deprivation and cultural deprivation, and analyzes the interventions developed, based on these theories. It argues that the controversial theory of cultural deprivation derived its scientific legitimization from the theory of sensory deprivation, and was a highly politicized concept that took part in the nature-nurture debate.

  20. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  1. Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors

    Directory of Open Access Journals (Sweden)

    E. Ali

    2017-07-01

    Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.

  2. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner.

    Science.gov (United States)

    Sun, Lin; Li, Man; Ma, Xun; Feng, Haoyu; Song, Junlai; Lv, Cong; He, Yajun

    2017-11-25

    Spinal cord astrocyte swelling is an important component to spinal cord edema and is associated with poor functional recovery as well as therapeutic resistance after spinal cord injury (SCI). High mobility group box-1 (HMGB1) is a mediator of inflammatory responses in the central nervous system and plays a critical role after SCI. Given this, we sought to identify both the role and underlying mechanisms of HMGB1 in cellular swelling and aquaporin 4 (AQP4) expression in cultured rat spinal cord astrocytes after oxygen-glucose deprivation/reoxygenation (OGD/R). The post-natal day 1-2 Sprague-Dawley rat spinal cord astrocytes were cultured in vitro, and the OGD/R model was induced. We first investigated the effects of OGD/R on spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. We then studied the effects of HMGB1 inhibition on cellular swelling, HMGB1 and AQP4 expression, and HMGB1 release. The roles of both toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway and interleukin-6 (IL-6) in reducing cellular swelling resulting from HMGB1 inhibition in spinal cord astrocytes after OGD/R were studied. Intergroup data were compared using one-way analysis of variance (ANOVA) followed by Dunnett's test. The OGD/R increased spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. Inhibition of HMGB1 using either HMGB1 shRNA or ethyl pyruvate resulted in reduced cellular volume, mitochondrial and endoplasmic reticulum swelling, and lysosome number and decreased upregulation of both HMGB1 and AQP4 in spinal cord astrocytes, as well as HMGB1 release. The HMGB1 effects on spinal cord astrocytic swelling and AQP4 upregulation after OGD/R were mediated-at least in part-via activation of TLR4, myeloid differentiation primary response gene 88 (MyD88), and NF-κB. These activation effects can be repressed by TLR4 inhibition using CLI-095 or C34, or by NF-κB inhibition using BAY 11

  3. The selective antagonism of P2X7 and P2Y1 receptors prevents synaptic failure and affects cell proliferation induced by oxygen and glucose deprivation in rat dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Giovanna Maraula

    Full Text Available Purinergic P2X and P2Y receptors are broadly expressed on both neurons and glial cells in the central nervous system (CNS, including dentate gyrus (DG. The aim of this research was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD in acute rat hippocampal slices and to investigate the contribution of P2X7 and P2Y1 receptor antagonism to recovery of synaptic activity after OGD. Extracellular field excitatory post-synaptic potentials (fEPSPs in granule cells of the DG were recorded from rat hippocampal slices. Nine-min OGD elicited an irreversible loss of fEPSP and was invariably followed by the appearance of anoxic depolarization (AD. Application of MRS2179 (selective antagonist of P2Y1 receptor and BBG (selective antagonist of P2X7 receptor, before and during OGD, prevented AD appearance and allowed a significant recovery of neurotransmission after 9-min OGD. The effects of 9-min OGD on proliferation and maturation of cells localized in the subgranular zone (SGZ of slices prepared from rats treated with 5-Bromo-2'-deoxyuridine (BrdU were investigated. Slices were further incubated with an immature neuron marker, doublecortin (DCX. The number of BrdU+ cells in the SGZ was significantly decreased 6 hours after OGD. This effect was antagonized by BBG, but not by MRS2179. Twenty-four hours after 9-min OGD, the number of BrdU+ cells returned to control values and a significant increase of DCX immunofluorescence was observed. This phenomenon was still evident when BBG, but not MRS2179, was applied during OGD. Furthermore, the P2Y1 antagonist reduced the number of BrdU+ cells at this time. The data demonstrate that P2X7 and P2Y1 activation contributes to early damage induced by OGD in the DG. At later stages after the insult, P2Y1 receptors might play an additional and different role in promoting cell proliferation and maturation in the DG.

  4. Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway.

    Science.gov (United States)

    Wang, Ning; Zhang, Lingmin; Lu, Yang; Zhang, Mingxin; Zhang, Zhenni; Wang, Kui; Lv, Jianrui

    2017-05-01

    MicroRNAs (miRNAs) play vital roles in regulating neuron survival during cerebral ischemia/reperfusion injury. miR-142-5p is reported to be an important regulator of cellular survival. However, little is known about the role of miR-142-5p in regulating neuron survival during cerebral ischemia/reperfusion injury. In this study, we aimed to investigate the precise function and mechanism of miR-142-5p in the regulation of neuron ischemia/reperfusion injury using a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury in hippocampal neurons in vitro. We found that miR-142-5p was induced in hippocampal neurons with OGD/R treatment. The inhibition of miR-142-5p attenuated OGD/R-induced cell injury and oxidative stress, whereas the overexpression of miR-142-5p aggravated them. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-142-5p. Moreover, miR-142-5p regulated Nrf2 expression and downstream signaling. Knockdown of Nrf2 abolished the protective effects of miR-142-5p suppression. In addition, we showed an inverse correlation relationship between miR-142-5p and Nrf2 in an in vivo model of middle cerebral artery occlusion in rats. Taken together, these results suggest that miR-142-5p contributes to OGD/R-induced cell injury and the down-regulation of miR-142-5p attenuates OGD/R-induced neuron injury through promoting Nrf2 expression. Our study provides a novel insight into understanding the molecular pathogenesis of cerebral ischemia/reperfusion injury and indicates a potential therapeutic target for the treatment of cerebral ischemia/reperfusion injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Effects of bone marrow-derived mesenchymal stem cells on the axonal outgrowth through activation of PI3K/AKT signaling in primary cortical neurons followed oxygen-glucose deprivation injury.

    Directory of Open Access Journals (Sweden)

    Yong Liu

    Full Text Available BACKGROUND: Transplantation with bone marrow-derived mesenchymal stem cells (BMSCs improves the survival of neurons and axonal outgrowth after stroke remains undetermined. Here, we investigated whether PI3K/AKT signaling pathway is involved in these therapeutic effects of BMSCs. METHODOLOGY/PRINCIPAL FINDINGS: (1 BMSCs and cortical neurons were derived from Sprague-Dawley rats. The injured neurons were induced by Oxygen-Glucose Deprivation (OGD, and then were respectively co-cultured for 48 hours with BMSCs at different densities (5×10(3, 5×10(5/ml in transwell co-culture system. The average length of axon and expression of GAP-43 were examined to assess the effect of BMSCs on axonal outgrowth after the damage of neurons induced by OGD. (2 The injured neurons were cultured with a conditioned medium (CM of BMSCs cultured for 24 hours in neurobasal medium. During the process, we further identified whether PI3K/AKT signaling pathway is involved through the adjunction of LY294002 (a specific phosphatidylinositide-3-kinase (PI3K inhibitor. Two hours later, the expression of pAKT (phosphorylated AKT and AKT were analyzed by Western blotting. The length of axons, the expression of GAP-43 and the survival of neurons were measured at 48 hours. RESULTS: Both BMSCs and CM from BMSCs inreased the axonal length and GAP-43 expression in OGD-injured cortical neurons. There was no difference between the effects of BMSCs of 5×10(5/ml and of 5×10(3/ml on axonal outgrowth. Expression of pAKT enhanced significantly at 2 hours and the neuron survival increased at 48 hours after the injured neurons cultured with the CM, respectively. These effects of CM were prevented by inhibitor LY294002. CONCLUSIONS/SIGNIFICANCE: BMSCs promote axonal outgrowth and the survival of neurons against the damage from OGD in vitro by the paracrine effects through PI3K/AKT signaling pathway.

  6. Electron Paramagnetic Resonance pO2 Image Tumor Oxygen-Guided Radiation Therapy Optimization.

    Science.gov (United States)

    Epel, Boris; Maggio, Matt; Pelizzari, Charles; Halpern, Howard J

    2017-01-01

    Modern standards for radiation treatment do not take into account tumor oxygenation for radiation treatment planning. Strong correlation between tumor oxygenation and radiation treatment success suggests that oxygen-guided radiation therapy (OGRT) may be a promising enhancement of cancer radiation treatment. We have developed an OGRT protocol for rodents. Electron paramagnetic resonance (EPR) imaging is used for recording oxygen maps with high spatial resolution and excellent accuracy better than 1 torr. Radiation is delivered with an animal intensity modulated radiation therapy (IMRT) XRAD225Cx micro-CT/ therapy system. The radiation plan is delivered in two steps. First, a uniform 15% tumor control dose (TCD 15 ) is delivered to the whole tumor. In the second step, an additional booster dose amounting to the difference between TCD 98 and TCD 15 is delivered to radio-resistant, hypoxic tumor regions. Delivery of the booster dose is performed using a multiport conformal beam protocol. For radiation beam shaping we used individual radiation blocks 3D-printed from tungsten infused ABS polymer. Calculation of beam geometry and the production of blocks is performed next to the EPR imager, immediately after oxygen imaging. Preliminary results demonstrate the sub-millimeter precision of the radiation delivery and high dose accuracy. The efficacy of the radiation treatment is currently being tested on syngeneic FSa fibrosarcoma tumors grown in the legs of C3H mice.

  7. Optimized chondrogenesis of ATCD5 cells through sequential regulation of oxygen conditions

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Ebbesen, Peter

    2006-01-01

    , chondrocyte-specific extracellular matrix (ECM) production was monitored. Furthermore, the transcription of collagen II, an early-phase marker, and collagen X, a marker of hypertrophic conversion, was followed by real-time RT-PCR. Low oxygen concentrations between 1 and 9% inhibited chondrogenic conversion......, as evidenced by reduced glycosaminoglycan deposition in the ECM in a manner proportional to the degree of hypoxia. Cells cultured at oxygen concentrations of 12 and 15% underwent a faster and higher degree of early-phase chondrogenesis when compared to control cells cultured at ambient air (21% O2......). For the hypertrophic conversion of the ATDC5 cells, all degrees of hypoxia inhibited collagen X expression in a dose-dependent manner. Short-term culturing of the ATDC5 cells for 6 to 8 days at 12% oxygen with subsequent culturing at 21% for the remainder of the experiment resulted in maximal production of major ECM...

  8. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration.

    Science.gov (United States)

    Merola, Alberto; Murphy, Kevin; Stone, Alan J; Germuska, Michael A; Griffeth, Valerie E M; Blockley, Nicholas P; Buxton, Richard B; Wise, Richard G

    2016-04-01

    Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2. To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3T. A wide range of physiological conditions was simulated by varying input parameter values (baseline cerebral blood volume (CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit (Hct)). From the optimization of the calibration model for estimation of OEF and practical considerations of hypercapnic and hyperoxic respiratory challenges, a new "simplified calibration model" is established which reduces the complexity of the original calibration model by substituting the standard parameters α and β with a single parameter θ. The optimal value of θ is determined (θ=0.06) across a range of experimental respiratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to the true values used to simulate the experimental data compared to those estimated using the original model incorporating literature values of α and β. Finally, an error propagation analysis demonstrates the susceptibility of the original and simplified calibration models to measurement errors and potential violations in the underlying assumptions of isometabolism

  9. Study on low intensity aeration oxygenation model and optimization for shallow water

    Science.gov (United States)

    Chen, Xiao; Ding, Zhibin; Ding, Jian; Wang, Yi

    2018-02-01

    Aeration/oxygenation is an effective measure to improve self-purification capacity in shallow water treatment while high energy consumption, high noise and expensive management refrain the development and the application of this process. Based on two-film theory, the theoretical model of the three-dimensional partial differential equation of aeration in shallow water is established. In order to simplify the equation, the basic assumptions of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction are proposed based on engineering practice and are tested by the simulation results of gas holdup which are obtained by simulating the gas-liquid two-phase flow in aeration tank under low-intensity condition. Based on the basic assumptions and the theory of shallow permeability, the model of three-dimensional partial differential equations is simplified and the calculation model of low-intensity aeration oxygenation is obtained. The model is verified through comparing the aeration experiment. Conclusions as follows: (1)The calculation model of gas-liquid mass transfer in vertical direction and concentration diffusion in horizontal direction can reflect the process of aeration well; (2) Under low-intensity conditions, the long-term aeration and oxygenation is theoretically feasible to enhance the self-purification capacity of water bodies; (3) In the case of the same total aeration intensity, the effect of multipoint distributed aeration on the diffusion of oxygen concentration in the horizontal direction is obvious; (4) In the shallow water treatment, reducing the volume of aeration equipment with the methods of miniaturization, array, low-intensity, mobilization to overcome the high energy consumption, large size, noise and other problems can provide a good reference.

  10. Optimization of uranium carbide fabrication by carbothermic reduction with limited oxygen content

    International Nuclear Information System (INIS)

    Raveu, Gaelle

    2014-01-01

    Mixed carbides (U, Pu)C, are good fuel candidate for generation IV reactors because of their high fissile atoms density and excellent thermal properties for economical (more compact and efficient cores) and safety reasons (high melting margin). UC can be imagine as a surrogate material ror R and D studies on (U,Pu)C fuel behavior, because of their similar structures. The carbothermic reaction was used because it is the most studied and now consider for industrial process. However, it involves powders manipulation: in air, carbide can strongly react at room temperature and under controlled atmosphere it can absorb impurities. An inerted installation under Ar, BaGCARA, was therefore used. Process improvements were carried out, including the sintering atmosphere in order to evaluate the impact on the sample purity (about oxygen content). The original method by ion beam analysis was used to determine the surface composition (oxygen in-depth profiles in the first microns and stoichiometry). This oxygen analysis was set for the first time in carbonaceous materials. XRD analysis showed the formation of an intermediate compound during the carbothermic reaction and a better crystallization of the samples fabricated in BaGCARA. They also have a better microstructure, density, and visual appearance if compared to former samples. Vacuum sintering leads to a denser UC with fewer second phases if compared to Ar, Ar/H 2 or controlled PC atmospheres. However, it was not possible to analyze carbides without air contact which may impact their lattice parameter and lead to their deterioration. When the carbide is initially free of oxygen, it oxidizes faster, more intensely and heterogeneously. The mechanical stress induced between the grains lead to fracturing the material, to corrosion cracking and then a de-bonding of the material. A study of oxidation mechanisms would be interesting to validate and understand the evolution of the material in contact with oxygen. A study of the

  11. [Laser Tuning Performance Testing and Optimization in TDLAS Oxygen Measuring Systems].

    Science.gov (United States)

    He, Jun-feng; Hu, Jun; Kan, Rui-feng; Xu, Zhen-yu; Wang, Tao

    2015-03-01

    TDLAS (tunable diode laser absorption spectroscopy) technology, with its unmatched advantages such as high selectivity molecular spectra, fast response, high sensitivity, non-contact measuring, become the preferred scheme for combustion process diagnosis, and can be effectively used for oxygen measuring. DFB (distributed feedback) laser diode with its small size, low power consumption, long service life, narrow linewidth, tunable wavelength has become the main choice of the TDLAS system. Performance of laser tuning characteristics is a key factor restricting TDLAS's measuring performance. According to TDLAS oxygen measuring system's working requirements, a simple experimental method was used to test and analyze tuning characteristics such as wavelength current, power current and wavelength temperature of a 764 nm DFB laser diode in the system. Nonlinear distortion of tuning curves was obvious, which affects oxygen measuring accuracy. The laser spectra's characteristics such as narrow linewidth, high side mode suppression ratio and wide wavelength tuning range are obvious, while its wavelength-current tuning curve with a tuning rate of about 0.023 nm x mA(-1) is not strictly linear. The higher the temperature the greater the threshold current, the PI curve is not strictly linear either. Temperature tuning curve is of good linearity, temperature-wave-length tuning rate keeps constant of about 0.056 nm/DEG C. Temperature tuning nonlinearity can be improved by high temperature control accuracy, and current power nonlinearity can be improved by setting the reference light path. In order to solve the wavelength current tuning nonlinear problems, the method of DA controlling injection current was considered to compensate for non-linear wavelength current tuning according to DFB laser diode tuning mechanism and polynomial fitting of test results. In view of different type of lasers, this method needs only one polynomial fitting process before the system's initial work. The

  12. Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Pećanac, G.

    2016-01-01

    The microstructure, mechanical properties and gas permeability of porous supports of Ce0.9Gd0.1O1.95−δ (CGO) were investigated as a function of sintering temperature and volume fraction of pore former for use in planar asymmetric oxygen transport membranes (OTMs). With increasing the pore former...... content from 11 vol% to 16 vol%, the gas permeabilities increased by a factor of 5 when support tapes were sintered to comparable densities. The improved permeabilities were due to a more favourable microstructure with larger interconnected pores at a porosity of 45% and a fracture strength of 47±2 MPa (m...

  13. Relative deprivation and intergroup prejudice

    NARCIS (Netherlands)

    Pettigrew, T.F.; Christ, O.; Wagner, U.; Meertens, R.W.; van Dick, R.; Zick, A.

    2008-01-01

    Using three diverse European surveys, we test the relationship between relative deprivation (RD) and anti-immigrant prejudice. We find that both group relative deprivation (GRD) and individual relative deprivation (IRD) are found primarily among working-class respondents who are politically

  14. Are You Sleep Deprived?

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Sleep Disorders Are You Sleep Deprived? Past Issues / Summer 2015 Table of Contents ... even if you think you've had enough sleep? You might have a sleep disorder. There are ...

  15. Sleep deprivation and depression

    NARCIS (Netherlands)

    Elsenga, Simon

    1992-01-01

    The association between depression and sleep disturbances is perhaps as old as makind. In view of the longstanding experience with this association it is amazing that only some 20 years ago, a few depressed patients attracted attention to the fact that Total Sleep Deprivation (TSD) had

  16. Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Lee, Yeayeon; Jang, Jeongseok; Lee, Jin Goo; Jeon, Ok Sung; Kim, Hyeong Su; Hwang, Ho Jung; Shul, Yong Gun

    2016-01-01

    Highlights: • Pd-Mo-Fe catalysts show high catalytic activity and stability for oxygen-reduction reactions in acid media. • The optimum compositions were 7.5:1.5:1.0 for Pd-Fe-Mo, and the optimum temperatures were 500 °C. • The Pd-Fe-Mo catalysts were successfully applied to the PEMFC cathode, showing ∼500 mA cm −1 at 0.6 V. • The lattice constant was strongly related to the activity and stability of the catalysts for oxygen-reduction reactions. - Abstract: Highly active and durable non-platinum catalysts for oxygen-reduction reaction (ORR) have been developed for energy conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this study, Pd-Fe-Mo catalyst is reported as a non-platinum catalyst for ORR. The atomic ratio and annealing temperatures are controlled on the catalysts to understand interplay between their physical and chemical properties and electrochemical activities. The Pd-Fe-Mo catalyst optimized with 7.5:1.5:1.0 of the atomic ratio and 500 °C of the annealing temperature shows 32.18 mA mg −1 PGM (PGM: platinum group metal) of the kinetic current density at 0.9 V for ORR, which is comparable to that of commercial Pt/C catalyst. The current density is degraded to 6.20 mA mg −1 PGM after 3000 cycling of cyclic voltammetry, but it is greatly enhanced value compared to other non-platinum catalysts. In actual application to PEMFCs, the 20% Pd-Fe-Mo catalyst supported on carbons exhibits a high performance of 506 mA cm −2 at 0.6 V. The results suggest that the Pd-Fe-Mo catalyst can be a good candidate for non-platinum ORR catalysts.

  17. Optimization of Ru{sub x}Se{sub y} electrocatalyst loading for oxygen reduction in a PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.G. [Instituto Politecnico Nacional, Laboratorio de Electroquimica y Corrosion ESIQIE, UPALP, 07738 Mexico, D.F., Mexico (Mexico); Guzman-Guzman, A.; Solorza-Feria, O. [Depto. Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, A. Postal 14-740, 07360 Mexico D.F., Mexico (Mexico)

    2010-11-15

    The synthesis, characterization and optimization of Ru{sub x}Se{sub y} catalyst loading as a cathode electrode for a single polymer electrolyte membrane fuel cell, PEMFC were investigated. Ru{sub x}Se{sub y} catalyst was synthesized via a decarbonylation of Ru{sub 3}(CO){sub 12} and elemental selenium in 1,6-hexanediol under refluxing conditions for 2 h. The powder electrocatalyst was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and examined for the oxygen reduction reaction (ORR) in 0.5M H{sub 2}SO{sub 4} by rotating disk electrode (RDE) and in membrane-electrode assemblies, MEAs for a single PEMFC. Results indicate the formation of agglomerates of crystalline particles with nanometric size embedded in an amorphous phase. The catalyst exhibited high current density and lower overpotential for the ORR compared to that of Ru{sub x} cluster catalyst. Dispersed Ru{sub x}Se{sub y} catalyst loading on Vulcan carbon was optimized as a cathode electrode by performance testing in a single H{sub 2}-O{sub 2} fuel cell. (author)

  18. Contribution of blood oxygen and carbon dioxide sensing to the energetic optimization of human walking.

    Science.gov (United States)

    Wong, Jeremy D; O'Connor, Shawn M; Selinger, Jessica C; Donelan, J Maxwell

    2017-08-01

    People can adapt their gait to minimize energetic cost, indicating that walking's neural control has access to ongoing measurements of the body's energy use. In this study we tested the hypothesis that an important source of energetic cost measurements arises from blood gas receptors that are sensitive to O 2 and CO 2 concentrations. These receptors are known to play a role in regulating other physiological processes related to energy consumption, such as ventilation rate. Given the role of O 2 and CO 2 in oxidative metabolism, sensing their levels can provide an accurate estimate of the body's total energy use. To test our hypothesis, we simulated an added energetic cost for blood gas receptors that depended on a subject's step frequency and determined if subjects changed their behavior in response to this simulated cost. These energetic costs were simulated by controlling inspired gas concentrations to decrease the circulating levels of O 2 and increase CO 2 We found this blood gas control to be effective at shifting the step frequency that minimized the ventilation rate and perceived exertion away from the normally preferred frequency, indicating that these receptors provide the nervous system with strong physiological and psychological signals. However, rather than adapt their preferred step frequency toward these lower simulated costs, subjects persevered at their normally preferred frequency even after extensive experience with the new simulated costs. These results suggest that blood gas receptors play a negligible role in sensing energetic cost for the purpose of optimizing gait. NEW & NOTEWORTHY Human gait adaptation implies that the nervous system senses energetic cost, yet this signal is unknown. We tested the hypothesis that the blood gas receptors sense cost for gait optimization by controlling blood O 2 and CO 2 with step frequency as people walked. At the simulated energetic minimum, ventilation and perceived exertion were lowest, yet subjects

  19. Optimized and Automated Radiosynthesis of [18F]DHMT for Translational Imaging of Reactive Oxygen Species with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2016-12-01

    Full Text Available Reactive oxygen species (ROS play important roles in cell signaling and homeostasis. However, an abnormally high level of ROS is toxic, and is implicated in a number of diseases. Positron emission tomography (PET imaging of ROS can assist in the detection of these diseases. For the purpose of clinical translation of [18F]6-(4-((1-(2-fluoroethyl-1H-1,2,3-triazol-4-ylmethoxyphenyl-5-methyl-5,6-dihydrophenanthridine-3,8-diamine ([18F]DHMT, a promising ROS PET radiotracer, we first manually optimized the large-scale radiosynthesis conditions and then implemented them in an automated synthesis module. Our manual synthesis procedure afforded [18F]DHMT in 120 min with overall radiochemical yield (RCY of 31.6% ± 9.3% (n = 2, decay-uncorrected and specific activity of 426 ± 272 GBq/µmol (n = 2. Fully automated radiosynthesis of [18F]DHMT was achieved within 77 min with overall isolated RCY of 6.9% ± 2.8% (n = 7, decay-uncorrected and specific activity of 155 ± 153 GBq/µmol (n = 7 at the end of synthesis. This study is the first demonstration of producing 2-[18F]fluoroethyl azide by an automated module, which can be used for a variety of PET tracers through click chemistry. It is also the first time that [18F]DHMT was successfully tested for PET imaging in a healthy beagle dog.

  20. Mobility Optimization in LaxBa1-xSnO3 Thin Films Deposited via High Pressure Oxygen Sputtering

    Science.gov (United States)

    Postiglione, William Michael

    BaSnO3 (BSO) is one of the most promising semiconducting oxides currently being explored for use in future electronic applications. BSO possesses a unique combination of high room temperature mobility (even at very high carrier concentrations, > 1019 cm-3), wide band gap, and high temperature stability, making it a potentially useful material for myriad applications. Significant challenges remain however in optimizing the properties and processing of epitaxial BSO, a critical step towards industrial applications. In this study we investigate the viability of using high pressure oxygen sputtering to produce high mobility La-doped BSO thin films. In the first part of our investigation we synthesized, using solid state reaction, phase-pure stoichiometric polycrystalline 2% La-doped BaSnO 3 for use as a target material in our sputtering system. We verified the experimental bulk lattice constant, 4.117 A, to be in good agreement with literature values. Next, we set out to optimize the growth conditions for DC sputtering of La doped BaSnO3. We found that mobility for all our films increased monotonically with deposition temperature, suggesting the optimum temperature for deposition is > 900 °C and implicating a likely improvement in transport properties with post-growth thermal anneal. We then preformed systematic studies aimed at probing the effects of varying thickness and deposition rate to optimize the structural and electronic transport properties in unbuffered BSO films. In this report we demonstrate the ability to grow 2% La BSO thin films with an effective dopant activation of essentially 100%. Our films showed fully relaxed (bulk), out-of-plane lattice parameter values when deposited on LaAlO3, MgO, and (LaAlO3)0.3(Sr2 TaAlO6)0.7 substrates, and slightly expanded out-of-plane lattice parameters for films deposited on SrTiO3, GdScO3, and PrScO3 substrates. The surface roughness's of our films were measured via AFM, and determined to be on the nm scale or better

  1. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    Science.gov (United States)

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  2. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.

    Science.gov (United States)

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.

  3. Optimizing the calculation of DM,CO and VC via the single breath single oxygen tension DLCO/NO method.

    Science.gov (United States)

    Coffman, Kirsten E; Taylor, Bryan J; Carlson, Alex R; Wentz, Robert J; Johnson, Bruce D

    2016-01-15

    Alveolar-capillary membrane conductance (D(M,CO)) and pulmonary-capillary blood volume (V(C)) are calculated via lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) using the single breath, single oxygen tension (single-FiO2) method. However, two calculation parameters, the reaction rate of carbon monoxide with blood (θ(CO)) and the D(M,NO)/D(M,CO) ratio (α-ratio), are controversial. This study systematically determined optimal θ(CO) and α-ratio values to be used in the single-FiO2 method that yielded the most similar D(M,CO) and V(C) values compared to the 'gold-standard' multiple-FiO2 method. Eleven healthy subjects performed single breath DL(CO)/DL(NO) maneuvers at rest and during exercise. D(M,CO) and V(C) were calculated via the single-FiO2 and multiple-FiO2 methods by implementing seven θ(CO) equations and a range of previously reported α-ratios. The RP θ(CO) equation (Reeves, R.B., Park, H.K., 1992. Respiration Physiology 88 1-21) and an α-ratio of 4.0-4.4 yielded DM,CO and VC values that were most similar between methods. The RP θ(CO) equation and an experimental α-ratio should be used in future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Williams, C R; Bees, M A

    2014-02-01

    The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  5. Is Entrepreneurship a Route Out of Deprivation?

    DEFF Research Database (Denmark)

    Frankish, Julian S.; Roberts, Richard G.; Coad, Alexander Jean-Luc

    2014-01-01

    Frankish J. S., Roberts R. G., Coad A. and Storey D. J. Is entrepreneurship a route out of deprivation?, Regional Studies. This paper investigates whether entrepreneurship constitutes a route out of deprivation for those living in deprived areas. The measure of income/wealth used is based...... the wealth distribution. Hence, entrepreneurship can be a route out of deprivation....

  6. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila.

    Science.gov (United States)

    Le Glou, Eric; Seugnet, Laurent; Shaw, Paul J; Preat, Thomas; Goguel, Valérie

    2012-10-01

    Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.

  7. A facile-operation tubular electro-Fenton system combined with oxygen evolution reaction for flutriafol degradation: Modeling and Parameters optimizing

    International Nuclear Information System (INIS)

    Xu, Anlin; Wei, Kajia; Zhang, Yonghao; Han, Weiqing; Li, Jiansheng; Sun, Xiuyun; Shen, Jinyou; Wang, Lianjun

    2017-01-01

    Highlights: •A novel tubular cathode coated by carbon black and Fe 2 O 3 -NPs was fabricated and tested. •Effective flutriafol degradation of in dual tubular EF reactor was optimized by RSM. •Ti/RuO 2 and Ti/SnO 2 -Sb anode as oxygen provider can reach high oxygen utilization (78.8%). •The best flutriafol removal (76.5%) without circulation was gained if Ti/RuO 2 was selected as anode. •The simplest operation by the EOC process without aeration, pH and iron adjustment was obtained in the system. -- Abstract: An effective tubular membrane cathode coated by heterogeneous Fe 2 O 3 nanoparticles with carbon black (CB), combined with oxygen evolution reaction (OER), was fabricated to simplify the operation of electro-Fenton system. It was demonstrated that the cathode had a favorable suitability for this system owing to the excellent performance presented on Field emission scanning electron microscopy (FE-SEM), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and Cyclic voltammetry (CV). An optimal condition was obtained by response surface methodology (RSM) including pH of 6.7, current density of 13.0 A m −2 , membrane flux of 82.9 L m −2 h −1 , and CB/Fe of 6.2:1. Meanwhile, we achieved an estimated degradation efficiency of flutriafol (79.6%) in optimal condition without circulation of the influent. Effects of OER on the degradation of flutriafol via Ti/RuO 2 and Ti/SnO 2 -Sb tubular anodes were further interpreted by the gas production rate and the H 2 /O 2 value. High oxygen utilization of 78.8% was acquired when Ti/RuO 2 anode served as a sufficient oxygen provider. The electrocatalytic oxygen cycle, a key loop process, was firstly interpreted in this system, which achieved a great comprehensive electrocatalytic effect with the simplest operation and had a 74.5% removal of flutriafol in the verified experiment.

  8. Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen.

    Science.gov (United States)

    Gao, Wa; Kim, Hye-Jin; Chung, Chung-Han; Lee, Jin-Woo

    2014-09-01

    The optimal conditions for the production of carboxymethylcellulase (CMCase) by Bacillus velezensis A-68 at a flask scale have been previously reported. In this study, the parameters involved in dissolved oxygen in 7 and 100 L bioreactors were optimized for the pilot-scale production of CMCase. The optimal agitation speed and aeration rate for cell growth of B. velezensis A-68 were 323 rpm and 1.46 vvm in a 7 L bioreactor, whereas those for the production of CMCase were 380 rpm and 0.54 vvm, respectively. The analysis of variance (ANOVA) implied that the highly significant factor for cell growth was the aeration rate, whereas that for the production of CMCase was the agitation speed. The optimal inner pressures for cell growth and the production of CMCase by B. velezensis A-68 in a 100 L bioreactor were 0.00 and 0.04 MPa, respectively. The maximal production of CMCase in a 100 L bioreactor under optimized conditions using rice hulls was 108.1 U/ml, which was 1.8 times higher than that at a flask scale under previously optimized conditions.

  9. Nanotexture Optimization by Oxygen Plasma of Mesoporous Silica Thin Film for Enrichment of Low Molecular Weight Peptides Captured from Human Serum

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Brousseau, Louis; Bouamrani, Ali; Liu, Xuewu; Ferrari, Mauro

    2010-01-01

    This study investigated the optimization of mesoporous silica thin films by nanotexturing using oxygen plasma versus thermal oxidation. Calcination in oxygen plasma provides superior control over pore formation with regard to the pore surface and higher fidelity to the structure of the polymer template. The resulting porous film offers an ideal substrate for the selective partitioning of peptides from complex mixtures. The improved chemico-physical characteristics of porous thin films (pore size distribution, nanostructure, surface properties and pore connectivity) were systematically characterized with XRD, Ellipsometry, FTIR, TEM and N2 adsorption/desorption. The enrichment of low molecular weight proteins captured from human serum on mesoporous silica thin films fabricated by both methodologies were investigated by comparison of their MALDI-TOF MS profiles. This novel on-chip fractionation technology offers advantages in recovering the low molecular weight peptides from human serum, which has been recognized as an informative resource for early diagnosis of cancer and other diseases. PMID:21179395

  10. Tailoring the microstructure of porous MgO supports for asymmetric oxygen separation membranes: Optimization of thermoplastic feedstock systems

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Clemens, F.; Glasscock, Julie

    2014-01-01

    Porous magnesium oxide (MgO) structures were prepared by thermoplastic processing for use as supports in asymmetric thin film oxygen transport membranes (OTMs). The open porosity, pore size distribution, and resulting gas permeability of the MgO structures were measured for different feedstock...

  11. Optimization of perfluorocarbon emulsion properties for enhancing oxygen mass transfer in a bio-artificial liver support system

    CSIR Research Space (South Africa)

    Moolman, FS

    2004-07-29

    Full Text Available : With increase in the dispersed phase volume fraction (phi(p)) both the oxygen holding capacity and the viscosity increases. These issues are addressed here using simplified mass transfer models, amenable to analytical solution, for both gas-sparged and membrane...

  12. Patterns of Subjective Deprivation in Adulthood

    Science.gov (United States)

    Bortner, Rayman, W.; Hultsch, David F.

    1974-01-01

    Investigated the number and characteristics of adults experiencing different types of subjective deprivation, and evaluated Cantril's assertion that some of these types of deprivation are ontogenetic in nature. (DP)

  13. Infantile nystagmus and visual deprivation

    DEFF Research Database (Denmark)

    Fledelius, Hans C; Jensen, Hanne

    2014-01-01

    PURPOSE: To evaluate whether effects of early foveal motor instability due to infantile nystagmus might compare to those of experimental visual deprivation on refraction in a childhood series. METHODS: This was a retrospective analysis of data from the Danish Register for Blind and Weaksighted Ch...

  14. Health Effects of Sleep Deprivation,

    Science.gov (United States)

    1990-06-01

    of an inordinate sleep loss (as hunger and thirst prevent us from going too long without food and water). Because of this, it takes great personal...drug-refractory depression. Neuropsychology 13:111-116, 1985. 82. Dowd PJ: Sleep deprivation effects on the vestibular habituation process. J Apply

  15. Optimization of Glucose oxidase towards oxygen independency and high mediator activity for amperometric glucose determination in diabetes analytics

    OpenAIRE

    Arango Gutierrez, Erik Uwe

    2015-01-01

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies, and one simultaneous site saturation library (OmniC...

  16. Improving rate capability and reducing over-potential of lithium-oxygen batteries through optimization of Dimethylsulfoxide-N/N-dimethylacetamide mixed electrolyte

    International Nuclear Information System (INIS)

    Chen, Chunguang; Li, Liangyu; Su, Junming; Zhang, Congcong; Chen, Xiang; Huang, Tao; Yu, Aishui

    2017-01-01

    Although dimethylsulfoxide (DMSO) solvent has been widely researched in rechargeable lithium-oxygen (Li-O 2 ) batteries, high polarization voltage and low rate capability limited its application. In this work, we reported a DMSO-based electrolyte system by adding N, N-dimethylacetamide (DMA) to adjust its physical and electrochemical properties. The ionic conductivity, viscosity, oxygen solubility and diffusion coefficient of the mixed electrolytes as well as their electrochemical performance in Li-O 2 batteries are researched. The electrochemical tests show that the optimized DMSO/DMA volume ratio is 30 to 70 based on the rate performance and polarization voltage of the cell. Compared with that of the pure DMSO-based electrolyte, the cell with the mixed electrolyte shows improved rate capability and reduced charge-discharge over-potential. When increasing current density from 0.2 to 0.5 mA cm −2 , the capability retention improves from 32% to 59%. Meanwhile, the charge-discharge voltage gap drops from 1.4V to 0.9V at a current density of 0.2 mA cm −2 . The improved electrochemical performance could be attributed to low viscosity, high oxygen solubility and diffusion coefficient as well as the low charge-transfer resistance with the mixed electrolyte.

  17. Materialistic Cues Boosts Personal Relative Deprivation.

    Science.gov (United States)

    Zhang, Hong; Zhang, Wen

    2016-01-01

    Three studies investigated whether exposure to materialistic cues would increase perceptions of personal relative deprivation and related emotional reactions. In Study 1, individuals who were surveyed in front of a luxury store reported higher levels of personal relative deprivation than those surveyed in front of an ordinary building. In Study 2, participants who viewed pictures of luxurious goods experienced greater personal relative deprivation than those viewed pictures of neutral scenes. Study 3 replicated the results from Study 2, with a larger sample size and a more refined assessment of relative deprivation. Implications of these findings for future studies on relative deprivation and materialism are discussed.

  18. Materialistic Cues Boosts Personal Relative Deprivation

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-08-01

    Full Text Available Three studies investigated whether exposure to materialistic cues would increase perceptions of personal relative deprivation and related emotional reactions. In Study 1, individuals who were surveyed in front of a luxury store reported higher levels of personal relative deprivation than those surveyed in front of an ordinary building. In Study 2, participants who viewed pictures of luxurious goods experienced greater personal relative deprivation than those viewed pictures of neutral scenes. Study 3 replicated the results from Study 2, with a larger sample size and a more refined assessment of relative deprivation. Implications of these findings for future studies on relative deprivation and materialism are discussed.

  19. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    Science.gov (United States)

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  20. Deprival value: information utility analysis

    Directory of Open Access Journals (Sweden)

    Marco Antonio Pereira

    Full Text Available ABSTRACT This article contributes to the perception that the users’ learning process plays a key role in order to apply an accounting concept and this involves a presentation that fits its informative potential, free of previous accounting fixations. Deprival value is a useful measure for managerial and corporate purposes, it may be applied to the current Conceptual Framework of the International Accounting Standards Board (IASB. This study analyzes its utility, taking into account cognitive aspects. Also known as value to the business, deprival value is a measurement system that followed a path where it was misunderstood, confused with another one, it faced resistance to be implemented and fell into disuse; everything that a standardized measurement method tries to avoid. In contrast, deprival value has found support in the academy and in specific applications, such as those related to the public service regulation. The accounting area has been impacted by sophistication of the measurement methods that increasingly require the ability to analyze accounting facts on an economic basis, at the risk of loss of their information content. This development becomes possible only when the potential of a measurement system is known and it is feasible to be achieved. This study consists in a theoretical essay based on literature review to discuss its origin, presentation, and application. Considering the concept’s cognitive difficulties, deprival value was analyzed, as well as its corresponding heteronym, value to the business, in order to explain some of these changes. The concept’s utility was also explored through cross-analysis with impairment and the scheme developed was applied to actual economic situations faced by a company listed on stock exchange.

  1. Sleep Deprivation and the Epigenome

    OpenAIRE

    Marie E. Gaine; Snehajyoti Chatterjee; Ted Abel

    2018-01-01

    Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of e...

  2. Deprival value: information utility analysis

    OpenAIRE

    Pereira, Marco Antonio; Pinto, Alexandre Evaristo; Barbosa Neto, João Estevão; Martins, Eliseu

    2018-01-01

    ABSTRACT This article contributes to the perception that the users’ learning process plays a key role in order to apply an accounting concept and this involves a presentation that fits its informative potential, free of previous accounting fixations. Deprival value is a useful measure for managerial and corporate purposes, it may be applied to the current Conceptual Framework of the International Accounting Standards Board (IASB). This study analyzes its utility, taking into account cognitive...

  3. Optimal Target Range of Closed-Loop Inspired Oxygen Support in Preterm Infants: A Randomized Cross-Over Study.

    Science.gov (United States)

    van den Heuvel, Maria Elisabeth Nicoletta; van Zanten, Henriette A; Bachman, Tom E; Te Pas, Arjan B; van Kaam, Anton H; Onland, Wes

    2018-06-01

    To investigate the effect of different pulse oximetry (SpO 2 ) target range settings during automated fraction of inspired oxygen control (A-FiO 2 ) on time spent within a clinically set SpO 2 alarm range in oxygen-dependent infants on noninvasive respiratory support. Forty-one preterm infants (gestational age [median] 26 weeks, age [median] 21 days) on FiO 2  >0.21 receiving noninvasive respiratory support were subjected to A-FiO 2 using 3 SpO 2 target ranges (86%-94%, 88%-92%, or 89%-91%) in random order for 24 hours each. Before switching to the next target range, SpO 2 was manually controlled for 24 hours (washout period). The primary outcome was the time spent within the clinically set alarm limits of 86%-94%. The percent time within the 86%-94% SpO 2 alarm range was similar for all 3 A-FiO 2 target ranges (74%). Time spent in hyperoxemia was not significantly different between target ranges. However, the time spent in severe hypoxemia (SpO 2  target ranges of A-FiO 2 (88%-92%; 1.9%, 89%-91%; 1.7%) compared with the wide target range (86%-94%; 3.4%, P target range. Narrowing the target range of A-FiO 2 to the desired median ±2% is effective in reducing the time spent in hypoxemia, without increasing the risk of hyperoxemia. www.trialregister.nl: NTR4368. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Dynamic oxygen transfer measurements under operating conditions as a basis for the optimization of ventilation systems; Dynamische Sauerstoffeintragsmessungen unter Betriebsbedingungen als Grundlage zur Optimierung von Belueftungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Libra, J.A.; Biskup, M.; Wiesmann, U. [Technische Univ. Berlin (Germany). Inst. fuer Verfahrenstechnik; Sahlmann, C.; Gnirss, R. [Berliner Wasserbetriebe, Berlin (Germany)

    1999-07-01

    The largest single energy consumer at sewage treatment plants is the ventilation system of activated sludge tanks. This is why controlling and optimizing ventilation systems is the most appropriate approach to the cutting down of energy costs. The present paper reports on measurements of dynamic oxygen transfer by means of the off-gas method under operating conditions at the Berlin-Ruhleben sewage treatment plant. (orig.) [German] Der groesste Einzelenergieverbraucher auf Klaerwerken ist das Belueftungssystem von Belebungsbecken. Deshalb ist die Kontrolle und Optimierung der Belueftungssysteme der geeignete Weg zur Verringerung der Energiekosten. In diesem Beitrag wird ueber Messungen des dynamischen Sauerstoffeintrags mit der Abluft-Methode unter Betriebsbedingungen im Klaerwerk Berlin-Ruhleben berichtet. (orig.)

  5. Increasing energy efficiency by in-situ oxygen measurement in combustion gas and optimized fuel-air-ratio control; Effizienzsteigerung durch in-situ Sauerstoffmessung im Verbrennungsgas

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Yvonne [Marathon Sensors Inc., West Chester, OH (United States); Winter, Karl-Michael [PROCESS-ELECTRONIC GmbH, Heiningen (Germany)

    2012-04-15

    High energy costs as well as the necessity to minimize exhaust emissions require a most efficient usage of fossil primary energy resources. In heat treating but also in power generation natural gas is mostly used. Efficient burner systems and preheating combustion air using recuperators or regenerators minimize exhaust losses to a high extent. Another well known but seldom used optimization method controls the excess oxygen percentage in the exhaust gas. Already partially in use in households and state-of-the-art in the combustion control of car engines this technique is still not widely used in industrial sized systems. For closed burners there are few sensor options available that can be integrated into the burner. This article presents a variety of measuring and control systems that have been tailored to this particular task, able to increase the efficiency of both, existing older installations and new burner systems. (orig.)

  6. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation.

    Science.gov (United States)

    Kong, Danyang; Asplund, Christopher L; Ling, Aiqing; Chee, Michael W L

    2015-08-01

    Temporal expectation enables us to focus limited processing resources, thereby optimizing perceptual and motor processing for critical upcoming events. We investigated the effects of total sleep deprivation (TSD) on temporal expectation by evaluating the foreperiod and sequential effects during a psychomotor vigilance task (PVT). We also examined how these two measures were modulated by vulnerability to TSD. Three 10-min visual PVT sessions using uniformly distributed foreperiods were conducted in the wake-maintenance zone the evening before sleep deprivation (ESD) and three more in the morning following approximately 22 h of TSD. TSD vulnerable and nonvulnerable groups were determined by a tertile split of participants based on the change in the number of behavioral lapses recorded during ESD and TSD. A subset of participants performed six additional 10-min modified auditory PVTs with exponentially distributed foreperiods during rested wakefulness (RW) and TSD to test the effect of temporal distribution on foreperiod and sequential effects. Sleep laboratory. There were 172 young healthy participants (90 males) with regular sleep patterns. Nineteen of these participants performed the modified auditory PVT. Despite behavioral lapses and slower response times, sleep deprived participants could still perceive the conditional probability of temporal events and modify their level of preparation accordingly. Both foreperiod and sequential effects were magnified following sleep deprivation in vulnerable individuals. Only the foreperiod effect increased in nonvulnerable individuals. The preservation of foreperiod and sequential effects suggests that implicit time perception and temporal preparedness are intact during total sleep deprivation. Individuals appear to reallocate their depleted preparatory resources to more probable event timings in ongoing trials, whereas vulnerable participants also rely more on automatic processes. © 2015 Associated Professional Sleep

  7. Effect of Staged Dissolved Oxygen Optimization on In-situ sludge Reduction and Enhanced Nutrient Removal in an A2MMBR-M System

    Science.gov (United States)

    Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi

    2018-03-01

    Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.

  8. The Effects of Sleep Deprivation on Pain

    Directory of Open Access Journals (Sweden)

    Bernd Kundermann

    2004-01-01

    Full Text Available Chronic pain syndromes are associated with alterations in sleep continuity and sleep architecture. One perspective of this relationship, which has not received much attention to date, is that disturbances of sleep affect pain. To fathom this direction of cause, experimental human and animal studies on the effects of sleep deprivation on pain processing were reviewed. According to the majority of the studies, sleep deprivation produces hyperalgesic changes. Furthermore, sleep deprivation can counteract analgesic effects of pharmacological treatments involving opioidergic and serotoninergic mechanisms of action. The heterogeneity of the human data and the exclusive interest in rapid eye movement sleep deprivation in animals so far do not allow us to draw firm conclusions as to whether the hyperalgesic effects are due to the deprivation of specific sleep stages or whether they result from a generalized disruption of sleep continuity. The significance of opioidergic and serotoninergic processes as mediating mechanisms of the hyperalgesic changes produced by sleep deprivation are discussed.

  9. Recovery of neurofilament following early monocular deprivation

    Directory of Open Access Journals (Sweden)

    Timothy P O'Leary

    2012-04-01

    Full Text Available A brief period of monocular deprivation in early postnatal life can alter the structure of neurons within deprived-eye-receiving layers of the dorsal lateral geniculate nucleus. The modification of structure is accompanied by a marked reduction in labeling for neurofilament, a protein that composes the stable cytoskeleton and that supports neuron structure. This study examined the extent of neurofilament recovery in monocularly deprived cats that either had their deprived eye opened (binocular recovery, or had the deprivation reversed to the fellow eye (reverse occlusion. The degree to which recovery was dependent on visually-driven activity was examined by placing monocularly deprived animals in complete darkness (dark rearing. The loss of neurofilament and the reduction of soma size caused by monocular deprivation were both ameliorated equally following either binocular recovery or reverse occlusion for 8 days. Though monocularly deprived animals placed in complete darkness showed recovery of soma size, there was a generalized loss of neurofilament labeling that extended to originally non-deprived layers. Overall, these results indicate that recovery of soma size is achieved by removal of the competitive disadvantage of the deprived eye, and occurred even in the absence of visually-driven activity. Recovery of neurofilament occurred when the competitive disadvantage of the deprived eye was removed, but unlike the recovery of soma size, was dependent upon visually-driven activity. The role of neurofilament in providing stable neural structure raises the intriguing possibility that dark rearing, which reduced overall neurofilament levels, could be used to reset the deprived visual system so as to make it more ameliorable with treatment by experiential manipulations.

  10. The Effects of Sleep Deprivation on Pain

    OpenAIRE

    Kundermann, Bernd; Krieg, Jürgen-Christian; Schreiber, Wolfgang; Lautenbacher, Stefan

    2004-01-01

    Chronic pain syndromes are associated with alterations in sleep continuity and sleep architecture. One perspective of this relationship, which has not received much attention to date, is that disturbances of sleep affect pain. To fathom this direction of cause, experimental human and animal studies on the effects of sleep deprivation on pain processing were reviewed. According to the majority of the studies, sleep deprivation produces hyperalgesic changes. Furthermore, sleep deprivation can c...

  11. Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy.

    Science.gov (United States)

    Sun, Xin; Xu, Haobo; Shen, Jing; Guo, Shuyuan; Shi, Sa; Dan, Juhua; Tian, Fang; Tian, Yanfeng; Tian, Ye

    2015-01-01

    Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Relative deprivation and political protest

    Directory of Open Access Journals (Sweden)

    R. M. Kliuchnyk

    2017-03-01

    Examples of anti-system political parties and movements have been given. Many of them have changed the political disposition in Europe. Lega Nord (Italy, PEGIDA (Germany, Movimento 5 Stelle (Italy, Front National (France, Ataka (Bulgaria, etc are between them. These parties and movements influence increasingly on the European political process. Nativism and populism are marked as main peculiarities of such right parties. According to the author, Anti-Trump protests in the USA are the examples of the relative deprivation of numerous groups of people that feel their rights and freedoms being threatened.

  13. Effect of monocular deprivation on rabbit neural retinal cell densities

    Directory of Open Access Journals (Sweden)

    Philip Maseghe Mwachaka

    2015-01-01

    Conclusion: In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  14. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: Closed microwaves, open microwaves and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Domini, Claudia E. [Departamento de Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Hidalgo, Montserrat [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Canals, Antonio [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain)]. E-mail: a.canals@ua.es

    2006-03-02

    In the present work, experimental design was used for the fast optimization of three kinds of sample digestion procedures with the final aim of obtaining the COD value of wastewater samples. The digestion methods evaluated were 'closed microwave-assisted' (CMWD), 'open microwave-assisted' (OMWD) and 'ultrasound-assisted' (USD). Classical digestion was used as reference method. The optimum values for the different variables studied in each method were: 90 psi pressure, 475 W power and 4 min irradiation time (CMWD); 150 deg. C temperature and 4 min irradiation time (OMWD); 90% of maximum nominal power (180 W), 0.9 s (s{sup -1}) cycles and 1 min irradiation time (USD). In all cases, interference concentration that produces a deviation of 10% in COD values is 13.4, 23.4, 21.1 and 2819 mg/L for S{sup 2-}, Fe{sup 2+}, NO{sub 2} {sup -} and Cl{sup -}, respectively. Under optimum conditions, the proposed digestion methods have been successfully applied, with the exception of pyridine, to several pure organic compounds and COD recoveries for 10 real wastewater samples were ranged between 88 and 104% of the values obtained with the classical (open reflux) method used as reference, with R.S.D. lower than 4% in most cases. Thus, the use of ultrasound energy for COD determination seems to be an interesting and promising alternative to conventional open reflux and microwave-assisted digestion methods used for the same purpose since the instrumentation is simpler, cheaper and safer and the digestion step faster than the ones used for the same purpose.

  15. Sleep Deprivation and the Epigenome

    Directory of Open Access Journals (Sweden)

    Marie E. Gaine

    2018-02-01

    Full Text Available Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i DNA methylation; (ii histone modifications; and (iii non-coding RNAs. We then discuss evidence suggesting that sleep loss impacts the epigenome and that these epigenetic alterations might mediate the changes in cognition seen following disruption of sleep. The link between sleep and the epigenome is only beginning to be elucidated, but clear evidence exists that epigenetic alterations occur following sleep deprivation. In the future, these changes to the epigenome could be utilized as biomarkers of sleep loss or as therapeutic targets for sleep-related disorders.

  16. Sleep Deprivation and the Epigenome.

    Science.gov (United States)

    Gaine, Marie E; Chatterjee, Snehajyoti; Abel, Ted

    2018-01-01

    Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i) DNA methylation; (ii) histone modifications; and (iii) non-coding RNAs. We then discuss evidence suggesting that sleep loss impacts the epigenome and that these epigenetic alterations might mediate the changes in cognition seen following disruption of sleep. The link between sleep and the epigenome is only beginning to be elucidated, but clear evidence exists that epigenetic alterations occur following sleep deprivation. In the future, these changes to the epigenome could be utilized as biomarkers of sleep loss or as therapeutic targets for sleep-related disorders.

  17. Deprivation Index for Small Areas in Spain

    Science.gov (United States)

    Sanchez-Cantalejo, Carmen; Ocana-Riola, Ricardo; Fernandez-Ajuria, Alberto

    2008-01-01

    The term deprivation is often used to refer to economic or social shortages in a given geographical area. This concept of deprivation has been identified for years using simple indicators such as income level, education and social class. One of the advantages of using simple indicators is the availability of data, since they come directly from…

  18. Health-risk behaviour in deprived neighbourhoods compared with non-deprived neighbourhoods

    DEFF Research Database (Denmark)

    Algren, Maria Holst; Bak, Carsten Kronborg; Berg-Beckhoff, Gabriele

    2015-01-01

    in deprived neighbourhoods compared with those who live in non-deprived neighbourhoods and to summarise what kind of operationalisations of neighbourhood deprivation that were used in the studies. METHODS: PRISMA guidelines for systematic reviews were followed. Systematic searches were performed in Pub......Med, Embase, Web of Science and Sociological Abstracts using relevant search terms, Boolean operators, and truncation, and reference lists were scanned. Quantitative observational studies that examined health-risk behaviour in deprived neighbourhoods compared with non-deprived neighbourhoods were eligible...... for inclusion. RESULTS: The inclusion criteria were met by 22 studies. The available literature showed a positive association between smoking and physical inactivity and living in deprived neighbourhoods compared with non-deprived neighbourhoods. In regard to low fruit and vegetable consumption and alcohol...

  19. Sleep deprivation suppresses aggression in Drosophila

    Science.gov (United States)

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness. DOI: http://dx.doi.org/10.7554/eLife.07643.001 PMID:26216041

  20. Lifestyle intervention program in deprived obese adult patients and their non-deprived counterparts.

    Directory of Open Access Journals (Sweden)

    Celine Loddo

    Full Text Available Although it is known that the prevalence of obesity is high in deprived patients, the link between deprivation and obesity, and the impact of deprivation on compliance and efficacy of a lifestyle intervention program are not known.Deprivation was assessed in 40 patients (23 Females, mean±SD age: 49±17 years from the diabetology department and 140 patients (101 Females, age: 50±15 years from the nutrition department of Bordeaux University hospital. Eighty-seven patients suffering from obesity were evaluated before and after a tailored, multidisciplinary lifestyle intervention. Deprivation was assessed using EPICES scores. Deprivation was defined with an EPICES score > 30.Deprived patients suffering from obesity had significantly higher current (43.8 ±8.4 versus 40.9 ± 5.5 kg/m2, p = 0,02 and maximal BMI (46.1± 8.6 versus 42.3± 5.2 kg/m2, p = 0.002 compared to non-deprived obese. Percentage of body weight loss was not different according to deprivation (4.74 ± 0.75 versus 4.65 ± 1.04%, p = 0.9. EPICES scores were not different according to adherence to lifestyle intervention program (20.5 ± 8.5 versus 29.9 ± 3.9 versus 29.0 ±2.5, no follow up versus partial follow up versus total follow up, p = 0,58.Deprived patients suffering from obesity have a more serious disease than non-deprived patients. However, neither compliance to the lifestyle intervention program nor body weight loss differed between deprived patients with obesity and non-deprived ones. Deprivation should not be a limitation when enrolling patients with obesity in lifestyle intervention programs.

  1. Lifestyle intervention program in deprived obese adult patients and their non-deprived counterparts.

    Science.gov (United States)

    Loddo, Celine; Pupier, Emilie; Amour, Rémy; Monsaingeon-Henry, Maud; Mohammedi, Kamel; Gatta-Cherifi, Blandine

    2017-01-01

    Although it is known that the prevalence of obesity is high in deprived patients, the link between deprivation and obesity, and the impact of deprivation on compliance and efficacy of a lifestyle intervention program are not known. Deprivation was assessed in 40 patients (23 Females, mean±SD age: 49±17 years) from the diabetology department and 140 patients (101 Females, age: 50±15 years) from the nutrition department of Bordeaux University hospital. Eighty-seven patients suffering from obesity were evaluated before and after a tailored, multidisciplinary lifestyle intervention. Deprivation was assessed using EPICES scores. Deprivation was defined with an EPICES score > 30. Deprived patients suffering from obesity had significantly higher current (43.8 ±8.4 versus 40.9 ± 5.5 kg/m2, p = 0,02) and maximal BMI (46.1± 8.6 versus 42.3± 5.2 kg/m2, p = 0.002) compared to non-deprived obese. Percentage of body weight loss was not different according to deprivation (4.74 ± 0.75 versus 4.65 ± 1.04%, p = 0.9). EPICES scores were not different according to adherence to lifestyle intervention program (20.5 ± 8.5 versus 29.9 ± 3.9 versus 29.0 ±2.5, no follow up versus partial follow up versus total follow up, p = 0,58). Deprived patients suffering from obesity have a more serious disease than non-deprived patients. However, neither compliance to the lifestyle intervention program nor body weight loss differed between deprived patients with obesity and non-deprived ones. Deprivation should not be a limitation when enrolling patients with obesity in lifestyle intervention programs.

  2. Sleep deprivation: consequences for students.

    Science.gov (United States)

    Marhefka, Julie King

    2011-09-01

    During the adolescent years, a delayed pattern of the sleep-wake cycle occurs. Many parents and health care providers are not aware that once established, these poor sleep habits can continue into adulthood. Early school hours start a pattern of sleep loss that begins a cycle of daytime sleepiness, which may affect mood, behavior, and increase risk for accidents or injury. These sleep-deprived habits established in adolescence can often lead to problems during college years. Sleep hygiene can be initiated to help break the cycle, along with education and implementation of a strict regimen. Monitoring all adolescents and college-aged students for sleep insufficiency is imperative to improve both academic and emotional well-being. Copyright 2011, SLACK Incorporated.

  3. Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

    Directory of Open Access Journals (Sweden)

    Domagoj Belić

    2017-11-01

    Full Text Available This work presents a highly effective approach for the chemical purification of directly written 2D and 3D gold nanostructures suitable for plasmonics, biomolecule immobilisation, and nanoelectronics. Gold nano- and microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID. Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be diminished using a two-step process – a combination of optimized deposition followed by appropriate postdeposition cleaning. Starting from the common metal-organic precursor Me2-Au-tfac, it is demonstrated that the Au content in pristine FEBID nanostructures can be increased from 30 atom % to as much as 72 atom %, depending on the sustained electron beam dose. As a second step, oxygen-plasma treatment is established to further enhance the Au content in the structures, while preserving their morphology to a high degree. This two-step process represents a simple, feasible and high-throughput method for direct writing of purer gold nanostructures that can enable their future use for demanding applications.

  4. Winery by-products: extraction optimization, phenolic composition and cytotoxic evaluation to act as a new source of scavenging of reactive oxygen species.

    Science.gov (United States)

    Melo, Priscilla Siqueira; Massarioli, Adna Prado; Denny, Carina; dos Santos, Luciana Ferracini; Franchin, Marcelo; Pereira, Giuliano Elias; Vieira, Thais Maria Ferreira de Souza; Rosalen, Pedro Luiz; de Alencar, Severino Matias

    2015-08-15

    Nearly 20 million tons of winery by-products, with many biological activities, are discarded each year in the world. The extraction of bioactive compounds from Chenin Blanc, Petit Verdot, and Syrah grape by-products, produced in the semi-arid region in Brazil, was optimized by a Central Composite Rotatable Design. The phenolic compounds profile, antioxidant capacity against synthetic free radicals (DPPH and ABTS), reactive oxygen species (ROS; peroxyl radical, superoxide radical, hypochlorous acid), cytotoxicity assay (MTT) and quantification of TNF-α production in RAW 264.7 cells were conducted. Gallic acid, syringic acid, procyanidins B1 and B2, catechin, epicatechin, epicatechin gallate, quercetin 3-β-d-glucoside, delfinidin 3-glucoside, peonidin 3-O-glucoside, and malvidin 3-glucoside were the main phenolic compounds identified. In general, rachis showed higher antioxidant capacity than pomace extract, especially for Chenin Blanc. All extracts showed low cytotoxicity against RAW 264.7 cells and Petit Verdot pomace suppressed TNF-α liberation in vitro. Therefore, these winery by-products can be considered good sources of bioactive compounds, with great potential for application in the food and pharmaceutical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparison of small-area deprivation measures as predictors of chronic disease burden in a low-income population.

    Science.gov (United States)

    Lòpez-De Fede, Ana; Stewart, John E; Hardin, James W; Mayfield-Smith, Kathy

    2016-06-10

    Measures of small-area deprivation may be valuable in geographically targeting limited resources to prevent, diagnose, and effectively manage chronic conditions in vulnerable populations. We developed a census-based small-area socioeconomic deprivation index specifically to predict chronic disease burden among publically insured Medicaid recipients in South Carolina, a relatively poor state in the southern United States. We compared the predictive ability of the new index with that of four other small-area deprivation indicators. To derive the ZIP Code Tabulation Area-Level Palmetto Small-Area Deprivation Index (Palmetto SADI), we evaluated ten census variables across five socioeconomic deprivation domains, identifying the combination of census indicators most highly correlated with a set of five chronic disease conditions among South Carolina Medicaid enrollees. In separate validation studies, we used both logistic and spatial regression methods to assess the ability of Palmetto SADI to predict chronic disease burden among state Medicaid recipients relative to four alternative small-area socioeconomic deprivation measures: the Townsend index of material deprivation; a single-variable poverty indicator; and two small-area designations of health care resource deprivation, Primary Care Health Professional Shortage Area and Medically Underserved Area/Medically Underserved Population. Palmetto SADI was the best predictor of chronic disease burden (presence of at least one condition and presence of two or more conditions) among state Medicaid recipients compared to all alternative deprivation measures tested. A low-cost, regionally optimized socioeconomic deprivation index, Palmetto SADI can be used to identify areas in South Carolina at high risk for chronic disease burden among Medicaid recipients and other low-income Medicaid-eligible populations for targeted prevention, screening, diagnosis, disease self-management, and care coordination activities.

  6. Sleep deprivation affects reactivity to positive but not negative stimuli.

    Science.gov (United States)

    Pilcher, June J; Callan, Christina; Posey, J Laura

    2015-12-01

    The current study examined the effects of partial and total sleep deprivation on emotional reactivity. Twenty-eight partially sleep-deprived participants and 31 totally sleep-deprived participants rated their valence and arousal responses to positive and negative pictures across four testing sessions during the day following partial sleep deprivation or during the night under total sleep deprivation. The results suggest that valence and arousal ratings decreased under both sleep deprivation conditions. In addition, partial and total sleep deprivation had a greater negative effect on positive events than negative events. These results suggest that sleep-deprived persons are more likely to respond less to positive events than negative events. One explanation for the current findings is that negative events could elicit more attentive behavior and thus stable responding under sleep deprivation conditions. As such, sleep deprivation could impact reactivity to emotional stimuli through automated attentional and self-regulatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Urban density, deprivation and road safety

    African Journals Online (AJOL)

    Kirstam

    The findings on deprivation provide new insights to rural-urban variations in ... 2000 and 2030 (World Health Organization, WHO & United Nations HABITAT, UN- ... The authors used negative binomial count models to control for a range of.

  8. Bearding the Capability Deprivation Machine: The Pedagogical ...

    African Journals Online (AJOL)

    Bearding the Capability Deprivation Machine: The Pedagogical Deal for ... Africa are managing the task of higher education in an environment marked by poverty. ... are valuable in the full range of social spaces young South Africans inhabit.

  9. Relative deprivation and disordered gambling in youths.

    Science.gov (United States)

    Elgar, Frank J; Canale, Natale; Wohl, Michael J A; Lenzi, Michela; Vieno, Alessio

    2018-03-07

    Previous research has found that area-level income inequality and individual-level relative deprivation both contribute to disordered gambling in adults. However, the socioeconomic factors that contribute to disordered gambling in youths and protective factors in their social environment have not been fully explored. This study examined the association between relative deprivation and youth disordered gambling and the potential moderating role of social support in this association. We used data on family material assets and self-reported symptoms of disordered gambling symptoms in 19 321 participants of the 2013/2014 Italian Health Behaviour in School-aged Children study. Relative deprivation was measured using the Yitzhaki index and classmates as a social reference group. Its association with disordered gambling was tested using multilevel negative binomial regression analyses. We also tested moderated effects of relative deprivation on disordered gambling by four sources of social support: families, peers, teachers and classmates. Relative deprivation related to a fourfold increase in the rate of disordered gambling symptoms (incidence rate ratio=4.18) after differences in absolute family wealth and other variables were statistically controlled. Symptoms were also more prevalent in males, first-generation immigrants and less supported youth. Peer support moderated the association between relative deprivation and symptoms, suggesting that high deprivation and low peer support have interactive links to disordered gambling. Relative deprivation among classmates relate to youth symptoms of disordered gambling. Youth who live in economically unequal settings and perceive a lack of social support may be at greatest risk. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Sensory deprivation leading to late onset psychosis

    Directory of Open Access Journals (Sweden)

    Swapnajeet Sahoo

    2016-01-01

    Full Text Available Sensory deprivation is understood as diminution or absence of perceptual experiences to the usual external stimuli. Sensory deprivation in elderly is reported to be associated with depression, anxiety, psychosis, dementia, etc. In this report, we present the case of an 84-year- elderly man who developed auditory hallucination and after 1 year of onset of hearing difficulties. He was managed with quetiapine, with which he showed significant improvement.

  11. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  12. Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Mahasri, G.; Saskia, A.; Apandi, P. S.; Dewi, N. N.; Rozi; Usuman, N. M.

    2018-04-01

    The purpose of this research was to discover the process of enrichment of dissolved oxygen in fish cultivation media using nanobubble technology. This study was conducted with two treatments, namely a cultivation media without fish and a cultivation media containing 8 fish with an average body length of 24.5 cm. The results showed that the concentration of dissolved oxygen increased from 6.5 mg/L to 25 mg/L. The rate of increase in dissolved oxygen concentration for 30 minutes is 0.61 pp/minute. The rate of decrease in dissolved oxygen concentration in treatment 1 is 3.08 ppm/day and in treatment 2 is 0.23 ppm/minute. It was concluded that nanobubble is able to increase dissolved oxygen.

  13. Hypoxic cell radiosensitization by moderate hyperthermia and glucose deprivation

    International Nuclear Information System (INIS)

    Kim, J.H.; Kim, S.H.; Hahn, E.W.

    1983-01-01

    Cell culture studies were carried out to determine whether moderate hyperthermia reduces the oxygen enhancement ratio of cells under well-defined cultural conditions. Using asynchronously growing HeLa cells, the OER of cells with and without glucose was determined following exposure of cells to moderate hyperthermia, 40.5omicronC for 1 hr, immediately after X irradiation. The OER of cells with 5 mM glucose was 3.2, whereas the OER of glucose-deprived cells was reduced to 2.0. The pH of the cell culture medium was kept at 7.4 throughtout the experiments. The present finding may provide a clue toward further enhancing the radiosensitization of hypoxic cells by heat

  14. Hypoxic cell radiosensitization by moderate hyperthermia and glucose deprivation

    International Nuclear Information System (INIS)

    Kim, J.H.; Kim, S.H.; Hahn, E.W.

    1983-01-01

    Cell culture studies were carried out to determine whether moderate hyperthermia reduces the oxygen enhancement ratio of cells under well-defined cultural conditions. Using asynchronously growing HeLa cells, the OER of cells with and without glucose was determined following exposure of cells to moderate hyperthermia, 40.5 degrees C for 1 hr, immediately after X irradiation. The OER of cells with 5 mM glucose was 3.2, whereas the OER of glucose-deprived cells was reduced to 2.0. The pH of the cell culture medium was kept at 7.4 throughout the experiments. The present finding may provide a clue toward further enhancing the radiosensitization of hypoxic cells by heat

  15. Interocular suppression in children with deprivation amblyopia.

    Science.gov (United States)

    Hamm, Lisa; Chen, Zidong; Li, Jinrong; Black, Joanna; Dai, Shuan; Yuan, Junpeng; Yu, Minbin; Thompson, Benjamin

    2017-04-01

    In patients with anisometropic or strabismic amblyopia, interocular suppression can be minimized by presenting high contrast stimulus elements to the amblyopic eye and lower contrast elements to the fellow eye. This suggests a structurally intact binocular visual system that is functionally suppressed. We investigated whether suppression can also be overcome by contrast balancing in children with deprivation amblyopia due to childhood cataracts. To quantify interocular contrast balance, contrast interference thresholds were measured using an established dichoptic global motion technique for 21 children with deprivation amblyopia, 14 with anisometropic or mixed strabismic/anisometropic amblyopia and 10 visually normal children (mean age mean=9.9years, range 5-16years). We found that interocular suppression could be overcome by contrast balancing in most children with deprivation amblyopia, at least intermittently, and all children with anisometropic or mixed anisometropic/strabismic amblyopia. However, children with deprivation amblyopia due to early unilateral or bilateral cataracts could tolerate only very low contrast levels to the stronger eye indicating strong suppression. Our results suggest that treatment options reliant on contrast balanced dichoptic presentation could be attempted in a subset of children with deprivation amblyopia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Lung transplantation for idiopathic pulmonary arterial hypertension on intraoperative and postoperatively prolonged extracorporeal membrane oxygenation provides optimally controlled reperfusion and excellent outcome.

    Science.gov (United States)

    Moser, Bernhard; Jaksch, Peter; Taghavi, Shahrokh; Muraközy, Gabriella; Lang, Georg; Hager, Helmut; Krenn, Claus; Roth, Georg; Faybik, Peter; Bacher, Andreas; Aigner, Clemens; Matilla, José R; Hoetzenecker, Konrad; Hacker, Philipp; Lang, Irene; Klepetko, Walter

    2018-01-01

    Lung transplantation for idiopathic pulmonary arterial hypertension has the highest reported postoperative mortality of all indications. Reasons lie in the complexity of treatment of these patients and the frequent occurrence of postoperative left ventricular failure. Transplantation on intraoperative extracorporeal membrane oxygenation support instead of cardiopulmonary bypass and even more the prolongation of extracorporeal membrane oxygenation into the postoperative period helps to overcome these problems. We reviewed our experience with this concept. All patients undergoing bilateral lung transplantation for idiopathic pulmonary arterial hypertension on intraoperative extracorporeal membrane oxygenation with or without prophylactic extracorporeal membrane oxygenation prolongation into the postoperative period between January 2000 and December 2014 were retrospectively analysed. Forty-one patients entered the study. Venoarterial extracorporeal membrane oxygenation support was prolonged into the postoperative period for a median of 2.5 days (range 1-40). Ninety-day, 1-, 3- and 5-year survival rates for the patient collective were 92.7%, 90.2%, 87.4% and 87.4%, respectively. When compared with 31 patients with idiopathic pulmonary arterial hypertension transplanted in the same period of time without prolongation of extracorporeal membrane oxygenation into the postoperative period, the results compared favourably (83.9%, 77.4%, 77.4%, and 77.4%; P = 0.189). Furthermore, these results are among the best results ever reported for this particularly difficult patient population. Bilateral lung transplantation for idiopathic pulmonary arterial hypertension with intraoperative venoarterial extracorporeal membrane oxygenation support seems to provide superior outcome compared with the results reported about the use of cardiopulmonary bypass. Prophylactic prolongation of venoarterial extracorporeal membrane oxygenation into the early postoperative period provides

  17. Deprivation amblyopia and congenital hereditary cataract.

    Science.gov (United States)

    Mansouri, Behzad; Stacy, Rebecca C; Kruger, Joshua; Cestari, Dean M

    2013-01-01

    Amblyopia is a neurodevelopmental disorder of vision associated with decreased visual acuity, poor or absent stereopsis, and suppression of information from one eye.(1,2) Amblyopia may be caused by strabismus (strabismic amblyopia), refractive error (anisometropic amblyopia), or deprivation from obstructed vision (deprivation amblyopia). 1 In the developed world, amblyopia is the most common cause of childhood visual impairment, 3 which reduces quality of life 4 and also almost doubles the lifetime risk of legal blindness.(5, 6) Successful treatment of amblyopia greatly depends on early detection and treatment of predisposing disorders such as congenital cataract, which is the most common cause of deprivational amblyopia. Understanding the genetic causes of congenital cataract leads to more effective screening tests, early detection and treatment of infants and children who are at high risk for hereditary congenital cataract.

  18. Oxygen Therapy

    Science.gov (United States)

    ... their breathing to dangerously low levels. Will I need oxygen when I sleep? Usually if you use supplemental oxygen during the ... your health care provider tells you you only need to use oxygen for exercise or sleep. Even if you feel “fine” off of your ...

  19. Deprivation of Dignity in Nursing Home Residents

    DEFF Research Database (Denmark)

    Høy, Bente

    2016-01-01

    deepened knowledge in how to maintain and promote dignity in nursing home residents. The purpose of this paper is to present results concerning the question: How is nursing home residents’ dignity maintained or deprived from the perspective of close family caregivers? In this presentation we only focus...... on deprivation of dignity. Methodology: The overall design of this study is modified clinical application research. The study took place at six different nursing home residences in Sweden, Denmark and Norway. Data collection methods were individual research interviews. All together the sample consisted of 28...

  20. Sleep deprivation: cardiovascular effects for anesthesiologists

    Directory of Open Access Journals (Sweden)

    Ali Dabbagh

    2016-03-01

    Full Text Available Sleep and anesthesia have some common or "overlapping" neural pathways. Both involve wakefulness; while they are not the same; anesthesia is an iatrogenic, reversible, pharmacologic-based coma; which could affect the CNS neural pathways at many levels. In the current era of modern anesthesiology, the practice and science of anesthesia is composed of 4 basic elements; (1: 1. hypnosis (i.e. iatrogenic pharmacologicinduced coma 2. amnesia (not to remember the events of the operation 3. analgesia (being painless 4. akinesia (lack of movements to stimuli The first two ingredients of anesthesia could have common points with sleep. Thalamic nuclei are involved both in sleep and anesthesia (2, 3; though, they are not the same phenomena (4. However, could there be any clinical concern if some of our patients have abnormalities in sleep? In fact, the effects of sleep deprivation have long been studied in patients undergoing anesthesia for surgical operations (4, 5. Sleep deprivation causes altered neurohumoral activity, neuroendocrine dysregulations, abnormalities in the immune system and impairments in cardiac autonomic function (6, 7. Sleep deprivation may affect the clinical effects of the anesthetics or it may create unpredicted changes in the clinical response to a determined dose of anesthetic drugs (8. In this volume of the Journal, Choopani et al have published their results regarding sleep deprivation; they have demonstrated that in rats, if sleep deprivation is induced prior to an ischemia/reperfusion event, it can increase the chance for ventricular tachycardia and ventricular fibrillation; also, they have shown that this untoward effect could be eliminated using chemical sympathectomy (9. In clinical practice, the main message from this study could be that when anesthesiologists perform anesthesia for their patients, they should be aware of effects of acute or chronic sleep deprivation. Undoubtedly, sleep deprivation could occur during the

  1. [Is the socioeconomic deprivation EPICES score useful in obstetrics?].

    Science.gov (United States)

    Convers, M; Langeron, A; Sass, C; Moulin, J-J; Augier, A; Varlet, M-N; Seffert, P; Chêne, G

    2012-04-01

    To describe a validated and multifactorial deprivation score to study the relationship between socioeconomic deprivation and perinatal risks. The index of deprivation EPICES (Evaluation of Precarity and Inequalities in Health Examination Centers) was used to characterize the deprivation status of 234 women in post-partum in comparison with perinatal morbidity. The cutoff value of 30.7 was the threshold to define deprivation. Two hundred and eight patients were included in this retrospective study from whom 48 (23%) had a score of deprivation higher than 30.7. Maternofetal morbidity was more severe in deprived patients. The current results show that the EPICES score could be a useful obstetrical tool for the identification of deprived women during pregnancy. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Occlusion for stimulus deprivation amblyopia.

    Science.gov (United States)

    Antonio-Santos, Aileen; Vedula, Satyanarayana S; Hatt, Sarah R; Powell, Christine

    2014-02-06

    Stimulus deprivation amblyopia (SDA) develops due to an obstruction to the passage of light secondary to a condition such as cataract. The obstruction prevents formation of a clear image on the retina. SDA can be resistant to treatment, leading to poor visual prognosis. SDA probably constitutes less than 3% of all amblyopia cases, although precise estimates of prevalence are unknown. In developed countries, most patients present under the age of one year; in less developed parts of the world patients are likely to be older at the time of presentation. The mainstay of treatment is removal of the cataract and then occlusion of the better-seeing eye, but regimens vary, can be difficult to execute, and traditionally are believed to lead to disappointing results. Our objective was to evaluate the effectiveness of occlusion therapy for SDA in an attempt to establish realistic treatment outcomes. Where data were available, we also planned to examine evidence of any dose response effect and to assess the effect of the duration, severity, and causative factor on the size and direction of the treatment effect. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2013, Issue 9), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to October 2013), EMBASE (January 1980 to October 2013), the Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to October 2013), PubMed (January 1946 to October 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com ), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 28 October 2013. We planned to include randomized and quasi-randomized controlled

  3. Oxygen Therapy

    Directory of Open Access Journals (Sweden)

    Bonnie Solmes

    2000-01-01

    Full Text Available LTOT is prescribed for people with chronic lung disease in whom there is a decrease in the ability of the lungs to supply enough oxygen to the body. The heart is obliged to pump faster to meet the body's oxygen requirements. This may place undue stress on the heart, resulting in palpitations, dizziness and fatigue. A low oxygen level in arterial blood is also harmful to the heart, the brain and the pulmonary blood vessels. Oxygen therapy is used to break this cycle. A person with low blood oxygen will often be able to accomplish more with less fatigue with the help of supplemental oxygen therapy. Shortness of breath is a mechanical problem resulting from the effects of chronic obstructive pulmonary disease. Oxygen therapy may or may not reduce shortness of breath, but it will help the lungs and heart to function with less stress.

  4. Sleep deprivation impairs cAMP signalling in the hippocampus

    NARCIS (Netherlands)

    Vecsey, Christopher G; Baillie, George S; Jaganath, Devan; Havekes, Robbert; Daniels, Andrew; Wimmer, Mathieu; Huang, Ted; Brown, Kim M; Li, Xiang-Yao; Descalzi, Giannina; Kim, Susan S; Chen, Tao; Shang, Yu-Ze; Zhuo, Min; Houslay, Miles D; Abel, Ted

    2009-01-01

    Millions of people regularly obtain insufficient sleep. Given the effect of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to

  5. Relative Deprivation and the Gender Wage Gap.

    Science.gov (United States)

    Jackson, Linda A.

    1989-01-01

    Discusses how gender differences in the value of pay, based on relative deprivation theory, explain women's paradoxical contentment with lower wages. Presents a model of pay satisfaction to integrate value-based and comparative-referent explanations of the relationship between gender and pay satisfaction. Discusses economic approaches to the…

  6. Deprivation, HIV and AIDS in Northern Uganda

    African Journals Online (AJOL)

    2007-09-28

    physical aggression, deprivation, hunger and family separation, among others, for over twenty years. ... by various types of sexual crimes of rape (including marital rape), defilement and child .... insecurity and civil strife raged in northern Uganda mainly between the government ...... The Daily Monitor of September 28, 2007.

  7. Sleep deprivation impairs object recognition in mice

    NARCIS (Netherlands)

    Palchykova, S; Winsky-Sommerer, R; Meerlo, P; Durr, R; Tobler, Irene

    2006-01-01

    Many studies in animals and humans suggest that sleep facilitates learning, memory consolidation, and retrieval. Moreover, sleep deprivation (SD) incurred after learning, impaired memory in humans, mice, rats, and hamsters. We investigated the importance of sleep and its timing in in object

  8. Socioeconomic deprivation and accident and emergency attendances

    DEFF Research Database (Denmark)

    Scantlebury, Rachel; Rowlands, Gillian; Durbaba, Stevo

    2015-01-01

    BACKGROUND: Demand for England's accident and emergency (A&E) services is increasing and is particularly concentrated in areas of high deprivation. The extent to which primary care services, relative to population characteristics, can impact on A&E is not fully understood. AIM: To conduct...

  9. Effects of sleep deprivation on cognition.

    Science.gov (United States)

    Killgore, William D S

    2010-01-01

    Sleep deprivation is commonplace in modern society, but its far-reaching effects on cognitive performance are only beginning to be understood from a scientific perspective. While there is broad consensus that insufficient sleep leads to a general slowing of response speed and increased variability in performance, particularly for simple measures of alertness, attention and vigilance, there is much less agreement about the effects of sleep deprivation on many higher level cognitive capacities, including perception, memory and executive functions. Central to this debate has been the question of whether sleep deprivation affects nearly all cognitive capacities in a global manner through degraded alertness and attention, or whether sleep loss specifically impairs some aspects of cognition more than others. Neuroimaging evidence has implicated the prefrontal cortex as a brain region that may be particularly susceptible to the effects of sleep loss, but perplexingly, executive function tasks that putatively measure prefrontal functioning have yielded inconsistent findings within the context of sleep deprivation. Whereas many convergent and rule-based reasoning, decision making and planning tasks are relatively unaffected by sleep loss, more creative, divergent and innovative aspects of cognition do appear to be degraded by lack of sleep. Emerging evidence suggests that some aspects of higher level cognitive capacities remain degraded by sleep deprivation despite restoration of alertness and vigilance with stimulant countermeasures, suggesting that sleep loss may affect specific cognitive systems above and beyond the effects produced by global cognitive declines or impaired attentional processes. Finally, the role of emotion as a critical facet of cognition has received increasing attention in recent years and mounting evidence suggests that sleep deprivation may particularly affect cognitive systems that rely on emotional data. Thus, the extent to which sleep deprivation

  10. Repeated assessment of orthotopic glioma pO2 by multi-site EPR oximetry: A technique with the potential to guide therapeutic optimization by repeated measurements of oxygen

    Science.gov (United States)

    Khan, Nadeem; Mupparaju, Sriram; Hou, Huagang; Williams, Benjamin B.; Swartz, Harold

    2011-01-01

    Tumor hypoxia plays a vital role in therapeutic resistance. Consequently, measurements of tumor pO2 could be used to optimize the outcome of oxygen-dependent therapies, such as, chemoradiation. However, the potential optimizations are restricted by the lack of methods to repeatedly and quantitatively assess tumor pO2 during therapies, particularly in gliomas. We describe the procedures for repeated measurements of orthotopic glioma pO2 by multi-site electron paramagnetic resonance (EPR) oximetry. This oximetry approach provides simultaneous measurements of pO2 at more than one site in the glioma and contralateral cerebral tissue. The pO2 of intracerebral 9L, C6, F98 and U251 tumors, as well as contralateral brain, were measured repeatedly for five consecutive days. The 9L glioma was well oxygenated with pO2 of 27 - 36 mm Hg, while C6, F98 and U251 glioma were hypoxic with pO2 of 7 - 12 mm Hg. The potential of multi-site EPR oximetry to assess temporal changes in tissue pO2 was investigated in rats breathing 100% O2. A significant increase in F98 tumor and contralateral brain pO2 was observed on day 1 and day 2, however, glioma oxygenation declined on subsequent days. In conclusion, EPR oximetry provides the capability to repeatedly assess temporal changes in orthotopic glioma pO2. This information could be used to test and optimize the methods being developed to modulate tumor hypoxia. Furthermore, EPR oximetry could be potentially used to enhance the outcome of chemoradiation by scheduling treatments at times of increase in glioma pO2. PMID:22079559

  11. Deprivation and non-institutional political participation

    DEFF Research Database (Denmark)

    Ejrnæs, Anders

    2017-01-01

    This article examines how the relationship between perceived economic deprivation (PED) and non-institutional forms of political activity interacted with institutional trust during the economic crisis in 24 European countries. Using multi-level regression analysis, two broad questions are addressed......: (1) does PED have an impact on the level of non-institutional political participation among European citizens? And (2) does the level of institutional trust within countries have an impact on the relationship between PED and political activity among European citizens? The empirical analyses are based...... the opposite correlation on an individual level within the countries. Second, the analysis provides evidence that the institutional context shapes the connection between PED and political participation on the individual level. In countries with a high level of institutional trust, economically deprived...

  12. Human reproductive cloning and reasons for deprivation.

    Science.gov (United States)

    Jensen, D A

    2008-08-01

    Human reproductive cloning provides the possibility of genetically related children for persons for whom present technologies are ineffective. I argue that the desire for genetically related children is not, by itself, a sufficient reason to engage in human reproductive cloning. I show this by arguing that the value underlying the desire for genetically related children implies a tension between the parent and the future child. This tension stems from an instance of a deprivation and violates a general principle of reasons for deprivation. Alternative considerations, such as a right to procreative autonomy, do not appear helpful in making the case for human reproductive cloning merely on the basis of the desire for genetically related children.

  13. Deprivation as un-experienced harm?

    DEFF Research Database (Denmark)

    Keerus, Külli; Gjerris, Mickey; Röcklinsberg, Helena

    2017-01-01

    Tom Regan encapsulated his principle of harm as a prima facie direct duty not to harm experiencing subjects of a life. However, his consideration of harm as deprivation, one example of which is loss of freedom, can easily be interpreted as a harm, which may not be experienced by its subject....... This creates a gap between Regan’s criterion for moral status and his account of what our duties are. However, in comparison with three basic paradigms of welfare known in nonhuman animal welfare science, Regan’s understanding coheres with a modified version of a feelings-based paradigm: not only the immediate...... feelings of satisfaction, but also future opportunities to have such feelings, must be taken into account. Such an interpretation is compatible with Regan’s understanding of harm as deprivation. The potential source of confusion, however, lies in Regan’s own possible argumentative mistakes....

  14. Occupational deprivation in an asylum centre:

    DEFF Research Database (Denmark)

    Morville, Anne-Le; Erlandsson, Lena-Karin

    2013-01-01

    This article presents a study of three asylum-seeking men from Iran and Afghanistan. It aimed to explore how and if they experienced occupations as occupations in a Danish asylum centre and how their life experience shaped their choice and value of current occupations. In-depth narrative interviews...... explored the participants’ occupational history and its influence on their occupations in the asylum centre. A thematic analysis showed that the participants had been subjected to occupational disruption and deprivation by politically oppressive systems even before their flight. Their occupations...... in Denmark were to a certain extent influenced by their earlier occupations and the current occupational deprivation they all experienced was due to limited possibilities in the centre. Although they tried their best to fill their days and create structure, there was a loss of valued occupations...

  15. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Alipanah, Leila; Winge, Per; Rohloff, Jens; Najafi, Javad; Brembu, Tore; Bones, Atle M

    2018-01-01

    Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.

  16. Relative Deprivation and Sickness Absence in Sweden

    Directory of Open Access Journals (Sweden)

    Jonas Helgertz

    2013-08-01

    Full Text Available Background: A high prevalence of sickness absence in many countries, at a substantial societal cost, underlines the importance to understand its determining mechanisms. This study focuses on the link between relative deprivation and the probability of sickness absence. Methods: 184,000 men and women in Sweden were followed between 1982 and 2001. The sample consists of working individuals between the ages of 19 and 65. The outcome is defined as experiencing more than 14 days of sickness absence during a year. Based on the complete Swedish population, an individual’s degree of relative deprivation is measured through income compared to individuals of the same age, sex, educational level and type. In accounting for the possibility that sickness absence and socioeconomic status are determined by common factors, discrete-time duration models were estimated, accounting for unobserved heterogeneity through random effects. Results: The results confirm that the failure to account for the dynamics of the individual’s career biases the influence from socioeconomic characteristics. Results consistently suggest a major influence from relative deprivation, with a consistently lower risk of sickness absence among the highly educated. Conclusions: Altering individual’s health behavior through education appears more efficient in reducing the reliance on sickness absence, rather than redistributive policies.

  17. Relative deprivation and sickness absence in Sweden.

    Science.gov (United States)

    Helgertz, Jonas; Hess, Wolfgang; Scott, Kirk

    2013-08-29

    A high prevalence of sickness absence in many countries, at a substantial societal cost, underlines the importance to understand its determining mechanisms. This study focuses on the link between relative deprivation and the probability of sickness absence. 184,000 men and women in Sweden were followed between 1982 and 2001. The sample consists of working individuals between the ages of 19 and 65. The outcome is defined as experiencing more than 14 days of sickness absence during a year. Based on the complete Swedish population, an individual's degree of relative deprivation is measured through income compared to individuals of the same age, sex, educational level and type. In accounting for the possibility that sickness absence and socioeconomic status are determined by common factors, discrete-time duration models were estimated, accounting for unobserved heterogeneity through random effects. The results confirm that the failure to account for the dynamics of the individual's career biases the influence from socioeconomic characteristics. Results consistently suggest a major influence from relative deprivation, with a consistently lower risk of sickness absence among the highly educated. Altering individual's health behavior through education appears more efficient in reducing the reliance on sickness absence, rather than redistributive policies.

  18. Sleep deprivation increases formation of false memory.

    Science.gov (United States)

    Lo, June C; Chong, Pearlynne L H; Ganesan, Shankari; Leong, Ruth L F; Chee, Michael W L

    2016-12-01

    Retrieving false information can have serious consequences. Sleep is important for memory, but voluntary sleep curtailment is becoming more rampant. Here, the misinformation paradigm was used to investigate false memory formation after 1 night of total sleep deprivation in healthy young adults (N = 58, mean age ± SD = 22.10 ± 1.60 years; 29 males), and 7 nights of partial sleep deprivation (5 h sleep opportunity) in these young adults and healthy adolescents (N = 54, mean age ± SD = 16.67 ± 1.03 years; 25 males). In both age groups, sleep-deprived individuals were more likely than well-rested persons to incorporate misleading post-event information into their responses during memory retrieval (P memory during sleep curtailment, and suggest the need to assess eyewitnesses' sleep history after encountering misleading information. © 2016 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  19. Caffeine deprivation affects vigilance performance and mood.

    Science.gov (United States)

    Lane, J D; Phillips-Bute, B G

    1998-08-01

    The effects of brief caffeine deprivation on vigilance performance, mood, and symptoms of caffeine withdrawal were studied in habitual coffee drinkers. Thirty male and female coffee drinkers were tested twice at midday (1130 to 1330 hours) after mornings in which they either consumed caffeinated beverages ad lib or abstained. Vigilance performance was tested with a 30-min computerized visual monitoring task. Mood and withdrawal symptom reports were collected by questionnaires. Caffeine deprivation was associated with impaired vigilance performance characterized by a reduction in the percentage of targets detected and an increase in response time, and by subjective reports of decreased vigor and increased fatigue and symptoms characterized by sleepiness, headache, and reduced ability to work. Even short periods of caffeine deprivation, equivalent in length to skipping regular morning coffee, can produce deficits in sustained attention and noticeable unpleasant caffeine-withdrawal symptoms in habitual coffee drinkers. Such symptoms may be a common side-effect of habitual caffeine consumption that contributes to the maintenance of this behavior.

  20. Cues of fatigue: effects of sleep deprivation on facial appearance.

    Science.gov (United States)

    Sundelin, Tina; Lekander, Mats; Kecklund, Göran; Van Someren, Eus J W; Olsson, Andreas; Axelsson, John

    2013-09-01

    To investigate the facial cues by which one recognizes that someone is sleep deprived versus not sleep deprived. Experimental laboratory study. Karolinska Institutet, Stockholm, Sweden. Forty observers (20 women, mean age 25 ± 5 y) rated 20 facial photographs with respect to fatigue, 10 facial cues, and sadness. The stimulus material consisted of 10 individuals (five women) photographed at 14:30 after normal sleep and after 31 h of sleep deprivation following a night with 5 h of sleep. Ratings of fatigue, fatigue-related cues, and sadness in facial photographs. The faces of sleep deprived individuals were perceived as having more hanging eyelids, redder eyes, more swollen eyes, darker circles under the eyes, paler skin, more wrinkles/fine lines, and more droopy corners of the mouth (effects ranging from b = +3 ± 1 to b = +15 ± 1 mm on 100-mm visual analog scales, P sleep deprivation (P sleep deprivation, nor associated with judgements of fatigue. In addition, sleep-deprived individuals looked sadder than after normal sleep, and sadness was related to looking fatigued (P sleep deprivation affects features relating to the eyes, mouth, and skin, and that these features function as cues of sleep loss to other people. Because these facial regions are important in the communication between humans, facial cues of sleep deprivation and fatigue may carry social consequences for the sleep deprived individual in everyday life.

  1. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.

    Science.gov (United States)

    Casey, Sarah J; Solomons, Luke C; Steier, Joerg; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura H; Kopelman, Michael D

    2016-11-01

    It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Participants completed a set of explicit and implicit memory tasks at night, prior to sleep. They had 1 control night of undisturbed sleep and 2 experimental nights, during which either SWS or REM sleep was selectively deprived across the entire night (sleep conditions counterbalanced across participants). Polysomnography recordings quantified precisely the amount of SWS and REM sleep that occurred during each of the sleep conditions, and spindle counts were recorded. In the morning, participants completed the experimental tasks in the same sequence as the night before. SWS deprivation disrupted the consolidation of explicit memories for visuospatial information (ηp2 = .23), and both SWS (ηp2 = .53) and REM sleep (ηp2 = .52) deprivation adversely affected explicit verbal recall. Neither SWS nor REM sleep deprivation affected aspects of short-term or working memory, and did not affect measures of verbal implicit memory. Spindle counts did not correlate significantly with memory performance. These findings demonstrate the importance of measuring the sleep cycles throughout the entire night, and the contribution of both SWS and REM sleep to memory consolidation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness.

    Science.gov (United States)

    Philip, Pierre; Sagaspe, Patricia; Prague, Mélanie; Tassi, Patricia; Capelli, Aurore; Bioulac, Bernard; Commenges, Daniel; Taillard, Jacques

    2012-07-01

    To evaluate the effects of acute sleep deprivation and chronic sleep restriction on vigilance, performance, and self-perception of sleepiness. Habitual night followed by 1 night of total sleep loss (acute sleep deprivation) or 5 consecutive nights of 4 hr of sleep (chronic sleep restriction) and recovery night. Eighteen healthy middle-aged male participants (age [(± standard deviation] = 49.7 ± 2.6 yr, range 46-55 yr). Multiple sleep latency test trials, Karolinska Sleepiness Scale scores, simple reaction time test (lapses and 10% fastest reaction times), and nocturnal polysomnography data were recorded. Objective and subjective sleepiness increased immediately in response to sleep restriction. Sleep latencies after the second and third nights of sleep restriction reached levels equivalent to those observed after acute sleep deprivation, whereas Karolinska Sleepiness Scale scores did not reach these levels. Lapse occurrence increased after the second day of sleep restriction and reached levels equivalent to those observed after acute sleep deprivation. A statistical model revealed that sleepiness and lapses did not progressively worsen across days of sleep restriction. Ten percent fastest reaction times (i.e., optimal alertness) were not affected by acute or chronic sleep deprivation. Recovery to baseline levels of alertness and performance occurred after 8-hr recovery night. In middle-aged study participants, sleep restriction induced a high increase in sleep propensity but adaptation to chronic sleep restriction occurred beyond day 3 of restriction. This sleepiness attenuation was underestimated by the participants. One recovery night restores daytime sleepiness and cognitive performance deficits induced by acute or chronic sleep deprivation. Philip P; Sagaspe P; Prague M; Tassi P; Capelli A; Bioulac B; Commenges D; Taillard J. Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness. SLEEP 2012;35(7):997-1002.

  3. Augmented Reality as a Countermeasure for Sleep Deprivation.

    Science.gov (United States)

    Baumeister, James; Dorrlan, Jillian; Banks, Siobhan; Chatburn, Alex; Smith, Ross T; Carskadon, Mary A; Lushington, Kurt; Thomas, Bruce H

    2016-04-01

    Sleep deprivation is known to have serious deleterious effects on executive functioning and job performance. Augmented reality has an ability to place pertinent information at the fore, guiding visual focus and reducing instructional complexity. This paper presents a study to explore how spatial augmented reality instructions impact procedural task performance on sleep deprived users. The user study was conducted to examine performance on a procedural task at six time points over the course of a night of total sleep deprivation. Tasks were provided either by spatial augmented reality-based projections or on an adjacent monitor. The results indicate that participant errors significantly increased with the monitor condition when sleep deprived. The augmented reality condition exhibited a positive influence with participant errors and completion time having no significant increase when sleep deprived. The results of our study show that spatial augmented reality is an effective sleep deprivation countermeasure under laboratory conditions.

  4. Flurbiprofen ameliorates glucose deprivation-induced leptin resistance

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    2016-09-01

    Full Text Available Leptin resistance is one of the mechanisms involved in the pathophysiology of obesity. The present study showed that glucose deprivation inhibited leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3 and signal transducer and activator of transcription 5 (STAT5 in neuronal cells. Flurbiprofen reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation, in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein (CHOP and glucose regulated protein 78 (GRP78 induction, indicating the activation of unfolded protein responses (UPR. Flurbiprofen did not affect the glucose deprivation-induced activation of UPR, but did attenuate the glucose deprivation-mediated induction of AMP-activated protein kinase (AMPK phosphorylation. Flurbiprofen may ameliorate glucose deprivation-induced leptin resistance in neuronal cells.

  5. Caffeine withdrawal symptoms and self-administration following caffeine deprivation.

    Science.gov (United States)

    Mitchell, S H; de Wit, H; Zacny, J P

    1995-08-01

    This study examined the effects of complete or partial caffeine deprivation on withdrawal symptomatology and self-administration of coffee in caffeine-dependent coffee drinkers. Nine habitual coffee drinkers abstained from dietary sources of caffeine for 33.5 h. Caffeine deprivation was manipulated by administering capsules containing 0%, 50%, or 100% of each subject's daily caffeine intake (complete, partial, and no deprivation conditions). Caffeine withdrawal symptomatology was measured using self-report questionnaires. Caffeine self-administration was measured using: i) the amount of coffee subjects earned on a series of concurrent random-ratio schedules that yielded coffee and money reinforcers; ii) the amount of earned coffee they consumed. Saliva samples revealed that subjects complied with the caffeine abstinence instructions. Caffeine withdrawal symptoms occurred reliably following complete caffeine deprivation, though not in the partial deprivation condition. Caffeine self-administration was not related to deprivation condition. We conclude that caffeine withdrawal symptomatology is not necessarily associated with increased caffeine consumption.

  6. Invited: Tailoring Platinum Group Metals Towards Optimal Activity for Oxygen Electroreduction to H2o and H2O2: From Extended Surfaces to Nanoparticles

    DEFF Research Database (Denmark)

    Stephens, Ifan

    2014-01-01

    ). The figure shows transmission electron miscroscopy images of 9 nm diameter PtxY nanoparticles, based on high angle annular dark field –scanning transmission electron microscopy (left) and Y, Pt and combined Pt+Y X-ray energy dispersive X-ray spectroscopy elemental maps. (a) as-prepared catalyst and (b) after......The slow kinetics of the 4-electron reduction of oxygen to H2O imposes a bottleneck against the widespread uptake of low temperature fuel cells in automotive vehicles. High loadings of platinum are required to drive the reaction; the limited supply of this precious metal limits the extent to which...... fuel cell technology could be scaled up.(1) The most widely used strategy towards decreasing the Pt loading is to alloy Pt with other late transition metals, in particular Ni or Co. (2-5) However, when tested in a fuel cell, these alloys are often susceptible towards degradation via dealloying.(6, 7...

  7. Sleep deprivation and spike-wave discharges in epileptic rats

    OpenAIRE

    Drinkenburg, W.H.I.M.; Coenen, A.M.L.; Vossen, J.M.H.; Luijtelaar, E.L.J.M. van

    1995-01-01

    The effects of sleep deprivation were studied on the occurrence of spike-wave discharges in the electroencephalogram of rats of the epileptic WAG/Rij strain, a model for absence epilepsy. This was done before, during and after a period of 12 hours of near total sleep deprivation. A substantial increase in the number of spike-wave discharges was found during the first 4 hours of the deprivation period, whereas in the following deprivation hours epileptic activity returned to baseline values. I...

  8. Total sleep deprivation does not significantly degrade semantic encoding.

    Science.gov (United States)

    Honn, K A; Grant, D A; Hinson, J M; Whitney, P; Van Dongen, Hpa

    2018-01-17

    Sleep deprivation impairs performance on cognitive tasks, but it is unclear which cognitive processes it degrades. We administered a semantic matching task with variable stimulus onset asynchrony (SOA) and both speeded and self-paced trial blocks. The task was administered at the baseline and 24 hours later after 30.8 hours of total sleep deprivation (TSD) or matching well-rested control. After sleep deprivation, the 20% slowest response times (RTs) were significantly increased. However, the semantic encoding time component of the RTs remained at baseline level. Thus, the performance impairment induced by sleep deprivation on this task occurred in cognitive processes downstream of semantic encoding.

  9. Crime: social disorganization and relative deprivation.

    Science.gov (United States)

    Kawachi, I; Kennedy, B P; Wilkinson, R G

    1999-03-01

    Crime is seldom considered as an outcome in public health research. Yet major theoretical and empirical developments in the field of criminology during the past 50 years suggest that the same social environmental factors which predict geographic variation in crime rates may also be relevant for explaining community variations in health and wellbeing. Understanding the causes of variability in crime across countries and across regions within a country will help us to solve one of the enduring puzzles in public health, viz. why some communities are healthier than others. The purpose of this paper is to present a conceptual framework for investigating the influence of the social context on community health, using crime as the indicator of collective wellbeing. We argue that two sets of societal characteristics influence the level of crime: the degree of relative deprivation in society (for instance, measured by the extent of income inequality), and the degree of cohesiveness in social relations among citizens (measured, for instance, by indicators of 'social capital' and 'collective efficacy'). We provided a test of our conceptual framework using state-level ecologic data on violent crimes and property crimes within the USA. Violent crimes (homicide, assault, robbery) were consistently associated with relative deprivation (income inequality) and indicators of low social capital. Among property crimes, burglary was also associated with deprivation and low social capital. Areas with high crime rates tend also to exhibit higher mortality rates from all causes, suggesting that crime and population health share the same social origins. Crime is thus a mirror of the quality of the social environment.

  10. Early Adolescent Outcomes for Institutionally-Deprived and Non-Deprived Adoptees. I: Disinhibited Attachment

    Science.gov (United States)

    Rutter, Michael; Colvert, Emma; Kreppner, Jana; Beckett, Celia; Castle, Jenny; Groothues, Christine; Hawkins, Amanda; O'Connor, Thomas G.; Stevens, Suzanne E.; Sonuga-Barke, Edmund J. S.

    2007-01-01

    Background: Disinhibited attachment is an important sequel of an institutional rearing, but questions remain regarding its measurement, its persistence, the specificity of the association with institutional rearing and on whether or not it constitutes a meaningful disorder. Method: Children initially reared in profoundly depriving institutions in…

  11. Embodied masculinity and androgen deprivation therapy.

    Science.gov (United States)

    Oliffe, John

    2006-05-01

    This paper describes the findings from an ethnographic study of 16 Anglo-Australian men treated with androgen deprivation therapy (ADT) for advanced prostate cancer. Utilising a social constructionist gendered analysis, participants' experiences, particularly in relation to embodied masculinity, are described in the context of reduced testosterone that accompany ADT. The findings indicated that participants reformulated many ideals of hegemonic masculinity in response to functional body changes. However, hegemonic masculinity strongly influenced participants' philosophical resolve to "fight" prostate cancer. The findings are considered in broader ongoing debates about essentialist sex and the social construction of gender.

  12. Water deprivation test in children with polyuria.

    Science.gov (United States)

    Wong, Lap Ming; Man, Sze Shun

    2012-01-01

    Polyuria is an uncommon clinical presentation in paediatric practice. When diabetes mellitus has been excluded by history taking and preliminary investigations and impaired renal concentrating ability is confirmed, water deprivation test (WDT) is necessary to differentiate among central diabetes insipidus (CDI), nephrogenic diabetes insipidus, or primary polydipsia. Traditionally, responsiveness to desmopressin injection is defined as urine osmolality >750 mOsm/kg. However, that level could not be reached in the review of our patients. We discuss how to arrive at the diagnosis of CDI in WDT. An approach to polyuria and WDT will also be discussed.

  13. Novel nanostructured oxygen sensor

    Science.gov (United States)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate

  14. Individual Income, Area Deprivation, and Health: Do Income-Related Health Inequalities Vary by Small Area Deprivation?

    Science.gov (United States)

    Siegel, Martin; Mielck, Andreas; Maier, Werner

    2015-11-01

    This paper aims to explore potential associations between health inequalities related to socioeconomic deprivation at the individual and the small area level. We use German cross-sectional survey data for the years 2002 and 2006, and measure small area deprivation via the German Index of Multiple Deprivation. We test the differences between concentration indices of income-related and small area deprivation related inequalities in obesity, hypertension, and diabetes. Our results suggest that small area deprivation and individual income both yield inequalities in health favoring the better-off, where individual income-related inequalities are significantly more pronounced than those related to small area deprivation. We then apply a semiparametric extension of Wagstaff's corrected concentration index to explore how individual-level health inequalities vary with the degree of regional deprivation. We find that the concentration of obesity, hypertension, and diabetes among lower income groups also exists at the small area level. The degree of deprivation-specific income-related inequalities in the three health outcomes exhibits only little variations across different levels of multiple deprivation for both sexes. Copyright © 2014 John Wiley & Sons, Ltd.

  15. The politics of relative deprivation: A transdisciplinary social justice perspective.

    Science.gov (United States)

    Fu, Mengzhu; Exeter, Daniel J; Anderson, Anneka

    2015-05-01

    Relative deprivation was defined by Townsend (1987, p. 125) as "a state of observable and demonstrable disadvantage, relative to the local community or the wider society or nation to which an individual, family or group belongs". This definition is widely used within social and health sciences to identify, measure, and explain forms of inequality in human societies based on material and social conditions. From a multi-disciplinary social science perspective, we conducted a systematic literature review of published material in English through online database searches and books since 1966. We review the concept and measurement of relative 'deprivation' focussing on area-based deprivation in relation to inequities in health and social outcomes. This paper presents a perspective based in Aotearoa/New Zealand where colonisation has shaped the contours of racialised health inequities and current applications and understandings of 'deprivation'. We provide a critique of Townsend's concept of deprivation and area-based deprivation through a critical, structural analysis and suggest alternatives to give social justice a better chance. Deprivation measures used without critical reflection can lead to deficit framing of populations and maintain current inequities in health and social outcomes. We contend therefore that the lack of consideration of (bio)power, privilege, epistemology and (bio)politics is a central concern in studies of deprivation. Our review highlights the need for the academy to balance the asymmetry between qualitative and quantitative studies of deprivation through trans-disciplinary approaches to understanding deprivation, and subsequently, social and health inequities. We recommend that deprivation research needs be critically applied through a decolonising lens to avoid deficit framing and suggest that there is space for a tool that focuses on measuring the unequal distribution of power and privilege in populations. Copyright © 2014 Elsevier Ltd. All

  16. Poverty as Accumulating of Social Disadvantages: Sociological Analysis of Deprivation in Ukraine

    OpenAIRE

    Natalia Kharchenko

    2010-01-01

    The aim of the study was to create an index of socio-economic deprivation, to find main determinants of deprivation and to investigate the differences and similarities in the attitudes and expectations of groups with different deprivation's level.

  17. Social comparison, personal relative deprivation, and materialism.

    Science.gov (United States)

    Kim, Hyunji; Callan, Mitchell J; Gheorghiu, Ana I; Matthews, William J

    2017-06-01

    Across five studies, we found consistent evidence for the idea that personal relative deprivation (PRD), which refers to resentment stemming from the belief that one is deprived of deserved outcomes compared to others, uniquely contributes to materialism. In Study 1, self-reports of PRD positively predicted materialistic values over and above socioeconomic status, personal power, self-esteem, and emotional uncertainty. The experience of PRD starts with social comparison, and Studies 2 and 3 found that PRD mediated the positive relation between a tendency to make social comparisons of abilities and materialism. In Study 4, participants who learned that they had less (vs. similar) discretionary income than people like them reported a stronger desire for more money relative to donating more to charity. In Study 5, during a windfall-spending task, participants higher in PRD spent more on things they wanted relative to other spending categories (e.g., paying off debts). © 2016 The Authors. British Journal of Social Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  18. BDNF in sleep, insomnia, and sleep deprivation.

    Science.gov (United States)

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  19. Oxygen safety

    Science.gov (United States)

    ... sure you have working smoke detectors and a working fire extinguisher in your home. If you move around the house with your oxygen, you may need more than one fire extinguisher in different locations. Smoking can be very dangerous. No one should smoke ...

  20. Oxygen therapy - infants

    Science.gov (United States)

    ... breathe increased amounts of oxygen to get normal levels of oxygen in their blood. Oxygen therapy provides babies with the extra oxygen. Information Oxygen is a gas that the cells in your body need to work properly. The ...

  1. Determination of optimized oxygen partial pressure to maximize the liver regenerative potential of the secretome obtained from adipose-derived stem cells.

    Science.gov (United States)

    Lee, Sang Chul; Kim, Kee-Hwan; Kim, Ok-Hee; Lee, Sang Kuon; Hong, Ha-Eun; Won, Seong Su; Jeon, Sang-Jin; Choi, Byung Jo; Jeong, Wonjun; Kim, Say-June

    2017-08-03

    A hypoxic-preconditioned secretome from stem cells reportedly promotes the functional and regenerative capacity of the liver more effectively than a control secretome. However, the optimum oxygen partial pressure (pO 2 ) in the cell culture system that maximizes the therapeutic potential of the secretome has not yet been determined. We first determined the cellular alterations in adipose tissue-derived stem cells (ASCs) cultured under different pO 2 (21%, 10%, 5%, and 1%). Subsequently, partially hepatectomized mice were injected with the secretome of ASCs cultured under different pO 2 , and then sera and liver specimens were obtained for analyses. Of all AML12 cells cultured under different pO 2 , the AML12 cells cultured under 1% pO 2 showed the highest mRNA expression of proliferation-associated markers (IL-6, HGF, and VEGF). In the cell proliferation assay, the AML12 cells cultured with the secretome of 1% pO 2 showed the highest cell proliferation, followed by the cells cultured with the secretome of 21%, 10%, and 5% pO 2 , in that order. When injected into the partially hepatectomized mice, the 1% pO 2 secretome most significantly increased the number of Ki67-positive cells, reduced serum levels of proinflammatory mediators (IL-6 and TNF-α), and reduced serum levels of liver transaminases. In addition, analysis of the liver specimens indicated that injection with the 1% pO 2 secretome maximized the expression of the intermediate molecules of the PIP3/Akt and IL-6/STAT3 signaling pathways, all of which are known to promote liver regeneration. The data of this study suggest that the secretome of ASCs cultured under 1% pO 2 has the highest liver reparative and regenerative potential of all the secretomes tested here.

  2. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep

    2016-01-01

    The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657

  3. Cues of fatigue: effects of sleep deprivation on facial appearance

    NARCIS (Netherlands)

    Sundelin, T.; Lekander, M.; Kecklund, G.; van Someren, E.J.W.; Olsson, A.; Axelsson, J.

    2013-01-01

    Study Objective: To investigate the facial cues by which one recognizes that someone is sleep deprived versus not sleep deprived. Design: Experimental laboratory study. Setting: Karolinska Institutet, Stockholm, Sweden. Participants: Forty observers (20 women, mean age 25 ± 5 y) rated 20 facial

  4. Small Area Indices of Multiple Deprivation in South Africa

    Science.gov (United States)

    Noble, Michael; Barnes, Helen; Wright, Gemma; Roberts, Benjamin

    2010-01-01

    This paper presents the Provincial Indices of Multiple Deprivation that were constructed by the authors at ward level using 2001 Census data for each of South Africa's nine provinces. The principles adopted in conceptualising the indices are described and multiple deprivation is defined as a weighted combination of discrete dimensions of…

  5. Deprivation, HIV and AIDS in Northern Uganda | Atekyereza ...

    African Journals Online (AJOL)

    Significantly, with resettlement after the war, most people are still deprived of basic source of livelihood, which still continues as a factor in the spread of HIV infection. Key Words: HIV & AIDS, Deprivation, Susceptibility, Vulnerability, Deaths, IDP camps, Northern Uganda, Paimol, Pader. Résumé. Cette étude se concentre ...

  6. The impact of area deprivation on parenting stress

    NARCIS (Netherlands)

    Spijkers, Willem; Jansen, Danielle E. M. C.; Reijneveld, Sijmen A.

    2012-01-01

    Background: Area deprivation negatively affects health and lifestyles, among which child behaviours. The latter may aggravate the effects of area deprivation on parental health due to higher rates of parenting stress. However, evidence on the influence of the living environment on parenting stress

  7. Sleep deprivation and spike-wave discharges in epileptic rats

    NARCIS (Netherlands)

    Drinkenburg, W.H.I.M.; Coenen, A.M.L.; Vossen, J.M.H.; Luijtelaar, E.L.J.M. van

    1995-01-01

    The effects of sleep deprivation were studied on the occurrence of spike-wave discharges in the electroencephalogram of rats of the epileptic WAG/Rij strain, a model for absence epilepsy. This was done before, during and after a period of 12 hours of near total sleep deprivation. A substantial

  8. Effects of sleep deprivation on neural functioning: an integrative review

    NARCIS (Netherlands)

    Boonstra, T.W.; Stins, J.F.; Daffertshofer, A.; Beek, P.J.

    2007-01-01

    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of

  9. Vitamin C Prevents Sleep Deprivation-induced Elevation in Cortisol ...

    African Journals Online (AJOL)

    In this study, we examined the potential protective effects of administration of vitamin C on acute and chronic sleep deprivation-induced metabolic derangement. In addition, possible processes involved in vitamin C effects on acute and chronic sleep deprivation-induced metabolic derangement were determined. Thirty-five ...

  10. A new model to study sleep deprivation-induced seizure.

    Science.gov (United States)

    Lucey, Brendan P; Leahy, Averi; Rosas, Regine; Shaw, Paul J

    2015-05-01

    A relationship between sleep and seizures is well-described in both humans and rodent animal models; however, the mechanism underlying this relationship is unknown. Using Drosophila melanogaster mutants with seizure phenotypes, we demonstrate that seizure activity can be modified by sleep deprivation. Seizure activity was evaluated in an adult bang-sensitive seizure mutant, stress sensitive B (sesB(9ed4)), and in an adult temperature sensitive seizure mutant seizure (sei(ts1)) under baseline and following 12 h of sleep deprivation. The long-term effect of sleep deprivation on young, immature sesB(9ed4) flies was also assessed. Laboratory. Drosophila melanogaster. Sleep deprivation. Sleep deprivation increased seizure susceptibility in adult sesB(9ed4)/+ and sei(ts1) mutant flies. Sleep deprivation also increased seizure susceptibility when sesB was disrupted using RNAi. The effect of sleep deprivation on seizure activity was reduced when sesB(9ed4)/+ flies were given the anti-seizure drug, valproic acid. In contrast to adult flies, sleep deprivation during early fly development resulted in chronic seizure susceptibility when sesB(9ed4)/+ became adults. These findings show that Drosophila is a model organism for investigating the relationship between sleep and seizure activity. © 2015 Associated Professional Sleep Societies, LLC.

  11. Sleep Deprivation, Allergy Symptoms, and Negatively Reinforced Problem Behavior.

    Science.gov (United States)

    Kennedy, Craig H.; Meyer, Kim A.

    1996-01-01

    A study of the relationship between presence or absence of sleep deprivation, allergy symptoms, and the rate and function of problem behavior in three adolescents with moderate to profound mental retardation found that problem behavior was negatively reinforced by escape from instruction, and both allergy symptoms and sleep deprivation influenced…

  12. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities.

    Science.gov (United States)

    Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya

    2015-01-01

    To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of the retina were taken and imported into FIJI software for analysis. Neural retinal cell densities of deprived eyes were reduced along with increasing period of deprivation. The percentage of reductions were 60.9% (P < 0.001), 41.6% (P = 0.003), and 18.9% (P = 0.326) for ganglion, inner nuclear, and outer nuclear cells, respectively. In non-deprived eyes, cell densities in contrast were increased by 116% (P < 0.001), 52% (P < 0.001) and 59.6% (P < 0.001) in ganglion, inner nuclear, and outer nuclear cells, respectively. In this rabbit model, monocular deprivation resulted in activity-dependent changes in cell densities of the neural retina in favour of the non-deprived eye along with reduced cell densities in the deprived eye.

  13. The prospective association between sleep deprivation and depression among adolescents.

    Science.gov (United States)

    Roberts, Robert E; Duong, Hao T

    2014-02-01

    To examine the prospective, reciprocal association between sleep deprivation and depression among adolescents. A community-based two-wave cohort study. A metropolitan area with a population of over 4 million. 4,175 youths 11-17 at baseline, and 3,134 of these followed up a year later. Depression is measured using both symptoms of depression and DSM-IV major depression. Sleep deprivation is defined as ≤ 6 h of sleep per night. Sleep deprivation at baseline predicted both measures of depression at follow-up, controlling for depression at baseline. Examining the reciprocal association, major depression at baseline, but not symptoms predicted sleep deprivation at follow-up. These results are the first to document reciprocal effects for major depression and sleep deprivation among adolescents using prospective data. The data suggest reduced quantity of sleep increases risk for major depression, which in turn increases risk for decreased sleep.

  14. Sleep deprived and sweating it out: the effects of total sleep deprivation on skin conductance reactivity to psychosocial stress.

    Science.gov (United States)

    Liu, Jean C J; Verhulst, Silvan; Massar, Stijn A A; Chee, Michael W L

    2015-01-01

    We examined how sleep deprivation alters physiological responses to psychosocial stress by evaluating changes in skin conductance. Between-subjects design with one group allocated to 24 h of total sleep deprivation and the other to rested wakefulness. The study took place in a research laboratory. Participants were 40 healthy young adults recruited from a university. Sleep deprivation and feedback. Electrodermal activity was monitored while participants completed a difficult perceptual task with false feedback. All participants showed increased skin conductance levels following stress. However, compared to well-rested participants, sleep deprived participants showed higher skin conductance reactivity with increasing stress levels. Our results suggest that sleep deprivation augments allostatic responses to increasing psychosocial stress. Consequentially, we propose sleep loss as a risk factor that can influence the pathogenic effects of stress. © 2014 Associated Professional Sleep Societies, LLC.

  15. Oculomotor impairment during chronic partial sleep deprivation.

    Science.gov (United States)

    Russo, M; Thomas, M; Thorne, D; Sing, H; Redmond, D; Rowland, L; Johnson, D; Hall, S; Krichmar, J; Balkin, T

    2003-04-01

    The effects of chronic partial sleep (sleep deprivation) and extended sleep (sleep augmentation) followed by recovery sleep on oculomotor function were evaluated in normal subjects to explore the usefulness of oculomotor assessment for alertness monitoring in fitness-for-duty testing. Sixty-six commercial drivers (24-62 years, 50m/16f) participated in a 15 day study composed of 3 training days with 8h time in bed per night, 7 experimental days with subjects randomly assigned to either 3, 5, 7, or 9h time in bed, and 3 recovery nights with 8h time in bed. Data from 57 subjects were used. Saccadic velocity (SV), initial pupil diameter (IPD), latency to pupil constriction (CL), and amplitude of pupil constriction (CA) were assessed and correlated with the sleep latency test (SLT), the Stanford sleepiness scale (SSS), and simulated driving performance. Regression analyses showed that SV slowed significantly in the 3 and 5h groups, IPD decreased significantly in the 9h group, and CL increased significantly in the 3h group. SLT and SSS significantly correlated with SV, IPD, CL, and driving accidents for the 3h group, and with CL for the 5h group. Analyses also showed a significant negative correlation between decreasing SV and increasing driving accidents in the 3h group and a significant negative correlation between IPD and driving accidents for the 7h group. The results demonstrate a sensitivity primarily of SV to sleepiness, and a correlation of SV and IPD to impaired simulated driving performance, providing evidence for the potential utility of oculomotor indicators in the detection of excessive sleepiness and deterioration of complex motor performance with chronic partial sleep restriction. This paper shows a relationship between sleep deprivation and oculomotor measures, and suggests a potential utility for oculometrics in assessing operational performance readiness under sleep restricted conditions.

  16. Intermittent Versus Continuous Androgen Deprivation Therapy for Prostate Cancer: A Systematic Review and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Yu-xiao ZHENG

    2018-03-01

    Full Text Available Objective: The strategy of androgen deprivation therapy (ADT applied in patients with prostate cancer (PCa to achieve optimal clinical and oncologic outcomes has been a longstanding debate. The objective of our study was to perform a metaanalysis to compare the efficacy, quality of life and adverse events profile of intermittent versus continuous androgen deprivation for prostate cancer. Methods: We searched PubMed, EMBASE and Web of Science to extract the basic characteristics. Besides, data of endpoint such as overall survival (OS, progression free survival (PFS, cancer-specific survival (CSS and time to progression (TTP as well as quality of life (QoL were also collected. In addition, the results were expressed as hazard ratio (HR with 95% confidence interval (CI. Results: 17 articles including a total 6,733 patients with any stage of PCa were included in our review. No significant differences were found in PFS (HR = 0.93, 95% CI: 0.83-1.03, TTP (HR = 0.96, 95% CI: 0.84-1.07 between intermittent androgen deprivation (IAD and continuous androgen deprivation (CAD, whereas CAD showed benefits associated with OS (HR = 0.92, 95% CI: 0.85-0.98 and CSS (HR = 0.86, 95% CI: 0.74-0.98. In addition, IAD might have a superior outcome compared with CAD, especially in sexual functioning and headache favoring. Controversial outcomes were also seen in some aspects such as hot flushes, gynecomastia, breast pain or fatigue. Conclusion: PFS and TTP were similar between IAD and CAD, whereas CAD showed benefits associated with OS and CSS. IAD might have benefits in QoL and have less adverse effects, especially in sexual dysfunction and headache.

  17. Short-term total sleep deprivation alters delay-conditioned memory in the rat.

    Science.gov (United States)

    Tripathi, Shweta; Jha, Sushil K

    2016-06-01

    Short-term sleep deprivation soon after training may impair memory consolidation. Also, a particular sleep stage or its components increase after learning some tasks, such as negative and positive reinforcement tasks, avoidance tasks, and spatial learning tasks, and so forth. It suggests that discrete memory types may require specific sleep stage or its components for their optimal processing. The classical conditioning paradigms are widely used to study learning and memory but the role of sleep in a complex conditioned learning is unclear. Here, we have investigated the effects of short-term sleep deprivation on the consolidation of delay-conditioned memory and the changes in sleep architecture after conditioning. Rats were trained for the delay-conditioned task (for conditioning, house-light [conditioned stimulus] was paired with fruit juice [unconditioned stimulus]). Animals were divided into 3 groups: (a) sleep deprived (SD); (b) nonsleep deprived (NSD); and (c) stress control (SC) groups. Two-way ANOVA revealed a significant interaction between groups and days (training and testing) during the conditioned stimulus-unconditioned stimulus presentation. Further, Tukey post hoc comparison revealed that the NSD and SC animals exhibited significant increase in performances during testing. The SD animals, however, performed significantly less during testing. Further, we observed that wakefulness and NREM sleep did not change after training and testing. Interestingly, REM sleep increased significantly on both days compared to baseline more specifically during the initial 4-hr time window after conditioning. Our results suggest that the consolidation of delay-conditioned memory is sleep-dependent and requires augmented REM sleep during an explicit time window soon after training. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Effects of sleep deprivation with reference to military operations.

    Science.gov (United States)

    Giam, G C

    1997-01-01

    This review discusses the need for sleep, effects of sleep deprivation on behaviour and performance in the military, and sleep management recommendations to optimise combat effectiveness. Most people, regardless of sex or race, prefer 7 to 8 hours of sleep each night. Sleeping during the day is less recuperative. Continuous sleep is more effective than multiple short naps-even when the total hours for naps is more. Ten to 20 minute naps are useful when continuous sleep is not possible. Sleep inertia is the 5 to 30 minute period of sluggishness after awakening and important military tasks should be avoided. Previously, continuous work episodes (CWEs) duration was restricted by limited night vision, unreliable equipment and reduced endurance of military personnel. With improved technology, CWEs are now restricted primarily by endurance which is affected by sleep deprivation. This was one of the experiences noted in recent conflicts (e.g. Desert Storm) by personnel in the air force, army and navy. Since there will be changes in operational requirements, several work-rest-sleep plans must be prepared. Sleeping the preferred 7 to 8 hours per 24 hours the week before an operation may help prepare for optimal performance. Personnel should be familiarised with conditions under which they may sleep. During combat, sleep management should ideally avoid situations where all personnel are exhausted at the same time. As sleep debt accumulates, a person's mood, motivation, attention, alertness, short-term memory, ability to complete routines, task performance (errors of omission more than errors of commission) and physical performance will become more negatively affected. Counter measures must then be taken (e.g. time for sleep or naps, changing routines or rotating jobs). Drugs like caffeine and amphetamine can help personnel stay awake. However, they may also keep them awake when they need to sleep- and on awakening, they could suffer from "hang-overs" and are less efficient

  19. Perceived deprivation in active duty military nurse anesthetists.

    Science.gov (United States)

    Pearson, Julie A; Fallacaro, Michael D; Pellegrini, Joseph E

    2009-02-01

    There is a shortage of military Certified Registered Nurse Anesthetists (CRNAs). Relative deprivation is a perception of unfairness due to discrepancies between what one has and what one could or should have that is dependent on feelings (subjective data) and facts (objective data). Feelings of relative deprivation could contribute to the military CRNA shortage. The purposes of this study were to measure relative deprivation in active-duty military CRNAs and explore variables that correlate with relative deprivation. The descriptive, correlational study was conducted using a self-administered survey sent to 435 active-duty Army, Navy, and Air Force CRNAs. Surveys were distributed to subjects by mail and could be answered by mail or by secured website. Data were analyzed using descriptive and inferential statistics. Analysis of the data revealed a calculated response rate of 57.7%. There was no significant correlation (P pay, promotion opportunity, or scope of practice/autonomy and relative deprivation. Correlations of the psychological factors "wanting" and "deserving" with relative deprivation were significant (P < .001). Further research is indicated to identify definitive factors that can be modified to improve feelings of deprivation as they relate to retention and recruitment of military CRNAs.

  20. The effects of sleep deprivation on dissociable prototype learning systems.

    Science.gov (United States)

    Maddox, W Todd; Glass, Brian D; Zeithamova, Dagmar; Savarie, Zachary R; Bowen, Christopher; Matthews, Michael D; Schnyer, David M

    2011-03-01

    The cognitive neural underpinnings of prototype learning are becoming clear. Evidence points to 2 different neural systems, depending on the learning parameters. A/not-A (AN) prototype learning is mediated by posterior brain regions that are involved in early perceptual learning, whereas A/B (AB) is mediated by frontal and medial temporal lobe regions. To investigate the effects of sleep deprivation on AN and AB prototype learning and to use established prototype models to provide insights into the cognitive-processing locus of sleep-deprivation deficits. Participants performed an AN and an AB prototype learning task twice, separated by a 24-hour period, with or without sleep between testing sessions. Eighteen West Point cadets participated in the sleep-deprivation group, and 17 West Point cadets participated in a control group. Sleep deprivation led to an AN, but not an AB, performance deficit. Prototype model analyses indicated that the AN deficit was due to changes in attentional focus and a decrease in confidence that is reflected in an increased bias to respond non-A. The findings suggest that AN, but not AB, prototype learning is affected by sleep deprivation. Prototype model analyses support the notion that the effect of sleep deprivation on AN is consistent with lapses in attentional focus that are more detrimental to AN than to AB. This finding adds to a growing body of work that suggests that different performance changes associated with sleep deprivation can be attributed to a common mechanism of changes in simple attention and vigilance.

  1. Vascular compliance limits during sleep deprivation and recovery sleep.

    Science.gov (United States)

    Phillips, Derrick J; Schei, Jennifer L; Rector, David M

    2013-10-01

    Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. Evoked auditory responses were generated with periodic 65 dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. Animals were housed in separate 30×30×80 cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. Seven adult female Sprague-Dawley rats. Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma.

  2. Sleep Deprivation and Time-Based Prospective Memory.

    Science.gov (United States)

    Esposito, Maria José; Occhionero, Miranda; Cicogna, PierCarla

    2015-11-01

    To evaluate the effect of sleep deprivation on time-based prospective memory performance, that is, realizing delayed intentions at an appropriate time in the future (e.g., to take a medicine in 30 minutes). Between-subjects experimental design. The experimental group underwent 24 h of total sleep deprivation, and the control group had a regular sleep-wake cycle. Participants were tested at 08:00. Laboratory. Fifty healthy young adults (mean age 22 ± 2.1, 31 female). 24 h of total sleep deprivation. Participants were monitored by wrist actigraphy for 3 days before the experimental session. The following cognitive tasks were administered: one time-based prospective memory task and 3 reasoning tasks as ongoing activity. Objective and subjective vigilance was assessed by the psychomotor vigilance task and a visual analog scale, respectively. To measure the time-based prospective memory task we assessed compliance and clock checking behavior (time monitoring). Sleep deprivation negatively affected time-based prospective memory compliance (P sleep deprivation on human behavior, particularly the ability to perform an intended action after a few minutes. Sleep deprivation strongly compromises time-based prospective memory compliance but does not affect time check frequency. Sleep deprivation may impair the mechanism that allows the integration of information related to time monitoring with the prospective intention. © 2015 Associated Professional Sleep Societies, LLC.

  3. The Munchausen paradigm for deprived neighbourhoods: pulling yourself out of the swamp of deprivation

    Directory of Open Access Journals (Sweden)

    Jeannette Nijkamp

    2017-06-01

    Full Text Available The Munchausen paradigm for deprived neighbourhoods: pulling yourself out of the swamp of deprivation Since the 1980s, many initiatives have attempted to tackle the deprivation currently experienced in South Rotterdam. Efforts have been made to attract creative workers and, in a counter-reaction, other initiatives have aimed to encourage the creative talents of poorer residents to strengthen their economic position. One example of this is Freehouse, which has established projects in the Afrikaanderwijk, including a neighbourhood cooperative. Our article addresses two questions: 1 What are the effects of the Freehouse projects on the economic position of residents of the Afrikaanderwijk? and 2 Which insights do our results provide into the possible effects of local government policies that rely on citizens playing an active role? Although the economic effects of the projects were limited, our study reveals that citizens’ initiatives, such as the Afrikaander Cooperative, can help residents gain employment. In order to succeed, these initiatives should not be hindered by obstructive regulations, and they should include input from the residents who function as staff. However, in deprived neighbourhoods, many residents require support to be able to contribute to citizens’ initiatives, and cannot be expected to act like Baron Münchausen and pull themselves out of the swamp of deprivation by their own hair. Het Münchausen paradigma voor achterstandswijken: jezelf uit het moeras van achterstand trekken Sinds de jaren 80 hebben veel initiatieven geprobeerd het achterstandsniveau in Rotterdam Zuid te verminderen. Verschillende initiatieven waren gericht op het aantrekken van creatieve professionals. Als tegenreactie stimuleerden andere initiatieven de creatieve talenten van arme wijkbewoners teneinde hun economische positie te versterken. Een voorbeeld hiervan is Freehouse, dat projecten in de Afrikaanderwijk startte, waaronder de oprichting van

  4. Identifying and Measuring Dimensions of Urban Deprivation in Montreal: An Analysis of the 1996 Census Data.

    Science.gov (United States)

    Langlois, Andre; Kitchen, Peter

    2001-01-01

    Used 1996 Canadian census data to examine the spatial structure and intensity of urban deprivation in Montreal. Analysis of 20 indicators of urban deprivation identified 6 main types of deprivation in the city and found that they were most visible on the Island of Montreal. Urban deprivation was not confined to the inner city. (SM)

  5. Social deprivation and burden of influenza: Testing hypotheses and gaining insights from a simulation model for the spread of influenza

    Directory of Open Access Journals (Sweden)

    Ayaz Hyder

    2015-06-01

    Full Text Available Factors associated with the burden of influenza among vulnerable populations have mainly been identified using statistical methodologies. Complex simulation models provide mechanistic explanations, in terms of spatial heterogeneity and contact rates, while controlling other factors and may be used to better understand statistical patterns and, ultimately, design optimal population-level interventions. We extended a sophisticated simulation model, which was applied to forecast epidemics and validated for predictive ability, to identify mechanisms for the empirical relationship between social deprivation and the burden of influenza. Our modeled scenarios and associated epidemic metrics systematically assessed whether neighborhood composition and/or spatial arrangement could qualitatively replicate this empirical relationship. We further used the model to determine consequences of local-scale heterogeneities on larger scale disease spread. Our findings indicated that both neighborhood composition and spatial arrangement were critical to qualitatively match the empirical relationship of interest. Also, when social deprivation was fully included in the model, we observed lower age-based attack rates and greater delay in epidemic peak week in the most socially deprived neighborhoods. Insights from simulation models complement current understandings from statistical-based association studies. Additional insights from our study are: (1 heterogeneous spatial arrangement of neighborhoods is a necessary condition for simulating observed disparities in the burden of influenza and (2 unmeasured factors may lead to a better quantitative match between simulated and observed rate ratio in the burden of influenza between the most and least socially deprived populations.

  6. Monocular Visual Deprivation Suppresses Excitability in Adult Human Visual Cortex

    DEFF Research Database (Denmark)

    Lou, Astrid Rosenstand; Madsen, Kristoffer Hougaard; Paulson, Olaf Bjarne

    2011-01-01

    The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we...... of visual deprivation has a substantial impact on experience-dependent plasticity of the human visual cortex.......The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we...... employed TMS to trace plastic changes in adult visual cortex before, during, and after 48 h of monocular deprivation (MD) of the right dominant eye. In healthy adult volunteers, MD-induced changes in visual cortex excitability were probed with paired-pulse TMS applied to the left and right occipital cortex...

  7. Vitamin C Prevents Sleep Deprivation-induced Elevation in Cortisol ...

    African Journals Online (AJOL)

    olayemitoyin

    Plasma glucose was significantly (p<0.05) reduced in all the sleep deprived groups compared ... of 12hr light-dark cycle after which they were subjected to Paradoxical .... Wakefulness involves high neuronal metabolism to maintain neuronal ...

  8. Vitamin C Prevents Sleep Deprivation-induced Elevation in Cortisol ...

    African Journals Online (AJOL)

    olayemitoyin

    person can be aroused by sensory or other stimuli. (Hall, 2015), is an ... 2007). This can be acute (a single period of extended ... short-term (acute) Sleep Deprivation, such studies for .... induced memory impairment: the role of oxidative stress.

  9. Stress, social support and psychosomatic symptoms in a deprived neighbourhood

    DEFF Research Database (Denmark)

    Bancila, Delia; Andersen, Pernille Tanggaard; Kronborg Bak, Carsten

    2012-01-01

    From a transactional perspective on stress, the study aimed to examine if the relationships of social support with perceived stress and psychosomatic symptoms are equivalent in deprived and wealthier neighbourhoods. Cross-sectional data were randomly collected from 2906 inhabitants in a deprived...... neighbourhood (851) and wealthier communities (2055), in Esbjerg, Denmark. A model that included psychosomatic symptoms as outcome, and daily worries, economic deprivation, perceived stress and social support as predictors was tested with structural equation modelling in two-group analyses. The findings showed...... significant differences (D2 (6)¼16.66, p.¼0.011) between neighbourhoods, and the fit statistics (CFI¼0.930, RMSEA¼0.034, R2¼0.48) showed good fit. Under an increased perceived stress’ effect, the social support’s impact on psychosomatic symptoms decreased in the deprived neighbourhood compared with the other...

  10. Cervical Ectopic Pregnancy in Resource Deprived Areas: A Rare ...

    African Journals Online (AJOL)

    2016-06-02

    Jun 2, 2016 ... Cervical ectopic pregnancy is a rare, life threatening form of ectopic pregnancy ... cervical, resource deprived areas, difficult diagnosis, management ... drome, prior instrumentation or therapeutic abortion .... CONCLUSION.

  11. Sleep Deprivation: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... it true that sleep deprivation can cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Possibly. It's thought that ... hours a night could be linked to increased blood pressure. People who sleep five hours or less a ...

  12. Is maternal deprivation the root of all evil?

    Directory of Open Access Journals (Sweden)

    David R. Cross

    2009-11-01

    Full Text Available In this paper we seriously entertain the question, “Is maternal deprivation the root of all evil?” Our consideration of this question is broken down into three parts. In the fi rst part, we discuss the nature of evil, focusing in particular on the legal concept of depravity. In the second part, we discuss the nurture of evil, focusing in particular on the common developmental trajectory seen in those who are depraved. In the third part, we discuss the roots of evil, focusing in particular on the animal and human research regarding maternal deprivation. Our conclusion is that maternal deprivation may actually be the root of all evil, but only because depraved individuals have been deprived of normative maternal care, which is the cradle of our humanity.

  13. Sleep and Nutritional Deprivation and Performance of House Officers.

    Science.gov (United States)

    Hawkins, Michael R.; And Others

    1985-01-01

    A study to compare cognitive functioning in acutely and chronically sleep-deprived house officers is described. A multivariate analysis of variance revealed significant deficits in primary mental tasks involving basic rote memory, language, and numeric skills. (Author/MLW)

  14. The effects of total sleep deprivation on Bayesian updating

    Directory of Open Access Journals (Sweden)

    David L. Dickinson

    2008-02-01

    Full Text Available Subjects performed a decision task (Grether, 1980 in both a well-rested and experimentally sleep-deprived state. We found two main results: 1 final choice accuracy was unaffected by sleep deprivation, and yet 2 the estimated decision model differed significantly following sleep-deprivation. Following sleep deprivation, subjects placed significantly less weight on new information in forming their beliefs. Because the altered decision process still maintains decision accuracy, it may suggest that increased accident and error rates attributed to reduced sleep in modern society stem from reduced auxiliary function performance (e.g., slowed reaction time, reduced motor skills or other components of decision making, rather than the inability to integrate multiple pieces of information.

  15. Arbitrary Deprivation of an Unregistered Credit Provider's Right to ...

    African Journals Online (AJOL)

    Arbitrary Deprivation of an Unregistered Credit Provider's Right to Claim Restitution of Performance Rendered Opperman v Boonzaaier (24887/2010) 2012 ZAWCHC 27 (17 April 2012) and National Credit Regulator v Opperman 2013 2 SA 1 (CC)

  16. Sleep Deprivation in Humans, Immunodepression and Glutamine Supplementation

    National Research Council Canada - National Science Library

    Castell, Linda M; Gough, Elizabeth; Cardenas, Rebecca; Miller, James C

    2005-01-01

    This report results from a contract tasking University of Oxford as follows: The Grantee will investigate the immunological response of subjects to one night of sleep deprivation with respect to the following areas...

  17. Sleep Deprivation in Humans, Immunodepression and Glutamine Supplementation

    National Research Council Canada - National Science Library

    Castell, Linda M; Gough, Elizabeth; Cardenas, Rebecca; Miller, James C

    2005-01-01

    ... (I) Are the cytokines linked with eosinophils neutrophils and lymphocytes cell types which are known to be affected by sleep deprivation changed in terms of intracellular cytokine production? (2...

  18. Effect of Monocular Deprivation on Rabbit Neural Retinal Cell Densities

    OpenAIRE

    Mwachaka, Philip Maseghe; Saidi, Hassan; Odula, Paul Ochieng; Mandela, Pamela Idenya

    2015-01-01

    Purpose: To describe the effect of monocular deprivation on densities of neural retinal cells in rabbits. Methods: Thirty rabbits, comprised of 18 subject and 12 control animals, were included and monocular deprivation was achieved through unilateral lid suturing in all subject animals. The rabbits were observed for three weeks. At the end of each week, 6 experimental and 3 control animals were euthanized, their retinas was harvested and processed for light microscopy. Photomicrographs of ...

  19. Impact of Acute Sleep Deprivation on Sarcasm Detection

    OpenAIRE

    Deliens, Ga?tane; Stercq, Fanny; Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another pe...

  20. Effects of sleep deprivation on central auditory processing

    Directory of Open Access Journals (Sweden)

    Liberalesso Paulo Breno

    2012-07-01

    Full Text Available Abstract Background Sleep deprivation is extremely common in contemporary society, and is considered to be a frequent cause of behavioral disorders, mood, alertness, and cognitive performance. Although the impacts of sleep deprivation have been studied extensively in various experimental paradigms, very few studies have addressed the impact of sleep deprivation on central auditory processing (CAP. Therefore, we examined the impact of sleep deprivation on CAP, for which there is sparse information. In the present study, thirty healthy adult volunteers (17 females and 13 males, aged 30.75 ± 7.14 years were subjected to a pure tone audiometry test, a speech recognition threshold test, a speech recognition task, the Staggered Spondaic Word Test (SSWT, and the Random Gap Detection Test (RGDT. Baseline (BSL performance was compared to performance after 24 hours of being sleep deprived (24hSD using the Student’s t test. Results Mean RGDT score was elevated in the 24hSD condition (8.0 ± 2.9 ms relative to the BSL condition for the whole cohort (6.4 ± 2.8 ms; p = 0.0005, for males (p = 0.0066, and for females (p = 0.0208. Sleep deprivation reduced SSWT scores for the whole cohort in both ears [(right: BSL, 98.4 % ± 1.8 % vs. SD, 94.2 % ± 6.3 %. p = 0.0005(left: BSL, 96.7 % ± 3.1 % vs. SD, 92.1 % ± 6.1 %, p  Conclusion Sleep deprivation impairs RGDT and SSWT performance. These findings confirm that sleep deprivation has central effects that may impair performance in other areas of life.

  1. Is fuel poverty in Ireland a distinct type of deprivation?

    OpenAIRE

    Watson, Dorothy; Maitre, Bertrand

    2014-01-01

    In this paper, we draw on the Central Statistics Office SILC data for Ireland to ask whether fuel poverty is a distinctive type of deprivation that warrants a fundamentally different policy response than poverty in general. We examine the overlap between fuel poverty (based on three self-report items) and poverty in general – with a particular emphasis on the national indicator of basic deprivation which is used in the measurement of poverty for policy purposes in Ireland. We examine changes ...

  2. Income Distribution and Consumption Deprivation: An Analytical Link

    OpenAIRE

    Sushanta K. Mallick

    2008-01-01

    This article conceives poverty in terms of the consumption of essential food, makes use of a new deprivation (or poverty) function, and examines the effects of changes in the mean and the variance of the income distribution on poverty, assuming a log-normal income distribution. The presence of a saturation level of consumption can be treated as a poverty-line threshold as opposed to an exogenous income-based poverty line. Within such a consumption deprivation approach, the article proves anal...

  3. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  4. Predicting Psychotic-Like Experiences during Sensory Deprivation

    Science.gov (United States)

    Daniel, Christina; Mason, Oliver J.

    2015-01-01

    Aims. This study aimed to establish the contribution of hallucination proneness, anxiety, suggestibility, and fantasy proneness to psychotic-like experiences (PLEs) reported during brief sensory deprivation. Method. Twenty-four high and 22 low hallucination-prone participants reported on PLEs occurring during brief sensory deprivation and at baseline. State/trait anxiety, suggestibility, and fantasy proneness were also measured. Results. Both groups experienced a significant increase in PLEs in sensory deprivation. The high hallucination prone group reported more PLEs both at baseline and in sensory deprivation. They also scored significantly higher on measures of state/trait anxiety, suggestibility, and fantasy proneness, though these did not explain the effects of group or condition. Regression analysis found hallucination proneness to be the best predictor of the increase in PLEs, with state anxiety also being a significant predictor. Fantasy proneness and suggestibility were not significant predictors. Conclusion. This study suggests the increase in PLEs reported during sensory deprivation reflects a genuine aberration in perceptual experience, as opposed to increased tendency to make false reports due to suggestibility of fantasy proneness. The study provides further support for the use of sensory deprivation as a safe and effective nonpharmacological model of psychosis. PMID:25811027

  5. Predicting Psychotic-Like Experiences during Sensory Deprivation

    Directory of Open Access Journals (Sweden)

    Christina Daniel

    2015-01-01

    Full Text Available Aims. This study aimed to establish the contribution of hallucination proneness, anxiety, suggestibility, and fantasy proneness to psychotic-like experiences (PLEs reported during brief sensory deprivation. Method. Twenty-four high and 22 low hallucination-prone participants reported on PLEs occurring during brief sensory deprivation and at baseline. State/trait anxiety, suggestibility, and fantasy proneness were also measured. Results. Both groups experienced a significant increase in PLEs in sensory deprivation. The high hallucination prone group reported more PLEs both at baseline and in sensory deprivation. They also scored significantly higher on measures of state/trait anxiety, suggestibility, and fantasy proneness, though these did not explain the effects of group or condition. Regression analysis found hallucination proneness to be the best predictor of the increase in PLEs, with state anxiety also being a significant predictor. Fantasy proneness and suggestibility were not significant predictors. Conclusion. This study suggests the increase in PLEs reported during sensory deprivation reflects a genuine aberration in perceptual experience, as opposed to increased tendency to make false reports due to suggestibility of fantasy proneness. The study provides further support for the use of sensory deprivation as a safe and effective nonpharmacological model of psychosis.

  6. Distribution of optometric practices relative to deprivation index in Scotland.

    Science.gov (United States)

    Legge, Robin; Strang, Niall C; Loffler, Gunter

    2017-07-19

    The UK National Health Service aims to provide universal availability of healthcare, and eye-care availability was a primary driver in the development of the Scottish General Ophthalmic Services (GOS) model. Accordingly, a relatively equal distribution of optometry practices across socio-economic areas is required. We examined practice distribution relative to deprivation. 672 practices were sampled from nine Health Boards within Scotland. Practices were assigned a deprivation ranking by referencing their postcode with the Scottish Index of Multiple Deprivation (SIMD) tool (Scottish Executive National Statistics: General Report. 2016). Averaged across Health Boards, the share of practices for the five deprivation quintiles was 25, 33, 18, 14 and 11% from most to least deprived area, respectively. Although there was some variation of relative practice distribution in individual Health Boards, 17 of the 45 regions (nine Health Boards, five quintiles) had a close balance between population and share of practices. There was no clear pattern of practice distribution as a function of deprivation rank. Analysis revealed good correlation between practice and population share for each Health Board, and for the combined data (R2 = 0.898, P Distribution of optometry practices is relatively balanced across socio-economic areas, suggesting that differences in eye-examination uptake across social strata are unrelated to service availability. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health.

  7. The Impact of Sleep Deprivation on the Brain

    Science.gov (United States)

    Trošt Bobić, Tatjana; Šečić, Ana; Zavoreo, Iris; Matijević, Valentina; Filipović, Branimir; Kolak, Željka; Bašić Kes, Vanja; Ciliga, Dubravka; Sajković, Dubravka

    2016-09-01

    Each sleep phase is characterized by specific chemical, cellular and anatomic events of vital importance for normal neural functioning. Different forms of sleep deprivation may lead to a decline of cognitive functions in individuals. Studies in this field make a distinction between total sleep deprivation, chronic sleep restriction, and the situation of sleep disruption. Investigations covering the acute effects of sleep deprivation on the brain show that the discovered behavioral deficits in most cases regenerate after two nights of complete sleep. However, some studies done on mice emphasize the possible chronic effects of long-term sleep deprivation or chronic restriction on the occurrence of neurodegenerative diseases such as Alzheimer’s disease and dementia. In order to better understand the acute and chronic effects of sleep loss, the mechanisms of neural adaptation in the situations of insufficient sleep need to be further investigated. Future integrative research on the impact of sleep deprivation on neural functioning measured through the macro level of cognitive functions and the micro molecular and cell level could contribute to more accurate conclusions about the basic cellular mechanisms responsible for the detected behavioral deficits occurring due to sleep deprivation.

  8. Walkability around primary schools and area deprivation across Scotland.

    Science.gov (United States)

    Macdonald, Laura; McCrorie, Paul; Nicholls, Natalie; Ellaway, Anne

    2016-04-14

    A number of studies based in the US, Canada, and Australia, have found evidence of associations between the built environment (BE) and mode of transport to school, and links between active travel and deprivation. Limited research in the UK compares potential BE supports for walking to school by area deprivation. Within this study, we gathered data on BE attributes previously linked to active travel, i.e., street/path connectivity, and dwelling density, created a composite 'walkability score' (WS) for areas around primary schools across urban Scotland, and explored whether poorer areas exhibit lower scores than more affluent areas, or vice versa. We consider this to be a novel approach as few studies have compared BE features by deprivation across a whole country. Address and road/path maps were obtained and primary schools (N = 937) across mainland Scotland were mapped. Schools were attributed income deprivation scores (scores divided into quintiles (Q1: least deprived, Q5: most deprived)). Catchment area (CA) boundaries, i.e., the geographic area representing eligibility for local school attendance, were drawn around schools, and WS calculated for each CA. We compared mean WS by income quintile (ANOVA), for all local authorities (LAs) combined (N = 29), and separately for the four LAs with the greatest number of schools included in the analysis. For all LAs combined, the least deprived quintile (Q1) showed a significantly lower WS (-0.61), than quintiles 3, 4 and 5 (Q2: -0.04 (non-sig), Q3: 0.38, Q4: 0.09, Q5: 0.18); while for Glasgow the second least deprived quintile (Q2) showed significantly higher WS (Q1: 1.35, Q2: 1.73), than middling (Q3: 0.18) and most deprived quintiles (Q4: 0.06, Q5: -0.10). WS differ by deprivation with patterns varying depending on the spatial scale of the analysis. It is essential that less walkable areas are provided with the resources to improve opportunities to engage in active travel.

  9. Contrast-balanced binocular treatment in children with deprivation amblyopia.

    Science.gov (United States)

    Hamm, Lisa M; Chen, Zidong; Li, Jinrong; Dai, Shuan; Black, Joanna; Yuan, Junpeng; Yu, Minbin; Thompson, Benjamin

    2017-11-28

    Children with deprivation amblyopia due to childhood cataract have been excluded from much of the emerging research into amblyopia treatment. An investigation was conducted to determine whether contrast-balanced binocular treatment - a strategy currently being explored for children with anisometropic and strabismic amblyopia - may be effective in children with deprivation amblyopia. An unmasked, case-series design intended to assess proof of principle was employed. Eighteen children with deprivation amblyopia due to childhood cataracts (early bilateral n = 7, early unilateral n = 7, developmental n = 4), as well as 10 children with anisometropic (n = 8) or mixed anisometropic and strabismic amblyopia (n = 2) were prescribed one hour a day of treatment over a six-week period. Supervised treatment was available. Visual acuity, contrast sensitivity, global motion perception and interocular suppression were measured pre- and post-treatment. Visual acuity improvements occurred in the anisometropic/strabismic group (0.15 ± 0.05 logMAR, p = 0.014), but contrast sensitivity did not change. As a group, children with deprivation amblyopia had a smaller but statistically significant improvement in weaker eye visual acuity (0.09 ± 0.03 logMAR, p = 0.004), as well a significant improvement in weaker eye contrast sensitivity (p = 0.004). Subgroup analysis suggested that the children with early bilateral deprivation had the largest improvements, while children with early unilateral cataract did not improve. Interestingly, binocular contrast sensitivity also improved in children with early bilateral deprivation. Global motion perception improved for both subgroups with early visual deprivation, as well as children with anisometropic or mixed anisometropic/strabismic amblyopia. Interocular suppression improved for all subgroups except children with early unilateral deprivation. These data suggest that supervised contrast-balanced binocular

  10. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae and Nannochloropsis sp. (Eustigmatophyceae.

    Directory of Open Access Journals (Sweden)

    Gregory J O Martin

    Full Text Available Many species of microalgae produce greatly enhanced amounts of triacylglycerides (TAGs, the key product for biodiesel production, in response to specific environmental stresses. Improvement of TAG production by microalgae through optimization of growth regimes is of great interest. This relies on understanding microalgal lipid metabolism in relation to stress response in particular the deprivation of nutrients that can induce enhanced TAG synthesis. In this study, a detailed investigation of changes in lipid composition in Chlorella sp. and Nannochloropsis sp. in response to nitrogen deprivation (N-deprivation was performed to provide novel mechanistic insights into the lipidome during stress. As expected, an increase in TAGs and an overall decrease in polar lipids were observed. However, while most membrane lipid classes (phosphoglycerolipids and glycolipids were found to decrease, the non-nitrogen containing phosphatidylglycerol levels increased considerably in both algae from initially low levels. Of particular significance, it was observed that the acyl composition of TAGs in Nannochloropsis sp. remain relatively constant, whereas Chlorella sp. showed greater variability following N-deprivation. In both algae the overall fatty acid profiles of the polar lipid classes were largely unaffected by N-deprivation, suggesting a specific FA profile for each compartment is maintained to enable continued function despite considerable reductions in the amount of these lipids. The changes observed in the overall fatty acid profile were due primarily to the decrease in proportion of polar lipids to TAGs. This study provides the most detailed lipidomic information on two different microalgae with utility in biodiesel production and nutraceutical industries and proposes the mechanisms for this rearrangement. This research also highlights the usefulness of the latest MS-based approaches for microalgae lipid research.

  11. Neighborhood Deprivation and Childhood Asthma Outcomes, Accounting for Insurance Coverage.

    Science.gov (United States)

    Nkoy, Flory L; Stone, Bryan L; Knighton, Andrew J; Fassl, Bernhard A; Johnson, Joseph M; Maloney, Christopher G; Savitz, Lucy A

    2018-01-09

    Collecting social determinants data is challenging. We assigned patients a neighborhood-level social determinant measure, the area of deprivation index (ADI), by using census data. We then assessed the association between neighborhood deprivation and asthma hospitalization outcomes and tested the influence of insurance coverage. A retrospective cohort study of children 2 to 17 years old admitted for asthma at 8 hospitals. An administrative database was used to collect patient data, including hospitalization outcomes and neighborhood deprivation status (ADI scores), which were grouped into quintiles (ADI 1, the least deprived neighborhoods; ADI 5, the most deprived neighborhoods). We used multivariable models, adjusting for covariates, to assess the associations and added a neighborhood deprivation status and insurance coverage interaction term. A total of 2270 children (median age 5 years; 40.6% girls) were admitted for asthma. We noted that higher ADI quintiles were associated with greater length of stay, higher cost, and more asthma readmissions ( P < .05 for most quintiles). Having public insurance was independently associated with greater length of stay (β: 1.171; 95% confidence interval [CI]: 1.117-1.228; P < .001), higher cost (β: 1.147; 95% CI: 1.093-1.203; P < .001), and higher readmission odds (odds ratio: 1.81; 95% CI: 1.46-2.24; P < .001). There was a significant deprivation-insurance effect modification, with public insurance associated with worse outcomes and private insurance with better outcomes across ADI quintiles ( P < .05 for most combinations). Neighborhood-level ADI measure is associated with asthma hospitalization outcomes. However, insurance coverage modifies this relationship and needs to be considered when using the ADI to identify and address health care disparities. Copyright © 2018 by the American Academy of Pediatrics.

  12. Impact of Acute Sleep Deprivation on Sarcasm Detection.

    Directory of Open Access Journals (Sweden)

    Gaétane Deliens

    Full Text Available There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15 or a sleep deprivation night (n = 15, participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1 sarcastic from both the participant's and the addressee's perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic, (2 sarcastic from the participant's but not from the addressee's perspective (i.e. the addressee lacked context knowledge to detect sarcasm or (3 sincere. A fourth category consisted in messages sarcastic from both the participant's and from the addressee's perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep

  13. Impact of partial sleep deprivation on immune markers.

    Science.gov (United States)

    Wilder-Smith, A; Mustafa, F B; Earnest, A; Gen, L; Macary, P A

    2013-10-01

    Sleep quality is considered to be an important predictor of immunity. Lack of sleep therefore may reduce immunity, thereby increasing the susceptibility to respiratory pathogens. A previous study showed that reduced sleep duration was associated with an increased likelihood of the common cold. It is important to understand the role of sleep in altering immune responses to understand how sleep deprivation leads to an increased susceptibility to the common cold or other respiratory infections. We sought to examine the impact of partial sleep deprivation on various immune markers. Fifty-two healthy volunteers were partially sleep deprived for one night. We took blood samples before the sleep deprivation, immediately after, and 4 and 7 days after sleep deprivation. We measured various immune markers and used a generalized estimating equation (GEE) to examine the differences in the repeated measures. CD4, CD8, CD14, and CD16 all showed significant time-dependent changes, but CD3 did not. The most striking time-dependent change was observed for the mitogen proliferation assay and for HLA-DR. There was a significant decrease in the mitogen proliferation values and HLA-DR immediately after the sleep deprivation experiment, which started to rise again on day 4 and normalized by day 7. The transiently impaired mitogen proliferation, the decreased HLA-DR, the upregulated CD14, and the variations in CD4 and CD8 that we observed in temporal relationship with partial sleep deprivation could be one possible explanation for the increased susceptibility to respiratory infections reported after reduced sleep duration. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Impact of Acute Sleep Deprivation on Sarcasm Detection.

    Science.gov (United States)

    Deliens, Gaétane; Stercq, Fanny; Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15) or a sleep deprivation night (n = 15), participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1) sarcastic from both the participant's and the addressee's perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic), (2) sarcastic from the participant's but not from the addressee's perspective (i.e. the addressee lacked context knowledge to detect sarcasm) or (3) sincere. A fourth category consisted in messages sarcastic from both the participant's and from the addressee's perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep deprivation might

  15. Delivery of small interfering RNA for inhibition of endothelial cell apoptosis by hypoxia and serum deprivation

    International Nuclear Information System (INIS)

    Cho, Seung-Woo; Hartle, Lauren; Son, Sun Mi; Yang, Fan; Goldberg, Michael; Xu, Qiaobing; Langer, Robert; Anderson, Daniel G.

    2008-01-01

    RNA interference (RNAi) for anti-angiogenic or pro-apoptotic factors in endothelial cells (ECs) has great potential for the treatment of ischemic diseases by promoting angiogenesis or inhibiting apoptosis. Here, we report the utility of small interfering RNA (siRNA) in inhibiting EC apoptosis induced by tumor necrosis factor-α (TNF-α). siRNA was designed and synthesized targeting tumor necrosis factor-α receptor-1 (TNFR-1) and Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were cultured under in vitro hypoxic and serum-deprived conditions to simulate in vivo ischemic conditions. Two days after liposomal delivery of siRNA targeting TNFR-1 and SHP-1, significant silencing of each target (TNFR-1; 76.5% and SHP-1; 97.2%) was detected. Under serum-deprived hypoxic (1% oxygen) conditions, TNF-α expression in HUVECs increased relative to normoxic (20% oxygen) and serum-containing conditions. Despite enhanced TNF-α expression, suppression of TNFR-1 or SHP-1 by siRNA delivery not only enhanced expression of angiogenic factors (KDR/Flk-1 and eNOS) and anti-apoptotic factor (Bcl-xL) but also reduced expression of a pro-apoptotic factor (Bax). Transfection of TNFR-1 or SHP-1 siRNA significantly decreased the HUVEC apoptosis while significantly enhancing HUVEC proliferation and capillary formation. The present study demonstrates that TNFR-1 and SHP-1 may be useful targets for the treatment of myocardial or hindlimb ischemia

  16. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Science.gov (United States)

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  17. Short-Term Monocular Deprivation Enhances Physiological Pupillary Oscillations

    Directory of Open Access Journals (Sweden)

    Paola Binda

    2017-01-01

    Full Text Available Short-term monocular deprivation alters visual perception in adult humans, increasing the dominance of the deprived eye, for example, as measured with binocular rivalry. This form of plasticity may depend upon the inhibition/excitation balance in the visual cortex. Recent work suggests that cortical excitability is reliably tracked by dilations and constrictions of the pupils of the eyes. Here, we ask whether monocular deprivation produces a systematic change of pupil behavior, as measured at rest, that is independent of the change of visual perception. During periods of minimal sensory stimulation (in the dark and task requirements (minimizing body and gaze movements, slow pupil oscillations, “hippus,” spontaneously appear. We find that hippus amplitude increases after monocular deprivation, with larger hippus changes in participants showing larger ocular dominance changes (measured by binocular rivalry. This tight correlation suggests that a single latent variable explains both the change of ocular dominance and hippus. We speculate that the neurotransmitter norepinephrine may be implicated in this phenomenon, given its important role in both plasticity and pupil control. On the practical side, our results indicate that measuring the pupil hippus (a simple and short procedure provides a sensitive index of the change of ocular dominance induced by short-term monocular deprivation, hence a proxy for plasticity.

  18. Mortality of persons deprived of liberty in the penal system

    Directory of Open Access Journals (Sweden)

    Jovanić Goran

    2016-01-01

    Full Text Available The main aim of this research is to determine the scope, dynamics, and structure of deaths of persons deprived of their liberty who resided in the penal system due to custody, security measures, serving a prison sentence or an alternative sanction, with regard to their demographic, criminological, penal, and psychological characteristics. Article 111, paragraph b of the United Nations Rules for the Protection of Juveniles Deprived of their Liberty (1990 determines that deprivation of liberty refers to any kind of detention, imprisonment, i.e. placement in a public or private institution which the imprisoned person cannot leave, by order of judicial, administrative or other public authority. The data used included information on persons deprived of their liberty who died in the territory of the Republic of Serbia in the period from 2008 to 2012. The data was obtained from The Directorate for Execution of Criminal Sanctions of the Ministry of Justice of the Republic of Serbia. In the past, researches mainly focused on violence in prisons, death penalty, prison riots, auto-aggressive behavior, i.e. certain forms of mortality such as a suicide. This paper aims to point out the characteristics of deaths which occur while persons deprived of their liberty are under the authority of judicial institutions, both before and after passing a criminal sanction.

  19. Do increasing prices affect food deprivation in the European Union?

    Directory of Open Access Journals (Sweden)

    Sol García-Germán

    2018-04-01

    Full Text Available The rise of prices of agricultural commodities in global markets during 2007-2012 was followed by increased consumer food prices around the world. More expensive food may have an impact on consumer food access and thus on their welfare, not only in developing countries but also amongst the most vulnerable in developed countries. Using a longitudinal database from the Statistics on Income and Living Conditions and population-averaged models, we tested whether increasing food prices had an impact on household food deprivation in 26 European Union (EU member states. Results revealed a significant relationship between food deprivation and the consumer food price index and disposable income. Households in the lowest income quintile in the member states recently acceded to the EU were the most vulnerable to food deprivation. Results also showed that low-income households in densely populated areas were more vulnerable to food deprivation. This should be taken into account when evaluating food assistance programmes that focus on the segments of the population most at risk of food deprivation.

  20. Residential mobility, neighbourhood deprivation and children's behaviour in the UK.

    Science.gov (United States)

    Flouri, Eirini; Mavroveli, Stella; Midouhas, Emily

    2013-03-01

    Using data from the first two waves (in 2001/02 and 2004) of the UK's Millennium Cohort Study (MCS), we attempted to separate the effect of residential mobility from the effect of neighbourhood deprivation on children's emotional and behavioural problems. Our sample was 23,162 children (aged 3-16 years) clustered in 12,692 families. We measured neighbourhood deprivation with the Index of Multiple Deprivation, a measure of neighbourhood-level socio-economic disadvantage, and residential mobility as household move between waves. Being in a lower deprivation neighbourhood at Wave 1 was related to lower scores of both emotional and behavioural problems 2 years later, even after adjustment for child's age and sex, family adversity, family structure and maternal psychological distress. However, children whose families subsequently moved-even within or between lower deprivation neighbourhoods-were at higher risk of emotional and behavioural problems. Adjusting for family socio-economic disadvantage at Wave 1 explained the association of residential mobility with emotional but not with behavioural problems, which remained significant even after accounting for change in family's socio-economic disadvantage between waves. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Cellular consequences of sleep deprivation in the brain.

    Science.gov (United States)

    Cirelli, Chiara

    2006-10-01

    Several recent studies have used transcriptomics approaches to characterize the molecular correlates of sleep, waking, and sleep deprivation. This analysis may help in understanding the benefits that sleep brings to the brain at the cellular level. The studies are still limited in number and focus on a few brain regions, but some consistent findings are emerging. Sleep, spontaneous wakefulness, short-term, and long-term sleep deprivation are each associated with the upregulation of hundreds of genes in the cerebral cortex and other brain areas. In fruit flies as well as in mammals, three categories of genes are consistently upregulated during waking and short-term sleep deprivation relative to sleep. They include genes involved in energy metabolism, synaptic potentiation, and the response to cellular stress. In the rat cerebral cortex, transcriptional changes associated with prolonged sleep loss differ significantly from those observed during short-term sleep deprivation. However, it is too early to draw firm conclusions relative to the molecular consequences of sleep deprivation, and more extensive studies using DNA and protein arrays are needed in different species and in different brain regions.

  2. Reconsidering the Relationship between Air Pollution and Deprivation

    Science.gov (United States)

    Bailey, Nick; Dong, Guanpeng; Minton, Jon; Pryce, Gwilym

    2018-01-01

    This paper critically examines the relationship between air pollution and deprivation. We argue that focusing on a particular economic or social model of urban development might lead one to erroneously expect all cities to converge towards a particular universal norm. A naive market sorting model, for example, would predict that poor households will eventually be sorted into high pollution areas, leading to a positive relationship between air pollution and deprivation. If, however, one considers a wider set of theoretical perspectives, the anticipated relationship between air pollution and deprivation becomes more complex and idiosyncratic. Specifically, we argue the relationship between pollution and deprivation can only be made sense of by considering processes of risk perception, path dependency, gentrification and urbanization. Rather than expecting all areas to eventually converge to some universal norm, we should expect the differences in the relationship between air pollution and deprivation across localities to persist. Mindful of these insights, we propose an approach to modeling which does not impose a geographically fixed relationship. Results for Scotland reveal substantial variations in the observed relationships over space and time, supporting our argument. PMID:29596380

  3. Reconsidering the Relationship between Air Pollution and Deprivation

    Directory of Open Access Journals (Sweden)

    Nick Bailey

    2018-03-01

    Full Text Available This paper critically examines the relationship between air pollution and deprivation. We argue that focusing on a particular economic or social model of urban development might lead one to erroneously expect all cities to converge towards a particular universal norm. A naive market sorting model, for example, would predict that poor households will eventually be sorted into high pollution areas, leading to a positive relationship between air pollution and deprivation. If, however, one considers a wider set of theoretical perspectives, the anticipated relationship between air pollution and deprivation becomes more complex and idiosyncratic. Specifically, we argue the relationship between pollution and deprivation can only be made sense of by considering processes of risk perception, path dependency, gentrification and urbanization. Rather than expecting all areas to eventually converge to some universal norm, we should expect the differences in the relationship between air pollution and deprivation across localities to persist. Mindful of these insights, we propose an approach to modeling which does not impose a geographically fixed relationship. Results for Scotland reveal substantial variations in the observed relationships over space and time, supporting our argument.

  4. Reconsidering the Relationship between Air Pollution and Deprivation.

    Science.gov (United States)

    Bailey, Nick; Dong, Guanpeng; Minton, Jon; Pryce, Gwilym

    2018-03-29

    This paper critically examines the relationship between air pollution and deprivation. We argue that focusing on a particular economic or social model of urban development might lead one to erroneously expect all cities to converge towards a particular universal norm. A naive market sorting model, for example, would predict that poor households will eventually be sorted into high pollution areas, leading to a positive relationship between air pollution and deprivation. If, however, one considers a wider set of theoretical perspectives, the anticipated relationship between air pollution and deprivation becomes more complex and idiosyncratic. Specifically, we argue the relationship between pollution and deprivation can only be made sense of by considering processes of risk perception, path dependency, gentrification and urbanization. Rather than expecting all areas to eventually converge to some universal norm, we should expect the differences in the relationship between air pollution and deprivation across localities to persist. Mindful of these insights, we propose an approach to modeling which does not impose a geographically fixed relationship. Results for Scotland reveal substantial variations in the observed relationships over space and time, supporting our argument.

  5. Do increasing prices affect food deprivation in the European Union?

    International Nuclear Information System (INIS)

    García-Germán, S.; Bardají, I.; Garrido, A.

    2018-01-01

    The rise of prices of agricultural commodities in global markets during 2007-2012 was followed by increased consumer food prices around the world. More expensive food may have an impact on consumer food access and thus on their welfare, not only in developing countries but also amongst the most vulnerable in developed countries. Using a longitudinal database from the Statistics on Income and Living Conditions and population-averaged models, we tested whether increasing food prices had an impact on household food deprivation in 26 European Union (EU) member states. Results revealed a significant relationship between food deprivation and the consumer food price index and disposable income. Households in the lowest income quintile in the member states recently acceded to the EU were the most vulnerable to food deprivation. Results also showed that low-income households in densely populated areas were more vulnerable to food deprivation. This should be taken into account when evaluating food assistance programmes that focus on the segments of the population most at risk of food deprivation.

  6. Prefrontal glucose deficits in murderers lacking psychosocial deprivation.

    Science.gov (United States)

    Raine, A; Phil, D; Stoddard, J; Bihrle, S; Buchsbaum, M

    1998-01-01

    Previous research has suggested that links between autonomic nervous system functioning and violence are strongest in those who come from benign home backgrounds, but there appears to be no similar research using brain-imaging measures of central nervous system functioning. It was hypothesized that murderers who had no early psychosocial deprivation (e.g., no childhood abuse, family neglect) would demonstrate lower prefrontal glucose metabolism than murderers with early psychosocial deprivation and a group of normal controls. Murderers from a previous study, which showed prefrontal deficits in murderers, were assessed for psychosocial deprivation and divided into those with and without deprivation. Murderers without any clear psychosocial deficits were significantly lower on prefrontal glucose metabolism than murderers with psychosocial deficits and controls. These results suggest that murderers lacking psychosocial deficits are characterized by prefrontal deficits. It is argued that among violent offenders without deprived home backgrounds, the "social push" to violence is minimized, and consequently, brain abnormalities provide a relatively stronger predisposition to violence in this group.

  7. Can sleep deprivation studies explain why human adults sleep?

    Science.gov (United States)

    Brown, Lee K

    2012-11-01

    This review will concentrate on the consequences of sleep deprivation in adult humans. These findings form a paradigm that serves to demonstrate many of the critical functions of the sleep states. The drive to obtain food, water, and sleep constitutes important vegetative appetites throughout the animal kingdom. Unlike nutrition and hydration, the reasons for sleep have largely remained speculative. When adult humans are nonspecifically sleep-deprived, systemic effects may include defects in cognition, vigilance, emotional stability, risk-taking, and, possibly, moral reasoning. Appetite (for foodstuffs) increases and glucose intolerance may ensue. Procedural, declarative, and emotional memory are affected. Widespread alterations of immune function and inflammatory regulators can be observed, and functional MRI reveals profound changes in regional cerebral activity related to attention and memory. Selective deprivation of rapid eye movement (REM) sleep, on the contrary, appears to be more activating and to have lesser effects on immunity and inflammation. The findings support a critical need for sleep due to the widespread effects on the adult human that result from nonselective sleep deprivation. The effects of selective REM deprivation appear to be different and possibly less profound, and the functions of this sleep state remain enigmatic.

  8. Deconstructing and Reconstructing Cognitive Performance in Sleep Deprivation

    Science.gov (United States)

    Jackson, Melinda L.; Gunzelmann, Glenn; Whitney, Paul; Hinson, John M.; Belenky, Gregory; Rabat, Arnaud; Van Dongen, Hans P. A.

    2012-01-01

    Summary Mitigation of cognitive impairment due to sleep deprivation in operational settings is critical for safety and productivity. Achievements in this area are hampered by limited knowledge about the effects of sleep loss on actual job tasks. Sleep deprivation has different effects on different cognitive performance tasks, but the mechanisms behind this task-specificity are poorly understood. In this context it is important to recognize that cognitive performance is not a unitary process, but involves a number of component processes. There is emerging evidence that these component processes are differentially affected by sleep loss. Experiments have been conducted to decompose sleep-deprived performance into underlying cognitive processes using cognitive-behavioral, neuroimaging and cognitive modeling techniques. Furthermore, computational modeling in cognitive architectures has been employed to simulate sleep-deprived cognitive performance on the basis of the constituent cognitive processes. These efforts are beginning to enable quantitative prediction of the effects of sleep deprivation across different task contexts. This paper reviews a rapidly evolving area of research, and outlines a theoretical framework in which the effects of sleep loss on cognition may be understood from the deficits in the underlying neurobiology to the applied consequences in real-world job tasks. PMID:22884948

  9. Melatonin modulates adiponectin expression on murine colitis with sleep deprivation.

    Science.gov (United States)

    Kim, Tae Kyun; Park, Young Sook; Baik, Haing-Woon; Jun, Jin Hyun; Kim, Eun Kyung; Sull, Jae Woong; Sung, Ho Joong; Choi, Jin Woo; Chung, Sook Hee; Gye, Myung Chan; Lim, Ju Yeon; Kim, Jun Bong; Kim, Seong Hwan

    2016-09-07

    To determine adiponectin expression in colonic tissue of murine colitis and systemic cytokine expression after melatonin treatments and sleep deprivation. The following five groups of C57BL/6 mice were used in this study: (1) group I, control; (2) group II, 2% DSS induced colitis for 7 d; (3) group III, 2% DSS induced colitis and melatonin treatment; (4) group IV, 2% DSS induced colitis with sleep deprivation (SD) using specially designed and modified multiple platform water baths; and (5) group V, 2% DSS induced colitis with SD and melatonin treatment. Melatonin (10 mg/kg) or saline was intraperitoneally injected daily to mice for 4 d. The body weight was monitored daily. The degree of colitis was evaluated histologically after sacrificing the mice. Immunohistochemical staining and Western blot analysis was performed using anti-adiponectin antibody. After sampling by intracardiac punctures, levels of serum cytokines were measured by ELISA. Sleep deprivation in water bath exacerbated DSS induced colitis and worsened weight loss. Melatonin injection not only alleviated the severity of mucosal injury, but also helped survival during stressful condition. The expression level of adiponectin in mucosa was decreased in colitis, with the lowest level observed in colitis combined with sleep deprivation. Melatonin injection significantly (P sleep deprivation.

  10. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  11. Nutrient Deprivation Induces Property Variations in Spider Gluey Silk

    Science.gov (United States)

    Blamires, Sean J.; Sahni, Vasav; Dhinojwala, Ali; Blackledge, Todd A.; Tso, I-Min

    2014-01-01

    Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition. PMID:24523902

  12. High Selectivity Oxygen Delignification

    Energy Technology Data Exchange (ETDEWEB)

    Arthur J. Ragauskas

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  13. Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart

    DEFF Research Database (Denmark)

    Stecyk, Jonathan; Bock, Christian; Overgaard, Johannes

    2009-01-01

    of an anoxia-tolerant vertebrate, the freshwater turtle (Trachemys scripta) during long-term anoxia exposure ( 3 h at 21°C and 11 days at 5°C). During anoxia, phosphocreatine (PCr), unbound levels of inorganic phosphate (effective Pi2–), intracellular pH (pHi), and free energy of ATP hydrolysis (d......G/d ) exhibited asymptotic patterns of change, indicating that turtle myocardial high-energy phosphate metabolism and energetic state are reset to new, reduced steady states during long-term anoxia exposure. At 21°C, anoxia caused a reduction in pHi from 7.40 to 7.01, a 69% decrease in PCr and a doubling...

  14. Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation

    DEFF Research Database (Denmark)

    Rekling, Jens C

    2003-01-01

    cell death induced by OGD. The newer anticonvulsants carbamazepine, felbamate, lamotrigine, tiagabine, and oxcarbazepine also had significant neuroprotective effects, but gabapentin, valproic acid (10 mM), levetiracetam and retigabine were not neuroprotective at a concentration up to 300 micro...

  15. Single-Cell Imaging of Bioenergetic Responses to Neuronal Excitotoxicity and Oxygen and Glucose Deprivation

    OpenAIRE

    Connolly, Niamh M; Düssmann, Heiko; Anilkumar, Ujval; Huber, Heinrich J; Prehn, Jochen HM

    2014-01-01

    Excitotoxicity is a condition occurring during cerebral ischemia, seizures, and chronic neurodegeneration. It is characterized by overactivation of glutamate receptors, leading to excessive Ca2+/Na+ influx into neurons, energetic stress, and subsequent neuronal injury.We and others have previously investigated neuronal populations to study how bioenergetic parameters determine neuronal injury; however, such experiments are often confounded by population-based heterogeneity and the contributio...

  16. Near infrared radiation rescues mitochondrial dysfunction in cortical neurons after oxygen-glucose deprivation

    OpenAIRE

    Yu, Zhanyang; Liu, Ning; Zhao, Jianhua; Li, Yadan; McCarthy, Thomas J.; Tedford, Clark E.; Lo, Eng H.; Wang, Xiaoying

    2014-01-01

    Near infrared radiation (NIR) is known to penetrate and affect biological systems in multiple ways. Recently, a series of experimental studies suggested that low intensity NIR may protect neuronal cells against a wide range of insults that mimic diseases such as stroke, brain trauma and neuro-degeneration. However, the potential molecular mechanisms of neuroprotection with NIR remain poorly defined. In this study, we tested the hypothesis that low intensity NIR may attenuate hypoxia/ischemia-...

  17. Dental Care Utilization for Examination and Regional Deprivation

    Science.gov (United States)

    Kim, Cheol-Sin; Han, Sun-Young; Lee, Seung Eun; Kang, Jeong-Hee; Kim, Chul-Woung

    2015-01-01

    Objectives: Receiving proper dental care plays a significant role in maintaining good oral health. We investigated the relationship between regional deprivation and dental care utilization. Methods: Multilevel logistic regression was used to identify the relationship between the regional deprivation level and dental care utilization purpose, adjusting for individual-level variables, in adults aged 19+ in the 2008 Korean Community Health Survey (n=220 258). Results: Among Korean adults, 12.8% used dental care to undergo examination and 21.0% visited a dentist for other reasons. In the final model, regional deprivation level was associated with significant variations in dental care utilization for examination (pdental care utilization for other reasons in the final model. Conclusions: This study’s findings suggest that policy interventions should be considered to reduce regional variations in rates of dental care utilization for examination. PMID:26265665

  18. The behavioral and health consequences of sleep deprivation among U.S. high school students: relative deprivation matters.

    Science.gov (United States)

    Meldrum, Ryan Charles; Restivo, Emily

    2014-06-01

    To evaluate whether the strength of the association between sleep deprivation and negative behavioral and health outcomes varies according to the relative amount of sleep deprivation experienced by adolescents. 2011 Youth Risk Behavior Survey data of high school students (N=15,364) were analyzed. Associations were examined on weighted data using logistic regression. Twelve outcomes were examined, ranging from weapon carrying to obesity. The primary independent variable was a self-reported measure of average number of hours slept on school nights. Participants who reported deprivations in sleep were at an increased risk of a number of negative outcomes. However, this varied considerably across different degrees of sleep deprivation. For each of the outcomes considered, those who slept less than 5h were more likely to report negative outcomes (adjusted odds ratios ranging from 1.38 to 2.72; psleeping 8 or more hours. However, less extreme forms of sleep deprivation were, in many instances, unrelated to the outcomes considered. Among U.S. high school students, deficits in sleep are significantly and substantively associated with a variety of negative outcomes, and this association is particularly pronounced for students achieving fewer than 5h of sleep at night. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Effects of Acute Sleep Deprivation Resulting from Night Shift Work on Young Doctors.

    Science.gov (United States)

    Sanches, Inês; Teixeira, Fátima; dos Santos, José Moutinho; Ferreira, António Jorge

    2015-01-01

    To evaluate sleep deprivation and its effects on young physicians in relation to concentration capacity and psychomotor performance. Eighteen physicians aged 26 - 33 years were divided into 2 groups: non-sleep deprived group (with no night work) and sleep deprived group (minimum 12 hour of night work/week). We applied Pittsburgh Sleep Quality Index to screen the presence of sleep pathology and Epworth Sleepiness Scale to evaluate subjective daytime sleepiness; we used actigraphy and sleep diary to assess sleep hygiene and standard sleep-wake cycles. To demonstrate the effects of sleep deprivation, we applied Toulouse-Piéron's test (concentration test) and a battery of three reaction time tasks after the night duty. Sleep deprived group had higher daytime sleepiness on Epworth Sleepiness Scale (p sleep deprivation was higher (p sleep during the period of night duty was 184.2 minutes to sleep deprived group and 397.7 minutes to non-sleep deprived group (p sleep deprived group had more omissions (p Sleep deprived group; in reaction to instruction test the sleep deprived group showed worse perfection index (p sleep deprivation resulting from nocturnal work in medical professions is associated with a reduction in attention and concentration and delayed response to stimuli. This may compromise patient care as well as the physician's health and quality of life. It is essential to study the effects of acute sleep deprivation on the cognitive abilities and performance of health professionals.

  20. Flurbiprofen in rapid eye movement sleep deprivation induced hyperalgesia.

    Science.gov (United States)

    Gürel, Elif Ezgi; Ural, Keremcan; Öztürk, Gülnur; Öztürk, Levent

    2014-04-10

    Rapid eye movement (REM) sleep deprivation induces hyperalgesia in healthy rats. Here, we evaluated the effects of flurbiprofen, an anti-inflammatory and neuroprotective agent, on the increased thermal responses observed in REM sleep deprived rats. Forty female rats were divided into four groups following 96-hour REM sleep deprivation: intraperitoneal injections of placebo, and flurbiprofen 5 mg/kg, 15 mg/kg and 40 mg/kg were made in CONT (n=10), FBP5, FBP15 and FBP40 groups respectively. Pain threshold measurements were performed three times at baseline (0.hour), at the end of REM sleep deprivation (96.hour) and at 1 h after injections (97.hour) by hot plate and tail-flick tests. REM sleep deprivation induced a significant decrease in pain thresholds of all rats (hotplate: 0.hour vs 96.hour, 9.75±2.85 vs 5.10±2.02, pFlurbiprofen in 15 mg/kg and 40 mg/kg doses significantly improved pain tolerance measured by tail flick test (tail flick in FBP15 and FBP40 groups: 96.hour vs 97.hour, 7.01±4.97 vs 8.34±3.61 and 5.06±1.57 vs 7.04±2.49, pFlurbiprofen was used for the first time in a rat model of REM sleep deprivation, and it provided anti-nociceptive effects in 15 mg/kg and 40 mg/kg doses. Flurbiprofen may have the potential for treatment of painful syndromes accompanying insomnia or sleep loss. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Androgen Deprivation Therapy and Cognitive Impairment

    Science.gov (United States)

    2017-08-01

    development of new strategies to optimize the physical and mental health of men with prostate cancer and improve the quality of life and well-being...CONTRACTING ORGANIZATION: Western University of Health Sciences Pomona, CA 91766 REPORT DATE: August 2017 TYPE OF REPORT: Annual PREPARED FOR...NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Western University of Health Sciences 309 East Second Street

  2. Nutrient-Deprived Retinal Progenitors Proliferate in Response to Hypoxia: Interaction of the HIF-1 and mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Helena Khaliullina

    2016-05-01

    Full Text Available At a cellular level, nutrients are sensed by the mechanistic Target of Rapamycin (mTOR. The response of cells to hypoxia is regulated via action of the oxygen sensor Hypoxia-Inducible Factor 1 (HIF-1. During development, injury and disease, tissues might face conditions of both low nutrient supply and low oxygen, yet it is not clear how cells adapt to both nutrient restriction and hypoxia, or how mTOR and HIF-1 interact in such conditions. Here we explore this question in vivo with respect to cell proliferation using the ciliary marginal zone (CMZ of Xenopus. We found that both nutrient-deprivation and hypoxia cause retinal progenitors to decrease their proliferation, yet when nutrient-deprived progenitors are exposed to hypoxia there is an unexpected rise in cell proliferation. This increase, mediated by HIF-1 signalling, is dependent on glutaminolysis and reactivation of the mTOR pathway. We discuss how these findings in non-transformed tissue may also shed light on the ability of cancer cells in poorly vascularised solid tumours to proliferate.

  3. Freedom deprivation punishment in Serbia during 1804-1860

    Directory of Open Access Journals (Sweden)

    Mirković Zoran

    2013-01-01

    Full Text Available This text is on freedom deprivation punishment in Serbia during the first half of 19th century, i.e. since the beginning of the First Serbian uprising in 1804 and till passing the Criminal law in 1860. Author first emphasises that the freedom deprivation punishment doesn't have long tradition, although in medieval Serbia and under Turkish rule existed imprisonment in dungeon, but it was foremost some form of custody before a trial, and subsequently as keeping a prisoner after the verdict until its effectuation. It wasn't a freedom deprivation punishment in modern sense. During 1804 - 1813 there was so called 'haps' i.e. apprehension, though Uprising authorities built also 'real' prisons for punishment purpose. Imprisonment of culprits was a condition for compulsory labour, which could be very useful utilized under given circumstances. Since the beginning 1820-ties when first Serbian courts were established, beside 'haps' appears also imprisonment in heavy shackles. However there was no substantial difference between apprehension and imprisonment. In this time the sentence to imprisonment was combined with the punishment with beating (or sometimes with the flogging at the end of imprisonment. The Regulation of County courts from January 26th 1840 mentions several forms of freedom deprivation punishment, but in praxis freedom deprivation was reduced on either 'eternal' imprisonment or time-sentenced imprisonment. Since the beginning of 1840-ties freedom deprivation was more frequently used as punishment and its implementation was continually spreading. For heaviest crimes was instead death penalty and running gauntlet sentenced freedom deprivation, either from courts or from supreme authority in the amnesty process. Imprisonment was effectuated either at police reformatories (for shorter penalties or at the penitentiary institutions (for longer imprisonment. By the end of 1830-ties an issue of imprisonment of female perpetrators emerged, together

  4. The Effects of Two Types of Sleep Deprivation on Visual Working Memory Capacity and Filtering Efficiency

    OpenAIRE

    Drummond, Sean P. A.; Anderson, Dane E.; Straus, Laura D.; Vogel, Edward K.; Perez, Veronica B.

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep depri...

  5. Artificial oxygen transport protein

    Science.gov (United States)

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  6. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)

    2001-07-01

    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  7. Using Indicators of Multiple Deprivation to Demonstrate the Spatial Legacy of Apartheid in South Africa

    Science.gov (United States)

    Noble, Michael; Wright, Gemma

    2013-01-01

    This paper presents a spatial analysis of multiple deprivation in South Africa and demonstrates that the most deprived areas in the country are located in the rural former homeland areas. The analysis is undertaken using the datazone level South African Index of Multiple Deprivation which was constructed from the 2001 Census. Datazones are a new…

  8. Double Trouble? The Effects of Sleep Deprivation and Chronotype on Adolescent Affect

    Science.gov (United States)

    Dagys, Natasha; McGlinchey, Eleanor L.; Talbot, Lisa S.; Kaplan, Katherine A.; Dahl, Ronald E.; Harvey, Allison G.

    2012-01-01

    Background: Two understudied risk factors that have been linked to emotional difficulties in adolescence are chronotype and sleep deprivation. This study extended past research by using an experimental design to investigate the role of sleep deprivation and chronotype on emotion in adolescents. It was hypothesized that sleep deprivation and an…

  9. The Effects of Sleep Deprivation on Soccer Skills.

    Science.gov (United States)

    Pallesen, Ståle; Gundersen, Hilde Stokvold; Kristoffersen, Morten; Bjorvatn, Bjørn; Thun, Eirunn; Harris, Anette

    2017-08-01

    Many athletes sleep poorly due to stress, travel, and competition anxiety. In the present study, we investigated the effects of sleep deprivation on soccer skills (juggling, dribbling, ball control, continuous kicking, 20 and 40 m sprint, and 30 m sprint with changes of direction). In all, 19 male junior soccer players (14-19 years old) were recruited and participated in a cross-balanced experimental study comprising two conditions; habitual sleep and 24 hours sleep deprivation. In both conditions, testing took place between 8 a.m. and 10 a.m. Order of tests was counterbalanced. Each test was conducted once or twice in a sequence repeated three times. The results revealed a negative effect of sleep deprivation on the continuous kicking test. On one test, 30 meter sprint with directional changes, a significant condition × test repetition interaction was found, indicating a steeper learning curve in the sleep deprived condition from Test 1 to Test 2 and a steeper learning curve in the rested condition from Test 2 to Test 3. The results are discussed in terms of limitations and strengths, and recommendations for future studies are outlined.

  10. Subclinical coronary atherosclerosis and neighbourhood deprivation in an urban region

    International Nuclear Information System (INIS)

    Dragano, Nico; Hoffmann, Barbara; Stang, Andreas; Moebus, Susanne; Verde, Pablo E.; Weyers, Simone; Moehlenkamp, Stefan; Schmermund, Axel; Mann, Klaus; Joeckel, Karl-Heinz; Erbel, Raimund; Siegrist, Johannes

    2009-01-01

    Inhabitants of deprived neighbourhoods are at higher risk of coronary heart disease. In this study we investigate the hypothesis that social inequalities at neighbourhood level become already manifest in subclinical coronary atherosclerosis, as defined by electron-beam computed tomography derived measures. Coronary artery calcification was assessed as a marker of atherosclerosis in a population based sample of 4301 men and women (45-75 years) without a history of coronary heart disease. Participants lived in three adjacent cities in Germany and were examined between 2000 and 2003 as part of the Heinz Nixdorf Recall Study. Individual level data was combined with neighbourhood level information about unemployment, welfare and living space per inhabitant. This dataset was analysed with descriptive and multilevel regression methods. An association between neighbourhood deprivation and subclinical coronary calcification was observed. After adjustment for age and individual socioeconomic status male inhabitants of high unemployment neighbourhoods had an odds ratio of 1.45 (1.11, 1.96) of exhibiting a high calcification score (>75th percentile) compared to men living in low unemployment areas. The respective odds for women was 1.29 (0.97, 1.70). Additional explorative analyses suggest that clustering of unhealthy lifestyles in deprived neighbourhoods contributes to the observed association. In conclusion, findings suggest that certain neighbourhood characteristics promote the emergence of coronary atherosclerosis. This might point to a pathway from neighbourhood deprivation to manifest coronary heart disease

  11. Aging worsens the effects of sleep deprivation on postural control.

    Science.gov (United States)

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.

  12. Zinc deprivation of methanol fed anaerobic granular sludge bioreactors

    NARCIS (Netherlands)

    Fermoso, F.G.; Collins, G.; Bartacek, J.; Lens, P.N.L.

    2008-01-01

    The effect of omitting zinc from the influent of mesophilic (30 degrees C) methanol fed upflow anaerobic sludge bed (UASB) reactors, and latter zinc supplementation to the influent to counteract the deprivation, was investigated by coupling the UASB reactor performance to the microbial ecology of

  13. Effects of total sleep deprivation on divided attention performance.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Fang, Eric; Gooley, Joshua J

    2017-01-01

    Dividing attention across two tasks performed simultaneously usually results in impaired performance on one or both tasks. Most studies have found no difference in the dual-task cost of dividing attention in rested and sleep-deprived states. We hypothesized that, for a divided attention task that is highly cognitively-demanding, performance would show greater impairment during exposure to sleep deprivation. A group of 30 healthy males aged 21-30 years was exposed to 40 h of continuous wakefulness in a laboratory setting. Every 2 h, subjects completed a divided attention task comprising 3 blocks in which an auditory Go/No-Go task was 1) performed alone (single task); 2) performed simultaneously with a visual Go/No-Go task (dual task); and 3) performed simultaneously with both a visual Go/No-Go task and a visually-guided motor tracking task (triple task). Performance on all tasks showed substantial deterioration during exposure to sleep deprivation. A significant interaction was observed between task load and time since wake on auditory Go/No-Go task performance, with greater impairment in response times and accuracy during extended wakefulness. Our results suggest that the ability to divide attention between multiple tasks is impaired during exposure to sleep deprivation. These findings have potential implications for occupations that require multi-tasking combined with long work hours and exposure to sleep loss.

  14. Psychological wellbeing of Dutch incarcerated women: importation or deprivation?

    NARCIS (Netherlands)

    Slotboom, A.; Kruttschnitt, C.; Bijleveld, C.C.J.H.; Menting, B.

    2011-01-01

    In light of the dramatic increase over the past decade in the number of women incarcerated in the Netherlands, we examined 251 female inmates' psychological reactions to imprisonment with a survey that taps importation and deprivation factors and related life experiences. While depressive

  15. A socioeconomic deprivation index for small areas in Denmark

    DEFF Research Database (Denmark)

    Meijer, Mathias; Engholm, Gerda; Grittner, Ulrike

    2013-01-01

    Aims: To describe the development of a deprivation index for Danish parishes and to investigate its association with all-cause mortality compared with the Townsend index and individual-level factors. Methods: Nine socioeconomic factors were aggregated to the parish level from individual-level reg...... to the geographic areas where they are most needed....

  16. Deprivation, Social Exclusion and Subjective Well-Being

    Science.gov (United States)

    Bellani, Luna; D'Ambrosio, Conchita

    2011-01-01

    This paper aims at investigating empirically the relationship between self-declared satisfaction with life and an individual's well-being as measured by the indices of deprivation and social exclusion proposed in the income distribution literature. Results on European countries show that life satisfaction decreases with an increase in deprivation…

  17. Aging Worsens the Effects of Sleep Deprivation on Postural Control

    Science.gov (United States)

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly. PMID:22163330

  18. Effects of total sleep deprivation on divided attention performance.

    Directory of Open Access Journals (Sweden)

    Eric Chern-Pin Chua

    Full Text Available Dividing attention across two tasks performed simultaneously usually results in impaired performance on one or both tasks. Most studies have found no difference in the dual-task cost of dividing attention in rested and sleep-deprived states. We hypothesized that, for a divided attention task that is highly cognitively-demanding, performance would show greater impairment during exposure to sleep deprivation. A group of 30 healthy males aged 21-30 years was exposed to 40 h of continuous wakefulness in a laboratory setting. Every 2 h, subjects completed a divided attention task comprising 3 blocks in which an auditory Go/No-Go task was 1 performed alone (single task; 2 performed simultaneously with a visual Go/No-Go task (dual task; and 3 performed simultaneously with both a visual Go/No-Go task and a visually-guided motor tracking task (triple task. Performance on all tasks showed substantial deterioration during exposure to sleep deprivation. A significant interaction was observed between task load and time since wake on auditory Go/No-Go task performance, with greater impairment in response times and accuracy during extended wakefulness. Our results suggest that the ability to divide attention between multiple tasks is impaired during exposure to sleep deprivation. These findings have potential implications for occupations that require multi-tasking combined with long work hours and exposure to sleep loss.

  19. [Validation of Hungarian Smartphone Deprivation Inventory (HSDI) with school children].

    Science.gov (United States)

    Csibi, Sándor; Demetrovics, Zsolt; Szabo, Attila

    2017-01-01

    The widespread use of smartphones generates new habits and behaviors among the users, including schoolchildren. Advance technology-based applications, capturing interest and attention, influence cognitive focus and time spent with the device. Examination of these factors points toward the risk of addiction, as well as the deprivations sensations associated with the latter, that call for scholastic attention. The aim of this study was to validate a Hungarian Smartphone Deprivation Inventory (HSDI), to gauge the deprivation feelings and their severity in schoolchildren when they cannot access their device. A 9-item, 7-point, agree-disagree inventory was developed on the basis of an earlier exercise deprivation scale (Robbins and Joseph, 1985). The inventory was completed by 258 Hungarian schoolchildren (mean age=12.4 ± SD = 1.71 years). The participants also completed the Hungarian version of the Brief Addiction to Smartphone Scale (BASS). An exploratory factor analysis of the HSDI yielded a single factor that accounted for 55.84 % of the variance. The internal consistency of the inventory was excellent (Cronbach's α = 0.90). Content validity of the HSDI was checked by comparing the scores of those scoring above and below the median on the BASS that yielded statistically significant differences (p smartphone access in schoolchildren.

  20. Responses of Tswana goats to various lengths of water deprivation

    African Journals Online (AJOL)

    Unknown

    are no published reports on the effects of water deprivation in Tswana goats. This study ... prevent evaporation and to maintain acidity at pH 3. .... Rectal temperature and respiratory rate did not differ (p > 0.05) between seasons, and indicates ...

  1. Auditory, Tactile, and Audiotactile Information Processing Following Visual Deprivation

    Science.gov (United States)

    Occelli, Valeria; Spence, Charles; Zampini, Massimiliano

    2013-01-01

    We highlight the results of those studies that have investigated the plastic reorganization processes that occur within the human brain as a consequence of visual deprivation, as well as how these processes give rise to behaviorally observable changes in the perceptual processing of auditory and tactile information. We review the evidence showing…

  2. Material Deprivation in Tanure Ojaide's the Eagles' Vision | Badaki ...

    African Journals Online (AJOL)

    The idea of material deprivation, in the third instance, is developed by memorable illustrations of pennilessness, exploitation, insolvency, low income and burdensome responsibility. The paper captures Tanure Ojaide as a poet whose thematic scope covers various conditions of poverty; despite his themes on social activism ...

  3. Reindeer & Wolves: Exploring Sensory Deprivation in Multiplayer Digital Bodily Play

    DEFF Research Database (Denmark)

    Finnegan, Daniel; Velloso, Eduardo; Mitchell, Robb

    2014-01-01

    Games designed around digital bodily play involve bodily movement and expression to create engaging gameplay experiences. Most feedback in these games takes the form of visual stimuli. To explore the gameplay mechanics afforded by depriving players from these visual cues, we designed Reindeer...

  4. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    Science.gov (United States)

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  5. Gastric emptying of liquids in rats dehydrated by water deprivation

    Directory of Open Access Journals (Sweden)

    Baracat E.C.E.

    1997-01-01

    Full Text Available The gastric emptying of liquids was investigated in male Wistar rats (8 to 10 weeks old, 210-300 g dehydrated by water deprivation. In this model of dehydration, weight loss, hematocrit and plasma density were significantly higher in the dehydrated animals than in the control groups after 48 and 72 h of water deprivation (P<0.05. Three test meals (saline (N = 10, water (N = 10 and a WHO rehydrating solution containing in one liter 90 mEq sodium, 20 mEq potassium, 80 mEq chloride and 30 mEq citrate (N = 10 were used to study gastric emptying following water deprivation for 24, 48 and 72 h. After 72 h, gastric emptying of the water (39.4% retention and rehydrating solution (49.2% retention test meals was significantly retarded compared to the corresponding control groups (P<0.05, Mann-Whitney test. The 72-h period of deprivation was used to study the recovery from dehydration, and water was supplied for 60 or 120 min after 67 h of deprivation. Body weight loss, hematocrit and plasma density tended to return to normal when water was offered for 120 min. In the animals supplied with water for 60 min, there was a recovery in the gastric emptying of water while the gastric emptying of the rehydrating solution was still retarded (53.1% retention; P<0.02, Kruskal-Wallis test. In the group supplied with water for 120 min, the gastric emptying of the rehydrating (51.7% retention and gluco-saline (46.0% retention solutions tended to be retarded (P = 0.04, Kruskal-Wallis test. In this model of dehydration caused by water deprivation, with little alteration in the body electrolyte content, gastric emptying of the rehydrating solution was retarded after rehydration with water. We conclude that the mechanisms whereby receptors in the duodenal mucosa can modify gastric motility are altered during dehydration caused by water deprivation

  6. Wnt signaling in form deprivation myopia of the mice retina.

    Directory of Open Access Journals (Sweden)

    Mingming Ma

    Full Text Available BACKGROUND: The canonical Wnt signaling pathway plays important roles in cellular proliferation and differentiation, axonal outgrowth, cellular maintenance in retinas. Here we test the hypothesis that elements of the Wnt signaling pathway are involved in the regulation of eye growth and prevention of myopia, in the mouse form-deprivation myopia model. METHODOLOGY/PRINCIPAL FINDINGS: (1 One hundred twenty-five C57BL/6 mice were randomly distributed into form-deprivation myopia and control groups. Form-deprivation myopia (FDM was induced by suturing the right eyelid, while the control group received no treatment. After 1, 2, and 4 weeks of treatment, eyes were assessed in vivo by cycloplegic retinoscopic refraction and axial length measurement by photography or A-scan ultrasonography. Levels of retinal Wnt2b, Fzd5 and β-catenin mRNA and protein were evaluated using RT-PCR and western blotting, respectively. (2 Another 96 mice were divided into three groups: control, drugs-only, and drugs+FDM (by diffuser. Experimentally treated eyes in the last two groups received intravitreal injections of vehicle or the proteins, DKK-1 (Wnt-pathway antagonist or Norrin (Wnt-pathway agonist, once every three days, for 4 injections total. Axial length and retinoscopic refraction were measured on the 14th day of form deprivation. Following form-deprivation for 1, 2, and 4 weeks, FDM eyes had a relatively myopic refractive error, compared with contralateral eyes. There were no significant differences in refractive error between right and left eye in control group. The amounts of Wnt2b, Fzd5 and β-catenin mRNA and protein were significantly greater in form-deprived myopia eyes than in control eyes.DKK-1 (antagonist reduced the myopic shift in refractive error and increase in axial elongation, whereas Norrin had the opposite effect in FDM eyes. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the Wnt2b signaling pathway may play a role in the

  7. Cardiovascular reactivity to acute psychological stress following sleep deprivation.

    Science.gov (United States)

    Franzen, Peter L; Gianaros, Peter J; Marsland, Anna L; Hall, Martica H; Siegle, Greg J; Dahl, Ronald E; Buysse, Daniel J

    2011-10-01

    Psychological stress and sleep disturbances are highly prevalent and are both implicated in the etiology of cardiovascular diseases. Given the common co-occurrence of psychological distress and sleep disturbances including short sleep duration, this study examined the combined effects of these two factors on blood pressure reactivity to immediate mental challenge tasks after well-rested and sleep-deprived experimental conditions. Participants (n = 20) were healthy young adults free from current or past sleep, psychiatric, or major medical disorders. Using a within-subjects crossover design, we examined acute stress reactivity under two experimental conditions: after a night of normal sleep in the laboratory and after a night of total sleep deprivation. Two standardized psychological stress tasks were administered, a Stroop color-word naming interference task and a speech task, which were preceded by a prestress baseline period and followed by a poststress recovery period. Each period was 10 minutes in duration, and blood pressure recordings were collected every 2.5 minutes throughout each period. Mean blood pressure responses during stress and recovery periods were examined with a mixed-effects analysis of covariance, controlling for baseline blood pressure. There was a significant interaction between sleep deprivation and stress on systolic blood pressure (F(2,82.7) = 4.05, p = .02). Systolic blood pressure was higher in the sleep deprivation condition compared with the normal sleep condition during the speech task and during the two baseline periods. Sleep deprivation amplified systolic blood pressure increases to psychological stress. Sleep loss may increase cardiovascular risk by dysregulating stress physiology.

  8. Sleep Duration and Area-Level Deprivation in Twins.

    Science.gov (United States)

    Watson, Nathaniel F; Horn, Erin; Duncan, Glen E; Buchwald, Dedra; Vitiello, Michael V; Turkheimer, Eric

    2016-01-01

    We used quantitative genetic models to assess whether area-level deprivation as indicated by the Singh Index predicts shorter sleep duration and modifies its underlying genetic and environmental contributions. Participants were 4,218 adult twin pairs (2,377 monozygotic and 1,841 dizygotic) from the University of Washington Twin Registry. Participants self-reported habitual sleep duration. The Singh Index was determined by linking geocoding addresses to 17 indicators at the census-tract level using data from Census of Washington State and Census Tract Cartographic Boundary Files from 2000 and 2010. Data were analyzed using univariate and bivariate genetic decomposition and quantitative genetic interaction models that assessed A (additive genetics), C (common environment), and E (unique environment) main effects of the Singh Index on sleep duration and allowed the magnitude of residual ACE variance components in sleep duration to vary with the Index. The sample had a mean age of 38.2 y (standard deviation [SD] = 18), and was predominantly female (62%) and Caucasian (91%). Mean sleep duration was 7.38 h (SD = 1.20) and the mean Singh Index score was 0.00 (SD = 0.89). The heritability of sleep duration was 39% and the Singh Index was 12%. The uncontrolled phenotypic regression of sleep duration on the Singh Index showed a significant negative relationship between area-level deprivation and sleep length (b = -0.080, P sleep duration. For the quasi-causal bivariate model, there was a significant main effect of E (b(0E) = -0.063; standard error [SE] = 0.30; P sleep duration were significant for both A (b(0Au) = 0.734; SE = 0.020; P deprivation has a quasi-causal association with sleep duration, with greater deprivation being related to shorter sleep. As area-level deprivation increases, unique genetic and nonshared environmental residual variance in sleep duration increases. © 2016 Associated Professional Sleep Societies, LLC.

  9. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

    Science.gov (United States)

    Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2017-12-01

    Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.

  10. Blood conservation with membrane oxygenators and dipyridamole.

    Science.gov (United States)

    Teoh, K H; Christakis, G T; Weisel, R D; Madonik, M M; Ivanov, J; Wong, P Y; Mee, A V; Levitt, D; Benak, A; Reilly, P

    1987-07-01

    Cardiopulmonary bypass induces platelet activation and dysfunction, which result in platelet deposition and depletion. Reduced platelet numbers and abnormal platelet function may contribute to postoperative bleeding. A membrane oxygenator may preserve platelets and reduce bleeding more than a bubble oxygenator, and the antiplatelet agent dipyridamole may protect platelets intraoperatively and reduce bleeding postoperatively. A prospective randomized trial was performed in 44 patients undergoing elective coronary artery bypass grafting to assess the effects of the membrane oxygenator and dipyridamole on platelet counts, platelet activation products, and postoperative bleeding. Patients who were randomized to receive a bubble oxygenator and no dipyridamole had the lowest postoperative platelet counts, the greatest blood loss, and the most blood products transfused. Platelet counts were highest and blood loss was least in patients randomized to receive a membrane oxygenator and dipyridamole (p less than .05). A bubble oxygenator with dipyridamole and a membrane oxygenator without dipyridamole resulted in intermediate postoperative platelet counts and blood loss. Arterial thromboxane B2 and platelet factor 4 concentrations were elevated on cardiopulmonary bypass in all groups. Both the membrane oxygenator and dipyridamole were independently effective (by multivariate analysis) in preserving platelets. Optimal blood conservation was achieved with a membrane oxygenator and dipyridamole.

  11. The relationship between tiredness prior to sleep deprivation and the antidepressant response to sleep deprivation in depression.

    NARCIS (Netherlands)

    Van den Burg, W.; Bouhuys, A.L; van den Hoofdakker, R.H

    1995-01-01

    Recently it was hypothesized that the antidepressant response to total sleep deprivation (SD) results from a disinhibition process induced by the increase of tiredness in the course of SD. In the present study, the role of tiredness in the antidepressant response to SD is further investigated,

  12. Assessment and Use of Optical Oxygen Sensors as Tools to Assist in Optimal Product Component Selection for the Development of Packs of Ready-to-Eat Mixed Salads and for the Non-Destructive Monitoring of in-Pack Oxygen Levels Using Chilled Storage.

    Science.gov (United States)

    Hempel, Andreas W; O'Sullivan, Maurice G; Papkovsky, Dmitri B; Kerry, Joseph P

    2013-05-22

    Optical oxygen sensors were used to ascertain the level of oxygen consumed by individual salad leaves for optimised packaging of ready-to-eat (RTE) Italian salad mixes during refrigerated storage. Seven commonly found leaves in Italian salad mixes were individually assessed for oxygen utilisation in packs. Each leaf showed varying levels of respiration throughout storage. Using the information obtained, an experimental salad mix was formulated (termed Mix 3) which consisted of the four slowest respiring salad leaves-Escarole, Frisee, Red Batavia, Lollo Rosso. Mix 3 was then compared against two commercially available Italian salads; Mix 1 (Escarole, Frisee, Radicchio, Lollo Rosso) and Mix 2 (Cos, Frisee, Radicchio, Lollo Rosso). Optical sensors were used to non-destructively monitor oxygen usage in all mixes throughout storage. In addition to oxygen consumption, all three salad mixes were quality assessed in terms of microbial load and sensorial acceptability. In conclusion, Mix 3 was found to consume the least amount of oxygen over time, had the lowest microbial load and was most sensorially preferred ( p products.

  13. Monocular deprivation of Fourier phase information boosts the deprived eye's dominance during interocular competition but not interocular phase combination.

    Science.gov (United States)

    Bai, Jianying; Dong, Xue; He, Sheng; Bao, Min

    2017-06-03

    Ocular dominance has been extensively studied, often with the goal to understand neuroplasticity, which is a key characteristic within the critical period. Recent work on monocular deprivation, however, demonstrates residual neuroplasticity in the adult visual cortex. After deprivation of patterned inputs by monocular patching, the patched eye becomes more dominant. Since patching blocks both the Fourier amplitude and phase information of the input image, it remains unclear whether deprivation of the Fourier phase information alone is able to reshape eye dominance. Here, for the first time, we show that removing of the phase regularity without changing the amplitude spectra of the input image induced a shift of eye dominance toward the deprived eye, but only if the eye dominance was measured with a binocular rivalry task rather than an interocular phase combination task. These different results indicate that the two measurements are supported by different mechanisms. Phase integration requires the fusion of monocular images. The fused percept highly relies on the weights of the phase-sensitive monocular neurons that respond to the two monocular images. However, binocular rivalry reflects the result of direct interocular competition that strongly weights the contour information transmitted along each monocular pathway. Monocular phase deprivation may not change the weights in the integration (fusion) mechanism much, but alters the balance in the rivalry (competition) mechanism. Our work suggests that ocular dominance plasticity may occur at different stages of visual processing, and that homeostatic compensation also occurs for the lack of phase regularity in natural scenes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    Science.gov (United States)

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.

  15. Biogeochemistry: Oxygen burrowed away

    NARCIS (Netherlands)

    Meysman, F.J.R.

    2014-01-01

    Multicellular animals probably evolved at the seafloor after a rise in oceanic oxygen levels. Biogeochemical model simulations suggest that as these animals started to rework the seafloor, they triggered a negative feedback that reduced global oxygen.

  16. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  17. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  18. Oxygen evolution reaction catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  19. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  20. Aircraft Oxygen Generation

    Science.gov (United States)

    2012-02-01

    An Oxygen Enriched Air System for the AV-8A Harrier (NADC-81198-60).” 70 Horch , T., et. al. “The F-16 Onboard Oxygen Generating System: Performance...Only and Safety Privileged). Horch , T., Miller, R., Bomar, J., Tedor, J., Holden, R., Ikels, K., & Lozano, P. (1983). The F-16 Onboard Oxygen

  1. Deprivation selectively modulates brain potentials to food pictures.

    Science.gov (United States)

    Stockburger, Jessica; Weike, Almut I; Hamm, Alfons O; Schupp, Harald T

    2008-08-01

    Event-related brain potentials (ERPs) were used to examine whether the processing of food pictures is selectively modulated by changes in the motivational state of the observer. Sixteen healthy male volunteers were tested twice 1 week apart, either after 24 hr of food deprivation or after normal food intake. ERPs were measured while participants viewed appetitive food pictures as well as standard emotional and neutral control pictures. Results show that the ERPs to food pictures in a hungry, rather than satiated, state were associated with enlarged positive potentials over posterior sensor sites in a time window of 170-310 ms poststimulus. Minimum-norm analysis suggests the enhanced processing of food cues primarily in occipito-temporo-parietal regions. In contrast, processing of standard emotional and neutral pictures was not modulated by food deprivation. Considered from the perspective of motivated attention, the selective change of food cue processing may reflect a state-dependent change in stimulus salience.

  2. Effects of Extreme Sleep Deprivation on Human Performance

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Tran; Kimberly R. Raddatz; Elizabeth T. Cady; Bradford Amstutz; Pete D. Elgin; Christopher Vowels; Gerald Deehan

    2007-04-01

    Sleep is a fundamental recuperative process for the nervous system. Disruption of this homeostatic drive can lead to severe impairments of the operator’s ability to perceive, recognize, and respond to emergencies and/or unanticipated events, putting the operator at risk. Therefore, establishing a comprehensive understanding of how sleep deprivation influences human performance is essential in order to counter fatigue or to develop mitigation strategies. The goal of the present study was to examine the psychological effects of prolonged sleep deprivation (approx. 75 hrs) over a four-day span on a general aviation pilot flying a fixed-based flight simulator. During the study, a series of tasks were employed every four hours in order to examine the pilot’s perceptual and higher level cognitive abilities. Overall, results suggest that the majority of cognitive and perceptual degradation occurs between 30-40 hours into the flight. Limitations and future research directions are also discussed.

  3. Sleep deprivation, pain and prematurity: a review study

    Directory of Open Access Journals (Sweden)

    Kelly Cristina Santos de Carvalho Bonan

    2015-02-01

    Full Text Available The aim was to describe current reports in the scientific literature on sleep in the intensive care environment and sleep deprivation associated with painful experiences in premature infant. A systematic search was conducted for studies on sleep, pain, premature birth and care of the newborn. Web of Knowledge, MEDLINE, LILACS, Cochrane Library, PubMed, EMBASE, Scopus, VHL and SciELO databases were consulted. The association between sleep deprivation and pain generates effects that are observed in the brain and the behavioral and physiological activity of preterm infants. Polysomnography in intensive care units and pain management in neonates allow comparison with the first year of life and term infants. We have found few references and evidence that neonatal care programs can influence sleep development and reduce the negative impact of the environment. This evidence is discussed from the perspective of how hospital intervention can improve the development of premature infants.

  4. Impact of Temporary Nitrogen Deprivation on Tomato Leaf Phenolics

    Directory of Open Access Journals (Sweden)

    Hélène Gautier

    2011-11-01

    Full Text Available Reducing the use of pesticides represents a major challenge of modern agriculture. Plants synthesize secondary metabolites such as polyphenols that participate in the resistance to parasites. The aim of this study was to test: (1 the impact of nitrogen deficiency on tomato (Solanum lycopersicum leaf composition and more particularly on two phenolic molecules (chlorogenic acid and rutin as well as on the general plant biomass; and (2 whether this effect continued after a return to normal nitrogen nutrition. Our results showed that plants deprived of nitrogen for 10 or 19 days contained higher levels of chlorogenic acid and rutin than control plants. In addition, this difference persisted when the plants were once again cultivated on a nitrogen-rich medium. These findings offer interesting perspectives on the use of a short period of deprivation to modulate the levels of compounds of interest in a plant.

  5. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation.

    Science.gov (United States)

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-05-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms.

  6. Sleep Deprivation Attack Detection in Wireless Sensor Network

    OpenAIRE

    Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata

    2012-01-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maxi...

  7. Loneliness, Social Relations and Health and Wellbeing in Deprived Communities

    Science.gov (United States)

    Kearns, Ade; Whitley, Elise; Tannahill, Carol; Ellaway, Anne

    2015-01-01

    There is growing policy concern about the extent of loneliness in advanced societies, and its prevalence among various social groups. This study looks at loneliness among people living in deprived communities, where there may be additional barriers to social engagement including low incomes, fear of crime, poor services and transient populations. The aim was to examine the prevalence of loneliness, and also its associations with different types of social contacts and forms of social support, and its links to self-reported health and wellbeing in the population group. The method involved a cross-sectional survey of 4,302 adults across 15 communities, with the data analysed using multinomial logistic regression controlling for sociodemographics, then for all other predictors within each domain of interest. Frequent feelings of loneliness were more common among those who: had contact with family monthly or less; had contact with neighbours weekly or less; rarely talked to people in the neighbourhood; and who had no available sources of practical or emotional support. Feelings of loneliness were most strongly associated with poor mental health, but were also associated with long-term problems of stress, anxiety and depression, and with low mental wellbeing, though to a lesser degree. The findings are consistent with a view that situational loneliness may be the product of residential structures and resources in deprived areas. The findings also show that neighbourly behaviours of different kinds are important for protecting against loneliness in deprived communities. Familiarity within the neighbourhood, as active acquaintance rather than merely recognition, is also important. The findings are indicative of several mechanisms that may link loneliness to health and wellbeing in our study group: loneliness itself as a stressor; lonely people not responding well to the many other stressors in deprived areas; and loneliness as the product of weak social buffering to

  8. State dependent valuation: the effect of deprivation on risk preferences.

    Directory of Open Access Journals (Sweden)

    Dino J Levy

    Full Text Available The internal state of an organism affects its choices. Previous studies in various non-human animals have demonstrated a complex, and in some cases non-monotonic, interaction between internal state and risk preferences. Our aim was to examine the systematic effects of deprivation on human decision-making across various reward types. Using both a non-parametric approach and a classical economic analysis, we asked whether the risk attitudes of human subjects towards money, food and water rewards would change as a function of their internal metabolic state. Our findings replicate some previous work suggesting that, on average, humans become more risk tolerant in their monetary decisions, as they get hungry. However, our specific approach allowed us to make two novel observations about the complex interaction between internal state and risk preferences. First, we found that the change in risk attitude induced by food deprivation is a general phenomenon, affecting attitudes towards both monetary and consumable rewards. But much more importantly, our data indicate that rather than each subject becoming more risk tolerant as previously hypothesized based on averaging across subjects, we found that as a population of human subjects becomes food deprived the heterogeneity of their risk attitudes collapses towards a fixed point. Thus subjects who show high-risk aversion while satiated shift towards moderate risk aversion when deprived but subjects who are risk tolerant become more risk averse. These findings demonstrate a more complicated interaction between internal state and risk preferences and raise some interesting implications for both day-to-day decisions and financial market structures.

  9. Deprivation selectively modulates brain potentials to food pictures

    OpenAIRE

    Stockburger, Jessica; Weike, Almut I.; Hamm, Alfons O.; Schupp, Harald Thomas

    2008-01-01

    Event-related brain potentials (ERPs) were used to examine whether the processing of food pictures is selectively modulated by changes in the motivational state of the observer. Sixteen healthy male volunteers were tested twice 1 week apart, either after 24 hr of food deprivation or after normal food intake. ERPs were measured while participants viewed appetitive food pictures as well as standard emotional and neutral control pictures. Results show that the ERPs to food pictures in a hungry, ...

  10. The effects of sleep deprivation on emotional empathy.

    Science.gov (United States)

    Guadagni, Veronica; Burles, Ford; Ferrara, Michele; Iaria, Giuseppe

    2014-12-01

    Previous studies have shown that sleep loss has a detrimental effect on the ability of the individuals to process emotional information. In this study, we tested the hypothesis that this negative effect extends to the ability of experiencing emotions while observing other individuals, i.e. emotional empathy. To test this hypothesis, we assessed emotional empathy in 37 healthy volunteers who were assigned randomly to one of three experimental groups: one group was tested before and after a night of total sleep deprivation (sleep deprivation group), a second group was tested before and after a usual night of sleep spent at home (sleep group) and the third group was tested twice during the same day (day group). Emotional empathy was assessed by using two parallel versions of a computerized test measuring direct (i.e. explicit evaluation of empathic concern) and indirect (i.e. the observer's reported physiological arousal) emotional empathy. The results revealed that the post measurements of both direct and indirect emotional empathy of participants in the sleep deprivation group were significantly lower than those of the sleep and day groups; post measurement scores of participants in the day and sleep groups did not differ significantly for either direct or indirect emotional empathy. These data are consistent with previous studies showing the negative effect of sleep deprivation on the processing of emotional information, and extend these effects to emotional empathy. The findings reported in our study are relevant to healthy individuals with poor sleep habits, as well as clinical populations suffering from sleep disturbances. © 2014 European Sleep Research Society.

  11. HEALTH EFFECTS OF SLEEP DEPRIVATION ON NURSES WORKING SHIFTS.

    Science.gov (United States)

    Stanojevic, Cedomirka; Simic, Svetlana; Milutinovic, Dragana

    2016-10-01

    Atypical work schedules cause reduced sleep, leading to drowsiness, fatigue, decline of cognitive performance and health problems among the members of the nursing staff. The study was aimed at reviewing current knowledge and attitudes concerning the impact of sleep disorders on health and cognitive functions among the members of the nursing staff. Sleep and Interpersonal Relations in Modern Society. The modern 24-hour society involves more and more employees (health services, police departments, public transport) in non-standard forms of work. In European Union countries, over 50% of the nursing staff work night shifts, while in the United States of America 55% of nursing staff work more than 40 hours a week, and 30-70% of nurses sleep less than six hours before their shift. Cognitive Effects of Sleep Deprivation. Sleep deprivation impairs the performance of tasks that require intensive and prolonged attention which increases the number of errors in patients care, and nurses are subject to incre- ased risk of traffic accidents. Sleep Deprivation and Health Disorders. Sleep deprived members of the nursing staff are at risk of obesity, diabetes, gastrointestinal disorders and cardiovascular disease. The risk factors for breast cancer are increased by 1.79 times. and there is a significantly higher risk for colorectal carcinoma. Too long or repeated shifts reduce the opportunity for sleep, shorten recovery time in nurses, thus endangering their safety and health as well as the quality of care and patients' safety. Bearing in mind the significance of the problerm it is necessary to conduct the surveys of sleep quality and health of nurses in the Republic of Serbia as well in order to tackle this issue which is insufficiently recognized.

  12. Muscle Dysfunction in Androgen Deprivation: Role of Ryanodine Receptor

    Science.gov (United States)

    2016-11-01

    reversible pharmacological treatment is a key therapeutic goal in prostate cancer patients. This life prolonging treatment is accompanied by the adverse... reversible pharmacological treatment, is a key therapeutic goal of androgen deprivation therapies (ADT) used in patients with androgen-dependent...gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab. Aug 2000;85(8):2839

  13. Monetary Poverty, Material Deprivation and Consistent Poverty in Portugal

    OpenAIRE

    Carlos Farinha Rodrigues; Isabel Andrade

    2012-01-01

    In this paper we use the Portuguese component of the European Union Statistics on Income and Living Conditions {EU-SILC) to develop a measure of consistent poverty in Portugal. It is widely agreed that being poor does not simply mean not having enough monetary resources. It also reflects a lack of access to the resources required to enjoy a minimum standard of living and participation in the society one belor]gs to. The coexistence of material deprivation and monetary poverty leads ...

  14. State dependent valuation: the effect of deprivation on risk preferences.

    Science.gov (United States)

    Levy, Dino J; Thavikulwat, Amalie C; Glimcher, Paul W

    2013-01-01

    The internal state of an organism affects its choices. Previous studies in various non-human animals have demonstrated a complex, and in some cases non-monotonic, interaction between internal state and risk preferences. Our aim was to examine the systematic effects of deprivation on human decision-making across various reward types. Using both a non-parametric approach and a classical economic analysis, we asked whether the risk attitudes of human subjects towards money, food and water rewards would change as a function of their internal metabolic state. Our findings replicate some previous work suggesting that, on average, humans become more risk tolerant in their monetary decisions, as they get hungry. However, our specific approach allowed us to make two novel observations about the complex interaction between internal state and risk preferences. First, we found that the change in risk attitude induced by food deprivation is a general phenomenon, affecting attitudes towards both monetary and consumable rewards. But much more importantly, our data indicate that rather than each subject becoming more risk tolerant as previously hypothesized based on averaging across subjects, we found that as a population of human subjects becomes food deprived the heterogeneity of their risk attitudes collapses towards a fixed point. Thus subjects who show high-risk aversion while satiated shift towards moderate risk aversion when deprived but subjects who are risk tolerant become more risk averse. These findings demonstrate a more complicated interaction between internal state and risk preferences and raise some interesting implications for both day-to-day decisions and financial market structures.

  15. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Shui, Guanghou; Cazenave-Gassiot, Amaury; Wenk, Markus R; Gooley, Joshua J

    2015-11-01

    The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. Healthy ethnic-Chinese males aged 21-28 y (n = 20). Subjects were kept awake for 40 consecutive hours. Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep. © 2015 Associated Professional Sleep Societies, LLC.

  16. Synergistic Interactions of Neuroprotective and Neurotrophic Factors Against Sleep Deprivation

    Science.gov (United States)

    2017-03-30

    signals to cerebral cortex , regulation of consciousness, alertness, and sleep Brainstem Nerve connections of motor and sensory systems, maintaining...thalamus functions include sensory and motor signals to the cerebral cortex . In addition, the thalamus is also involved in regulation of...sleep deprivation in cerebral cortex of rats (19). However, in this published study, the authors used only two animals (n=2) in each experimental

  17. Lipidomic Analysis of Chlamydomonas reinhardtii under Nitrogen and Sulfur Deprivation.

    Directory of Open Access Journals (Sweden)

    Dawei Yang

    Full Text Available Chlamydomonas reinhardtii accumulates lipids under complete nutrient starvation conditions while overall growth in biomass stops. In order to better understand biochemical changes under nutrient deprivation that maintain production of algal biomass, we used a lipidomic assay for analyzing the temporal regulation of the composition of complex lipids in C. reinhardtii in response to nitrogen and sulfur deprivation. Using a chip-based nanoelectrospray direct infusion into an ion trap mass spectrometer, we measured a diversity of lipid species reported for C. reinhardtii, including PG phosphatidylglycerols, PI Phosphatidylinositols, MGDG monogalactosyldiacylglycerols, DGDG digalactosyldiacylglycerols, SQDG sulfoquinovosyldiacylglycerols, DGTS homoserine ether lipids and TAG triacylglycerols. Individual lipid species were annotated by matching mass precursors and MS/MS fragmentations to the in-house LipidBlast mass spectral database and MS2Analyzer. Multivariate statistics showed a clear impact on overall lipidomic phenotypes on both the temporal and the nutrition stress level. Homoserine-lipids were found up-regulated at late growth time points and higher cell density, while triacyclglycerols showed opposite regulation of unsaturated and saturated fatty acyl chains under nutritional deprivation.

  18. Functional imaging correlates of impaired distractor suppression following sleep deprivation.

    Science.gov (United States)

    Kong, Danyang; Soon, Chun Siong; Chee, Michael W L

    2012-05-15

    Sleep deprivation (SD) has been shown to affect selective attention but it is not known how two of its component processes: target enhancement and distractor suppression, are affected. To investigate, young volunteers either attended to houses or were obliged to ignore them (when attending to faces) while viewing superimposed face-house pictures. MR signal enhancement and suppression in the parahippocampal place area (PPA) were determined relative to a passive viewing control condition. Sleep deprivation was associated with lower PPA activation across conditions. Critically SD specifically impaired distractor suppression in selective attention, leaving target enhancement relatively preserved. These findings parallel some observations in cognitive aging. Additionally, following SD, attended houses were not significantly better recognized than ignored houses in a post-experiment test of recognition memory contrasting with the finding of superior recognition of attended houses in the well-rested state. These results provide evidence for co-encoding of distracting information with targets into memory when one is sleep deprived. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Acute sleep deprivation increases food purchasing in men.

    Science.gov (United States)

    Chapman, Colin D; Nilsson, Emil K; Nilsson, Victor C; Cedernaes, Jonathan; Rångtell, Frida H; Vogel, Heike; Dickson, Suzanne L; Broman, Jan-Erik; Hogenkamp, Pleunie S; Schiöth, Helgi B; Benedict, Christian

    2013-12-01

    To investigate if acute sleep deprivation affects food purchasing choices in a mock supermarket. On the morning after one night of total sleep deprivation (TSD) or after one night of sleep, 14 normal-weight men were given a fixed budget (300 SEK-approximately 50 USD). They were instructed to purchase as much as they could out of a possible 40 items, including 20 high-caloric foods (>2 kcal/g) and 20 low-caloric foods (foods were then varied (75%, 100% (reference price), and 125%) to determine if TSD affects the flexibility of food purchasing. Before the task, participants received a standardized breakfast, thereby minimizing the potential confound produced by hunger. In addition, morning plasma concentrations of the orexigenic hormone ghrelin were measured under fasting conditions. Independent of both type of food offered and price condition, sleep-deprived men purchased significantly more calories (+9%) and grams (+18%) of food than they did after one night of sleep (both P food purchasing. This experiment demonstrates that acute sleep loss alters food purchasing behavior in men. Copyright © 2013 The Obesity Society.

  20. Monocular Perceptual Deprivation from Interocular Suppression Temporarily Imbalances Ocular Dominance.

    Science.gov (United States)

    Kim, Hyun-Woong; Kim, Chai-Youn; Blake, Randolph

    2017-03-20

    Early visual experience sculpts neural mechanisms that regulate the balance of influence exerted by the two eyes on cortical mechanisms underlying binocular vision [1, 2], and experience's impact on this neural balancing act continues into adulthood [3-5]. One recently described, compelling example of adult neural plasticity is the effect of patching one eye for a relatively short period of time: contrary to intuition, monocular visual deprivation actually improves the deprived eye's competitive advantage during a subsequent period of binocular rivalry [6-8], the robust form of visual competition prompted by dissimilar stimulation of the two eyes [9, 10]. Neural concomitants of this improvement in monocular dominance are reflected in measurements of brain responsiveness following eye patching [11, 12]. Here we report that patching an eye is unnecessary for producing this paradoxical deprivation effect: interocular suppression of an ordinarily visible stimulus being viewed by one eye is sufficient to produce shifts in subsequent predominance of that eye to an extent comparable to that produced by patching the eye. Moreover, this imbalance in eye dominance can also be induced by prior, extended viewing of two monocular images differing only in contrast. Regardless of how shifts in eye dominance are induced, the effect decays once the two eyes view stimuli equal in strength. These novel findings implicate the operation of interocular neural gain control that dynamically adjusts the relative balance of activity between the two eyes [13, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mitochondrial respiratory control is lost during growth factor deprivation.

    Science.gov (United States)

    Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B

    2002-10-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.

  2. Neighborhood Socioeconomic Deprivation and Allostatic Load: A Scoping Review

    Directory of Open Access Journals (Sweden)

    Ana Isabel Ribeiro

    2018-05-01

    Full Text Available Residing in socioeconomically deprived neighborhoods may pose substantial physiological stress, which can then lead to higher allostatic load (AL, a marker of biological wear and tear that precedes disease. The aim of the present study was to map the current evidence about the relationship between neighborhood socioeconomic deprivation and AL. A scoping review approach was chosen to provide an overview of the type, quantity, and extent of research available. The review was conducted using three bibliographic databases (PubMed, SCOPUS, and Web of Science and a standardized protocol. Fourteen studies were identified. Studies were predominantly from the USA, cross-sectional, focused on adults, and involved different races and ethnic groups. A wide range of measures of AL were identified: the mode of the number of biomarkers per study was eight but with large variability (range: 6–24. Most studies (n = 12 reported a significant association between neighborhood deprivation and AL. Behaviors and environmental stressors seem to mediate this relationship and associations appear more pronounced among Blacks, men, and individuals with poor social support. Such conclusions have important public health implications as they enforce the idea that neighborhood environment should be improved to prevent physiological dysregulation and consequent chronic diseases.

  3. Neighborhood Economic Deprivation and Social Fragmentation: Associations With Children's Sleep.

    Science.gov (United States)

    Bagley, Erika J; Fuller-Rowell, Thomas E; Saini, Ekjyot K; Philbrook, Lauren E; El-Sheikh, Mona

    2016-12-09

    A growing body of work indicates that experiences of neighborhood disadvantage place children at risk for poor sleep. This study aimed to examine how both neighborhood economic deprivation (a measure of poverty) and social fragmentation (an index of instability) are associated with objective measures of the length and quality of children's sleep. Participants were 210 children (54.3% boys) living predominantly in small towns and semirural communities in Alabama. On average children were 11.3 years old (SD = .63); 66.7% of the children were European American and 33.3% were African American. The sample was socioeconomically diverse with 67.9% of the participants living at or below the poverty line and 32.1% from lower-middle-class or middle-class families. Indicators of neighborhood characteristics were derived from the 2012 American Community Survey and composited to create two variables representing neighborhood economic deprivation and social fragmentation. Child sleep period, actual sleep minutes, and efficiency were examined using actigraphy. Higher levels of neighborhood economic deprivation were associated with fewer sleep minutes and poorer sleep efficiency. More neighborhood social fragmentation was also linked with poorer sleep efficiency. Analyses controlled for demographic characteristics, child health, and family socioeconomic status. Findings indicate that living in economically and socially disadvantaged neighborhoods predicts risk for shorter and lower-quality sleep in children. Examination of community context in addition to family and individual characteristics may provide a more comprehensive understanding of the factors shaping child sleep.

  4. Iron Deprivation Affects Drug Susceptibilities of Mycobacteria Targeting Membrane Integrity

    Directory of Open Access Journals (Sweden)

    Rahul Pal

    2015-01-01

    Full Text Available Multidrug resistance (MDR acquired by Mycobacterium tuberculosis (MTB through continuous deployment of antitubercular drugs warrants immediate search for novel targets and mechanisms. The ability of MTB to sense and become accustomed to changes in the host is essential for survival and confers the basis of infection. A crucial condition that MTB must surmount is iron limitation, during the establishment of infection, since iron is required by both bacteria and humans. This study focuses on how iron deprivation affects drug susceptibilities of known anti-TB drugs in Mycobacterium smegmatis, a “surrogate of MTB.” We showed that iron deprivation leads to enhanced potency of most commonly used first line anti-TB drugs that could be reverted upon iron supplementation. We explored that membrane homeostasis is disrupted upon iron deprivation as revealed by enhanced membrane permeability and hypersensitivity to membrane perturbing agent leading to increased passive diffusion of drug and TEM images showing detectable differences in cell envelope thickness. Furthermore, iron seems to be indispensable to sustain genotoxic stress suggesting its possible role in DNA repair machinery. Taken together, we for the first time established a link between cellular iron and drug susceptibility of mycobacteria suggesting iron as novel determinant to combat MDR.

  5. Deprivation and food access and balance in Saskatoon, Saskatchewan.

    Science.gov (United States)

    Cushon, J; Creighton, T; Kershaw, T; Marko, J; Markham, T

    2013-06-01

    We explored food access and balance in Saskatoon, Saskatchewan, Canada in relation to material and social deprivation. We mapped the location of all large supermarkets and fast food retailers in Saskatoon. Supermarket accessibility index scores and food balance scores were compared to material and social deprivation indexes to determine significant associations. Our results indicate that the poorest access to supermarkets occurred in areas west of the South Saskatchewan River and also in suburban areas around the perimeter of the city. Areas west of the river are some of the most deprived areas in the city. Saskatoon's mean food balance ratio of 2.3 indicates that access favours fast food. However, we did not find a clear pattern or clear socio-economic gradient for most measures. This study highlights the importance of contextual studies of food access. This study also highlighted a number of other issues that should be explored in the Saskatoon context such as individual-level food consumption patterns, mobility, temporal dimensions of food access and economic access as well as interventions that could improve food access in the city.

  6. Sleep Deprivation Attack Detection in Wireless Sensor Network

    Science.gov (United States)

    Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata

    2012-02-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.

  7. How much of the difference in life expectancy between Scottish cities does deprivation explain?

    Science.gov (United States)

    Seaman, R; Mitchell, R; Dundas, R; Leyland, A H; Popham, F

    2015-10-16

    Glasgow's low life expectancy and high levels of deprivation are well documented. Studies comparing Glasgow to similarly deprived cities in England suggest an excess of deaths in Glasgow that cannot be accounted for by deprivation. Within Scotland comparisons are more equivocal suggesting deprivation could explain Glasgow's excess mortality. Few studies have used life expectancy, an intuitive measure that quantifies the between-city difference in years. This study aimed to use the most up-to-date data to compare Glasgow to other Scottish cities and to (i) evaluate whether deprivation could account for lower life expectancy in Glasgow and (ii) explore whether the age distribution of mortality in Glasgow could explain its lower life expectancy. Sex specific life expectancy was calculated for 2007-2011 for the population in Glasgow and the combined population of Aberdeen, Dundee and Edinburgh. Life expectancy was calculated for deciles of income deprivation, based on the national ranking of datazones, using the Scottish Index of Multiple Deprivation. Life expectancy in Glasgow overall, and by deprivation decile, was compared to that in Aberdeen, Dundee and Edinburgh combined, and the life expectancy difference decomposed by age using Arriaga's discrete method. Life expectancy for the whole Glasgow population was lower than the population of Aberdeen, Dundee and Edinburgh combined. When life expectancy was compared by national income deprivation decile, Glasgow's life expectancy was not systematically lower, and deprivation accounted for over 90 % of the difference. This was reduced to 70 % of the difference when carrying out sensitivity analysis using city-specific income deprivation deciles. In both analyses life expectancy was not systematically lower in Glasgow when stratified by deprivation. Decomposing the differences in life expectancy also showed that the age distribution of mortality was not systematically different in Glasgow after accounting for deprivation

  8. Effect of 24 Hours of Sleep Deprivation on Auditory and Linguistic Perception: A Comparison among Young Controls, Sleep-Deprived Participants, Dyslexic Readers, and Aging Adults

    Science.gov (United States)

    Fostick, Leah; Babkoff, Harvey; Zukerman, Gil

    2014-01-01

    Purpose: To test the effects of 24 hr of sleep deprivation on auditory and linguistic perception and to assess the magnitude of this effect by comparing such performance with that of aging adults on speech perception and with that of dyslexic readers on phonological awareness. Method: Fifty-five sleep-deprived young adults were compared with 29…

  9. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  10. Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia.

    Science.gov (United States)

    Krishnan, Harini C; Gandour, Catherine E; Ramos, Joshua L; Wrinkle, Mariah C; Sanchez-Pacheco, Joseph J; Lyons, Lisa C

    2016-12-01

    Insufficient sleep in individuals appears increasingly common due to the demands of modern work schedules and technology use. Consequently, there is a growing need to understand the interactions between sleep deprivation and memory. The current study determined the effects of acute sleep deprivation on short and long-term associative memory using the marine mollusk Aplysia californica , a relatively simple model system well known for studies of learning and memory. Aplysia were sleep deprived for 9 hours using context changes and tactile stimulation either prior to or after training for the operant learning paradigm, learning that food is inedible (LFI). The effects of sleep deprivation on short-term (STM) and long-term memory (LTM) were assessed. Acute sleep deprivation prior to LFI training impaired the induction of STM and LTM with persistent effects lasting at least 24 h. Sleep deprivation immediately after training blocked the consolidation of LTM. However, sleep deprivation following the period of molecular consolidation did not affect memory recall. Memory impairments were independent of handling-induced stress, as daytime handled control animals demonstrated no memory deficits. Additional training immediately after sleep deprivation failed to rescue the induction of memory, but additional training alleviated the persistent impairment in memory induction when training occurred 24 h following sleep deprivation. Acute sleep deprivation inhibited the induction and consolidation, but not the recall of memory. These behavioral studies establish Aplysia as an effective model system for studying the interactions between sleep and memory formation. © 2016 Associated Professional Sleep Societies, LLC.

  11. The effect of REM sleep deprivation on motivation for food reward.

    Science.gov (United States)

    Hanlon, Erin C; Andrzejewski, Matthew E; Harder, Bridgette K; Kelley, Ann E; Benca, Ruth M

    2005-08-30

    Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.

  12. Regional Deprivation Index and Socioeconomic Inequalities Related to Infant Deaths in Korea.

    Science.gov (United States)

    Yun, Jae-Won; Kim, Young-Ju; Son, Mia

    2016-04-01

    Deprivation indices have been widely used to evaluate neighborhood socioeconomic status and therefore examine individuals within their regional context. Although some studies on the development of deprivation indices were conducted in Korea, additional research is needed to construct a more valid and reliable deprivation index. Therefore, a new deprivation index, named the K index, was constructed using principal component analysis. This index was compared with the Carstairs, Townsend and Choi indices. A possible association between infant death and deprivation was explored using the K index. The K index had a higher correlation with the infant mortality rate than did the other three indices. The regional deprivation quintiles were unequally distributed throughout the country. Despite the overall trend of gradually decreasing infant mortality rates, inequalities in infant deaths according to the deprivation quintiles persisted and widened. Despite its significance, the regional deprivation variable had a smaller effect on infant deaths than did individual variables. The K index functions as a deprivation index, and we may use this index to estimate the regional socioeconomic status in Korea. We found that inequalities in infant deaths according to the time trend persisted. To reduce the health inequalities among infants in Korea, regional deprivation should be considered.

  13. Grooming analysis algorithm: use in the relationship between sleep deprivation and anxiety-like behavior.

    Science.gov (United States)

    Pires, Gabriel N; Tufik, Sergio; Andersen, Monica L

    2013-03-05

    Increased anxiety is a classic effect of sleep deprivation. However, results regarding sleep deprivation-induced anxiety-like behavior are contradictory in rodent models. The grooming analysis algorithm is a method developed to examine anxiety-like behavior and stress in rodents, based on grooming characteristics and microstructure. This study evaluated the applicability of the grooming analysis algorithm to distinguish sleep-deprived and control rats in comparison to traditional grooming analysis. Forty-six animals were distributed into three groups: control (n=22), paradoxical sleep-deprived (96 h, n=10) and total sleep deprived (6 h, n=14). Immediately after the sleep deprivation protocol, grooming was evaluated using both the grooming analysis algorithm and traditional measures (grooming latency, frequency and duration). Results showed that both paradoxical sleep-deprived and total sleep-deprived groups displayed grooming in a fragmented framework when compared to control animals. Variables from the grooming analysis algorithm were successful in distinguishing sleep-deprived and normal sleep animals regarding anxiety-like behavior. The grooming analysis algorithm and traditional measures were strongly correlated. In conclusion, the grooming analysis algorithm is a reliable method to assess the relationship between anxiety-like behavior and sleep deprivation. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Optimization and Optimal Control

    CERN Document Server

    Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider

    2010-01-01

    During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou

  15. Optimally Stopped Optimization

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known, and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time, optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark the performance of a D-Wave 2X quantum annealer and the HFS solver, a specialized classical heuristic algorithm designed for low tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N = 1098 variables, the D-Wave device is between one to two orders of magnitude faster than the HFS solver.

  16. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    Directory of Open Access Journals (Sweden)

    Sean P A Drummond

    Full Text Available Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1 in a well-rested condition (following 6 nights of 9 hours in bed/night; and 2 following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency. Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care

  17. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    Science.gov (United States)

    Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).

  18. Sleep Duration and Area-Level Deprivation in Twins

    Science.gov (United States)

    Watson, Nathaniel F.; Horn, Erin; Duncan, Glen E.; Buchwald, Dedra; Vitiello, Michael V.; Turkheimer, Eric

    2016-01-01

    Study Objectives: We used quantitative genetic models to assess whether area-level deprivation as indicated by the Singh Index predicts shorter sleep duration and modifies its underlying genetic and environmental contributions. Methods: Participants were 4,218 adult twin pairs (2,377 monozygotic and 1,841 dizygotic) from the University of Washington Twin Registry. Participants self-reported habitual sleep duration. The Singh Index was determined by linking geocoding addresses to 17 indicators at the census-tract level using data from Census of Washington State and Census Tract Cartographic Boundary Files from 2000 and 2010. Data were analyzed using univariate and bivariate genetic decomposition and quantitative genetic interaction models that assessed A (additive genetics), C (common environment), and E (unique environment) main effects of the Singh Index on sleep duration and allowed the magnitude of residual ACE variance components in sleep duration to vary with the Index. Results: The sample had a mean age of 38.2 y (standard deviation [SD] = 18), and was predominantly female (62%) and Caucasian (91%). Mean sleep duration was 7.38 h (SD = 1.20) and the mean Singh Index score was 0.00 (SD = 0.89). The heritability of sleep duration was 39% and the Singh Index was 12%. The uncontrolled phenotypic regression of sleep duration on the Singh Index showed a significant negative relationship between area-level deprivation and sleep length (b = −0.080, P sleep duration. For the quasi-causal bivariate model, there was a significant main effect of E (b0E = −0.063; standard error [SE] = 0.30; P sleep duration were significant for both A (b0Au = 0.734; SE = 0.020; P sleep duration, with greater deprivation being related to shorter sleep. As area-level deprivation increases, unique genetic and nonshared environmental residual variance in sleep duration increases. Citation: Watson NF, Horn E, Duncan GE, Buchwald D, Vitiello MV, Turkheimer E. Sleep duration and area

  19. Water deprivation induces appetite and alters metabolic strategy in Notomys alexis: unique mechanisms for water production in the desert.

    Science.gov (United States)

    Takei, Yoshio; Bartolo, Ray C; Fujihara, Hiroaki; Ueta, Yoichi; Donald, John A

    2012-07-07

    Like many desert animals, the spinifex hopping mouse, Notomys alexis, can maintain water balance without drinking water. The role of the kidney in producing a small volume of highly concentrated urine has been well-documented, but little is known about the physiological mechanisms underpinning the metabolic production of water to offset obligatory water loss. In Notomys, we found that water deprivation (WD) induced a sustained high food intake that exceeded the pre-deprivation level, which was driven by parallel changes in plasma leptin and ghrelin and the expression of orexigenic and anorectic neuropeptide genes in the hypothalamus; these changed in a direction that would stimulate appetite. As the period of WD was prolonged, body fat disappeared but body mass increased gradually, which was attributed to hepatic glycogen storage. Switching metabolic strategy from lipids to carbohydrates would enhance metabolic water production per oxygen molecule, thus providing a mechanism to minimize respiratory water loss. The changes observed in appetite control and metabolic strategy in Notomys were absent or less prominent in laboratory mice. This study reveals novel mechanisms for appetite regulation and energy metabolism that could be essential for desert rodents to survive in xeric environments.

  20. Long-Term Effects of Maternal Deprivation on Redox Regulation in Rat Brain: Involvement of NADPH Oxidase

    Directory of Open Access Journals (Sweden)

    Branka Marković

    2017-01-01

    Full Text Available Maternal deprivation (MD causes perinatal stress, with subsequent behavioral changes which resemble the symptoms of schizophrenia. The NADPH oxidase is one of the major generators of reactive oxygen species, known to play a role in stress response in different tissues. The aim of this study was to elucidate the long-term effects of MD on the expression of NADPH oxidase subunits (gp91phox, p22phox, p67phox, p47phox, and p40phox. Activities of cytochrome C oxidase and respiratory chain Complex I, as well as the oxidative stress parameters using appropriate spectrophotometric techniques were analyzed. Nine-day-old Wistar rats were exposed to a 24 h maternal deprivation and sacrificed at young adult age. The structures affected by perinatal stress, cortex, hippocampus, thalamus, and caudate nuclei were investigated. The most prominent findings were increased expressions of gp91phox in the cortex and hippocampus, increased expression of p22phox and p40phox, and decreased expression of gp91phox, p22phox, and p47phox in the caudate nuclei. Complex I activity was increased in all structures except cortex. Content of reduced glutathione was decreased in all sections while region-specific changes of other oxidative stress parameters were found. Our results indicate the presence of long-term redox alterations in MD rats.

  1. Effects of sleep deprivation on serum cortisol level and mental health in servicemen.

    Science.gov (United States)

    Song, Hong-Tao; Sun, Xin-Yang; Yang, Ting-Shu; Zhang, Li-Yi; Yang, Jia-Lin; Bai, Jing

    2015-06-01

    This study aimed to investigate the effects of sleep deprivation on serum cortisol level and mental health and explore the correlations between them in servicemen. A total of 149 out of the 207 Chinese servicemen were randomly selected to go through 24hour sleep deprivation, leaving the rest (58) as the control group, before and after which their blood samples were drawn for cortisol measurement. Following the procedure, all the participants were administered the Military Personnel Mental Disorder Prediction Scale, taking the military norm as baseline. The results revealed that the post-deprivation serum cortisol level was positively correlated with the factor score of mania in the sleep deprivation group (rSp=0.415, pSleep deprivation could significantly increase serum cortisol level and may affect mental health in servicemen. The increase of serum cortisol level is significantly related to mania disorder during sleep deprivation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. POVERTY AND CALORIE DEPRIVATION ACROSS SOCIO-ECONOMIC GROUPS IN RURAL INDIA: A DISAGGREGATED ANALYSIS

    OpenAIRE

    Gupta, Abha; Mishra, Deepak K.

    2013-01-01

    This paper examines the linkages between calorie deprivation and poverty in rural India at a disaggregated level. It aims to explore the trends and pattern in levels of nutrient intake across social and economic groups. A spatial analysis at the state and NSS-region level unravels the spatial distribution of calorie deprivation in rural India. The gap between incidence of poverty and calorie deprivation has also been investigated. The paper also estimates the factors influencing calorie depri...

  3. Relative state, social comparison reactions, and the behavioral constellation of deprivation.

    Science.gov (United States)

    Novakowski, Dallas; Mishra, Sandeep

    2017-01-01

    Pepper & Nettle compellingly synthesize evidence indicating that temporal discounting is a functional, adaptive response to deprivation. In this commentary, we underscore the importance of the psychology of relative state, which is an index of relative competitive (dis)advantage. We then highlight two proximate emotional social comparison reactions linked with relative state - personal relative deprivation and envy - that may play an important role in the deprivation-discounting link.

  4. Meta-Analysis of the Antidepressant Effects of Acute Sleep Deprivation.

    Science.gov (United States)

    Boland, Elaine M; Rao, Hengyi; Dinges, David F; Smith, Rachel V; Goel, Namni; Detre, John A; Basner, Mathias; Sheline, Yvette I; Thase, Michael E; Gehrman, Philip R

    To provide a quantitative meta-analysis of the antidepressant effects of sleep deprivation to complement qualitative reviews addressing response rates. English-language studies from 1974 to 2016 using the keywords sleep deprivation and depression searched through PubMed and PsycINFO databases. A total of 66 independent studies met criteria for inclusion: conducted experimental sleep deprivation, reported the percentage of the sample that responded to sleep deprivation, provided a priori definition of antidepressant response, and did not seamlessly combine sleep deprivation with other therapies (eg, chronotherapeutics, repetitive transcranial magnetic stimulation). Data extracted included percentage of responders, type of sample (eg, bipolar, unipolar), type of sleep deprivation (eg, total, partial), demographics, medication use, type of outcome measure used, and definition of response (eg, 30% reduction in depression ratings). Data were analyzed with meta-analysis of proportions and a Poisson mixed-effects regression model. The overall response rate to sleep deprivation was 45% among studies that utilized a randomized control group and 50% among studies that did not. The response to sleep deprivation was not affected significantly by the type of sleep deprivation performed, the nature of the clinical sample, medication status, the definition of response used, or age and gender of the sample. These findings support a significant effect of sleep deprivation and suggest the need for future studies on the phenotypic nature of the antidepressant response to sleep deprivation, on the neurobiological mechanisms of action, and on moderators of the sleep deprivation treatment response in depression. © Copyright 2017 Physicians Postgraduate Press, Inc.

  5. Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD

    Science.gov (United States)

    2015-12-01

    1 Award Number: W81XWH-11-2-0001 TITLE: Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD...REPORT TYPE Final 3. DATES COVERED (From - To) 1 Oct 2010 – 30 Sep 2015 4. TITLE AND SUBTITLE Role of Sleep Deprivation in Fear Conditioning and...especially adequate REM during exposure therapy may enhance efficacy and reduce remission after treatment. 15. SUBJECT TERMS PTSD, sleep deprivation , fear

  6. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  7. Ambient oxygen promotes tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Ho Joong Sung

    2011-05-01

    Full Text Available Oxygen serves as an essential factor for oxidative stress, and it has been shown to be a mutagen in bacteria. While it is well established that ambient oxygen can also cause genomic instability in cultured mammalian cells, its effect on de novo tumorigenesis at the organismal level is unclear. Herein, by decreasing ambient oxygen exposure, we report a ∼50% increase in the median tumor-free survival time of p53-/- mice. In the thymus, reducing oxygen exposure decreased the levels of oxidative DNA damage and RAG recombinase, both of which are known to promote lymphomagenesis in p53-/- mice. Oxygen is further shown to be associated with genomic instability in two additional cancer models involving the APC tumor suppressor gene and chemical carcinogenesis. Together, these observations represent the first report directly testing the effect of ambient oxygen on de novo tumorigenesis and provide important physiologic evidence demonstrating its critical role in increasing genomic instability in vivo.

  8. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation

    Directory of Open Access Journals (Sweden)

    Williams Sylvain

    2006-03-01

    Full Text Available Abstract Background Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition. Results Hippocampal cell death induced by deprivation of growth medium constituents was strongly blocked by drugs including antipsychotics (10-10-10-6 M that display nM affinities for D2 and/or D4 receptors (clozapine, haloperidol, (±-sulpiride, domperidone, clozapine, risperidone, chlorpromazine, (+-butaclamol and L-741,742. These effects were shared by some caspases inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (--raclopride and remoxipride, two drugs that preferentially bind D2 over D4 receptors were ineffective, as well as the selective D3 receptor antagonist U 99194. Interestingly, (--raclopride (10-6 M was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-6 M. Conclusion Taken together, these data suggest that D2-like receptors, particularly the D4 subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-independent, caspase-dependent mechanism.

  9. Possible involvement of 12-lipoxygenase activation in glucose-deprivation/reload-treated neurons.

    Science.gov (United States)

    Nagasawa, Kazuki; Kakuda, Taichi; Higashi, Youichirou; Fujimoto, Sadaki

    2007-12-18

    The aim of this study was to clarify whether 12-lipoxygenase (12-LOX) activation was involved in reactive oxygen species (ROS) generation, extensive poly(ADP-ribose) polymerase (PARP) activation and neuronal death induced by glucose-deprivation, followed by glucose-reload (GD/R). The decrease of neuronal viability and accumulation of poly(ADP-ribose) induced by GD/R were prevented 3-aminobenzamide, a representative PARP inhibitor, demonstrating this treatment protocol caused the same oxidative stress with the previously reported one. The PARP activation, ROS generation and decrease of neuron viability induced by GD/R treatment were almost completely abolished by an extracellular zinc chelator, CaEDTA. p47(phox), a cytosolic component of NADPH oxidase was translocated the membrane fraction by GD/R, indicating its activation, but it did not generate detectable ROS. Surprisingly, pharmacological inhibition of NADPH oxidase with apocynin and AEBSF further decreased the decreased neuron viability induced by GD/R. On the other hand, AA861, a 12-LOX inhibitor, prevented ROS generation and decrease of neuron viability caused by GD/R. Interestingly, an antioxidant, N-acetyl-l-cysteine rescued the neurons from GD/R-induced oxidative stress, implying effectiveness of antioxidant administration. These findings suggested that activation of 12-LOX, but not NADPH oxidase, following to zinc release might play an important role in ROS generation and decrease of viability in GD/R-treated neurons.

  10. Status Concern and Relative Deprivation in China: Measures, Empirical Evidence and Economic and Policy Implications

    Science.gov (United States)

    Xi, CHEN

    2017-01-01

    Status concern and feelings of relative deprivation affect individual behaviour and well-being. Traditional norms and the alarming inequality in China have made relative deprivation increasingly intense for the Chinese population. This article reviews empirical literature on China that attempts to test the relative deprivation hypothesis, and also reviews the origins and pathways of relative deprivation, compares its economic measures in the literature and summarises the scientific findings. Drawing from solid empirical evidence, the author discusses the important policy implications on redistribution, official regulations and grassroots sanctions, and relative poverty alleviation. PMID:29033479

  11. Poverty, deprivation, and depressive symptoms among older adults in Hong Kong.

    Science.gov (United States)

    Cheung, Kelvin Chi Kin; Chou, Kee-Lee

    2017-10-31

    Examine the association of income poverty and material deprivation with depression in old age. Our data contains a survey of 1,959 older Chinese adults in Hong Kong. We used the Geriatric Depression Scale - Short Form to assess their depressive symptoms. Income poverty was defined as having household income below half the median household income (adjusted by household size); material deprivation was measured by a validated 28-item material deprivation. In addition to income poverty and material deprivation, we also assessed the effect of socio-demographic variables, financial strain, health indicators, and social and community resources on depressive symptoms. Those who experienced material deprivation reported a significantly more severe depressive symptoms, even after income poverty and all other covariates were controlled for; the bivariate association between income poverty and depressive symptoms disappeared once material deprivation was controlled for. Further, we found a significant interaction effect between income poverty and material deprivation on depressive symptoms; and both engagement in cultural activities and neighborhood collective efficacy moderated the impact of being materially deprived on depressive symptoms. Our results have important policy implications for the measurement of poverty and for the development of anti-poverty measures for materially deprived older adults.

  12. Cellular and molecular repair of X-ray-induced damage: dependence on oxygen tension and nutritional status

    International Nuclear Information System (INIS)

    Spiro, I.J.; Kennedy, K.A.; Stickler, R.; Ling, C.C.

    1985-01-01

    Cellular and molecular repair was studied at 23 0 C using split-dose recovery and alkaline elution techniques, respectively, as a function of cellular oxygen and nutrient conditions. Hypoxic cells in full medium showed a partial reduction in the level of sublethal damage (SLD) repair relative to aerated cells; the respective repair kinetics were similar with a common repair half-time of 30 min. Similarly, hypoxic cells showed a slight reduction in strand break rejoining capacity compared to aerated cells. Under nutrient deprivation, anoxic cells displayed no SLD repair or strand break repair, while aerated cells exhibited the same level of SLD and strand break repair as for well-fed cells. In addition, nutrient deprived cells at low O 2 levels displayed normal SLD and strand break repair capability. These results indicate that both nutrient and O 2 deprivation are necessary for complete inhibition of cellular and molecular repair, and low levels of O 2 can effectively reverse this inhibition

  13. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  14. Impaired NaCl taste thresholds in Zn deprived rats

    International Nuclear Information System (INIS)

    Brosvic, G.M.; Slotnick, B.M.; Nelson, N.; Henkin, R.I.

    1986-01-01

    Zn deficiency is a relatively common cause of loss of taste acuity in humans. In some patients replacement with exogenous Zn results in rapid reversal of the loss whereas in others prolonged treatment is needed to restore normal taste function. To study this 300 gm outbred Sprague Dawley rats were given Zn deficient diet (< 1 ppm Zn) supplemented with Zn in drinking water (0.1 gm Zn/100 gm body weight). Rats were trained in an automated operant conditions procedure and NaCl taste thresholds determined. During an initial training period and over two replications mean thresholds were 0.006% and mean plasma Zn was 90 +/- 2 μg/dl (M +/- SEM) determined by flame atomic absorption spectrophotometry. Rats were then divided into two groups; in one (3 rats) Zn supplement was removed, in the other (4 rats), pair-fed with the former group, Zn supplement was continued. In 10 days NaCl thresholds in Zn deprived rats increased significantly (0.07%, p < 0.01) and in 17 days increased 13 fold (0.08%) but thresholds for pair fed, supplemented rats remained constant (0.006%). There was no overlap in response between any rat in the two groups. Plasma Zn at 17 days in Zn-deprived rats was significantly below pair-fed rats (52 +/- 13 vs 89 +/- 6 μg/dl, respectively, P < 0.01). At this time Zn-deprived rats were supplemented with Zn for 27 days without any reduction in taste thresholds. These preliminary results are consistent with previous observations in Zn deficient patients

  15. Sleep deprivation attenuates experimental stroke severity in rats

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Constantinescu, Alexandra Oana; Balseanu, Adrian

    2010-01-01

    Indirect epidemiological and experimental evidence suggest that the severity of injury during stroke is influenced by prior sleep history. The aim of our study was to test the effect of acute sleep deprivation on early outcome following experimental stroke. Young male Sprague-Dawley rats (n=20...... after stroke was monitored using a battery of behavioral tests investigating the asymmetry of sensorimotor deficit (tape removal test and cylinder test), bilateral sensorimotor coordination (rotor-rod and Inclined plane) and memory (T-maze and radial maze). Following MCAO, control rats had impaired...

  16. Sleep deprivation and the organization of the behavioral states.

    Science.gov (United States)

    Dement, W. C.

    1972-01-01

    Questions concerning the significance of sleep in the developing organism are investigated, together with the mechanisms that underlie the unique distribution of behavioral states at any particular age and during any particular experimental manipulation. It is attempted to define the states of sleep and wakefulness in terms of a temporal confluence of a number of more or less independent processes, taking also into account the functional consequences of these attributes. The results of a selective deprivation of rapid eye movement sleep are explored, giving attention to effects on sleep, behavioral changes, brain excitability, pharmacological changes, and biochemical changes.

  17. Sleep Deficiency and Deprivation Leading to Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Michelle Kohansieh

    2015-01-01

    Full Text Available Sleep plays a vital role in an individual’s mental, emotional, and physiological well-being. Not only does sleep deficiency lead to neurological and psychological disorders, but also the literature has explored the adverse effects of sleep deficiency on the cardiovascular system. Decreased quantity and quality of sleep have been linked to cardiovascular disease (CVD risk factors, such as hypertension, obesity, diabetes, and dyslipidemia. We explore the literature correlating primary sleep deficiency and deprivation as a cause for cardiovascular disease and cite endothelial dysfunction as a common underlying mechanism.

  18. Increased in vivo mitochondrial oxygenation with right ventricular failure induced by pulmonary arterial hypertension: Mitochondrial inhibition as driver of cardiac failure?

    NARCIS (Netherlands)

    G. Balestra (Gianmarco); E.G. Mik (Egbert); O. Eerbeek (Otto); P. Specht (Patricia); W.J. van der Laarse (Willem J.); C.J. Zuurbier (Coert J.)

    2015-01-01

    textabstractBackground: The leading cause of mortality due to pulmonary arterial hypertension (PAH) is failure of the cardiac right ventricle. It has long been hypothesized that during the development of chronic cardiac failure the heart becomes energy deprived, possibly due to shortage of oxygen at

  19. Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock.

    Science.gov (United States)

    Luo, Xin; Yin, Yujing; You, Guoxing; Chen, Gan; Wang, Ying; Zhao, Jingxiang; Wang, Bo; Zhao, Lian; Zhou, Hong

    2015-11-01

    The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.

  20. Identifying aspects of neighbourhood deprivation associated with increased incidence of schizophrenia.

    Science.gov (United States)

    Bhavsar, Vishal; Boydell, Jane; Murray, Robin; Power, Paddy

    2014-06-01

    Several studies have found an association between area deprivation and incidence of schizophrenia. However, not all studies have concurred and definitions of deprivation have varied between studies. Relative deprivation and inequality seem to be particularly important, but which aspects of deprivation or how this effect might operate is not known. The Lambeth Early Onset case register is a database of all cases of first episode psychosis aged 16 to 35years from the London Borough of Lambeth, a highly urban area. We identified 405 people with first onset schizophrenia who presented between 2000 and 2007. We calculated the overall incidence of first onset schizophrenia and tested for an association with area-level deprivation, using a multi-domain index of deprivation (IMD 2004). Specific analyses into associations with individual sub-domains of deprivation were then undertaken. Incidence rates, directly standardized for age and gender, were calculated for Lambeth at two geographical levels (small and large neighbourhood level). The Poisson regression model predicting incidence rate ratios for schizophrenia using overall deprivation score was statistically significant at both levels after adjusting for ethnicity, ethnic density, population density and population turnover. The incidence rate ratio for electoral ward deprivation was 1.03 (95% CI=1.004-1.04) and for the super output area deprivation was 1.04 (95% CI=1.02-1.06). The individual domains of crime, employment deprivation and educational deprivation were statistically significant predictors of incidence but, after adjusting for the other domains as well as age, gender, ethnicity and population density, only crime and educational deprivation, remained statistically significant. Low income, poor housing and deprived living environment did not predict incidence. In a highly urban area, an association was found between area-level deprivation and incidence of schizophrenia, after controlling for age, gender

  1. Prazosin Prevents Increased Anxiety Behavior That Occurs in Response to Stress During Alcohol Deprivations.

    Science.gov (United States)

    Rasmussen, Dennis D; Kincaid, Carrie L; Froehlich, Janice C

    2017-01-01

    Stress-induced anxiety is a risk factor for relapse to alcohol drinking. The aim of this study was to test the hypothesis that the central nervous system (CNS)-active α 1 -adrenergic receptor antagonist, prazosin, would block the stress-induced increase in anxiety that occurs during alcohol deprivations. Selectively bred male alcohol-preferring (P) rats were given three cycles of 5 days of ad libitum voluntary alcohol drinking interrupted by 2 days of alcohol deprivation, with or without 1 h of restraint stress 4 h after the start of each of the first two alcohol deprivation cycles. Prazosin (1.0 or 1.5 mg/kg, IP) or vehicle was administered before each restraint stress. Anxiety-like behavior during alcohol deprivation following the third 5-day cycle of alcohol drinking (7 days after the most recent restraint stress ± prazosin treatment) was measured by performance in an elevated plus-maze and in social approach/avoidance testing. Rats that received constant alcohol access, or alcohol access and deprivations without stress or prazosin treatments in the first two alcohol deprivations did not exhibit augmented anxiety-like behavior during the third deprivation. In contrast, rats that had been stressed during the first two alcohol deprivations exhibited increased anxiety-like behavior (compared with control rats) in both anxiety tests during the third deprivation. Prazosin given before stresses in the first two cycles of alcohol withdrawal prevented increased anxiety-like behavior during the third alcohol deprivation. Prazosin treatment before stresses experienced during alcohol deprivations may prevent the increased anxiety during subsequent deprivation/abstinence that is a risk factor for relapse to alcohol drinking. Administration of prazosin before stresses during repetitive alcohol deprivations in male alcohol-preferring (P) rats prevents increased anxiety during a subsequent deprivation without further prazosin treatment. Prazosin treatment during repeated

  2. Quantifying the impact of deprivation on preterm births: a retrospective cohort study.

    Science.gov (United States)

    Taylor-Robinson, David; Agarwal, Umber; Diggle, Peter J; Platt, Mary Jane; Yoxall, Bill; Alfirevic, Zarko

    2011-01-01

    Social deprivation is associated with higher rates of preterm birth and subsequent infant mortality. Our objective was to identify risk factors for preterm birth in the UK's largest maternity unit, with a particular focus on social deprivation, and related factors. Retrospective cohort study of 39,873 women in Liverpool, UK, from 2002-2008. Singleton pregnancies were stratified into uncomplicated low risk pregnancies and a high risk group complicated by medical problems. Multiple logistic regression, and generalized additive models were used to explore the effect of covariates including area deprivation, smoking status, BMI, parity and ethnicity on the risk of preterm birth (34⁺⁰ weeks). In the low risk group, preterm birth rates increased with deprivation, reaching 1.6% (CI₉₅ 1.4 to 1.8) in the most deprived quintile; the unadjusted odds ratio comparing an individual in the most deprived quintile, to one in the least deprived quintile was 1.5 (CI₉₅ 1.2 to 1.9). Being underweight and smoking were both independently associated with preterm birth in the low risk group, and adjusting for these factors explained the association between deprivation and preterm birth. Preterm birth was five times more likely in the high risk group (RR 4.8 CI₉₅ 4.3 to 5.4), and there was no significant relationship with deprivation. Deprivation has significant impact on preterm birth rates in low risk women. The relationship between low socio-economic status and preterm births appears to be related to low maternal weight and smoking in more deprived groups.

  3. Quantifying the impact of deprivation on preterm births: a retrospective cohort study.

    Directory of Open Access Journals (Sweden)

    David Taylor-Robinson

    Full Text Available Social deprivation is associated with higher rates of preterm birth and subsequent infant mortality. Our objective was to identify risk factors for preterm birth in the UK's largest maternity unit, with a particular focus on social deprivation, and related factors.Retrospective cohort study of 39,873 women in Liverpool, UK, from 2002-2008. Singleton pregnancies were stratified into uncomplicated low risk pregnancies and a high risk group complicated by medical problems. Multiple logistic regression, and generalized additive models were used to explore the effect of covariates including area deprivation, smoking status, BMI, parity and ethnicity on the risk of preterm birth (34⁺⁰ weeks. In the low risk group, preterm birth rates increased with deprivation, reaching 1.6% (CI₉₅ 1.4 to 1.8 in the most deprived quintile; the unadjusted odds ratio comparing an individual in the most deprived quintile, to one in the least deprived quintile was 1.5 (CI₉₅ 1.2 to 1.9. Being underweight and smoking were both independently associated with preterm birth in the low risk group, and adjusting for these factors explained the association between deprivation and preterm birth. Preterm birth was five times more likely in the high risk group (RR 4.8 CI₉₅ 4.3 to 5.4, and there was no significant relationship with deprivation.Deprivation has significant impact on preterm birth rates in low risk women. The relationship between low socio-economic status and preterm births appears to be related to low maternal weight and smoking in more deprived groups.

  4. Effect of socioeconomic deprivation on waiting time for cardiac surgery: retrospective cohort study

    Science.gov (United States)

    Pell, Jill P; Pell, Alastair C H; Norrie, John; Ford, Ian; Cobbe, Stuart M

    2000-01-01

    Objective To determine whether the priority given to patients referred for cardiac surgery is associated with socioeconomic status. Design Retrospective study with multivariate logistic regression analysis of the association between deprivation and classification of urgency with allowance for age, sex, and type of operation. Multivariate linear regression analysis was used to determine association between deprivation and waiting time within each category of urgency, with allowance for age, sex, and type of operation. Setting NHS waiting lists in Scotland. Participants 26 642 patients waiting for cardiac surgery, 1 January 1986 to 31 December 1997. Main outcome measures Deprivation as measured by Carstairs deprivation category. Time spent on NHS waiting list. Results Patients who were most deprived tended to be younger and were more likely to be female. Patients in deprivation categories 6 and 7 (most deprived) waited about three weeks longer for surgery than those in category 1 (mean difference 24 days, 95% confidence interval 15 to 32). Deprived patients had an odds ratio of 0.5 (0.46 to 0.61) for having their operations classified as urgent compared with the least deprived, after allowance for age, sex, and type of operation. When urgent and routine cases were considered separately, there was no significant difference in waiting times between the most and least deprived categories. Conclusions Socioeconomically deprived patients are thought to be more likely to develop coronary heart disease but are less likely to be investigated and offered surgery once it has developed. Such patients may be further disadvantaged by having to wait longer for surgery because of being given lower priority. PMID:10617517

  5. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  6. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  7. Experimental effects of chocolate deprivation on cravings, mood, and consumption in high and low chocolate-cravers.

    Science.gov (United States)

    Moreno-Dominguez, Silvia; Rodríguez-Ruiz, Sonia; Martín, María; Warren, Cortney S

    2012-02-01

    This study examined how deprivation of chocolate affects state-level chocolate cravings, mood, and chocolate consumption in high and low trait-level chocolate-cravers. After identifying high and low chocolate cravers (N=58), half of the participants were instructed not to eat any chocolate for 2weeks. This created four experimental groups: deprived high-cravers (n=14), deprived low-cravers (n=14), non-deprived high-cravers (n=15), and non-deprived low-cravers (n=15). Following 2-week deprivation, state-level food cravings, mood, and chocolate intake were measured in a laboratory setting and compared across groups. Analyses revealed that anxiety increased over time for high-cravers (both deprived and non-deprived); state-level chocolate- and food-craving increased over time for both deprived groups and non-deprived high-cravers; non-deprived high-cravers ate the most chocolate; and, high-cravers were more joyful and guilty than low-cravers after eating chocolate in the laboratory. Theoretically, these results suggest that chocolate consumption may be better explained by trait-level of chocolate craving than by deprivation and highlighted significant differences in mood, state-level cravings, and chocolate intake between cravers and non-cravers following deprivation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Enhancing Activity for the Oxygen Evolution Reaction

    DEFF Research Database (Denmark)

    Frydendal, Rasmus; Busch, Michael; Halck, Niels Bendtsen

    2014-01-01

    Electrochemical production of hydrogen, facilitated in electrolyzers, holds great promise for energy storage and solar fuel production. A bottleneck in the process is the catalysis of the oxygen evolution reaction, involving the transfer of four electrons. The challenge is that the binding energies...... of all reaction intermediates cannot be optimized individually. However, experimental investigations have shown that drastic improvements can be realized for manganese and cobalt-based oxides if gold is added to the surface or used as substrate. We propose an explanation for these enhancements based...... that the oxygen evolution reaction overpotential decreases by 100–300 mV for manganese oxides and 100 mV for cobalt oxides....

  9. Chronic sleep deprivation markedly reduces coagulation factor VII expression

    Science.gov (United States)

    Pinotti, Mirko; Bertolucci, Cristiano; Frigato, Elena; Branchini, Alessio; Cavallari, Nicola; Baba, Kenkichi; Contreras-Alcantara, Susana; Ehlen, J. Christopher; Bernardi, Francesco; Paul, Ketema N.; Tosini, Gianluca

    2010-01-01

    Chronic sleep loss, a common feature of human life in industrialized countries, is associated to cardiovascular disorders. Variations in functional parameters of coagulation might contribute to explain this relationship. By exploiting the mouse model and a specifically designed protocol, we demonstrated that seven days of partial sleep deprivation significantly decreases (−30.5%) the thrombin generation potential in plasma evaluated upon extrinsic (TF/FVIIa pathway) but not intrinsic activation of coagulation. This variation was consistent with a decrease (−49.8%) in the plasma activity levels of factor VII (FVII), the crucial physiologicalal trigger of coagulation, which was even more pronounced at the liver mRNA level (−85.7%). The recovery in normal sleep conditions for three days completely restored thrombin generation and FVII activity in plasma. For the first time, we demonstrate that chronic sleep deprivation on its own reduces, in a reversible manner, the FVII expression levels, thus influencing the TF/FVIIa activation pathway efficiency. PMID:20418241

  10. Iron in intracellular infection: to provide or to deprive?

    Directory of Open Access Journals (Sweden)

    Sandro eSilva-Gomes

    2013-12-01

    Full Text Available Due to their chemical versatility, transition metals were incorporated as cofactors for several basic metabolic pathways in living organisms. This same characteristic makes them potentially harmful, since they can be engaged in deleterious reactions like Fenton chemistry. As such, organisms have evolved highly specialized mechanisms to supply their own metal needs while keeping their toxic potential in check.This dual character comes into play in host-pathogen interactions, given that the host can either deprive the pathogen of these key nutrients or exploit them to induce toxicity towards the invading agent. Iron stands as the prototypic example of how a metal can be used to limit the growth of pathogens by nutrient deprivation, a mechanism widely studied in Mycobacterium infections. However, the host can also take advantage of iron-induced toxicity to control pathogen proliferation, as observed in infections caused by Leishmania. Whether we may harness either of the two pathways for therapeutical purposes is still ill-defined.In this review, we discuss how modulation of the host iron availability impacts the course of infections, focusing on those caused by two relevant intracellular pathogens, Mycobacterium and Leishmania.

  11. Modulation of financial deprivation on deception and its neural correlates.

    Science.gov (United States)

    Sun, Peng; Ling, Xiaoli; Zheng, Li; Chen, Jia; Li, Lin; Liu, Zhiyuan; Cheng, Xuemei; Guo, Xiuyan

    2017-11-01

    Deception is a universal phenomenon in human society and plays an important role in everyday life. Previous studies have revealed that people might have an internalized moral norm of keeping honest and the deceptive behavior was reliably correlated with activation in executive brain regions of prefrontal cortices to over-ride intuitive honest responses. Using functional magnetic resonance imaging, this study sought to investigate how financial position modulated the neural responses during deceptive decision. Twenty-one participants were scanned when they played a series of adapted Dictator Game with different partners after a ball-guess game. Specifically, participants gained or lost money in the ball-guess game, and had opportunities to get more financial gains through cheating in the following adapted Dictator Game. Behavioral results indicated that participants did not cheat to the full extent; instead they were more likely to lie after losing money compared with gaining money. At the neural level, weaker activities in the dorsolateral prefrontal cortices were observed when participants lied after losing money than gaining money. Together, our data indicated that, people really had an internalized norm of keeping honest, but it would be lenient when people feel financial deprivation. And suppressing the truthful response originating from moral norm of keeping honest was associated with increased level of activation in the dorsolateral prefrontal cortices, but this association became weaker when people were under financial deprivation.

  12. Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation.

    Science.gov (United States)

    Abe, A; Gregory, S; Lee, L; Killen, P D; Brady, R O; Kulkarni, A; Shayman, J A

    2000-06-01

    We used a potent inhibitor of glucosylceramide synthase to test whether substrate deprivation could lower globotriaosylceramide levels in alpha-galactosidase A (alpha-gal A) knockout mice, a model of Fabry disease. C57BL/6 mice treated twice daily for 3 days with D-threo-1-ethylendioxyphenyl-2-palmitoylamino-3-pyrrolidi no-propanol (D-t-EtDO-P4) showed a concentration-dependent decrement in glucosylceramide levels in kidney, liver, and spleen. A single intraperitoneal injection of D-t-EtDO-P4 resulted in a 55% reduction in renal glucosylceramide, consistent with rapid renal glucosylceramide metabolism. A concentration-dependent decrement in renal and hepatic globotriaosylceramide levels was observed in alpha-Gal A(-) males treated for 4 weeks with D-t-EtDO-P4. When 8-week-old alpha-Gal A(-) males were treated for 8 weeks with 10 mg/kg twice daily, renal globotriaosylceramide fell to below starting levels, consistent with an alpha-galactosidase A-independent salvage pathway for globotriaosylceramide degradation. Complications observed with another glucosylceramide synthase inhibitor, N-butyldeoxynojirimycin, including weight loss and acellularity of lymphatic organs, were not observed with D-t-EtDO-P4. These data suggest that Fabry disease may be amenable to substrate deprivation therapy.

  13. Pupillographic assessment of sleepiness in sleep-deprived healthy subjects.

    Science.gov (United States)

    Wilhelm, B; Wilhelm, H; Lüdtke, H; Streicher, P; Adler, M

    1998-05-01

    Spontaneous pupillary-behavior in darkness provides information about a subject's level of sleepiness. In the present work, pupil measurements in complete darkness and quiet have been recorded continuously over 11-minute period with infrared video pupillography at 25 Hz. The data have been analyzed to yield three parameters describing pupil behavior; the power of diameter variation at frequencies below 0.8 Hz (slow changes in pupil size), the pupillary unrest index, and the average pupil size. To investigate the changes of these parameters in sleep deprivation, spontaneous pupillary behavior in darkness was recorded every 2 hours in 13 healthy subjects from 19:00 to 07:00 during forced wakefulness. On each occasion, comparative subjective sleepiness was assessed with a self-rating scale (Stanford Sleepiness Scale, SSS). The power of slow pupillary oscillations (< or = 0.8 Hz) increased significantly and so did the values of SSS, while basic pupil diameter decreased significantly. Slow pupillary oscillations and SSS did not correlate well in general but high values of pupil parameters were always associated with high values in subjective rating. Our results demonstrate a strong relationship between ongoing sleep deprivation and typical changes in the frequency profiles of spontaneous pupillary oscillations and the tendency to instability in pupil size in normals. These findings suggest that the results of pupil data analysis permit an objective measurement of sleepiness.

  14. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  15. The surface chemistry of metal-oxygen interactions

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Baroni, Stefano

    1997-01-01

    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium...... structure, surface energy and surface stress of the unreconstructed and (1 x 2) reconstructed structures. For the oxygen-covered surface we have performed a geometry optimization at 0.5, 1, and 2 monolayer oxygen coverages, and we present results for the equilibrium configurations, workfunctions and oxygen...

  16. Decrease in monocular sleep after sleep deprivation in the domestic chicken

    NARCIS (Netherlands)

    Boerema, AS; Riedstra, B; Strijkstra, AM

    2003-01-01

    We investigated the trade-off between sleep need and alertness, by challenging chickens to modify their monocular sleep. We sleep deprived domestic chickens (Gallus domesticus) to increase their sleep need. We found that in response to sleep deprivation the fraction of monocular sleep within sleep

  17. Evidence of social deprivation on the spatial patterns of excess winter mortality.

    Science.gov (United States)

    Almendra, Ricardo; Santana, Paula; Vasconcelos, João

    2017-11-01

    The aims of this study are to identify the patterns of excess winter mortality (due to diseases of the circulatory system) and to analyse the association between the excess winter deaths (EWD) and socio-economic deprivation in Portugal. The number of EWD in 2002-2011 was estimated by comparing the number of deaths in winter months with the average number in non-winter months. The EWD ratio of each municipality was calculated by following the indirect standardization method and then compared with two deprivation indexes (socio-material and housing deprivation index) through ecological regression models. This study found that: (1) the EWD ratio showed considerable asymmetry in its geography; (2) there are significant positive associations between the EWD ratio and both deprivation indexes; and (3) at the higher level of deprivation, housing conditions have a stronger association with EWD than socio-material conditions. The significant association between two deprivation dimensions (socio-material and housing deprivation) and EWDs suggests that EWD geographical pattern is influenced by deprivation.

  18. The Effects of Sleep Deprivation on Item and Associative Recognition Memory

    Science.gov (United States)

    Ratcliff, Roger; Van Dongen, Hans P. A.

    2018-01-01

    Sleep deprivation adversely affects the ability to perform cognitive tasks, but theories range from predicting an overall decline in cognitive functioning because of reduced stability in attentional networks to specific deficits in various cognitive domains or processes. We measured the effects of sleep deprivation on two memory tasks, item…

  19. What Factors Are Important in Smoking Cessation Amongst Deprived Communities?: A Qualitative Study

    Science.gov (United States)

    Henderson, Hazel J.; Memon, Anjum; Lawson, Kate; Jacobs, Barbara; Koutsogeorgou, Eleni

    2011-01-01

    Objective: There is limited evidence regarding effective smoking cessation interventions in deprived communities. This study explored what factors are considered most important in smoking cessation, from the perspective of a group of NHS Stop Smoking Service users from a deprived community. Design: A qualitative study. Setting: A deprived…

  20. Academic Difficulties and Early Literacy Deprivation: The Case of Ethiopians in Israel.

    Science.gov (United States)

    Barkon, Elisheva; Avinor, Eleanor

    1995-01-01

    Investigates a possible link between academic difficulties and early literacy deprivation among the immigrant Ethiopian population in Israel. Findings suggest that such deprivation can affect the person after he becomes literate and multilingual and that literacy exposure in early childhood and first-language maintenance is important. (11…

  1. 'Come and live here and you'll experience it': : Youths talk about their deprived neighbourhood

    NARCIS (Netherlands)

    Visser, Kirsten; Bolt, Gideon; van Kempen, Ronald

    2015-01-01

    This study examined youths' lived experiences of a deprived neighbourhood in Rotterdam, the Netherlands. Previous studies assume that deprived neighbourhoods pose serious risks for youths. What is largely missing from these studies, however, are the experiences of young people themselves. Do they

  2. McDonald's restaurants and neighborhood deprivation in Scotland and England.

    Science.gov (United States)

    Cummins, Steven C J; McKay, Laura; MacIntyre, Sally

    2005-11-01

    Features of the local fast food environment have been hypothesized to contribute to the greater prevalence of obesity in deprived neighborhoods. However, few studies have investigated whether fast food outlets are more likely to be found in poorer areas, and those that have are local case studies. In this paper, using national-level data, we examine the association between neighborhood deprivation and the density of McDonald's restaurants in small census areas (neighborhoods) in Scotland and England. Data on population, deprivation, and the location of McDonald's Restaurants were obtained for 38,987 small areas in Scotland and England (6505 "data zones" in Scotland, and 32,482 "super output areas" in England) in January 2005. Measures of McDonald's restaurants per 1000 people for each area were calculated, and areas were divided into quintiles of deprivation. Associations between neighborhood deprivation and outlet density were examined during February 2005, using one-way analysis of variance in Scotland, England, and both countries combined. Statistically significant positive associations were found between neighborhood deprivation and the mean number of McDonald's outlets per 1000 people for Scotland (p<0.001), England (p<0.001), and both countries combined (p<0.001). These associations were broadly linear with greater mean numbers of outlets per 1000 people occurring as deprivation levels increased. Observed associations between presence or absence of fast food outlets and neighborhood deprivation may provide support for environmental explanations for the higher prevalence of obesity in poor neighborhoods.

  3. The effect of early visual deprivation on the neural bases of multisensory processing

    OpenAIRE

    Guerreiro, Maria J. S.; Putzar, Lisa; Röder, Brigitte

    2015-01-01

    Animal studies have shown that congenital visual deprivation reduces the ability of neurons to integrate cross-modal inputs. Guerreiro et al. reveal that human patients who suffer transient congenital visual deprivation because of cataracts lack multisensory integration in auditory and multisensory areas as adults, and suppress visual processing during audio-visual stimulation.

  4. Bone Densitometry of the Femoral Midshaft the Protein-Deprived Rat*

    African Journals Online (AJOL)

    rats, has shown a significant loss of total bone density in the protein-deprived group. This reduction is no greater than can be accounted for by the loss of cortical bone surface area, suggesting that while bone mass is reduced as a result of protein deprivation, the mineral composition of the residual bone is likely to be ...

  5. Coping with the effects of deprivation : Development and upbringing of Romanian adoptees in the Netherlands

    NARCIS (Netherlands)

    Rijk, C.H.A.M.

    2008-01-01

    This thesis describes the effects of early life deprivation on Romanian adopted children in the Netherlands. These children have been exposed to (severe) deprivation in the period they have spend in Romanian children’s homes or hospitals. For a group of 72 families, who had adopted 80 Romanian

  6. Tailoring Gut Microbiota for Enhanced Resilience and Performance Under Sleep-Deprived Conditions

    Science.gov (United States)

    2016-08-01

    psychological disorders, we have developed a hypothesis that sleep deprivation initially degrades the functional and structural integrity of the...metabolically active members and the collective metabolic profiles of the microbiota community. An integrated approach to examine the metabolic...obesity. Interestingly, perturbation of gut microbiota presents a pattern of metabolic abnormalities mirroring those induced by sleep deprivation. In

  7. Social deprivation and prognosis in Scottish patients with pulmonary arterial hypertension.

    Science.gov (United States)

    Pellino, Katherine; Kerridge, Simon; Church, Colin; Peacock, Andrew J; Crowe, Timothy; Jayasekera, Geeshath; Johnson, Martin K; MacKenzie, Alison M

    2018-02-01

    Several demographic and clinical factors have prognostic significance in idiopathic pulmonary arterial hypertension (IPAH). Studies in China and the USA have suggested an association between low socioeconomic status and reduced survival. The impact of social deprivation on IPAH survival in the UK is not known.280 patients with IPAH and hereditary PAH (HPAH) attending the Scottish Pulmonary Vascular Unit (Glasgow, UK) were assigned to social deprivation quintiles using the Scottish Index of Multiple Deprivation database. The association between survival and social deprivation quintile was assessed using Cox proportional hazards regression analysis.The distribution of IPAH/HPAH patients was more socially deprived than would be expected based on Scottish citizenry as a whole (Chi-squared 16.16, p=0.003), suggesting referral and access to care is not impeded by socioeconomic status. Univariate analysis demonstrated no significant association between social deprivation and survival (p=0.81), and this association failed to reach significance with inclusion of time, sex and age as covariates in the model (p=0.23). There were no statistically significant correlations between social deprivation and baseline clinical variables of prognostic importance except for age, sex and quality of life.Social deprivation is not a significant referral barrier or prognostic factor for IPAH and HPAH in Scotland. Copyright ©ERS 2018.

  8. Examining public open spaces by neighborhood-level walkability and deprivation.

    Science.gov (United States)

    Badland, Hannah M; Keam, Rosanna; Witten, Karen; Kearns, Robin

    2010-11-01

    Public open spaces (POS) are recognized as important to promote physical activity engagement. However, it is unclear how POS attributes, such as activities available, environmental quality, amenities present, and safety, are associated with neighborhood-level walkability and deprivation. Twelve neighborhoods were selected within 1 constituent city of Auckland, New Zealand based on higher (n = 6) or lower (n = 6) walkability characteristics. Neighborhoods were dichotomized as more (n = 7) or less (n = 5) socioeconomically deprived. POS (n = 69) were identified within these neighborhoods and audited using the New Zealand-Public Open Space Tool. Unpaired 1-way analysis of variance tests were applied to compare differences in attributes and overall score of POS by neighborhood walkability and deprivation. POS located in more walkable neighborhoods have significantly higher overall scores when compared with less walkable neighborhoods. Deprivation comparisons identified POS located in less deprived communities have better quality environments, but fewer activities and safety features present when compared with more deprived neighborhoods. A positive relationship existed between presence of POS attributes and neighborhood walkability, but the relationship between POS and neighborhood-level deprivation was less clear. Variation in neighborhood POS quality alone is unlikely to explain poorer health outcomes for residents in more deprived areas.

  9. Income mobility and deprivation dynamics among the elderly in Belgium and the Netherlands

    NARCIS (Netherlands)

    Dirven, H.J.; Fouarge, D.J.A.G.

    1996-01-01

    This paper analyzes the dynamics of income and deprivation among the elderly in Belgium and the Netherlands between 1985 and 1988. It appears that, in 1985, the average level of deprivation in Belgium and the Netherlands was about the same. However, Belgium saw an increase between 1985 and 1988,

  10. Using Non-Monetary Deprivation Indicators to Analyze Poverty and Social Exclusion: Lessons from Europe?

    Science.gov (United States)

    Nolan, Brian; Whelan, Christopher T.

    2010-01-01

    Non-monetary indicators of deprivation are now widely used in studying poverty in Europe. While measuring financial resources remains central, having reliable information about material deprivation adds to the ability to capture poverty and social exclusion. Non-monetary indicators can help improve the identification of those experiencing poverty…

  11. New Comparative Measures of Income, Material Deprivation, and Well-Being

    Science.gov (United States)

    Smeeding, Timothy M.

    2009-01-01

    Most societies, rich and poor, seek to measure progress in reducing poverty and need, as indicated by material deprivation or social exclusion. The yardsticks used to assess progress and policy impact mainly include income-based poverty, but broader measures of poverty based on consumption, wealth, and material deprivation are also now coming into…

  12. Beauty sleep: experimental study on the perceived health and attractiveness of sleep deprived people

    NARCIS (Netherlands)

    Axelsson, J.; Ingre, M.; van Someren, E.J.W.; Olsson, A.; Lekander, M.

    2010-01-01

    Objective To investigate whether sleep deprived people are perceived as less healthy, less attractive, and more tired than after a normal night's sleep. Design Experimental study. Setting Sleep laboratory in Stockholm, Sweden. Participants 23 healthy, sleep deprived adults (age 18-31) who were

  13. Area deprivation, individual socioeconomic position and smoking among women in South Korea.

    Science.gov (United States)

    Park, Eun-Ja; Kim, Ho; Kawachi, Ichiro; Kim, Il-Ho; Cho, Sung-Il

    2010-10-01

    The objective of this study was to examine how area deprivation and individual socioeconomic position affect smoking among women using national survey data. Smoking and individual sociodemographic characteristics were gathered from the Third Korea National Health and Nutrition Examination Survey, 2005. The Carstairs index was derived for each area using the 2005 census data. The data were analysed using multilevel logistic regression models. After adjusting for age and marital status, low education and manual jobs were significantly associated with a higher likelihood of smoking. In addition, the effect of manual jobs on smoking was modified by area deprivation. When individual occupation and area deprivation were examined together, results indicated that women with manual occupation had much greater odds of smoking when they lived in the least-deprived areas (OR, 4.03; CI, 2.00 to 8.14) than did women with manual job who lived in the middle- or most-deprived areas (OR, 2.19; CI, 1.15 to 4.16), compared to the reference group (housewives in the middle- or most-deprived areas). The results of the present study show that among Korean women, manual work is associated with smoking, and the association is strongest among those living in the least-deprived areas. This interaction between manual work and area deprivation resulted in a higher smoking prevalence among women in affluent urban areas.

  14. Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator

    NARCIS (Netherlands)

    Strijkstra, AM; Daan, S

    1998-01-01

    Sleep regulation processes have been hypothesized to be involved in function and timing of arousal episodes in hibernating ground squirrels. We investigated the importance of sleep regulation during arousal episodes by sleep deprivation experiments. After sleep deprivation of 4, 12, and 24 h,

  15. Sleepless in Adolescence: Prospective Data on Sleep Deprivation, Health and Functioning

    Science.gov (United States)

    Roberts, Robert E.; Roberts, Catherine Ramsay; Duong, Hao T.

    2009-01-01

    We estimate prevalence, incidence and persistence of short sleep or sleep deprivation in a two wave cohort study of 4175 youths 11-17 years old at baseline and 3134 of these a year later. Data were collected using computer interviews and questionnaires. Sleep deprivation was defined as 6 h or less per night during the past 4 weeks. Weighted…

  16. Sleep deprivation and daily torpor impair object recognition in Djungarian hamsters

    NARCIS (Netherlands)

    Palchykova, S; Crestani, F; Meerlo, P; Tobler, Irene

    2006-01-01

    Sleep has been shown to play a facilitating role in memory consolidation, whereas sleep deprivation leads to performance impairment both in humans and rodents. The effects of 4-h sleep deprivation on recognition memory were investigated in the Djungarian hamster (Phodopus sungorus). Because sleep

  17. Effects of acute sleep deprivation on state anxiety levels: a systematic review and meta-analysis.

    Science.gov (United States)

    Pires, Gabriel Natan; Bezerra, Andreia Gomes; Tufik, Sergio; Andersen, Monica Levy

    2016-08-01

    Increased anxiety levels have been widely recognized as one of the most important consequences of sleep deprivation. However, despite this general consensus, there are still aspects of this relationship, such as the extent of the anxiogenic potential and the specific effects of different types of sleep deprivation, which remain unclear. As no broad review has been undertaken to evaluate this relationship, we performed a systematic review and meta-analysis regarding the effects of sleep deprivation on state anxiety. Our search strategy encompassed two databases - Pubmed/Medline and Scopus - through which we were able to identify 756 articles. After the selection process, 18 articles, encompassing 34 experiments, composed our final sample. Our analyses indicate that sleep deprivation, whether total or not, leads to a significant increase in state anxiety levels, but sleep restriction does not. Regarding the effect of the length of the period of sleep deprivation, no significant results were observed, but there was a notable tendency for an increase in anxiety in longer sleep deprivations. With regard to tools, the State-Trait Anxiety Inventory (STAI) seems to be the best one to measure sleep-induced anxiogenesis, while the Profile of Mood States (POMS) presented inconclusive results. In conclusion, it can be affirmed that sleep deprivation induces a state of increased anxiety, with similar results also in the case of total sleep deprivation; however, results in more specific experimental conditions are not definitive. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio).

    Science.gov (United States)

    Pinheiro-da-Silva, Jaquelinne; Silva, Priscila Fernandes; Nogueira, Marcelo Borges; Luchiari, Ana Carolina

    2017-03-01

    The zebrafish is an ideal vertebrate model for neurobehavioral studies with translational relevance to humans. Many aspects of sleep have been studied, but we still do not understand how and why sleep deprivation alters behavioral and physiological processes. A number of hypotheses suggest its role in memory consolidation. In this respect, the aim of this study was to analyze the effects of sleep deprivation on memory in zebrafish (Danio rerio), using an object discrimination paradigm. Four treatments were tested: control, partial sleep deprivation, total sleep deprivation by light pulses, and total sleep deprivation by extended light. The control group explored the new object more than the known object, indicating clear discrimination. The partially sleep-deprived group explored the new object more than the other object in the discrimination phase, suggesting a certain degree of discriminative performance. By contrast, both total sleep deprivation groups equally explored all objects, regardless of their novelty. It seems that only one night of sleep deprivation is enough to affect discriminative response in zebrafish, indicating its negative impact on cognitive processes. We suggest that this study could be a useful screening tool for cognitive dysfunction and a better understanding of the effect of sleep-wake cycles on cognition.

  19. Replication and Pedagogy in the History of Psychology IV: Patrick and Gilbert (1896) on Sleep Deprivation

    Science.gov (United States)

    Fuchs, Thomas; Burgdorf, Jeffrey

    2008-01-01

    We report an attempted replication of G. T. W. Patrick and J. A. Gilbert's pioneering sleep deprivation experiment "Studies from the psychological laboratory of the University of Iowa. On the effects of loss of sleep", conducted in 1895/96. Patrick and Gilbert's study was the first sleep deprivation experiment of its kind, performed by some of the…

  20. Sleep deprivation in bright and dim light : antidepressant effects on major depressive disorder

    NARCIS (Netherlands)

    Burg, W. van den; Bouhuys, A.L.; Hoofdakker, R.H. van den; Beersma, D.G.M.

    Twenty-three patients with a major depressive disorder were deprived of a night’s sleep twice weekly, one week staying up in the dimly lit living room of the ward (< 60 lux), and one week in a brightly lit room (> 2000 lux). Immediate, but transient beneficial effects of sleep deprivation were