WorldWideScience

Sample records for oxygen depletion process

  1. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels

    DEFF Research Database (Denmark)

    Shaffer, G.; Olsen, S.M.; Pedersen, Jens Olaf Pepke

    2009-01-01

    Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion and assoc......Ongoing global warming could persist far into the future, because natural processes require decades to hundreds of thousands of years to remove carbon dioxide from fossil-fuel burning from the atmosphere(1-3). Future warming may have large global impacts including ocean oxygen depletion...... solubility from surface-layer warming accounts for most of the enhanced oxygen depletion in the upper 500 m of the ocean. Possible weakening of ocean overturning and convection lead to further oxygen depletion, also in the deep ocean. We conclude that substantial reductions in fossil-fuel use over the next...

  2. Radiosensitization of mouse skin by oxygen and depletion of glutathione

    International Nuclear Information System (INIS)

    Stevens, Graham; Joiner, Michael; Joiner, Barbara; Johns, Helen; Denekamp, Juliana

    1995-01-01

    Purpose: To determine the oxygen enhancement ratio (OER) and shape of the oxygen sensitization curve of mouse foot skin, the extent to which glutathione (GSH) depletion radiosensitized skin, and the dependence of such sensitization on the ambient oxygen tension. Methods and Materials: The feet of WHT mice were irradiated with single doses of 240 kVp x-rays while mice were exposed to carbogen or gases with oxygen/nitrogen mixtures containing 8-100% O 2 . The anoxic response was obtained by occluding the blood supply to the leg of anesthetized mice with a tourniquet, surrounding the foot with nitrogen, and allowing the mice to breathe 10% O 2 . Further experiments were performed to assess the efficacy of this method to obtain an anoxic response. Radiosensitivity of skin was assessed using the acute skin-reaction assay. Glutathione levels were modified using two schedules of dl-buthionine sulphoximine (BSO) and diethylmaleate (DEM), which were considered to produce extensive and intermediate levels of GSH depletion in the skin of the foot during irradiation. Results: Carbogen caused the greatest radiosensitization of skin, with a reproducible enhancement of 2.2 relative to the anoxic response. The OER of 2.2 is lower than other reports for mouse skin. This may indicate that the extremes of oxygenation were not produced, although there was no direct evidence for this. When skin radiosensitivity was plotted against the logarithm of the oxygen tension in the ambient gas, a sigmoid curve with a K value of 17-21% O 2 in the ambient gas was obtained. Depletion of GSH caused minimal radiosensitization when skin was irradiated under anoxic or well-oxygenated conditions. Radiosensitization by GSH depletion was maximal at intermediate oxygen tensions of 10-21% O 2 in the ambient gas. Increasing the extent of GSH depletion led to increasing radiosensitization, with sensitization enhancement ratios of 1.2 and 1.1, respectively, for extensive and intermediate levels of GSH

  3. Macroinvertebrate short-term responses to flow variation and oxygen depletion: A mesocosm approach.

    Science.gov (United States)

    Calapez, Ana R; Branco, Paulo; Santos, José M; Ferreira, Teresa; Hein, Thomas; Brito, António G; Feio, Maria João

    2017-12-01

    In Mediterranean rivers, water scarcity is a key stressor with direct and indirect effects on other stressors, such as water quality decline and inherent oxygen depletion associated with pollutants inputs. Yet, predicting the responses of macroinvertebrates to these stressors combination is quite challenging due to the reduced available information, especially if biotic and abiotic seasonal variations are taken under consideration. This study focused on the response of macroinvertebrates by drift to single and combined effects of water scarcity and dissolved oxygen (DO) depletion over two seasons (winter and spring). A factorial design of two flow velocity levels - regular and low (vL) - with three levels of oxygen depletion - normoxia, medium depletion (dM) and higher depletion (dH) - was carried out in a 5-artificial channels system, in short-term experiments. Results showed that both stressors individually and together had a significant effect on macroinvertebrate drift ratio for both seasons. Single stressor effects showed that macroinvertebrate drift decreased with flow velocity reduction and increased with DO depletion, in both winter and spring experiments. Despite single stressors opposing effects in drift ratio, combined stressors interaction (vL×dM and vL×dH) induced a positive synergistic drift effect for both seasons, but only in winter the drift ratio was different between the levels of DO depletion. Stressors interaction in winter seemed to intensify drift response when reached lower oxygen saturation. Also, drift patterns were different between seasons for all treatments, which may depend on individual's life stage and seasonal behaviour. Water scarcity seems to exacerbate the oxygen depletion conditions resulting into a greater drifting of invertebrates. The potential effects of oxygen depletion should be evaluated when addressing the impacts of water scarcity on river ecosystems, since flow reductions will likely contribute to a higher oxygen

  4. Experimental and analytical study of oxygen depletion in stirred cell suspensions

    International Nuclear Information System (INIS)

    Whillans, D.W.; Rauth, A.M.

    1980-01-01

    The determination and maintenance of constant low but non-zero levels of oxygen is critical in the study of the radiation chemical interactions of nitroimidazoles in mammalian cells in vitro. As well, many of these chemicals have increased toxicity toward hypoxic compared to aerobic cells, although absolute hypoxia probably is not required. Both of these phenomena must be investigated in systems where significant consumption of oxygen takes place, either through radiation depletion or by cellular metabolism. In this paper an analysis has been made of the form of oxygen depletion in stirred cell suspensions with overlying gas phase, and it has been found to conform to the relationship (C[t] - C/sub infinity/) = (C[0] - C/sub infinity/) exp(-k 1 t), where C/sub infinity/ = C/sub g/ - R/k 1 . Here C[t] is the oxygen tension throughout the solution; C/sub g/, the equivalent level in the overlying gas phase; R (concentration units per sec), the depletion rate; k 1 (sec/sup -1/), a physical constant independent of oxygen concentration and depletion rate; and C/sub infinity/, the oxygen level in solution approached at long times. This relationship has been confirmed in detail using a Clark-type oxygen sensor and a high-stability amplifier design due to Koch. Since oxygen levels down to a few hundred parts per million can be determined with accuracy, it has been possible to measure precisely the oxygen levels present in our experimental systems. Implications of these results for the interpretation of data obtained in stirred cell suspension with overlying gas phase under conditions of consumption are discussed

  5. Radiosensitization of CHO cells by the combination of glutathione depletion and low concentrations of oxygen: The effect of different levels of GSH depletion

    International Nuclear Information System (INIS)

    Clark, E.P.; Epp, E.R.; Zachgo, E.A.; Biaglow, J.E.

    1984-01-01

    Recently, the authors have examined the effect of GSH depletion by BSO on CHO cells equilibrated with oxygen at various concentrations (0.05-4.0%) and irradiated with 50 kVp x-rays. This is of interest because of the uncertain radiosensitizing effect GSH depletion may have on cells equilibrated with low oxygen concentrations. GSH depletion (0.1 mM BSO/24 hrs reduced [GSH] ≅ 10% of control) enhanced the radiosensitizing action of moderate (0.4-4.0%) concentrations of oxygen, i.e., GSH depletion reduced the [O/sub 2/] necessary to achieve an equivalent ER by ≅ 2-3 fold. However, GSH depletion was much more effective as a rediosensitizer when cells were equilibrated with low (<0.4%) concentrations of oxygen, i.e., GSH depletion reduced the [O/sub 2/] necessary to achieve an equivalent ER by 8-10 fold. Furthermore, while the addition of exogenous 5 mM GSH restored the ER to that observed when GSH was not depleted, the intracellular [GSH] was not increased. The results of these studies carried out at different levels of GSH depletion are presented

  6. OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN

    International Nuclear Information System (INIS)

    Whittet, D. C. B.

    2010-01-01

    This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (n H ). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as ∼160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

  7. Asphyxiation death caused by oxygen-depleting cargo on a ship.

    Science.gov (United States)

    Sundal, Marjana Kjetland; Lilleng, Peer Kaare; Barane, Hans; Morild, Inge; Vevelstad, Merete

    2017-10-01

    The extreme danger associated with entering enclosed spaces loaded with oxygen-depleting organic cargo in ships and tanks is obviously underestimated, both among crew and management. We present a case report to highlight this occupational hazard and to increase the knowledge about the imperative precautions, in order to prevent future accidents. An experienced customs officer was found lifeless at the bottom of the unattended cargo hold on a ship loaded with woodchips. The oxygen content in the cargo atmosphere was below 2%, which is incompatible with life. Forensic autopsy revealed injuries related to the fall, and there were no positive toxicological findings in blood, lung or urine. Management and workers must be taught about the extreme rapidity of developing unconsciousness and asphyxiant death when entering enclosed spaces loaded with oxygen-depleting cargo. Even a single inhalation can result in unconsciousness and death. Dozens of annual deaths and severe injuries can easily be prevented if simple precautions are followed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of glutathione depletion by buthionine sulfoximine on radiosensitization by oxygen and misonidazole in vitro

    International Nuclear Information System (INIS)

    Shrieve, D.C.; Denekamp, J.; Minchinton, A.I.

    1985-01-01

    Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 μM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure. Removal of BSO resulted in a rapid regeneration of GSH after 50 μM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 μM. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 μM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms

  9. Loss aversion and hypoxia: less loss aversion in oxygen-depleted environment.

    Science.gov (United States)

    Pighin, Stefania; Bonini, Nicolao; Savadori, Lucia; Hadjichristidis, Constantinos; Schena, Federico

    2014-03-01

    Hypoxia, the deprivation of adequate oxygen supply, constitutes a direct threat to survival by disrupting cardiovascular or respiratory homeostasis and eliciting a respiratory distress. Although hypoxia has been shown to increase brain vulnerability and impair basic cognitive functions, only one study has examined its effect on decision-making. The present study examined the effect of mild hypoxia on individual's loss aversion, that is, the tendency to be more affected by losses than equal sized gains. A sample of 26 participants were asked to either accept or reject a series of mixed gambles once in an oxygen-depleted environment (14.1% oxygen concentration) and once in a normoxic environment (20.9% oxygen concentration). Each gamble involved a 50-50 chance of winning or losing specified amounts of money. Mild hypoxia decreased loss aversion: on average in the normoxic condition participants accepted gambles if the gain was at least 2.4 times as large as the loss, whereas in the oxygen-depleted condition participants accepted gambles if the gain was at least 1.7 times as large as the loss. Mild hypoxia may push individuals to be less cautious in daily decisions that involve a trade-off between a gain and a loss.

  10. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  11. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.

    1995-01-01

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  12. Impact of oxygen-depleted water on the vertical distribution of chaetognaths in the northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Kusum, K.K.; Vineetha, G.; Raveendran, T.V.; Muraleedharan, K.R.; Nair, M.; Achuthankutty, C.T.

    The influence of a thick layer of oxygen-depleted water (<0.2 ml l sup(-1)) on the abundance and distribution of chaetognaths was investigated in the northeastern Arabian Sea (NEAS), a natural oxygen-deficient system in the global ocean. The species...

  13. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds: Biofilms and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    James, Garth A. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Ge Zhao, Alice [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Usui, Marcia [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Underwood, Robert A. [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Nguyen, Hung [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Beyenal, Haluk [The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; deLancey Pulcini, Elinor [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Agostinho Hunt, Alessandra [Department of Microbiology and Molecular Genetics, 5180 Biomedical and Physical Sciences, Michigan State University, East Lansing Michigan; Bernstein, Hans C. [Pacific Northwest National Laboratory, Chemical and Biological Signature Science, Richland Washington; Fleckman, Philip [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Olerud, John [Division of Dermatology, Department of Medicine, University of Washington, Seattle Washington; Williamson, Kerry S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Franklin, Michael J. [Center for Biofilm Engineering, Montana State University, Bozeman Montana; Stewart, Philip S. [Center for Biofilm Engineering, Montana State University, Bozeman Montana

    2016-02-16

    Polymicrobial biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms may impede wound healing. In this study, we used oxygen microsensors to measure oxygen transects through in vitro-cultured biofilms, biofilms formed in vivo in a diabetic (db/db) mouse model, and ex vivo human chronic wound specimens. The results show that oxygen levels within both euthanized and live mouse wounds had steep gradients that reached minima ranging from 19 to 61% oxygen partial pressure, compared to atmospheric oxygen levels. The oxygen gradients in the mouse wounds were similar to those observed for clinical isolates cultured in vitro and for human ex vivo scabs. No oxygen gradients were observed for heat-killed scabs, suggesting that active metabolism by the viable bacteria contributed to the reduced oxygen partial pressure of the wounds. To characterize the metabolic activities of the bacteria in the mouse wounds, we performed transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds using Affymetrix microarrays. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results indicated that the bacteria within the wounds also experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results support the hypothesis that the metabolic activities of bacteria in biofilms act as oxygen sinks in chronic wounds and that the depletion of oxygen contributes to the

  14. Studies on oxygen depletion and the toxic effect of sediments; Untersuchungen zur Sauerstoffzehrung und toxischen Wirkung von Sedimenten

    Energy Technology Data Exchange (ETDEWEB)

    Pfitzner, S.; Giest, B.; Wotzka, J. [Bundesanstalt fuer Gewaesserkunde, Berlin (Germany)

    2000-11-01

    Depending on their composition and how they were formed, water sediments contain varying amounts of oxygen-depleting substances. Their portion is particularly high in fine sediment and sediments formed in conjunction with exposure to a high level of wastewater. Particularly in current-free areas like old arms, indentations, sluices and outer ports, sediment forms with a high fine grain content and a correspondingly higher potential for depletion. If, for instance, the sediments are moved and stirred up during dredging, this may impair their oxygen content since oxygen consumption is far higher in a suspended sediment than when it is undisturbed on the water bottom. The very rapid spontaneous chemical oxidation and biological oxidation of reduced substances are possible oxygen-consuming processes. (orig.) [German] Gewaessersedimente enthalten in Abhaengigkeit von ihrer Zusammensetzung und der Art ihrer Entstehung unterschiedliche Mengen an Sauerstoff zehrenden Substanzen. Ihr Anteil ist besonders hoch in Feinsedimenten und solchen, die sich unter starkem Abwassereinfluss bilden konnten. Insbesondere in stroemungsberuhigten Gebieten, wie Altarmen, Ausbuchtungen sowie Schleusen und deren Vorhaefen, reichern sich Sedimente mit hohem Feinkornanteil und dementsprechend hoher potenzieller Zehrungsfaehigkeit an. Werden die Sedimente beispielsweise durch Baggermassnahmen bewegt und aufgewirbelt, kann es zur Beeintraechtigung des Sauerstoffhaushaltes kommen, da der Sauerstoffverbrauch eines Sedimentes bei Suspension um ein Vielfaches hoeher als bei ungestoerter Lagerung am Gewaesserboden sein kann. Als Sauerstoff verbrauchende Prozesse kommen die sehr schnell verlaufende spontane chemische Oxidation sowie die biologische Oxidation reduzierter Substanzen in Betracht. (orig.)

  15. Benthic foraminifera as proxy for oxygen-depleted conditions off the central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Mazumder, A.; Henriques, P.J.; Saraswat, R.

    In order to study the response of benthic foraminifera, especially the rectilinear bi- and tri-serial benthic foraminifera (RBF) to oxygen-depleted conditions from the Arabian Sea off central west coast of India, 103 surface sediment samples...

  16. Effect of electron affinic hypoxic cell sensitizers on the radiolytic depletion of oxygen in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.

    1982-01-01

    When CHO cells are equilibrated with a low level of oxygen (e.g. 0.4% O 2 ) and irradiated with single 3 ns pulses of electrons, a breaking survival curve is observed. This effect is believed to be the result of radiolytic oxygen depletion and can be prevented by the presence of a relatively low concentraton of hypoxic cell radiosensitizer. This prevention of the breaking survival curve has been observed for 2- and 5-nitroimidazoles, nitrofurans, and diamide. It is hypothesized that the sensitizer acts by competing wth oxygen for the radiation-induced intracellular oxygen-binding species, perhaps a hydrated electron adduct, leaving oxygen free to participate in radiosensitization reactions during the lifetime of the oxygen-sensitive radiation-induced target sites for lethal damage, probably DNA radicals produced by hydroxyl radical attack. The proposed role of the sensitizer in the interference with oxygen depletion is a transient phenomenon, occuring on the microsecond to millisecond time scale

  17. Depleted uranium processing and fluorine extraction

    International Nuclear Information System (INIS)

    Laflin, S.T.

    2010-01-01

    Since the beginning of the nuclear era, there has never been a commercial solution for the large quantities of depleted uranium hexafluoride generated from uranium enrichment. In the United States alone, there is already in excess of 1.6 billion pounds (730 million kilograms) of DUF_6 currently stored. INIS is constructing a commercial uranium processing and fluorine extraction facility. The INIS facility will convert depleted uranium hexafluoride and use it as feed material for the patented Fluorine Extraction Process to produce high purity fluoride gases and anhydrous hydrofluoric acid. The project will provide an environmentally friendly and commercially viable solution for DUF_6 tails management. (author)

  18. Recent oxygen depletion and benthic faunal change in shallow areas of Sannäs Fjord, Swedish west coast

    Science.gov (United States)

    Nordberg, Kjell; Polovodova Asteman, Irina; Gallagher, Timothy M.; Robijn, Ardo

    2017-09-01

    Sannäs Fjord is a shallow fjord (European Union. Yet, observations during the summers of 2008-2011 show that the shallow inner fjord inlet experiences severe oxygen depletion at 5-12 m water depth. To explore if the oxygen depletion is only a recent phenomenon and to evaluate the potential of fjord sediments to archive such environmental changes, in 2008 and 2009 seven sediment cores were taken along a transect oriented lengthwise in the fjord. The cores were analysed for organic carbon, C/N, benthic foraminifera and lead pollution records (as relative age marker). Carbon content increases in most of the cores since the 1970-80s, while C/N ratio decreases from the core base upward since 1995. Foraminiferal assemblages in most core stratigraphies are dominated by agglutinated species. Calcareous species (mainly elphidiids) have become dominant in the upper part of the records since the late 1990s or 2000 (the inner fjord and the deepest basin) and since the 1950-70s (the outer fjord). In the inner Sannäs Fjord, an increase of agglutinated foraminiferal species (e.g. Eggerelloides scaber) and organic inner linings occurred since the 1970s, suggesting an intensification of taphonomic processes affecting postmortem calcareous shell preservation. A study of living vs. dead foraminiferal assemblages undertaken during June-August 2013 demonstrates that in the shallow inner fjord, strong carbonate dissolution occurs within 1-3 months following the foraminiferal growth. The dissolution is linked to corrosive conditions present within the sediment - bottom water interface, and is likely caused by the organic matter decay, resulting in severe hypoxia to anoxia. Oxygen depletion at < 10 m w.d. develops fast due to the small water volume and limited bottom water exchange caused by a close proximity of pycnocline to the fjord bottom. Sediment cores from the deep fjord basin and the outer fjord are, on the contrary, characterized by good to excellent preservation of

  19. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    International Nuclear Information System (INIS)

    Mousis, Olivier; Lunine, Jonathan I.; Madhusudhan, Nikku; Johnson, Torrence V.

    2012-01-01

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) ≥ 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O ∼ 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of ∼2 × solar (instead of ∼7 × solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O ∼ 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  20. Too Depleted to Try? Testing the Process Model of Ego Depletion in the Context of Unhealthy Snack Consumption.

    Science.gov (United States)

    Haynes, Ashleigh; Kemps, Eva; Moffitt, Robyn

    2016-11-01

    The process model proposes that the ego depletion effect is due to (a) an increase in motivation toward indulgence, and (b) a decrease in motivation to control behaviour following an initial act of self-control. In contrast, the reflective-impulsive model predicts that ego depletion results in behaviour that is more consistent with desires, and less consistent with motivations, rather than influencing the strength of desires and motivations. The current study sought to test these alternative accounts of the relationships between ego depletion, motivation, desire, and self-control. One hundred and fifty-six undergraduate women were randomised to complete a depleting e-crossing task or a non-depleting task, followed by a lab-based measure of snack intake, and self-report measures of motivation and desire strength. In partial support of the process model, ego depletion was related to higher intake, but only indirectly via the influence of lowered motivation. Motivation was more strongly predictive of intake for those in the non-depletion condition, providing partial support for the reflective-impulsive model. Ego depletion did not affect desire, nor did depletion moderate the effect of desire on intake, indicating that desire may be an appropriate target for reducing unhealthy behaviour across situations where self-control resources vary. © 2016 The International Association of Applied Psychology.

  1. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event

    Science.gov (United States)

    Killingsworth, Bryan A.; Hayles, Justin A.; Zhou, Chuanming; Bao, Huiming

    2013-10-01

    The ∼635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently 17O-depleted sulfate (SO42-) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly 17O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous 17O signal was imparted to sulfate of oxidative weathering origin. However, 17O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate 17O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The 17O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ13C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  2. Dynamics of oxygen depletion in the nearshore of a coastal embayment of the southern Benguela upwelling system

    CSIR Research Space (South Africa)

    Pitcher, GC

    2014-04-01

    Full Text Available is characterized by seasonally recurrent hypoxia (<1.42 ml l(sup-1)) associated with a deep pool of oxygen-depleted water and episodic anoxia (<0.02 ml l(sup-1)) driven by the nearshore (<20 m isobath) decay of red tide. Coastal wind forcing influences DO...

  3. Resource depletion promotes automatic processing: implications for distribution of practice.

    Science.gov (United States)

    Scheel, Matthew H

    2010-12-01

    Recent models of cognition include two processing systems: an automatic system that relies on associative learning, intuition, and heuristics, and a controlled system that relies on deliberate consideration. Automatic processing requires fewer resources and is more likely when resources are depleted. This study showed that prolonged practice on a resource-depleting mental arithmetic task promoted automatic processing on a subsequent problem-solving task, as evidenced by faster responding and more errors. Distribution of practice effects (0, 60, 120, or 180 sec. between problems) on rigidity also disappeared when groups had equal time on resource-depleting tasks. These results suggest that distribution of practice effects is reducible to resource availability. The discussion includes implications for interpreting discrepancies in the traditional distribution of practice effect.

  4. A Review of Protist Grazing Below the Photic Zone Emphasizing Studies of Oxygen-Depleted Water Columns and Recent Applications of In situ Approaches

    Directory of Open Access Journals (Sweden)

    Virginia P. Edgcomb

    2017-04-01

    Full Text Available Little is still known of the impacts of protist grazing on bacterioplankton communities in the dark ocean. Furthermore, the accuracy of assessments of in situ microbial activities, including protist grazing, can be affected by sampling artifacts introduced during sample retrieval and downstream manipulations. Potential artifacts may be increased when working with deep-sea samples or samples from chemically unique water columns such as oxygen minimum zones (OMZs. OMZs are oxygen-depleted regions in the ocean, where oxygen concentrations can drop to <20 μM. These regions are typically located near eastern boundary upwelling systems and currently occur in waters occupying below about 8% of total ocean surface area, representing ~1% of the ocean's volume. OMZs have a profound impact not only on the distribution of marine Metazoa, but also on the composition and activities of microbial communities at the base of marine food webs. Here we present an overview of current knowledge of protist phagotrophy below the photic zone, emphasizing studies of oxygen-depleted waters and presenting results of the first attempt to implement new technology for conducting these incubation studies completely in situ (the Microbial Sampling- Submersible Incubation Device, MS-SID. We performed 24-h incubation experiments in the Eastern Tropical South Pacific (ETSP OMZ. This preliminary study shows that up to 28% of bacterial biomass may be consumed by protists in waters where oxygen concentrations were down to ~4.8 μM and up to 13% at a station with nitrite accumulation where oxygen concentrations were undetectable. Results also show that shipboard measurements of grazing rates were lower than rates measured from the same water using the MS-SID, suggesting that in situ experiments help to minimize artifacts that may be introduced when conducting incubation studies using waters collected from below the photic zone, particularly from oxygen-depleted regions of the water

  5. Oxygen depletion of bismuth molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Yong, L.K.; Howe, R.F.; Keulks, G.W.; Hall, W.K.

    1978-05-01

    Pure ..cap alpha..-phase bismuth molybdate (Bi/sub 2/Mo/sub 3/O/sub 12/), which is known to be weakly active for selective oxidation, and pure ..gamma..-phase bismuth molybdate (Bi/sub 2/MoO/sub 6/), which has good activity, were subjected to oxidation-reduction cycles with known amounts of hydrogen and oxygen, at 300/sup 0/-570/sup 0/C and with evacuation steps between treatments. The volume of oxygen consumed during reoxidation was equal to half the hydrogen consumed during the reduction on the ..cap alpha..-phase, which indicated that no hydrogen was retained during reduction. For the ..gamma..-phase, the oxygen consumption was greater than half of the hydrogen consumption and it increased with extent of reduction. The excess oxygen was apparently consumed by filling anion vacancies formed during outgassing subsequent to the reduction step. ESR spectroscopy and temperature-programed oxidation-reduction indicated that lattice oxide ions which bridge between bismuth and molybdenum layers of the koechlinite structure become more labile when the catalyst is in a partially reduced state, and that this effect is greater in the ..gamma..- than the ..cap alpha..-phase. Table and 15 references.

  6. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, Olivier [Universite de Franche-Comte, Institut UTINAM, CNRS/INSU, UMR 6213, Observatoire des Sciences de l' Univers de Besancon (France); Lunine, Jonathan I. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Department of Physics, Yale University, New Haven, CT 06511 (United States); Johnson, Torrence V., E-mail: olivier.mousis@obs-besancon.fr [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-05-20

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) {>=} 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O {approx} 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of {approx}2 Multiplication-Sign solar (instead of {approx}7 Multiplication-Sign solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O {approx} 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  7. Vitamin D Depletion in Pregnancy Decreases Survival Time, Oxygen Saturation, Lung Weight and Body Weight in Preterm Rat Offspring.

    Directory of Open Access Journals (Sweden)

    Sine Lykkedegn

    Full Text Available Animal studies suggest a role of vitamin D in fetal lung development although not studied in preterm animals. We tested the hypothesis that vitamin D depletion aggravates respiratory insufficiency in preterm rat offspring. Furthermore, the effects of vitamin D depletion on growth and lung surfactant were investigated. Female Sprague-Dawley rats were randomly assigned low vitamin D (VDL or control diet before mating and followed with serum 25-hydroxyvitamin D (s-25(OHD determinations. After cesarean section at gestational day 19 (E19 or day 22 (E22, placental weight, birth weight, crown-rump-length (CRL, oxygenation (SaO2 at 30 min and survival time were recorded. The pup lungs were analyzed for phospholipid levels, surfactant protein A-D mRNA and the expression of the vitamin D receptor (VDR. S-25(OHD was significantly lower in the VDL group at cesarean section (12 vs. 30nmol/L, p<0.0001. Compared to the controls, E19 VDL pups had lower birth weight (2.13 vs. 2.29g, p<0.001, lung weight (0.09 vs. 0.10g, p = 0.002, SaO2 (54% vs. 69%, p = 0.002 as well as reduced survival time (0.50 vs. 1.25h, p<0.0001. At E22, the VDL-induced pulmonary differences were leveled out, but VDL pups had lower CRL (4.0 vs. 4.5cm, p<0.0001. The phospholipid levels and the surfactant protein mRNA expression did not differ between the dietary groups. In conclusion, Vitamin D depletion led to lower oxygenation and reduced survival time in the preterm offspring, associated with reduced lung weight and birth weight. Further studies of vitamin D depletion in respiratory insufficiency in preterm neonates are warranted.

  8. Oxygen Dependent Biocatalytic Processes

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard

    Enzyme catalysts have the potential to improve both the process economics and the environ-mental profile of many oxidation reactions especially in the fine- and specialty-chemical industry, due to their exquisite ability to perform stereo-, regio- and chemo-selective oxida-tions at ambient...... to aldehydes and ketones, oxyfunctionalization of C-H bonds, and epoxidation of C-C double bonds. Although oxygen dependent biocatalysis offers many possibilities, there are numerous chal-lenges to be overcome before an enzyme can be implemented in an industrial process. These challenges requires the combined...... far below their potential maximum catalytic rate at industrially relevant oxygen concentrations. Detailed knowledge of the en-zyme kinetics are therefore required in order to determine the best operating conditions and design oxygen supply to minimize processing costs. This is enabled...

  9. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    Science.gov (United States)

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  10. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Michaels, H.B.; Ling, C.C.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    When CHO cells, equilibrated with 0.44% oxygen, are irradiated with single 3-nsec pulses of electrons from a 600-kV-field emission source, a breaking survival curve is observed. The breaking behavior, believed to be the result of radiolytic oxygen depletion, can be prevented by the presence of a relatively low concentration of the hypoxic cell sensitizer misonidazole; similar results are obtained with metronidazole and Ro-05-9963. The resulting survival curves exhibit a sensitized response similar to that obtained with conventional dose rate radiation for CHO cells under this oxygen concentration. This degree of sensitization is greater than that observed for CHO cells irradiated at ultrahigh dose rates under the same concentration of sensitizer in nitrogen. The data suggest that the nitroimidazole compounds interfere with the radiation chemical oxygen depletion process and that the radiosensitization observed in the nonbreaking survival curve is the consequence of sensitization by both the nitroimidazole and, primarily, the oxygen rather than a direct subsitution for oxygen by the sensitizer. This conclusion is also supported by data obtained in double-pulse experiments. The results are discussed with regard to the mechanisms of the oxygen depletion process and radiosensitization

  11. Biogeochemistry of Recently Discovered Oxygen-Depleted Mesoscale Eddies in the Open Eastern Tropical North Atlantic

    Science.gov (United States)

    Fiedler, B.; Grundle, D.; Löscher, C. R.; Schütte, F.; Hauss, H.; Karstensen, J.; Silva, P.; Koertzinger, A.

    2016-02-01

    Severely oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered only recently. So far, few remote surveys conducted with autonomous platforms such as moorings, underwater gliders and profiling floats have provided a very first insight into these mesoscale eddies. Due to their hydrographic properties such water bodies are well isolated from ambient waters and therefore can develop severe near-surface oxygen deficits. In this presentation we show results from the first-ever biogeochemical survey of one of these anticyclonic mode-water eddies conducted in spring 2014 at the Cape Verde Ocean Observatory (CVOO) off West Africa. Very low oxygen concentrations of 4.5 µmol kg-1 associated with a CO2 partial pressure of 1164 µatm were found close to the core of the eddy (at 100 m depth). Measurements for nitrate and phosphate also show exceptional high values. Findings point to rapid oxygen consumption through remineralization of organic matter along with depressed lateral mixing of this water body. Indeed, rates for oxygen utilization (OUR) were found to be enhanced when compared to known values in the Atlantic. A closer look into the carbonate system inside the eddýs core revealed disadvantageous conditions for calcifying organisms with the pH dropping down to 7.6 and the Aragonite saturation level reaching 1 at the lower boundary of the euphotic zone. Finally, strong indications for a shift in nitrogen cycling in the core of the eddy from nitrification towards denitrification were found based on gene abundance and N2O-isotope analyses. To our knowledge such severe hypoxic and even suboxic near-surface conditions along with active denitrification have never been reported before in the open Atlantic Ocean.

  12. Menadione induces the formation of reactive oxygen species and depletion of GSH-mediated apoptosis and inhibits the FAK-mediated cell invasion.

    Science.gov (United States)

    Kim, Yun Jeong; Shin, Yong Kyoo; Sohn, Dong Suep; Lee, Chung Soo

    2014-09-01

    Menadione induces apoptosis in tumor cells. However, the mechanism of apoptosis in ovarian cancer cells exposed to menadione is not clear. In addition, it is unclear whether menadione-induced apoptosis is mediated by the depletion of glutathione (GSH) contents that is associated with the formation of reactive oxygen species. Furthermore, the effect of menadione on the invasion and migration of human epithelial ovarian cancer cells has not been studied. Therefore, we investigated the effects of menadione exposure on apoptosis, cell adhesion, and cell migration using the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. The results suggest that menadione may induce apoptotic cell death in ovarian carcinoma cell lines by activating the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The apoptotic effect of menadione appears to be mediated by the formation of reactive oxygen species and the depletion of GSH. Menadione inhibited fetal-bovine-serum-induced cell adhesion and migration of OVCAR-3 cells, possibly through the suppression the focal adhesion kinase (FAK)-dependent activation of cytoskeletal-associated components. Therefore, menadione might be beneficial in the treatment of epithelial ovarian adenocarcinoma and combination therapy.

  13. A latitudinal study of oxygen isotopes within horsehair

    Science.gov (United States)

    Thompson, E.; Bronk Ramsey, C.; McConnell, J. R.

    2016-12-01

    This study aims to explore the hypothesis that 'if oxygen isotope ratios deplete with decreasing temperature then a study of oxygen isotope ratios within horsehair from Oxfordshire to Iceland will show a latitudinal depletion gradient'. By looking at oxygen isotope values at different geographical positions, we can track the relationship with latitude and with different regional climate features. This will provide a firmer understanding of how to compare climate records from different locations. Additionally, a comparison of the horse breeds from this study to those analysed within previous studies will create an even better understanding of the intra-species variation within the δ18O values of horsehair. A total of 24 horses were sampled on the 7th March from Thordale Stud in Shetland, the Icelandic Food And Veterinary Authority in Iceland, the Exmoor Pony Centre in Exmoor and the Pigeon House Equestrian Centre in Oxfordshire. By starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. The samples were analysed for oxygen isotope values using an IRMS coupled within a Sercon HTEA. Preliminary results show a latitudinal gradient is evident on comparison between the locations, consistent with the findings of Darling and Talbot's study of fresh water isotopes in the British Isles (2003). These results support the hypothesis, showing that a study of oxygen isotope ratios within horse hair from Oxfordshire to Iceland showing a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures. Darling, W. and Talbot, J. (2003). The O and H stable isotope composition of freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth System Science, 7(2), pp.163-181.

  14. Effects of nickel chloride and oxygen depletion on behaviour and vitality of zebrafish (Danio rerio, Hamilton, 1822) (Pisces, Cypriniformes) embryos and larvae

    International Nuclear Information System (INIS)

    Kienle, Cornelia; Koehler, H.-R.; Filser, Juliane; Gerhardt, Almut

    2008-01-01

    We examined acute (2 h exposure of 5-day-old larvae) and subchronic (exposure from fertilization up to an age of 11 days) effects of NiCl 2 .6H 2 O on embryos and larvae of zebrafish (Danio rerio), both alone and in combination with oxygen depletion. The following endpoints were recorded: acute exposure: locomotory activity and survival; subchronic exposure: hatching rate, deformations, locomotory activity (at 5, 8 and 11 days) and mortality. In acute exposures nickel chloride (7.5-15 mg Ni/L) caused decreasing locomotory activity. Oxygen depletion (≤2.45 ± 0.16 mg O 2 /L) also resulted in significantly reduced locomotory activity. In the subchronic test, exposure to ≥10 mg Ni/L resulted in delayed hatching at an age of 96 h, in decreased locomotory activity at an age of 5 days, and increased mortality at an age of 11 days (LC 20 = 9.5 mg Ni/L). The observed LOEC for locomotory activity (7.5 mg Ni/L) is in the range of environmentally relevant concentrations. Since locomotory activity was already affected by acute exposure, this parameter is recommended to supplement commonly recorded endpoints of toxicity. - Increasing concentrations of nickel chloride and decreasing concentrations of oxygen lead to reduced vitality and locomotory activity in Danio rerio embryos and larvae

  15. Verification of the cross-section and depletion chain processing module of DRAGON 3.06

    International Nuclear Information System (INIS)

    Chambon, R.; Marleau, G.; Zkiek, A.

    2008-01-01

    In this paper we present a verification of the module of the lattice code DRAGON 3.06 used for processing microscopic cross-section libraries, including their associated depletion chain. This verification is performed by reprogramming the capabilities of DRAGON in another language (MATLAB) and testing them on different problems typical of the CANDU reactor. The verification procedure consists in first programming MATLAB m-files to read the different cross section libraries in ASCII format and to compute the reference cross-sections and depletion chains. The same information is also recovered from the output files of DRAGON (using different m-files) and the resulting cross sections and depletion chain are compared with the reference library, the differences being evaluated and tabulated. The results show that the cross-section calculations and the depletion chains are correctly processed in version 3.06 of DRAGON. (author)

  16. Controlled temperature expansion in oxygen production by molten alkali metal salts

    Science.gov (United States)

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  17. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  18. Sedimentary oxygen dynamics in a seasonally hypoxic basin

    NARCIS (Netherlands)

    Seitaj, D.; Sulu-Gambari, F; Burdorf, L.D.W.; Romero-Ramirez, A.; Maire, O.; Malkin, S.Y.; Slomp, C. P.; Meysman, F.J.R.

    2017-01-01

    Seasonal hypoxia refers to the oxygen depletion that occurs in summer in the bottom water of stratified systems, and is increasingly observed in coastal areas worldwide. The process induces a seasonal cycle on the biogeochemistry of the underlying sediments, which remains poorly quantified. Here, we

  19. Sedimentary oxygen dynamics in a seasonally hypoxic basin

    NARCIS (Netherlands)

    Seitaj, Dorina; Sulu-Gambari, Fatimah; Burdorf, Laurine D. W.; Romero-Ramirez, Alicia; Maire, Olivier; Malkin, Sairah Y.; Slomp, Caroline P.; Meysman, Filip J.R.

    Seasonal hypoxia refers to the oxygen depletion that occurs in summer in the bottom water of stratified systems, and is increasingly observed in coastal areas worldwide. The process induces a seasonal cycle on the biogeochemistry of the underlying sediments, which remains poorly quantified. Here, we

  20. Vitamin D Depletion in Pregnancy Decreases Survival Time, Oxygen Saturation, Lung Weight and Body Weight in Preterm Rat Offspring

    DEFF Research Database (Denmark)

    Lykkedegn, Sine; Sorensen, Grith Lykke; Beck-Nielsen, Signe Sparre

    2016-01-01

    Animal studies suggest a role of vitamin D in fetal lung development although not studied in preterm animals. We tested the hypothesis that vitamin D depletion aggravates respiratory insufficiency in preterm rat offspring. Furthermore, the effects of vitamin D depletion on growth and lung...... surfactant were investigated. Female Sprague-Dawley rats were randomly assigned low vitamin D (VDL) or control diet before mating and followed with serum 25-hydroxyvitamin D (s-25(OH)D) determinations. After cesarean section at gestational day 19 (E19) or day 22 (E22), placental weight, birth weight, crown......-rump-length (CRL), oxygenation (SaO2) at 30 min and survival time were recorded. The pup lungs were analyzed for phospholipid levels, surfactant protein A-D mRNA and the expression of the vitamin D receptor (VDR). S-25(OH)D was significantly lower in the VDL group at cesarean section (12 vs. 30nmol/L, p

  1. Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    Science.gov (United States)

    Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.

    2012-01-01

    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.

  2. Novel Membranes and Processes for Oxygen Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions

  3. The enhanced cytotoxicity of misonidazole in the thiol depleted state - An oxygen dependent mechanism

    International Nuclear Information System (INIS)

    Tuttle, S.W.; Varnes, M.E.; Donahue, L.; Biaglow, J.E.

    1985-01-01

    Incubating A549 cells in the presence of L-buthionine-S, R-sulfoximine and misonidazole under aerobic conditions results in lowered rates of cell growth and greater cytotoxicity than is seen with either drug alone. The authors previously demonstrated the accumulation of hydrogen peroxide from cells treated with misonidazole following the inhibition of GSH-peroxidase with thiol depleting agents. They hypothesize that the enhancement of misonidazole toxicity by L-BSO results from the increased exposure to hydrogen peroxide, and the possible formation of the highly reactive hydroxyl radical in the presence of trace metals via Fenton chemistry. Support for this hypothesis comes from their observations that addition of radical scavengers (such as SOD and catalase) and nutritional antioxidants (vitamin E) to the culture medium will partially inhibit the cytotoxic effects. Further work is being done to measure the products of reaction of toxic oxygen species with cellular macromolecules, i.e. lipids

  4. Potential involvement of oxygen intermediates and glutathione depletion in UV-induced epidermal cell injury in vitro

    International Nuclear Information System (INIS)

    Hsieh, G.C.; Acosta, D.

    1991-01-01

    Generation of reactive oxygen species (ROS) and depletion of glutathione (GSH) are suggested as the cytotoxic mechanisms for UVB-induced cellular damage. Primary monolayer cultures of epidermal keratinocytes (KCs) prepared from the skin of neonatal rats were irradiated with UVB at levels of 0.25-3.0 J/cm 2 . Cytotoxicity was measured at 3, 6, and 12 hr after UVB radiation. Exposure of KCs to UVB resulted in time- and dose-related toxic responses as determined by plasma membrane integrity, lysosomal function and mitochondrial metabolic activity. Irradiated KCs generated superoxide in a dose-dependent manner when compared to sham-irradiated cells. Superoxide formation, which occurred before and concomitant with cell injury, was decreased by superoxide dismutase (SOD). Cell injury was also significantly prevented by ROS scavengers, SOD and catalase. Pretreatment of cells with endocytosis inhibitors, cytochalasin B and methylamine, suppressed the ability of SOD and catalase to protect keratinocytes from UVB-induced toxicity. Irradiation of cells with UVB caused rapid depletion of GSH to about 30% of unirradiated levels within 15 min. UVB-irradiation led to a rapid transient increase in GSH peroxidase activity, concomitant with a marked decrease in the GSH/GSSG ratio. After 1 hr., while the GSH/GSSG ratio remained low, the GSH peroxidase activity declined below the control levels in UVB-treated epidermal cells. Following extensive GSH depletion in cells preincubated with 0.1 mM buthiomine sulfoximine, KCs became strongly sensitized to the cytotoxic action of UVB. These results indicate that UVB-induced cell injury in cultured KCs may be mediated by ROs and that endogenous GSH may play an important protective role against the cytotoxic action of UVB

  5. DUPoly process for treatment of depleted uranium and production of beneficial end products

    International Nuclear Information System (INIS)

    Kalb, P.D.; Adams, J.W.; Lageraaen, P.R.; Cooley, C.R.

    2000-01-01

    The present invention provides a process of encapsulating depleted uranium by forming a homogeneous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles

  6. Characterization of oxygen dimer-enriched silicon detectors

    CERN Document Server

    Boisvert, V; Moll, M; Murin, L I; Pintilie, I

    2005-01-01

    Various types of silicon material and silicon p+n diodes have been treated to increase the concentration of the oxygen dimer (O2i) defect. This was done by exposing the bulk material and the diodes to 6 MeV electrons at a temperature of about 350 °C. FTIR spectroscopy has been performed on the processed material confirming the formation of oxygen dimer defects in Czochralski silicon pieces. We also show results from TSC characterization on processed diodes. Finally, we investigated the influence of the dimer enrichment process on the depletion voltage of silicon diodes and performed 24 GeV/c proton irradiations to study the evolution of the macroscopic diode characteristics as a function of fluence.

  7. The influence of oxygen on the induction of radiation damage in DNA in mammalian cells after sensitization by intracellular glutathione depletion

    International Nuclear Information System (INIS)

    Schans, G.P. van der; Vos, O.; Roos-Verheij, W.S.D.; Lohman, P.H.M.

    1986-05-01

    Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and NPSH (non-protein-bound SH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand DNA breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20% for the 3 types of radiation damage. Also under severely hypoxic conditions (0.01 μM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30%). At somewhat higher concentrations of oxygen (0.5-10 μM) however, the sensitization amounted to about 90% for the induction of ssb and dsb and about 50% for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen. (Auth.)

  8. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  9. Self-regulation and selective exposure: the impact of depleted self-regulation resources on confirmatory information processing.

    Science.gov (United States)

    Fischer, Peter; Greitemeyer, Tobias; Frey, Dieter

    2008-03-01

    In the present research, the authors investigated the impact of self-regulation resources on confirmatory information processing, that is, the tendency of individuals to systematically prefer standpoint-consistent information to standpoint-inconsistent information in information evaluation and search. In 4 studies with political and economic decision-making scenarios, it was consistently found that individuals with depleted self-regulation resources exhibited a stronger tendency for confirmatory information processing than did individuals with nondepleted self-regulation resources. Alternative explanations based on processes of ego threat, cognitive load, and mood were ruled out. Mediational analyses suggested that individuals with depleted self-regulation resources experienced increased levels of commitment to their own standpoint, which resulted in increased confirmatory information processing. In sum, the impact of ego depletion on confirmatory information search seems to be more motivational than cognitive in nature.

  10. Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific

    Science.gov (United States)

    Thamdrup, Bo; Dalsgaard, Tage; Revsbech, Niels Peter

    Oxygen minimum zones (OMZs) as found in the Eastern Pacific and Indian Ocean are biogeochemical hot spots with a disproportionately large role in the marine nitrogen cycle, and they are important components of the highly productive ecosystems in which they occur. Although the oxygen-depleted waters have been known for a century, oxygen levels inside them are not well constrained and the regulation of their anaerobic processes by oxygen is poorly understood. We deployed highly sensitive STOX oxygen sensors with a detection limit of 10 nmol kg-1 in combination with conventional hydrographic oxygen sensors along a cruise track transecting the Eastern South Pacific OMZ from South to North along the coast of Chile and Peru. Oxygen was below the detection limit throughout the ˜200 m thick OMZ core in most casts with STOX sensors. The only exception was an offshore location off Peru where oxygen was 10-50 nmol kg-1 in the core, likely as the result of a transient intrusion. Oxygen was also not detected in the OMZ core in further casts with conventional sensors, which had a detection limit of 90 nmol kg-1 after STOX-based zero calibration. Our measurements tighten the constraints on typical oxygen concentrations in the inner part of the OMZ by at least an order of magnitude relative to previous reports. Nitrite only accumulated when oxygen was depleted below 50 nmol kg-1, which indicates that nitrogen cycling is much more sensitive to oxygen than previously estimated. We argue that extreme oxygen depletion to low nanomalar or even picomolar concentrations is a normal condition in the South Pacific OMZ, and suggest that the OMZ core is in fact functionally anoxic over wide regions for extended periods. Our results further indicate that oxygen dynamics in the low nanomolar range play an important role in OMZ biogeochemistry.

  11. Methane Post-Processing for Oxygen Loop Closure

    Science.gov (United States)

    Greenwood, Zachary W.; Abney, Morgan B.; Miller, Lee

    2016-01-01

    State-of-the-art United States Atmospheric Revitalization carbon dioxide (CO2) reduction is based on the Sabatier reaction process, which recovers approximately 50% of the oxygen (O2) from crew metabolic CO2. Oxygen recovery from carbon dioxide is constrained by the limited availability of reactant hydrogen. Post-processing of methane to recover hydrogen with the Umpqua Research Company Plasma Pyrolysis Assembly (PPA) has the potential to further close the Atmospheric Revitalization oxygen loop. The PPA decomposes methane into hydrogen and hydrocarbons, predominantly acetylene, and a small amount of solid carbon. The hydrogen must then be purified before it can be recycled for additional oxygen recovery. Long duration testing and evaluation of a four crew-member sized PPA and a discussion of hydrogen recycling system architectures are presented.

  12. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth.

    Science.gov (United States)

    Cramer, Shira L; Saha, Achinto; Liu, Jinyun; Tadi, Surendar; Tiziani, Stefano; Yan, Wupeng; Triplett, Kendra; Lamb, Candice; Alters, Susan E; Rowlinson, Scott; Zhang, Yan Jessie; Keating, Michael J; Huang, Peng; DiGiovanni, John; Georgiou, George; Stone, Everett

    2017-01-01

    Cancer cells experience higher oxidative stress from reactive oxygen species (ROS) than do non-malignant cells because of genetic alterations and abnormal growth; as a result, maintenance of the antioxidant glutathione (GSH) is essential for their survival and proliferation. Under conditions of elevated ROS, endogenous L-cysteine (L-Cys) production is insufficient for GSH synthesis. This necessitates uptake of L-Cys that is predominantly in its disulfide form, L-cystine (CSSC), via the xCT(-) transporter. We show that administration of an engineered and pharmacologically optimized human cyst(e)inase enzyme mediates sustained depletion of the extracellular L-Cys and CSSC pool in mice and non-human primates. Treatment with this enzyme selectively causes cell cycle arrest and death in cancer cells due to depletion of intracellular GSH and ensuing elevated ROS; yet this treatment results in no apparent toxicities in mice even after months of continuous treatment. Cyst(e)inase suppressed the growth of prostate carcinoma allografts, reduced tumor growth in both prostate and breast cancer xenografts and doubled the median survival time of TCL1-Tg:p53 -/- mice, which develop disease resembling human chronic lymphocytic leukemia. It was observed that enzyme-mediated depletion of the serum L-Cys and CSSC pool suppresses the growth of multiple tumors, yet is very well tolerated for prolonged periods, suggesting that cyst(e)inase represents a safe and effective therapeutic modality for inactivating antioxidant cellular responses in a wide range of malignancies.

  13. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal.

    Directory of Open Access Journals (Sweden)

    Jessica U Meir

    Full Text Available Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2 measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris, demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest. This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its

  14. Operating experience in processing of differently sourced deeply depleted uranium oxide and production of deeply depleted uranium metal ingots

    International Nuclear Information System (INIS)

    Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over

  15. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  16. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  17. The Role of Work-home Interference and Workplace Learning in the Energy-depletion Process

    NARCIS (Netherlands)

    Ruysseveldt, Joris; Proost, Karin; Verboon, Peter

    2011-01-01

    In this study, we tested a work stress model which incorporates both an energydepletion and a workplace learning process. In the energy-depletion process, workhome interference was assumed to mediate the relationship between job demands (workload, emotional demands) and psychological fatigue. In

  18. Oxygen production processes on the Moon: An overview

    Science.gov (United States)

    Taylor, Lawrence A.; Carrier, W. David, III

    1991-01-01

    The production of oxygen on the Moon utilizing indigenous material is paramount to a successful lunar colonization. Several processes were put forth to accomplish this. The lunar liquid oxygen (LLOX) generation schemes which have received the most study to date are those involving: (1) the reduction of ilmenite (FeTiO3) by H2, C, CO, CH4, CO-Cl2 plasma; (2) magma electrolysis, both unadulterated and fluoride-fluxed, and (3) several others, including carbo-chlorination, HF acid leaching, fluorine extraction, magma oxidation, and vapor pyrolysis. The H2 reduction of ilmenite and magma electrolysis processes have received the most study to date. At this stage of development, they both appear feasible schemes with various pros and cons. However, all processes should be addressed at least at the onset of the considerations. It is ultimatley the energy requirements of the entire process, including the acquisition of feedstock, which will determine the mode of oxygen productions. There is an obvious need for considerably more experimentation and study. Some of these requisite studies are in progress, and several of the most studied and feasible processes for winning oxygen from lunar materials are reviewed.

  19. Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.

    Science.gov (United States)

    Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B

    2017-10-01

    This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.

  20. Characterization of depleted uranium oxides fabricated using different processing methods

    International Nuclear Information System (INIS)

    Hastings, E.P.; Lewis, C.; FitzPatrick, J.; Rademacher, D.; Tandon, L.

    2008-01-01

    Identifying both physical and chemical characteristics of Special Nuclear Material (SNM) production processes is the corner stone of nuclear forensics. Typically, processing markers are based on measuring an interdicted sample's bulk chemical properties, such as the elemental or isotopic composition, or focusing on the chemical and physical morphology of only a few particles. Therefore, it is imperative that known SNM processes be fully characterized from bulk to trace level for each particle size range. This report outlines a series of particle size measurements and fractionation techniques that can be applied to a bulk SNM powders, categorizing both chemical and physical properties in discrete particle size fractions. This will be demonstrated by characterizing the process signatures of a series of different depleted uranium oxides prepared at increasing firing temperatures (350-1100 deg C). Results will demonstrate how each oxides' material density, particle size distribution, and morphology varies. (author)

  1. Modelling long-term redox processes and oxygen scavenging in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Sidborn, Magnus

    2007-10-01

    the reducing minerals in the rock was shown to be the flow-wetted surface to flow-rate ratio. The results show that for an initial period of time, depending on the amount of reducing minerals and reaction rates, chemical reaction kinetics may control the rate of the overall depletion of oxygen. For longer times, internal diffusion resistance in large particles or in the rock matrix become rate limiting for the overall process. It was found that there are many uncertainties that have to be considered in order to make reliable quantitative predictions on the extent of oxygen intrusion. In the second part of the thesis, the impact of intruding oxygen on the corrosion of the copper canisters was explored. Also, a mechanism for the production of sulphide close to the deposition holes was studied. Sulphide is another corroding agent that may be produced microbially in a reducing environment from sulphate in the presence of organic reductants such as methane. From calculation results it was found that corrosion of more than 50 kg of copper is not likely over a period of one million years

  2. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    Science.gov (United States)

    Pernegger, H.; Bates, R.; Buttar, C.; Dalla, M.; van Hoorne, J. W.; Kugathasan, T.; Maneuski, D.; Musa, L.; Riedler, P.; Riegel, C.; Sbarra, C.; Schaefer, D.; Schioppa, E. J.; Snoeys, W.

    2017-06-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 1015neq/cm2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  3. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    International Nuclear Information System (INIS)

    Pernegger, H.; Hoorne, J.W. van; Kugathasan, T.; Musa, L.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E.J.; Snoeys, W.; Bates, R.; Buttar, C.; Maneuski, D.; Dalla, M.; Sbarra, C.

    2017-01-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 10"1"5 n _e_q/cm"2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  4. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    Science.gov (United States)

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  5. Distribution of dissolved manganese in the Peruvian Upwelling and Oxygen Minimum Zone

    Science.gov (United States)

    Vedamati, Jagruti; Chan, Catherine; Moffett, James W.

    2015-05-01

    The geochemistry of manganese (Mn) in seawater is dominated by its redox chemistry, as Mn(II) is soluble and Mn(IV) forms insoluble oxides, and redox transformations are mediated by a variety of processes in the oceans. Dissolved Mn (DMn) accumulates under reducing conditions and is depleted under oxidizing conditions. Thus the Peruvian upwelling region, characterized by highly reducing conditions over a broad continental shelf and a major oxygen minimum zone extending far offshore, is potentially a large source of Mn to the eastern Tropical South Pacific. In this study, DMn was determined on cruises in October 2005 and February 2010 in the Peruvian Upwelling and Oxygen Minimum Zone, to evaluate the relationship between Mn, oxygen and nitrogen cycle processes. DMn concentrations were determined using simple dilution and matrix-matched external standardization inductively coupled mass spectrometry. Surprisingly, DMn was depleted under the most reducing conditions along the Peruvian shelf. Concentrations of dissolved Mn in surface waters increased offshore, indicating that advection of Mn offshore from the Peruvian shelf is a minor source. Subsurface Mn maxima were observed within the oxycline rather than within the oxygen minimum zone (OMZ), indicating they arise from remineralization of organic matter rather than reduction of Mn oxides. The distribution of DMn appears to be dominated by non-redox processes and inputs from the atmosphere and from other regions associated with specific water masses. Lower than expected DMn concentrations on the shelf probably reflect limited fluvial inputs from the continent and efficient offshore transport. This behavior is in stark contrast to Fe, reported in a companion study which is very high on the shelf and undergoes dynamic redox cycling.

  6. Use of Hopcalite derived Cu-Mn mixed oxide as Oxygen Carrier for Chemical Looping with Oxygen Uncoupling Process

    OpenAIRE

    Adánez-Rubio, Iñaki; Abad Secades, Alberto; Gayán Sanz, Pilar; Adánez-Rubio, Imanol; Diego Poza, Luis F. de; Garcia-Labiano, Francisco; Adánez Elorza, Juan

    2016-01-01

    Chemical-Looping with Oxygen Uncoupling (CLOU) is an alternative Chemical Looping process for the combustion of solid fuels with inherent CO2 capture. The CLOU process needs a material as oxygen carrier with the ability to give gaseous O2 at suitable temperatures for solid fuel combustion, e.g. copper oxide and manganese oxide. In this work, treated commercial Carulite 300® was evaluated as oxygen carrier for CLOU. Carulite 300® is a hopcalite material composed of 29.2 wt.% CuO and 67.4 wt.% ...

  7. Regime shifts and ecological catastrophes in a model of plankton-oxygen dynamics under the climate change.

    Science.gov (United States)

    Petrovskii, Sergei; Sekerci, Yadigar; Venturino, Ezio

    2017-07-07

    It is estimated that more than a half of the total atmospheric oxygen is produced in the oceans due to the photosynthetic activity of phytoplankton. Any significant decrease in the net oxygen production by phytoplankton is therefore likely to result in the depletion of atmospheric oxygen and in a global mass mortality of animals and humans. In its turn, the rate of oxygen production is known to depend on water temperature and hence can be affected by the global warming. We address this problem theoretically by considering a model of a coupled plankton-oxygen dynamics where the rate of oxygen production slowly changes with time to account for the ocean warming. We show that, when the temperature rises sufficiently high, a regime shift happens: the sustainable oxygen production becomes impossible and the system's dynamics leads to fast oxygen depletion and plankton extinction. We also consider a scenario when, after a certain period of increase, the temperature is set on a new higher yet apparently safe value, i.e. before the oxygen depletion disaster happens. We show that in this case the system dynamics may exhibit a long-term quasi-sustainable dynamics that can still result in an ecological disaster (oxygen depletion and mass extinctions) but only after a considerable period of time. Finally, we discuss the early warning signals of the approaching regime shift resulting in the disaster. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    Science.gov (United States)

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Erythrocyte depletion from bone marrow: performance evaluation after 50 clinical-scale depletions with Spectra Optia BMC.

    Science.gov (United States)

    Kim-Wanner, Soo-Zin; Bug, Gesine; Steinmann, Juliane; Ajib, Salem; Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Luxembourg, Beate; Seifried, Erhard; Bonig, Halvard

    2017-08-11

    Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, "BMC", was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions. Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients. Median RBC removal was 98.2% (range 90.8-99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7-23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time. Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.

  10. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    Science.gov (United States)

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  11. Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes

    Science.gov (United States)

    Sommer, S.; Gier, J.; Treude, T.; Lomnitz, U.; Dengler, M.; Cardich, J.; Dale, A. W.

    2016-06-01

    Oxygen minimum zones (OMZ) are key regions for fixed nitrogen loss in both the sediments and the water column. During this study, the benthic contribution to N cycling was investigated at ten sites along a depth transect (74-989 m) across the Peruvian OMZ at 12°S. O2 levels were below detection limit down to ~500 m. Benthic fluxes of N2, NO3-, NO2-, NH4+, H2S and O2 were measured using benthic landers. Flux measurements on the shelf were made under extreme geochemical conditions consisting of a lack of O2, NO3- and NO2- in the bottom water and elevated seafloor sulphide release. These particular conditions were associated with a large imbalance in the benthic nitrogen cycle. The sediments on the shelf were densely covered by filamentous sulphur bacteria Thioploca, and were identified as major recycling sites for DIN releasing high amounts of NH4+up to 21.2 mmol m-2 d-1 that were far in excess of NH4+ release by ammonification. This difference was attributed to dissimilatory nitrate (or nitrite) reduction to ammonium (DNRA) that was partly being sustained by NO3- stored within the sulphur oxidizing bacteria. Sediments within the core of the OMZ (ca. 200-400 m) also displayed an excess flux of N of 3.5 mmol m-2 d-1 mainly as N2. Benthic nitrogen and sulphur cycling in the Peruvian OMZ appears to be particularly susceptible to bottom water fluctuations in O2, NO3- and NO2-, and may accelerate the onset of pelagic euxinia when NO3- and NO2- become depleted.

  12. N-Acetyl Cysteine Depletes Reactive Oxygen Species and Prevents Dental Monomer-Induced Intrinsic Mitochondrial Apoptosis In Vitro in Human Dental Pulp Cells.

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    Full Text Available To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC on this process.Human dental pulp cells (hDPCs were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits.Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS and depletion of glutathione (GSH, differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers.Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis.

  13. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  14. Revisiting Antarctic Ozone Depletion

    Science.gov (United States)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  15. Marine species in ambient low-oxygen regions subject to double jeopardy impacts of climate change.

    Science.gov (United States)

    Stortini, Christine H; Chabot, Denis; Shackell, Nancy L

    2017-06-01

    We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20-40 years. A eurythermal depleted species already limited to shallow, oxygen-rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep-dwelling species (Greenland halibut) is projected to lose ~55% of its high-density areas under the combined impacts of warming and oxygen depletion. Another deep-dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high-density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species-by-species basis at the scales most relevant to managers. Our study may provide a basis for work in other low-oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change

  16. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  17. Fermentation process using specific oxygen uptake rates as a process control

    Science.gov (United States)

    Van Hoek, Pim [Minnetonka, MN; Aristidou, Aristos [Maple Grove, MN; Rush, Brian [Minneapolis, MN

    2011-05-10

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  18. Reduced oxygen enhancement ratio at low doses

    International Nuclear Information System (INIS)

    Palcic, B.; Skarsgard, L.D.

    1984-01-01

    The oxygen depletion rate in cell suspensions was measured using a Clark electrode. It was found that under experimental conditions used in this laboratory for hypoxic irradiations, the oxygen levels before the start of irradiation are always below 0.1μm, the levels which could give any significant enhancement to radiation inactivation by x-rays. The measured O/sub 2/ depletion rates were comparable to those reported in the literature. Chinese hamster cells (CHO) were made hypoxic by gas exchange, combined with metabolic consumption of oxygen by cells at 37 0 C. Full survival curves were determined in the dose range 0 to 3Gy using the low dose survival assay. The results confirmed the authors' earlier finding that the OER decreases at low doses. The authors therefore believe that the dose-dependent OER is a true radiobiological phenomenon and not an artifact of the experimental method used in the low dose survival assay

  19. In EXOG-depleted cardiomyocytes cell death is marked by a decreased mitochondrial reserve capacity of the electron transport chain

    NARCIS (Netherlands)

    Tigchelaar, Wardit; De Jong, Anne Margreet; van Gilst, Wiek H.; De Boer, Rudolf A.; Sillje, Herman H. W.

    Depletion ofmitochondrial endo/exonuclease G-like (EXOG) in cultured neonatal cardiomyocytes stimulates mitochondrial oxygen consumption rate (OCR) and induces hypertrophy via reactive oxygen species (ROS). Here, we show that neurohormonal stress triggers cell death in endo/exonuclease

  20. Ego Depletion Impairs Implicit Learning

    Science.gov (United States)

    Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  1. Ego depletion impairs implicit learning.

    Directory of Open Access Journals (Sweden)

    Kelsey R Thompson

    Full Text Available Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  2. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  3. Self-Regulatory Capacities Are Depleted in a Domain-Specific Manner.

    Science.gov (United States)

    Zhang, Rui; Stock, Ann-Kathrin; Rzepus, Anneka; Beste, Christian

    2017-01-01

    Performing an act of self-regulation such as making decisions has been suggested to deplete a common limited resource, which impairs all subsequent self-regulatory actions (ego depletion theory). It has however remained unclear whether self-referred decisions truly impair behavioral control even in seemingly unrelated cognitive domains, and which neurophysiological mechanisms are affected by these potential depletion effects. In the current study, we therefore used an inter-individual design to compare two kinds of depletion, namely a self-referred choice-based depletion and a categorization-based switching depletion, to a non-depleted control group. We used a backward inhibition (BI) paradigm to assess the effects of depletion on task switching and associated inhibition processes. It was combined with EEG and source localization techniques to assess both behavioral and neurophysiological depletion effects. The results challenge the ego depletion theory in its current form: Opposing the theory's prediction of a general limited resource, which should have yielded comparable effects in both depletion groups, or maybe even a larger depletion in the self-referred choice group, there were stronger performance impairments following a task domain-specific depletion (i.e., the switching-based depletion) than following a depletion based on self-referred choices. This suggests at least partly separate and independent resources for various cognitive control processes rather than just one joint resource for all self-regulation activities. The implications are crucial to consider for people making frequent far-reaching decisions e.g., in law or economy.

  4. Sediment oxygen demand of wetlands in the oil sands region of north-eastern Alberta

    International Nuclear Information System (INIS)

    Slama, C.; Ciborowski, J.J.; Gardner Costa, J.

    2009-01-01

    Reclaimed land in the Alberta oil sands mining area contains both reference and oil sands process-affected wetlands constructed using varying sediment compositions. The sediments derived from oil sands process materials (OSPM) may alter the biochemical reactions that take place and affect the sediment oxygen demand (SOD), which is a key factor that contributes to oxygen depletion. This presentation reported on a study in which SOD was measured in a suite of constructed wetlands of different ages, with or without OSPM and topsoil. The purpose of the study was to clarify the role of SOD in wetland function and in the reclamation process. Dissolved oxygen loggers were inserted into dome-shaped chambers on the sediment to measure changes in oxygen demand. Complementary measurements of respiration (CO 2 elution) were used to quantify the biological sediment oxygen demand (BSOD) component of SOD. The chemical sediment oxygen demand (CSOD) was then determined by subtraction from SOD. Wetlands reclaimed using OSPM are expected to have a lower BSOD to CSOD ratio than reference wetlands. Residual ammonia in OSPM sediments may react with sulphate and bind phosphorus. This reduces phosphorus bioavailability and may impede submergent macrophyte growth. As such, wetlands affected by CSOD will have fewer submerged macrophytes than BSOD dominant wetlands.

  5. Removal of sulfur compounds from diesel using ArF laser and oxygen.

    Science.gov (United States)

    Gondal, M A; Siddiqui, M N; Al-Hooshani, K

    2013-01-01

    A laser-based technique for deep desulfurization of diesel and other hydrocarbon fuels by removal of dimethyldibenzothiophene (DMDBT), a persistent sulfur contaminant in fuel oils has been developed. We report a selective laser excitation of DMDBT in diesel and model compounds such as n-hexane in a reaction chamber under oxygen environment where oxidative reactions can take place. ArF laser emitting at 193 nm was employed for excitation of oxygen and DMDBT, while for process optimization, the laser energy was varied from 50 to 200 mJ/cm(2). The laser-irradiated DMDBT solution under continuous oxygen flow was analyzed by UV absorption spectrometer to determine the photochemical oxidative degradation of DMDBT. In just 5 min of laser irradiation time, almost 95% DMDBT was depleted in a diesel containing 200 ppm of DMDBT. This article provides a new method for the removal of sulfur compounds from diesel by laser based photochemical process.

  6. Na, Rb and Cs partitioning between metal, silicate and sulfide: Implications for volatile depletion in terrestrial planets

    Science.gov (United States)

    Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.

    2017-12-01

    Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.

  7. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  8. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  9. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor

    Directory of Open Access Journals (Sweden)

    Potzkei Janko

    2012-03-01

    Full Text Available Abstract Background Molecular oxygen (O2 is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues. Results We developed a genetically encoded Förster resonance energy transfer (FRET-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen consists of the yellow fluorescent protein (YFP that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP. Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation. Conclusions FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (pathophysiological processes in living cells.

  10. Deuterium-depleted water. Romanian achievements and perspective

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Saros-Rogobete, Irina; Titescu, Gheorghe

    2001-01-01

    Deuterium-depleted water has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Beginning with 1996 ICSI Rm. Valcea, deuterium-depleted water producer, co-operated with Romanian specialized institutes for biological effect's evaluation of deuterium-depleted water. These investigations lead to the following conclusions: - Deuterium-depleted water caused a tendency towards the increase of the basal tonus, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tonus and vascular reactivity produced by the deuterium-depleted water persist after the removal of the vascular endothelium; - Animals treated with deuterium-depleted water showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action; - Deuterium-depleted water stimulates immune defence reactions and increases the numbers of polymorphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with deuterium-depleted water fecundated solutions confirmed favourable influence in embryo growth stage and resistance in subsequent growth stages; - It was studied germination, growth and quantitative character's variability in plants; one can remark the favourable influence of deuterium-depleted water on biological process in plants in various ontogenetic stages; - The deuterium depletion in seawater produces the diminution of the water spectral energy related to an increased metabolism of Tetraselmis Suecica. (authors)

  11. Design and construction of Keda Space Plasma Experiment (KSPEX) for the investigation of the boundary layer processes of ionospheric depletions.

    Science.gov (United States)

    Liu, Yu; Zhang, Zhongkai; Lei, Jiuhou; Cao, Jinxiang; Yu, Pengcheng; Zhang, Xiao; Xu, Liang; Zhao, Yaodong

    2016-09-01

    In this work, the design and construction of the Keda Space Plasma EXperiment (KSPEX), which aims to study the boundary layer processes of ionospheric depletions, are described in detail. The device is composed of three stainless-steel sections: two source chambers at both ends and an experimental chamber in the center. KSPEX is a steady state experimental device, in which hot filament arrays are used to produce plasmas in the two sources. A Macor-mesh design is adopted to adjust the plasma density and potential difference between the two plasmas, which creates a boundary layer with a controllable electron density gradient and inhomogeneous radial electric field. In addition, attachment chemicals can be released into the plasmas through a tailor-made needle valve which leads to the generation of negative ions plasmas. Ionospheric depletions can be modeled and simulated using KSPEX, and many micro-physical processes of the formation and evolution of an ionospheric depletion can be experimentally studied.

  12. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip A. [Air Products And Chemicals, Inc., Allentown, PA (United States)

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  13. Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Clark, E.P.; Michaels, H.B.; Peterson, E.C.; Epp, E.R.

    1983-01-01

    The response of cultured CHO cells to ultrahigh-dose-radiation (approx.10 9 Gy/sec) has been previously studied extensively using the thin-layer cell-handling technique developed in this laboratory. When the cells are equilibrated with a low concentration of oxygen, e.g., 0.44% O 2 , a breaking survival curve, due to radiolytic depletion of the oxygen, is observed. Hypoxic cells irradiated in the presence of the nitroimidazoles (e.g., misonidazole) are sensitized at ultrahigh dose rates in a dose-modifying manner, similar to that observed at conventional dose rates. These radiosensitizer compounds, if present in cells equilibrated with a low concentration of oxygen, prevent the breaking behavior of the survival curve, an observation believed to be due to the sensitizer interfering with the oxygen depletion process, leaving oxygen free to sensitize. Such experiments have recently been extended to studies with diamide, which, unlike the other sensitizers tested, acts primarily as a shoulder-modifying rather than a dose-modifying agent in hypoxic mammalian cells. These data indicate that diamide is active as a sensitizer at ultrahigh dose rates in a manner similar to that observed at conventional dose rates, and does modify the shape of the breaking survival curve observed with low concentrations of oxygen

  14. Depleted uranium plasma reduction system study

    International Nuclear Information System (INIS)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF 6 , of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF 6 processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete

  15. A Search for O2 in CO-Depleted Molecular Cloud Cores With Herschel

    Science.gov (United States)

    Wirstroem, Eva S.; Charnley, Steven B.; Cordiner, Martin; Ceccarelli, Cecilia

    2016-01-01

    The general lack of molecular oxygen in molecular clouds is an outstanding problem in astrochemistry. Extensive searches with the Submillimeter Astronomical Satellite, Odin, and Herschel have only produced two detections; upper limits to the O2 abundance in the remaining sources observed are about 1000 times lower than predicted by chemical models. Previous atomic oxygen observations and inferences from observations of other molecules indicated that high abundances of O atoms might be present in dense cores exhibiting large amounts of CO depletion. Theoretical arguments concerning the oxygen gas-grain interaction in cold dense cores suggested that, if O atoms could survive in the gas after most of the rest of the heavy molecular material has frozen out onto dust, then O2 could be formed efficiently in the gas. Using Herschel HIFI, we searched a small sample of four depletion cores-L1544, L694-2, L429, and Oph D-for emission in the low excitation O2 N(sub J)?=?3(sub 3)-1(sub 2) line at 487.249 GHz. Molecular oxygen was not detected and we derive upper limits to its abundance in the range of N(O2)/N (H2) approx. = (0.6-1.6) x10(exp -7). We discuss the absence of O2 in the light of recent laboratory and observational studies.

  16. Processes that generate and deplete liquid water and snow in thin midlevel mixed-phase clouds

    Science.gov (United States)

    Smith, Adam J.; Larson, Vincent E.; Niu, Jianguo; Kankiewicz, J. Adam; Carey, Lawrence D.

    2009-06-01

    This paper uses a numerical model to investigate microphysical, radiative, and dynamical processes in mixed-phase altostratocumulus clouds. Three cloud cases are chosen for study, each of which was observed by aircraft during the fifth or ninth Complex Layered Cloud Experiment (CLEX). These three clouds are numerically modeled using large-eddy simulation (LES). The observed and modeled clouds consist of a mixed-phase layer with a quasi-adiabatic profile of liquid, and a virga layer below that consists of snow. A budget of cloud (liquid) water mixing ratio is constructed from the simulations. It shows that large-scale ascent/descent, radiative cooling/heating, turbulent transport, and microphysical processes are all significant. Liquid is depleted indirectly via depositional growth of snow (the Bergeron-Findeisen process). This process is more influential than depletion of liquid via accretional growth of snow. Also constructed is a budget of snow mixing ratio, which turns out to be somewhat simpler. It shows that snow grows by deposition in and below the liquid (mixed-phase) layer, and sublimates in the remainder of the virga region below. The deposition and sublimation are balanced primarily by sedimentation, which transports the snow from the growth region to the sublimation region below. In our three clouds, the vertical extent of the virga layer is influenced more by the profile of saturation ratio below the liquid (mixed-phase) layer than by the mixing ratio of snow at the top of the virga layer.

  17. The oxycoal process with cryogenic oxygen supply

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  18. The oxycoal process with cryogenic oxygen supply.

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  19. Oxygen dynamics around buried lesser sandeels Ammodytes tobianus (Linnaeus 1785): mode of ventilation and oxygen requirements

    DEFF Research Database (Denmark)

    Behrens, Jane W; Stahl, Henrik J; Steffensen, John F

    2007-01-01

    The oxygen environment around buried sandeels (Ammodytes tobianus) was monitored by planar optodes. The oxygen penetration depth at the sediment interface was only a few mm. Thus fish, typically buried at 1-4 cm depth, were generally in anoxic sediment. However, they induced an advective transport...... down along the body, referred to as ;plume ventilation'. Yet, within approximately 30 min the oxic plume was replenished by oxygen-depleted water from the gills. The potential for cutaneous respiration by the buried fish was thus of no quantitative importance. Calculations derived by three independent...... methods (each with N=3) revealed that the oxygen uptake of sandeel buried for 6-7 h was 40-50% of previous estimates on resting respirometry of non-buried fish, indicating lower O(2) requirements during burial on a diurnal timescale. Buried fish exposed to decreasing oxygen tensions gradually approached...

  20. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sidborn, Magnus (Kemakta Konsult AB (Sweden)); Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge (Amphos21 (Spain)); Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2010-11-15

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  1. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    International Nuclear Information System (INIS)

    Sidborn, Magnus; Sandstroem, Bjoern; Tullborg, Eva-Lena; Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge; Hallbeck, Lotta; Pedersen, Karsten

    2010-11-01

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  2. Application of backtracking algorithm to depletion calculations

    International Nuclear Information System (INIS)

    Wu Mingyu; Wang Shixi; Yang Yong; Zhang Qiang; Yang Jiayin

    2013-01-01

    Based on the theory of linear chain method for analytical depletion calculations, the burnup matrix is decoupled by the divide and conquer strategy and the linear chain with Markov characteristic is formed. The density, activity and decay heat of every nuclide in the chain then can be calculated by analytical solutions. Every possible reaction path of the nuclide must be considered during the linear chain establishment process. To confirm the calculation precision and efficiency, the algorithm which can cover all the reaction paths and search the paths automatically according to the problem description and precision restrictions should be found. Through analysis and comparison of several kinds of searching algorithms, the backtracking algorithm was selected to establish and calculate the linear chains in searching process using depth first search (DFS) method, forming an algorithm which can solve the depletion problem adaptively and with high fidelity. The complexity of the solution space and time was analyzed by taking into account depletion process and the characteristics of the backtracking algorithm. The newly developed depletion program was coupled with Monte Carlo program MCMG-Ⅱ to calculate the benchmark burnup problem of the first core of China Experimental Fast Reactor (CEFR) and the preliminary verification and validation of the program were performed. (authors)

  3. Bioenergetic reprogramming plasticity under nitrogen depletion by the unicellular green alga Scenedesmus obliquus.

    Science.gov (United States)

    Papazi, Aikaterini; Korelidou, Anna; Andronis, Efthimios; Parasyri, Athina; Stamatis, Nikolaos; Kotzabasis, Kiriakos

    2018-03-01

    Simultaneous nitrogen depletion and 3,4-dichlorophenol addition induce a bioenergetic microalgal reprogramming, through strong Cyt b 6 f synthesis, that quench excess electrons from dichlorophenol's biodegradation to an overactivated photosynthetic electron flow and H 2 -productivity. Cellular energy management includes "rational" planning and operation of energy production and energy consumption units. Microalgae seem to have the ability to calculate their energy reserves and select the most profitable bioenergetic pathways. Under oxygenic mixotrophic conditions, microalgae invest the exogenously supplied carbon source (glucose) to biomass increase. If 3,4-dichlorophenol is added in the culture medium, then glucose is invested more to biodegradation rather than to growth. The biodegradation yield is enhanced in nitrogen-depleted conditions, because of an increase in the starch accumulation and a delay in the establishment of oxygen-depleted conditions in a closed system. In nitrogen-depleted conditions, starch cannot be invested in PSII-dependent and PSII-independent pathways for H 2 -production, mainly because of a strong decrease of the cytochrome b 6 f complex of the photosynthetic electron flow. For this reason, it seems more profitable for the microalga under these conditions to direct the metabolism to the synthesis of lipids as cellular energy reserves. Nitrogen-depleted conditions with exogenously supplied 3,4-dichlorophenol induce reprogramming of the microalgal bioenergetic strategy. Cytochrome b 6 f is strongly synthesized (mainly through catabolism of polyamines) to manage the electron bypass from the dichlorophenol biodegradation procedure to the photosynthetic electron flow (at the level of PQ pool) and consequently through cytochrome b 6 f and PSI to hydrogenase and H 2 -production. All the above showed that the selection of the appropriate cultivation conditions is the key for the manipulation of microalgal bioenergetic strategy that leads to

  4. Application of pentacene thin-film transistors with controlled threshold voltages to enhancement/depletion inverters

    Science.gov (United States)

    Takahashi, Hajime; Hanafusa, Yuki; Kimura, Yoshinari; Kitamura, Masatoshi

    2018-03-01

    Oxygen plasma treatment has been carried out to control the threshold voltage in organic thin-film transistors (TFTs) having a SiO2 gate dielectric prepared by rf sputtering. The threshold voltage linearly changed in the range of -3.7 to 3.1 V with the increase in plasma treatment time. Although the amount of change is smaller than that for organic TFTs having thermally grown SiO2, the tendency of the change was similar to that for thermally grown SiO2. To realize different plasma treatment times on the same substrate, a certain region on the SiO2 surface was selected using a shadow mask, and was treated with oxygen plasma. Using the process, organic TFTs with negative threshold voltages and those with positive threshold voltages were fabricated on the same substrate. As a result, enhancement/depletion inverters consisting of the organic TFTs operated at supply voltages of 5 to 15 V.

  5. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    International Nuclear Information System (INIS)

    Osipov, E. M.; Polyakov, K. M.; Tikhonova, T. V.; Kittl, R.; Dorovatovskii, P.V.; Shleev, S. V.; Popov, V. O.; Ludwig, R.

    2015-01-01

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu + -containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu + - and Cu 2+ -containing solutions. Copper ions were found to be incorporated into the active site only when Cu + was used. A comparative analysis of the native and depleted forms of the enzymes was performed

  6. Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane

    International Nuclear Information System (INIS)

    Li, Q.Y.; Wang, L.; Ju, Y.L.

    2011-01-01

    Highlights: → A novel liquefaction and distillation process is designed for oxygen bearing coal-bed methane. → Oxygen contained in coal-bed methane is removed in distillation process. → Flammability limits are analyzed for the whole operation process. → We find explosion hazard may exist in distillation tower. → Effective measures are proposed to ensure the operation safety in distillation tower. - Abstract: A novel liquefaction and distillation process has been proposed and designed for the typical oxygen-bearing coal-bed methane (CBM), in which the impurities of the oxygen and nitrogen components are removed in the distillation column. The flammability limit theory combining with HYSYS simulation results are employed to analyze and calculate the flammability limits and the results indicate that no flammability hazard exists in the stages of compression, liquefaction and throttling. However, flammability hazard exists at the top the distillation column because the methane mole fraction decreases to the value below the upper flammability limit (UFL). The safety measures of initially removing oxygen content from the feed gas combining with the control of the bottom flowrate (flowrate of the liquid product at column bottom) are proposed to ensure the operation safety of the liquefaction process. The results reveal that the operation safety of the whole process can be guaranteed, together with high methane recovery rate and high purity of the liquid product. The applicability of the liquefaction process has also been analyzed in this paper. The simulation results can offer references for the separation of oxygen from CBM, the analysis of flammability limits and the safety measures for the whole process.

  7. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean.

    Science.gov (United States)

    Jayakumar, Amal; Chang, Bonnie X; Widner, Brittany; Bernhardt, Peter; Mulholland, Margaret R; Ward, Bess B

    2017-10-01

    Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day -1 ) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day -1 ) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N 2 -fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.

  8. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    Science.gov (United States)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  9. Oxygen isotopic signature of CO2 from combustion processes

    Directory of Open Access Journals (Sweden)

    W. A. Brand

    2011-02-01

    Full Text Available For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires, and human induced (fossil fuel combustion, biomass burning in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature, sample geometries (e.g. texture and surface-volume ratios and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio

  10. Greenhouse gas impacts of declining hydrocarbon resource quality: Depletion, dynamics, and process emissions

    Science.gov (United States)

    Brandt, Adam Robert

    This dissertation explores the environmental and economic impacts of the transition to hydrocarbon substitutes for conventional petroleum (SCPs). First, mathematical models of oil depletion are reviewed, including the Hubbert model, curve-fitting methods, simulation models, and economic models. The benefits and drawbacks of each method are outlined. I discuss the predictive value of the models and our ability to determine if one model type works best. I argue that forecasting oil depletion without also including substitution with SCPs results in unrealistic projections of future energy supply. I next use information theoretic techniques to test the Hubbert model of oil depletion against five other asymmetric and symmetric curve-fitting models using data from 139 oil producing regions. I also test the assumptions that production curves are symmetric and that production is more bell-shaped in larger regions. Results show that if symmetry is enforced, Gaussian production curves perform best, while if asymmetry is allowed, asymmetric exponential models prove most useful. I also find strong evidence for asymmetry: production declines are consistently less steep than inclines. In order to understand the impacts of oil depletion on GHG emissions, I developed the Regional Optimization Model for Emissions from Oil Substitutes (ROMEO). ROMEO is an economic optimization model of investment and production of fuels. Results indicate that incremental emissions (with demand held constant) from SCPs could be 5-20 GtC over the next 50 years. These results are sensitive to the endowment of conventional oil and not sensitive to a carbon tax. If demand can vary, total emissions could decline under a transition because the higher cost of SCPs lessens overall fuel consumption. Lastly, I study the energetic and environmental characteristics of the in situ conversion process, which utilizes electricity to generate liquid hydrocarbons from oil shale. I model the energy inputs and outputs

  11. Effect of oxygen breathing on micro oxygen bubbles in nitrogen-depleted rat adipose tissue at sea level and 25 kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, Thomas; Hyldegaard, Ole

    2012-01-01

    The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing...... at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen...... prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently...

  12. Influence of dissolved oxygen concentration on the toxicity of potassium cyanide to rainbow trout. [Salmo gairdneri

    Energy Technology Data Exchange (ETDEWEB)

    Downing, K M

    1954-01-01

    The present work was undertaken to see if similar results were obtained when fish were tested in a continuous flow of water in which the concentrations of oxygen and cyanide were kept constant. Periods of survival were measured this way to minimize distortion of results by accumulation of metabolic waste, depletion of oxygen or depletion of poison. Results are summarized as follows: rainbow trout survival in potassium cyanide increased with increase in dissolved oxygen; increase in survival times did not decline as oxygen saturation was approached; and medium survival times of 3.3 minutes or less were normally distributed while those of greater than 13 minutes were log normally distributed. 6 references, 1 figure.

  13. Functional State Modelling of Cultivation Processes: Dissolved Oxygen Limitation State

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2015-04-01

    Full Text Available A new functional state, namely dissolved oxygen limitation state for both bacteria Escherichia coli and yeast Saccharomyces cerevisiae fed-batch cultivation processes is presented in this study. Functional state modelling approach is applied to cultivation processes in order to overcome the main disadvantages of using global process model, namely complex model structure and a big number of model parameters. Alongwith the newly introduced dissolved oxygen limitation state, second acetate production state and first acetate production state are recognized during the fed-batch cultivation of E. coli, while mixed oxidative state and first ethanol production state are recognized during the fed-batch cultivation of S. cerevisiae. For all mentioned above functional states both structural and parameter identification is here performed based on experimental data of E. coli and S. cerevisiae fed-batch cultivations.

  14. The Chemistry and Toxicology of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Sidney A. Katz

    2014-03-01

    Full Text Available Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U down to reactor grade uranium (~5% 235U, and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles. Such weapons were used by the military in the Persian Gulf, the Balkans and elsewhere. The testing of depleted uranium weapons and their use in combat has resulted in environmental contamination and human exposure. Although the chemical and the toxicological behaviors of depleted uranium are essentially the same as those of natural uranium, the respective chemical forms and isotopic compositions in which they usually occur are different. The chemical and radiological toxicity of depleted uranium can injure biological systems. Normal functioning of the kidney, liver, lung, and heart can be adversely affected by depleted uranium intoxication. The focus of this review is on the chemical and toxicological properties of depleted and natural uranium and some of the possible consequences from long term, low dose exposure to depleted uranium in the environment.

  15. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion.

    Science.gov (United States)

    Sarkar, Parijat; Chakraborty, Hirak; Chattopadhyay, Amitabha

    2017-06-30

    Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.

  17. Depleted UF6 programmatic environmental impact statement

    International Nuclear Information System (INIS)

    1997-01-01

    The US Department of Energy has developed a program for long-term management and use of depleted uranium hexafluoride, a product of the uranium enrichment process. As part of this effort, DOE is preparing a Programmatic Environmental Impact Statement (PEIS) for the depleted UF 6 management program. This report duplicates the information available at the web site (http://www.ead.anl.gov/web/newduf6) set up as a repository for the PEIS. Options for the web site include: reviewing recent additions or changes to the web site; learning more about depleted UF 6 and the PEIS; browsing the PEIS and related documents, or submitting official comments on the PEIS; downloading all or part of the PEIS documents; and adding or deleting one's name from the depleted UF 6 mailing list

  18. Ozone depleting substances management inventory system

    Directory of Open Access Journals (Sweden)

    Felix Ivan Romero Rodríguez

    2018-02-01

    Full Text Available Context: The care of the ozone layer is an activity that contributes to the planet's environmental stability. For this reason, the Montreal Protocol is created to control the emission of substances that deplete the ozone layer and reduce its production from an organizational point of view. However, it is also necessary to have control of those that are already circulating and those present in the equipment that cannot be replaced yet because of the context of the companies that keep it. Generally, the control mechanisms for classifying the type of substances, equipment and companies that own them, are carried in physical files, spreadsheets and text documents, which makes it difficult to control and manage the data stored in them. Method: The objective of this research is to computerize the process of control of substances that deplete the ozone layer. An evaluation and description of all process to manage Ozone-Depleting Substances (ODS, and its alternatives, is done. For computerization, the agile development methodology SCRUM is used, and for the technological solution tools and free open source technologies are used. Result: As a result of the research, a computer tool was developed that automates the process of control and management of substances that exhaust the ozone layer and its alternatives. Conclusions: The developed computer tool allows to control and manage the ozone-depleting substances and the equipment that use them. It also manages the substances that arise as alternatives to be used for the protection of the ozone layer.

  19. Oxygen sensitization of mammalian cells under different irradiation conditions

    International Nuclear Information System (INIS)

    Ling, C.C.; Michaels, H.B.; Gerweck, L.E.; Epp, E.R.; Peterson, E.C.

    1981-01-01

    The oxygen dependence of the radiosensitivity of cultured CHO cells was examined in detail with particular attention paid to avoiding possible artifacts due to radiolytic oxygen depletion. Two methods of gas equilibration and irradiation were used. In the first approach, cells were irradiated with 50-kVp X rays in a thin-layer geometry which offered maximum interchange between the cells and the surrounding gas. The second technique employed 280-kVp X irradiation of cells under full-medium conditions with mechanical agitation to minimize the effect of radiochemical oxygen consumption by promoting rapid oxygen replenishment. With these techniques oxygen radiosensitization was clearly resolved at an oxygen concentration of 0.03% in the gas phase. The oxygen K curves measured by these two methods were similar in shape over a wide range of oxygen concentration

  20. Processing and Applications of Depleted Uranium Alloy Products

    Science.gov (United States)

    1976-09-01

    ammunition, weapons, gyrorotors, and ballast. Depleted uranium used in fly- wheel devices, nuclear fuel casks, and ammunition could consume a significant...from straight in the range of 0,002 to 0.060-inch TIR (total indicated runout ) with an average of 0.025-inch TIR.* Solution heat treatment of the as-cast...an envelope thickness of 0.050 inch to allow for runout and to clean up surface imperfections. The runout resulting from heat treatment was in the

  1. Examining depletion theories under conditions of within-task transfer.

    Science.gov (United States)

    Brewer, Gene A; Lau, Kevin K H; Wingert, Kimberly M; Ball, B Hunter; Blais, Chris

    2017-07-01

    In everyday life, mental fatigue can be detrimental across many domains including driving, learning, and working. Given the importance of understanding and accounting for the deleterious effects of mental fatigue on behavior, a growing body of literature has studied the role of motivational and executive control processes in mental fatigue. In typical laboratory paradigms, participants complete a task that places demand on these self-control processes and are later given a subsequent task. Generally speaking, decrements to subsequent task performance are taken as evidence that the initial task created mental fatigue through the continued engagement of motivational and executive functions. Several models have been developed to account for negative transfer resulting from this "ego depletion." In the current study, we provide a brief literature review, specify current theoretical approaches to ego-depletion, and report an empirical test of current models of depletion. Across 4 experiments we found minimal evidence for executive control depletion along with strong evidence for motivation mediated ego depletion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  3. INVESTIGATION OF DISSOLVED SULPHATE IN VARIOUS GEOTHERMAL FIELDS OF SUMATRA USING OXYGEN AND SULPHUR ISOTOPES

    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati

    2010-06-01

    Full Text Available There are at least 30 high temperature systems; eleven active volcanoes, five degassing volcanoes and one caldera volcano controlled by Sumatra Fault Zone over a length of 1700 km. To understand this geothermal field system, some information about geochemistry including isotope composition in its fluid is needed. Sulphur-34 and oxygen-18 isotopes in dissolved sulphate pair have been used to determine the origin of acidic fluid of sulphate and to evaluate the process involved. The fluids from eight hot springs, two fumaroles, four deep wells and crater have been collected in along Sumatra geothermal fields. Sulphur-34 (d 34S (SO4, 0/00 CDT and oxygen-18 (d 18O (SO4, 0/00 SMOW in sulphate is analyzed according to Robinson-Kusakabe and Rafter method, respectively. The d 34S (SO4 values from Sibayak wells are more enriched of 16.8 0/00 to 18.2 0/0 that may indicate the dissolution of anhydrite minerals or isotope partitioning in hydration of SO2. The d 34S (SO4 values from two fumaroles (Pusuk Bukit - North Sumatra and Rantau Dadap - South Sumatra are at depleted value of -0.150/00 and 1.80/00, those are close to d 34S from magmatic sulphur.  In general, the d 34S (SO4 of springs spread in a wide range of 5.250/00 to14.20/00 and show a mixing process between atmospheric sulphate and sulphate from deep wells. The d 18O (SO4 from wells exhibits depleted value around -3.60/00 suggesting that 87.5% of sulphate oxygen is derived from groundwater oxygen and 12.5% is derived from atmospheric molecular oxygen in sulphide oxidation reaction. In the other hand, hot springs (except Semurup, crater and fumaroles have enriched value of d 18O (SO4. These enriched values suggest that a higher percentage of atmospherically derived oxygen compared to those from the depth.   Keywords: isotope, geothermal, Sumatra

  4. A numerical two layer model for blood oxygenation in lungs

    International Nuclear Information System (INIS)

    Aminatai, A.

    2001-01-01

    In the modelling of the simultaneous transport of O 2 and CO 2 in the pulmonary circulation described in our earlier studies, the blood has been treated as a homogeneous layer of haemoglobin solution. Since the size of the erythrocyte is not negligible in comparison with that of the capillary, the blood can no longer be considered as a homogeneous fluid and hence, It is worthwhile to consider the blood flow as a two-phase flow consisting of cells and plasma. In the present study, the heterogeneous nature of blood has been proposed by considering the axial train model for the flow [whitmore (1967)], in order to analyze the effect of cell free plasma layer on the process of blood oxygenation in pulmonary capillaries. The proposed model consists of a core of suspended erythrocytes surrounded by a cell free plasma layer near the wall. The coupled system of convective diffusion equaions together with the physiologically relevant boundary, entrance and interface conditions is solved numerically by a four-point semi-implicit scheme to gether with a fixed point iterative technique. The distance traversed by the blood before getting fully oxygenated is computed. It is shown that the core haematocrit and the thickness of the cell depleted layer affect the oxygenation process significantly. It is found that (i) oxygen takes longest and carbondioxide is the fastest to attain equilibraton, (ii) the blood is completely oxygenated within one-fifth part of its transit and (iii) the rate of oxygenation is smaller in case of homogeneous model than that in heterogenous model in the capillary. Finally, the effect of various physiological parameters on the rate of oxygenation has been examined

  5. Deuterium - depleted water. Achievements and perspectives

    International Nuclear Information System (INIS)

    Titescu, Gh.; Stefanescu, I.; Saros-Rogobete, I.

    2001-01-01

    reproduction of fish with deuterium - depleted water fecundated solutions confirmed favourable influence in embryo growth stage and resistance in next growth stages; 5. it was studied germination, growth and quantitative character's variability in plants; one can remark the favourable influence of deuterium - depleted water on biological process in plants in various ontogenetic stages; 6. the deuterium depletion in seawater produces the diminution of the water spectral energy related to an increased metabolism of Tetraselmis suecica. Although the results obtained in Romania have a special scientific value, the application of these researches is in progress. We have to mention that at present all the amount of deuterium - depleted water produced at Rm. Valcea is exported to Hungary were it is used to produce drugs for the prevention and the treatment of cancer. (authors)

  6. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels

    DEFF Research Database (Denmark)

    Stief, Peter; Kamp, Anja; Thamdrup, Bo

    2016-01-01

    nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular......In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host...

  7. Sensibility analysis of fuel depletion using different nuclear fuel depletion codes

    Energy Technology Data Exchange (ETDEWEB)

    Martins, F.; Velasquez, C.E.; Castro, V.F.; Pereira, C.; Silva, C. A. Mello da, E-mail: felipmartins94@gmail.com, E-mail: carlosvelcab@hotmail.com, E-mail: victorfariascastro@gmail.com, E-mail: claubia@nuclear.ufmg.br, E-mail: clarysson@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Nowadays, the utilization of different nuclear codes to perform the depletion and criticality calculations has been used to simulated nuclear reactors problems. Therefore, the goal is to analyze the sensibility of the fuel depletion of a PWR assembly using three different nuclear fuel depletion codes. The burnup calculations are performed using the codes MCNP5/ORIGEN2.1 (MONTEBURNS), KENO-VI/ORIGEN-S (TRITONSCALE6.0) and MCNPX (MCNPX/CINDER90). Each nuclear code performs the burnup using different depletion codes. Each depletion code works with collapsed energies from a master library in 1, 3 and 63 groups, respectively. Besides, each code uses different ways to obtain neutron flux that influences the depletions calculation. The results present a comparison of the neutronic parameters and isotopes composition such as criticality and nuclides build-up, the deviation in results are going to be assigned to features of the depletion code in use, such as the different radioactive decay internal libraries and the numerical method involved in solving the coupled differential depletion equations. It is also seen that the longer the period is and the more time steps are chosen, the larger the deviation become. (author)

  8. Sensibility analysis of fuel depletion using different nuclear fuel depletion codes

    International Nuclear Information System (INIS)

    Martins, F.; Velasquez, C.E.; Castro, V.F.; Pereira, C.; Silva, C. A. Mello da

    2017-01-01

    Nowadays, the utilization of different nuclear codes to perform the depletion and criticality calculations has been used to simulated nuclear reactors problems. Therefore, the goal is to analyze the sensibility of the fuel depletion of a PWR assembly using three different nuclear fuel depletion codes. The burnup calculations are performed using the codes MCNP5/ORIGEN2.1 (MONTEBURNS), KENO-VI/ORIGEN-S (TRITONSCALE6.0) and MCNPX (MCNPX/CINDER90). Each nuclear code performs the burnup using different depletion codes. Each depletion code works with collapsed energies from a master library in 1, 3 and 63 groups, respectively. Besides, each code uses different ways to obtain neutron flux that influences the depletions calculation. The results present a comparison of the neutronic parameters and isotopes composition such as criticality and nuclides build-up, the deviation in results are going to be assigned to features of the depletion code in use, such as the different radioactive decay internal libraries and the numerical method involved in solving the coupled differential depletion equations. It is also seen that the longer the period is and the more time steps are chosen, the larger the deviation become. (author)

  9. Fluorophore-based sensor for oxygen radicals in processing plasmas

    International Nuclear Information System (INIS)

    Choudhury, Faraz A.; Shohet, J. Leon; Sabat, Grzegorz; Sussman, Michael R.; Nishi, Yoshio

    2015-01-01

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye

  10. Fluorophore-based sensor for oxygen radicals in processing plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Sabat, Grzegorz; Sussman, Michael R. [Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nishi, Yoshio [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-15

    A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.

  11. Effects of acute tryptophan depletion on central processing of CT-targeted and discriminatory touch in humans.

    Science.gov (United States)

    Trotter, Paula Diane; McGlone, Francis; McKie, Shane; McFarquhar, Martyn; Elliott, Rebecca; Walker, Susannah Claire; Deakin, John Francis William

    2016-08-01

    C-tactile afferents (CTs) are slowly conducting nerve fibres, present only in hairy skin. They are optimally activated by slow, gentle stroking touch, such as those experienced during a caress. CT stimulation activates affective processing brain regions, alluding to their role in affective touch perception. We tested a theory that CT-activating touch engages the pro-social functions of serotonin, by determining whether reducing serotonin, through acute tryptophan depletion, diminishes subjective pleasantness and affective brain responses to gentle touch. A tryptophan depleting amino acid drink was administered to 16 healthy females, with a further 14 receiving a control drink. After 4 h, participants underwent an fMRI scan, during which time CT-innervated forearm skin and CT non-innervated finger skin was stroked with three brushes of differing texture, at CT-optimal force and velocity. Pleasantness ratings were obtained post scanning. The control group showed a greater response in ipsilateral orbitofrontal cortex to CT-activating forearm touch compared to touch to the finger where CTs are absent. This differential response was not present in the tryptophan depleted group. This interaction effect was significant. In addition, control participants showed a differential primary somatosensory cortex response to brush texture applied to the finger, a purely discriminatory touch response, which was not observed in the tryptophan depleted group. This interaction effect was also significant. Pleasantness ratings were similar across treatment groups. These results implicate serotonin in the differentiation between CT-activating and purely discriminatory touch responses. Such effects could contribute to some of the social abnormalities seen in psychiatric disorders associated with abnormal serotonin function. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Plasmonic Nanoprobes for Stimulated Emission Depletion Nanoscopy.

    Science.gov (United States)

    Cortés, Emiliano; Huidobro, Paloma A; Sinclair, Hugo G; Guldbrand, Stina; Peveler, William J; Davies, Timothy; Parrinello, Simona; Görlitz, Frederik; Dunsby, Chris; Neil, Mark A A; Sivan, Yonatan; Parkin, Ivan P; French, Paul M W; Maier, Stefan A

    2016-11-22

    Plasmonic nanoparticles influence the absorption and emission processes of nearby emitters due to local enhancements of the illuminating radiation and the photonic density of states. Here, we use the plasmon resonance of metal nanoparticles in order to enhance the stimulated depletion of excited molecules for super-resolved nanoscopy. We demonstrate stimulated emission depletion (STED) nanoscopy with gold nanorods with a long axis of only 26 nm and a width of 8 nm. These particles provide an enhancement of up to 50% of the resolution compared to fluorescent-only probes without plasmonic components irradiated with the same depletion power. The nanoparticle-assisted STED probes reported here represent a ∼2 × 10 3 reduction in probe volume compared to previously used nanoparticles. Finally, we demonstrate their application toward plasmon-assisted STED cellular imaging at low-depletion powers, and we also discuss their current limitations.

  13. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect.

    Science.gov (United States)

    Salmon, Stefanie J; Adriaanse, Marieke A; De Vet, Emely; Fennis, Bob M; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  14. When the Going Gets Tough, Who Keeps Going? Depletion Sensitivity Moderates the Ego-Depletion Effect

    Directory of Open Access Journals (Sweden)

    Stefanie J. Salmon

    2014-06-01

    Full Text Available Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion.

  15. Oxygen incorporation into GST phase-change memory matrix

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: holovchakr@apsu.edu [Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN 37044 (United States); Choi, Y.G. [Department of Materials Science and Engineering, Korea Aerospace University, Gyeonggi 412-791 (Korea, Republic of); Kozyukhin, S. [Kurnakov Institute of General and Inorganic Chemistry of RAS, 31 Leninsky Pr., Moscow 119991 (Russian Federation); National Research Tomsk State University, 36 Lenin Pr., Tomsk 634050 (Russian Federation); Chigirinsky, Yu. [Scientific-Research Physicotechnical Institute at the Nizhnii Novgorod State University, Nizhnii Novgorod 603600 (Russian Federation); Kovalskiy, A.; Xiong-Skiba, P.; Trimble, J. [Department of Physics and Astronomy, Austin Peay State University, Clarksville, TN 37044 (United States); Pafchek, R.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2015-03-30

    Graphical abstract: - Highlights: • Surfaces of GST-225 films are depleted in Te as a result of the reaction with oxygen. • Top layers of oxidized GST-225 are formed by Sb and Ge oxide complexes. • Depth profiles of Sb and Ge oxide complexes are found to be different. • Crystallization at 300 °C in O{sub 2} atmosphere leads to Ge redistribution. - Abstract: Structural changes in amorphous and crystallized GST-225 films induced by the reaction with oxygen are studied at different depth scales. The mechanism of interaction of the very top surface layers with oxygen is studied with low-energy ion scattering (LEIS) technique, while the modifications of chemistry in the underlying surface layers are investigated with high-resolution X-ray photoelectron spectroscopy (XPS). The changes averaged through the overall film thickness are characterized by micro-Raman spectroscopy. The oxygen exposure leads to a depletion of GST-225 film surfaces in Te and formation of the antimony and germanium oxides. The antimony oxide complexes are found throughout the whole thickness of the films after their prolonged storage in air, whereas no evidence for formation of pure GeO{sub 2} phase is found in the volume of the films through Raman spectroscopy. A tendency to form Ge-rich phase within the ∼10 nm surface layer is additionally observed by LEIS profiling during crystallization of GST-225 film at 300 °C in oxygen atmosphere.

  16. The Influence of Chronic Ego Depletion on Goal Adherence: An Experience Sampling Study.

    Science.gov (United States)

    Wang, Ligang; Tao, Ting; Fan, Chunlei; Gao, Wenbin; Wei, Chuguang

    2015-01-01

    Although ego depletion effects have been widely observed in experiments in which participants perform consecutive self-control tasks, the process of ego depletion remains poorly understood. Using the strength model of self-control, we hypothesized that chronic ego depletion adversely affects goal adherence and that mental effort and motivation are involved in the process of ego depletion. In this study, 203 students reported their daily performance, mental effort, and motivation with respect to goal directed behavior across a 3-week time period. People with high levels of chronic ego depletion were less successful in goal adherence than those with less chronic ego depletion. Although daily effort devoted to goal adherence increased with chronic ego depletion, motivation to adhere to goals was not affected. Participants with high levels of chronic ego depletion showed a stronger positive association between mental effort and performance, but chronic ego depletion did not play a regulatory role in the effect of motivation on performance. Chronic ego depletion increased the likelihood of behavior regulation failure, suggesting that it is difficult for people in an ego-depletion state to adhere to goals. We integrate our results with the findings of previous studies and discuss possible theoretical implications.

  17. Early Cambrian oxygen minimum zone-like conditions at Chengjiang

    DEFF Research Database (Denmark)

    Hammarlund, Emma U.; Gaines, Robert R.; Prokopenko, Maria G.

    2017-01-01

    in early Cambrian marine settings and the relationship of those conditions to early metazoan ecosystems is still emerging. Here, we report multi-proxy geochemical data from two drill cores through the early Cambrian (Series 2) Yu’anshan Formation of Yunnan, China. Results reveal dynamic water...... oxygen-minimum zones. The oxygenated benthic environments in which the Chengjiang biota thrived were proximal to, but sharply separated from, the open ocean by a persistent anoxic water mass that occupied a portion of the outer shelf. Oxygen depletion in the lower water column developed dynamically...

  18. NOMAD: a nodal microscopic analysis method for nuclear fuel depletion

    International Nuclear Information System (INIS)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Recently developed assembly homogenization techniques made possible very efficient global burnup calculations based on modern nodal methods. There are two possible ways of modeling the global depletion process: macroscopic and microscopic depletion models. Using a microscopic global depletion approach NOMAD (NOdal Microscopic Analysis Method for Nuclear Fuel Depletion), a multigroup, two- and three-dimensional, multicycle depletion code was devised. The code uses the ILLICO nodal diffusion model. The formalism of the ILLICO methodology is extended to treat changes in the macroscopic cross sections during a depletion cycle without recomputing the coupling coefficients. This results in a computationally very efficient method. The code was tested against a well-known depletion benchmark problem. In this problem a two-dimensional pressurized water reactor is depleted through two cycles. Both cycles were run with 1 x 1 and 2 x 2 nodes per assembly. It is obvious that the one node per assembly solution gives unacceptable results while the 2 x 2 solution gives relative power errors consistently below 2%

  19. Effect on the K/sub m/ for radiosensitization at 00C of thiol depletion by diethylmaleate pretreatment: quantitative differences found using the radiation sensitizing agent misonidazole or oxygen

    International Nuclear Information System (INIS)

    Koch, C.J.; Stobbe, C.C.; Bump, E.A.

    1984-01-01

    Pretreatment of V79-WNRE cells with 150 μM diethylmaleate for 1 hr at 37 0 C caused a decrease in intracellular glutathione levels to approximately 10-15% of control levels. The cells could be washed free of diethylmaleate and held at 0 0 C for several hours without toxicity and with no increase in glutathione concentration, although the glutathione concentration rapidly increased to normal levels at higher temperatures. Glutathione depletion itself caused a small but consistent radiosensitization of hypoxic cells (dose enhancement ratio of 1.2). However glutathione depletion caused a profound change in the radiosensitizing efficiency of misonidazole, with a decrease in K/sub m/ of about sevenfold from 0.6 to 0.09 mM. In contrast, only a 2.5-fold decrease was found in the K/sub m/ for radiosensitization by oxygen with diethylmaleate pretreatment. These results suggest a fundamental problem with the conventional theory of radiosensitivity whereby one considers a first-order competition for reaction with target radicals between radical-fixing versus radical-repairing species. It also suggests difficulties in the interpretation of glutathione as the only endogenous protective species

  20. Depletion of compounds from thin oil films in seawater

    International Nuclear Information System (INIS)

    Brakstad, O.G.; Faksness, L.G.; Melbye, A.G.

    2002-01-01

    When oil is spilled on water, the oil compounds distribute between droplets and water-soluble phases in the water column. Some small organic acids, phenols, BTEX, and aromatic compounds will dissolve completely, but larger polycyclic aromatic hydrocarbons (PAH) and alkanes will remain in the droplet fraction. The biodegradation of droplets occurs at the oil-water interface. A method for immobilizing the oil films onto hydrophobic surfaces was developed in order to obtain a stable oil surface during the biodegradation period. A test system was also established to determine the depletion of oil compounds from the oil phase, including both abiotic and biotic processes. Three North Sea oils were used in the study. Two were paraffinic oils rich in n-alkanes and aromatic compounds, and one was asphalthenic which was richer in branched alkanes and PAH. The biodegradation period was 2 months at 13 degrees C. Samples from the water and thin film on the fabric was analyzed for carbon 10 and carbon 36 by gas chromatography-flame ionization detection. Semi-volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Results indicated that the depletion process for alkanes was completely caused by biodegradation, while aromatic compounds were depleted by abiotic dissolution as well as by biodegradation. The system has potential for determining oil depletion processes under controlled surface-to-volume conditions, such as thin oil films and dispersed oil droplets. In addition, the system can be used to determine the depletion process in flow-through systems. 13 refs., 3 tabs., 9 figs

  1. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  2. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  3. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  4. Oxygen diffusion in soils: Understanding the factors and processes needed for modeling

    Directory of Open Access Journals (Sweden)

    José Neira

    2015-08-01

    Full Text Available Oxygen is an important element for plant growth. Reducing its concentration in the soil affects plant physiological processes such as nutrient and water uptake as well as respiration, the redox potential of soil elements and the activity of microorganisms. The main mechanism of oxygen transport in the soil is by diffusion, a dynamic process greatly influenced by soil physical properties such as texture and structure, conditioning, pore size distribution, tortuosity and connectivity. Organic matter is a modifying agent of the soil's chemical and physical properties, affecting its structure and the porous matrix, which are determinants of oxygen transport. This study reviews the theory of soil gas diffusion and the effect of soil organic matter on the soil's physical properties and transport of gases. It also reviews gas diffusion models, particularly those including the effect of soil organic matter.

  5. Deuterium-depleted water

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Steflea, Dumitru; Saros-Rogobete, Irina; Titescu, Gheorghe; Tamaian, Radu

    2001-01-01

    Deuterium-depleted water represents water that has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Deuterium depleted water is produced by vacuum distillation in columns equipped with structured packing made from phosphor bronze or stainless steel. Deuterium-depleted water, the production technique and structured packing are patents of National Institute of Research - Development for Cryogenics and Isotopic Technologies at Rm. Valcea. Researches made in the last few years showed the deuterium-depleted water is a biological active product that could have many applications in medicine and agriculture. (authors)

  6. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  7. The oxycoal process with cryogenic oxygen supply

    OpenAIRE

    Kather, Alfons; Scheffknecht, G?nter

    2009-01-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly c...

  8. Kinetics of the exchange of oxygen between carbon dioxide and carbonate in aqueous solution

    International Nuclear Information System (INIS)

    Tu, C.K.; Silverman, D.N.

    1975-01-01

    A kinetic analysis of the exchange of oxygen between carbon dioxide and carbonate ion in alkaline, aqueous solutions is presented. The exchange was observed by placing 18 O-labeled carbonate, not enriched in 13 C, into solution with 13 C-enriched carbonate, not enriched in 18 O. The rate of depletion of 18 O from the 12 C-containing species and the rate of appearance of 18 O in the 13 C-containing species was measured by mass spectrometry. From these data, the second-order rate constant for the reaction between carbon dioxide and carbonate which results in the exchange of oxygen at 25 0 is 114 +- 11 M -1 sec -1 . It is emphasized that this exchange of oxygen between species of CO 2 in solution must be recognized in studies using 18 O labels to determine the fate of CO 2 in biochemical and physiological processes. (auth)

  9. Processing of membranes for oxygenation using the Bellhouse-effect

    Directory of Open Access Journals (Sweden)

    Neußer C.

    2015-09-01

    Full Text Available State-of-the-art lung support systems are limited to short time application because of a lack of long term hemocompatibility and protein absorption on the membrane surfaces. In a highly interdisciplinary project at RWTH Aachen University a biohybrid lung assist system with endothelialised gas exchange flat membranes is developed to improve long term compatibility of oxygenators. To increase the gas exchange performance of flat membranes hollows are imprinted in the membrane surfaces. This approach is based on the research of B. J. Bell-house et al. [1], who discovered this effect, now known as Bellhouse-effect, around 1960. In this paper a processes to manufacture membrane assemblies for oxygenation with imprinted hollows on the flat membrane surfaces is reviewed.

  10. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    Science.gov (United States)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In three studies, we assessed individual differences in depletion sensitivity, and demonstrate that depletion sensitivity moderates ego-depletion effects. The Depletion Sensitivity Scale (DSS) was employed to assess depletion sensitivity. Study 1 employs the DSS to demonstrate that individual differences in sensitivity to ego-depletion exist. Study 2 shows moderate correlations of depletion sensitivity with related self-control concepts, indicating that these scales measure conceptually distinct constructs. Study 3 demonstrates that depletion sensitivity moderates the ego-depletion effect. Specifically, participants who are sensitive to depletion performed worse on a second self-control task, indicating a stronger ego-depletion effect, compared to participants less sensitive to depletion. PMID:25009523

  11. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    International Nuclear Information System (INIS)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara

    2006-11-01

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS 2 ) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  12. Assessment of the oxygen consumption in the backfill. Geochemical modelling in a saturated backfill

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Domenech, Cristina; Arcos, David; Duro, Lara [Enviros Spain S.L., Barcelona (Spain)

    2006-11-15

    The consumption of oxygen in the deep disposal is a major concern due to the ability of this element to corrode the canisters where high level nuclear wastes (HLNW) are disposed. The anoxic conditions initially present in a deep geologic environment are disturbed by the excavation of the repository facilities. After sealing the deposition holes and tunnels using clay-based materials, oxygen remains dissolved in porewater or as a gas phase in the unsaturated pores. The main mechanisms of oxygen depletion that can be considered in the backfill materials are: (1) diffusion into the surrounding rock and (2) kinetic reactions with accessory minerals and organic matter existing in the backfill. In this report, a set of numerical simulations are carried out in one and two dimensions in order to test the effect on the oxygen concentration in the pore water of all these mechanisms. The backfill considered is a 0/70 mixture of MX-80 bentonite and crushed material from the excavation itself. In addition to organic matter, the solid phases with reducing capacity in the backfill are Fe(II)-bearing minerals: pyrite (FeS{sub 2}) and siderite (FeCO) (as accessory minerals in the bentonite) and Fe-biotite (from the crushed granite). In the simulations, other chemical processes like cation exchange and surface complexation onto clay surfaces, and thermodynamic equilibrium with calcite, gypsum and quartz are considered. Initial composition of porewater is obtained by equilibrating the Forsmark groundwater with the backfill material. The 1D simulation consists of a number of cells with no reactive minerals or organic matter representing granite. The central cell, however, contains oxygen and reactive minerals resembling a backfill. Oxygen is allowed to move only by diffusion. The 2D model simulates the interaction with a backfill of a granitic groundwater flowing through a fracture. Like in the 1D model, the backfill contains oxygen and reactive solids. The results are very similar in

  13. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy.

    Science.gov (United States)

    Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham

    2007-10-01

    Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.

  14. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera

    International Nuclear Information System (INIS)

    Woodruff, F.; Douglas, R.G.

    1980-01-01

    Recent deep-sea benthic foraminifera from five East Pacific Rise box core tops have been analyzed for oxygen and carbon isotopic composition. The five equatorial stations, with water depths of between 3200 and 4600 m, yielded fourteen specific and generic taxonomic groups. Of the taxa analyzed, Uvigerina spp. most closely approaches oxygen isotopic equilibrium with ambient sea water. Pyrgo spp. was next closest to isotopic equilibrium, being on the average 0.59 per thousand depleted in 18 O relative to Uvigerina spp. Oridorsalis umbonatus also has relatively high delta 18 O values. Most other taxa were depleted in 18 O by large amounts. In no taxa was the carbon in the CaCO 3 secreted in carbon isotopic equilibrium with the dissolved HCO 3 - of ambient sea water. (Auth.)

  15. Potential For Stratospheric Ozone Depletion During Carboniferous

    Science.gov (United States)

    Bill, M.; Goldstein, A. H.

    Methyl bromide (CH3Br) constitutes the largest source of bromine atoms to the strato- sphere whereas methyl chloride (CH3Cl) is the most abundant halocarbon in the tro- posphere. Both gases play an important role in stratospheric ozone depletion. For in- stance, Br coupled reactions are responsible for 30 to 50 % of total ozone loss in the polar vortex. Currently, the largest natural sources of CH3Br and CH3Cl appear to be biological production in the oceans, inorganic production during biomass burning and plant production in salt marsh ecosystems. Variations of paleofluxes of CH3Br and CH3Cl can be estimated by analyses of oceanic paleoproductivity, stratigraphic analyses of frequency and distribution of fossil charcoal indicating the occurrence of wildfires, and/or by paleoreconstruction indicating the extent of salt marshes. Dur- ing the lower Carboniferous time (Tournaisian-Visean), the southern margin of the Laurasian continent was characterized by charcoal deposits. Estimation on frequency of charcoal layers indicates that wildfires occur in a range of 3-35 years (Falcon-Lang 2000). This suggests that biomass burning could be an important source of CH3Br and CH3Cl during Tournaisian-Viesan time. During Tounaisian and until Merame- cian carbon and oxygen isotope records have short term oscillations (Bruckschen et al. 1999, Mii et al. 1999). Chesterian time (mid- Carboniferous) is marked by an in- crease in delta18O values ( ~ 2 permil) and an increase of glacial deposit frequency suggesting lower temperatures. The occurrence of glacial deposits over the paleopole suggests polar conditions and the associated special features of polar mete- orology such as strong circumpolar wind in the stratosphere (polar vortex) and polar stratospheric clouds. Thus, conditions leading to polar statospheric ozone depletion can be found. Simultaneously an increase in delta13C values is documented. We interpret the positive shift in delta13C as a result of higher bioproductivity

  16. Plants modify biological processes to ensure survival following carbon depletion: a Lolium perenne model.

    Directory of Open Access Journals (Sweden)

    Julia M Lee

    Full Text Available BACKGROUND: Plants, due to their immobility, have evolved mechanisms allowing them to adapt to multiple environmental and management conditions. Short-term undesirable conditions (e.g. moisture deficit, cold temperatures generally reduce photosynthetic carbon supply while increasing soluble carbohydrate accumulation. It is not known, however, what strategies plants may use in the long-term to adapt to situations resulting in net carbon depletion (i.e. reduced photosynthetic carbon supply and carbohydrate accumulation. In addition, many transcriptomic experiments have typically been undertaken under laboratory conditions; therefore, long-term acclimation strategies that plants use in natural environments are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Perennial ryegrass (Lolium perenne L. was used as a model plant to define whether plants adapt to repetitive carbon depletion and to further elucidate their long-term acclimation mechanisms. Transcriptome changes in both lamina and stubble tissues of field-grown plants with depleted carbon reserves were characterised using reverse transcription-quantitative polymerase chain reaction (RT-qPCR. The RT-qPCR data for select key genes indicated that plants reduced fructan degradation, and increased photosynthesis and fructan synthesis capacities following carbon depletion. This acclimatory response was not sufficient to prevent a reduction (P<0.001 in net biomass accumulation, but ensured that the plant survived. CONCLUSIONS: Adaptations of plants with depleted carbon reserves resulted in reduced post-defoliation carbon mobilization and earlier replenishment of carbon reserves, thereby ensuring survival and continued growth. These findings will help pave the way to improve plant biomass production, for either grazing livestock or biofuel purposes.

  17. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  18. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    Science.gov (United States)

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  19. Dissolved oxygen mapping: A powerful tool for site assessments and ground water monitoring

    International Nuclear Information System (INIS)

    Newman, W.A.; Kimball, G.

    1992-01-01

    Dissolved oxygen concentration profiles often provide an excellent indication of the natural biological activity of microorganisms in ground water. The analysis of dissolved oxygen in ground water also provides a rapid, inexpensive method for determining the areal extent of contaminant plumes containing aerobically degraded compounds such as petroleum hydrocarbons. Indigenous hydrocarbon degrading organisms are present at most petroleum product spills giving this technique an almost universal application for dissolved hydrocarbons in ground water. Data from several sites will be presented to demonstrate the relationship between oxygen and dissolved contaminant concentrations. The inverse relationship between oxygen concentrations and dissolved contaminants can be used in many ways. During the initial site assessment, rapid on-site testing of ground water can provide real time data to direct drilling by identification of potentially contaminated locations. Several analytical techniques are available that allow field analysis to be performed in less than five minutes. Dissolved oxygen testing also provides an inexpensive way to monitor hydrocarbon migration without expensive gas chromatography. Often a plume of oxygen depleted ground water extends farther downgradient than the dissolved hydrocarbon plume. The depletion of oxygen in a well can provide an early warning system that detects upgradient contamination before the well is impacted by detectable levels of contaminants. Another application is the measurement of the natural degradation potential for aerobic remediation. If an aerobic in-situ remediation is used, dissolved oxygen monitoring provides an inexpensive method to monitor the progress of the remediation

  20. Exercise on-transition uncoupling of ventilatory, gas exchange and cardiac hemodynamic kinetics accompany pulmonary oxygen stores depletion to impact exercise intolerance in human heart failure.

    Science.gov (United States)

    Van Iterson, E H; Smith, J R; Olson, T P

    2018-03-25

    In contrast to knowledge that heart failure (HF) patients demonstrate peak exercise uncoupling across ventilation, gas exchange and cardiac haemodynamics, whether this dyssynchrony follows that at the exercise on-transition is unclear. This study tested whether exercise on-transition temporal lag for ventilation relative to gas exchange and oxygen pulse (O 2 pulse) couples with effects from abnormal pulmonary gaseous oxygen store (O 2store ) contributions to V˙O 2 to interdependently precipitate persistently elevated ventilatory demand and low oxidative metabolic capacity in HF. Beat-to-beat HR and breath-to-breath ventilation and gas exchange were continuously acquired in HF (N = 9, ejection fraction = 30 ± 9%) and matched controls (N = 10) during square-wave ergometry at 60% V˙O 2peak (46 ± 14 vs 125 ± 54-W, P < .001). Temporal responses across V˙ E , V˙O 2 and O 2 pulse were assessed for the exercise on-transition using single exponential model Phase II on-kinetic time constants (τ = time to reach 63% steady-state rise). Breath-to-breath gas fractions and respiratory flows were used to determine O 2stores . HF vs controls: τ for V˙ E (137 ± 93 vs 74 ± 40-seconds, P = .03), V˙O 2 (60 ± 40 vs 23 ± 5-seconds, P = .03) and O 2 pulse (28 ± 18 vs 23 ± 15-seconds, P = .59). Within HF, τ for V˙ E differed from O 2 pulse (P < .02), but not V˙O 2 . Exercise V˙ E rise (workload indexed) differed in HF vs controls (545 ± 139 vs 309 ± 88-mL min -1 W -1 , P < .001). Exercise on-transition O 2store depletion in HF exceeded controls, generally persisting to end-exercise. These data suggest HF demonstrated exercise on-transition O 2store depletion (high O 2store contribution to V˙O 2 ) coupled with dyssynchronous V˙ E , V˙O 2 and O 2 pulse kinetics-not attributable to prolonged cardiac haemodynamics. Persistent high ventilatory demand and low oxidative metabolic capacity in HF may be precipitated by physiological uncoupling occurring within the exercise

  1. Blood conservation with membrane oxygenators and dipyridamole.

    Science.gov (United States)

    Teoh, K H; Christakis, G T; Weisel, R D; Madonik, M M; Ivanov, J; Wong, P Y; Mee, A V; Levitt, D; Benak, A; Reilly, P

    1987-07-01

    Cardiopulmonary bypass induces platelet activation and dysfunction, which result in platelet deposition and depletion. Reduced platelet numbers and abnormal platelet function may contribute to postoperative bleeding. A membrane oxygenator may preserve platelets and reduce bleeding more than a bubble oxygenator, and the antiplatelet agent dipyridamole may protect platelets intraoperatively and reduce bleeding postoperatively. A prospective randomized trial was performed in 44 patients undergoing elective coronary artery bypass grafting to assess the effects of the membrane oxygenator and dipyridamole on platelet counts, platelet activation products, and postoperative bleeding. Patients who were randomized to receive a bubble oxygenator and no dipyridamole had the lowest postoperative platelet counts, the greatest blood loss, and the most blood products transfused. Platelet counts were highest and blood loss was least in patients randomized to receive a membrane oxygenator and dipyridamole (p less than .05). A bubble oxygenator with dipyridamole and a membrane oxygenator without dipyridamole resulted in intermediate postoperative platelet counts and blood loss. Arterial thromboxane B2 and platelet factor 4 concentrations were elevated on cardiopulmonary bypass in all groups. Both the membrane oxygenator and dipyridamole were independently effective (by multivariate analysis) in preserving platelets. Optimal blood conservation was achieved with a membrane oxygenator and dipyridamole.

  2. The Physical Origin of Long Gas Depletion Times in Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-18

    We present a model that elucidates why gas depletion times in galaxies are long compared to the time scales of the processes driving the evolution of the interstellar medium. We show that global depletion times are not set by any "bottleneck" in the process of gas evolution towards the star-forming state. Instead, depletion times are long because star-forming gas converts only a small fraction of its mass into stars before it is dispersed by dynamical and feedback processes. Thus, complete depletion requires that gas transitions between star-forming and non-star-forming states multiple times. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in galaxy simulations. In particular, the model explains the mechanism by which feedback self-regulates star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated $L_*$-sized disk galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is close to linear on kiloparsec scales, even though a non-linear relation is adopted in simulation cells. This difference is due to stellar feedback, which breaks the self-similar scaling of the gas density PDF with the average gas surface density.

  3. The Chemistry and Toxicology of Depleted Uranium

    OpenAIRE

    Sidney A. Katz

    2014-01-01

    Natural uranium is comprised of three radioactive isotopes: 238U, 235U, and 234U. Depleted uranium (DU) is a byproduct of the processes for the enrichment of the naturally occurring 235U isotope. The world wide stock pile contains some 1½ million tons of depleted uranium. Some of it has been used to dilute weapons grade uranium (~90% 235U) down to reactor grade uranium (~5% 235U), and some of it has been used for heavy tank armor and for the fabrication of armor-piercing bullets and missiles....

  4. Department of Energy depleted uranium recycle

    International Nuclear Information System (INIS)

    Kosinski, F.E.; Butturini, W.G.; Kurtz, J.J.

    1994-01-01

    With its strategic supply of depleted uranium, the Department of Energy is studying reuse of the material in nuclear radiation shields, military hardware, and commercial applications. the study is expected to warrant a more detailed uranium recycle plan which would include consideration of a demonstration program and a program implementation decision. Such a program, if implemented, would become the largest nuclear material recycle program in the history of the Department of Energy. The bulk of the current inventory of depleted uranium is stored in 14-ton cylinders in the form of solid uranium hexafluoride (UF 6 ). The radioactive 235 U content has been reduced to a concentration of 0.2% to 0.4%. Present estimates indicate there are about 55,000 UF 6 -filled cylinders in inventory and planned operations will provide another 2,500 cylinders of depleted uranium each year. The United States government, under the auspices of the Department of Energy, considers the depleted uranium a highly-refined strategic resource of significant value. A possible utilization of a large portion of the depleted uranium inventory is as radiation shielding for spent reactor fuels and high-level radioactive waste. To this end, the Department of Energy study to-date has included a preliminary technical review to ascertain DOE chemical forms useful for commercial products. The presentation summarized the information including preliminary cost estimates. The status of commercial uranium processing is discussed. With a shrinking market, the number of chemical conversion and fabrication plants is reduced; however, the commercial capability does exist for chemical conversion of the UF 6 to the metal form and for the fabrication of uranium radiation shields and other uranium products. Department of Energy facilities no longer possess a capability for depleted uranium chemical conversion

  5. Effect of low oxygen concentrations on growth and alpha-amylase production of Aspergillus oryzae in model solid-state fermentation systems

    NARCIS (Netherlands)

    Rahardjo, Y.S.P.; Sie, S.; Weber, F.J.; Tramper, J.; Rinzema, A.

    2005-01-01

    Oxygen transfer in the fungal mat is a major concern in solid-state fermentation (SSF). Oxygen supply into the mycelial layers is hampered by diffusion limitation. For aerobic fungi, like Aspergillus oryzae, this oxygen depletion can be a severely limiting factor for growth and metabolite

  6. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation.

    Science.gov (United States)

    Xie, Zhi; Ding, Sheng-quan; Shen, Ya-fang

    2014-11-14

    In this study, we explored the cytoprotective potential of silibinin against oxygen-glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Modelling Ecosystem Dynamics of the Oxygen Minimum Zones in the Angola Gyre and the Northern Benguela Upwelling System.

    Science.gov (United States)

    Schmidt, M.; Eggert, A.

    2016-02-01

    The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by

  8. New Views on the Early Evolution of Oxygen in the Galaxy

    Science.gov (United States)

    Rebolo, R.; Israelian, G.; García López, R. J.

    We have performed a detailed oxygen abundance analysis of 23 metal-poor (-3.0 Abia & Rebolo 1989; Tomkin et al. 1992; Cavallo, Pilachowski, & Rebolo 1997). Contrary to the previously accepted picture, our oxygen abundances, derived from low-excitation OH lines, agree well with those derived from high-excitation lines of the triplet. For nine stars in common with Tomkin et al. we obtain a mean difference of 0.00 plus or minus 0.11dex with respect to the abundances determined from the triplet using the same stellar parameters and model photospheres. Our new results show a smooth extension of the Edvardsson et al.'s (1993) [O/Fe] versus metallicity curve to much lower abundances. The oxygen abundances of unevolved stars when compared with values in the literature for giants of similar metallicity imply that the latter may have suffered a process of oxygen depletion. It appears that unevolved metal-poor stars are better tracers of the early chemical evolution of the Galaxy. The extrapolation of our results to very low metallicities indicates that the ratio of oxygen to iron emerging from the first Type II SNe in the early Galaxy was indeed close to unity. The higher [O/Fe] ratios we find in dwarfs has an impact on the age determination of globular clusters, and suggest that current age estimates have to be reduced by about 1-2 Gyr.

  9. Glutathione depletion prevents diet-induced obesity and enhances insulin sensitivity.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; Bruemmer, Dennis

    2011-12-01

    Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.

  10. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  11. Kinetics of oxygen adsorption on ZnS nanoparticles synthesized by precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi Reza

    2016-06-01

    Full Text Available ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD, ultraviolet (UV visible absorption and photoluminescence (PL spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate oxygen adsorption capacity was suggested as a means of PL emission intensity control.

  12. 3D Microstructural Characterization of Uranium Oxide as a Surrogate Nuclear Fuel: Effect of Oxygen Stoichiometry on Grain Boundary Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rudman, K. [Arizona State Univ., Tempe, AZ (United States); Dickerson, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peralta, P. [Arizona State Univ., Tempe, AZ (United States); Lim, H. [Arizona State Univ., Tempe, AZ (United States); McDonald, R. [Arizona State Univ., Tempe, AZ (United States); Dickerson, R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    The initial microstructure of an oxide fuel can play a key role in its performance. At low burn-ups, the diffusion of fission products can depend strongly on grain size and grain boundary (GB) characteristics, which in turn depend on processing conditions and oxygen stoichiometry. Serial sectioning techniques using Focused Ion Beam were developed to obtain Electron Backscatter Diffraction (EBSD) data for depleted UO2 pellets that were processed to obtain 3 different oxygen stoichiometries. The EBSD data were used to create 3D microstructure reconstructions and to gather statistical information on the grain and GB crystallography, with emphasis on identifying the character (twist, tilt, mixed) for GBs that meet the Coincident Site Lattice (CSL) criterion as well as GBs with the most common misorientation angles. Data on dihedral angles at triple points were also collected. The results were compared across different samples to understand effects of oxygen content on microstructure evolution.

  13. Novel results on fluence dependence and annealing behaviour of oxygenated and non-oxygenated silicon detectors

    CERN Document Server

    Martínez, C; Lozano, M; Campabadal, F; Santander, J; Fonseca, L; Ullán, M; Moreno, A

    2002-01-01

    This work presents the latest results on electrical properties degradation of silicon radiation detectors manufactured at IMB-CNM (Institut de Microelectronica de Barcelona) subjected to proton irradiation at CERN for high energy physics applications. The evolution of full depletion voltage and leakage current with fluence, as well as their annealing behaviour with time, were studied. The results obtained extend the previous understanding of the role played by technology and oxygenated material in hardening silicon radiation detectors. (15 refs).

  14. "When the going gets tough, who keeps going?" Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T D

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In

  15. "When the going gets tough, who keeps going?" : Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; De Vet, Emely; Fennis, Bob M.; De Ridder, Denise T. D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In

  16. Processing of pulse oximeter signals using adaptive filtering and autocorrelation to isolate perfusion and oxygenation components

    Science.gov (United States)

    Ibey, Bennett; Subramanian, Hariharan; Ericson, Nance; Xu, Weijian; Wilson, Mark; Cote, Gerard L.

    2005-03-01

    A blood perfusion and oxygenation sensor has been developed for in situ monitoring of transplanted organs. In processing in situ data, motion artifacts due to increased perfusion can create invalid oxygenation saturation values. In order to remove the unwanted artifacts from the pulsatile signal, adaptive filtering was employed using a third wavelength source centered at 810nm as a reference signal. The 810 nm source resides approximately at the isosbestic point in the hemoglobin absorption curve where the absorbance of light is nearly equal for oxygenated and deoxygenated hemoglobin. Using an autocorrelation based algorithm oxygenation saturation values can be obtained without the need for large sampling data sets allowing for near real-time processing. This technique has been shown to be more reliable than traditional techniques and proven to adequately improve the measurement of oxygenation values in varying perfusion states.

  17. Mathematical modeling of oxygen transport in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ann Mari

    1997-12-31

    This thesis develops mathematical models to describe the electrochemical performance of a solid oxide fuel cell cathode based on electrochemical kinetics and mass transfer. The individual effects of various coupled processes are investigated. A one-dimensional model is developed based on porous electrode theory. Two different mechanisms are investigated for the charge transfer reaction. One of these assumes that intermediately adsorbed oxygen atoms are reduced at the electrode/electrolyte interface, similar to the models proposed for metal electrodes. Simulated polarization curves exhibit limited currents due to depletion of oxygen adsorbates at high cathodic overvoltages. An empirical correlation is confirmed to exist between the limiting current an the oxygen partial pressure, however, a similar correlation often assumed to exist between the measured polarization resistance and the oxygen partial pressure could not be justified. For the other model, oxygen vacancies are assumed to be exchanged directly at the electrode/electrolyte interface. The electrochemical behaviour is improved by reducing the oxygen partial pressure, due to increased vacancy concentration of the electrode material. Simulated polarization curves exhibit Tafel-like slopes in the cathodic direction, which are due to polarization concentration, and not activation polarization in the conventional sense. Anodic limiting currents are predicted due to lack of available free sites for vacancy exchange at the cathode side. The thesis also presents a theoretical treatment of current and potential distributions in simple two-dimensional cell geometries, and a two-dimensional model for a porous electrode-electrolyte system for investigation of the effect of interfacial diffusion of adsorbates along the electrode/electrolyte interface. 172 refs., 60 figs., 11 tabs.

  18. The Toxicity of Depleted Uranium

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2010-01-01

    Full Text Available Depleted uranium (DU is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  19. Effects of Acute Tryptophan Depletion on Three Different Types of Behavioral Impulsivity

    Directory of Open Access Journals (Sweden)

    Donald M. Dougherty

    2010-01-01

    Full Text Available Introduction While central nervous system serotonin has been implicated in a variety of problematic impulsive behaviors, biological manipulation of brain serotonin using acute tryptophan depletion for studying changes in impulsive behavior has received little attention. Methods Using identical treatment conditions, we examined the effects of reduced serotonin synthesis for each of three matched groups using acute tryptophan depletion. Thirty healthy men and women (ages 18–45 were assigned to perform one of three tasks assessing different types of behavioral impulsivity: response initiation, response inhibition, and consequence sensitivity ( N = 90. Participants completed two experimental days during which each consumed either a tryptophan-depletion or balanced-placebo amino-acid formulation and completed 5 sessions of their respective tasks at 0.25 h before and 1.5, 4.0, 5.0, and 6.0 h after beverage consumption. Results During peak effectiveness (5.0 h to 6.0 h following amino-acid consumption, depletion produced selective differences dependent on the type of impulsivity being tested. Specifically, relative to baseline testing (pre-depletion, response initiation impulsivity was significantly increased during the peak effects of depletion. And, when compared to placebo control, both response initiation and consequence sensitivity impulsivity were increased during the peak effects of depletion. Conclusion Though response initiation and consequence sensitivity impulsivity were affected by tryptophan depletion, response inhibition impulsivity was not, suggesting that other biological processes may underlie this specific component of impulsivity. Future research in other populations or using different pharmacological agents is warranted to further examine the biological processes underlying these components of impulsivity.

  20. Effects of Acute Tryptophan Depletion on Three Different Types of Behavioral Impulsivity

    Directory of Open Access Journals (Sweden)

    Donald M. Dougherty

    2010-06-01

    Full Text Available Introduction: While central nervous system serotonin has been implicated in a variety of problematic impulsive behaviors, biological manipulation of brain serotonin using acute tryptophan depletion for studying changes in impulsive behavior has received little attention. Methods: Using identical treatment conditions, we examined the effects of reduced serotonin synthesis for each of three matched groups using acute tryptophan depletion. Thirty healthy men and women (ages 18–45 were assigned to perform one of three tasks assessing different types of behavioral impulsivity: response initiation, response inhibition, and consequence sensitivity (N = 90. Participants completed two experimental days during which each consumed either a tryptophan-depletion or balanced-placebo amino-acid formulation and completed 5 sessions of their respective tasks at 0.25 h before and 1.5, 4.0, 5.0, and 6.0 h after beverage consumption. Results: During peak effectiveness (5.0 h to 6.0 h following amino-acid consumption, depletion produced selective differences dependent on the type of impulsivity being tested. Specifically, relative to baseline testing (pre-depletion, response initiation impulsivity was significantly increased during the peak effects of depletion. And, when compared to placebo control, both response initiation and consequence sensitivity impulsivity were increased during the peak effects of depletion. Conclusion: Though response initiation and consequence sensitivity impulsivity were affected by tryptophan depletion, response inhibition impulsivity was not, suggesting that other biological processes may underlie this specific component of impulsivity. Future research in other populations or using different pharmacological agents is warranted to further examine the biological processes underlying these components of impulsivity.

  1. Management of depleted uranium

    International Nuclear Information System (INIS)

    2001-01-01

    Large stocks of depleted uranium have arisen as a result of enrichment operations, especially in the United States and the Russian Federation. Countries with depleted uranium stocks are interested in assessing strategies for the use and management of depleted uranium. The choice of strategy depends on several factors, including government and business policy, alternative uses available, the economic value of the material, regulatory aspects and disposal options, and international market developments in the nuclear fuel cycle. This report presents the results of a depleted uranium study conducted by an expert group organised jointly by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It contains information on current inventories of depleted uranium, potential future arisings, long term management alternatives, peaceful use options and country programmes. In addition, it explores ideas for international collaboration and identifies key issues for governments and policy makers to consider. (authors)

  2. The role of water in generating Fe-depletion and the calc-alkaline trend

    Science.gov (United States)

    Zimmer, M. M.; Plank, T.

    2006-12-01

    Describing a magmatic suite as calc-alkaline (CA) or tholeiitic (TH) is a first order characterization, but existing classification schemes (AFM ternary plots and FeO*/MgO vs. SiO2) may convolute magmatic processes and can result in contradictory classification. The salient feature of TH vs. CA evolution is the extent of Fe enrichment or depletion in the magma. A plot of FeO* vs. MgO provides the most straightforward way to quantify Fe enrichment and to develop models for its origin. We present a new quantitative classification utilizing the FeO*-MgO plot, the tholeiitic index (THI) = Fe3-5/Fe8 (Fe3-5=average FeO* at 3-5 wt% MgO; Fe8=FeO* at 8 wt% MgO). THI of 1.2 indicates 20% FeO* enrichment from a magma's starting composition at Fe8, while THI of 0.8 indicates 20% depletion in FeO*. A magmatic suite is CA if THI is TH if THI is >1. Arcs range from 0.6 to 1.1, back arc basins from 1.1-1.3, and MORBs are \\ge1.6. This classification allows comparison of magmatic evolution on a global basis, regardless of starting composition, and is useful for quantitative comparison to liquid line of descent models. Hypotheses for generating CA magmas include high water contents, high pressure of crystallization, high oxygen fugacity, and high Mg# andesitic starting compositions. In order to test the control of H2O, we compare the THI to average magmatic water contents from undegassed melt inclusions and glasses (S>1000 ppm or CO2>50 ppm) from twenty-eight arc volcanoes and back arc basins, including new water contents from seven Aleutian volcanoes. The resulting negative correlation (R2=0.8) between water concentration and THI (with end-members at 0.8 wt% H2O, THI =1.3 and 6.1 wt% H2O, THI = 0.6) suggests water plays a fundamental role in generating the CA fractionation trend. MORB data plot off the trend at a higher THI, possibly related to lower oxygen fugacity during melting and/or crystallization. Models using the pMelts program are consistent with experimentally- and

  3. The harzburgites-lherzolite cycle: depletion and refertilization processes

    Science.gov (United States)

    Dijkstra, A. H.

    2011-12-01

    Lherzolites or clinopyroxene-rich harzburgites sampled at the ocean floor are now generally interpreted as refractory harzburgites refertilized by melt-rock reaction or melt impregnation at the spreading center, rather than as relatively undepleted bulk upper mantle. The key evidence for a melt refertilization origin is often textural. Critically, the refertilization can mask the underlying very refractory character: oceanic peridotites prior to melt refertilization at the ridge are often too refractory to be simple mantle residues of bulk upper mantle that was melted at the ridge. This suggests that the upper mantle contains large domains that record prior melting histories. This is supported by ancient rhenium-depletion ages that are common in oceanic peridotites. In this presentation, I will discuss some key examples (e.g., Macquarie Island [1], Pindos, Totalp, Lanzarote) of refertilized oceanic peridotites, which all have recorded previous, ancient depletions. I will show the textural and geochemical evidence for melt refertilization. It has often been assumed that melt refertilization occurs by interaction with mantle melts. However, there is now evidence for melt refertilization through a reaction with eclogite-derived melts, probably at the base of the melting column underneath the ridge system. These eclogitic mantle heterogeneities themselves do not normally survive the melting underneath the spreading center, but their isotopic signature can be recognized in the reacted peridotites. In summary, we have moved away from the idea that oceanic mantle rocks are simple melting residues of homogeneous bulk upper mantle. The picture that emerges is a rich and complex one, suggesting that oceanic mantle rocks record dynamic histories of melting and refertilization. In particular, the melting event in refertilized peridotites can be much older than the age of the ridge system at which they are sampled. Many oceanic peridotites contain evidence for a Mesoproterozoic

  4. Comparative Analysis of VERA Depletion Problems

    International Nuclear Information System (INIS)

    Park, Jinsu; Kim, Wonkyeong; Choi, Sooyoung; Lee, Hyunsuk; Lee, Deokjung

    2016-01-01

    Each code has its own solver for depletion, which can produce different depletion calculation results. In order to produce reference solutions for depletion calculation comparison, sensitivity studies should be preceded for each depletion solver. The sensitivity tests for burnup interval, number of depletion zones, and recoverable energy per fission (Q-value) were performed in this paper. For the comparison of depletion calculation results, usually the multiplication factors are compared as a function of burnup. In this study, new comparison methods have been introduced by using the number density of isotope or element, and a cumulative flux instead of burnup. In this paper, optimum depletion calculation options are determined through the sensitivity study of the burnup intervals and the number of depletion intrazones. Because the depletion using CRAM solver performs well for large burnup intervals, smaller number of burnup steps can be used to produce converged solutions. It was noted that the depletion intra-zone sensitivity is only pin-type dependent. The 1 and 10 depletion intra-zones for the normal UO2 pin and gadolinia rod, respectively, are required to obtain the reference solutions. When the optimized depletion calculation options are used, the differences of Q-values are found to be a main cause of the differences of solutions. In this paper, new comparison methods were introduced for consistent code-to-code comparisons even when different kappa libraries were used in the depletion calculations

  5. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    Science.gov (United States)

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  6. Novel results on fluence dependence and annealing behavior of oxygenated and non-oxygenated silicon detectors

    CERN Document Server

    Martínez, C; Lozano, M; Campabadal, F; Santander, J; Fonseca, L; Ullán, M; Moreno, A J D

    2002-01-01

    This work presents the latest results on electrical properties degradation of silicon radiation detectors manufactured at the Institut de Microelectronica de Barcelona (IMB-CNM) subjected to proton irradiation at CERN, Switzerland, for high-energy physics (HEP) applications. The evolution of full depletion voltage and leakage current with fluence as well as their annealing behavior with time were studied. The results obtained extend the previous understanding of the role played by technology and oxygenated material in hardening silicon radiation detectors. (15 refs).

  7. Evaluation of the vinyl acetate elimination process in methanogenic sludge with oxygen

    International Nuclear Information System (INIS)

    Duran, U.; Monroy, O.; Rendon, B.; Gomez, J.; Ramirez, F.

    2009-01-01

    The vinyl acetate (AV) is a volatile toxic used in the painting manufacture, causing serious problems of contamination in grounds, air and natural bodies of water. Under methanogenic conditions the complete mineralization of the AV has not been obtained, but evidences exist suggesting that with the addition of low oxygen concentrations to methanogenic sludge the elimination of this compound is possible. In this work was studied the respiratory process of elimination of the AV methano genesis and methano genesis with oxygen (1 mg/L-d). (Author)

  8. The enhancements and testing for the MCNPX depletion capability

    International Nuclear Information System (INIS)

    Fensin, M. L.; Hendricks, J. S.; Anghaie, S.

    2008-01-01

    Monte Carlo-linked depletion methods have gained recent interest due to the ability to more accurately model true system physics and better track the evolution of temporal nuclide inventory by simulating the actual physical process. The integration of INDER90 into the MCNPX Monte Carlo radiation transport code provides a completely self-contained Monte- Carlo-linked depletion capability in a single Monte Carlo code that is compatible with most nuclear criticality (KCODE) particle tracking features in MCNPX. MCNPX depletion tracks all necessary reaction rates and follows as many isotopes as cross section data permits in order to achieve a highly accurate temporal nuclide inventory solution. We describe here the depletion methodology dating from the original linking of MONTEBURNS and MCNP to the first public release of the integrated capability (MCNPX 2. 6.B, June, 2006) that has been reported previously. Then we further detail the many new depletion capability enhancements since then leading to the present capability. The H.B. Robinson benchmark calculation results are also reported. The new MCNPX depletion capability enhancements include: (1) allowing the modeling of as large a system as computer memory capacity permits; (2) tracking every fission product available in ENDF/B VII. 0; (3) enabling depletion in repeated structures geometries such as repeated arrays of fuel pins; (4) including metastable isotopes in burnup; and (5) manually changing the concentrations of key isotopes during different time steps to simulate changing reactor control conditions such as dilution of poisons to maintain criticality during burnup. These enhancements allow better detail to model the true system physics and also improve the robustness of the capability. The H.B. Robinson benchmark calculation was completed in order to determine the accuracy of the depletion solution. Temporal nuclide computations of key actinide and fission products are compared to the results of other

  9. Process for obtaining oxygen doped zinc telluride monocrystals and scintillator crystals obtained by this process

    International Nuclear Information System (INIS)

    Schneider, Maurice; Moreau, Roland; D'Haenen, J.-P.; Merenda, Pierre.

    1976-01-01

    A process is described for obtaining oxygen doped zinc telluride monocrystals, for use as scintillator crystals for ionising radiation detectors. The following operations are carried out in succession: one or several zinc telluride crystals are introduced into a silica ampoule together with a ternary mixture of zinc tellurium and oxygen, as an oxide or hydroxide of these elements; the ampoule is pumped down to a high vacuum and sealed; the sealed ampoule containing the mixture and monocrystals is placed in a kiln and brought to a uniform temperature sufficient to make the mixture three-phased, depending on its composition; the zinc telluride crystalline compound remains solid; the ampoule is then tempered to bring it quickly back to ambient temperature [fr

  10. Depleted uranium management alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  11. Depleted uranium management alternatives

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process

  12. Coal Combustion Behavior in New Ironmaking Process of Top Gas Recycling Oxygen Blast Furnace

    Science.gov (United States)

    Zhou, Zhenfeng; Xue, Qingguo; Tang, Huiqing; Wang, Guang; Wang, Jingsong

    2017-10-01

    The top gas recycling oxygen blast furnace (TGR-OBF) is a new ironmaking process which can significantly reduce the coke ratio and emissions of carbon dioxide. To better understand the coal combustion characteristics in the TGR-OBF, a three dimensional model was developed to simulate the lance-blowpipe-tuyere-raceway of a TGR-OBF. The combustion characteristics of pulverized coal in TGR-OBF were investigated. Furthermore, the effects of oxygen concentration and temperature were also analyzed. The simulation results show that the coal burnout increased by 16.23% compared to that of the TBF. The oxygen content has an obvious effect on the burnout. At 70% oxygen content, the coal burnout is only 21.64%, with a decrease of 50.14% compared to that of TBF. Moreover, the effect of oxygen temperature is also very obvious.

  13. The effect of oxygen on fatty acid composition of soil micromycetes

    Czech Academy of Sciences Publication Activity Database

    Jirout, Jiří

    2015-01-01

    Roč. 53, June (2015), s. 125-128 ISSN 1470-160X R&D Projects: GA ČR GPP504/12/P752 Institutional support: RVO:60077344 Keywords : soil micromycetes * oxygen depletion * fatty acids Subject RIV: EE - Microbiology, Virology Impact factor: 3.190, year: 2015

  14. Evolution of depleted mantle: The lead perspective

    Science.gov (United States)

    Tilton, George R.

    1983-07-01

    Isotopic data have established that, compared to estimated bulk earth abundances, the sources of oceanic basaltic lavas have been depleted in large ion lithophile elements for at least several billions of years. Various data on the Tertiary-Mesozoic Gorgona komatiite and Cretaceous Oka carbonatite show that those rocks also sample depleted mantle sources. This information is used by analogy to compare Pb isotopic data from 2.6 billion year old komatiite and carbonatite from the Suomussalmi belt of eastern Finland and Munro Township, Ontario that are with associated granitic rocks and ores that should contain marked crustal components. Within experimental error no differences are detected in the isotopic composition of initial Pb in either of the rock suites. These observations agree closely with Sr and Nd data from other laboratories showing that depleted mantle could not have originated in those areas more than a few tenths of billions of years before the rocks were emplaced. On a world-wide basis the Pb isotope data are consistent with production of depleted mantle by continuous differentiation processes acting over approximately the past 3 billion years. The data show that Pb evolution is more complex than the simpler models derived from the Rb-Sr and Sm-Nd systems. The nature of the complexity is still poorly understood.

  15. High sensitivity of Lobelia dortmanna to sediment oxygen depletion following organic enrichment

    DEFF Research Database (Denmark)

    Møller, Claus Lindskov; Jensen, Kaj Sand

    2011-01-01

    • Lobelia dortmanna thrives in oligotrophic, softwater lakes thanks to O(2) and CO(2) exchange across roots and uptake of sediment nutrients. We hypothesize that low gas permeability of leaves constrains Lobelia to pristine habitats because plants go anoxic in the dark if O(2) vanishes from...... sediments. • We added organic matter to sediments and followed O(2) dynamics in plants and sediments using microelectrodes. To investigate plant stress, nutrient content and photosynthetic capacity of leaves were measured. • Small additions of organic matter triggered O(2) depletion and accumulation of NH(4......)(+), Fe(2+) and CO(2) in sediments. O(2) in leaf lacunae fluctuated from above air saturation in the light to anoxia late in the dark in natural sediments, but organic enrichment prolonged anoxia because of higher O(2) consumption and restricted uptake from the water. Leaf N and P dropped below minimum...

  16. Oxygen isotope fractionation and algal symbiosis in benthic foraminifera from the Gulf of Elat, Israel

    International Nuclear Information System (INIS)

    Buchardt, B.; Hansen, H.J.

    1977-01-01

    In order to investigate possible isotopic fractionations due to algal symbiosis the oxygen and carbon isotope compositions of shell carbonate from symbiont-free and symbiont-bearing benthic foraminifera have been compared to that of molluscs living at the same locality. The material was collected over a depth profile in the Gulf of Elat (Aqaba), Israel, covering the interval from 4 to 125 metres. After corrections variations for temperature with depth, characteristic 18 O-depletions were observed in the foraminiferal shell carbonate when compared to the molluscs. These depletions are interpreted as 1) a constant vital effect seen in all the foraminifera studied and 2) an additional, light-dependent vital effect observed in the symbiont-bearing forms only, caused by incorporation of photosynthetic oxygen formed by the symbiotic algae. This additional vital effect emphasizes the difficulties in applying foraminifera to oxygen isotope palaeotemperature analyses. No well-defined differences in carbon isotope compositions are observed between symbiont-bearing and symbiont-free foraminifera. (author)

  17. Oxygen isotope fractionation and algal symbiosis in benthic foraminifera from the Gulf of Elat, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Buchardt, B; Hansen, H J [Copenhagen Univ. (Denmark)

    1977-01-01

    In order to investigate possible isotopic fractionations due to algal symbiosis the oxygen and carbon isotope compositions of shell carbonate from symbiont-free and symbiont-bearing benthic foraminifera have been compared to that of molluscs living at the same locality. The material was collected over a depth profile in the Gulf of Elat (Aqaba), Israel, covering the interval from 4 to 125 metres. After correcting for variations of temperature with depth, characteristic /sup 18/O-depletions were observed in the foraminiferal shell carbonate when compared to the molluscs. These depletions are interpreted as 1) a constant vital effect seen in all the foraminifera studied and 2) an additional, light-dependent vital effect observed in the symbiont-bearing forms only, caused by incorporation of photosynthetic oxygen formed by the symbiotic algae. This additional vital effect emphasizes the difficulties in applying foraminifera to oxygen isotope palaeotemperature analyses. No well-defined differences in carbon isotope compositions are observed between symbiont-bearing and symbiont-free foraminifera.

  18. The deuterium depleted water effects on germination, growth and respiration processes in Zea Mays culture

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Fleancu, Monica; Giosanu, Daniela; Iorga-Siman, Ion

    2002-01-01

    The aim of this paper is to study the influence of deuterium depleted water (DDW) on the germination, growth and respiration processes in Zea Mays culture. The DDW is produced by the Institute of Cryogenics and Isotope Separation, Rm. Valcea (Romania). We used moist seeds in three experimental lots: L-1 (control), using distillated water (because the quality of DDW, excepting the deuterium content, is similar to that of distillated water); L-2, using a mixture of DDW and H 2 O in 1:1 proportion; L-3, germination in light water (DDW). Reported to the control lot, the germinative energy was higher in L-2 and L-3, but it was no significant difference between faculty of germination of variants. The length of main root was higher in L-2 and L-3 as compared to control lot. The intensity process of respiration was stimulated when DDW was used in both cases (L-2 or L-3). So, we can remark a favorable influence of light water on some biological processes in Zea mays plants (authors)

  19. Oxygen toxicity

    Directory of Open Access Journals (Sweden)

    C. A. van der Westhuizen

    1990-07-01

    Full Text Available Oxygen has been discovered about 200 years ago. Since then the vital physiological involvement of oxygen in various biologi­cal processes, mainly energy production, has been established. However, in the body molecular oxygen can be converted to toxic oxygen metabolites such as superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These toxic metabolites are produced mainly in the mitochondria, plasma membranes and endoplasmic reticulum.

  20. Ozone-depleting Substances (ODS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This site includes all of the ozone-depleting substances (ODS) recognized by the Montreal Protocol. The data include ozone depletion potentials (ODP), global warming...

  1. Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies.

    Science.gov (United States)

    Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Jekel, Martin; Ruhl, Aki Sebastian

    2018-07-01

    Degradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Fast removal of oxygen from biological systems

    International Nuclear Information System (INIS)

    Dewey, D.L.; Michael, B.D.

    1975-01-01

    Reference is made to the fact that if radiation is given at a high enough dose rate, the biological effect of oxygen is less than at low dose rates. Examples are given of 'break-point' experiments showing the effect. It is stated that the rapid removal of a substance by radiation is not confined to oxygen: the only criterion required to demonstrate the effect is that the chemical causes a measurable sensitization or protection at a concentration small enough so that it can be depleted at a relatively low dose of radiation. Sufficient confidence is now placed in the effect that it can be used the other way round; that is, to measure the position of the break-point and from this measurement determine the oxygen concentration at the target site at the instant before irradiation. Examples are given of the use of the high dose rate technique for measuring the oxygen concentration inside mammalian cells (Chinese hamster cells). The effects of partial pressures of inert gases, and the effect of elevated gas pressures, are discussed. (U.K.)

  3. Oxygen availability in model solutions and purées during heat treatment and the impact on vitamin C degradation

    OpenAIRE

    Herbig , Anna-Lena; Maingonnat , Jean Francois; Renard , Catherine

    2017-01-01

    Oxygen availability in different media during heat treatment (8 h at 80°C) and the related vitamin C loss was assessed. Dissolved oxygen in water containing 3 mmol kg-1 of ascorbic acid decreased initially and seemed to be replaced by oxygen from the headspace in the course of time, as oxygen values increased again. In apple puree and carrot puree in contrast, oxygen was depleted within 60 min. Vitamin C in ultrapure water was stable even in the presence of oxygen. A trigger seemed to be cruc...

  4. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion.

    Science.gov (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun

    2015-02-01

    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  5. “When the going gets tough, who keeps going?” Depletion sensitivity moderates the ego-depletion effect

    NARCIS (Netherlands)

    Salmon, S.J.; Adriaanse, M.A.; Vet, de E.W.M.L.; Fennis, B.M.; Ridder, de D.T.D.

    2014-01-01

    Self-control relies on a limited resource that can get depleted, a phenomenon that has been labeled ego-depletion. We argue that individuals may differ in their sensitivity to depleting tasks, and that consequently some people deplete their self-control resource at a faster rate than others. In

  6. Study on the mass transfer of oxygen in an electrolytic reduction process of ACP

    International Nuclear Information System (INIS)

    Park, Byung Heung; Park, Sung Bin; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a molten-salt-based back-end fuel cycle technology developed at KAERI. The target fuel type for the process is the oxide fuel unloaded from PWRs which are the main prototype reactor commercially operating in Korea. The volume and the radiotoxicity of the spent fuel decrease to quarters of the initial volume and radiotoxicity after being reduced to metal forms and removing some elements into a molten salt. The reduction of the two properties improves the convenience in managing the spent fuels and makes it possible for disposal sites to be made the best use of. Metallization of the spent oxide fuels is accomplished in an electrolytic reduction cell where a molten LiCl is adopted as an electric medium and Li 2 O is added to increase the activity of the oxygen ion in the system. A porous magnesia filter, a SUS solid conductor, and the metal oxides to be reduced constitute a cathode and anodes are made of platinum. The only cation in the liquid phase is lithium at the first stage and the ion diffuses through the pores of the magnesia filter and then receives electrons to become a metal. The reduced lithium metal snatches oxygen from the metal oxides in the filter and transforms into lithium oxide which diffuses back to the molten salt phase leaving the reduced metal at the inside of the filter. The lithium oxide is dissociated to lithium and oxygen ions once it dissolves in the molten salt if the concentration is within the solubility limit. Hence the actual diffusing element is oxygen in an ionic state rather than the lithium oxide since there is no concentration gradient for the lithium ion to move on - the lithium ion is the main cation in the system though some alkali and alkaline-earth metals dissolve in the molten salt phase to be cations. The analysis of the mass transfer of oxygen in the electrolytic reduction process is, thus, of importance for the metallization process to be completely interpreted

  7. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  8. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Kjærgaard, Benedict; Koefoed-Nielsen, Jacob

    2008-01-01

    We hypothesized that apneic oxygenation, using an open lung approach, combined with extracorporeal CO2 removal, would provide adequate gas exchange in acute lung injury. We tested this hypothesis in nine anesthetized and mechanically ventilated pigs (85-95 kg), in which surfactant was depleted fr....../min. Thus, the method provided adequate gas exchange in this experimental model, suggesting that it might have potential as an alternative treatment modality in acute lung injury.......We hypothesized that apneic oxygenation, using an open lung approach, combined with extracorporeal CO2 removal, would provide adequate gas exchange in acute lung injury. We tested this hypothesis in nine anesthetized and mechanically ventilated pigs (85-95 kg), in which surfactant was depleted from...

  9. Changes in local surface structure and Sr depletion in Fe-implanted SrTiO{sub 3} (001)

    Energy Technology Data Exchange (ETDEWEB)

    Lobacheva, O., E-mail: olobache@gmail.com [Department of Physics and Astronomy, Western University, London, ON N6A 5B7 (Canada); Yiu, Y.M. [Department of Chemistry, Western University, London, ON N6A 5B7 (Canada); Chen, N. [Canadian Light Source, Saskatoon, SK S7N 0X4 (Canada); Sham, T.K.; Goncharova, L.V. [Department of Physics and Astronomy, Western University, London, ON N6A 5B7 (Canada); Department of Chemistry, Western University, London, ON N6A 5B7 (Canada)

    2017-01-30

    Highlights: • Fe ion implantation of SrTiO{sub 3} and post-implantation results in formation of Sr{sub 1-y}Ti{sub 1-x}Fe{sub x+y}O{sub 3-δ} phase. • In Sr{sub 1-y}Ti{sub 1-x}Fe{sub x+y}O{sub 3-δ} phase, Fe assumes Fe{sup 3+} oxidation state in the bulk and Fe{sup 2+} oxidation state in the near surface area. • FEFF9 calculations indicate that Fe ions can substitute both Ti and Sr sites. • Formation of Sr{sub 1-y}Ti{sub 1-x}Fe{sub x+y}O{sub 3-δ} phase is accompanied by Sr depletion in the near surface region. - Abstract: Local surface structure of single crystal strontium titanate SrTiO{sub 3} (001) samples implanted with Fe in the range of concentrations between 2 × 10{sup 14} to 2 × 10{sup 16} Fe/cm{sup 2} at 30 keV has been investigated. In order to facilitate Fe substitution (doping), implanted samples were annealed in oxygen at 350 °C. Sr depletion was observed from the near-surface layers impacted by the ion-implantation process, as revealed by Rutherford Backscattering Spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray Absorption Near Edge Spectroscopy (XANES), and Atomic Force Microscopy (AFM). Hydrocarbon contaminations on the surface may contribute to the mechanisms of Sr depletion, which have important implications for Sr(Ti{sub 1-x}Fe{sub x})O{sub 3-δ} materials in gas sensing applications.

  10. Numerical Investigation into CO Emission, O Depletion, and Thermal Decomposition in a Reacting Slab

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2011-01-01

    Full Text Available The emission of carbon dioxide (CO2 is closely associated with oxygen (O2 depletion, and thermal decomposition in a reacting stockpile of combustible materials like fossil fuels (e.g., coal, oil, and natural gas. Moreover, it is understood that proper assessment of the emission levels provides a crucial reference point for other assessment tools like climate change indicators and mitigation strategies. In this paper, a nonlinear mathematical model for estimating the CO2 emission, O2 depletion, and thermal stability of a reacting slab is presented and tackled numerically using a semi-implicit finite-difference scheme. It is assumed that the slab surface is subjected to a symmetrical convective heat and mass exchange with the ambient. Both numerical and graphical results are presented and discussed quantitatively with respect to various parameters embedded in the problem.

  11. Challenges dealing with depleted uranium in Germany - Reuse or disposal

    International Nuclear Information System (INIS)

    Moeller, Kai D.

    2007-01-01

    During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF 6 is generated. It is an international consensus that for storage it should be converted to U 3 O 8 . The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another

  12. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    Science.gov (United States)

    Joiner, C H; Platt, O S; Lux, S E

    1986-12-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation.

  13. Reaeration of oxygen in shallow, macrophyte rich streams. 1

    International Nuclear Information System (INIS)

    Thyssen, N.; Erlandsen, M.; Jeppesen, E.

    1987-01-01

    The rate coefficient K 2 for the exchange of oxygen between flowing water and the atmosphere (reaeration) has been studied in six Danish streams covering a relatively wide range of hydraulic conditions, pollutional loading, and macrophyte abundance. 103 K 2 measurements were performed in 1978-85. 82 measurements were obtained applying 5 different indirect methods all balancing the sources and sinks of stream dissolved oxygen under conditions of normal operation of the system (3 methods) and under artificial depletion of the oxygen concentration of the stream water by addition of sodium sulfite (2 methods). 21 K 2 values were determined directly applying the gaseous tracer 85 Kr for reaeration. Guidelines for selecting a proper method to determine K 2 knowing macrophyte biomass and loading characteristics of the particular stream are provided. (author)

  14. Exposure to nature counteracts aggression after depletion.

    Science.gov (United States)

    Wang, Yan; She, Yihan; Colarelli, Stephen M; Fang, Yuan; Meng, Hui; Chen, Qiuju; Zhang, Xin; Zhu, Hongwei

    2018-01-01

    Acts of self-control are more likely to fail after previous exertion of self-control, known as the ego depletion effect. Research has shown that depleted participants behave more aggressively than non-depleted participants, especially after being provoked. Although exposure to nature (e.g., a walk in the park) has been predicted to replenish resources common to executive functioning and self-control, the extent to which exposure to nature may counteract the depletion effect on aggression has yet to be determined. The present study investigated the effects of exposure to nature on aggression following depletion. Aggression was measured by the intensity of noise blasts participants delivered to an ostensible opponent in a competition reaction-time task. As predicted, an interaction occurred between depletion and environmental manipulations for provoked aggression. Specifically, depleted participants behaved more aggressively in response to provocation than non-depleted participants in the urban condition. However, provoked aggression did not differ between depleted and non-depleted participants in the natural condition. Moreover, within the depletion condition, participants in the natural condition had lower levels of provoked aggression than participants in the urban condition. This study suggests that a brief period of nature exposure may restore self-control and help depleted people regain control over aggressive urges. © 2017 Wiley Periodicals, Inc.

  15. The fate of sulphur in the Cu-based Chemical Looping with Oxygen Uncoupling (CLOU) Process

    International Nuclear Information System (INIS)

    Adánez-Rubio, Iñaki; Abad, Alberto; Gayán, Pilar; García-Labiano, Francisco; Diego, Luis F. de; Adánez, Juan

    2014-01-01

    Highlights: • 15 h of CLOU experiments using lignite were carried out in a continuously unit. • The sulphur split between fuel- and air-reactor streams in the process was analysed. • Most of the sulphur introduced with the fuel exits as SO 2 at the fuel-reactor. • The use of a carbon separation system to reduce the S emission was evaluated. • Coals with high S content can be burnt in a CLOU process with a Cu-based material. - Abstract: The Chemical Looping with Oxygen Uncoupling (CLOU) process is a type of Chemical Looping Combustion (CLC) technology that allows the combustion of solid fuels with air, as with conventional combustion, through the use of oxygen carriers that release gaseous oxygen inside the fuel reactor. The aim of this work was to study the behaviour of the sulphur present in fuel during CLOU combustion. Experiments using lignite as fuel were carried out in a continuously operated 1.5 kW th CLOU unit during more than 15 h. Particles containing 60 wt.% CuO on MgAl 2 O 4 , prepared by spray drying, were used as the oxygen carrier in the CLOU process. The temperature in the fuel reactor varied between 900 and 935 °C. CO 2 capture, combustion efficiency and the sulphur split between fuel and air reactor streams in the process were analysed. Complete combustion of the fuel to CO 2 and H 2 O was found in all experiments. Most of the sulphur introduced with the fuel exited as SO 2 at the fuel reactor outlet, although a small amount of SO 2 was measured at the air reactor outlet. The SO 2 concentration in the air reactor exit flow decreased as the temperature in the fuel reactor increased. A carbon capture efficiency of 97.6% was achieved at 935 °C, with 87.9 wt.% of the total sulphur exiting as SO 2 in the fuel reactor. Both the reactivity and oxygen transport capacity of the oxygen carrier were unaffected during operation with a high sulphur content fuel, and agglomeration problems did not occur. Predictions were calculated regarding the use

  16. Secondary ionization processes in laser induced breakdown of electronegative gases

    International Nuclear Information System (INIS)

    Gamal Yosr, E.E.D.; Shafik, M.S.; Abdel-Moneim, H.M.

    1990-08-01

    This paper presents an investigation of the stepwise ionization processes which occur during the interaction of laser radiation with electronegative gases. Calculations are carried out adopting a modified version of the electron cascade model previously developed by Evans and Gamal. The modifications of the model are performed for the case of molecular oxygen to account for electron attachment losses. Particular attention is devoted to molecular oxygen at a pressure of 2.8 x 10 4 Torr irradiated by 10 ns pulse of Nd:YAG laser (λ=1.064 μm) at a peak intensity of 1.7x10 11 Wcm -2 . The calculations consider the effect of the secondary ionization processes on the electron energy distribution function and its parameters (evolution of the density of the excited molecules, electrons density as well as the electron mean energy during the laser flash). This analysis shows how the removal of slow electrons by attachment to oxygen molecules creates a strong competition between the stepwise ionization processes. These processes namely photoionization and collisional ionization deplete the electronic excited states and contribute eventually to the ionization growth rate in laser induced breakdown of electronegative gases. (author). 7 refs, 6 figs, 1 tab

  17. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  18. Electrical insulator assembly with oxygen permeation barrier

    Science.gov (United States)

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  19. Acute Pathophysiological Effects of Intratracheal Instillation of Budesonide and Exogenous Surfactant in a Neonatal Surfactant-depleted Piglet Model

    Directory of Open Access Journals (Sweden)

    Chia-Feng Yang

    2010-08-01

    Conclusions: Intratracheal instillation of surfactant or surfactant plus budesonide can improve oxygenation and pulmonary histologic outcome in neonatal surfactant-depleted lungs. The additional use of budesonide does not disturb the function of the exogenous surfactant. Intratracheal administration of a corticosteroid combined with surfactant may be an effective method for alleviating local pulmonary inflammation in severe RDS.

  20. YBCO bulk material processed in an oxygen controlled melt-growth process

    International Nuclear Information System (INIS)

    Giovannelli, F.; Monot-Laffez, I.

    2002-01-01

    YBCO pellets have been submitted to the top-seeding melt-textured growth process under a reduced oxygen atmosphere (1% O 2 in Ar). Ce and (Ce, Sn) doping have been investigated. In the Ce-doped sample, a fishtail has been observed when the thermal cycle maximal temperature of 1020 deg. C is used. However, the microstructure exhibits large Y211 particles under these processing conditions. When the maximal temperature is 1000 deg. C, the size of Y211 decreases and the critical current density (J c ) is enhanced. The effect observed under a field is a shoulder in the J c curve. The same effect is observed in the (Ce, Sn)-doped sample. The Ce-doped and (Ce, Sn)-doped samples exhibit J c under a self-field of 90 000 A cm -2 and 84 000 A cm -2 , respectively. Moreover, when the pre-sintering step is suppressed, the values of J c are improved and the samples present a J c of 100 000 A cm -2 under a self-field. (author)

  1. Emittance increase caused by core depletion in collisions

    CERN Document Server

    Bruce, R

    2009-01-01

    A new effect is presented, which changes the emittance during colliding-beam operation in circular colliders. If the initial transverse distribution is Gaussian, the collision probability is much higher for particles in the core of the beam than in the tails. When small-amplitude particles are removed, the remaining ones therefore have a larger transverse emittance. This effect, called core depletion, may cause a decrease in luminosity. An approximate analytic model is developed to study the effect and benchmarked against a multiparticle tracking simulation. Finally, the time evolution of the intensity and emittances of a Pb bunch in the Large Hadron Collider (LHC) at CERN is calculated, taking into account also other processes than collisions. The results show that integrated luminosity drops by 3--4% if core depletion is taken into account. It is also found that core depletion causes the transverse emittance to be larger when more experiments are active. This observation could be checked against experimenta...

  2. Polymer growth rate in a wire chamber with oxygen, water, or alcohol gas additives

    International Nuclear Information System (INIS)

    Boyarski, Adam M.

    2009-01-01

    The rate of polymer growth on wires was measured in a wire chamber while the chamber was aged initially with helium:isobutane (80:20) gas, and then with either oxygen, water, or alcohol added to the gas. At the completion of the aging process for each gas mixture, the carbon content on the wires was measured in a scanning electron microscope/energy dispersive X-ray (SEM/EDX) instrument. The same physical wires were used in all the gas mixtures, allowing measurement of polymer build-up or polymer depletion by each gas additive. It is found that the rate of polymer growth is not changed by the presence of oxygen, water, or alcohol. Conjecture that oxygen reduces breakdown by removing polymer deposits on field wires is negated by these measurements. Instead, it appears that the reduced breakdown is due to lower resistance in the polymer from oxygen ions being transported into the polymer. It is also observed that field wires bombarded by the electrons in the SEM and then placed back into the chamber show an abundance of single electrons being emitted, indicating that electron charge is trapped in the polymer layer and that a high electric field is necessary to remove the charge.

  3. Long-term management and use of depleted uranium

    International Nuclear Information System (INIS)

    Max, A.

    2001-01-01

    The products resulting from the process of enrichment of natural uranium, or reprocessed uranium, are enriched uranium products as the light fraction and depleted uranium (uranium tails) as the heavy fraction. If the source material is natural uranium, the mass ratios of uranium products and uranium tails can be derived relatively easily from the required enrichment level of the uranium product (product assay (% of U-235)) and the selected depletion level of the uranium tails (tails assay (% of U-235)). The paper discusses among other aspects the dependence of the tails mass on the required enrichment level of the relevant uranium product, for various tails assays. (orig./CB) [de

  4. Health and environmental impact of depleted uranium

    International Nuclear Information System (INIS)

    Furitsu, Katsumi

    2010-01-01

    Depleted Uranium (DU) is 'nuclear waste' produced from the enrichment process and is mostly made up of 238 U and is depleted in the fissionable isotope 235 U compared to natural uranium (NU). Depleted uranium has about 60% of the radioactivity of natural uranium. Depleted uranium and natural uranium are identical in terms of the chemical toxicity. Uranium's high density gives depleted uranium shells increased range and penetrative power. This density, combined with uranium's pyrophoric nature, results in a high-energy kinetic weapon that can punch and burn through armour plating. Striking a hard target, depleted uranium munitions create extremely high temperatures. The uranium immediately burns and vaporizes into an aerosol, which is easily diffused in the environment. People can inhale the micro-particles of uranium oxide in an aerosol and absorb them mainly from lung. Depleted uranium has both aspects of radiological toxicity and chemical toxicity. The possible synergistic effect of both kinds of toxicities is also pointed out. Animal and cellular studies have been reported the carcinogenic, neurotoxic, immuno-toxic and some other effects of depleted uranium including the damage on reproductive system and foetus. In addition, the health effects of micro/ nano-particles, similar in size of depleted uranium aerosols produced by uranium weapons, have been reported. Aerosolized DU dust can easily spread over the battlefield spreading over civilian areas, sometimes even crossing international borders. Therefore, not only the military personnel but also the civilians can be exposed. The contamination continues after the cessation of hostilities. Taking these aspects into account, DU weapon is illegal under international humanitarian laws and is considered as one of the inhumane weapons of 'indiscriminate destruction'. The international society is now discussing the prohibition of DU weapons based on 'precautionary principle'. The 1991 Gulf War is reportedly the first

  5. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  6. Kinetics of depletion interactions

    NARCIS (Netherlands)

    Vliegenthart, G.A.; Schoot, van der P.P.A.M.

    2003-01-01

    Depletion interactions between colloidal particles dispersed in a fluid medium are effective interactions induced by the presence of other types of colloid. They are not instantaneous but built up in time. We show by means of Brownian dynamics simulations that the static (mean-field) depletion force

  7. The influence of target oxygen on the YBa2Cu3O6+δ DC Magnetron sputtering process

    International Nuclear Information System (INIS)

    Larsson, G.; Selinder, T.I.; Helmersson, U

    1990-01-01

    The oxygen partial pressure and the target potential have been monitored under a range of process conditions during single target dc magnetron sputtering of Y-Ba-Cu-O. The introduced sputtering gas consisted in all but one instance of pure argon and hence the oxygen present in the plasma originated mainly from the target. During the first hours of sputtering the oxygen partial pressure was of the same magnitude as the argon pressure (3.0 Pa). As the oxygen was released from the target and subsequently removed by pumping, the target potential increased and the film composition became more stoichiometric. After 30-40 hours of sputtering the target potential and the oxygen pressure stabilized and the film composition was equal to that of the stoichiometric target. If an oxygen flow exceeding a critical level was mixed into the sputtering gas the target potential and the deposition rate decreased swiftly. This was due to target oxidation, further manifested in changing plasma and target colours. In some instances the stabilization after 'presputtering' was incomplete and oscillations in target voltage and oxygen partial pressure were observed. The fluctuations made it virtually impossible to obtain stoichiometric films. The oscillative behaviour of the sputtering process is tentatively explained by a target temperature dependent oxygen diffusion. (au)

  8. Depletion of interstellar elements and the interaction between gas and dust in space

    International Nuclear Information System (INIS)

    Snow, T.P. Jr.

    1975-01-01

    Recent data obtained with Copernicus, combined with new results from the literature, indicate that the depletions of interstellar elements may depend on cloud density in a simple way. This is expected if the depletions are due to accretion of gas particles onto grains under presently existing conditions, but is not expected if the depletions take place during the grain formation process, before mixing into the interstellar medium. The suggestion that depletion occurs via accretion may be supported by the existence of a good correlation between depletions and first ionization potentials of the elements, since the latter quantity determines to a great extent the chemical and physical properties, and hence possibly the sticking coefficient, of each species. If the grains do not carry large positive charges, then ion-grain encounters may be important not only in creating the depletions, but also in determining ionization equilibrium, particularly if a large population of very small grains is present

  9. Neutron irradiation test of depleted CMOS pixel detector prototypes

    International Nuclear Information System (INIS)

    Mandić, I.; Cindro, V.; Gorišek, A.; Hiti, B.; Kramberger, G.; Mikuž, M.; Zavrtanik, M.; Hemperek, T.; Daas, M.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Gonella, L.

    2017-01-01

    Charge collection properties of depleted CMOS pixel detector prototypes produced on p-type substrate of 2 kΩ cm initial resistivity (by LFoundry 150 nm process) were studied using Edge-TCT method before and after neutron irradiation. The test structures were produced for investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. Measurements were made with passive detector structures in which current pulses induced on charge collecting electrodes could be directly observed. Thickness of depleted layer was estimated and studied as function of neutron irradiation fluence. An increase of depletion thickness was observed after first two irradiation steps to 1 · 10 13 n/cm 2 and 5 · 10 13 n/cm 2 and attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage decreases with increasing fluence because of radiation induced defects contributing to the effective space charge concentration. The behaviour is consistent with that of high resistivity silicon used for standard particle detectors. The measured thickness of the depleted layer after irradiation with 1 · 10 15 n/cm 2 is more than 50 μm at 100 V bias. This is sufficient to guarantee satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments.

  10. Oxygen dosing the surface of SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dudy, L.; Scheiderer, P.; Schuetz, P.; Gabel, J.; Buchwald, M.; Sing, M.; Claessen, R. [Physikalisches Institut, Universitaet Wuerzburg (Germany); Denlinger, J.D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270 (United States); Schlueter, C.; Lee, T.L. [Diamond Light Source Ltd., Didcot, Oxfordshire (United Kingdom)

    2015-07-01

    The highly mobile two-dimensional electron system (2DES) on the surface of the insulating SrTiO{sub 3}(STO) offers exciting perspectives for advanced material design. This 2DES resides in a depletion layer caused by oxygen deficiency of the surface. With photoemission spectroscopy, we monitor the appearance of quasi-particle weight (QP) at the Fermi energy and oxygen vacancy induced states in the band gap (IG). Both, QP and IG weight, increase and decrease respectively upon exposure to extreme ultraviolet (XUV) light and in-situ oxygen dosing. By a proper adjustment of oxygen dosing, any intermediate state can be stabilized providing full control over the charge carrier density. From a comparison of the charge carrier concentrations obtained from an analysis of core-level spectra and the Fermi-surface volume, we conclude on a spatially inhomogeneous surface electronic structure with at least two different phases.

  11. Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors

    International Nuclear Information System (INIS)

    Pu, Haifeng; Zhou, Qianfei; Yue, Lan; Zhang, Qun

    2013-01-01

    We reported the impact of oxygen plasma treatment on solution-processed amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs). Plasma-treated devices showed higher mobility, larger on/off current ratio, but a monotonically increased SS with plasma treatment time as well. The phenomenon was mainly due to two components in oxygen plasma, atomic oxygen and O 2 + , according to the photoluminescence (PL) measurement. Atomic oxygen reacted with oxygen vacancies in channel layer resulting in an improved mobility, and O 2 + tends to aggregated at the surface acting as trapping states simultaneously. Our study suggests that moderate oxygen plasma treatment can be adopted to improve the device performance, while O 2 + should be eliminated to obtain good interfacial states.

  12. Toxin detection using a tyrosinase-coupled oxygen electrode.

    Science.gov (United States)

    Smit, M H; Rechnitz, G A

    1993-02-15

    An enzyme-based "electrochemical canary" is described for the detection of cyanide. The sensing system imitates cyanide's site of toxicity in the mitochondria. The terminal sequence of electron transfer in aerobic respiration is mimicked by mediator coupling of tyrosinase catalysis to an electro-chemical system. An enzyme-coupled oxygen electrode is created which is sensitive to selective poisoning. Biocatalytic reduction of oxygen is promoted by electrochemically supplying tyrosinase with electrons. Thus, ferrocyanide is generated at a cathode and mediates the enzymatic reduction of oxygen to water. An enzyme-dependent reductive current can be monitored which is inhibited by cyanide in a concentration-dependent manner. Oxygen depletion in the reaction layer can be minimized by addressing enzyme activity using a potential pulsing routine. Enzyme activity is electrochemically initiated and terminated and the sensor becomes capable of continuous monitoring. Cyanide poisoning of the biological component is reversible, and it can be reused after rinsing. The resulting sensor detects cyanide based on its biological activity rather than its physical or chemical properties.

  13. Fully Depleted Charge-Coupled Devices

    International Nuclear Information System (INIS)

    Holland, Stephen E.

    2006-01-01

    We have developed fully depleted, back-illuminated CCDs that build upon earlier research and development efforts directed towards technology development of silicon-strip detectors used in high-energy-physics experiments. The CCDs are fabricated on the same type of high-resistivity, float-zone-refined silicon that is used for strip detectors. The use of high-resistivity substrates allows for thick depletion regions, on the order of 200-300 um, with corresponding high detection efficiency for near-infrared and soft x-ray photons. We compare the fully depleted CCD to the p-i-n diode upon which it is based, and describe the use of fully depleted CCDs in astronomical and x-ray imaging applications

  14. Biogeochemical modelling of dissolved oxygen in a changing ocean

    Science.gov (United States)

    Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha

    2017-08-01

    Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  15. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    International Nuclear Information System (INIS)

    Yau, A.W.; Whalen, B.A.; Harris, F.R.; Gattinger, R.L.; Pongratz, M.B.; Bernhardt, P.A.

    1985-01-01

    In an ionospheric depletion experiment where chemically reactive vapors such as H 2 O and CO 2 are injected into the O + dominant F region to accelerate the plasma recombination rate and to reduce the plasma density, the ion composition in the depleted region is modified, and photometric emissions are produced. We compare in situ ion composition, density, and photometric measurements from two ionospheric depletion experiments with predictions from chemical modeling. The two injections, Waterhole I and III, were part of an auroral perturbation experiment and occurred in different ambient conditions. In both injections a core region of greater than fivefold plasma depletion was observed over roughly-equal5-km diameter within seconds of the injection, surrounded by an outer region of less drastic and slower depletion. In Waterhole I the plasma density was depleted tenfold over a 30-km diamter region after 2 min. The ambient O + density was drastically reduced, and the molecular O + 2 abundance was enhanced fivehold in the depletion region. OH airglow emission associated with the depletion was observed with a peak emission intensity of roughly-equal1 kR. In Waterhole III the ambient density was a decade lower, and the plasma depletion was less drastic, being twofold over 30 km after 2 min. The airglow emissions were also much less intense and below measurement sensitivity (30 R for the OH 306.4-nm emission; 50 R for the 630.0-nm emission)

  16. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    Tunio, A.H.; Harijan, K.

    2010-01-01

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  17. Pathogenic lysosomal depletion in Parkinson's disease.

    Science.gov (United States)

    Dehay, Benjamin; Bové, Jordi; Rodríguez-Muela, Natalia; Perier, Celine; Recasens, Ariadna; Boya, Patricia; Vila, Miquel

    2010-09-15

    Mounting evidence suggests a role for autophagy dysregulation in Parkinson's disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.

  18. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Nutrient measurements indicate that 30-50% of the total nitrogen (N loss in the ocean occurs in oxygen minimum zones (OMZs. This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2 on anammox, NH(3 oxidation and NO(3(- reduction in (15N-labeling experiments with varying O(2 concentrations (0-25 µmol L(-1 in the Namibian and Peruvian OMZs. Our results show that O(2 is a major controlling factor for anammox activity in OMZ waters. Based on our O(2 assays we estimate the upper limit for anammox to be ~20 µmol L(-1. In contrast, NH(3 oxidation to NO(2(- and NO(3(- reduction to NO(2(- as the main NH(4(+ and NO(2(- sources for anammox were only moderately affected by changing O(2 concentrations. Intriguingly, aerobic NH(3 oxidation was active at non-detectable concentrations of O(2, while anaerobic NO(3(- reduction was fully active up to at least 25 µmol L(-1 O(2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2-sensitivity of anammox itself, and not by any effects of O(2 on the tightly coupled pathways of aerobic NH(3 oxidation and NO(3(- reduction. With anammox bacteria in the marine environment being active at O(2 levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.

  19. The Toxicity of Depleted Uranium

    OpenAIRE

    Briner, Wayne

    2010-01-01

    Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a c...

  20. Evaluation of the Westinghouse 10B depletion for BWR control rods

    International Nuclear Information System (INIS)

    Vallgren, Christina

    2008-03-01

    The aim of this work was to establish the 10 B depletion model for CR 99 control rods by using the latest version of POLCA7. In order to obtain an understanding of the differences between the currently used 10 B depletion models implemented in POLCA4 at O3 and in SIMULATE-3 at OL1, and the latest improved model implemented in the latest POLCA7, this work has been performed in three different parts. The first part of the work was to find out how large differences there exist in 10 B depletion between the calculated data by using the latest core monitoring system (POLCA7 version 4.10.0) and the measured data obtained in the hot-cell laboratory in Studsvik. It was found that the 10 B depletion computed by the latest POLCA7 version is in good agreement with the measured data from Studsvik. A poor agreement with a conservative overestimation in 10 B depletion was also found between the old model and the measured data. The aim of the second part of the work was to compare the calculated 10 B depletion values for two CR 99 rods from Olkiluoto 1 with the calculated 10 B depletion value for a CR 99 rod from Oskarshamn 3, by using the new 10 B depletion model implemented in the latest POLCA7 version. Swelling measurements of the boron carbide pins, used as absorber material, have indicated that the 10 B depletion should be of similar magnitude for the rods in Olkiluoto 1 and the rod in Oskarshamn 3, whereas the calculated values by using the earlier 10 B depletion models on the process computers showed a difference of about 20 %. By using the new 10 B depletion model m POLCA7, it was found that the 10 B depletion in the two studied cases was similar to each other and, thus, the hypothesis of a linear relationship between B 4 C swelling and thermal neutron fluence was supported. This third part of the work was carried out at KKL, Switzerland, and focused on comparing the B depletion models used in Westinghouse/POLCA7 and KKL/PRESTO-2. It was found that there is a slight

  1. Evaluation of the Westinghouse 10B depletion for BWR control rods

    Energy Technology Data Exchange (ETDEWEB)

    Vallgren, Christina

    2008-03-15

    The aim of this work was to establish the 10B depletion model for CR 99 control rods by using the latest version of POLCA7. In order to obtain an understanding of the differences between the currently used 10B depletion models implemented in POLCA4 at O3 and in SIMULATE-3 at OL1, and the latest improved model implemented in the latest POLCA7, this work has been performed in three different parts. The first part of the work was to find out how large differences there exist in 10B depletion between the calculated data by using the latest core monitoring system (POLCA7 version 4.10.0) and the measured data obtained in the hot-cell laboratory in Studsvik. It was found that the 10B depletion computed by the latest POLCA7 version is in good agreement with the measured data from Studsvik. A poor agreement with a conservative overestimation in 10B depletion was also found between the old model and the measured data. The aim of the second part of the work was to compare the calculated 10B depletion values for two CR 99 rods from Olkiluoto 1 with the calculated 10B depletion value for a CR 99 rod from Oskarshamn 3, by using the new 10B depletion model implemented in the latest POLCA7 version. Swelling measurements of the boron carbide pins, used as absorber material, have indicated that the 10B depletion should be of similar magnitude for the rods in Olkiluoto 1 and the rod in Oskarshamn 3, whereas the calculated values by using the earlier 10B depletion models on the process computers showed a difference of about 20 %. By using the new 10B depletion model m POLCA7, it was found that the 10B depletion in the two studied cases was similar to each other and, thus, the hypothesis of a linear relationship between B{sub 4}C swelling and thermal neutron fluence was supported. This third part of the work was carried out at KKL, Switzerland, and focused on comparing the B depletion models used in Westinghouse/POLCA7 and KKL/PRESTO-2. It was found that there is a slight difference in

  2. Oxygen blast furnace and combined cycle (OBF-CC) - an efficient iron-making and power generation process

    International Nuclear Information System (INIS)

    Jianwei, Y.; Guolong, S.; Cunjiang, K.; Tianjun, Y.

    2003-01-01

    A new iron and power generating process, oxygen blast furnace and combined cycle (OBF-CC), is presented. In order to support the opinion, the features of the oxygen blast furnace and integrated coal gasification and combined cycle (IGCC) are summarized. The relation between the blasting parameters and the output gas quantity, as well as caloric value is calculated based on mass and energy balance. Analysis and calculation indicate that the OBF-CC will be an efficient iron-making and power generation process with higher energy efficiency and less pollution

  3. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment

    DEFF Research Database (Denmark)

    Levi, Suzi; Hybel, Anne-Marie; Bjerg, Poul Løgstrup

    2014-01-01

    for the herbicides. In the presence of oxygen 14C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides....... The highest oxygen concentrations (corresponding to 4-11mgL-1) stimulated degradation (a 14-27% increase for mecoprop, 3-9% for dichlorprop and 15-20% for bentazone) over an experimental period of 200days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic...... conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2mgL-1). The sediment had substantial oxygen consumption (0.92-1.45O2g-1dw over 200days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due...

  4. The manufacturing of depleted uranium biological shield components

    International Nuclear Information System (INIS)

    Metelkin, J.A.

    1998-01-01

    The unique combination of the physical and mechanical properties of uranium made it possible to manufacture biological shield components of transport package container (TPC) for transportation nuclear power plant irradiated fuel and radionuclides of radiation diagnostic instruments. Protective properties are substantially dependent on the nature radionuclide composition of uranium, that why I recommended depleted uranium after radiation chemical processing. Depleted uranium biological shield (DUBS) has improved specific mass-size characteristics compared to a shield made of lead, steel or tungsten. Technological achievements in uranium casting and machining made it possible to manufacture DUBS components of TPC up to 3 tons of mass and up to 2 metres of the maximum size. (authors)

  5. Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden

    DEFF Research Database (Denmark)

    Forth, M.; Liljebladh, B.; Stigebrandt, A.

    2015-01-01

    Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot...... in the lower water column and the benthic zone up to 110 mumol l(-1).We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords...

  6. Effect of spatiotemporal variation of rainfall on dissolved oxygen depletion in integrated catchment studies

    NARCIS (Netherlands)

    Moreno Rodenas, A.M.; Cecinati, F.; ten Veldhuis, J.A.E.; Langeveld, J.G.; Clemens, F.H.L.R.

    2016-01-01

    This study addresses the effect of spatial and temporal resolution of rainfall fields on the performance of a simplified integrated catchment model for predicting dissolved oxygen concentrations in a river. For that purpose we propose a procedure to generate rainfall products with increasing spatial

  7. Serotonin depletion induces pessimistic-like behavior in a cognitive bias paradigm in pigs.

    Science.gov (United States)

    Stracke, Jenny; Otten, Winfried; Tuchscherer, Armin; Puppe, Birger; Düpjan, Sandra

    2017-05-15

    Cognitive and affective processes are highly interrelated. This has implications for neuropsychiatric disorders such as major depressive disorder in humans but also for the welfare of non-human animals. The brain serotonergic system might play a key role in mediating the relationship between cognitive functions and affective regulation. The aim of our study was to examine the influence of serotonin depletion on the affective state and cognitive processing in pigs, an important farm animal species but also a potential model species for biomedical research in humans. For this purpose, we modified a serotonin depletion model using para-chlorophenylalanine (pCPA) to decrease serotonin levels in brain areas involved in cognitive and affective processing (part 1). The consequences of serotonin depletion were then measured in two behavioral tests (part 2): the spatial judgement task (SJT), providing information about the effects of the affective state on cognitive processing, and the open field/novel object (OFNO) test, which measures behavioral reactions to novelty that are assumed to reflect affective state. In part 1, 40 pigs were treated with either pCPA or saline for six consecutive days. Serotonin levels were assessed in seven different brain regions 4, 5, 6, 11 and 13days after the first injection. Serotonin was significantly depleted in all analyzed brain regions up to 13days after the first application. In part 2, the pCPA model was applied to 48 animals in behavioral testing. Behavioral tests, the OFNO test and the SJT, were conducted both before and after pCPA/saline injections. While results from the OFNO tests were inconclusive, an effect of treatment as well as an effect of the phase (before and after treatment) was observed in the SJT. Animals treated with pCPA showed more pessimistic-like behavior, suggesting a more negative affective state due to serotonin depletion. Thus, our results confirm that the serotonergic system is a key player in cognitive

  8. MEASURING Be DEPLETION IN COOL STARS WITH EXOPLANETS

    International Nuclear Information System (INIS)

    Delgado Mena, E.; Israelian, G.; Gonzalez Hernandez, J. I.; Rebolo, R.; Santos, N. C.

    2011-01-01

    We present new UVES spectra of a sample of 14 mostly cool unevolved stars with planetary companions with the aim of studying possible differences in Be abundance with respect to stars without detected planets. We determine Be abundances for these stars that show an increase in Be depletion as we move to lower temperatures. We carry out a differential analysis of spectra of analog stars with and without planets to establish a possible difference in Be content. While for hot stars no measurable difference is found in Be, for the only cool (T eff ∼ 5000 K) planet-host star with several analogs in the sample we find enhanced Be depletion by 0.25 dex. This is a first indication that the extra-depletion of Li in solar-type stars with planets may also happen for Be, but shifted toward lower temperatures (T eff < 5500 K) due to the depth of the convective envelopes. The processes that take place in the formation of planetary systems may affect the mixing of material inside their host stars and hence the abundances of light elements.

  9. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  10. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlö gl, Udo

    2015-01-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  11. Process integration of chemical looping combustion with oxygen uncoupling in a coal-fired power plant

    International Nuclear Information System (INIS)

    Spinelli, Maurizio; Peltola, Petteri; Bischi, Aldo; Ritvanen, Jouni; Hyppänen, Timo; Romano, Matteo C.

    2016-01-01

    High-temperature solid looping processes for CCS (carbon capture and storage) represent a class of promising technologies that enables CO2 capture with relatively low net efficiency penalties. The novel concept of the CLOU (Chemical Looping with Oxygen Uncoupling) process is based on a system of two interconnected fluidized bed reactors that operate at atmospheric pressure. In the fuel reactor, the capability of certain metal oxides to spontaneously release molecular oxygen at high temperatures is exploited to promote the direct conversion of coal in an oxygen-rich atmosphere. As a novel CO_2 capture concept, the CLOU process requires the optimization of design and operation parameters, which may substantially influence the total power plant performance. This study approaches this issue by performing joint simulations of CLOU reactors using a 1.5D model and a steam cycle power plant. A sensitivity analysis has been performed to investigate the performance and main technical issues that are related to the integration of a CLOU island in a state-of-the-art USC (ultra-supercritical) power plant. In particular, the effect of the key process parameters has been evaluated. Superior performance has been estimated for the power plant, with electrical efficiencies of approximately 42% and more than 95% CO2 avoided. - Highlights: • Process modeling and simulation of CLOU integrated in USC coal power plant carried out. • Comprehensive sensitivity analysis on Cu-based CLOU process performed. • Electrical efficiencies of 42% and more than 95% CO_2 avoided obtained. • Reactor size and operating conditions suitable for industrial applications.

  12. Statistical implications in Monte Carlo depletions - 051

    International Nuclear Information System (INIS)

    Zhiwen, Xu; Rhodes, J.; Smith, K.

    2010-01-01

    As a result of steady advances of computer power, continuous-energy Monte Carlo depletion analysis is attracting considerable attention for reactor burnup calculations. The typical Monte Carlo analysis is set up as a combination of a Monte Carlo neutron transport solver and a fuel burnup solver. Note that the burnup solver is a deterministic module. The statistical errors in Monte Carlo solutions are introduced into nuclide number densities and propagated along fuel burnup. This paper is towards the understanding of the statistical implications in Monte Carlo depletions, including both statistical bias and statistical variations in depleted fuel number densities. The deterministic Studsvik lattice physics code, CASMO-5, is modified to model the Monte Carlo depletion. The statistical bias in depleted number densities is found to be negligible compared to its statistical variations, which, in turn, demonstrates the correctness of the Monte Carlo depletion method. Meanwhile, the statistical variation in number densities generally increases with burnup. Several possible ways of reducing the statistical errors are discussed: 1) to increase the number of individual Monte Carlo histories; 2) to increase the number of time steps; 3) to run additional independent Monte Carlo depletion cases. Finally, a new Monte Carlo depletion methodology, called the batch depletion method, is proposed, which consists of performing a set of independent Monte Carlo depletions and is thus capable of estimating the overall statistical errors including both the local statistical error and the propagated statistical error. (authors)

  13. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    Science.gov (United States)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  14. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Science.gov (United States)

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  15. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  16. Uranium and the War: The effects of depleted uranium weapons in Iraq

    International Nuclear Information System (INIS)

    Jon williams

    2007-01-01

    The U.S. Army revealed in March 2003 that it dropped between 320 and 390 tons of depleted uranium during the Gulf War-the first time the material was ever used in combat-and it is estimated that more still has been dropped during the current invasion, though there have been no official counts as yet. Nuclear weapons and nuclear power plants require highly radioactive uranium, so the uranium 238 is removed from the naturally occurring uranium by a process known as enrichment. Depleted uranium is the by-product of the uranium enrichment process. Depleted uranium was a major topic of discussion during a Feb. 24 forum at Santa Cruz with speakers from the Iraq Veterans Against War (IVAW). The panel consisted of five members of the IVAW chapter in Olympia, Washington who visited Santa Cruz as part of a speaking tour of the west coast. These members of the IVAW believe that their experiences in the Gulf War were the beginnings of what will be a long-term health problem in the region. A study conducted by the Pentagon in 2002 predicted that every future battlefield will be contaminated with depleted uranium. Up-to-date health information from Iraq is difficult to come by. But a November report from Al-jazeera concluded that the cancer rate in Iraq has increased tenfold, and the number of birth defects has multiplied fivefold times since the 1991 war. The increase is believed to be caused by depleted uranium.

  17. Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury.

    Science.gov (United States)

    Kim, Myung-Gyu; Boo, Chang Su; Ko, Yoon Sook; Lee, Hee Young; Cho, Won Yong; Kim, Hyoung Kyu; Jo, Sang-Kyung

    2010-09-01

    Recent studies provided evidence of the potential role of CD11c(+) F4/80(+) dendritic subset in mediating injury and repair. The purpose of this study was to examine the role of kidney CD11c(+) F4/80(+) dendritic subset in the recovery phase of ischaemia/reperfusion injury (IRI). Following ischaemia/reperfusion (I/R), liposome clodronate or phosphate buffered saline (PBS) was administered, and on day 7 biochemical and histologic kidney damage was assessed. Activation and depletion of CD11c(+) F4/80(+) dendritic subset were confirmed by flow cytometry. Isolation of kidney CD11c(+) cells on days 1 and 7 with in vitro culture for measuring cytokines was performed to define functional characteristics of these cells, and adoptive transfer of CD11c(+) cells was also done. Following kidney IRI, the percentage of CD11c(+) F4/80(+) kidney dendritic cell subset that co-expresses maturation marker increased. Liposome clodronate injection after I/R resulted in preferential depletion of CD11c(+) F4/80(+) kidney dendritic subset, and depletion of these cells was associated with persistent kidney injury, more apoptosis, inflammation and impaired tubular cell proliferation. CD11c(+) F4/80(+) cell depletion was also associated with higher tissue levels of pro-inflammatory cytokines and lower level of IL-10, indicating the persistence of inflammatory milieu. Isolated kidney CD11c(+) cells on day 7 showed different phenotype with increased production of IL-10 compared with those on day 1. Adoptive transfer of CD11c(+) cells partially reversed impaired tissue recovery. Our results suggest that kidney CD11c(+) F4/80(+) dendritic subset might contribute to the recovery process by dynamic phenotypic change from pro-inflammatory to anti-inflammatory with modulation of immune response.

  18. Analysing impact of oxygen and water exposure on roll-coated organic solar cell performance using impedance spectroscopy

    DEFF Research Database (Denmark)

    Arredondo, B.; Romero, B.; Beliatis, M. J.

    2018-01-01

    In this work we study the degradation of roll-coated flexible inverted organic solar cells in different atmospheres. We demonstrate that impedance spectroscopy is a powerful tool for elucidating degradation mechanisms; it is used here to distinguish the different degradation mechanisms due to water...... and oxygen. Identical cells were exposed to different accelerated degradation environments using water only, oxygen only, and both water and oxygen simultaneously, all of them enhanced with UV light. The photocurrent is dramatically reduced in the oxygen-degraded samples. Impedance measurements indicate...... of degradation differs for the water and oxygen degraded samples. While oxygen + UV light decreases the conductivity of the PEDOT:PSS layer, water + UV light changes the PEDOT:PSS work function inducing a depletion region at the anode....

  19. Short-term molecular acclimation processes of legume nodules to increased external oxygen concentration

    Directory of Open Access Journals (Sweden)

    Ulrike eAvenhaus

    2016-01-01

    Full Text Available Nitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier located in the nodule cortex. Flexibility of the oxygen diffusion barrier is important for the acclimation processes of nodules in response to changes in external oxygen concentration. The hypothesis of the present study was that there are additional molecular mechanisms involved. Nodule activity of Medicago truncatula plants were continuously monitored during a change from 21 to 25 or 30 % oxygen around root nodules by measuring nodule H2 evolution. Within about two minutes of the increase in oxygen concentration, a steep decline in nitrogenase activity occurred. A quick recovery commenced about eight minutes later. A qPCR-based analysis of the expression of genes for nitrogenase components showed a tendency towards upregulation during the recovery. The recovery resulted in a new constant activity after about 30 minutes, corresponding to approximately 90 % of the pre-treatment level. An RNAseq-based comparative transcriptome profiling of nodules at that point in time revealed that genes for nodule-specific cysteine-rich (NCR peptides, defensins, leghaemoglobin and chalcone and stilbene synthase were significantly upregulated when considered as a gene family. A gene for a nicotianamine synthase-like protein (Medtr1g084050 showed a strong increase in count number. The gene appears to be of importance for nodule functioning, as evidenced by its consistently high expression in nodules and a strong reaction to various environmental cues that influence nodule activity. A Tnt1-mutant that carries an insert in the coding sequence (cds of that gene showed reduced nitrogen fixation and less efficient acclimation to an increased external oxygen concentration. It was concluded that sudden increases in oxygen concentration around nodules destroy nitrogenase, which is quickly counteracted by an increased

  20. Automated red blood cell depletion in ABO incompatible grafts in the pediatric setting.

    Science.gov (United States)

    Del Fante, Claudia; Scudeller, Luigia; Recupero, Santina; Viarengo, Gianluca; Boghen, Stella; Gurrado, Antonella; Zecca, Marco; Seghatchian, Jerard; Perotti, Cesare

    2017-12-01

    Bone marrow ABO incompatible transplantations require graft manipulation prior to infusion to avoid potentially lethal side effects. We analyzed the influence of pre-manipulation factors (temperature at arrival, transit time, time of storage at 4°C until processing and total time from collection to red blood cell depletion) on the graft quality of 21 red blood cell depletion procedures in ABO incompatible pediatric transplants. Bone marrow collections were processed using the Spectra Optia ® (Terumo BCT) automated device. Temperature at arrival ranged between 4°C and 6°C, median transit time was 9.75h (range 0.33-28), median time of storage at 4°-6°C until processing was 1.8h (range 0.41-18.41) and median time from collection to RBC depletion was 21h (range1-39.4). Median percentage of red blood cell depletion was 97.7 (range 95.4-98.5), median mononuclear cells recovery was 92.2% (range 40-121.2), median CD34+ cell recovery was 93% (range 69.9-161.2), median cell viability was 97.7% (range 94-99.3) and median volume reduction was 83.9% (range 82-92). Graft quality was not significantly different between BM units median age. Our preliminary data show that when all good manifacturing practices are respected the post-manipulation graft quality is excellent also for those units processed after 24h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Compared studies of natural and artificial deuterium depleted water

    International Nuclear Information System (INIS)

    Butnaru, Gallia; Mihacea, Sorina; Sirbovan, Alina; Butnariu, H.; Titescu, Gh.

    2001-01-01

    The biological influence of the deuterium on animals was studied insensitively in the last years. When animal cell cultures were analyzed it turned out an inhibition of the development, due to the reduced deuterium concentration. In the in vivo experiments a decreasing of the number of tumoral cells was pointed out when performing the depleted water treatment. It is obvious that the presence of deuterium in water is necessary for the development, especially for the tumoral cell proliferation. The aim of this work was to establish influence of the natural and artificial deuterium depleted water on the vegetal organisms development. For this purpose, the developmental stages of Lactuca sativa L. growth were followed. The experimental data were compared with the data obtained with distilled water. The birch, wine sap and some fruit juices are considered 'natural depleted' water sources because their deuterium content is smaller in comparison to natural water (D 2 =150 ppm). The effect of artificial deuterium depleted water (29 ppm D 2 ) was analyzed in comparison to three types of wine saps, which also have a reduced deuterium concentration (125-130 ppm D 2 ). If the deuterium depleted water was used, the germination percent and the root and shoot length were higher compared to control in the first stages. In wine sap it had a negative effect on germination and development. After three days the plants were transferred to soil and their development was followed. The foliage area was larger for all of the experimental variants compared to control. The differences were without significance when deuterium depleted water was tested but they were high and very significant in case of wine sap. The experiment pointed out a stimulative effect of the artificial deuterium depleted water. In case of wine sap the effect was negative when the contact was direct, but the growth was stimulated after the stress cessation. The first ontogenetic stages were represented by direct action

  2. New insights into fully-depleted SOI transistor response during total-dose irradiation

    International Nuclear Information System (INIS)

    Schwank, J.R.; Shaneyfelt, M.R.; Dodd, P.E.; Burns, J.A.; Keast, C.L.; Wyatt, P.W.

    1999-01-01

    In this paper, we present irradiation results on 2-fully depleted processes (HYSOI6, RKSOI) that show SOI (silicon on insulator) device response can be more complicated than originally suggested by others. The major difference between the 2 process versions is that the RKSOI process incorporates special techniques to minimize pre-irradiation parasitic leakage current from trench sidewalls. Transistors were irradiated at room temperature using 10 keV X-ray source. Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. It appears that the worst-case bias for HYPOI6 process is the bias that causes the largest increase in sidewall leakage. The RKSOI process shows a different response during irradiation, the transition response appears to be dominated by charge trapping in the buried oxide. These results have implications for hardness assurance testing. (A.C.)

  3. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment

    DEFF Research Database (Denmark)

    Kolpen, Mette; Mousavi, Nabi; Sams, Thomas

    2016-01-01

    Chronic Pseudomonas aeruginosa lung infection is the most severe complication in cystic fibrosis patients. It is characterised by antibiotic-tolerant biofilms in the endobronchial mucus with zones of oxygen (O2) depletion mainly due to polymorphonuclear leucocyte activity. Whilst the exact mechan...

  4. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C. N. [Fusion Safety Program, Idaho National Laboratory, P.O. Box 1625-7113, Idaho Falls, Idaho 83415 (United States); School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Illinois 61801 (United States); Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Institute for Advanced Computational Science, Stony Brook University, New York 11794 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); TheoretiK, Knoxville, Tennessee 379XX (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-05-15

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to ∼16% and then bombarded with deuterium. X-ray photoelectron spectroscopy showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  5. Inter-decadal changes in the intensity of the Oxygen Minimum Zone off Concepción, Chile (~ 36° S) over the last century

    Science.gov (United States)

    Srain, B.; Pantoja, S.; Sepúlveda, J.; Lange, C. B.; Muñoz, P.; Summons, R. E.; McKay, J.; Salamanca, M.

    2015-04-01

    We reconstructed oxygenation changes in the Oxygen Minimum Zone of the upwelling ecosystem off Concepción (36° S), Chile, using inorganic and organic proxies in a sediment core covering the last ca. 110 years of sedimentation in this area. Authigenic enrichments of Mo, U and Cd were observed between ca. 1935-1971 CE indicating a prolonged period of more reduced conditions in bottom waters and surface sediments. Significant positive correlations (p oxygen depletion, and increased primary and export production, suggesting that the period with low O2 of ca. 35 years, follows low frequency inter-decadal variation of the Pacific Decadal Oscillation, which may have resulted in O2 depletion over the entire continental shelf off Concepción. Taken together with the concurrent increase in sedimentary molecular indicators of anaerobic microbes allow us to suggest that the prokaryote community has been influenced by changes in oxygenation of the water column.

  6. Optimal reload and depletion method for pressurized water reactors

    International Nuclear Information System (INIS)

    Ahn, D.H.

    1984-01-01

    A new method has been developed to automatically reload and deplete a PWR so that both the enriched inventory requirements during the reactor cycle and the cost of reloading the core are minimized. This is achieved through four stepwise optimization calculations: 1) determination of the minimum fuel requirement for an equivalent three-region core model, 2) optimal selection and allocation of fuel requirement for an equivalent three-region core model, 2) optimal selection and allocation of fuel assemblies for each of the three regions to minimize the cost of the fresh reload fuel, 3) optimal placement of fuel assemblies to conserve regionwise optimal conditions and 4) optimal control through poison management to deplete individual fuel assemblies to maximize EOC k/sub eff/. Optimizing the fuel cost of reloading and depleting a PWR reactor cycle requires solutions to two separate optimization calculations. One of these minimizes the enriched fuel inventory in the core by optimizing the EOC k/sub eff/. The other minimizes the cost of the fresh reload cost. Both of these optimization calculations have now been combined to provide a new method for performing an automatic optimal reload of PWR's. The new method differs from previous methods in that the optimization process performs all tasks required to reload and deplete a PWR

  7. Sodium nitroprusside induces autophagic cell death in glutathione-depleted osteoblasts.

    Science.gov (United States)

    Son, Min Jeong; Lee, Seong-Beom; Byun, Yu Jeong; Lee, Hwa Ok; Kim, Ho-Shik; Kwon, Oh-Joo; Jeong, Seong-Whan

    2010-01-01

    Previous studies reported that high levels of nitric oxide (NO) induce apoptotic cell death in osteoblasts. We examined molecular mechanisms of cytotoxic injury induced by sodium nitroprusside (SNP), a NO donor, in both glutathione (GSH)-depleted and control U2-OS osteoblasts. Cell viability was reduced by much lower effective concentrations of SNP in GSH-depleted cells compared to normal cells. The data suggest that the level of intracellular GSH is critical in SNP-induced cell death processes of osteoblasts. The level of oxidative stress due to SNP treatments doubled in GSH-depleted cells when measured with fluorochrome H2DCFDA. Pretreatment with the NO scavenger PTIO preserved the viability of cells treated with SNP. Viability of cells treated with SNP was recovered by pretreatment with Wortmannin, an autophagy inhibitor, but not by pretreatment with zVAD-fmk, a pan-specific caspase inhibitor. Large increases of LC3-II were shown by immunoblot analysis of the SNP-treated cells, and the increase was blocked by pretreatment with PTIO or Wortmannin; this implies that under GSH-depleted conditions SNP induces different molecular signaling that lead to autophagic cell death. The ultrastructural morphology of SNP-treated cells in transmission electron microscopy showed numerous autophagic vacuoles. These data suggest NO produces oxidative stress and cellular damage that culminate in autophagic cell death of GSH-depleted osteoblasts. Copyright 2010 Wiley Periodicals, Inc.

  8. Depletion of elements in shock-driven gas

    International Nuclear Information System (INIS)

    Gondhalekar, P.M.

    1985-01-01

    The depletion of elements in shocked gas in supernova remnants and in interstellar bubbles is examined. It is shown that elements are depleted in varying degrees in gas filaments shocked to velocities up to 200 km s -1 and that large differences in depletions are observed in gas filaments shocked to similar velocities. In the shocked gas the depletion of an element appears to be correlated with the electron density (or the neutral gas density) in the filaments. This correlation, if confirmed, is similar to the correlation between depletion and mean density of gas in the clouds in interstellar space. (author)

  9. Carbon and nitrogen uptake of calcareous benthic foraminifera along a depth-related oxygen gradient in the OMZ of the Arabian Sea

    Directory of Open Access Journals (Sweden)

    Annekatrin Julie Enge

    2016-02-01

    Full Text Available Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with 13C and 15N by cal-careous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phy-todetrital carbon within 4 days by all investigated species shows that phytodetritus is a rele-vant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between spe-cies. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion or hosting of bacteria under almost anoxic condi-tions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availabil-ity and in the presence of other benthic organisms account for observed changes in the pro-cessing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ bounda-ry region of the Indian margin as biological interactions and species distribution of foraminif-era change with depth and oxygen levels.

  10. Distribution of Alkalis (Na, Cs, Rb) Between Silicate and Sulfide: Implications for Planetary Volatile Depletion

    Science.gov (United States)

    Boujibar, A.; Fei, Y.; Righter, K.; Du, Z.; Bullock, E.

    2018-01-01

    The abundances of volatile elements in the Earth's mantle are correlated with their temperatures of condensation. This depletion can be due to either incomplete condensation of the elements during the nebula condensation or evaporation processes during planetary growth. Elements that have affinities with metals (siderophile) and sulfides (chalcophile) are additionally depleted due to their segregation into the core. Therefore, study of lithophile elements could be useful to isolate processes of volatilization and their effect on the abundance of the elements in the Earth's mantle. However, the correlation of these lithophile elements including alkali elements, with their temperatures of condensation shows a significant scatter, which is difficult to reconcile with a depletion by vaporization or incomplete condensation alone.

  11. Depleted uranium: A DOE management guide

    International Nuclear Information System (INIS)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF 6 ) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF 6 problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF 6 to an oxide aggregate that is used in concrete to make dry storage casks

  12. Oxygen and carbon transfer during solidification of semiconductor grade silicon in different processes

    Science.gov (United States)

    Ribeyron, P. J.; Durand, F.

    2000-03-01

    A model is established for comparing the solute distribution resulting from four solidification processes currently applied to semiconductor grade silicon: Czochralski pulling (CZ), floating zone (FZ), 1D solidification and electromagnetic continuous pulling (EMCP). This model takes into account solid-liquid interface exchange, evaporation to or contamination by the gas phase, container dissolution, during steady-state solidification, and in the preliminary preparation of the melt. For simplicity, the transfers are treated in the crude approximation of perfectly mixed liquid and boundary layers. As a consequence, only the axial ( z) distribution can be represented. Published data on oxygen and carbon transfer give a set of acceptable values for the thickness of the boundary layers. In the FZ and EMCP processes, oxygen evaporation can change the asymptotic behaviour of the reference Pfann law. In CZ and in 1D-solidification, a large variety of solute profile curves can be obtained, because they are very sensitive to the balance between crucible dissolution and evaporation. The CZ process clearly brings supplementary degrees of freedom via the geometry of the crucible, important for the dissolution phenomena, and via the rotation rate of the crystal and of the crucible, important for acting on transfer kinetics.

  13. Are relative depletions altered inside diffuse clouds?

    International Nuclear Information System (INIS)

    Joseph, C.L.

    1988-01-01

    The data of Jenkins, Savage, and Spitzer (1986) were used to analyze interstellar abundances and depletions of Fe, P, Mg, and Mn toward 37 stars, spanning nearly 1.0 (dex) in mean line-of-sight depletion. It was found that the depletions of these elements are linearly correlated and do not show evidence of differences in the rates of depletion or sputtering from one element to another. For a given level of overall depletion, the sightline-to-sightline rms variance in the depletion for each of these elements was less than 0.16 (dex), which is significantly smaller than is the element-to-element variance. The results suggest that, for most diffuse lines of sight, the relative abundances of these elements are set early in the lifetime of the grains and are not altered significantly thereafter. 53 references

  14. Depletion of solar wind plasma near a planetary boundary

    International Nuclear Information System (INIS)

    Zwan, B.J.; Wolf, R.A.

    1976-01-01

    A mathematical model is presented that describes the squeezing of solar wind plasma out along interplanetary magnetic field lines in the region between the bow shock and the effective planetary boundary (in the case of the earth, the magnetopause). In the absence of local magnetic merging the squeezing process should create a 'depletion layer,' a region of very low plasma density just outside the magnetopause. Numerical solutions are obtained for the dimensionless magnetohydrodynamic equations describing this depletion process for the case where the solar wind magnetic field is perpendicular to the solar wind flow direction. For the case of the earth with a magnetopause standoff distance of 10 R/subE/, the theory predicts that the density should be reduced by a factor > or =2 in a layer about 700--1300 km thick if M/subA/, the Alfven Mach number in the solar wind, is equal to 8. The layer thickness should vary as M/subA/ -2 and should be approximately uniform for a large area of the magnetopause around the subsolar point. Computed layer thicknesses are somewhat smaller than those derived from Lees' axisymmetric model. Depletion layers should develop fully only where magnetic merging is locally unimportant. Scaling of the model calculations to Venus and Mars suggest layer thicknesses about 1/10 and 1/15 those of the earth, respectively, neglecting diffusion and ionospheric effects

  15. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem

  16. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs

  17. DANDE-a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE-a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of the reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two actual problems

  18. Selection of a management strategy for depleted uranium

    International Nuclear Information System (INIS)

    Patton, S.; Hanrahan, E.; Bradley, C. Jnr.

    1995-01-01

    A consequence of the uranium enrichment process is the accumulation of a significant amount of depleted uranium hexafluoride (UF 6 ). Currently, in the United States approximately 560 000 tonnes of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a programme to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF 6 . The programme involves a technology and engineering assessment of proposed management options (which are: use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. Because of its provisions for considering a wide range of relevant issues and involving the public, this programme has become a model for future DOE materials disposition programmes. This paper presents an overview of the Depleted Uranium Hexafluoride Management Programme. Technical findings of the programme to date are presented, and major issues involved in selecting and implementing a management strategy are discussed. (author)

  19. Interstellar depletion anomalies and ionization potentials

    International Nuclear Information System (INIS)

    Tabak, R.G.

    1979-01-01

    Satellite observations indicate that (1) most elements are depleted from the gas phase when compared to cosmic abundances, (2) some elements are several orders of magnitude more depleted than others, and (3) these depletions vary from cloud to cloud. Since the most likely possibility is that the 'missing' atoms are locked into grains, depletions occur either by accretion onto core particles in interstellar clouds or earlier, during the period of primary grain formation. If the latter mechanism is dominant, then the most important depletion parameter is the condensation temperature of the elements and their various compounds. However, this alone is not sufficient to explain all the observed anomalies. It is shown that electrostatic effects - under a wide variety of conditions- can enormously enhance the capture cross-section of the grain. It is suggested that this mechanism can also account for such anomalies as the apparent 'overabundance' of the alkali metals in the gas phase. (orig.)

  20. Hyperbaric oxygen sensitizes anoxic Pseudomonas aeruginosa biofilm to ciprofloxacin

    DEFF Research Database (Denmark)

    Kolpen, Mette; Lerche, Christian J; Kragh, Kasper Nørskov

    2017-01-01

    Chronic Pseudomonas aeruginosa lung infection is characterized by the presence of endobronchial antibiotic-tolerant biofilm subject to strong oxygen (O2) depletion due to the activity of surrounding polymorphonuclear leukocytes. The exact mechanisms affecting the antibiotic susceptibility...... metabolism activity and the endogenous formation of reactive O2 radicals (ROS). In this study we aimed to apply hyperbaric oxygen treatment (HBOT) in order to sensitize anoxic P. aeruginosa agarose-biofilms established to mimic situations with intense O2 consumption by the host response in the cystic...... fibrosis (CF) lung. Application of HBOT resulted in enhanced bactericidal activity of ciprofloxacin at clinically relevant durations and was accompanied by indications of restored aerobic respiration, involvement of endogenous lethal oxidative stress and increased bacterial growth. The findings highlight...

  1. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  2. Oxygen abundances in unevolved metal-poor stars - Interpretation and consequences

    International Nuclear Information System (INIS)

    Abia, C.; Rebolo, R.

    1989-01-01

    The oxygen abundance has been determined by analysis of the O I infrared triplet in 30 unevolved field stars of metallicities in the range Fe/H abundance ratio between -0.2 and -3.5. The data show that the O/Fe abundance ratio increases monotonically as metallicity decreases from solar, reaching values in the range 1.0-1.2 at an Fe/H abundance ratio of about -2. The results, when compared with those already published for metal-deficient red giants, suggest that oxygen could have been depleted in the latter. A discussion of the O/Fe abundance ratios in connection with the chemical evolution of the Galaxy is also presented. 83 refs

  3. Fabrication and processing of next-generation oxygen carrier materials for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nadarajah, Arunan [Univ. of Toledo, OH (United States)

    2017-04-26

    Among numerous methods of controlling the global warming effect, Chemical Looping Combustion is known to be the most viable option currently. A key factor to a successful chemical looping process is the presence of highly effective oxygen carriers that enable fuel combustion by going through oxidation and reduction in the presence of air and fuel respectively. In this study, CaMnO3-δ was used as the base material and doped on the A-site (Sr or La) and B-site (Fe, Ti, Zn and Al) by 10 mol % of dopants. Solid state reaction followed by mechanical extrusion (optimized paste formula) was used as the preparation method A series of novel doped perovskite-type oxygen carrier particles (CaxLa (Or Sa)1-x Mn1-yByO3-δ (B-site = Fe, Ti, Al, or Zr)) were synthesized by the proposed extrusion formula. The produced samples were characterized with XRD, SEM, BET and TGA techniques. According to the results obtained from TGA analysis, the oxygen capacity of the samples ranged between 1.2 for CLMZ and 1.75 for CSMF. Reactivity and oxygen uncoupling behaviors of the prepared samples were also evaluated using a fluidized bed chemical looping reactor using methane as the fuel at four different temperatures (800, 850, 900, 950 °C). All of the oxygen carriers showed oxygen uncoupling behavior and they were able to capture and release oxygen. Mass-based conversion of the perovskites was calculated and temperature increase proved to increase the mass-based conversion rate in all of the samples under study. Gas yield was calculated at 950 °C as well, and results showed that CLMZ, CM and CSMF showed 100% gas yields and CLMF and CSMZ showed approximately 85% yield in fluidized bed reactor, which is a high and acceptable quantity. Based on extended reactor tests the modified calcium manganese perovskite structures (CSMF) can be a good candidate for future pilot tests.

  4. Partitioning ratio of depleted uranium during a melt decontamination by arc melting

    International Nuclear Information System (INIS)

    Min, Byeong Yeon; Choi, Wang Kyu; Oh, Won Zin; Jung, Chong Hun

    2008-01-01

    In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica (SiO 2 ), calcium oxide (CaO) and aluminum oxide (Al 2 O 3 ). Furthermore, calcium fluoride (CaF 2 ), magnesium oxide (MgO), and ferric oxide (Fe 2 O 3 ) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding 5.5x10 3 . The slag formers containing calcium fluoride (CaF 2 ) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium

  5. Parametric investigations on the saturation intensity of Coumarin 102 for stimulated emission depletion application.

    Science.gov (United States)

    Qin, H-Y; Zhao, W-X; Zhao, W; Zhang, C; Feng, X-Q; Liu, S-P; Wang, K-G

    2018-04-23

    Stimulated emission depletion (STED) microscopy performed using continuous-wave (CW) lasers has been investigated and developed by Willig et al. (Nature Methods, 2007, 4(11):915) for nearly a decade. Kuang et al. (Review of Scientific Instruments, 2010, 81:053709) developed the CW STED microscopy technique with 405 nm excitation and 532 nm depletion beams. In their research, Coumarin 102 dye was adopted and was found to be depletable. In this study, a parametric investigation of the depletion of Coumarin 102 dye is carried out experimentally. The influence of the excitation and depletion beam intensities and dye concentrations on the depletion efficiency are studied in detail. The results indicate the following: (1) The highest depletion occurs for the 100 μM Coumarin 102 solution, with a 1.4 μW excitation beam and a 115.3 mW depletion beam. (2) The minimum saturation intensity (Is) of STED, that is 13 MW cm -2 , is observed when the Coumarin 102 solution concentration is 10 μM. (3) Is values calculated directly from the depletion power derived with the cross-sectional area due to the full-width-at-half-maximum (FWHM) of the depletion beam show poor accuracy, where Is may be overestimated. Thus, a correction factor for the cross-sectional area is proposed. We also find that Is is not exactly constant for a fixed excitation beam power and dye concentration. This trend indicates that the conventional suppression function η(x)=e- ln (2)ISTED(x)/Is derived from picosecond STED may cause errors in evaluating the depletion process in CW STED microscopy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  6. LePix—A high resistivity, fully depleted monolithic pixel detector

    International Nuclear Information System (INIS)

    Giubilato, P.; Bisello, D.; Chalmet, P.; Denes, P.; Kloukinas, K.; Mattiazzo, S.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rivetti, A.; Rousset, J.; Snoeys, W.; Tindall, C.

    2013-01-01

    The LePix project explores monolithic pixel sensors fabricated in a 90 nm CMOS technology built over a lightly doped substrate. This approach keeps the advantages usually offered by Monolithic Active Pixel Sensors (MAPS), like a low input capacitance, having a single piece detector and using a standard CMOS production line, and adds the benefit of charge collection by drift from a depleted region several tens of microns deep into the substrate, therefore providing an excellent signal to noise ratio and a radiation tolerance superior to conventional un-depleted MAPS. Such sensors are expected to offer significant cost savings and reduction of power consumption for the same performance, leading to the use of much less material in the detector (less cooling and less copper), addressing one of the main limitations of present day particle tracking systems. The latest evolution of the project uses detectors thinned down to 50 μm to obtain back illuminated sensors operated in full depletion mode. By back-processing the chip and collecting the charge from the full substrate it is hence possible to efficiently detect soft X-rays up to 10 keV. Test results from first successfully processed detectors will be presented and discussed

  7. Time-on-task effects in children with and without ADHD: depletion of executive resources or depletion of motivation?

    Science.gov (United States)

    Dekkers, Tycho J; Agelink van Rentergem, Joost A; Koole, Alette; van den Wildenberg, Wery P M; Popma, Arne; Bexkens, Anika; Stoffelsen, Reino; Diekmann, Anouk; Huizenga, Hilde M

    2017-12-01

    Children with attention-deficit/hyperactivity disorder (ADHD) are characterized by deficits in their executive functioning and motivation. In addition, these children are characterized by a decline in performance as time-on-task increases (i.e., time-on-task effects). However, it is unknown whether these time-on-task effects should be attributed to deficits in executive functioning or to deficits in motivation. Some studies in typically developing (TD) adults indicated that time-on-task effects should be interpreted as depletion of executive resources, but other studies suggested that they represent depletion of motivation. We, therefore, investigated, in children with and without ADHD, whether there were time-on-task effects on executive functions, such as inhibition and (in)attention, and whether these were best explained by depletion of executive resources or depletion of motivation. The stop-signal task (SST), which generates both indices of inhibition (stop-signal reaction time) and attention (reaction time variability and errors), was administered in 96 children (42 ADHD, 54 TD controls; aged 9-13). To differentiate between depletion of resources and depletion of motivation, the SST was administered twice. Half of the participants was reinforced during second task performance, potentially counteracting depletion of motivation. Multilevel analyses indicated that children with ADHD were more affected by time-on-task than controls on two measures of inattention, but not on inhibition. In the ADHD group, reinforcement only improved performance on one index of attention (i.e., reaction time variability). The current findings suggest that time-on-task effects in children with ADHD occur specifically in the attentional domain, and seem to originate in both depletion of executive resources and depletion of motivation. Clinical implications for diagnostics, psycho-education, and intervention are discussed.

  8. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    Science.gov (United States)

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  9. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  10. Life in the Slow, Dark, Salty, Cold and Oxygen-Depleted Lane - Insights on Habitability from Lake Vida

    Science.gov (United States)

    Murray, A.

    2014-04-01

    Ice-entrained Lake Vida brine has provided an accessible natural habitat to study life in the slow lane - where cellular growth is limited, but not extinguished. We measured in situ stable isotopic signatures of N2O, SO42-, H2, conducted experiments utilizing stable isotope geochemical tracers to detect microbial transformations and employed radioisotopically-labeled amino acid precursors to detect cellular macromolecule biosynthesis. The results indicated a dominance of abiotic processes in the brine - yet support metabolically active life through detection of nominal rates of protein biosynthesis. At the same time, the brine has posed a challenge to our understanding of ecosystem energetics. Data collected thus far suggests that the brine is isolated from surfical processes and receives no new mass or energy from above. Calculations have estimated carbon remineralization rates, which indicate that resources should be depleted to the level of small molecules perhaps supporting a methanogenic ecosystem given the amount of time since encapsulation at the temperatures recorded - yet the brine is resource-rich harboring abundant bacteria and large molecules, in addition to a complex mixture of both reduced and oxidized compounds. This has motivated explorations into alternative sources of energy such as hydrogen - which was detected at levels 10 micromolar - that could be generated by brine-rock interactions and supply endogenous energy to this closed ecosystem. This cold, salty, anoxic and organically rich brine, provides insight into a new category of habitable earth ecosystems that may also give us food for thought when considering habitability of giant planet icy worlds or of icy exoplanets. However, the methods we use, and the framework of scientific inquiry applied, are limited by perception and familiarity of rates of change that are important in human time scales. The Vida-icy brine ecosystem provides a model for expansion of our understanding of habitability

  11. Oxygen diffusion kinetics and reactive lifetimes in bacterial and mammalian cells irradiated with nanosecond pulses of high intensity electrons

    International Nuclear Information System (INIS)

    Epp, E.R.; Weiss, H.; Ling, C.C.; Djordjevic, B.; Kessaris, N.D.

    1975-01-01

    Experiaments have been designed to gain information on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and on the time-diffusion of oxygen in cells. An approach developed in this laboratory involves the delivery of two high intensity electron pulses each of 3 ns duration to a thin layer of cells equilibrated with a known concentration of oxygen. The first pulse serves to render the cells totally anoxic by the radiochemical depletion of oxygen; the second is delivered at a time electronically delayed after the first allowing for diffusion of oxygen during this time. Under these conditions the radiosensitivity of E coli B/r has been measured over six decades of interpulse time. Cellular time-diffusion curves constructed from the measurements show that oxygen establishes its sensitizing effect within 10 -4 s after the creation of intracellular anoxia establishing this time as an upper limit to the lifetime of the species. Unusual behaviour of the diffusion curve observed for longer delay times can be explained by a model wherein it is postulated that a radiation-induced inhibiting agent slows down diffusion. Application of this model to the experimental data yields a value of 0.4x10 -5 cm 2 s -1 for the cellular oxygen diffusion coefficient. Similar experiments recently carried out for Serratia marcescens will also be described. The oxygen effect in cultured HeLa cells exposed to single short electron pulses has been examined over a range of oxygen concentrations. A family of breaking survival curves was obtained similar to those previously measured for E coli B/r by this laboratory. The data appear to be reasonably consistent with a physicochemical mechanism involving the radiochemical depletion of oxygen previously invoked for bacteria. (author)

  12. Specification for the VERA Depletion Benchmark Suite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Seog [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-17

    CASL-X-2015-1014-000 iii Consortium for Advanced Simulation of LWRs EXECUTIVE SUMMARY The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the pressurized water reactor. MPACT includes the ORIGEN-API and internal depletion module to perform depletion calculations based upon neutron-material reaction and radioactive decay. It is a challenge to validate the depletion capability because of the insufficient measured data. One of the detoured methods to validate it is to perform a code-to-code comparison for benchmark problems. In this study a depletion benchmark suite has been developed and a detailed guideline has been provided to obtain meaningful computational outcomes which can be used in the validation of the MPACT depletion capability.

  13. Development of the point-depletion code DEPTH

    International Nuclear Information System (INIS)

    She, Ding; Wang, Kan; Yu, Ganglin

    2013-01-01

    Highlights: ► The DEPTH code has been developed for the large-scale depletion system. ► DEPTH uses the data library which is convenient to couple with MC codes. ► TTA and matrix exponential methods are implemented and compared. ► DEPTH is able to calculate integral quantities based on the matrix inverse. ► Code-to-code comparisons prove the accuracy and efficiency of DEPTH. -- Abstract: The burnup analysis is an important aspect in reactor physics, which is generally done by coupling of transport calculations and point-depletion calculations. DEPTH is a newly-developed point-depletion code of handling large burnup depletion systems and detailed depletion chains. For better coupling with Monte Carlo transport codes, DEPTH uses data libraries based on the combination of ORIGEN-2 and ORIGEN-S and allows users to assign problem-dependent libraries for each depletion step. DEPTH implements various algorithms of treating the stiff depletion systems, including the Transmutation trajectory analysis (TTA), the Chebyshev Rational Approximation Method (CRAM), the Quadrature-based Rational Approximation Method (QRAM) and the Laguerre Polynomial Approximation Method (LPAM). Three different modes are supported by DEPTH to execute the decay, constant flux and constant power calculations. In addition to obtaining the instantaneous quantities of the radioactivity, decay heats and reaction rates, DEPTH is able to calculate the integral quantities by a time-integrated solver. Through calculations compared with ORIGEN-2, the validity of DEPTH in point-depletion calculations is proved. The accuracy and efficiency of depletion algorithms are also discussed. In addition, an actual pin-cell burnup case is calculated to illustrate the DEPTH code performance in coupling with the RMC Monte Carlo code

  14. Improved Internal Reference Oxygen Sensors Using Composite Oxides as Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang

    The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75S...... the application of IROSes are provided. Based on the concepts and fundamentals of the IROS, internal reference sensors that detect other gas species such as hydrogen, chlorine and bromine may be developed.......The thesis describes the research on and development of an internal reference oxygen sensor (IROS). The IROS is potentiometric and uses the equilibrium pO2of the binary mixture of Ni/NiO as the reference pO2. The sensing electrode of the IROS are made from metallic Pt or the composite of (La0.75Sr0...... from 8YSZ is evaluated quantitatively and figures that may be used to design the depletion period of an IROS due to the electronic leak of 8YSZ are provided. One dimensional numerical simulations are performed to study the variation in cell voltage during the process of gas mixing, and the asymmetric...

  15. Topical oxygenation therapy in wound care: are patients getting enough?

    Science.gov (United States)

    Hunt, Sharon

    2017-08-10

    Wound management is a major burden on today's healthcare provider, both clinically with regard to available resources and financially. Most importantly, it has a significant impact on the patient's quality of life and experience. Within the field of wound care these pressures, alongside an ageing population, multiple comorbidities, disease processes and negative lifestyle choices, increase incidences of reduced skin integrity and challenging wounds. In an attempt to meet these challenges alternative, innovative therapies are being explored to support the wound healing process. Wound care experts are now exploring the scientific, biological aspects of wound healing at a cellular level. They are taking wound care back to basics with the identification of elements that, if introduced as an 'adjunct' or as a stand-alone device alongside gold-standard regimens, can positively impact the static or problematic wounds that pose the most challenges to clinicians on a daily basis. This article explores the phenomenon of oxygen, its place in tissue formation and the effect of depletion on the wound healing process and highlights ways in which patients may receive benefit from non-invasive intervention to improve wound care outcomes.

  16. Continuum-based DFN-consistent simulations of oxygen ingress in fractured crystalline rocks

    Science.gov (United States)

    Trinchero, P.; Puigdomenech, I.; Molinero, J.; Ebrahimi, H.; Gylling, B.; Svensson, U.; Bosbach, D.; Deissmann, G.

    2016-12-01

    The potential transient infiltration of oxygenated glacial meltwater into initially anoxic and reducing fractured crystalline rocks during glaciation events is an issue of concern for some of the prospected deep geological repositories for spent nuclear fuel. Here, this problem is assessed using reactive transport calculations. First, a novel parameterisation procedure is presented, where flow, transport and geochemical parameters (i.e. hydraulic conductivity, effective/kinetic porosity, and mineral specific surface and abundance) are defined on a finite volume numerical grid based on the (spatially varying) properties of an underlying Discrete Fracture Network (DFN). Second, using this approach, a realistic reactive transport model of Forsmark, i.e. the selected site for the proposed Swedish spent nuclear fuel repository, is implemented. The model consists of more than 70 million geochemical transport degrees of freedom and simulates the ingress of oxygen-rich water from the recharge area of the domain and its depletion due to reactions with the Fe(II) mineral chlorite. Third, the calculations are solved in the supercomputer JUQUEEN of the Jülich Supercomputing Centre. The results of the simulations show that oxygen infiltrates relatively quickly along fractures and deformation zones until a steady state profile is reached, where geochemical reactions counterbalance advective transport processes. Interestingly, most of the iron-bearing minerals are consumed in the highly conductive zones, where larger mineral surfaces are available for reactions. An analysis based on mineral mass balance shows that the considered rock medium has enough capacity to buffer oxygen infiltration for a long period of time (i.e. some thousand years).

  17. Identification of an 84Sr-depleted carrier in primitive meteorites and implications for thermal processing in the solar protoplanetary disk

    DEFF Research Database (Denmark)

    Paton, Chad; Schiller, Martin; Bizzarro, Martin

    2013-01-01

    material or secondary processing of a well-mixed disk. Using stepwise acid-leaching of the Ivuna CI-chondrite, we show that unlike other nuclides such as Cr and Ti, Sr-isotope variability is the result of a carrier depleted in Sr. The carrier is most likely presolar SiC, which is known to have both high Sr......The existence of correlated nucleosynthetic heterogeneities in solar system reservoirs is now well demonstrated for numerous nuclides. However, it has proven difficult to discriminate between the two disparate processes that can explain such correlated variability: incomplete mixing of presolar...... anomalies, respectively, is not compatible with incomplete mixing of presolar material but instead suggests that the solar system's nucleosynthetic heterogeneity reflects selective thermal processing of dust. Based on vaporization experiments of SiC under nebular conditions, the lack of SiC material...

  18. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    As the preceding considerations concerning the physical and technical features of oxygen optodes have demonstrated, fluorescence-based optochemical oxygen sensors possess certain advantages and peculiarities compared to conventionally applied electrochemical sensors such as polarographic oxygen electrodes. First, in contrast to oxygen electrodes, oxygen measurements with oxygen optodes do not suffer from distortions caused by the reference electrodes. In addition, because of the polarographic process, platinum electrodes continuously consume oxygen, which falsifies the results, especially when small sample volumes or long-term measurements, or both, are involved, whereas the sensor layer of oxygen optodes must only be equilibrated. Moreover, the surface of the platinum wire has to be catalytically clean in order to obtain a plateau of the polarogram and, consequently, to achieve a low rest current at zero PO2. Unfortunately, the demand for catalytically clean platinum surfaces turns out to be rather critical, since surface contamination occurs even with membranized electrodes, resulting in the well-known phenomenon of "electrode poisoning." The question of the specificity of oxygen electrodes also must be considered. In this context, CO2 and halothane may interfere with oxygen measurements, whereas fluorescence quenching is unaffected by CO2 and halothane affects the measurements only slightly, depending on the special indicator used. Furthermore, because of the flow dependence, oxygen measurements with the oxygen electrode show a distinct "stirring effect" caused by the turbulence in front of the electrode, which disturbs the diffusion field. Because of the completely different physical principle of fluorescence optical sensors, such influences are not observed with oxygen optodes. In addition, isolation and shielding of electrical circuits found in electrodes are not necessary for optodes. Furthermore, the sensitivity of oxygen optodes can be tuned to the desired

  19. Process analysis of an oxygen lean oxy-fuel power plant with co-production of synthesis gas

    International Nuclear Information System (INIS)

    Normann, Fredrik; Thunman, Henrik; Johnsson, Filip

    2009-01-01

    This paper investigates new possibilities and synergy effects for an oxy-fuel fired polygeneration scheme (transportation fuel and electricity) with carbon capture and co-firing of biomass. The proposed process has the potential to make the oxy-fuel process more effective through a sub-stoichiometric combustion in-between normal combustion and gasification, which lowers the need for oxygen within the process. The sub-stoichiometric combustion yields production of synthesis gas, which is utilised in an integrated synthesis to dimethyl ether (DME). The process is kept CO 2 neutral through co-combustion of biomass in the process. The proposed scheme is simulated with a computer model with a previous study of an oxy-fuel power plant as a reference process. The degree of sub-stoichiometric combustion, or amount of synthesis gas produced, is optimised with respect to the overall efficiency. The maximal efficiency was found at a stoichiometric ratio just below 0.6 with the efficiency for the electricity producing oxy-fuel process of 0.35 and a DME process efficiency of 0.63. It can be concluded that the proposed oxygen lean combustion process constitutes a way to improve the oxy-fuel carbon capture processes with an efficient production of DME in a polygeneration process

  20. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C. D. [National Renewable Energy Laboratory, Golden CO USA; Snowden-Swan, Lesley J. [Pacific Northwest National Laboratory, Richland WA USA; Talmadge, Michael [National Renewable Energy Laboratory, Golden CO USA; Dutta, Abhijit [National Renewable Energy Laboratory, Golden CO USA; Jones, Susanne [Pacific Northwest National Laboratory, Richland WA USA; Ramasamy, Karthikeyan K. [Pacific Northwest National Laboratory, Richland WA USA; Gray, Michel [Pacific Northwest National Laboratory, Richland WA USA; Dagle, Robert [Pacific Northwest National Laboratory, Richland WA USA; Padmaperuma, Asanga [Pacific Northwest National Laboratory, Richland WA USA; Gerber, Mark [Pacific Northwest National Laboratory, Richland WA USA; Sahir, Asad H. [National Renewable Energy Laboratory, Golden CO USA; Tao, Ling [National Renewable Energy Laboratory, Golden CO USA; Zhang, Yanan [National Renewable Energy Laboratory, Golden CO USA

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1) mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.

  1. Enhancement of oxygen diffusion process on a rotating disk electrode for the electro-Fenton degradation of tetracycline

    International Nuclear Information System (INIS)

    Zhang, Yan; Gao, Ming-Ming; Wang, Xin-Hua; Wang, Shu-Guang; Liu, Rui-Ting

    2015-01-01

    An electro-Fenton process was developed for wastewater treatment in which hydrogen peroxide was generated in situ with a rotating graphite disk electrode as cathode. The maximum H 2 O 2 generation rate for the RDE reached 0.90 mg/L/h/cm 2 under the rotation speed of 400 rpm at pH 3, and −0.8 V vs SCE. The performance of this electro-Fenton reactor was assessed by tetracycline degradation in an aqueous solution. Experimental results showed the rotation of disk cathode resulted in the efficient production of H 2 O 2 without oxygen aeration, and excellent ability for degrading organic pollutants compared to the electro-Fenton system with fixed cathode. Tetracycline of 50 mg/L was degraded completely within 2 h with the addition of ferrous ion (1.0 mM). The chronoamperometry analysis was employed to investigate the oxygen diffusion on the rotating cathode. The results demonstrated that the diffusion coefficients of dissolved oxygen is 19.45 × 10 −5 cm 2 /s, which is greater than that reported in the literature. Further calculation indicated that oxygen is able to diffuse through the film on the rotating cathode within the contact time in each circle. This study proves that enhancement of oxygen diffusion on RDE is benefit for H 2 O 2 generation, thus provides a promising method for organic pollutants degradation by the combination of RDE with electro-Fenton reactor and offers a new insight on the oxygen transform process in this new system.

  2. Methane oxidation and formation of EPS in compost: effect of oxygen concentration

    International Nuclear Information System (INIS)

    Wilshusen, J.H.; Hettiaratchi, J.P.A.; Visscher, A. de; Saint-Fort, R.

    2004-01-01

    Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters. - 1.5% oxygen resulted in a slightly higher and more stable methane oxidation activity

  3. Tryptophan depletion affects compulsive behaviour in rats

    DEFF Research Database (Denmark)

    Merchán, A; Navarro, S V; Klein, A B

    2017-01-01

    investigated whether 5-HT manipulation, through a tryptophan (TRP) depletion by diet in Wistar and Lister Hooded rats, modulates compulsive drinking in schedule-induced polydipsia (SIP) and locomotor activity in the open-field test. The levels of dopamine, noradrenaline, serotonin and its metabolite were......-depleted HD Wistar rats, while the LD Wistar and the Lister Hooded rats did not exhibit differences in SIP. In contrast, the TRP-depleted Lister Hooded rats increased locomotor activity compared to the non-depleted rats, while no differences were found in the Wistar rats. Serotonin 2A receptor binding...

  4. Effect of Processing and Storage on RBC function in vivo

    Science.gov (United States)

    Doctor, Allan; Spinella, Phil

    2012-01-01

    Red Blood Cell (RBC) transfusion is indicated to improve oxygen delivery to tissue, and for no other purpose. We have come to appreciate that donor RBCs are fundamentally altered during processing and storage, in a fashion that both impairs oxygen transport efficacy and introduces additional risk by perturbing both immune and coagulation systems. The protean biophysical and physiologic changes in RBC function arising from storage are termed the ‘storage lesion’; many have been understood for some time; for example, we know that the oxygen affinity of stored blood rises during the storage period1 and that intracellular allosteric regulators, notably 2,3-bisphosphoglyceric acid (DPG) and ATP, are depleted during storage. Our appreciation of other storage lesion features has emerged with improved understanding of coagulation, immune and vascular signaling systems. Herein we review key features of the ‘storage lesion’. Additionally, we call particular attention to the newly appreciated role of RBCs in regulating linkage between regional blood flow and regional O2 consumption by regulating the bioavailability of key vasoactive mediators in plasma, as well as discuss how processing and storage disturbs this key signaling function and impairs transfusion efficacy. PMID:22818545

  5. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    Science.gov (United States)

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  6. The Influence of Agreeableness and Ego Depletion on Emotional Responding.

    Science.gov (United States)

    Finley, Anna J; Crowell, Adrienne L; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2017-10-01

    Agreeable individuals report more intense withdrawal-oriented negative emotions across aversive situations. Two studies tested the hypothesis that self-regulatory depletion (i.e., ego depletion) moderates the relationship between trait Agreeableness and negative emotional responding. Ego depletion was manipulated using a writing task. Emotional responding was measured with startle eye-blink responses (Study 1, N = 71) and self-reported valence, arousal, and empathic concern (Study 2, N = 256) during emotional picture viewing. Trait Agreeableness was measured using a questionnaire. In Study 1, Agreeableness predicted especially large startle responses during aversive images and especially small startles during appetitive images. After exercising self-control, the relationship between startle magnitudes and Agreeableness decreased. In Study 2, Agreeableness predicted more empathic concern for aversive images, which in turn predicted heightened self-reported negative emotions. After exercising self-control, the relationship between Agreeableness and empathic concern decreased. Agreeable individuals exhibit heightened negative emotional responding. Ego depletion reduced the link between Agreeableness and negative emotional responding in Study 1 and moderated the indirect effect of Agreeableness on negative emotional responding via empathic concern in Study 2. Empathic concern appears to be a resource-intensive process underlying heightened responding to aversive stimuli among agreeable persons. © 2016 Wiley Periodicals, Inc.

  7. Influence of the residual oxygen in the plasma immersion ion implantation (PI3) processing of materials

    International Nuclear Information System (INIS)

    Ueda, M.; Silva, A.R.; Mello, Carina B.; Silva, G.; Reuther, H.; Oliveira, V.S.

    2011-01-01

    In this work, we investigated the effects of the contaminants present in the vacuum chamber of the PI3 system, in particular, the residual oxygen, which results in the formation of the oxide compounds on the surface and hence is responsible for the high implantation energies required to achieve reasonably thick treated layers. We used a mass spectrometer (RGA) with a quadruple filter to verify the composition of the residual vacuum and pressure of the elements present in the chamber. Initially we found a high proportion of residual oxygen in a vacuum with a pressure of 1 × 10 −3 Pa. Minimizing the residual oxygen percentage in about 80%, by efficient cleaning of the chamber walls and by improving the gas feeding process, we mitigated the formation of oxides during the PI3 process. Therefore we achieved a highly efficient PI3 processing obtaining implanted layers reaching about 50 nm, even in cases such as an aluminum alloy, where is very difficult to nitrogen implant at low energies. We performed nitrogen PI3 treatment of SS304 and Al7075 using pulses of only 3 kV and 15 × 10 −6 s at 1 kHz with an operating pressure of 1 Pa.

  8. Recurrence formulas for evaluating expansion series of depletion functions

    International Nuclear Information System (INIS)

    Vukadin, Z.

    1991-01-01

    A high-accuracy analytical method for solving the depletion equations for chains of radioactive nuclides is based on the formulation of depletion functions. When all the arguments of the depletion function are too close to each other, series expansions of the depletion function have to be used. However, the high-accuracy series expressions for the depletion functions of high index become too complicated. Recursion relations are derived which enable an efficient high-accuracy evaluation of the depletion functions with high indices. (orig.) [de

  9. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani.

    Science.gov (United States)

    Saini, Shalini; Bharati, Kavita; Shaha, Chandrima; Mukhopadhyay, Chinmay K

    2017-09-05

    Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.

  10. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    Science.gov (United States)

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  11. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    Science.gov (United States)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  12. Transient Treg depletion enhances therapeutic anti‐cancer vaccination

    Science.gov (United States)

    Aston, Wayne J.; Chee, Jonathan; Khong, Andrea; Cleaver, Amanda L.; Solin, Jessica N.; Ma, Shaokang; Lesterhuis, W. Joost; Dick, Ian; Holt, Robert A.; Creaney, Jenette; Boon, Louis; Robinson, Bruce; Lake, Richard A.

    2016-01-01

    Abstract Introduction Regulatory T cells (Treg) play an important role in suppressing anti‐ immunity and their depletion has been linked to improved outcomes. To better understand the role of Treg in limiting the efficacy of anti‐cancer immunity, we used a Diphtheria toxin (DTX) transgenic mouse model to specifically target and deplete Treg. Methods Tumor bearing BALB/c FoxP3.dtr transgenic mice were subjected to different treatment protocols, with or without Treg depletion and tumor growth and survival monitored. Results DTX specifically depleted Treg in a transient, dose‐dependent manner. Treg depletion correlated with delayed tumor growth, increased effector T cell (Teff) activation, and enhanced survival in a range of solid tumors. Tumor regression was dependent on Teffs as depletion of both CD4 and CD8 T cells completely abrogated any survival benefit. Severe morbidity following Treg depletion was only observed, when consecutive doses of DTX were given during peak CD8 T cell activation, demonstrating that Treg can be depleted on multiple occasions, but only when CD8 T cell activation has returned to base line levels. Finally, we show that even minimal Treg depletion is sufficient to significantly improve the efficacy of tumor‐peptide vaccination. Conclusions BALB/c.FoxP3.dtr mice are an ideal model to investigate the full therapeutic potential of Treg depletion to boost anti‐tumor immunity. DTX‐mediated Treg depletion is transient, dose‐dependent, and leads to strong anti‐tumor immunity and complete tumor regression at high doses, while enhancing the efficacy of tumor‐specific vaccination at low doses. Together this data highlight the importance of Treg manipulation as a useful strategy for enhancing current and future cancer immunotherapies. PMID:28250921

  13. Influence of Oxygen Partial Pressure during Processing on the Thermoelectric Properties of Aerosol-Deposited CuFeO₂.

    Science.gov (United States)

    Stöcker, Thomas; Exner, Jörg; Schubert, Michael; Streibl, Maximilian; Moos, Ralf

    2016-03-24

    In the field of thermoelectric energy conversion, oxide materials show promising potential due to their good stability in oxidizing environments. Hence, the influence of oxygen partial pressure during synthesis on the thermoelectric properties of Cu-Delafossites at high temperatures was investigated in this study. For these purposes, CuFeO₂ powders were synthetized using a conventional mixed-oxide technique. X-ray diffraction (XRD) studies were conducted to determine the crystal structures of the delafossites associated with the oxygen content during the synthesis. Out of these powders, films with a thickness of about 25 µm were prepared by the relatively new aerosol-deposition (AD) coating technique. It is based on a room temperature impact consolidation process (RTIC) to deposit dense solid films of ceramic materials on various substrates without using a high-temperature step during the coating process. On these dense CuFeO₂ films deposited on alumina substrates with electrode structures, the Seebeck coefficient and the electrical conductivity were measured as a function of temperature and oxygen partial pressure. We compared the thermoelectric properties of both standard processed and aerosol deposited CuFeO₂ up to 900 °C and investigated the influence of oxygen partial pressure on the electrical conductivity, on the Seebeck coefficient and on the high temperature stability of CuFeO₂. These studies may not only help to improve the thermoelectric material in the high-temperature case, but may also serve as an initial basis to establish a defect chemical model.

  14. EPRI depletion benchmark calculations using PARAGON

    International Nuclear Information System (INIS)

    Kucukboyaci, Vefa N.

    2015-01-01

    Highlights: • PARAGON depletion calculations are benchmarked against the EPRI reactivity decrement experiments. • Benchmarks cover a wide range of enrichments, burnups, cooling times, and burnable absorbers, and different depletion and storage conditions. • Results from PARAGON-SCALE scheme are more conservative relative to the benchmark data. • ENDF/B-VII based data reduces the excess conservatism and brings the predictions closer to benchmark reactivity decrement values. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality analyses, code validation for both fresh and used fuel is required. Fresh fuel validation is typically done by modeling experiments from the “International Handbook.” A depletion validation can determine a bias and bias uncertainty for the worth of the isotopes not found in the fresh fuel critical experiments. Westinghouse’s burnup credit methodology uses PARAGON™ (Westinghouse 2-D lattice physics code) and its 70-group cross-section library, which have been benchmarked, qualified, and licensed both as a standalone transport code and as a nuclear data source for core design simulations. A bias and bias uncertainty for the worth of depletion isotopes, however, are not available for PARAGON. Instead, the 5% decrement approach for depletion uncertainty is used, as set forth in the Kopp memo. Recently, EPRI developed a set of benchmarks based on a large set of power distribution measurements to ascertain reactivity biases. The depletion reactivity has been used to create 11 benchmark cases for 10, 20, 30, 40, 50, and 60 GWd/MTU and 3 cooling times 100 h, 5 years, and 15 years. These benchmark cases are analyzed with PARAGON and the SCALE package and sensitivity studies are performed using different cross-section libraries based on ENDF/B-VI.3 and ENDF/B-VII data to assess that the 5% decrement approach is conservative for determining depletion uncertainty

  15. Depletion sensitivity predicts unhealthy snack purchases.

    Science.gov (United States)

    Salmon, Stefanie J; Adriaanse, Marieke A; Fennis, Bob M; De Vet, Emely; De Ridder, Denise T D

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose weight on snack purchase behavior were explored. Participants included in the study were instructed to report every snack they bought over the course of one week. The dependent variables were the number of healthy and unhealthy snacks purchased. The results of the present study demonstrate that depletion sensitivity predicts the amount of unhealthy (but not healthy) snacks bought. The more sensitive people are to depletion, the more unhealthy snacks they buy. Moreover, there was some tentative evidence that this relation is more pronounced for people with a weak as opposed to a strong goal to lose weight, suggesting that a strong goal to lose weight may function as a motivational buffer against self-control failures. All in all, these findings provide evidence for the external validity of depletion sensitivity and the relevance of this construct in the domain of eating behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Isotopic depletion with Monte Carlo

    International Nuclear Information System (INIS)

    Martin, W.R.; Rathkopf, J.A.

    1996-06-01

    This work considers a method to deplete isotopes during a time- dependent Monte Carlo simulation of an evolving system. The method is based on explicitly combining a conventional estimator for the scalar flux with the analytical solutions to the isotopic depletion equations. There are no auxiliary calculations; the method is an integral part of the Monte Carlo calculation. The method eliminates negative densities and reduces the variance in the estimates for the isotope densities, compared to existing methods. Moreover, existing methods are shown to be special cases of the general method described in this work, as they can be derived by combining a high variance estimator for the scalar flux with a low-order approximation to the analytical solution to the depletion equation

  17. Adapting to an initial self-regulatory task cancels the ego depletion effect.

    Science.gov (United States)

    Dang, Junhua; Dewitte, Siegfried; Mao, Lihua; Xiao, Shanshan; Shi, Yucai

    2013-09-01

    The resource-based model of self-regulation provides a pessimistic view of self-regulation that people are destined to lose their self-control after having engaged in any act of self-regulation because these acts deplete the limited resource that people need for successful self-regulation. The cognitive control theory, however, offers an alternative explanation and suggests that the depletion effect reflects switch costs between different cognitive control processes recruited to deal with demanding tasks. This account implies that the depletion effect will not occur once people have had the opportunity to adapt to the self-regulatory task initially engaged in. Consistent with this idea, the present study showed that engaging in a demanding task led to performance deficits on a subsequent self-regulatory task (i.e. the depletion effect) only when the initial demanding task was relatively short but not when it was long enough for participants to adapt. Our results were unrelated to self-efficacy, mood, and motivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Microscopic to macroscopic depletion model development for FORMOSA-P

    International Nuclear Information System (INIS)

    Noh, J.M.; Turinsky, P.J.; Sarsour, H.N.

    1996-01-01

    Microscopic depletion has been gaining popularity with regard to employment in reactor core nodal calculations, mainly attributed to the superiority of microscopic depletion in treating spectral history effects during depletion. Another trend is the employment of loading pattern optimization computer codes in support of reload core design. Use of such optimization codes has significantly reduced design efforts to optimize reload core loading patterns associated with increasingly complicated lattice designs. A microscopic depletion model has been developed for the FORMOSA-P pressurized water reactor (PWR) loading pattern optimization code. This was done for both fidelity improvements and to make FORMOSA-P compatible with microscopic-based nuclear design methods. Needless to say, microscopic depletion requires more computational effort compared with macroscopic depletion. This implies that microscopic depletion may be computationally restrictive if employed during the loading pattern optimization calculation because many loading patterns are examined during the course of an optimization search. Therefore, the microscopic depletion model developed here uses combined models of microscopic and macroscopic depletion. This is done by first performing microscopic depletions for a subset of possible loading patterns from which 'collapsed' macroscopic cross sections are obtained. The collapsed macroscopic cross sections inherently incorporate spectral history effects. Subsequently, the optimization calculations are done using the collapsed macroscopic cross sections. Using this approach allows maintenance of microscopic depletion level accuracy without substantial additional computing resources

  19. Depleted depletion drives polymer swelling in poor solvent mixtures.

    Science.gov (United States)

    Mukherji, Debashish; Marques, Carlos M; Stuehn, Torsten; Kremer, Kurt

    2017-11-09

    Establishing a link between macromolecular conformation and microscopic interaction is a key to understand properties of polymer solutions and for designing technologically relevant "smart" polymers. Here, polymer solvation in solvent mixtures strike as paradoxical phenomena. For example, when adding polymers to a solvent, such that all particle interactions are repulsive, polymer chains can collapse due to increased monomer-solvent repulsion. This depletion induced monomer-monomer attraction is well known from colloidal stability. A typical example is poly(methyl methacrylate) (PMMA) in water or small alcohols. While polymer collapse in a single poor solvent is well understood, the observed polymer swelling in mixtures of two repulsive solvents is surprising. By combining simulations and theoretical concepts known from polymer physics and colloidal science, we unveil the microscopic, generic origin of this collapse-swelling-collapse behavior. We show that this phenomenon naturally emerges at constant pressure when an appropriate balance of entropically driven depletion interactions is achieved.

  20. Is Ego Depletion Real? An Analysis of Arguments.

    Science.gov (United States)

    Friese, Malte; Loschelder, David D; Gieseler, Karolin; Frankenbach, Julius; Inzlicht, Michael

    2018-03-01

    An influential line of research suggests that initial bouts of self-control increase the susceptibility to self-control failure (ego depletion effect). Despite seemingly abundant evidence, some researchers have suggested that evidence for ego depletion was the sole result of publication bias and p-hacking, with the true effect being indistinguishable from zero. Here, we examine (a) whether the evidence brought forward against ego depletion will convince a proponent that ego depletion does not exist and (b) whether arguments that could be brought forward in defense of ego depletion will convince a skeptic that ego depletion does exist. We conclude that despite several hundred published studies, the available evidence is inconclusive. Both additional empirical and theoretical works are needed to make a compelling case for either side of the debate. We discuss necessary steps for future work toward this aim.

  1. Depletion-induced biaxial nematic states of boardlike particles

    International Nuclear Information System (INIS)

    Belli, S; Van Roij, R; Dijkstra, M

    2012-01-01

    With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal hard boardlike particles. We take into account the presence of the depletant by introducing an effective depletion attraction between a pair of boardlike particles. At fixed depletant fugacity, the stable liquid-crystal phase is determined through a mean-field theory with restricted orientations. Interestingly, we predict that for slightly elongated boardlike particles a critical depletant density exists, where the system undergoes a direct transition from an isotropic liquid to a biaxial nematic phase. As a consequence, by tuning the depletant density, an easy experimental control parameter, one can stabilize states of high biaxial nematic order even when these states are unstable for pure systems of boardlike particles. (paper)

  2. The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules

    Science.gov (United States)

    Bryukhanov, V. V.; Minaev, B. M.; Tsibul'nikova, A. V.; Slezhkin, V. A.

    2015-07-01

    We have studied exchange processes in contact complexes of triplet eosin molecules with oxygen molecules in the triplet (3Σ{/g -}) and singlet (1Δ g ) states in thin polyvinylbutyral films in the presence of gold nanoparticles. Upon resonant excitation of surface plasmons in gold nanoparticles into the absorption band of eosin molecules-singlet oxygen sensitizers-we have obtained an increase in the intensity of the delayed fluorescence and an increase in the lifetime of the dye with simultaneous quenching of the luminescence of singlet oxygen. The kinetics of the delayed fluorescence of the dye as a result of singlet-triplet annihilation of triplet eosin molecules with singlet oxygen molecules has been investigated. To compare theoretical and experimental data, we have numerically simulated energy transfer processes. Rate constants of energy transfer and of singlet-triplet annihilation, as well as quenching constants of triplet states of the dye by molecular oxygen, have been calculated. Luminescence quantum yield 1Δ g of polyvinylbutyral has been estimated. We have analyzed quantum-chemically electronic mechanisms of singlet-triplet annihilation of oxygen and eosin.

  3. Role of Melanin in Melanocyte Dysregulation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Noah C. Jenkins

    2013-01-01

    Full Text Available We have recently reported a potential alternative tumor suppressor function for p16 relating to its capacity to regulate oxidative stress and observed that oxidative dysregulation in p16-depleted cells was most profound in melanocytes, compared to keratinocytes or fibroblasts. Moreover, in the absence of p16 depletion or exogenous oxidative insult, melanocytes exhibited significantly higher basal levels of reactive oxygen species (ROS than these other epidermal cell types. Given the role of oxidative stress in melanoma development, we speculated that this increased susceptibility of melanocytes to oxidative stress (and greater reliance on p16 for suppression of ROS may explain why genetic compromise of p16 is more commonly associated with predisposition to melanoma rather than other cancers. Here we show that the presence of melanin accounts for this differential oxidative stress in normal and p16-depleted melanocytes. Thus the presence of melanin in the skin appears to be a double-edged sword: it protects melanocytes as well as neighboring keratinocytes in the skin through its capacity to absorb UV radiation, but its synthesis in melanocytes results in higher levels of intracellular ROS that may increase melanoma susceptibility.

  4. Irradiation of cells by single and double pulses of high intensity radiation: oxygen sensitization and diffusion kinetics

    International Nuclear Information System (INIS)

    Epp, E.R.; Ling, C.C.; Weiss, H.

    1976-01-01

    This paper discusses advances made on both experimental and theoretical approaches involving single and double pulses of high intensity ionizing radiation delivered to cultured bacterial and mammalian cells where the effect of oxygen is concerned. Information gained on the lifetime of oxygen-sensitive species suspected to be produced in critical molecules in irradiated cells and perhaps intimately related to the still unknown mechanisms of oxygen sensitization is described. The diffusion characteristics of oxygen at the cellular level obtained from experimental data are discussed. Current knowledge on intracellular radiolytic oxygen depletion is also presented. Future work on the use of high intensity pulsed radiation as a tool in cellular radiobiological research is outlined. It is expected that obtaining knowledge of the time available for damaged molecules to enter into chemical reactions may lead to insights into the mechanisms of radiation injury in cells, such as those involved in the oxygen effect. (Auth.)

  5. Industrial compatible re-growth of vertically aligned multiwall carbon nanotubes by ultrafast pure oxygen purification process

    DEFF Research Database (Denmark)

    Bu, Ian Y.Y.; Hou, Kai; Engstrøm, Daniel Southcott

    2011-01-01

    amorphous carbon and reactivate nickel catalyst. Controlling of the purification temperature is important for high yield CNTs, as excessive high annealing temperature results in deformation of the CNTs. Unlike hazardous wet purification treatments, purified CNTs remained vertically aligned and offer......Reproducible high-yield purification process of multiwalled carbon nanotubes (CNTs) was developed by thermal annealing in ultrapure oxygen. The optimized condition involves thermal annealing via a PID controlled heater in high purity oxygen at temperature of 450°C for 180s, which burns out...

  6. Maximizing percentage depletion in solid minerals

    International Nuclear Information System (INIS)

    Tripp, J.; Grove, H.D.; McGrath, M.

    1982-01-01

    This article develops a strategy for maximizing percentage depletion deductions when extracting uranium or other solid minerals. The goal is to avoid losing percentage depletion deductions by staying below the 50% limitation on taxable income from the property. The article is divided into two major sections. The first section is comprised of depletion calculations that illustrate the problem and corresponding solutions. The last section deals with the feasibility of applying the strategy and complying with the Internal Revenue Code and appropriate regulations. Three separate strategies or appropriate situations are developed and illustrated. 13 references, 3 figures, 7 tables

  7. Selection of a management strategy for depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

    1995-01-01

    A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF 6 ). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF 6 . The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed

  8. Podocyte Depletion in Thin GBM and Alport Syndrome.

    Science.gov (United States)

    Wickman, Larysa; Hodgin, Jeffrey B; Wang, Su Q; Afshinnia, Farsad; Kershaw, David; Wiggins, Roger C

    2016-01-01

    The proximate genetic cause of both Thin GBM and Alport Syndrome (AS) is abnormal α3, 4 and 5 collagen IV chains resulting in abnormal glomerular basement membrane (GBM) structure/function. We previously reported that podocyte detachment rate measured in urine is increased in AS, suggesting that podocyte depletion could play a role in causing progressive loss of kidney function. To test this hypothesis podometric parameters were measured in 26 kidney biopsies from 21 patients aged 2-17 years with a clinic-pathologic diagnosis including both classic Alport Syndrome with thin and thick GBM segments and lamellated lamina densa [n = 15] and Thin GBM cases [n = 6]. Protocol biopsies from deceased donor kidneys were used as age-matched controls. Podocyte depletion was present in AS biopsies prior to detectable histologic abnormalities. No abnormality was detected by light microscopy at 70% podocyte depletion. Low level proteinuria was an early event at about 25% podocyte depletion and increased in proportion to podocyte depletion. These quantitative data parallel those from model systems where podocyte depletion is the causative event. This result supports a hypothesis that in AS podocyte adherence to the GBM is defective resulting in accelerated podocyte detachment causing progressive podocyte depletion leading to FSGS-like pathologic changes and eventual End Stage Kidney Disease. Early intervention to reduce podocyte depletion is projected to prolong kidney survival in AS.

  9. A Natural Component-Based Oxygen Indicator with In-Pack Activation for Intelligent Food Packaging.

    Science.gov (United States)

    Won, Keehoon; Jang, Nan Young; Jeon, Junsu

    2016-12-28

    Intelligent food packaging can provide consumers with reliable and correct information on the quality and safety of packaged foods. One of the key constituents in intelligent packaging is a colorimetric oxygen indicator, which is widely used to detect oxygen gas involved in food spoilage by means of a color change. Traditional oxygen indicators consisting of redox dyes and strong reducing agents have two major problems: they must be manufactured and stored under anaerobic conditions because air depletes the reductant, and their components are synthetic and toxic. To address both of these serious problems, we have developed a natural component-based oxygen indicator characterized by in-pack activation. The conventional oxygen indicator composed of synthetic and artificial components was redesigned using naturally occurring compounds (laccase, guaiacol, and cysteine). These natural components were physically separated into two compartments by a fragile barrier. Only when the barrier was broken were all of the components mixed and the function as an oxygen indicator was begun (i.e., in-pack activation). Depending on the component concentrations, the natural component-based oxygen indicator exhibited different response times and color differences. The rate of the color change was proportional to the oxygen concentration. This novel colorimetric oxygen indicator will contribute greatly to intelligent packaging for healthier and safer foods.

  10. Numerical Investigation of Novel Oxygen Blast Furnace Ironmaking Processes

    Science.gov (United States)

    Li, Zhaoyang; Kuang, Shibo; Yu, Aibing; Gao, Jianjun; Qi, Yuanhong; Yan, Dingliu; Li, Yuntao; Mao, Xiaoming

    2018-04-01

    Oxygen blast furnace (OBF) ironmaking process has the potential to realize "zero carbon footprint" production, but suffers from the "thermal shortage" problem. This paper presents three novel OBF processes, featured by belly injection of reformed coke oven gas, burden hot-charge operation, and their combination, respectively. These processes were studied by a multifluid process model. The applicability of the model was confirmed by comparing the numerical results against the measured key performance indicators of an experimental OBF operated with or without injection of reformed coke oven gas. Then, these different OBF processes together with a pure OBF were numerically examined in aspects of in-furnace states and global performance, assuming that the burden quality can be maintained during the hot-charge operation. The numerical results show that under the present conditions, belly injection and hot charge, as auxiliary measures, are useful for reducing the fuel rate and increasing the productivity for OBFs but in different manners. Hot charge should be more suitable for OBFs of different sizes because it improves the thermochemical states throughout the dry zone rather than within a narrow region in the case of belly injection. The simultaneous application of belly injection and hot charge leads to the best process performance, at the same time, lowering down hot-charge temperature to achieve the same carbon consumption and hot metal temperature as that achieved when applying the hot charge alone. This feature will be practically beneficial in the application of hot-charge operation. In addition, a systematic study of hot-charge temperature reveals that optimal hot-charge temperatures can be identified according to the utilization efficiency of the sensible heat of hot burden.

  11. Long-term groundwater depletion in the United States

    Science.gov (United States)

    Konikow, Leonard F.

    2015-01-01

    The volume of groundwater stored in the subsurface in the United States decreased by almost 1000 km3 during 1900–2008. The aquifer systems with the three largest volumes of storage depletion include the High Plains aquifer, the Mississippi Embayment section of the Gulf Coastal Plain aquifer system, and the Central Valley of California. Depletion rates accelerated during 1945–1960, averaging 13.6 km3/year during the last half of the century, and after 2000 increased again to about 24 km3/year. Depletion intensity is a new parameter, introduced here, to provide a more consistent basis for comparing storage depletion problems among various aquifers by factoring in time and areal extent of the aquifer. During 2001–2008, the Central Valley of California had the largest depletion intensity. Groundwater depletion in the United States can explain 1.4% of observed sea-level rise during the 108-year study period and 2.1% during 2001–2008. Groundwater depletion must be confronted on local and regional scales to help reduce demand (primarily in irrigated agriculture) and/or increase supply.

  12. Depletion sensitivity predicts unhealthy snack purchases

    NARCIS (Netherlands)

    Salmon, Stefanie J.; Adriaanse, Marieke A.; Fennis, Bob M.; De Vet, Emely; De Ridder, Denise T D

    2016-01-01

    The aim of the present research is to examine the relation between depletion sensitivity - a novel construct referring to the speed or ease by which one's self-control resources are drained - and snack purchase behavior. In addition, interactions between depletion sensitivity and the goal to lose

  13. Real depletion in nodal diffusion codes

    International Nuclear Information System (INIS)

    Petkov, P.T.

    2002-01-01

    The fuel depletion is described by more than one hundred fuel isotopes in the advanced lattice codes like HELIOS, but only a few fuel isotopes are accounted for even in the advanced steady-state diffusion codes. The general assumption that the number densities of the majority of the fuel isotopes depend only on the fuel burnup is seriously in error if high burnup is considered. The real depletion conditions in the reactor core differ from the asymptotic ones at the stage of lattice depletion calculations. This study reveals which fuel isotopes should be explicitly accounted for in the diffusion codes in order to predict adequately the real depletion effects in the core. A somewhat strange conclusion is that if the real number densities of the main fissionable isotopes are not explicitly accounted for in the diffusion code, then Sm-149 should not be accounted for either, because the net error in k-inf is smaller (Authors)

  14. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels

    Directory of Open Access Journals (Sweden)

    Peter eStief

    2016-02-01

    Full Text Available In the world’s oceans, even relatively low oxygen (O2 levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient O2 levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (~100 µmol O2 L-1 and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient O2 levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate, N2 (up to 7.1 nmol N h-1, NH4+ (up to 2.0 nmol N h-1, and N2O (up to 0.2 nmol N h-1. Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for N2 production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient O2 levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean.

  15. Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules

    International Nuclear Information System (INIS)

    Gudmundsson, J T

    2004-01-01

    A global (volume averaged) model of oxygen discharges is used to study the transition from a recombination dominated discharge to a detachment dominated discharge. The model includes the metastable oxygen molecules O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ) and the three Herzberg states O 2 (A 3 Σ u + , A' 3 Δ u , c 1 Σ u - ). Dissociative attachment of the oxygen molecule in the ground state O 2 ( 3 Σ g - ) and the metastable oxygen molecule O 2 (a 1 Δ g ) are the dominating channels for creation of the negative oxygen ion O - . At high pressures, dissociative attachment of the Herzberg states contributes significantly to the creation of the negative oxygen ion, O - . The detachment by a collision of the metastable oxygen molecule O 2 (b 1 Σ g + ) with the oxygen ion, O - , is a significant loss process for the O - at pressures above 10 mTorr. Its contribution to the loss is more significant at a lower applied power, but at the higher pressures it is always significant. Detachment by collision with O( 3 P) is also an important loss mechanism for O - . We find that ion-ion recombination is the dominating loss process for negative ions in oxygen discharges at low pressures and calculate the critical pressure where the contributions of recombination reactions and detachment reactions are equal. This critical pressure depends on the applied power, increases with applied power and is in the range 5-14 mTorr in the pressure and power range investigated

  16. Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions.

    Science.gov (United States)

    Cabello, Juan; Toledo-Cervantes, Alma; Sánchez, León; Revah, Sergio; Morales, Marcia

    2015-04-01

    This paper evaluates the effect of the irradiance, pH and temperature on the photosynthetic activity (PA) of Scenedesmus obtusiusculus under N-replete and N-deplete conditions through oxygen measurements. The highest PA values were 160 mgO2 gb(-1) h(-1) at 620 μmol m(-2) s(-1), 35 °C and pH of 8 under N-replete conditions and 3.3 mgO2 gb(-1) h(-1) at 100 μmol m(-2) s(-1), 28.5 °C and pH of 5.5 for N-deplete conditions. Those operation conditions were tested in a flat-panel photobioreactor. The biomass productivity was 0.97 gb L(-1) d(-1) under N-replete conditions with a photosynthetic efficiency (PE) of 4.4% yielding 0.85 gb mol photon(-1). Similar biomass productivity was obtained under N-deplete condition; and the lipid productivity was 0.34 gL L(-1) d(-1) with a PE of 7.8% yielding 0.39 gL mol photon(-1). The apparent activation and deactivation energies were 16.1 and 30 kcal mol(-1), and 11.9 and 15.3 kcal mol(-1), for N-replete and N-deplete conditions, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Gas generation matrix depletion quality assurance project plan

    International Nuclear Information System (INIS)

    1998-01-01

    The Los Alamos National Laboratory (LANL) is to provide the necessary expertise, experience, equipment and instrumentation, and management structure to: Conduct the matrix depletion experiments using simulated waste for quantifying matrix depletion effects; and Conduct experiments on 60 cylinders containing simulated TRU waste to determine the effects of matrix depletion on gas generation for transportation. All work for the Gas Generation Matrix Depletion (GGMD) experiment is performed according to the quality objectives established in the test plan and under this Quality Assurance Project Plan (QAPjP)

  18. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  19. Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    International Nuclear Information System (INIS)

    Kramer, Illan J.; Pattantyus-Abraham, Andras G.; Barkhouse, Aaron R.; Wang, Xihua; Konstantatos, Gerasimos; Debnath, Ratan; Levina, Larissa; Raabe, Ines; Nazeeruddin, Md. K.; Graetzel, Michael; Sargent, Edward H.

    2011-01-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum.

  20. Comparison of autoregressive (AR) strategy with that of regression approach for determining ozone layer depletion as a physical process

    International Nuclear Information System (INIS)

    Yousufzai, M.A.K; Aansari, M.R.K.; Quamar, J.; Iqbal, J.; Hussain, M.A.

    2010-01-01

    This communication presents the development of a comprehensive characterization of ozone layer depletion (OLD) phenomenon as a physical process in the form of mathematical models that comprise the usual regression, multiple or polynomial regression and stochastic strategy. The relevance of these models has been illuminated using predicted values of different parameters under a changing environment. The information obtained from such analysis can be employed to alter the possible factors and variables to achieve optimum performance. This kind of analysis initiates a study towards formulating the phenomenon of OLD as a physical process with special reference to the stratospheric region of Pakistan. The data presented here establishes that the Auto regressive (AR) nature of modeling OLD as a physical process is an appropriate scenario rather than using usual regression. The data reported in literature suggest quantitatively the OLD is occurring in our region. For this purpose we have modeled this phenomenon using the data recorded at the Geophysical Centre Quetta during the period 1960-1999. The predictions made by this analysis are useful for public, private and other relevant organizations. (author)

  1. Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwolek-Mirek, M; Bednarska, S; Bartosz, G; Biliński, T

    2009-08-01

    Exposure of yeast cells to allyl alcohol results in intracellular production of acrolein. The toxicity of so formed acrolein involves oxidative stress, as (1) strains deficient in antioxidant defense are hypersensitive to allyl alcohol, (2) exposure to allyl alcohol increases the level of thiobarbituric-acid-reactive substances and decreases glutathione level in the cells, (3) hypoxic and anoxic atmosphere and antioxidants protect against allyl alcohol toxicity, and (4) allyl alcohol causes activation of Yap1p. No increased formation of reactive oxygen species was detected in cells exposed to allyl alcohol, so oxidative stress is due to depletion of cellular thiols and thus alteration in the redox state of yeast cells.

  2. Hsp90 depletion goes wild

    OpenAIRE

    Siegal, Mark L; Masel, Joanna

    2012-01-01

    Abstract Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to r...

  3. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    Science.gov (United States)

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  4. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2017-08-01

    Full Text Available The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  5. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    Science.gov (United States)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  6. Regret causes ego-depletion and finding benefits in the regrettable events alleviates ego-depletion.

    Science.gov (United States)

    Gao, Hongmei; Zhang, Yan; Wang, Fang; Xu, Yan; Hong, Ying-Yi; Jiang, Jiang

    2014-01-01

    This study tested the hypotheses that experiencing regret would result in ego-depletion, while finding benefits (i.e., "silver linings") in the regret-eliciting events counteracted the ego-depletion effect. Using a modified gambling paradigm (Experiments 1, 2, and 4) and a retrospective method (Experiments 3 and 5), five experiments were conducted to induce regret. Results revealed that experiencing regret undermined performance on subsequent tasks, including a paper-and-pencil calculation task (Experiment 1), a Stroop task (Experiment 2), and a mental arithmetic task (Experiment 3). Furthermore, finding benefits in the regret-eliciting events improved subsequent performance (Experiments 4 and 5), and this improvement was mediated by participants' perceived vitality (Experiment 4). This study extended the depletion model of self-regulation by considering emotions with self-conscious components (in our case, regret). Moreover, it provided a comprehensive understanding of how people felt and performed after experiencing regret and after finding benefits in the events that caused the regret.

  7. Quantification of oxygen and carbon in high Tc superconducting films by (α,α) elastic resonance technique

    International Nuclear Information System (INIS)

    Vizkelethy, G.; Revesz, P.

    1993-01-01

    The quantification of oxygen and carbon in high-temperature (T c ) superconducting oxide thin films was made by employing elastic resonance in He backscattering analysis. A method combining the oxygen resonance technique and channeling was presented for measuring the nature of the oxygen disorder near the surface and the interface in a YBCO superconducting film grown on an MgO substrate. The oxygen resonance technique was used to quantify the oxygen profiling in the metal/YBCO contacts, showing that Zr and Nb act as sinks to oxygen from YBCO films and are oxidized in the forms Zr/ZrO 2 /YBCO/MgO and Nb 0.2 O/YBCO/MgO after annealing in a vacuum at 350 o C. We combined the carbon and oxygen resonances to determine the carbon contamination and oxygen concentration changes on the YBCO surface after coating and baking the photoresist. Residual carbon on the surface and a thin layer of oxygen depletion near the YBCO surface have been observed. The residual carbon in Bi 2 Sr 2 CaCu 2 O 8 films made by the decomposition of metallo-organic precursors was quantified using carbon resonance. (author)

  8. Is gas in the Orion nebula depleted

    International Nuclear Information System (INIS)

    Aiello, S.; Guidi, I.

    1978-01-01

    Depletion of heavy elements has been recognized to be important in the understanding of the chemical composition of the interstellar medium. This problem is also relevant to the study of H II regions. In this paper the gaseous depletion in the physical conditions of the Orion nebula is investigated. The authors reach the conclusion that very probably no depletion of heavy elements, due to sticking on dust grains, took place during the lifetime of the Orion nebula. (Auth.)

  9. Direct observation of the dealloying process of a platinum–yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Malacrida, Paolo; Sanchez Casalongue, Hernan G.; Masini, Federico

    2015-01-01

    . It proceeds through the progressive oxidation of alloyed Y atoms, soon leading to the accumulation of Y3+ cations at the cathode. Acid leaching with sulfuric acid is capable of accelerating the dealloying process and removing these Y3+ cations which might cause long term degradation of the membrane. The use...... of APXPS under near operating conditions allowed observing the population of oxygenated surface species as a function of the electrochemical potential. Similar to the case of pure Pt nanoparticles, non-hydrated hydroxide plays a key role in the ORR catalytic process....

  10. Ego depletion and positive illusions: does the construction of positivity require regulatory resources?

    Science.gov (United States)

    Fischer, Peter; Greitemeyer, Tobias; Frey, Dieter

    2007-09-01

    Individuals frequently exhibit positive illusions about their own abilities, their possibilities to control their environment, and future expectations. The authors propose that positive illusions require resources of self-control, which is considered to be a limited resource similar to energy or strength. Five studies revealed that people with depleted self-regulatory resources indeed exhibited a less-optimistic sense of their own abilities (Study 1), a lower sense of subjective control (Study 2), and less-optimistic expectations about their future (Study 3). Two further studies shed light on the underlying psychological process: Ego-depleted (compared to nondepleted) individuals generated/retrieved less positive self-relevant attributes (Studies 4 and 5) and reported a lower sense of general self-efficacy (Study 5), which both partially mediated the impact of ego depletion on positive self-views (Study 5).

  11. Oxygen sensing” by Na,K-ATPase: these miraculous thiols

    Directory of Open Access Journals (Sweden)

    Anna Bogdanova

    2016-08-01

    Full Text Available Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its oxygen-sensitivity is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidised glutathione are the signalling messengers that make the Na,K-ATPase oxygen-sensitive. This very ancient signalling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the optimal level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterise the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summery on (i the sources of free radical production in hypoxic cells, (ii localisation of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzymes to a variety of stimuli (hypoxia, receptors’ activation control of the enzyme activity (iii redox-sensitive regulatory phosphorylation, and (iv the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate

  12. Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis

    Directory of Open Access Journals (Sweden)

    Stephen W.G. Tait

    2013-11-01

    Full Text Available Programmed necrosis (or necroptosis is a form of cell death triggered by the activation of receptor interacting protein kinase-3 (RIPK3. Several reports have implicated mitochondria and mitochondrial reactive oxygen species (ROS generation as effectors of RIPK3-dependent cell death. Here, we directly test this idea by employing a method for the specific removal of mitochondria via mitophagy. Mitochondria-deficient cells were resistant to the mitochondrial pathway of apoptosis, but efficiently died via tumor necrosis factor (TNF-induced, RIPK3-dependent programmed necrosis or as a result of direct oligomerization of RIPK3. Although the ROS scavenger butylated hydroxyanisole (BHA delayed TNF-induced necroptosis, it had no effect on necroptosis induced by RIPK3 oligomerization. Furthermore, although TNF-induced ROS production was dependent on mitochondria, the inhibition of TNF-induced necroptosis by BHA was observed in mitochondria-depleted cells. Our data indicate that mitochondrial ROS production accompanies, but does not cause, RIPK3-dependent necroptotic cell death.

  13. Nature gives us strength: exposure to nature counteracts ego-depletion.

    Science.gov (United States)

    Chow, Jason T; Lau, Shun

    2015-01-01

    Previous research rarely investigated the role of physical environment in counteracting ego-depletion. In the present research, we hypothesized that exposure to natural environment counteracts ego-depletion. Three experiments were conducted to test this hypothesis. In Experiment 1, initially depleted participants who viewed pictures of nature scenes showed greater persistence on a subsequent anagram task than those who were given a rest period. Experiment 2 expanded upon this finding by showing that natural environment enhanced logical reasoning performance after ego-depleting task. Experiment 3 adopted a two- (depletion vs. no-depletion) -by-two (nature exposure vs. urban exposure) factorial design. We found that nature exposure moderated the effect of depletion on anagram task performance. Taken together, the present studies offer a viable and novel strategy to mitigate the negative impacts of ego-depletion.

  14. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    International Nuclear Information System (INIS)

    Azyazov, V.N.; Torbin, A.P.; Pershin, A.A.; Mikheyev, P.A.; Heaven, M.C.

    2015-01-01

    Highlights: • Vibrational excitation of O_3 increases the rate constant for O_3 + O_2(a) → 2O_2(X) + O. • Vibrationally excited O_3 is produced by the O + O_2(X) + M → O_3 + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O_3. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O_3(υ) formed in O + O_2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O_2(a"1Δ), oxygen atom removal and ozone formation. It is shown that the process O_3(υ ⩾ 2) + O_2(a"1Δ) → 2O_2 + O is the main O_2(a"1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O_2(a"1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  15. New Insights into Fully-Depleted SOI Transistor Response During Total Dose Irradiation

    International Nuclear Information System (INIS)

    Burns, J.A.; Dodd, P.E.; Keast, C.L.; Schwank, J.R.; Shaneyfelt, M.R.; Wyatt, P.W.

    1999-01-01

    Worst-case bias configuration for total-dose testing fully-depleted SOI transistors was found to be process dependent. No evidence was found for total-dose induced snap back. These results have implications for hardness assurance testing

  16. Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion

    Directory of Open Access Journals (Sweden)

    Cunningham Phil

    2010-10-01

    Full Text Available Abstract Background Zinc deficiency is detrimental to organisms, highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within the zebrafish gill. This tissue represents a model system for studying ion absorption across polarised epithelial cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Results Zebrafish were treated with either zinc-depleted (water = 2.61 μg L-1; diet = 26 mg kg-1 or zinc-adequate (water = 16.3 μg L-1; diet = 233 mg kg-1 conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Of the genes represented the expression of a total of 333 transcripts showed differential regulation by zinc depletion (having a fold-change greater than 1.8 and an adjusted P-value less than 0.1, controlling for a 10% False Discovery Rate. Down-regulation was dominant at most time points and distinct sets of genes were regulated at different stages. Annotation enrichment analysis revealed that 'Developmental Process' was the most significantly overrepresented Biological Process GO term (P = 0.0006, involving 26% of all regulated genes. There was also significant bias for annotations relating to development, cell cycle, cell differentiation, gene regulation, butanoate metabolism, lysine degradation, protein tyrosin phosphatases, nucleobase, nucleoside and nucleotide metabolism, and cellular metabolic processes. Within these groupings genes associated with diabetes, bone/cartilage development, and ionocyte proliferation were especially notable. Network analysis of the temporal expression profile indicated that transcription factors foxl1, wt1, nr5a1, nr6a1, and especially

  17. Inland Sea Spray Aerosol Transport and Incomplete Chloride Depletion: Varying Degrees of Reactive Processing Observed during SOAS

    Energy Technology Data Exchange (ETDEWEB)

    Bondy, Amy L. [Department; Wang, Bingbing [Environmental; Laskin, Alexander [Environmental; Craig, Rebecca L. [Department; Nhliziyo, Manelisi V. [Department; Bertman, Steven B. [Department; Pratt, Kerri A. [Department; Shepson, Paul B. [Departments; Ault, Andrew P. [Department; Department

    2017-08-08

    Multiphase reactions involving sea spray aerosol (SSA) impact trace gases budgets in coastal regions by acting as a reservoir for oxidized nitrogen and sulfur species, as well as a source of halogen gases (HCl, ClNO2, etc.). While most studies of multiphase reactions on SSA have focused on marine environments, far less is known about SSA transported inland. Herein, single particle measurements of SSA are reported at a site > 320 km from the Gulf of Mexico, with transport times of 7-68 h. Samples were collected during the Southern Oxidant and Aerosol Study (SOAS) in June-July 2013 near Centreville, Alabama. SSA was observed in 93% of 42 time periods analyzed. During two marine air mass periods, SSA represented significant number fractions of particles in the accumulation (0.2-1.0 μm, 11%) and coarse (1.0-10.0 μm, 35%) modes. Chloride content of SSA particles ranged from full to partial depletion, with 24% of SSA particles containing chloride (mole fraction of Cl/Na > 0.1, 90% chloride depletion). Both the frequent observation of SSA at an inland site and the range of chloride depletion observed, suggest that SSA may represent an underappreciated inland sink for NOx/SO2 and source of halogen gases.

  18. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Pattantyus-Abraham, Andras G.

    2010-06-22

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced. The first-the Schottky device-was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film. The second-the excitonic device-employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate CQD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depletedheterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest opencircuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety. © 2010 American Chemical Society.

  19. Nematode community structure along a central Chile margin transect influenced by the oxygen minimum zone

    Science.gov (United States)

    Neira, Carlos; King, Ian; Mendoza, Guillermo; Sellanes, Javier; De Ley, Paul; Levin, Lisa A.

    2013-08-01

    Nematodes are among the metazoans most tolerant of low-oxygen conditions and play major roles in seafloor ecosystem processes. Nematode communities were studied in sediments off Concepción, Central Chile, spanning the outer shelf within the OMZ (122 m) to the mid-lower continental slope (972 m) beneath the OMZ. The total density and biomass of nematodes (core depth 0-10 cm) ranged from 677 to 2006 ind. 10 cm-2, and 168.4 to 506.5 μg DW 10 cm-2, respectively. Among metazoan meiofaunal taxa, nematodes predominated at all sites both in terms of relative abundance (83.7-99.4%) and biomass (53.8-88.1%), followed by copepods, nauplii and polychaetes. Nematodes were represented by 33 genera distributed among 17 families, with densities greatest at low oxygen sites (122-364 m; ~2000 ind. 10 cm-2). Nematode generic and trophic diversity, and individual biomass were lowest, and Rank 1 dominance was highest, at the most oxygen-depleted site (122 m), despite the fact that the organic carbon content of the sediment was maximal at this depth. At the most oxygenated slope sites (827 and 972 m), all of Wieser's nematode feeding groups were represented. In contrast, at the lowest-oxygen site, only selective deposit (bacterial) feeders (1A) were present, indicating a reduction in trophic complexity. A large percentage of nematodes inhabited subsurface sediment layers (>1 cm). At deeper, more oxygenated sites (827 and 972 m), nematode individual biomass increased downcore, while within the OMZ, nematode biomass was low and remained relatively uniform through the sediment column. The concentration of nematodes in deeper sediment layers, the vertical distribution of the feeding groups, as well as the high nutritional quality of the deeper layers, suggest a differential resource partitioning of the food available, which may reduce interspecific competition.

  20. Extreme Hf and light Fe isotopes in Archean komatiites - a remnant of very early mantle depletion?

    Science.gov (United States)

    Nebel, O.; Sossi, P.; Campbell, I. H.; Van Kranendonk, M. J.

    2014-12-01

    Hafnium isotope signatures in some Archean komatiites (ca. 3.5-3.0 billion years old) require a mantle source with a time-integrated Lu/Hf that exceeds average modern depleted mantle. Investigation of the timing and locus of parent-daughter fractionation in their mantle sources potentially constrains differentiation processes in the early Earth and their subsequent distribution and storage. In addition, they may help to constrain the Hf isotope evolution of the greater depleted mantle. In order to shed light on these processes, we discuss radiogenic Hf isotopes in conjunction with stable Fe isotope systematics in Archean komatiites from the Pilbara craton in Western Australia. Our findings indicate that, after careful evaluation of the effects of alteration, pristine samples are characterised by initial 176Hf/177Hf, which lie above the age-corrected depleted mantle, as a consequence of ancient melt extraction. Iron isotope systematics for these samples further point to a mantle source that is isotopically lighter than average modern depleted mantle, which is also consistent with melt-depletion. Taken together, these observations require a component of an old, super-depleted reservoir in the komatiite mantle source(s) that survived in the mantle for possibly hundreds of millions of years. The Lu/Hf of this refractory mantle appears to be complementary to, and therefore contemporaneous with, the first terrestrial crust, as preserved in Hadean (i.e., > 4 Ga) detrital zircon cores, which may indicate a causal relationship between them. We will discuss implications for very early mantle dynamics and the formation of very early mantle reservoirs.

  1. Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2016-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon the solvent AsahiKlin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned.

  2. Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Manohar, C.S; Menezes, L.D.; Ramasamy, K.P.; Meena, R.M.

    of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others...

  3. Lithium depletion and rotation in main-sequence stars

    International Nuclear Information System (INIS)

    Balachandran, S.

    1990-01-01

    Lithium abundances were measured in nearly 200 old disk-population F stars to examine the effects of rotational braking on the depletion of Li. The sample was selected to be slightly evolved off the main sequence so that the stars have completed all the Li depletion they will undergo on the main sequence. A large scatter in Li abundances in the late F stars is found, indicating that the Li depletion is not related to age and spectral type alone. Conventional depletion mechanisms like convective overshoot and microscopic diffusion are unable to explain Li depletion in F stars with thin convective envelopes and are doubly taxed to explain such a scatter. No correlation is found between Li abundance and the present projected rotational velocity and some of the most rapid rotators are undepleted, ruling out meridional circulation as the cause of Li depletion. There is a somewhat larger spread in Li abundances in the spun-down late F stars compared to the early F stars which should remain rotationally unaltered on the main sequence. 85 refs

  4. Conditional Depletion of Nuclear Proteins by the Anchor Away System (ms# CP-10-0125)

    Science.gov (United States)

    Fan, Xiaochun; Geisberg, Joseph V.; Wong, Koon Ho; Jin, Yi

    2011-01-01

    Nuclear proteins play key roles in the regulation of many important cellular processes. In Saccharomyces cerevisiae, many genes encoding nuclear proteins are essential. Here we describe a method termed Anchor Away that can be used to conditionally and rapidly deplete nuclear proteins of interest. It involves conditional export of the protein of interest out of the nucleus and its subsequent sequestration in the cytoplasm. This method can be used to simultaneously deplete multiple proteins from nucleus. PMID:21225637

  5. (3) Melatonin Protects Oocytes and Granulosa Cells from Reactive Oxygen Species during the Ovulatory Process

    OpenAIRE

    田村, 博史; Hiroshi, TAMURA; 山口大学大学院医学系研究科産科婦人科学; Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine

    2009-01-01

    Reactive oxygen species (ROS) are produced within the follicle especially during the ovulatory process. ROS play a physiological role in the process of ovulation, e.g. follicle rapture. However, excessive amount of ROS causes oxidative stress and damages oocytes and luteinized granulosa cells. On the other hand, antioxidant defense systems including superoxide dismutase (SOD) or glutathione (GSH) are present in follicles. The balance between ROS and antioxidants within the follicle seems to b...

  6. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.; Sunkara, P.S.

    1990-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggest that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair. (author)

  7. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.; Sunkara, P.S. (Merrell Dow Research Inst., Cincinnati, OH (USA))

    1990-09-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggest that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair. (author).

  8. Modelling of L-valine Repeated Fed-batch Fermentation Process Taking into Account the Dissolved Oxygen Tension

    Directory of Open Access Journals (Sweden)

    Tzanko Georgiev

    2009-03-01

    Full Text Available This article deals with synthesis of dynamic unstructured model of variable volume fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  9. A three-dimensional model for lubricant depletion under sliding condition on bit patterned media of hard disk drives

    Science.gov (United States)

    Wu, Lin

    2018-05-01

    In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.

  10. Distribution and Magnitude of Dinitrogen Fixation in the Eastern Tropical North Pacific Oxygen Deficient Zone.

    Science.gov (United States)

    Selden, C.; Mulholland, M. R.; Widner, B.; Bernhardt, P. W.; Macías Tapia, A.; Jayakumar, A.

    2016-12-01

    The Eastern Tropical North Pacific Ocean (ETNP) hosts one of the world's three major open ocean oxygen deficient zones (ODZs). Hotspots for fixed nitrogen (N) loss processes, ODZs have classically been discounted as areas of significant dinitrogen (N2) fixation, the microbe-mediated reduction of N2 to ammonium (NH4+), which has historically been ascribed primarily to euphotic, nutrient-deplete tropical waters. Challenging this paradigm, active expression of nifH (the dinitrogen reductase structural gene) has recently been documented in the ETNP, Eastern Tropical South Pacific, and Arabian Sea ODZs, implying a closer coupling of fixed nitrogen input and loss processes than previously thought. Here, we report rates of N­2 fixation measured in the ETNP ODZ along vertical gradients of oxygen, light, and dissolved N concentrations. Detailed vertical profiles of N2 fixation rates and dissolved N concentrations made within the ODZ were compared with similar profiles from oxic waters outside the ODZ. In addition, different organic carbon sources were investigated as potential rate-limiting factors for N2 fixation in sub-euphotic waters. By establishing the magnitude and distribution of N­2 fixation in the ETNP ODZ, this study contributes to current understanding of N cycling in anoxic and aphotic waters, and serves to elucidate nuances in the global N budget, enabling more accurate biogeochemical modeling. Understanding these processes in present day ODZs is crucial for predicting how ongoing anthropogenic intensification of coastal ODZs will alter biogeochemical cycles in the future.

  11. How Ego Depletion Affects Sexual Self-Regulation: Is It More Than Resource Depletion?

    Science.gov (United States)

    Nolet, Kevin; Rouleau, Joanne-Lucine; Benbouriche, Massil; Carrier Emond, Fannie; Renaud, Patrice

    2015-12-21

    Rational thinking and decision making are impacted when in a state of sexual arousal. The inability to self-regulate arousal can be linked to numerous problems, like sexual risk taking, infidelity, and sexual coercion. Studies have shown that most men are able to exert voluntary control over their sexual excitation with various levels of success. Both situational and dispositional factors can influence self-regulation achievement. The goal of this research was to investigate how ego depletion, a state of low self-control capacity, interacts with personality traits-propensities for sexual excitation and inhibition-and cognitive absorption, to cause sexual self-regulation failure. The sexual responses of 36 heterosexual males were assessed using penile plethysmography. They were asked to control their sexual arousal in two conditions, with and without ego depletion. Results suggest that ego depletion has opposite effects based on the trait sexual inhibition, as individuals moderately inhibited showed an increase in performance while highly inhibited ones showed a decrease. These results challenge the limited resource model of self-regulation and point to the importance of considering how people adapt to acute and high challenging conditions.

  12. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  13. The new MCNP6 depletion capability

    International Nuclear Information System (INIS)

    Fensin, M. L.; James, M. R.; Hendricks, J. S.; Goorley, J. T.

    2012-01-01

    The first MCNP based in-line Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology. (authors)

  14. The New MCNP6 Depletion Capability

    International Nuclear Information System (INIS)

    Fensin, Michael Lorne; James, Michael R.; Hendricks, John S.; Goorley, John T.

    2012-01-01

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

  15. Continuous Real-time Viability Assessment of Kidneys Based on Oxygen Consumption

    Science.gov (United States)

    Weegman, B.P.; Kirchner, V.A.; Scott, W.E.; Avgoustiniatos, E.S.; Suszynski, T.M.; Ferrer-Fabrega, J.; Rizzari, M.D.; Kidder, L.S.; Kandaswamy, R.; Sutherland, D.E.R.; Papas, K.K.

    2010-01-01

    Background Current ex vivo quality assessment of donor kidneys is limited to vascular resistance measurements and histological analysis. New techniques for the assessment of organ quality before transplantation may further improve clinical outcomes while expanding the depleted deceased-donor pool. We propose the measurement of whole organ oxygen consumption rate (WOOCR) as a method to assess the quality of kidneys in real time before transplantation. Methods Five porcine kidneys were procured using a donation after cardiac death (DCD) model. The renal artery and renal vein were cannulated and the kidney connected to a custom-made hypothermic machine perfusion (HMP) system equipped with an inline oxygenator and fiber-optic oxygen sensors. Kidneys were perfused at 8°C, and the perfusion parameters and partial oxygen pressures (pO2) were measured to calculate WOOCR. Results Without an inline oxygenator, the pO2 of the perfusion solution at the arterial inlet and venous outlet diminished to near 0 within minutes. However, once adequate oxygenation was provided, a significant pO2 difference was observed and used to calculate the WOOCR. The WOOCR was consistently measured from presumably healthy kidneys, and results suggest that it can be used to differentiate between healthy and purposely damaged organs. Conclusions Custom-made HMP systems equipped with an oxygenator and inline oxygen sensors can be applied for WOOCR measurements. We suggest that WOOCR is a promising approach for the real-time quality assessment of kidneys and other organs during preservation before transplantation. PMID:20692397

  16. Including environmental concerns in management strategies for depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Goldberg, M.; Avci, H.I.; Bradley, C.E.

    1995-01-01

    One of the major programs within the Office of Nuclear Energy, Science, and Technology of the US Department of Energy (DOE) is the depleted uranium hexafluoride (DUF 6 ) management program. The program is intended to find a long-term management strategy for the DUF 6 that is currently stored in approximately 46,400 cylinders at Paducah, KY; Portsmouth, OH; and Oak Ridge, TN, USA. The program has four major components: technology assessment, engineering analysis, cost analysis, and the environmental impact statement (EIS). From the beginning of the program, the DOE has incorporated the environmental considerations into the process of strategy selection. Currently, the DOE has no preferred alternative. The results of the environmental impacts assessment from the EIS, as well as the results from the other components of the program, will be factored into the strategy selection process. In addition to the DOE's current management plan, other alternatives continued storage, reuse, or disposal of depleted uranium, will be considered in the EIS. The EIS is expected to be completed and issued in its final form in the fall of 1997

  17. ITM oxygen for gasification

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.A.; Foster, E.P. [Air Products and Chemicals Inc., Toronto, ON (Canada); Gunardson, H.H. [Air Products Canada Ltd., Mississauga, ON (Canada)

    2005-11-01

    This paper described a newly developed air separation technology called Ionic Transport Membrane (ITM), which reduces the overall cost of the gasification process. The technology is well suited for advanced energy conversion processes such as integrated gasification combined cycle (IGCC) that require oxygen and use heavy carbonaceous feedstocks such as residual oils, bitumens, coke and coal. It is also well suited for traditional industrial applications for oxygen and distributed power. Air Products Canada Limited developed the ceramic membrane air separation technology that can reduce the cost of pure oxygen by more than 30 per cent. The separation technology achieves a capital cost reduction of 30 per cent and an energy reduction of 35 per cent over conventional cryogenic air separation. ITM is an electrochemical process that integrates well with the gasification process and an IGCC option for producing electricity from the waste heat generated from gasification. This paper described the integration of ITM technology with both the gasification and IGCC processes and showed the attractive economics of ITM. 6 refs., 2 tabs., 6 figs.

  18. Ecological considerations of natural and depleted uranium

    International Nuclear Information System (INIS)

    Hanson, W.C.

    1980-01-01

    Depleted 238 U is a major by-product of the nuclear fuel cycle for which increasing use is being made in counterweights, radiation shielding, and ordnance applications. This paper (1) summarizes the pertinent literature on natural and depleted uranium in the environment, (2) integrates results of a series of ecological studies conducted at Los Alamos Scientific Laboratory (LASL) in New Mexico where 70,000 kg of depleted and natural uranium has been expended to the environment over the past 34 years, and (3) synthesizes the information into an assessment of the ecological consequences of natural and depleted uranium released to the environment by various means. Results of studies of soil, plant, and animal communities exposed to this radiation and chemical environment over a third of a century provide a means of evaluating the behavior and effects of uranium in many contexts

  19. Lubricant depletion under various laser heating conditions in Heat Assisted Magnetic Recording (HAMR)

    Science.gov (United States)

    Xiong, Shaomin; Wu, Haoyu; Bogy, David

    2014-09-01

    Heat assisted magnetic recording (HAMR) is expected to increase the storage areal density to more than 1 Tb/in2 in hard disk drives (HDDs). In this technology, a laser is used to heat the magnetic media to the Curie point (~400-600 °C) during the writing process. The lubricant on the top of a magnetic disk could evaporate and be depleted under the laser heating. The change of the lubricant can lead to instability of the flying slider and failure of the head-disk interface (HDI). In this study, a HAMR test stage is developed to study the lubricant thermal behavior. Various heating conditions are controlled for the study of the lubricant thermal depletion. The effects of laser heating repetitions and power levels on the lubricant depletion are investigated experimentally. The lubricant reflow behavior is discussed as well.

  20. International regime formation: Ozone depletion and global climate change

    International Nuclear Information System (INIS)

    Busmann, N.E.

    1994-03-01

    Two theoretical perspectives, neorealism and neoliberal institutionalism, dominate in international relations. An assessment is made of whether these perspectives provide compelling explanations of why a regime with specific targets and timetables was formed for ozone depletion, while a regime with such specificity was not formed for global climate change. In so doing, the assumptions underlying neorealism and neoliberal institutionalism are examined. A preliminary assessment is offered of the policymaking and institutional bargaining process. Patterns of interstate behavior are evolving toward broader forms of cooperation, at least with regard to global environmental issues, although this process is both slow and cautious. State coalitions on specific issues are not yet powerful enough to create a strong community of states in which states are willing to devolve power to international institutions. It is shown that regime analysis is a useful analytic framework, but it should not be mistaken for theory. Regime analysis provides an organizational framework offering a set of questions regarding the principles and norms that govern cooperation and conflict in an issue area, and whether forces independent of states exist which affect the scope of state behavior. An examination of both neorealism and neoliberal institutionalism, embodied by four approaches to regime formation, demonstrates that neither has sufficient scope to account for contextual dynamics in either the ozone depletion or global climate change regime formation processes. 261 refs

  1. Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites

    DEFF Research Database (Denmark)

    Scott, James; Liu, Jingao; Pearson, D. Graham

    2016-01-01

    Although trace element concentrations in clinopyroxene serve as a useful tool for assessing the depletion and enrichment history of mantle peridotites, this is not applicable for peridotites in which the clinopyroxene component has been consumed (~ 25% partial melting). Orthopyroxene persists in ...

  2. The study of necessity of verification-methods for Depleted Uranium

    International Nuclear Information System (INIS)

    Park, J. B.; Ahn, S. H.; Ahn, G. H.; Chung, S. T.; Shin, J. S.

    2006-01-01

    ROK has tried to establish management system for depleted uranium from 2004, and ROK achieved some results in this field including management software, management skill, and the list of company using the nuclear material. But, the studies for the depleted uranium are insufficient exclude the studies of KAERI. In terms of SSAC, we have to study more about whether the depleted uranium is really dangerous material or not and how is the depleted uranium diverted to the nuclear weapon. The depleted uranium was controlled by the item counting in the national system for the small quantity nuclear material. We don't have unique technical methods to clarify the depleted uranium on-the-spot inspection not laboratory scale. Therefore, I would like to suggest of the necessity of the verification methods for depleted uranium. Furthermore, I would like to show you the methods of the verification of the depleted uranium in national system up to now

  3. Effect of oxygen clusters on optics, magnetism, and conductivity of (In2O3)0.9(SrO)0.1

    Science.gov (United States)

    Okunev, V. D.; Szymczak, H.; Szymczak, R.; Gierłowski, P.; Glot, A. B.; Bondarchuk, A. N.; Burkhovetski, V. V.

    2016-04-01

    We show that in In2O3-SrO ceramics with disordered structure and oxygen clusters in nanovoids, the band tails of valence and conduction bands form "negative" gap. Two types of magnetism are observed. One of them caused by formation of the "dangling bond+O2- ion" centers has been found in the samples saturated with oxygen. Another type is associated with the presence of dangling bonds in the oxygen-depleted samples. At Tconductivity of the samples. At T<54.8 K, the effects related to magnetic phase transitions in the clusters of crystalline oxygen are observed. The changes in resistance of the samples in the range of T=5-300 K correspond to the Mott's law at a dependence of local activation energy on the phase state of oxygen clusters.

  4. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Energy Technology Data Exchange (ETDEWEB)

    Azyazov, V.N., E-mail: azyazov@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Torbin, A.P.; Pershin, A.A. [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Mikheyev, P.A., E-mail: mikheyev@fian.smr.ru [Samara State Aerospace University, 443086 (Russian Federation); Lebedev Physical Institute of RAS, Samara 443011 (Russian Federation); Heaven, M.C., E-mail: mheaven@emory.edu [Emory University, Atlanta, GA 30322 (United States)

    2015-12-16

    Highlights: • Vibrational excitation of O{sub 3} increases the rate constant for O{sub 3} + O{sub 2}(a) → 2O{sub 2}(X) + O. • Vibrationally excited O{sub 3} is produced by the O + O{sub 2}(X) + M → O{sub 3} + M reaction. • Ozone concentrations are impacted by the reactions of vibrationally excited O{sub 3}. • Relevant to ozone concentrations in oxygen discharges and the upper atmosphere. - Abstract: The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O{sub 3}(υ) formed in O + O{sub 2} recombination is thought to be a significant agent in the deactivation of singlet oxygen O{sub 2}(a{sup 1}Δ), oxygen atom removal and ozone formation. It is shown that the process O{sub 3}(υ ⩾ 2) + O{sub 2}(a{sup 1}Δ) → 2O{sub 2} + O is the main O{sub 2}(a{sup 1}Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O{sub 2}(a{sup 1}Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  5. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient.

    Science.gov (United States)

    Noll, Matthias; Matthies, Diethart; Frenzel, Peter; Derakshani, Manigee; Liesack, Werner

    2005-03-01

    Cultivation-independent techniques were applied to assess the succession and phylogenetic composition of bacterial communities in a vertical oxygen gradient in flooded, unplanted paddy soil microcosms. Microsensor measurements showed that within 6 h of flooding, oxygen was depleted from 200 microM at the floodwater-soil interface to undetectable amounts at a depth of approximately 2 mm and below. The gradient was quite stable over time, although the oxygen depletion was less pronounced 84 days than 6 h after flooding. Community fingerprint patterns were obtained by terminal restriction fragment length polymorphism (T-RFLP) analysis from the oxic, transition, and anoxic zones of triplicate soil microcosms at 0, 1 and 6 h, and 1, 2, 7, 21, 30, 42, 84, and 168 days after flooding. Correspondence analyses revealed that T-RFLP patterns obtained using either community DNA or RNA were affected by time and oxygen zone, and that there was a significant interaction between the effects of time and oxygen zone. The temporal dynamics of bacterial populations were resolved more clearly using RNA than using DNA. At the RNA level, successional community dynamics were most pronounced from 1 h to 2 days and less pronounced from 2 to 21 days after flooding, for both oxic and anoxic zones. No effect of time or oxygen zone on the community dynamics was observed from 21 to 168 days after flooding. Dominant early successional populations were identified by cloning and comparative sequence analysis of environmental 16S rRNA and 16S rRNA genes as members of the Betaproteobacteria (oxic zone) and the clostridial cluster I (anoxic zone). Dominant late successional populations belonged to the Verrucomicrobia and Nitrospira (detected mainly in the oxic zone), and to the Myxococcales (detected mainly in the anoxic zone). In conclusion, the bacterial community developed through successional stages, leading at the RNA level to almost stable community patterns within 21 days after flooding. This

  6. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media.

    Science.gov (United States)

    Meunier, Sarah M; Todorovic, Biljana; Dare, Emma V; Begum, Afroza; Guillemette, Simon; Wenger, Andrew; Saxena, Priyanka; Campbell, J Larry; Sasges, Michael; Aucoin, Marc G

    2016-01-01

    Ultraviolet (UV) irradiation is advantageous as a sterilization technique in the biopharmaceutical industry since it is capable of targeting non-enveloped viruses that are typically challenging to destroy, as well as smaller viruses that can be difficult to remove via conventional separation techniques. In this work, we investigated the influence of oxygen in the media during UV irradiation and characterized the effect on chemical composition using NMR and LC-MS, as well as the ability of the irradiated media to support cell culture. Chemically defined Chinese hamster ovary cell growth media was irradiated at high fluences in a continuous-flow UV reactor. UV-irradiation caused the depletion of pyridoxamine, pyridoxine, pyruvate, riboflavin, tryptophan, and tyrosine; and accumulation of acetate, formate, kynurenine, lumichrome, and sarcosine. Pyridoxamine was the only compound to undergo complete degradation within the fluences considered; complete depletion of pyridoxamine was observed at 200 mJ/cm2. Although in both oxygen- and nitrogen-saturated media, the cell culture performance was affected at fluences above 200 mJ/cm2, there was less of an impact on cell culture performance in the nitrogen-saturated media. Based on these results, minimization of oxygen in cell culture media prior to UV treatment is recommended to minimize the negative impact on sensitive media.

  7. Limitations of potentiometric oxygen sensors operating at low oxygen levels

    DEFF Research Database (Denmark)

    Lund, Anders; Jacobsen, Torben; Hansen, Karin Vels

    2011-01-01

    The electrochemical processes that limit the range of oxygen partial pressures in which potentiometric oxygen sensors can be used, were analysed using a theoretical and an experimental approach. Electrochemical impedance spectroscopy was performed on porous Pt/yttria stabilised zirconia (YSZ......) electrodes between 10−6 and 0.2 bar and at temperatures between 500 and 950 °C. The flow of oxide ions and electron holes through a sensor cell, with a YSZ electrolyte, were calculated under similar conditions. The oxygen permeation of the sensor cell was insignificant at an oxygen partial pressure of 10......−6 bar for an inlet flow rate higher than 2 L h−1 between 600 and 800 °C. The polarisation resistance measured between 10−6 and 10−4 bar was found to be inversely proportional to the oxygen partial pressure, nearly temperature independent and inversely proportional to the inlet gas flow rate, which shows...

  8. Depleted Monolithic Pixels (DMAPS) in a 150 nm technology: lab and beam results

    International Nuclear Information System (INIS)

    Obermann, T.; Hemperek, T.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Schwenker, B.

    2017-01-01

    The fully depleted monolithic active pixel sensor (DMAPS) is a new concept integrating full CMOS circuitry onto a fully depletable silicon substrate wafer. The realization of prototypes of the DMAPS concept relies on the availability of multiple well CMOS processes and high resistive substrates. The CMOS foundry ESPROS Photonics offers both and was chosen for prototyping. Two prototypes, EPCB01 and EPCB02, were developed in a 150 nm process on a high resistive n-type wafer of 50 μm thickness. The prototypes have 352 square pixels of 40 μm pitch and small n-well charge collection node with very low capacitance (n + -implantation size: 5 μm by 5 μm) and about 150 transistors per pixel (CSA and discriminator plus a small digital part).

  9. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  10. Ego Depletion Does Not Interfere With Working Memory Performance.

    Science.gov (United States)

    Singh, Ranjit K; Göritz, Anja S

    2018-01-01

    Ego depletion happens if exerting self-control reduces a person's capacity to subsequently control themselves. Previous research has suggested that ego depletion not only interferes with subsequent self-control but also with working memory. However, recent meta-analytical evidence casts doubt onto this. The present study tackles the question if ego depletion does interfere with working memory performance. We induced ego depletion in two ways: using an e-crossing task and using a Stroop task. We then measured working memory performance using the letter-number sequencing task. There was no evidence of ego depletion interfering with working memory performance. Several aspects of our study render this null finding highly robust. We had a large and heterogeneous sample of N = 1,385, which provided sufficient power. We deployed established depletion tasks from two task families (e-crossing task and Stroop), thus making it less likely that the null finding is due to a specific depletion paradigm. We derived several performance scores from the working memory task and ran different analyses to maximize the chances of finding an effect. Lastly, we controlled for two potential moderators, the implicit theories about willpower and dispositional self-control capacity, to ensure that a possible effect on working memory is not obscured by an interaction effect. In sum, this experiment strengthens the position that ego depletion works but does not affect working memory performance.

  11. 26 CFR 1.611-1 - Allowance of deduction for depletion.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Allowance of deduction for depletion. 1.611-1... depletion. (a) Depletion of mines, oil and gas wells, other natural deposits, and timber—(1) In general... mines, oil and gas wells, other natural deposits, and timber, a reasonable allowance for depletion. In...

  12. RETRACTED: Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    KAUST Repository

    Kramer, Illan J.; Pattantyus-Abraham, Andras G.; Barkhouse, Aaron R.; Wang, Xihua; Konstantatos, Gerasimos; Debnath, Ratan; Levina, Larissa; Raabe, Ines; Nazeeruddin, Md. K.; Grä tzel, Michael; Sargent, Edward H.

    2011-01-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum. © 2010 Elsevier B.V.

  13. RETRACTED: Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    KAUST Repository

    Kramer, Illan J.

    2011-08-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum. © 2010 Elsevier B.V.

  14. The Abiotic Depletion Potential: Background, Updates, and Future

    Directory of Open Access Journals (Sweden)

    Lauran van Oers

    2016-03-01

    Full Text Available Depletion of abiotic resources is a much disputed impact category in life cycle assessment (LCA. The reason is that the problem can be defined in different ways. Furthermore, within a specified problem definition, many choices can still be made regarding which parameters to include in the characterization model and which data to use. This article gives an overview of the problem definition and the choices that have been made when defining the abiotic depletion potentials (ADPs for a characterization model for abiotic resource depletion in LCA. Updates of the ADPs since 2002 are also briefly discussed. Finally, some possible new developments of the impact category of abiotic resource depletion are suggested, such as redefining the depletion problem as a dilution problem. This means taking the reserves in the environment and the economy into account in the reserve parameter and using leakage from the economy, instead of extraction rate, as a dilution parameter.

  15. Examinations of the process of hard coal and biomass blend combustion in OEA (oxygen enriched atmosphere)

    International Nuclear Information System (INIS)

    Pawlak-Kruczek, Halina; Ostrycharczyk, Michał; Czerep, Michał; Baranowski, Marcin; Zgóra, Jacek

    2015-01-01

    The benefits of oxygen enrichment have been demonstrated in a variety of industrial combustion applications, but to date no implementation of oxygen enrichment in boilers has been reported, primarily due to their already high thermal efficiencies and a very large scale of such systems, which require significant amounts of oxygen. But recently, oxygen combustion in boilers has become one of the CCS technologies which can be an effective tool for reducing greenhouse gases emissions, and oxygen enriched combustion is suitable for low-calorific fuels, including biomass. This paper analyses the use of oxygen enrichment in a furnace for co-firing of different kinds of biomass with hard coal in terms of emission and burnout impact (LOI). As a part of this research, the effect of injection oxygen mode and total oxygen concentration on the flue gas emission (SO_2, NO_x) and burnout from co-firing of straw and wooden biomass in different proportions (20% and 40%) with hard coal were studied. The co-firing tests were carried out in an isothermal flow reactor. One of the benefits from the OEA (oxygen enriched atmosphere) technology is more effective separation of CO_2 owing to the higher CO_2 concentration in the flue gas. The additional advantage of the OEA combustion technology in comparison with oxy-fuel combustion is that the OEA process needs lower O_2 purities and therefore it is cost-effective. Experimental tests on co-firing of 20% straw-hard coal blend were conducted in oxygen enriched (up to 25 and 30%) atmospheres with three variants of O_2 injection modes. NO_x, SO_2 emissions and burnout for the various atmospheres in the combustion chamber were studied. Moreover, co-firing tests were performed with 40% share of wooden biomass to examine the effect of the biomass share and a type on emission of NO_x and SO_2 in OEA. The two O_2 injection modes were investigated. In each case, the emission of SO_2 increases alongside an increase of oxygen concentration in

  16. Investigation of the relevant kinetic processes in the initial stage of a double-arcing instability in oxygen plasmas

    Science.gov (United States)

    Mancinelli, B.; Prevosto, L.; Chamorro, J. C.; Minotti, F. O.; Kelly, H.

    2018-05-01

    A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ˜107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ˜109 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B3Σu-) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.

  17. Study of the Dissociative Processes in O_2 Discharges. Development of an Atomic Oxygen Beam Source

    International Nuclear Information System (INIS)

    Pagnon, Daniel

    1992-01-01

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [fr

  18. Hsp90 depletion goes wild

    Directory of Open Access Journals (Sweden)

    Siegal Mark L

    2012-02-01

    Full Text Available Abstract Hsp90 reveals phenotypic variation in the laboratory, but is Hsp90 depletion important in the wild? Recent work from Chen and Wagner in BMC Evolutionary Biology has discovered a naturally occurring Drosophila allele that downregulates Hsp90, creating sensitivity to cryptic genetic variation. Laboratory studies suggest that the exact magnitude of Hsp90 downregulation is important. Extreme Hsp90 depletion might reactivate transposable elements and/or induce aneuploidy, in addition to revealing cryptic genetic variation. See research article http://wwww.biomedcentral.com/1471-2148/12/25

  19. Ozone Depletion in Tropospheric Volcanic Plumes: From Halogen-Poor to Halogen-Rich Emissions

    Directory of Open Access Journals (Sweden)

    Tjarda J. Roberts

    2018-02-01

    Full Text Available Volcanic halogen emissions to the troposphere undergo a rapid plume chemistry that destroys ozone. Quantifying the impact of volcanic halogens on tropospheric ozone is challenging, only a few observations exist. This study presents measurements of ozone in volcanic plumes from Kīlauea (HI, USA, a low halogen emitter. The results are combined with published data from high halogen emitters (Mt Etna, Italy; Mt Redoubt, AK, USA to identify controls on plume processes. Ozone was measured during periods of relatively sustained Kīlauea plume exposure, using an Aeroqual instrument deployed alongside Multi-Gas SO2 and H2S sensors. Interferences were accounted for in data post-processing. The volcanic H2S/SO2 molar ratio was quantified as 0.03. At Halema‘uma‘u crater-rim, ozone was close to ambient in the emission plume (at 10 ppmv SO2. Measurements in grounding plume (at 5 ppmv SO2 about 10 km downwind of Pu‘u ‘Ō‘ō showed just slight ozone depletion. These Kīlauea observations contrast with substantial ozone depletion reported at Mt Etna and Mt Redoubt. Analysis of the combined data from these three volcanoes identifies the emitted Br/S as a strong but non-linear control on the rate of ozone depletion. Model simulations of the volcanic plume chemistry highlight that the proportion of HBr converted into reactive bromine is a key control on the efficiency of ozone depletion. This underlines the importance of chemistry in the very near-source plume on the fate and atmospheric impacts of volcanic emissions to the troposphere.

  20. Groundwater Depletion Embedded in International Food Trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-01-01

    Recent hydrological modeling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world's food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world's population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  1. Groundwater depletion embedded in international food trade

    Science.gov (United States)

    Dalin, Carole; Wada, Yoshihide; Kastner, Thomas; Puma, Michael J.

    2017-03-01

    Recent hydrological modelling and Earth observations have located and quantified alarming rates of groundwater depletion worldwide. This depletion is primarily due to water withdrawals for irrigation, but its connection with the main driver of irrigation, global food consumption, has not yet been explored. Here we show that approximately eleven per cent of non-renewable groundwater use for irrigation is embedded in international food trade, of which two-thirds are exported by Pakistan, the USA and India alone. Our quantification of groundwater depletion embedded in the world’s food trade is based on a combination of global, crop-specific estimates of non-renewable groundwater abstraction and international food trade data. A vast majority of the world’s population lives in countries sourcing nearly all their staple crop imports from partners who deplete groundwater to produce these crops, highlighting risks for global food and water security. Some countries, such as the USA, Mexico, Iran and China, are particularly exposed to these risks because they both produce and import food irrigated from rapidly depleting aquifers. Our results could help to improve the sustainability of global food production and groundwater resource management by identifying priority regions and agricultural products at risk as well as the end consumers of these products.

  2. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

    Science.gov (United States)

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu

    2017-11-01

    Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious

  3. Glutathione depletion in tissues after administration of buthionine sulphoximine

    International Nuclear Information System (INIS)

    Minchinton, A.I.; Rojas, A.; Smith, A.; Soranson, J.A.; Shrieve, D.C.; Jones, N.R.; Bremner, J.C.

    1984-01-01

    Buthionine sulphoximine (BSO) an inhibitor of glutathione (GSH) biosynthesis, was administered to mice in single and repeated doses. The resultant pattern of GSH depletion was studied in liver, kidney, skeletal muscle and three types of murine tumor. Liver and kidney exhibited a rapid depletion of GSH. Muscle was depleted to a similar level, but at a slower rate after a single dose. All three tumors required repeated administration of BSO over several days to obtain a similar degree of depletion to that shown in the other tissues

  4. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  5. Ego depletion decreases trust in economic decision making

    Science.gov (United States)

    Ainsworth, Sarah E.; Baumeister, Roy F.; Vohs, Kathleen D.; Ariely, Dan

    2014-01-01

    Three experiments tested the effects of ego depletion on economic decision making. Participants completed a task either requiring self-control or not. Then participants learned about the trust game, in which senders are given an initial allocation of $10 to split between themselves and another person, the receiver. The receiver receives triple the amount given and can send any, all, or none of the tripled money back to the sender. Participants were assigned the role of the sender and decided how to split the initial allocation. Giving less money, and therefore not trusting the receiver, is the safe, less risky response. Participants who had exerted self-control and were depleted gave the receiver less money than those in the non-depletion condition (Experiment 1). This effect was replicated and moderated in two additional experiments. Depletion again led to lower amounts given (less trust), but primarily among participants who were told they would never meet the receiver (Experiment 2) or who were given no information about how similar they were to the receiver (Experiment 3). Amounts given did not differ for depleted and non-depleted participants who either expected to meet the receiver (Experiment 2) or were led to believe that they were very similar to the receiver (Experiment 3). Decreased trust among depleted participants was strongest among neurotics. These results imply that self-control facilitates behavioral trust, especially when no other cues signal decreased social risk in trusting, such as if an actual or possible relationship with the receiver were suggested. PMID:25013237

  6. Ly6G-mediated depletion of neutrophils is dependent on macrophages.

    Science.gov (United States)

    Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad

    2016-01-01

    Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.

  7. Monoamine depletion by reuptake inhibitors

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-10-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics Inc, Cape Coral, FL; 2Stein Orthopedic Associates, Plantation, FL; 3DBS Labs Inc, Duluth, MN, USABackground: Disagreement exists regarding the etiology of cessation of the observed clinical results with administration of reuptake inhibitors. Traditionally, when drug effects wane, it is known as tachyphylaxis. With reuptake inhibitors, the placebo effect is significantly greater than the drug effect in the treatment of depression and attention deficit hyperactivity disorder, leading some to assert that waning of drug effects is placebo relapse, not tachyphylaxis.Methods: Two groups were retrospectively evaluated. Group 1 was composed of subjects with depression and Group 2 was composed of bariatric subjects treated with reuptake inhibitors for appetite suppression.Results: In Group 1, 200 subjects with depression were treated with citalopram 20 mg per day. A total of 46.5% (n = 93 achieved relief of symptoms (Hamilton-D rating score ≤ 7, of whom 37 (39.8% of whom experienced recurrence of depression symptoms, at which point an amino acid precursor formula was started. Within 1–5 days, 97.3% (n = 36 experienced relief of depression symptoms. In Group 2, 220 subjects were treated with phentermine 30 mg in the morning and citalopram 20 mg at 4 pm. In this group, 90.0% (n = 198 achieved adequate appetite suppression. The appetite suppression ceased in all 198 subjects within 4–48 days. Administration of an amino acid precursor formula restored appetite suppression in 98.5% (n = 195 of subjects within 1–5 days.Conclusion: Reuptake inhibitors do not increase the total number of monoamine molecules in the central nervous system. Their mechanism of action facilitates redistribution of monoamines from one place to another. In the process, conditions are induced that facilitate depletion of monoamines. The "reuptake inhibitor monoamine depletion theory" of this paper

  8. Civilian and military uses of depleted uranium. Environmental and health problems

    International Nuclear Information System (INIS)

    Cantaluppi, C.; Degetto, S.

    2000-01-01

    Depleted uranium is a by-product of the process of enrichment of natural uranium and is classified as a toxic and radioactive waste; it has a very high density (approximately 19 g cm - 3), a remarkable ductility and a cost low enough to be attractive for some particular technical applications. Civilian uses are essentially related to its high density, but the prevailing use is however military (production of projectiles). From the radioactive point of view, the exposure to depleted uranium can result from both external irradiation as well as internal contamination. The associated risks are however mainly of chemical-toxicological kind and the target organ is the kidney. In the present note the recent military uses and the possible effects of its environmental diffusion are discussed [it

  9. 26 CFR 1.613-1 - Percentage depletion; general rule.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Percentage depletion; general rule. 1.613-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) Natural Resources § 1.613-1 Percentage depletion; general rule. (a) In general. In the case of a taxpayer computing the deduction for depletion under section 611...

  10. Decontamination of Cape Arza (Montenegro) from depleted Uranium

    International Nuclear Information System (INIS)

    Vukotich, P.; Kovachevich, M.; Vasich, V.; Ristich, N.

    2002-01-01

    On May 30, 1999, NATO A-10 aircrafts attacked Cape Arza, a very attractive touring area on peninsula Lustica, at the entrance of Boka Kotorska Bay, in Montenegro. They fired anti-armour rounds with penetrators made of depleted uranium. Such an armour-penetrating round has a length of 173 mm and a diameter of 30 mm. The bullet has an aluminium case (jacket) and inside it a conical DU penetrator. The length of the penetrator itself is 95 mm, and the diameter of its base is 16 mm. The penetrator weight is 292 g. According to the data reported by NATO (NATO, 2001), the total number of rounds fired against Cape Arza was 480. As to the data on combat mix of the A-10 aircraft gun, 300 (UNEP, 2001) or 400 (UNEP, 2001; FAS) of these rounds where with DU penetrators, and the rest with a classical charge. This means that Cape Arza was contaminated with 90 or 120 kg of DU, or with a radioactivity of (3.5 - 4.7) · 10 9 Bq. Depleted uranium is a waste product of the process of uranium enrichment in 2 35U isotope, for use in nuclear reactors or in nuclear weapons. The isotopic composition of depleted uranium is (Harley et al., 1999): (99.7 - 99.8) % of 2 38U , (0.2 - 0.3) % of 2 35U , 0.001 % of 2 34U , and only traces of 2 34T h, 2 34P a and 2 31T h. If traces of the isotopes 2 36U , 2 39P u and 2 40P u are also present, as it is the case with DU from Cape Arza (UNEP, 2002), the depleted uranium is obtained by reprocessing of spent nuclear reactor fuel. The activity concentration of depleted uranium is 39.42 · 10 6 Bq/kg. Most of it comes from 2 38U and its decay products 2 34T h and 2 34P a which are in radioactive equilibrium (12.27 · 10 6 Bq/kg per each of them), and the less part from 2 35U and 2 31T h (0.16 · 10 6 Bq/kg per each) (UNEP, 1999), while the activity concentration of 2 36U , 2 39P u and 2 40P u is below 100 Bq/kg (UNEP, 2001)

  11. Issues in Stratospheric Ozone Depletion.

    Science.gov (United States)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  12. Efficiency of Photosynthesis in a Chl d-Utilizing Cyanobacterium is Comparable to or Higher than that in Chl a-Utilizing Oxygenic Species

    Science.gov (United States)

    Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.

    2011-01-01

    The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.

  13. Importance of energetic solar protons in ozone depletion

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, J A.E.; Scourfield, M W.J. [Natal Univ., Durban (South Africa). Space Physics Research Inst.

    1991-07-11

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by {approx} 9% over {approx} 20% of the total area between the South Pole and latitude 70{sup o}S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author).

  14. Importance of energetic solar protons in ozone depletion

    International Nuclear Information System (INIS)

    Stephenson, J.A.E.; Scourfield, M.W.J.

    1991-01-01

    CHLORINE-catalysed depletion of the stratospheric ozone layer has commanded considerable attention since 1985, when Farman et al. observed a decrease of 50% in the total column ozone over Antarctica in the austral spring. Here we examine the depletion of stratospheric ozone caused by the reaction of ozone with nitric oxide generated by energetic solar protons, associated with solar flares. During large solar flares in March 1989, satellite observations indicated that total column ozone was depleted by ∼ 9% over ∼ 20% of the total area between the South Pole and latitude 70 o S. Chlorine-catalysed ozone depletion takes place over a much larger area, but our results indicate that the influence of solar protons on atmospheric ozone concentrations should not be ignored. (author)

  15. 26 CFR 1.642(e)-1 - Depreciation and depletion.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Depreciation and depletion. 1.642(e)-1 Section 1... (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(e)-1 Depreciation and depletion. An estate or trust is allowed the deductions for depreciation and depletion, but only to the extent the...

  16. Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis

    Science.gov (United States)

    Zhang, Lei; Cao, Ling; Zhao, Laishi; Algeo, Thomas J.; Chen, Zhong-Qiang; Li, Zhihong; Lv, Zhengyi; Wang, Xiangdong

    2017-08-01

    Conodont apatite has long been used in paleoenvironmental studies, often with minimal evaluation of the influence of diagenesis on measured elemental and isotopic signals. In this study, we evaluate diagenetic influences on conodonts using an integrated set of analytical techniques. A total of 92 points in 19 coniform conodonts from Ordovician marine units of South China were analyzed by micro-laser Raman spectroscopy (M-LRS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), high-resolution X-ray microdiffraction (HXRD), and secondary ion mass spectrometry (SIMS). Each conodont element was analyzed along its full length, including the albid crown, hyaline crown, and basal body, in either a whole specimen (i.e., reflecting the composition of its outer layer) or a split specimen (i.e., reflecting the composition of its interior). In the conodonts of this study, the outer surfaces consist of hydroxyfluorapatite and the interiors of strontian hydroxyfluorapatite. Ionic substitutions resulted in characteristic Raman spectral shifts in the position (SS1) and width (SS2) of the ν1-PO43- stretching band. Although multiple elements were enriched (Sr2+, Mg2+) and depleted (Fe3+, Mn2+, Ca2+) during diagenesis, geochemical modeling constraints and known Raman spectral patterns suggest that Sr uptake was the dominant influence on diagenetic redshifts of SS1. All study specimens show lower SS2 values than modern bioapatite and synthetic apatite, suggesting that band width decreases with time in ancient bioapatite, possibly through an annealing process that produces larger, more uniform crystal domains. Most specimens consist mainly of amorphous or poorly crystalline apatite, which is inferred to represent the original microstructure of conodonts. In a subset of specimens, some tissues (especially albid crown) exhibit an increased degree of crystallinity developed through aggrading neomorphism. However, no systematic relationship was observed between

  17. [Acute tryptophan depletion in eating disorders].

    Science.gov (United States)

    Díaz-Marsa, M; Lozano, C; Herranz, A S; Asensio-Vegas, M J; Martín, O; Revert, L; Saiz-Ruiz, J; Carrasco, J L

    2006-01-01

    This work describes the rational bases justifying the use of acute tryptophan depletion technique in eating disorders (ED) and the methods and design used in our studies. Tryptophan depletion technique has been described and used in previous studies safely and makes it possible to evaluate the brain serotonin activity. Therefore it is used in the investigation of hypotheses on serotonergic deficiency in eating disorders. Furthermore, and given the relationship of the dysfunctions of serotonin activity with impulsive symptoms, the technique may be useful in biological differentiation of different subtypes, that is restrictive and bulimic, of ED. 57 female patients with DSM-IV eating disorders and 20 female controls were investigated with the tryptophan depletion test. A tryptophan-free amino acid solution was administered orally after a two-day low tryptophan diet to patients and controls. Free plasma tryptophan was measured at two and five hours following administration of the drink. Eating and emotional responses were measured with specific scales for five hours following the depletion. A study of the basic characteristics of the personality and impulsivity traits was also done. Relationship of the response to the test with the different clinical subtypes and with the temperamental and impulsive characteristics of the patients was studied. The test was effective in considerably reducing plasma tryptophan in five hours from baseline levels (76%) in the global sample. The test was well tolerated and no severe adverse effects were reported. Two patients withdrew from the test due to gastric intolerance. The tryptophan depletion test could be of value to study involvement of serotonin deficits in the symptomatology and pathophysiology of eating disorders.

  18. Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study.

    Science.gov (United States)

    Boscariol, M R; Moreira, A J; Mansano, R D; Kikuchi, I S; Pinto, T J A

    2008-04-02

    Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 400 W) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods.

  19. Human podocyte depletion in association with older age and hypertension.

    Science.gov (United States)

    Puelles, Victor G; Cullen-McEwen, Luise A; Taylor, Georgina E; Li, Jinhua; Hughson, Michael D; Kerr, Peter G; Hoy, Wendy E; Bertram, John F

    2016-04-01

    Podocyte depletion plays a major role in the development and progression of glomerulosclerosis. Many kidney diseases are more common in older age and often coexist with hypertension. We hypothesized that podocyte depletion develops in association with older age and is exacerbated by hypertension. Kidneys from 19 adult Caucasian American males without overt renal disease were collected at autopsy in Mississippi. Demographic data were obtained from medical and autopsy records. Subjects were categorized by age and hypertension as potential independent and additive contributors to podocyte depletion. Design-based stereology was used to estimate individual glomerular volume and total podocyte number per glomerulus, which allowed the calculation of podocyte density (number per volume). Podocyte depletion was defined as a reduction in podocyte number (absolute depletion) or podocyte density (relative depletion). The cortical location of glomeruli (outer or inner cortex) and presence of parietal podocytes were also recorded. Older age was an independent contributor to both absolute and relative podocyte depletion, featuring glomerular hypertrophy, podocyte loss, and thus reduced podocyte density. Hypertension was an independent contributor to relative podocyte depletion by exacerbating glomerular hypertrophy, mostly in glomeruli from the inner cortex. However, hypertension was not associated with podocyte loss. Absolute and relative podocyte depletion were exacerbated by the combination of older age and hypertension. The proportion of glomeruli with parietal podocytes increased with age but not with hypertension alone. These findings demonstrate that older age and hypertension are independent and additive contributors to podocyte depletion in white American men without kidney disease. Copyright © 2016 the American Physiological Society.

  20. The depletion potential in one, two and three dimensions

    Indian Academy of Sciences (India)

    Abstract. We study the behavior of the depletion potential in binary mixtures of hard particles in one, two, and three dimensions within the framework of a general theory for depletion potential using density functional theory. By doing so we extend earlier studies of the depletion potential in three dimensions to the cases of d ...

  1. NKT cell depletion in humans during early HIV infection.

    Science.gov (United States)

    Fernandez, Caroline S; Kelleher, Anthony D; Finlayson, Robert; Godfrey, Dale I; Kent, Stephen J

    2014-08-01

    Natural killer T (NKT) cells bridge across innate and adaptive immune responses and have an important role in chronic viral infections such as human immunodeficiency virus (HIV). NKT cells are depleted during chronic HIV infection, but the timing, drivers and implications of this NKT cell depletion are poorly understood. We studied human peripheral blood NKT cell levels, phenotype and function in 31 HIV-infected subjects not on antiretroviral treatment from a mean of 4 months to 2 years after HIV infection. We found that peripheral CD4(+) NKT cells were substantially depleted and dysfunctional by 4 months after HIV infection. The depletion of CD4(+) NKT cells was more marked than the depletion of total CD4(+) T cells. Further, the early depletion of NKT cells correlated with CD4(+) T-cell decline, but not HIV viral levels. Levels of activated CD4(+) T cells correlated with the loss of NKT cells. Our studies suggest that the early loss of NKT cells is associated with subsequent immune destruction during HIV infection.

  2. Addressing Ozone Layer Depletion

    Science.gov (United States)

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  3. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  4. Threshold stoichiometry for beam induced nitrogen depletion of SiN

    International Nuclear Information System (INIS)

    Timmers, H.; Weijers, T.D.M.; Elliman, R.G.; Uribasterra, J.; Whitlow, H.J.; Sarwe, E.-L.

    2002-01-01

    Measurements of the stoichiometry of silicon nitride films as a function of the number of incident ions using heavy ion elastic recoil detection (ERD) show that beam-induced nitrogen depletion depends on the projectile species, the beam energy, and the initial stoichiometry. A threshold stoichiometry exists in the range 1.3>N/Si≥1, below which the films are stable against nitrogen depletion. Above this threshold, depletion is essentially linear with incident fluence. The depletion rate correlates non-linearly with the electronic energy loss of the projectile ion in the film. Sufficiently long exposure of nitrogen-rich films renders the mechanism, which prevents depletion of nitrogen-poor films, ineffective. Compromising depth-resolution, nitrogen depletion from SiN films during ERD analysis can be reduced significantly by using projectile beams with low atomic numbers

  5. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    Oxygen concentrations were consistently below our detection limit of 90 nM for a distance of > 2000 km in the oxygen minimum zone (OMZ) along the coasts of Chile and Peru. In most cases, anammox and denitrification were only detected when in situ oxygen concentrations were below detection...... differently to oxygen. When normalized to a housekeeping gene (rpoB), the expression of 4 out of 9 N-cycle-genes changed with increasing oxygen concentration: The expression of ammonium monooxygenase (amoC) was stimulated, whereas expression of nitrite reductase (nirS), nitric oxide reductase (nor...

  6. The compositional study of nitrogen and oxygen compounds in products of heavy oil primary and secondary upgrading processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chmielowiec, J.

    1986-02-01

    The primary objective was to characterize nitrogen and oxygen compound types in the upgraded products derived from Athabasca bitumen. Nitrogen compounds, depending on their nature and concentrations, in charge stocks to catalytic processess (hydro-processes and reforming) can severely limit or poison the catalyst activity. Oxygen compounds are corrosive (especially naphthenic acids) and can promote gum formation as part of the deterioration of the hydrocarbons in the petroleum product. A secondary objective was to evaluate the advantages and limitations of in-house mass spectrometry and infrared spectroscopy methods for analyzing specific classes of polar compounds in naphthas, middle distillates, and gas oils. An analytical procedure that was based on the discrimination of polar compound classes using liquid chromatography followed by mass spectrometric analysis was tested. The chemical intelligence on the fractions obtained from Athabasca bitumen and its upgrading products has been advanced by determining structural characteristics of the nitrogen and oxygen components. This report describes the determination of the distributions of nitrogen and oxygen compounds in samples from various process streams. This procedure is capable of providing information useful for evaluating hydrodenitrogenation and hydrodeoxygenation reactions.

  7. Depleted Nanocrystal-Oxide Heterojunctions for High-Sensitivity Infrared Detection

    Science.gov (United States)

    2015-08-28

    Approved for Public Release; Distribution Unlimited Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High...reviewed journals: Final Report: 4.3 Electronic Sensing - Depleted Nanocrystal- Oxide Heterojunctions for High-Sensitivity Infrared Detection Report Title...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: 1 1 Final Progress Report Project title: Depleted Nanocrystal- Oxide Heterojunctions for High

  8. 1,2-Dichlorohexafluoro-Cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) stereoisomers

    Science.gov (United States)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Smith, Shona C.; Jubb, Aaron M.; Portmann, Robert W.; Hall, Bradley D.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluorocyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R- 316c was measured to be 1.90 +/- 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (+/-10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O(1D) + R-316c reaction, i.e., O(1D) loss, was measured to be (1.56 +/- 0.11) × 10(exp -10)cu cm/ molecule/s and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 +/- 0.20) × 10(exp -10)cu cm/molecule/s corresponding to a approx. 88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be model to be 74.6 +/- 3 and 114.1 +/-10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O(1D) reaction making a minor, approx. 2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z)-R-316c were calculated using the 2-D model to be 0.46 and 0.54, respectively. Infrared absorption spectra for (E)- and (Z)-R-316c were measured at 296 K and used to estimate their radiative efficiencies (REs) and GWPs; 100-year time-horizon GWPs of 4160 and 5400 were obtained for (E)- and (Z

  9. CO Depletion: A Microscopic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, S. [Faculty of Aerospace Engineering, Delft University of Technology, Delft (Netherlands); Martín-Doménech, R.; Caro, G. M. Muñoz; Díaz, C. González [Centro de Astrobiología (INTA-CSIC), Ctra. de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Chen, Y. J. [Department of Physics, National Central University, Jhongli City, 32054, Taoyuan County, Taiwan (China)

    2017-11-10

    In regions where stars form, variations in density and temperature can cause gas to freeze out onto dust grains forming ice mantles, which influences the chemical composition of a cloud. The aim of this paper is to understand in detail the depletion (and desorption) of CO on (from) interstellar dust grains. Experimental simulations were performed under two different (astrophysically relevant) conditions. In parallel, Kinetic Monte Carlo simulations were used to mimic the experimental conditions. In our experiments, CO molecules accrete onto water ice at temperatures below 27 K, with a deposition rate that does not depend on the substrate temperature. During the warm-up phase, the desorption processes do exhibit subtle differences, indicating the presence of weakly bound CO molecules, therefore highlighting a low diffusion efficiency. IR measurements following the ice thickness during the TPD confirm that diffusion occurs at temperatures close to the desorption. Applied to astrophysical conditions, in a pre-stellar core, the binding energies of CO molecules, ranging between 300 and 850 K, depend on the conditions at which CO has been deposited. Because of this wide range of binding energies, the depletion of CO as a function of A{sub V} is much less important than initially thought. The weakly bound molecules, easily released into the gas phase through evaporation, change the balance between accretion and desorption, which result in a larger abundance of CO at high extinctions. In addition, weakly bound CO molecules are also more mobile, and this could increase the reactivity within interstellar ices.

  10. Long distance electron transmission couples sulphur, iron, calcium and oxygen cycling in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    sulfide oxidation leads to electric field formation, sulfide depletion and acidification of the upper centimeters of the sediment. This promoted ion migration and dissolution of carbonates and iron sulfides. Sulfide released from iron sulfides was the major e-donor in the system. Ferrous iron released...... from iron sulfides was to a large extend deposited in the oxic zone as iron oxides and Ca2+ eventually precipitates at the surface as due to high pH caused by cathodic oxygen reduction. The result show how long distance electron transmission allows oxygen to drive the allocation of important minerals...... geochemical alterations in the upper centimetres of the anoxic sediment: Sulphides were oxidized to sulphate in anoxic sediment layers. Electrons from this half-reaction were passed to the oxic layers cm above. In this way the domain of oxygen was extended far beyond it’s physically presence. Bioelectrical...

  11. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow

    Science.gov (United States)

    Barlow, Paul M.; Leake, Stanley A.

    2012-11-02

    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  12. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    Science.gov (United States)

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  13. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna - a planar optode study of belowground gas exchange between plants and sediment.

    Science.gov (United States)

    Lenzewski, Nikola; Mueller, Peter; Meier, Robert Johannes; Liebsch, Gregor; Jensen, Kai; Koop-Jakobsen, Ketil

    2018-04-01

    Root-mediated CO 2 uptake, O 2 release and their effects on O 2 and CO 2 dynamics in the rhizosphere of Lobelia dortmanna were investigated. Novel planar optode technology, imaging CO 2 and O 2 distribution around single roots, provided insights into the spatiotemporal patterns of gas exchange between roots, sediment and microbial community. In light, O 2 release and CO 2 uptake were pronounced, resulting in a distinct oxygenated zone (radius: c. 3 mm) and a CO 2 -depleted zone (radius: c. 2 mm) around roots. Simultaneously, however, microbial CO 2 production was stimulated within a larger zone around the roots (radius: c. 10 mm). This gave rise to a distinct pattern with a CO 2 minimum at the root surface and a CO 2 maximum c. 2 mm away from the root. In darkness, CO 2 uptake ceased, and the CO 2 -depleted zone disappeared within 2 h. By contrast, the oxygenated root zone remained even after 8 h, but diminished markedly over time. A tight coupling between photosynthetic processes and the spatiotemporal dynamics of O 2 and CO 2 in the rhizosphere of Lobelia was demonstrated, and we suggest that O 2 -induced stimulation of the microbial community in the sediment increases the supply of inorganic carbon for photosynthesis by building up a CO 2 reservoir in the rhizosphere. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Barium depletion study on impregnated cathodes and lifetime prediction

    International Nuclear Information System (INIS)

    Roquais, J.M.; Poret, F.; Doze, R. le; Ricaud, J.L.; Monterrin, A.; Steinbrunn, A.

    2003-01-01

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  15. Attenuation of dissolved aromatic hydrocarbons from residual gasoline : source depletion and bioattenuation controls

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, J.; Yang, T.; Barker, J. [Waterloo Univ., ON (Canada). Dept. of Earth and Environmental Sciences; Mocanu, M. [CH2M Hill Engineering Ltd., Santa Ana, CA (United States); Molson, J. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. of Civil, Mining and Geological Engineering

    2008-07-01

    It has become commonplace to add ethanol to normal gasoline because this oxygenate has been touted to reduce greenhouse gas emissions, improve air quality and reduce dependence on non-renewable fossil fuels. It is advantageous from a groundwater quality perspective to substitute ethanol for soluble, toxic and mobile monoaromatics such as benzene, toluene, ethylbenzene and xylenes (BTEX). Ethanol poses minimal direct environmental risk, other than the high biological oxygen demand (BOD) imposed on receiving waters. This paper addressed the misconception that fermentation of ethanol to acetate or methane removes this BOD, thus eliminating ethanol as a competitor with BTEX for electron transfers. A study was conducted in which 50 litres each of normal gasoline and gasoline with 10 per cent ethanol (E10) were placed below the water table in a shallow sand aquifer at Canadian Forces Base (CFB) Borden. Two years of monitoring the downgradient plume revealed that the aromatic hydrocarbon were naturally attenuated. Although the rate of mass depletion in gasoline sources could not be predicted from the core analysis and simple interpretations, the biodegradation rate was well captured. It was concluded that the extent of bioattenuation exceeds that predicted by models considering electron acceptor (oxygen) availability. Ethanol was rapidly biotransformed in the Borden aquifer. It did not seem to impair the biotransformation of benzene when both were derived from E10 gasoline. The study revealed that for homogeneous sand aquifers such as Borden, the heterogeneity of sources will likely be a key cause of heterogeneous pollutant distribution in the downgradient plume. Ongoing research will focus on resolving the issue of insufficient oxygen to account for complete mineralization of ethanol and biotransformed aromatics. 14 refs., 1 tab., 7 figs.

  16. Meta-analysis of depleted uranium levels in the Balkan region.

    Science.gov (United States)

    Besic, Larisa; Muhovic, Imer; Asic, Adna; Kurtovic-Kozaric, Amina

    2017-06-01

    In recent years, contradicting data has been published on the connection between the presence of depleted uranium and an increased cancer incidence among military personnel deployed in the Balkans during the 1992-1999 wars. This has led to numerous research articles investigating possible depleted uranium contamination of the afflicted regions of the Balkan Peninsula, namely Bosnia & Herzegovina, Serbia, Kosovo and Montenegro. The aim of this study was to collect data from previously published reports investigating the levels of depleted uranium in the Balkans and to present the data in the form of a meta-analysis. This would provide a clear image of the extent of depleted uranium contamination after the Balkan conflict. In addition, we tested the hypothesis that there is a correlation between the levels of depleted uranium and the assumed depleted uranium-related health effects. Our results suggest that the majority of the examined sites contain natural uranium, while the area of Kosovo appears to be most heavily afflicted by depleted uranium pollution, followed by Bosnia & Herzegovina. Furthermore, the results indicate that it is not possible to make a valid correlation between the health effects and depleted uranium-contaminated areas. We therefore suggest a structured collaborative plan of action where long-term monitoring of the residents of depleted uranium-afflicted areas would be performed. In conclusion, while the possibility of depleted uranium toxicity in post-conflict regions appears to exist, there currently exists no definitive proof of such effects, due to insufficient studies of potentially afflicted populations, in addition to the lack of a common epidemiological approach in the reviewed literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Operation of heavily irradiated silicon detectors in non-depletion mode

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ilyashenko, I.; Li, Z.; Haerkoenen, J.; Tuovinen, E.; Luukka, P.

    2006-01-01

    The non-depletion detector operation mode has generally been disregarded as an option in high-energy physics experiments. In this paper, the non-depletion operation is examined by detailed analysis of the electric field distribution and the current pulse response of heavily irradiated silicon (Si) detectors. The previously reported model of double junction in heavily irradiated Si detector is further developed and a simulation of the current pulse response has been performed. It is shown that detectors can operate in a non-depletion mode due to the fact that the value of the electric field in a non-depleted region is high enough for efficient carrier drift. This electric field originates from the current flow through the detector and a consequent drop of the potential across high-resistivity bulk of a non-depleted region. It is anticipated that the electric field in a non-depleted region, which is still electrically neutral, increases with fluence that improves the non-depleted detector operation. Consideration of the electric field in a non-depleted region allows the explanation of the recorded double-peak current pulse shape of heavily irradiated Si detectors and definition of the requirements for the detector operational conditions. Detailed reconstruction of the electric field distribution gives new information on radiation effects in Si detectors

  18. Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage

    International Nuclear Information System (INIS)

    Gurwitz, Ron; Cohen, Rotem; Shalish, Ilan

    2014-01-01

    ZnO surfaces adsorb oxygen in the dark and emit CO 2 when exposed to white light, reminiscent of the lungs of living creatures. We find that this exchange of oxygen with the ambient affects the integrity of the ZnO surface. Thus, it forms a basis for several interesting surface phenomena in ZnO, such as photoconductivity, photovoltage, and gas sensing, and has a role in ZnO electrical conduction. Using x-ray photoelectron spectroscopy on ZnO nanowires, we observed a decomposition of ZnO under white light and formation of oxygen-depleted surface, which explains photoconductivity by the electron donation of oxygen vacancies. Our findings suggest that the observed decomposition of the ZnO lattice may only take place due to photon-induced reduction of ZnO by carbon containing molecules (or carbo-photonic reduction), possibly from the ambient gas, accounting in a consistent way for both the reduced demands on the energy required for decomposition and for the observed emission of lattice oxygen in the form of CO 2 . The formation of oxygen-vacancy rich surface is suggested to induce surface delta doping, causing accumulation of electrons at the surface, which accounts for both the increase in conductivity and the flattening of the energy bands. Using surface photovoltage spectroscopy in ultra high vacuum, we monitored changes in the deep level spectrum. We observe a wide optical transition from a deep acceptor to the conduction band, which energy position coincides with the position of the so called “green luminescence” in ZnO. This green transition disappears with the formation of surface oxygen vacancies. Since the oxygen vacancies are donors, while the green transition involves surface acceptors, the results suggest that the initial emission of oxygen originates at the defect sites of the latter, thereby eliminating each other. This suggests that the green transition originates at surface Zn vacancy acceptors. Removing an oxygen atom from a Zn vacancy completes

  19. Interaction of light with the ZnO surface: Photon induced oxygen “breathing,” oxygen vacancies, persistent photoconductivity, and persistent photovoltage

    Energy Technology Data Exchange (ETDEWEB)

    Gurwitz, Ron; Cohen, Rotem; Shalish, Ilan, E-mail: shalish@ee.bgu.ac.il [Ben Gurion University, Beer Sheva 84105 (Israel)

    2014-01-21

    ZnO surfaces adsorb oxygen in the dark and emit CO{sub 2} when exposed to white light, reminiscent of the lungs of living creatures. We find that this exchange of oxygen with the ambient affects the integrity of the ZnO surface. Thus, it forms a basis for several interesting surface phenomena in ZnO, such as photoconductivity, photovoltage, and gas sensing, and has a role in ZnO electrical conduction. Using x-ray photoelectron spectroscopy on ZnO nanowires, we observed a decomposition of ZnO under white light and formation of oxygen-depleted surface, which explains photoconductivity by the electron donation of oxygen vacancies. Our findings suggest that the observed decomposition of the ZnO lattice may only take place due to photon-induced reduction of ZnO by carbon containing molecules (or carbo-photonic reduction), possibly from the ambient gas, accounting in a consistent way for both the reduced demands on the energy required for decomposition and for the observed emission of lattice oxygen in the form of CO{sub 2}. The formation of oxygen-vacancy rich surface is suggested to induce surface delta doping, causing accumulation of electrons at the surface, which accounts for both the increase in conductivity and the flattening of the energy bands. Using surface photovoltage spectroscopy in ultra high vacuum, we monitored changes in the deep level spectrum. We observe a wide optical transition from a deep acceptor to the conduction band, which energy position coincides with the position of the so called “green luminescence” in ZnO. This green transition disappears with the formation of surface oxygen vacancies. Since the oxygen vacancies are donors, while the green transition involves surface acceptors, the results suggest that the initial emission of oxygen originates at the defect sites of the latter, thereby eliminating each other. This suggests that the green transition originates at surface Zn vacancy acceptors. Removing an oxygen atom from a Zn vacancy

  20. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  1. Removing oxygen from a solvent extractant in an uranium recovery process

    International Nuclear Information System (INIS)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds

  2. Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

    OpenAIRE

    Dalsgaard, Tage; Stewart, Frank J.; Thamdrup, Bo; De Brabandere, Loreto; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E.; DeLong, Edward

    2014-01-01

    A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O[subscript 2] and the sensitivity of the anaerobic N[subscript 2]-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O[subscript 2] at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification w...

  3. Consolidation of powders of the oxide superconductor YBa/sub 2/Cu/sub 3/Ox by high energy-high rate processing

    Energy Technology Data Exchange (ETDEWEB)

    Persad, C.; Lee, S.J.; Peterson, D.R.; Swinnea, J.S.; Schmerling, M.

    1988-01-01

    The consolidation response of powders of the superconducting compound YBa/sub 2/Cu/sub 3/Ox is reported. Copper, silver, tin, and Cu-based metallic glass infiltrates have also been employed in preliminary fabricability studies. The processing approach relies on short-duration (< 1s), high-current-density 10000 A/sq.cm, pulse-resistive heating of powders under applied pressures of 200 MPa to 400 MPa. Powders and fabricated disk compacts were characterized by X-ray diffraction, optical and scanning electron microscopy, and resistivity measurements. X-ray diffraction comparisons of starting powder and consolidated material show retention of the single phase 1-2-3 structure and the development of a preferred orientation. In the consolidated pure YBa/sub 2/Cu/sub 3/0x, Tc onsets of 87K were accompanied by broad transitions. Iodometric analyses indicated oxygen depletion in the as-consolidated disks. Observed oxygen-content profiles across the sample thickness had values 0.11< x <0.35. The variation in the peak processing temperature within the disk was found to correlate with the oxygen content profile.

  4. Dissolved oxygen content as an index of water quality in San Vicente Bay, Chile (36 degrees 45'S).

    Science.gov (United States)

    Rudolph, Anny; Ahumada, Ramón; Pérez, Claudio

    2002-08-01

    The present report describes some effects of industrial and municipal effluents on the waters of San Vicente Bay. Analyses of the main substances contained in the fishing industry effluent suggest rating criteria based on the oxygen saturation of the water as an assessment of organic pollution. Six cruises were carried out throughout the Bay, from June to December 1996. Water samples were analyzed for dissolved oxygen, oil and grease content, and sediment samples for organic matter content. Water parameters (salinity, temperature) were used to characterize the Bay's hydrography, and to calculate values for oxygen saturation. The measurements demonstrated a local broad range of oxygen deficit, with a maximum of 45% in the winter to 95% in the spring. In November more than 65% of the Bay's area showed oxygen deficits greater than 40%. Organic matter was unusually high in sediments along the northern sector of the Bay. The results suggest that the oxygen depletion was a representative parameter for establishing a relative scale of water quality in this Bay.

  5. Physics of fully depleted CCDs

    International Nuclear Information System (INIS)

    Holland, S E; Bebek, C J; Kolbe, W F; Lee, J S

    2014-01-01

    In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photo-generated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully depleted substrates arising from resistivity variations inherent to the growth of the high-resistivity silicon used to fabricate the CCDs

  6. Evaluation 2 of B10 depletion in the WH PWR

    International Nuclear Information System (INIS)

    Park, Sang Won; Woo, Hae Suk; Kim, Sun Doo; Chae, Hee Dong; Myung, Sun Yup; Jang, Ju Kyung

    2001-01-01

    This paper presents the methodology to evaluate the B 10 depletion behavior in the pressurized water reactor. And B 10 depletion evaluation is performed based on the prediction program and the measured data of B 10 . The result shows that B 10 depletion during normal operation is not negligible. Therefore, adjustments for this depletion effect should be made to calculate the estimated critical postion(ECP) and determine the boron concentration required to maintain the specified shutdown margin

  7. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  8. Uncertainty Propagation in Monte Carlo Depletion Analysis

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Kim, Yeong-il; Park, Ho Jin; Joo, Han Gyu; Kim, Chang Hyo

    2008-01-01

    A new formulation aimed at quantifying uncertainties of Monte Carlo (MC) tallies such as k eff and the microscopic reaction rates of nuclides and nuclide number densities in MC depletion analysis and examining their propagation behaviour as a function of depletion time step (DTS) is presented. It is shown that the variance of a given MC tally used as a measure of its uncertainty in this formulation arises from four sources; the statistical uncertainty of the MC tally, uncertainties of microscopic cross sections and nuclide number densities, and the cross correlations between them and the contribution of the latter three sources can be determined by computing the correlation coefficients between the uncertain variables. It is also shown that the variance of any given nuclide number density at the end of each DTS stems from uncertainties of the nuclide number densities (NND) and microscopic reaction rates (MRR) of nuclides at the beginning of each DTS and they are determined by computing correlation coefficients between these two uncertain variables. To test the viability of the formulation, we conducted MC depletion analysis for two sample depletion problems involving a simplified 7x7 fuel assembly (FA) and a 17x17 PWR FA, determined number densities of uranium and plutonium isotopes and their variances as well as k ∞ and its variance as a function of DTS, and demonstrated the applicability of the new formulation for uncertainty propagation analysis that need be followed in MC depletion computations. (authors)

  9. Depleted uranium. A post-war disaster for environment and health

    International Nuclear Information System (INIS)

    Diehl, P.; Fahey, D.; Bertell, R.; Robicheau, D.; Bristow, R.; Arbuthnot, F.; Van der Keur, H.

    1999-05-01

    In the course of the preparations for the The Hague Appeal for Peace '99 conference in the Netherlands, Laka decided to make a brochure about the use of depleted uranium in conventional weaponry and its consequences. The idea was born because of the short time reserved during the session for the presentation of all details about depleted uranium (DU). Although the word 'depleted uranium' may suggest no harmful impact from radiation, this brochure will clarify the real radiotoxic (and chemotoxic) properties of DU. Laka asked several 'insiders' to take part in the completion of the brochure. Thanks to their efforts, we have been able to present well-documented articles for activists, scientists, scholars and students to share with them valuable information about the hazardous impact of DU contamination and its consequences on human health and the environment. Taking notice of the growing military use of DU, we must consider not only the increased threats of radioactive battlefields but also the whole dirty cycle in the uranium industry connected with the DU technology and its impact on health and the environment in the surroundings of test areas and in the uranium industry itself. The contents of all the contributions are under the responsibility of the authors.The titles of the contributions are (1) Depleted uranium. A by-product of the nuclear chain; (2) Depleted uranium weapons. Lessons from the 1991 Gulf War; (3) Gulf War veterans and depleted uranium; (4) The next testing site for depleted uranium weaponry; (5) Depleted uranium. The thoughts of the first British Gulf War veteran to be tested for, and found to be poisoned with depleted uranium; (6) The health of the Iraqi people; (7) Uranium pollution from the amsterdam 1992 plane crash; and (8) an overview od organizations involved in campaigns against depleted uranium. refs

  10. The oxygen-binding properties of hemocyanin from the mollusk Concholepas concholepas.

    Science.gov (United States)

    González, Andrea; Nova, Esteban; Del Campo, Miguel; Manubens, Augusto; De Ioannes, Alfredo; Ferreira, Jorge; Becker, María Inés

    2017-12-01

    Hemocyanins have highly conserved copper-containing active sites that bind oxygen. However, structural differences among the hemocyanins of various mollusks may affect their physicochemical properties. Here, we studied the oxygen-binding cooperativity and affinity of Concholepas concholepas hemocyanin (CCH) and its two isolated subunits over a wide range of temperatures and pH values. Considering the differences in the quaternary structures of CCH and keyhole limpet hemocyanin (KLH), we hypothesized that the heterodidecameric CCH has different oxygen-binding parameters than the homodidecameric KLH. A novel modification of the polarographic method was applied in which rat liver submitochondrial particles containing cytochrome c oxidase were introduced to totally deplete oxygen of the test solution using ascorbate as the electron donor. This method was both sensitive and reproducible. The results showed that CCH, like other hemocyanins, exhibits cooperativity, showing an inverse relationship between the oxygen-binding parameters and temperature. According to their Hill coefficients, KLH has greater cooperativity than CCH at physiological pH; however, CCH is less sensitive to pH changes than KLH. Appreciable differences in binding behavior were found between the CCH subunits: the cooperativity of CCH-A was not only almost double that of CCH-B, but it was also slightly superior to that of CCH, thus suggesting that the oxygen-binding domains of the CCH subunits are different in their primary structure. Collectively, these data suggest that CCH-A is the main oxygen-binding domain in CCH; CCH-B may play a more structural role, perhaps utilizing its surprising predisposition to form tubular polymers, unlike CCH-A, as demonstrated here using electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds

    International Nuclear Information System (INIS)

    Hartmann, H.M.; Monette, F.A.; Avci, H.I.

    2000-01-01

    In the United States, depleted uranium is handled or used in several chemical forms by both governmental agencies and private industry (primarily companies producing and machining depleted uranium metal for military applications). Human exposure can occur as a result of handling these compounds, routine low-level effluent releases to the environment from processing facilities, or materials being accidentally released from storage locations or during processing or transportation. Exposure to uranium can result in both chemical and radiological toxicity, but in most instances chemical toxicity is of greater concern. This article discusses the chemical toxic effects from human exposure to depleted uranium compounds that are likely to be handled during the long-term management and use of depleted uranium hexafluoride (UF 6 ) inventories in the United States. It also reviews representative publications in the toxicological literature to establish appropriate reference values for risk assessments. Methods are described for evaluating chemical toxicity caused by chronic low-level exposure and acute exposure. Example risk evaluations are provided for illustration. Preliminary results indicate that chemical effects of chronic exposure to uranium compounds under normal operating conditions would be negligibly small. Results also show that acute exposures under certain accident conditions could cause adverse chemical effects among the populations exposed.

  12. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  13. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-06-01

    Full Text Available The ozone-depleting and greenhouse gas, nitrous oxide (N2O, is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA and transcriptionally active (RNA nitrous oxide reductase (nosZ genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water.

  14. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Sun, Xin; Jayakumar, Amal; Ward, Bess B.

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water. PMID:28702012

  15. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Bond rupture between colloidal particles with a depletion interaction

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716 (United States)

    2016-05-15

    The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measured force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.

  17. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  18. Selective T-cell depletion targeting CD45RA reduces viremia and enhances early T-cell recovery compared with CD3-targeted T-cell depletion.

    Science.gov (United States)

    Triplett, Brandon M; Muller, Brad; Kang, Guolian; Li, Ying; Cross, Shane J; Moen, Joseph; Cunningham, Lea; Janssen, William; Mamcarz, Ewelina; Shook, David R; Srinivasan, Ashok; Choi, John; Hayden, Randall T; Leung, Wing

    2018-02-01

    T-cell depletion (TCD) effectively reduces severe graft-versus-host disease in recipients of HLA-mismatched allografts. However, TCD is associated with delayed immune recovery and increased infections. We hypothesized that specific depletion of CD45RA+ naive T cells, rather than broad depletion of CD3+ T cells, can preserve memory-immunity in the allografts and confer protection against important viral infections in the early post-transplant period. Sixty-seven patients who received TCD haploidentical donor transplantation for hematologic malignancy on 3 consecutive trials were analyzed. Patients receiving CD45RA-depleted donor grafts had 2000-fold more donor T cells infused, significantly higher T-cell counts at Day +30 post transplant (550/μL vs 10/μL; P depleted grafts were more likely to experience adenovirus viremia (27% vs 4%, P = .02). CD45RA-depletion provided a large number of donor memory T cells to the recipients and was associated with enhanced early T-cell recovery and protection against viremia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Study of the oxygen reduction reaction on stainless steel materials in natural seawater. Influence of the bio-film on corrosion processes

    International Nuclear Information System (INIS)

    Le Bozec, N.

    2000-01-01

    Bio-film development on stainless steels immersed in natural seawater can have prejudicial consequences on the resistance of these materials to corrosion. The goal of the present study was to get more precise information on the corrosion processes, and especially on the oxygen reduction reaction. As the reaction is linked to the stainless steel surface state, the characterisation of the oxides films (composition, structure, thickness...) is essential to understand the mechanisms and the oxygen reduction kinetic. The first aim of the study has been to correlate the oxygen reduction processes with the characteristics of the oxides layer as a function of the alloy surface treatment (mechanical polishing, electrochemical passivation and pre-reduction, chemical treatment with some acids or with hydrogen peroxide). The second stage has consisted in following the evolution of the oxygen reduction processes and of the characteristics of the oxides layer with the aging of stainless steels in natural and artificial sea-waters. One major bio-film effect appears to be the production of hydrogen peroxide at a concentration level which induces modifications of the oxides layers and, consequently, of the evolution of the oxygen reduction kinetics as well as of the open circuit potential. Electrochemical techniques (voltammetric analysis at rotating disk and ring-disk electrodes, coulometry) combined with a surface analytical method by X-ray photoelectron spectroscopy have been used. The characterisation of the bio-film required the use of microscopy (scanning electronic microscopy, epi-fluorescence microscopy) and microbiological methods (cultures). The in-situ detection of hydrogen peroxide formed inside the bio-film has been performed with a micro-electrode and the results were confirmed with enzymatic methods. (author)

  20. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Science.gov (United States)

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  1. Low Temperature Soda-Oxygen Pulping of Bagasse

    Directory of Open Access Journals (Sweden)

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  2. Research on using depleted uranium as nuclear fuel for HWR

    International Nuclear Information System (INIS)

    Zhang Jiahua; Chen Zhicheng; Bao Borong

    1999-01-01

    The purpose of our work is to find a way for application of depleted uranium in CANDU reactor by using MOX nuclear fuel of depleted U and Pu instead of natural uranium. From preliminary evaluation and calculation, it was shown that MOX nuclear fuel consisting of depleted uranium enrichment tailings (0.25% 235 U) and plutonium (their ratio 99.5%:0.5%) could replace natural uranium in CANDU reactor to sustain chain reaction. The prospects of application of depleted uranium in nuclear energy field are also discussed

  3. Yield, utilization, storage and ultimate storage of depleted uranium

    International Nuclear Information System (INIS)

    Aumueller, L.; Hermann, J.

    1977-11-01

    More than 80% of the uranium leaving uranium enrichment plants is depleted to a residual content of about 0,25% U 235. Due to the present ineconomical further depletion to the technically possible residual content of 0,1% U 235, the so-called 'tails' are first of all stored. The quantity of stored depleted uranium in the FRG should be about 100.000 t by the year 2000. It represents a strategic reserve for future energy supply regardless of profitableness. The study analysis the conceivable possible uses for the tails quantity considered. These are, besides further depletion whose profitableness is considered, also the use as breeder material in breeder reactors and the use in the non-nuclear field. The main part of the study deals with the various storage possibilities of the depleted uranium in oxidic or fluoride form. A comparison of costs of alternative storage concepts showed a clear advantage for the storage of UF 6 in 48 inch containers already in use. The conceivable accidents in storing are analyzed and measures to reduce the consequences are discussed. Finally, the problems of ultimate storage for the remaining waste after further depletion or use are investigated and the costs arising here are also estimated. (RB) [de

  4. Assessment Of Depleted Uranium Contamination In Selective IRAQI Soils

    International Nuclear Information System (INIS)

    Mohammed, A.A.; Hussien, A.Sh.M.; Tawfiq, N.F.

    2008-01-01

    The aim of this research was to measure the radiation exposure rates in three selected Locations in southren part of Iraq (two in Nassireya, and one in Amara) resulted from the existence of depleted uranium in soil and metal pieces have been taken from destroyed tank and study mathmatically the concentration of Depleted Uranium by its dispersion from soil surface by winds and rains from 2003 to 2007. The exposure rates were measured using inspector device, while depleted uranium concentration in soil samples and tank's matal pieces were detected with Solid State Nuclear Track Detectors(SSNTDs). The wind and rain effects were considered in the calculation of dispersion effect on depleted uranium concentration in soil, where the wind effect were calculated with respect to the sites nature and soil conditions, and rain effect with respect to dispersive-convective equation for radionuclide in soil. The results obtained for the exposure rates were high near the penetrated surfac, moderate and low in soil and metal pices. The Depleted Uranium concentration in soil and metal pieces have the highest value in Nassireya. The results from dispersion calculation (wind & rain) showed that the depleted uranium concentration in 2008 will be less than the danger level and in allowable contamination range

  5. Optimal Allocation of Sampling Effort in Depletion Surveys

    Science.gov (United States)

    We consider the problem of designing a depletion or removal survey as part of estimating animal abundance for populations with imperfect capture or detection rates. In a depletion survey, animals are captured from a given area, counted, and withheld from the population. This proc...

  6. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  7. Holographic monitoring of spatial distributions of singlet oxygen in water

    Science.gov (United States)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  8. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  9. Separating the effects of partial submergence and soil oxygen demand on plant physiology.

    Science.gov (United States)

    van Bodegom, Peter M; Sorrell, Brian K; Oosthoek, Annelies; Bakker, Chris; Aerts, Rien

    2008-01-01

    In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more

  10. Fully depleted CMOS pixel sensor development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  11. The Effects of Volcano-Induced Ozone Depletion on Short-lived Climate Forcing in the Arctic

    Science.gov (United States)

    Ward, P. L.

    2012-12-01

    Photodissociation of oxygen maintains the stratopause ~50°C warmer than the tropopause. Photodissociation of ozone warms the lower stratosphere, preventing most of this high-energy DNA-damaging solar radiation from reaching the troposphere. Ozone depletion allows more UV energy to reach the lower troposphere causing photodissociation of anthropogenic ozone and nitrogen dioxide. UV energy also penetrates the ocean >10 m where it is absorbed more efficiently than infrared radiation that barely penetrates the surface. Manmade chlorofluorocarbons caused ozone depletion from 1965 to 1994 with slow recovery predicted over the next 50+ years. But the lowest levels of ozone followed the eruptions of Pinatubo (1991 VEI=6), Eyjafjallajökull (2010 VEI=4), and Grímsvötn (2011 VEI=4). Each of the relatively small, basaltic eruptions in Iceland caused more ozone depletion than the long-term effects of chlorofluorocarbons, although total ozone appears to return to pre-eruption levels within a decade. Ozone depletion by 20% increases energy flux thru the lowermost troposphere by 0.7 W m-2 for overhead sun causing temperatures in the lower stratosphere to drop >2°C since 1958 in steps after the 3 largest volcanic eruptions: Agung 1963, El Chichón 1982, and Pinatubo. Temperatures at the surface increased primarily in the regions and at the times of the greatest observed ozone depletion. The greatest warming observed was along the Western Antarctic Peninsula (65.4°S) where minimum temperatures rose 6.7°C from 1951 to 2003 while maximum temperatures remained relatively constant. Minimum total column ozone in September-October was 40-56% lower than in 1972 almost every year since 1987, strongly anti-correlated with observed minimum temperatures. Sea ice decreased 10%, 7 ice shelves separated, 87% of the glaciers retreated and the Antarctic Circumpolar Current warmed. Elsewhere under the ozone hole, warming of continental Antarctica was limited by the high albedo (0.86) of

  12. Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids

    OpenAIRE

    Mueller-Klieser, W.

    1984-01-01

    A method has been developed for the quantitative evaluation of oxygen tension (PO2) distributions in multicellular spheroids measured with O2-sensitive microelectrodes. The experimental data showed that multicellular tumor spheroids in stirred growth media were characterized by a diffusion-depleted zone surrounding the spheroids. This zone was elicited by an unstirred layer of medium next to the spheroid leading to a continuous decrease in the PO2 values from the bulk medium towards the spher...

  13. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  14. Automatic optimized reload and depletion method for a pressurized water reactor

    International Nuclear Information System (INIS)

    Ahn, D.H.; Levene, S.H.

    1985-01-01

    A new method has been developed to automatically reload and deplete a pressurized water reactor (PWR) so that both the enriched inventory requirements during the reactor cycle and the cost of reloading the core are minimized. This is achieved through four stepwise optimization calculations: (a) determination of the minimum fuel requirement for an equivalent three-region core model, (b) optimal selection and allocation of fuel assemblies for each of the three regions to minimize the reload cost, (c) optimal placement of fuel assemblies to conserve regionwise optimal conditions, and (d) optimal control through poison management to deplete individual fuel assemblies to maximize end-of-cycle k /SUB eff/ . The new method differs from previous methods in that the optimization process automatically performs all tasks required to reload and deplete a PWR. In addition, the previous work that developed optimization methods principally for the initial reactor cycle was modified to handle subsequent cycles with fuel assemblies having burnup at beginning of cycle. Application of the method to the fourth reactor cycle at Three Mile Island Unit 1 has shown that both the enrichment and the number of fresh reload fuel assemblies can be decreased and fully amortized fuel assemblies can be reused to minimize the fuel cost of the reactor

  15. Investigations on the mechanism of oxygen-dependent plant processes: ethylene biosynthesis and cyanide-resistant respiration

    International Nuclear Information System (INIS)

    Stegink, S.J.

    1985-01-01

    Two oxygen-dependent plant processes were investigated. A cell-free preparation from pea (Pisum sativum L., cv. Alaska) was used to study ethylene biosynthesis from 1-aminocyclopropane-1-carboxylic acid. Mitochondrial cyanide-resistant respiration was investigated in studies with 14 C-butyl gallate and other respiratory effectors. Ethylene biosynthesis was not due to a specific enzyme, or oxygen radicals. Rather, hydrogen peroxide, generated at low levels, coupled with endogenous manganese produced ethylene. 14 C-butyl gallate bound specifically to mitochondria from cyanide-sensitive and -resistant higher plants and Neurospora crassa mitochondria. The amount of gallate bound was similar for all higher plant mitochondria. Rat liver mitochondria bound very little 14 C-butyl gallate. Plant mitochondria in which cyanide-resistance was induced bound as much 14 C-butyl gallate as before induction. However mitochondria from recently harvested white potato tubers did not bind the gallate. The observations suggest that an engaging factor couples with a gallate binding site in the mitochondrial membrane. With skunk cabbage spadix mitochondria the I 5 0 for antimycin A inhibition of oxygen uptake was decreased by salicylhydroxamic acid pretreatment; this was also true for reverse order additions. No shift was observed with mung bean hypocotyl or Jerusalem artichoke tuber mitochondria

  16. Enhanced Monte-Carlo-Linked Depletion Capabilities in MCNPX

    International Nuclear Information System (INIS)

    Fensin, Michael L.; Hendricks, John S.; Anghaie, Samim

    2006-01-01

    As advanced reactor concepts challenge the accuracy of current modeling technologies, a higher-fidelity depletion calculation is necessary to model time-dependent core reactivity properly for accurate cycle length and safety margin determinations. The recent integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a completely self-contained Monte-Carlo-linked depletion capability. Two advances have been made in the latest MCNPX capability based on problems observed in pre-released versions: continuous energy collision density tracking and proper fission yield selection. Pre-released versions of the MCNPX depletion code calculated the reaction rates for (n,2n), (n,3n), (n,p), (n,a), and (n,?) by matching the MCNPX steady-state 63-group flux with 63-group cross sections inherent in the CINDER90 library and then collapsing to one-group collision densities for the depletion calculation. This procedure led to inaccuracies due to the miscalculation of the reaction rates resulting from the collapsed multi-group approach. The current version of MCNPX eliminates this problem by using collapsed one-group collision densities generated from continuous energy reaction rates determined during the MCNPX steady-state calculation. MCNPX also now explicitly determines the proper fission yield to be used by the CINDER90 code for the depletion calculation. The CINDER90 code offers a thermal, fast, and high-energy fission yield for each fissile isotope contained in the CINDER90 data file. MCNPX determines which fission yield to use for a specified problem by calculating the integral fission rate for the defined energy boundaries (thermal, fast, and high energy), determining which energy range contains the majority of fissions, and then selecting the appropriate fission yield for the energy range containing the majority of fissions. The MCNPX depletion capability enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code

  17. Oxygen--a limiting factor for brain recovery.

    Science.gov (United States)

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  18. Oxygen - a limiting factor for brain recovery

    OpenAIRE

    Hadanny, Amir; Efrati, Shai

    2015-01-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  19. Coupling effects of depletion interactions in a three-sphere colloidal system

    International Nuclear Information System (INIS)

    Chen Ze-Shun; Dai Gang; Gao Hai-Xia; Xiao Chang-Ming

    2013-01-01

    In a three-sphere system, the middle sphere is acted upon by two opposite depletion forces from the other two spheres. It is found that, in this system, the two depletion forces are coupled with each other and result in a strengthened depletion force. So the difference of the depletion forces of the three-sphere system and its corresponding two two-sphere systems is introduced to describe the coupling effect of the depletion interactions. The numerical results obtained by Monte-Carlo simulations show that this coupling effect is affected by both the concentration of small spheres and the geometrical confinement. Meanwhile, it is also found that the mechanisms of the coupling effect and the effect on the depletion force from the geometry factor are the same. (interdisciplinary physics and related areas of science and technology)

  20. Novel nanostructured oxygen sensor

    Science.gov (United States)

    Boardman, Alan James

    New government regulations and industry requirements for medical oxygen sensors require the development of alternate materials and process optimization of primary sensor components. Current oxygen sensors are not compliant with the Restriction of Hazardous Substances (RoHS) Directive. This work focused on two areas. First, was finding suitable readily available materials for the sensor anodes. Second was optimizing the processing of the sensor cathode membrane for reduced delamination. Oxygen sensors were made using tin (Sn) and bismuth (Bi) electrodes, potassium hydroxide (KOH) and acetic acid (CH3COOH) electrolytes with platinum (Pt) and gold (Au) reference electrodes. Bi electrodes were fabricated by casting and pressing processes. Electrochemical characterization of the Sn and Bi electrodes was performed by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and sensing characterization per BSEN ISO 21647:2009 at various oxygen percentages, 0%, 20.9% and 100% oxygen levels with an automated test apparatus. The Sn anode with both electrolyte solutions showed good oxygen sensing properties and performance in a sensor. This system shows promise for replacement of Pb electrodes as required by the RoHS Directive. The Bi anode with Au cathode in both KOH and CH3COOH electrolytes showed acceptable performance and oxygen sensing properties. The Bi anodes fabricated by separate manufacturing methods demonstrated effectiveness for use in medical oxygen sensors. Gold thin films were prepared by magnetron sputtering on Flouroethylene Polymer (FEP) films. The FEP substrate temperature ranged from -77°C to 50°C. X-Ray Diffraction (XRD) and 4-point resistivity characterized the effects of substrate temperature to Au thin film particle size. XRD peak broadening and resistivity measurements showed a strong correlation of particle size to FEP substrate temperature. Particle size at 50°C was 594A and the -77°C particle size was 2.4 x 103A. Substrate

  1. Oxygen Extraction from Minerals

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  2. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks

    International Nuclear Information System (INIS)

    Turney, Benjamin W.; Kerr, Martin; Chitnis, Meenali M.; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S.; Brewster, Simon F.; Macaulay, Valentine M.

    2012-01-01

    Background and purpose: IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. Methods: We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. Results: We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30–40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. Conclusions: These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments.

  3. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks.

    Science.gov (United States)

    Turney, Benjamin W; Kerr, Martin; Chitnis, Meenali M; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S; Brewster, Simon F; Macaulay, Valentine M

    2012-06-01

    IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30-40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Genetics Home Reference: MPV17-related hepatocerebral mitochondrial DNA depletion syndrome

    Science.gov (United States)

    ... DNA depletion syndrome MPV17-related hepatocerebral mitochondrial DNA depletion syndrome Printable PDF Open All Close All Enable ... collapse boxes. Description MPV17 -related hepatocerebral mitochondrial DNA depletion syndrome is an inherited disorder that can cause ...

  5. Stimulated emission depletion following two photon excitation

    OpenAIRE

    Marsh, R. J.; Armoogum, D. A.; Bain, A. J.

    2002-01-01

    The technique of stimulated emission depletion of fluorescence (STED) from a two photon excited molecular population is demonstrated in the S, excited state of fluorescein in ethylene glycol and methanol. Two photon excitation (pump) is achieved using the partial output of a regeneratively amplified Ti:Sapphire laser in conjunction with an optical parametric amplifier whose tuneable output provides a synchronous depletion (dump) pulse. Time resolved fluorescence intensity and anisotropy measu...

  6. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    International Nuclear Information System (INIS)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-01-01

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening

  7. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    Science.gov (United States)

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  8. Low-Flammability PTFE for High-Oxygen Environments

    Science.gov (United States)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  9. Morphology study on the depleted uranium as hydriding/dehydriding cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong-you, E-mail: dongyou@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Sei-Hun; Kang, Hyun-Goo; Chang, Min Ho; Oh, Yun Hee [National Fusion Research Institute, Daejeon (Korea, Republic of); Kang, Kweon Ho; Woo, Yoon Myung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Depleted Uranium (DU) is one of the strongest candidates as a getter material of hydrogen isotopes in the nuclear fusion reactor. In this work, small DU lump specimen with 99.8% purity was prepared for observation of morphology variation as hydriding/dehydriding cycles. Hydriding/dehydriding of DU was carried out more than 10 cycles for powder preparation. The pulverized DU specimen was safely handled in the glove box under Argon gas condition to minimize contact with oxygen and humidity. The morphology change according to hydriding/dehydriding cycles was observed by visual cell reactor, optical microscope and scanning electron microscope. The first hydriding of the small DU sample has progressed slowly with surface enlargement and volume expansion as time passes. After third hydriding/dehydriding cycles, most of DU was pulverized. The powder fineness of DU developed as hydriding/dehydriding cycle progresses. But the agglomerates of fine DU particles were observed. It was confirmed that the DU particles exist as porous agglomerates. And the particle agglomerate shows poor fluidity and even has the cohesive force.

  10. Bullet scintigraphy: can gamma camera be used for depleted uranium accident measurements?

    International Nuclear Information System (INIS)

    Spaic, R.; Markovic, S.; Pavlovic, S.; Radic, Z.; Pavlovic, R.; Ajdinovic, B.; Baskot, B.; Djurovic, B.

    2002-01-01

    The aim of this study was to see could gamma cameras be used for measurement of internal contamination with depleted uranium. Radioactive waste depleted uranium, which is by-product from the production of enriched fuel for nuclear rectors and weapons now, is used for manufacture bullets, which are used in Iraq, Republic of Srpska and Yugoslavia. In this paper is measured minimum detectable activity (MDA) of gamma cameras for depleted uranium, iodine and technetium. For detection of the depleted uranium are used low energy X-rays, energy of 100 keV with 20% windows width. About 40% of gamma emissions of the depleted uranium are in these limits. Measured MDA activities 50-100 Bq for depleted uranium, iodine and technetium are about then times more then same for WBC (5 Bq). Gamma cameras can be used for relatively measurement of depleted uranium activity, what can be used for absorbed dose estimation. Detection of low level internal contamination with depleted uranium can be done with gamma cameras. (authors)

  11. An Investigation into the Effects of Process Conditions on the Tribological Performance of Pack Carburized Titanium with Limited Oxygen Diffusion

    Science.gov (United States)

    Bailey, R.; Sun, Y.

    2018-04-01

    In the present study, a new pack carburization technique for titanium has been investigated. The aim of this treatment is to produce a titanium carbide/oxycarbide layer atop of an extended oxygen diffusion zone [α-Ti(O)]. The effects of treatment temperature and pack composition have been investigated in order to determine the optimal conditions required to grant the best tribological response. The resulting structural features were investigated with particular interest in the carbon and oxygen concentrations across the samples cross section. The optimization showed that a temperature of 925 °C with a pack composition of 1 part carbon to 1 part energizer produced surface capable of withstanding a contact pressure of ≈ 1.5 GPa for 1 h. The process resulted in TiC surface structure which offers enhanced hardness (2100 HV) and generates a low friction coefficient (μ ≈ 0.2) when in dry sliding contact with an alumina (Al2O3) ball. The process also produced an extended oxygen diffusion zone that helps to improve the load bearing capacity of the substrate.

  12. Development and Application of SKSSIM Simulation Software for the Oxygen Bottom Blown Copper Smelting Process

    Directory of Open Access Journals (Sweden)

    Qinmeng Wang

    2017-10-01

    Full Text Available The oxygen bottom blown copper smelting process (SKS process is a newly developed intense smelting process, which has been widely applied to copper production in China. A multiphase equilibrium model for the SKS process was established based on its mechanism characteristics and the principle of Gibbs energy minimization, and an efficient simulation software—SKSSIM (SKS Simulation—was developed based on the model. Industrial data from the SKS process were used to compare with the calculated data from the SKSSIM software. The calculated data on the compositions of slag and matte as well as the distribution ratios of minor elements (such as Pb, Zn, As, Sb and Bi among the slags, mattes and off-gases were in good agreement with the actual plant data. Accordingly, the SKSSIM simulation software has the potentail to be used for the prediction of smelting production and for optimizing the operating parameters of the SKS process.

  13. Radiation-induced DNA damage in tumors and normal tissues. II. Influence of dose, residual DNA damage and physiological factors in oxygenated cells

    International Nuclear Information System (INIS)

    Zhang, H.; Wheeler, K.T.

    1994-01-01

    Detection and quantification of hypoxic cells in solid tumors is important for many experimental and clinical situations. Several laboratories, including ours, have suggested that assays which measure radiation-induced DNA strand breaks and DNA-protein crosslinks (DPCs) might be used to detect or quantify hypoxic cells in tumors and normal tissues. Recently, we demonstrated the feasibility of using an alkaline elution assay that measures strand breaks and DPCs to detect and/or quantify hypoxic cells in tissues. For this approach to be valid, DPCs must not be formed to any great extent in irradiated oxygenated cells, and the formation and repair of strand breaks and DPCs in oxygenated cells must not be modified appreciably by physiological factors (e.g., temperature, pH and nutrient depletion) that are often found in solid tumors. To address these issues, two sets of experiments were performed. In one set of experiments, oxygenated 9L cells in tissue culture, subcutaneous 9L tumors and rat cerebella were irradiated with doses of 15 or 50 Gy and allowed to repair until the residual strand break damage was low enough to detect DPCs. In another set of experiments, oxygenated exponentially growing or plateau-phase 9L cells in tissue culture were irradiated with a dose of 15 Gy at 37 or 20 degrees C, while the cells were maintained at a pH of either 6.6 or 7.3. DNA-protein crosslinks were formed in oxygenated cells about 100 times less efficiently than in hypoxic cells. In addition, temperature, pH, nutrient depletion and growth phase did not appreciably alter the formation and repair of strand breaks or the formation of DPCs in oxygenated 9L cells. These results support the use of this DNA damage assay for the detection and quantification of hypoxic cells in solid tumors. 27 refs., 5 tabs

  14. Analysis and Application of Whey Protein Depleted Skim Milk Systems

    DEFF Research Database (Denmark)

    Sørensen, Hanne

    homogenisation (UHPH). The microfiltration will result in a milk fraction more or less depleted from whey protein, and could probably in combination with UHPH treatment contribute to milk fractions and cheeses with novel micro and macrostructures. These novel fractions could be used as new ingredients to improve......-destructive methods for this purpose. A significant changed structure was observed in skim milk depleted or partly depleted for whey protein, acidified and UHPH treated. Some of the properties of the UHPH treated skim milk depleted from whey protein observed in this study support the idea, that UHPH treatment has...... this. LF-NMR relaxation were utilised to obtain information about the water mobility (relaxation time), in diluted skim milk systems depleted from whey protein. Obtained results indicate that measuring relaxation times with LF-NMR could be difficult to utilize, since no clear relationship between...

  15. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    Science.gov (United States)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  16. Oxygen isotope ratios of the Icelandic crust

    International Nuclear Information System (INIS)

    Hattori, K.; Muehlenbachs, K.

    1982-01-01

    Oxygen isotope ratios of hydrothermally altered basalts from depth of up to approx.3 km are reported from three localities in Iceland: International Research Drilling Project (IRDP) core at Reydarfjordur, eastern Iceland (Tertiary age); drill cuttings from Reykjavik (Plio-Pleistocene age); and Halocene drill cuttings from the active Krafla central volcano. Whole rock samples from these three localities have delta 18 O values averaging +3.9 +- 1.3, +2.4 +- 1.1, and -7.7 +- 2.4%, respectively. The observed values in the deeper samples from Krafla are as low as the values for any rocks previously reported. There seems to be a slight negative gradient in delta 18 O with depth at the former two localities and a more pronounced one at Krafla. Oxygen isotope fractionations between epidote and quartz and those between calcite and fluid suggests that the basalts were altered at temperatures of 300 0 --400 0 C. Low deltaD and delta 18 O of epidote and low delta 34 S of anhydrite indicate that the altering fluids in all three areas originated as meteoric waters and have undergone varied 'oxygen shifts'. Differences in the 18 O shift of the fluids are attributed to differences in hydrothermal systems; low water/rock ratios ( 5) at Krafla. The convective hydrothermal activity, which is probably driven by silicic magma beneath the central volcanoes, has caused strong subsolidus depletion of 18 O in the rocks. The primary-magnetic delta 18 O value of the rocks in the Tertiary IRDP core was about +3.9%, which is lower than that obtained for fresh basalt from other places. Such exceptionally low delta 18 O magmas are common in Iceland and may occur as the result of oxygen isotope exchange with or assimilation of altered rocks that form a thick sequence beneath the island due to isostatic subsidence

  17. Depleted uranium and the Gulf War syndrome

    International Nuclear Information System (INIS)

    1999-01-01

    Some military personnel involved in the 1991Gulf War have complained of continuing stress-like symptoms for which no obvious cause has been found. These symptoms have at times been attributed to the use of depleted uranium (DU) in shell casings which are believed to have caused toxic effects. Depleted uranium is natural uranium which is depleted in the rarer U-235 isotope. It is a heavy metal and in common with other heavy metals is chemically toxic. It is also slightly radioactive and could give rise to a radiological hazard if dispersed in finely divided form so that it was inhaled. In response to concerns, the possible effects of DU have been extensively studied along with other possible contributors to G ulf War sickness . This article looks at the results of some of the research that has been done on DU. (author)

  18. The Importance of Microbial Iron Sulfide Oxidation for Nitrate Depletion in Anoxic Danish Sediments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka; Jacobsen, Ole Stig; Jørgensen, Christian Juncher

    2014-01-01

    of organic carbon in the sediment. An apparent salinity limitation to MISON was observed in the most brackish environment. Addition of high surface area synthetically precipitated iron sulfide (FeS x ) to the aquifer sediment with the lowest natural FeS x reactivity increased both the relative fraction of NO......Nitrate (NO3 −) reduction processes are important for depleting the NO3 − load from agricultural source areas before the discharge water reaches surface waters or groundwater aquifers. In this study, we experimentally demonstrate the co-occurrence of microbial iron sulfide oxidation by NO3 − (MISON......) and other NO3 −-depleting processes in a range of contrasting sediment types: sandy groundwater aquifer, non-managed minerotrophic freshwater peat and two brackish muddy sediments. Approximately 1/3 of the net NO3 − reduction was caused by MISON in three of the four environments despite the presence...

  19. The ultimate disposition of depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

  20. The Effects of Acute Dopamine Precursor Depletion on the Cognitive Control Functions of Performance Monitoring and Conflict Processing: An Event-Related Potential (ERP) Study.

    Science.gov (United States)

    Larson, Michael J; Clayson, Peter E; Primosch, Mark; Leyton, Marco; Steffensen, Scott C

    2015-01-01

    Studies using medications and psychiatric populations implicate dopamine in cognitive control and performance monitoring processes. However, side effects associated with medication or studying psychiatric groups may confound the relationship between dopamine and cognitive control. To circumvent such possibilities, we utilized a randomized, double-blind, placebo-controlled, within-subjects design wherein participants were administered a nutritionally-balanced amino acid mixture (BAL) and an amino acid mixture deficient in the dopamine precursors tyrosine (TYR) and phenylalanine (PHE) on two separate occasions. Order of sessions was randomly assigned. Cognitive control and performance monitoring were assessed using response times (RT), error rates, the N450, an event-related potential (ERP) index of conflict monitoring, the conflict slow potential (conflict SP), an ERP index of conflict resolution, and the error-related negativity (ERN) and error positivity (Pe), ERPs associated with performance monitoring. Participants were twelve males who completed a Stroop color-word task while ERPs were collected four hours following acute PHE and TYR depletion (APTD) or balanced (BAL) mixture ingestion in two separate sessions. N450 and conflict SP ERP amplitudes significantly differentiated congruent from incongruent trials, but did not differ as a function of APTD or BAL mixture ingestion. Similarly, ERN and Pe amplitudes showed significant differences between error and correct trials that were not different between APTD and BAL conditions. Findings indicate that acute dopamine precursor depletion does not significantly alter cognitive control and performance monitoring ERPs. Current results do not preclude the role of dopamine in these processes, but suggest that multiple methods for dopamine-related hypothesis testing are needed.