WorldWideScience

Sample records for oxygen demand turbidity

  1. Using turbidity for designing water networks.

    Science.gov (United States)

    Castaño, J A; Higuita, J C

    2016-05-01

    Some methods to design water networks with minimum fresh water consumption are based on the selection of a key contaminant. In most of these "single contaminant methods", a maximum allowable concentration of contaminants must be established in water demands and water sources. Turbidity is not a contaminant concentration but is a property that represents the "sum" of other contaminants, with the advantage that it can be cheaper and easily measured than biological oxygen demand, chemical oxygen demand, suspended solids, dissolved solids, among others. The objective of this paper is to demonstrate that turbidity can be used directly in the design of water networks just like any other contaminant concentration. A mathematical demonstration is presented and in order to validate the mathematical results, the design of a water network for a guava fudge production process is performed. The material recovery pinch diagram and nearest neighbors algorithm were used for the design of the water network. Nevertheless, this water network could be designed using other single contaminant methodologies. The maximum error between the expected and the real turbidity values in the water network was 3.3%. These results corroborate the usefulness of turbidity in the design of water networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    Science.gov (United States)

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  3. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish.

    Science.gov (United States)

    Cumming, H; Herbert, N A

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O 2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O 2 uptake rates of a juvenile sparid species ( Pagrus auratus ) was addressed following exposure to five different turbidity treatments (turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O 2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O 2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation.

  4. A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand.

    Science.gov (United States)

    McGuire, B J; Secomb, T W

    2001-11-01

    Oxygen transport from capillaries to exercising skeletal muscle is studied by use of a Krogh-type cylinder model. The goal is to predict oxygen consumption under conditions of high demand, on the basis of a consideration of transport processes occurring at the microvascular level. Effects of the decline in oxygen content of blood flowing along capillaries, intravascular resistance to oxygen diffusion, and myoglobin-facilitated diffusion are included. Parameter values are based on human skeletal muscle. The dependence of oxygen consumption on oxygen demand, perfusion, and capillary density are examined. When demand is moderate, the tissue is well oxygenated and consumption is slightly less than demand. When demand is high, capillary oxygen content declines rapidly with axial distance and radial oxygen transport is limited by diffusion resistance within the capillary and the tissue. Under these conditions, much of the tissue is hypoxic, consumption is substantially less than demand, and consumption is strongly dependent on capillary density. Predicted consumption rates are comparable with experimentally observed maximal rates of oxygen consumption.

  5. Assessment of effluent turbidity in mesophilic and thermophilic sludge reactors - origin of effluent colloidal material

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Lier, van J.B.; Klapwijk, B.; Vries, M.C.; Lettinga, G.

    2002-01-01

    Two lab-scale plug flow activated sludge reactors were run in parallel for 4 months at 30 and 55°C. Research focussed on: (1) COD (chemical oxygen demand) removal, (2) effluent turbidity at both temperatures, (3) the origin of effluent colloidal material and (4) the possible role of protozoa on

  6. Determination of Biological Oxygen Demand Rate Constant and ...

    African Journals Online (AJOL)

    Determination of Biological Oxygen Demand Rate Constant and Ultimate Biological Oxygen Demand for Liquid Waste Generated from Student Cafeteria at Jimma University: A Tool for Development of Scientific Criteria to Protect Aquatic Health in the Region.

  7. Huge supply/demand increases seen in oxygenate forecasts

    International Nuclear Information System (INIS)

    Rhoades, A.K.

    1992-01-01

    Industry originally projected that oxygenate supply would not be able to meet the demand created by U.S. oxygenated and reformulated gasoline mandates. This paper reports that those projections have been reserved in two recent industry reports - one from Chemical Market Associates Inc. (CMAI) and one from Pace Consultants Inc. Pace's report, by Paulo Nery and Nathan Sims, predicts gasoline and oxygenates demand, and examines the role ethanol may play in changing those values. CMAI's report estimates captive supply and demand of butylenes and oxygenates. Oxygenates are entering the domestic gasoline market this winter as a result of the 1990 U.S. Clean Air Act Amendments. Methyl tertiary butyl ether (MTBE) is the most important oxygenate, although ethanol, ethyl tertiary butyl ether (ETBE), and tertiary amyl methyl ether (TAME) are gathering market strength. Ethanol's strength is derived from President Bush's ruling granting a waiver to reformulated gasoline containing ethanol. This waiver allows ethanol blends to have a vapor pressure 1 psi higher than other types of gasoline

  8. Automatic control of the effluent turbidity from a chemically enhanced primary treatment with microsieving.

    Science.gov (United States)

    Väänänen, J; Memet, S; Günther, T; Lilja, M; Cimbritz, M; la Cour Jansen, J

    2017-10-01

    For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12-80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.

  9. Right ventricular oxygen supply/demand balance in exercising dogs.

    Science.gov (United States)

    Hart, B J; Bian, X; Gwirtz, P A; Setty, S; Downey, H F

    2001-08-01

    This is the first investigation of right ventricular (RV) myocardial oxygen supply/demand balance in a conscious animal. A novel technique developed in our laboratory was used to collect right coronary (RC) venous blood samples from seven instrumented, conscious dogs at rest and during graded treadmill exercise. Contributions of the RV oxygen extraction reserve and the RC flow reserve to exercise-induced increases in RV oxygen demand were measured. Strenuous exercise caused a 269% increase in RV oxygen consumption. Expanded arteriovenous oxygen content difference (A-V(Delta)O2) provided 58% of this increase in oxygen demand, and increased RC blood flow (RCBF) provided 42%. At less strenuous exercise, expanded A-V(Delta)O2 provided 60-80% of the required oxygen, and increases in RCBF were small and driven by increased aortic pressure. RC resistance fell only at strenuous exercise after the extraction reserve had been mobilized. Thus RC resistance was unaffected by large decreases in RC venous PO2 until an apparent threshold at 20 mmHg was reached. Comparisons of RV findings with published left ventricular data from exercising dogs demonstrated that increased O2 demand of the left ventricle is met primarily by increasing coronary flow, whereas increased O2 extraction makes a greater contribution to RV O2 supply.

  10. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  11. Chemical oxygen demand (cod) attenuation of methyl red in water ...

    African Journals Online (AJOL)

    Chemical oxygen demand (cod) attenuation of methyl red in water using biocarbons obtained from Nipa palm leaves. ... eco-friendly and locally accessible biocarbon for mitigation of organic contaminants in water. Keywords: Chemical oxygen demand, biocarbon, methyl red, biodegradation, bioremediation, Nipa palm ...

  12. Assessment of annual pollutant loads in combined sewers from continuous turbidity measurements: sensitivity to calibration data.

    Science.gov (United States)

    Lacour, C; Joannis, C; Chebbo, G

    2009-05-01

    This article presents a methodology for assessing annual wet weather Suspended Solids (SS) and Chemical Oxygen Demand (COD) loads in combined sewers, along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to data from various urban catchments in the cities of Paris and Nantes. The focus here concerns the impact of the number of rain events sampled for calibration (i.e. through establishing linear SS/turbidity or COD/turbidity relationships) on the uncertainty of annual pollutant load assessments. Two calculation methods are investigated, both of which rely on Monte Carlo simulations: random assignment of event-specific calibration relationships to each individual rain event, and the use of an overall relationship built from the entire available data set. Since results indicate a fairly low inter-event variability for calibration relationship parameters, an accurate assessment of pollutant loads can be derived, even when fewer than 10 events are sampled for calibration purposes. For operational applications, these results suggest that turbidity could provide a more precise evaluation of pollutant loads at lower cost than typical sampling methods.

  13. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature.

    Science.gov (United States)

    Barvitenko, Nadezhda N; Aslam, Muhammad; Filosa, Jessica; Matteucci, Elena; Nikinmaa, Mikko; Pantaleo, Antonella; Saldanha, Carlota; Baskurt, Oguz K

    2013-08-01

    The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed. © 2013 John Wiley & Sons Ltd.

  14. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    Science.gov (United States)

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  15. Measurement of biological oxygen demand sandy beaches

    African Journals Online (AJOL)

    Measurements of biological oxygen demand in a sandy beach using conventional .... counting the cells present in a sample of aged seawater and comparing this with .... This activity peaked at 71 % above the undisturbed level after 16 hours.

  16. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    Science.gov (United States)

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  17. Sediment oxygen demand of wetlands in the oil sands region of north-eastern Alberta

    International Nuclear Information System (INIS)

    Slama, C.; Ciborowski, J.J.; Gardner Costa, J.

    2009-01-01

    Reclaimed land in the Alberta oil sands mining area contains both reference and oil sands process-affected wetlands constructed using varying sediment compositions. The sediments derived from oil sands process materials (OSPM) may alter the biochemical reactions that take place and affect the sediment oxygen demand (SOD), which is a key factor that contributes to oxygen depletion. This presentation reported on a study in which SOD was measured in a suite of constructed wetlands of different ages, with or without OSPM and topsoil. The purpose of the study was to clarify the role of SOD in wetland function and in the reclamation process. Dissolved oxygen loggers were inserted into dome-shaped chambers on the sediment to measure changes in oxygen demand. Complementary measurements of respiration (CO 2 elution) were used to quantify the biological sediment oxygen demand (BSOD) component of SOD. The chemical sediment oxygen demand (CSOD) was then determined by subtraction from SOD. Wetlands reclaimed using OSPM are expected to have a lower BSOD to CSOD ratio than reference wetlands. Residual ammonia in OSPM sediments may react with sulphate and bind phosphorus. This reduces phosphorus bioavailability and may impede submergent macrophyte growth. As such, wetlands affected by CSOD will have fewer submerged macrophytes than BSOD dominant wetlands.

  18. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Merzouk, B. [Departement d' Hydraulique, Universite Mohamed Boudiaf de M' sila (Algeria)], E-mail: mbelkov@yahoo.fr; Gourich, B. [Laboratoire de Genie des Procedes, Ecole Superieure de Technologie de Casablanca, B.P. 8012, Oasis (Morocco); Sekki, A. [Departement de Genie des Procedes, Universite Ferhat Abbas de Setif (Algeria); Madani, K.; Chibane, M. [Faculte des Sciences de la Nature et de la Vie, Universite A - Mira de Bejaia (Algeria)

    2009-05-15

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C{sub 0}), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity ({kappa}) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm{sup 2}) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm{sup 2}, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD{sub 5}) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%.

  19. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    International Nuclear Information System (INIS)

    Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M.

    2009-01-01

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C 0 ), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (κ) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm 2 ) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm 2 , initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD 5 ) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%

  20. Nutrient regeneration and oxygen demand in Bering Sea continental shelf sediments

    Science.gov (United States)

    Rowe, Gilbert T.; Phoel, William C.

    1992-04-01

    Measurements of seabed oxygen demand and nutrient regeneration were made on continental shelf sediments in the southeast Bering Sea from 1 to 15 June 1981. The mean seabed oxygen demand was relatively modest (267 μM O 2 m -2 h -1), equivalent to a utilization of 60 mg organic carbon m -2 day -1. The seasonal build up of ammonium over the mid-shelf domain was generated at least in part by the bottom biota, as previously suggested ( WHITLEDGEet al., 1986 , Continental Shelf Research, 5, 109-132), but on the outer shelf nitrate replaced ammonium as the dominant inorganic nitrogen compound that was regenerated from the sediments. Comparison of oxygen consumption with the organic matter in sedimenting particulate matter (sampled with sediment traps) could imply that benthic processes were not accounting for the fate of considerable quantities of organic matter. Benthic oxygen demand rates, however, probably lag behind the input of the spring bloom to the bottom, thus extending the remineralization process out over time. Consumption by small microheterotrophs in the water column was also a likely sink, although shelf export and advective transport north were possible as well. Estimated nitrification rates in surface sediments could account for only a small fraction of the abrupt increase in nitrate observed in the water column over the shelf just prior to the spring bloom.

  1. Biological Oxygen Demand in Soils and Litters

    Science.gov (United States)

    Smagin, A. V.; Smagina, M. V.; Sadovnikova, N. B.

    2018-03-01

    Biological oxygen demand (BOD) in mineral and organic horizons of soddy-podzolic soils in the forest-park belt of Moscow as an indicator of their microbial respiration and potential biodestruction function has been studied. The BOD of soil samples has been estimated with a portable electrochemical analyzer after incubation in closed flasks under optimum hydrothermal conditions. A universal gradation scale of this parameter from very low (140 g O2/(m3 h)) has been proposed for mineral and organic horizons of soil. A physically substantiated model has been developed for the vertical distribution of BOD in the soil, which combines the diffusion transport of oxygen from the atmosphere and its biogenic uptake in the soil by the first-order reaction. An analytical solution of the model in the stationary state has been obtained; from it, the soil oxygen diffusivity and the kinetic constants of O2 uptake have been estimated, and the profile-integrated total BOD value has been calculated (0.4-1.8 g O2/(m2 h)), which is theoretically identical to the potential oxygen flux from the soil surface due to soil respiration. All model parameters reflect the recreation load on the soil cover by the decrease in their values against the control.

  2. Short-term forecasting of turbidity in trunk main networks.

    Science.gov (United States)

    Meyers, Gregory; Kapelan, Zoran; Keedwell, Edward

    2017-11-01

    Water discolouration is an increasingly important and expensive issue due to rising customer expectations, tighter regulatory demands and ageing Water Distribution Systems (WDSs) in the UK and abroad. This paper presents a new turbidity forecasting methodology capable of aiding operational staff and enabling proactive management strategies. The turbidity forecasting methodology developed here is completely data-driven and does not require hydraulic or water quality network model that is expensive to build and maintain. The methodology is tested and verified on a real trunk main network with observed turbidity measurement data. Results obtained show that the methodology can detect if discolouration material is mobilised, estimate if sufficient turbidity will be generated to exceed a preselected threshold and approximate how long the material will take to reach the downstream meter. Classification based forecasts of turbidity can be reliably made up to 5 h ahead although at the expense of increased false alarm rates. The methodology presented here could be used as an early warning system that can enable a multitude of cost beneficial proactive management strategies to be implemented as an alternative to expensive trunk mains cleaning programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sediment-water oxygen, ammonium and soluble reactive phosphorus fluxes in a turbid freshwater estuary (Curonian lagoon, Lithuania: evidences of benthic microalgal activity

    Directory of Open Access Journals (Sweden)

    Marco Bartoli

    2012-07-01

    Full Text Available Seasonal measurements of total and diffusive benthic fluxes were performed during the ice-free period in the Curonian Lagoon (Lithuania. This mostly freshwater hypertrophic basin exhibits wide seasonal variations of water temperature (1-22°C and inorganic nitrogen availability and it is subjected to dramatic blooms of diatoms and cyanobacteria (>100 μg chl a l-1. In this shallow lagoon, nutrient exchanges at the sediment-water interface and the regulating factors have been poorly explored. Overall aim of the present work is to demonstrate that the activity of benthic microalgae, generally neglected in turbid systems, can be a relevant regulator of sedimentary processes. To this purpose, light and dark fluxes of oxygen, ammonium and soluble reactive phosphorus were measured seasonally by intact core laboratory incubation and diffusive fluxes were calculated from sediment profiles. We investigated sandy sediments that were collected from the central area lagoon, that is representative of the most of the shallower lagoon area. Oxygen and ammonium fluxes were significantly different under light and dark incubations, suggesting an active role of benthic microalgae at the sediment-water interface. In the light net oxygen production was measured in three out of four samplings, with July as only exception, and ammonium was retained within sediments. In the dark sediment respiration displayed a temperature-dependent pattern while ammonium efflux increased from March to October. Fluxes of reactive phosphorus varied significantly with sampling seasons but were less affected by the incubation condition. Diffusive fluxes peaked in July, where highest concentration gradients at the interface and theoretical efflux of ammonium and reactive phosphorous were calculated. The marked differences between diffusive and total nutrient fluxes are probably due to photosynthetic activity by benthic microalgae, and thus oxygen production, enhancement of aerobic

  4. The Swift Turbidity Marker

    Science.gov (United States)

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  5. Turbid releases from Glen Canyon Dam, Arizona, following rainfall-runoff events of September 2013

    Science.gov (United States)

    Wildman, Richard A.; Vernieu, William

    2017-01-01

    Glen Canyon Dam is a large dam on the Colorado River in Arizona. In September 2013, it released turbid water following intense thunderstorms in the surrounding area. Turbidity was >15 nephelometric turbidity units (NTU) for multiple days and >30 NTU at its peak. These unprecedented turbid releases impaired downstream fishing activity and motivated a rapid-response field excursion. At 5 locations upstream from the dam, temperature, specific conductance, dissolved oxygen, chlorophyll a, and turbidity were measured in vertical profiles. Local streamflow and rainfall records were retrieved, and turbidity and specific conductance data in dam releases were evaluated. Profiling was conducted to determine possible sources of turbidity from 3 tributaries nearest the dam, Navajo, Antelope, and Wahweap creeks, which entered Lake Powell as interflows during this study. We discuss 4 key conditions that must have been met for tributaries to influence turbidity of dam releases: tributary flows must have reached the dam, tributary flows must have been laden with sediment, inflow currents must have been near the depth of dam withdrawals, and the settling velocity of particles must have been slow. We isolate 2 key uncertainties that reservoir managers should resolve in future similar studies: the reach of tributary water into the reservoir thalweg and the distribution of particle size of suspended sediment. These uncertainties leave the source of the turbidity ambiguous, although an important role for Wahweap Creek is possible. The unique combination of limnological factors we describe implies that turbid releases at Glen Canyon Dam will continue to be rare.

  6. Limitations of turbidity process probes and formazine as their calibration standard.

    Science.gov (United States)

    Münzberg, Marvin; Hass, Roland; Dinh Duc Khanh, Ninh; Reich, Oliver

    2017-01-01

    Turbidity measurements are frequently implemented for the monitoring of heterogeneous chemical, physical, or biotechnological processes. However, for quantitative measurements, turbidity probes need calibration, as is requested and regulated by the ISO 7027:1999. Accordingly, a formazine suspension has to be produced. Despite this regulatory demand, no scientific publication on the stability and reproducibility of this polymerization process is available. In addition, no characterization of the optical properties of this calibration material with other optical methods had been achieved so far. Thus, in this contribution, process conditions such as temperature and concentration have been systematically investigated by turbidity probe measurements and Photon Density Wave (PDW) spectroscopy, revealing an influence on the temporal formazine formation onset. In contrast, different reaction temperatures do not lead to different scattering properties for the final formazine suspensions, but give an access to the activation energy for this condensation reaction. Based on PDW spectroscopy data, the synthesis of formazine is reproducible. However, very strong influences of the ambient conditions on the measurements of the turbidity probe have been observed, limiting its applicability. The restrictions of the turbidity probe with respect to scatterer concentration are examined on the basis of formazine and polystyrene suspensions. Compared to PDW spectroscopy data, signal saturation is observed at already low reduced scattering coefficients.

  7. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  8. Research of Intelligent Turbidity Sensor

    OpenAIRE

    Licai Zhang; Yaoguang Wei; Yingyi Chen; Daoliang Li; Lihua Zeng

    2014-01-01

    Turbidity is an important index to evaluate the water quality. Turbidity can reflect the effects of insoluble substances that contain bait and seston on water. Traditional methods of turbidity detection are complicated, they have low efficiency and poor reliability. To solve the turbidity detection problem in aquaculture, an intelligent optical turbidity sensor which is based on scattering theory has been proposed in this paper. After analyzing the quality characteristics of aquaculture water...

  9. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    Science.gov (United States)

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  10. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    Science.gov (United States)

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    An investigation of sediment oxygen demand (SOD) at the interface of the stream and stream bed was performed in the lower Willamette River (river mile 51 to river mile 3) during August, 1994, as part of a cooperative project with the Oregon Department of Environmental Quality. The primary goals of the investigation were to measure the spatial variability of SOD in the lower Willamette River and to relate SOD to bottom-sediment characteristics.

  11. Turbidity Current Bedforms

    NARCIS (Netherlands)

    Cartigny, Matthieu; Postma, G.

    2017-01-01

    Turbidity currents in the submarine seascape are what river flows are in terrestrial landscapes. While rivers transport sediment from the mountains through valleys towards the sea, turbidity currents transport sediment from the shallow marine realms through canyons towards the deeper abyssal plains.

  12. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.

    Science.gov (United States)

    Qiu, Zhongfeng; Zheng, Lufei; Zhou, Yan; Sun, Deyong; Wang, Shengqiang; Wu, Wei

    2015-09-21

    An innovative algorithm is developed and validated to estimate the turbidity in Zhejiang coastal area (highly turbid waters) using data from the Geostationary Ocean Color Imager (GOCI). First, satellite-ground synchronous data (n = 850) was collected from 2014 to 2015 using 11 buoys equipped with a Yellow Spring Instrument (YSI) multi-parameter sonde capable of taking hourly turbidity measurements. The GOCI data-derived Rayleigh-corrected reflectance (R(rc)) was used in place of the widely used remote sensing reflectance (R(rs)) to model turbidity. Various band characteristics, including single band, band ratio, band subtraction, and selected band combinations, were analyzed to identify correlations with turbidity. The results indicated that band 6 had the closest relationship to turbidity; however, the combined bands 3 and 6 model simulated turbidity most accurately (R(2) = 0.821, pcoastal waters is feasible. As an example, the developed model was applied to 8 hourly GOCI images on 30 December 2014. Three cross sections were selected to identify the spatiotemporal variation of turbidity in the study area. Turbidity generally decreased from near-shore to offshore and from morning to afternoon. Overall, the findings of this study provide a simple and practical method, based on GOCI data, to estimate turbidity in highly turbid coastal waters at high temporal resolutions.

  13. Turbidity distribution in the Atlantic Ocean

    Science.gov (United States)

    Eittreim, S.; Thorndike, E.M.; Sullivan, L.

    1976-01-01

    The regional coverage of Lamont nephelometer data in the North and South Atlantic can be used to map seawater turbidity at all depths. At the level of the clearest water, in the mid-depth regions, the turbidity distribution primarily reflects the pattern of productivity in the surface waters. This suggests that the 'background' turbidity level in the oceans is largely a function of biogenic fallout. The bottom waters of the western Atlantic generally exhibit large increases in turbidity. The most intense benthic nepheloid layers are in the southwestern Argentine basin and northern North American basin; the lowest bottom water turbidity in the western Atlantic is in the equatorial regions. Both the Argentine and North American basin bottom waters appear to derive their high turbidity largely from local resuspension of terrigenous input in these basins. In contrast to the west, the eastern Atlantic basins show very low turbidities with the exception of three regions: the Mediterranean outflow area, the Cape basin, and the West European basin. ?? 1976.

  14. Oxygen enriched air using membrane for palm oil wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ramlah Mohd Tajuddin

    2002-11-01

    Full Text Available A research aimed to explore new method of aeration using oxygen enriched air performance on BOD reduction of palm oil wastewater was conducted. The oxygen enriched air was obtained from an Oxygen Enriched System (OES developed using asymmetric polysulfone hollow fiber membrane with composition consisting of PSF: 22%, DMAc: 31.8%, THF: 31.8%, EtOH: 14.4%. Palm oil wastewater samples were taken from facultative pond effluent. These samples were tested for its initial biochemical oxygen demand (BOD, total suspended solids (TSS, pH, conductivity, turbidity, dissolved oxygen (DO, suspended solids (SS, and total dissolved solids (TDS before being subjected to two modes of aeration system, that is diffused air and oxygen enriched air. These water quality concentrations were tested for every 20 minutes for two-hour period during the aeration process. Results of BOD, TSS, pH, conductivity, DO, SS and TDS concentrations against time of samples from the two modes of aeration were then compared. It was found that DO concentration achieved in oxygen enriched air aeration was better than aeration using diffused air system. Aeration using OES improve the DO concentration in the wastewater and thus improve the BOD reduction and also influence other physical characteristics of wastewater. This phenomenon indicates the advantage of using air with higher oxygen concentration for wastewater aeration instead of diffused air system.

  15. studies on the correlation of some aggregate parameters in the ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    simulations for problem solving and forecasting environmental conditions .... METHODS. Parameters: The water quality parameters examined were, Turbidity, Total Dissolved Solids (TDS),. Chemical Oxygen Demand (COD), 5-day Biochemical. Oxygen Demand ..... Vogel's Textbook of Quantitative. Chemical Analysis 6th ed ...

  16. Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction

    International Nuclear Information System (INIS)

    Akhoundzadeh, Jeyran; Chamsaz, Mahmoud; Costas, Marta; Lavilla, Isela; Bendicho, Carlos

    2013-01-01

    We report on a green method for the determination of low levels of chemical oxygen demand. It is based on the combination of (a) UV-induced oxidation with hydrogen peroxide, (b) headspace single-drop microextraction with in-drop precipitation, and (c) micro-turbidimetry. The generation of CO 2 after photolytic oxidation followed by its sequestration onto a microdrop of barium hydroxide gives rise to a precipitate of barium carbonate which is quantified by turbidimetry. UV-light induced oxidation was studied in the absence and presence of H 2 O 2 , ultrasound, and ferrous ion. Determinations of chemical oxygen demand were performed using potassium hydrogen phthalate as a model compound. The optimized method gives a calibration curve that is linear between 3.4 and 20 mg L −1 oxygen. The detection limit was 1.2 mg L −1 of oxygen, and the repeatability (as relative standard deviation) was around 5 %. The method was successfully applied to the determination of chemical oxygen demand in different natural waters and a synthetic wastewater. (author)

  17. Some results of turbidity networks

    OpenAIRE

    Volz, F. E.

    2011-01-01

    Turbidity networks to obtain daily values of haze attenuation from measurements of solar radiation, mostly by means of sun photometers, were established in 1961 in the USA by the National Center for Air Pollution Control, Cincinnati, Ohio, and in Western Europe from 1963 to 1967 by the author. The course of turbidity in the two networks during interesting periods is presented. Discussion of synoptic variations of turbidity is rather difficult, when referring to periods of rapid change of air ...

  18. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    Science.gov (United States)

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  19. Application of a colorimeter for turbidity measurement

    Science.gov (United States)

    Wen, Yizhang; Hu, Yingtian; Wang, Xiaoping

    2016-02-01

    This paper describes a new turbidity transducer based on color measurement. The absorbance of solutions reflects the absorption and scattering of suspended particle for incident light which could determine the turbidity of solutions. The experimental results indicate that there are good linear relationships between chromaticity and turbidity. The new way is suitable for continuous monitoring of water turbidity in the wide range.

  20. Application of a colorimeter for turbidity measurement

    International Nuclear Information System (INIS)

    Wen, Yizhang; Hu, Yingtian; Wang, Xiaoping

    2016-01-01

    This paper describes a new turbidity transducer based on color measurement. The absorbance of solutions reflects the absorption and scattering of suspended particle for incident light which could determine the turbidity of solutions. The experimental results indicate that there are good linear relationships between chromaticity and turbidity. The new way is suitable for continuous monitoring of water turbidity in the wide range. (paper)

  1. Facultative Stabilization Pond: Measuring Biological Oxygen Demand using Mathematical Approaches

    Science.gov (United States)

    Wira S, Ihsan; Sunarsih, Sunarsih

    2018-02-01

    Pollution is a man-made phenomenon. Some pollutants which discharged directly to the environment could create serious pollution problems. Untreated wastewater will cause contamination and even pollution on the water body. Biological Oxygen Demand (BOD) is the amount of oxygen required for the oxidation by bacteria. The higher the BOD concentration, the greater the organic matter would be. The purpose of this study was to predict the value of BOD contained in wastewater. Mathematical modeling methods were chosen in this study to depict and predict the BOD values contained in facultative wastewater stabilization ponds. Measurements of sampling data were carried out to validate the model. The results of this study indicated that a mathematical approach can be applied to predict the BOD contained in the facultative wastewater stabilization ponds. The model was validated using Absolute Means Error with 10% tolerance limit, and AME for model was 7.38% (< 10%), so the model is valid. Furthermore, a mathematical approach can also be applied to illustrate and predict the contents of wastewater.

  2. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    International Nuclear Information System (INIS)

    Slama, C.; Gardner Costa, J.; Ciborowski, J.

    2010-01-01

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  3. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Slama, C.; Gardner Costa, J.; Ciborowski, J. [Windsor Univ., ON (Canada)

    2010-07-01

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  4. Serum Tumor Necrosis Factor-alpha associates with Myocardial Oxygen Demand and Exercise Tolerance in Postmenopausal Women.

    Science.gov (United States)

    Carter, Stephen J; Bryan, David R; Neumeier, William H; Glasser, Stephen P; Hunter, Gary R

    2018-01-01

    The functional implications of serum tumor necrosis factor-alpha (TNF-α), a marker of oxidative stress, on hemodynamic parameters at rest and during physical exertion are unclear. The aims of this investigation were to examine the independent associations of TNF-α on myocardial oxygen demand at rest and during submaximal exercise, while also evaluating the association of TNF-α on exercise tolerance. Forty, postmenopausal women, provided blood samples and completed a modified-Balke protocol to measure maximal oxygen uptake (VO 2max ). Large artery compliance was measured by pulse contour analyses while rate-pressure product (RPP), an index of myocardial oxygen demand, was measured at rest and during two submaximal workloads (i.e., ≈55% and ≈75% VO 2max ). RPP was calculated by dividing the product of heart rate and systolic blood pressure (via auscultation) by 100. Exercise tolerance corresponded with the cessation of the graded exercise test. During higher-intensity exertion, ≈75% VO 2max , multiple linear regression revealed a positive association ( r = 0.43; p = 0.015) between TNF-α and RPP while adjusting for maximal heart rate, VO 2max , large artery compliance, and percent body fat. Path analyses revealed a significant indirect effect of large artery compliance on exercise tolerance through TNF-α, β = 0.13, CI [0.03, 0.35], indicating greater levels of TNF-α associated with poorer exercise tolerance. These data suggest TNF-α independently associates with myocardial oxygen demand during physical exertion, thus highlighting the utility of higher-intensity efforts to expose important phenomena not apparent at rest. TNF-α also appears to be indirectly associated with the link between large artery compliance and exercise tolerance.

  5. Unusual behaviour of phototrophic picoplankton in turbid waters.

    Science.gov (United States)

    Somogyi, Boglárka; Pálffy, Károly; V-Balogh, Katalin; Botta-Dukát, Zoltán; Vörös, Lajos

    2017-01-01

    Autotrophic picoplankton (APP) abundance and contribution to phytoplankton biomass was studied in Hungarian shallow lakes to test the effect of inorganic turbidity determining the size distribution of the phytoplankton. The studied lakes displayed wide turbidity (TSS: 4-2250 mg l-1) and phytoplankton biomass (chlorophyll a: 1-460 μg l-1) range, as well as APP abundance (0 and 100 million cells ml-1) and contribution (0-100%) to total phytoplankton biomass. Inorganic turbidity had a significant effect on the abundance and contribution of APP, resulting in higher values compared to other freshwater lakes with the same phytoplankton biomass. Our analysis has provided empirical evidence for a switching point (50 mg l-1 inorganic turbidity), above which turbidity is the key factor causing APP predominance regardless of phytoplankton biomass in shallow turbid lakes. Our results have shown that turbid shallow lakes are unique waters, where the formerly and widely accepted model (decreasing APP contribution with increasing phytoplankton biomass) is not applicable. We hypothesize that this unusual behaviour of APP in turbid waters is a result of either diminished underwater light intensity or a reduced grazing pressure due to high inorganic turbidity.

  6. Unusual behaviour of phototrophic picoplankton in turbid waters.

    Directory of Open Access Journals (Sweden)

    Boglárka Somogyi

    Full Text Available Autotrophic picoplankton (APP abundance and contribution to phytoplankton biomass was studied in Hungarian shallow lakes to test the effect of inorganic turbidity determining the size distribution of the phytoplankton. The studied lakes displayed wide turbidity (TSS: 4-2250 mg l-1 and phytoplankton biomass (chlorophyll a: 1-460 μg l-1 range, as well as APP abundance (0 and 100 million cells ml-1 and contribution (0-100% to total phytoplankton biomass. Inorganic turbidity had a significant effect on the abundance and contribution of APP, resulting in higher values compared to other freshwater lakes with the same phytoplankton biomass. Our analysis has provided empirical evidence for a switching point (50 mg l-1 inorganic turbidity, above which turbidity is the key factor causing APP predominance regardless of phytoplankton biomass in shallow turbid lakes. Our results have shown that turbid shallow lakes are unique waters, where the formerly and widely accepted model (decreasing APP contribution with increasing phytoplankton biomass is not applicable. We hypothesize that this unusual behaviour of APP in turbid waters is a result of either diminished underwater light intensity or a reduced grazing pressure due to high inorganic turbidity.

  7. Turbidity and salinity affect feeding performance and physiological stress in the endangered delta smelt.

    Science.gov (United States)

    Hasenbein, Matthias; Komoroske, Lisa M; Connon, Richard E; Geist, Juergen; Fangue, Nann A

    2013-10-01

    Coastal estuaries are among the most heavily impacted ecosystems worldwide with many keystone fauna critically endangered. The delta smelt (Hypomesus transpacificus) is an endangered pelagic fish species endemic to the Sacramento-San Joaquin Estuary in northern California, and is considered as an indicator species for ecosystem health. This ecosystem is characterized by tidal and seasonal gradients in water parameters (e.g., salinity, temperature, and turbidity), but is also subject to altered water-flow regimes due to water extraction. In this study, we evaluated the effects of turbidity and salinity on feeding performance and the stress response of delta smelt because both of these parameters are influenced by water flows through the San Francisco Bay Delta (SFBD) and are known to be of critical importance to the completion of the delta smelt's life cycle. Juvenile delta smelt were exposed to a matrix of turbidities and salinities ranging from 5 to 250 nephelometric turbidity units (NTUs) and 0.2 to 15 parts per thousand (ppt), respectively, for 2 h. Best statistical models using Akaike's Information Criterion supported that increasing turbidities resulted in reduced feeding rates, especially at 250 NTU. In contrast, best explanatory models for gene transcription of sodium-potassium-ATPase (Na/K-ATPase)-an indicator of osmoregulatory stress, hypothalamic pro-opiomelanocortin-a precursor protein to adrenocorticotropic hormone (expressed in response to biological stress), and whole-body cortisol were affected by salinity alone. Only transcription of glutathione-S-transferase, a phase II detoxification enzyme that protects cells against reactive oxygen species, was affected by both salinity and turbidity. Taken together, these data suggest that turbidity is an important determinant of feeding, whereas salinity is an important abiotic factor influencing the cellular stress response in delta smelt. Our data support habitat association studies that have shown greater

  8. Water quality of Tampa Bay, Florida, June 1972-May 1976

    Science.gov (United States)

    Goetz, Carole L.; Goodwin, Carl R.

    1980-01-01

    A comprehensive assessment of the water quality of Tampa Bay, Florida, was initiated in 1970 to provide background information to evaluate the effects of widening and deepening the ship channel to the port of Tampa. This report provides results of water-quality sampling in the bay from 1972 to 1976, prior to dredging. Measurements of temperature, dissolved oxygen, pH, turbidity, specific conductance, biochemical oxygen demand, and total organic carbon were made as well as measurements for several nutrient, metal, and pesticide parameters. Many parameters were measured at as many as three points in the vertical. These data indicate that Tampa Bay is well-mixed vertically with little density stratification. Time histories of average temperature, dissolved oxygen, pH, turbidity, specific conductance and nutrient values within four subareas of Tampa Bay are given to reveal seasonal or other trends during the period of record. Temperature, dissolved oxygen, pH, turbidity, specific conductance, nutrient, biochemical oxygen demand, total organic carbon, and metal data are also presented as areal distributions. Nutrient concentrations were generally higher in Hillsborough Bay than in other sub-areas of Tampa Bay. Biochemical oxygen demand, total organic carbon, and total organic nitrogen distribution patterns show regions of highest concentrations to be along bay shorelines near population centers. Of the metals analyzed, all were present in concentrations of less than 1 milligram per liter. (USGS)

  9. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    Science.gov (United States)

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  10. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Science.gov (United States)

    2010-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...

  11. Changes in the physicochemical and microbial quality of wastewater ...

    African Journals Online (AJOL)

    Changes in the physicochemical and microbial quality of wastewater from a ... different points of a treatment plant and bacterial isolates were obtained from them. ... The biological oxygen demand, dissolved oxygen, pH, temperature, turbidity, ...

  12. Estimation of atmospheric turbidity over Ghardaïa city

    OpenAIRE

    Djafer, Djelloul; Irbah, Abdanour

    2013-01-01

    International audience; The atmospheric turbidity expresses the attenuation of the solar radiation that reaches the Earth's surface under cloudless sky and describes the optical thickness of the atmosphere. We investigate the atmospheric turbidity over Gharda¨ıa city using two turbidity parameters, the Linke turbidity factor and the Angstr ¨om turbidity coefficient. Their values and temporal variation are obtained from data recorded between 2004 and 2008 at Gharda¨ıa. The results show that bo...

  13. Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts.

    Science.gov (United States)

    Ochando, Thomas; Mouret, Jean-Roch; Humbert-Goffard, Anne; Sablayrolles, Jean-Marie; Farines, Vincent

    2017-08-01

    Available nitrogen, lipids, or oxygen are nutrients with major impact on the kinetics of winemaking fermentation. Assimilable nitrogen is usually the growth-limiting nutrient which availability determines the fermentation rate and therefore the fermentation duration. In some particular cases, as in Champagne, grape musts have high available nitrogen content and low turbidity, i.e., below 50 Nephelometric Turbidity Unit (NTU). In the case of low turbidity, the availability of lipids, particularly phytosterols, becomes limiting. In this situation, control of oxygenation, which is necessary for lipid synthesis by yeast, is particularly crucial during fermentation. To mimic and understand these situations, a synthetic medium simulating the average composition of a Champagne must was used. This medium contained phytosterol (mainly β-sitosterol) concentrations ranging from 0 to 8mg/L corresponding to turbidity between 10 and 90 NTU. Population reached during the stationary phase and the maximum fermentation rate are conditioned by the initial phytosterol concentration determining the amount of nitrogen consumption. An early loss of viability was observed when the lipid concentrations were very low. For example, the viability continuously decreased during the stationary phase to a final value of 50% for an initial phytosterol concentration of 1mg/L. In some fermentations, 10mg/L oxygen were added at the end of the growth phase to combine the effects of initial content of phytosterols in the musts and the de novo synthesis of ergosterol and unsaturated fatty acids induced by oxygen addition. Effect of oxygen supply on the fermentation kinetics was particularly significant for media with low phytosterol contents. For example, the maximum fermentation rate was increased by 1.4-fold and the fermentation time was 70h shorter with oxygen addition in the medium containing 2mg/L of phytosterols. As a consequence of the oxygen supply, for the media containing 3, 5 and 8mg/L of

  14. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids

    Directory of Open Access Journals (Sweden)

    Jiunn-Lin Wu

    2014-11-01

    Full Text Available Total suspended solid (TSS is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR and artificial neural network (ANN were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L−1 and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L−1 and less than 600 NTU, respectively and used rather than using whole dataset (R2 = 0.93 versus 0.88 for turbidity and R2 = 0.83 versus 0.58 for TSS. On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R2 = 0.66 was better than with the MR

  15. Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids.

    Science.gov (United States)

    Wu, Jiunn-Lin; Ho, Chung-Ru; Huang, Chia-Ching; Srivastav, Arun Lal; Tzeng, Jing-Hua; Lin, Yao-Tung

    2014-11-28

    Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR) and artificial neural network (ANN) were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L(-1) and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L(-1) and less than 600 NTU, respectively and used rather than using whole dataset (R(2) = 0.93 versus 0.88 for turbidity and R(2) = 0.83 versus 0.58 for TSS). On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R(2) = 0.66) was better than with the MR approach (R

  16. Differential turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Bates, J.A.; Kleckner, E.W.; Michalsky, J.J.; Schrotke, P.M.; Thorp, J.M.

    1978-01-01

    An experiment to exmine differential turbidity effects on measured insolation between the Rattlesnake Observatory and the Hanford Meteorological Station was conducted during summer 1977. Several types of solar radiation instruments were used, including pyranometers, multiwavelength sunphotometers, and an active cavity radiometer. Preliminary results show dramatic temporal variability of aerosol loading at HMS and significant insolation and turbidity differences between the Observatory and HMS

  17. Reduction of Turbidity of Water Using Locally Available Natural Coagulants

    Science.gov (United States)

    Asrafuzzaman, Md.; Fakhruddin, A. N. M.; Hossain, Md. Alamgir

    2011-01-01

    Turbidity imparts a great problem in water treatment. Moringa oleifera, Cicer arietinum, and Dolichos lablab were used as locally available natural coagulants in this study to reduce turbidity of synthetic water. The tests were carried out, using artificial turbid water with conventional jar test apparatus. Optimum mixing intensity and duration were determined. After dosing water-soluble extracts of Moringa oleifera, Cicer arietinum, and Dolichos lablab reduced turbidity to 5.9, 3.9, and 11.1 nephelometric turbidity unit (NTU), respectively, from 100 NTU and 5, 3.3, and 9.5, NTU, respectively, after dosing and filtration. Natural coagulants worked better with high, turbid, water compare to medium, or low, turbid, water. Highest turbidity reduction efficiency (95.89%) was found with Cicer arietinum. About 89 to 96% total coliform reduction were also found with natural coagulant treatment of turbid water. Using locally available natural coagulants, suitable, easier, and environment friendly options for water treatment were observed. PMID:23724307

  18. PROPOSED MODIFICATIONS OF K2-TEMPERATURE RELATION AND LEAST SQUARES ESTIMATES OF BOD (BIOCHEMICAL OXYGEN DEMAND) PARAMETERS

    Science.gov (United States)

    A technique is presented for finding the least squares estimates for the ultimate biochemical oxygen demand (BOD) and rate coefficient for the BOD reaction without resorting to complicated computer algorithms or subjective graphical methods. This may be used in stream water quali...

  19. Polymeric turbidity sensor fabricated by laser direct writing

    International Nuclear Information System (INIS)

    Li, Shu; Lin, Qiao; Wu, George; Chen, Liuhua; Wu, X

    2011-01-01

    The design of a miniature-sized turbidity sensor fabricated by laser direct writing was proposed and tested. A dual-beam dual-detector sensing structure was written by a 488 nm laser from UV curable optical polymer to form a 4 mm diameter turbidity sensing probe, with the fabrication process being shortened to a few seconds. Experimental tests on prototypes were conducted by using standard turbidity solutions, and the data were processed with a self-adapting neural network based on a single input single output algorithm. The scattering coefficient for normalized turbidity of the standards was obtained, and system accuracy was validated by an error analysis. Experimental results indicated that in the testing situation presented in this paper, the sensor was capable of responding to turbidity with a relative error of about 3%

  20. Monitoring suspended sediments and turbidity in Sahelian basins

    Science.gov (United States)

    Robert, Elodie; Grippa, Manuela; Kergoat, Laurent; Martinez, Jean-Michel; Pinet, Sylvain; Nogmana, Soumaguel

    2017-04-01

    Suspended matter can carry viruses and bacteria that are pathogenic to humans and can foster their development. Therefore, turbidity can be considered a vector of microbiological contaminants, which cause diarrheal diseases, and it can be used as a proxy for fecal bacteria. Few studies have focused on water turbidity in rural Africa, where many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, reservoirs, lakes and rivers. Diarrheal diseases are indeed the second cause of infant mortality in sub-Saharan Africa. Furthermore, in this region, environment survey is minimal or inexistent. Monitoring water turbidity therefore represents a challenge for health improvement. Turbidity refers to the optical properties of water and it is well suited to monitoring by remote sensing. Because it varies in space and time and because the small water bodies (Africa challenges the use of remote sensing and questions the methods developed for less turbid waters. In addition, high aerosol loadings (mineral dust and biomass burning) may be detrimental to turbidity retrieval in this region because of inaccurate atmospheric corrections. We propose a method to monitor water quality of Sahelian ponds, lakes and rivers using in-situ and remote sensing data, which is tested at different sites for which in-situ water turbidity and suspended sediments concentration (SSSC) measurements are acquired. Water sample are routinely collected at two sites within the AMMA-CATCH observatory part of the Réseau de Bassin Versants (RBV) French network: the Agoufou pond in northern Mali (starting September 2014), and the Niger River at Niamey in Niger (starting June 2015). These data are used to evaluate different indexes to derive water turbidity from the reflectance in the visible and infrared bands of high resolution optical sensors (LANDSAT, SENTINEL2). The temporal evolution of the turbidity of ponds, lakes and rivers is well captured at the seasonal and

  1. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    Directory of Open Access Journals (Sweden)

    Hyun Jung Cho

    2007-06-01

    Full Text Available Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns.

  2. Atmospheric turbidity parameters in the high polluted site of egypt

    International Nuclear Information System (INIS)

    Shaltout, M.A.M.; Rahoma, U.A.

    1996-01-01

    Monthly variations of Linke, angstrom and Schuepp turbidity coefficients and gamma exponent as well as the influence of climatic factor on them are analysed. For each of these turbidity coefficients; calculated from measurements of broad band filters at Helwan, egypt, desert climate, are reported. A linear regression model fitted to Angstrom's turbidity turbidity coefficient beta and Linke turbidity L for Helwan. The calculation showed that, it is higher values of atmospheric turbidity coefficients due to, both the effect of air pollutants in the Helwan atmosphere from the four cement companies and some of heavy industrial factories, and the effect of the former's desert climate. 6 figs., 2 tabs

  3. Turbidity in oil-in-water-emulsions - Key factors and visual perception.

    Science.gov (United States)

    Linke, C; Drusch, S

    2016-11-01

    The aim of the present study is to systematically describe the factors affecting turbidity in beverage emulsions and to get a better understanding of visual perception of turbidity. The sensory evaluation of the human visual perception of turbidity showed that humans are most sensitive to turbidity differences between two samples in the range between 1000 and 1500 NTU (ratio) (nephelometric turbidity units). At very high turbidity values >2000 TU in NTU (ratio) were needed to distinguish between samples that they were perceived significantly different. Particle size was the most important factor affecting turbidity. It was shown that a maximum turbidity occurs at a mean volume - surface diameter of 0.2μm for the oil droplet size. Additional parameters were the refractive index, the composition of the aqueous phase and the presence of excess emulsifier. In a concentration typical for a beverage emulsion a change in the refractive index of the oil phase may allow the alteration of turbidity by up to 30%. With the knowledge on visual perception of turbidity and the determining factors, turbidity can be tailored in product development according to the customer requirements and in quality control to define acceptable variations in optical appearance. Copyright © 2016. Published by Elsevier Ltd.

  4. Investigation of turbidity effect on exergetic performance of solar ponds

    International Nuclear Information System (INIS)

    Atiz, Ayhan; Bozkurt, Ismail; Karakilcik, Mehmet; Dincer, Ibrahim

    2014-01-01

    Highlights: • A comprehensive experimental work on a turbidity of the solar pond. • Percentage transmission evaluation of the turbid and clean salty water of the zones. • Exergy analysis of the inner zones for turbid and clean salty water. • Turbidity effect on exergy efficiencies of the solar pond. • The thermal performance assessment by comparing the exergetic efficiencies of the solar pond. - Abstract: The present paper undertakes a study on the exergetic performance assessment of a solar pond and experimental investigation of turbidity effect on the system performance. There are various types of solar energy applications including solar ponds. One of significant parameters to consider in the assessment of solar pond performance is turbidity which is caused by dirty over time (e.g., insects, leaf, dust and wind bringing parts fall down). Thus, the turbidity in the salty water decreases solar energy transmission through the zones. In this study, the samples are taken from the three zones of the solar pond and analyzed using a spectrometer for three months. The transmission aspects of the solar pond are investigated under calm and turbidity currents to help distinguish the efficiencies. Furthermore, the maximum exergy efficiencies are found to be 28.40% for the calm case and 22.27% with turbidity effects for the month of August, respectively. As a result, it is confirmed that the solar pond performance is greatly affected by the turbidity effect

  5. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Turbidity sampling and analytical... § 141.22 Turbidity sampling and analytical requirements. The requirements in this section apply to... the water distribution system at least once per day, for the purposes of making turbidity measurements...

  6. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  7. Treatment of a Textile Effluent by Electrochemical Oxidation and Coupled System Electooxidation–Salix babylonica

    Directory of Open Access Journals (Sweden)

    Alejandra Sánchez-Sánchez

    2018-01-01

    Full Text Available The removal of pollutants from textile wastewater via electrochemical oxidation and a coupled system electrooxidation—Salix babylonica, using boron-doped diamond electrodes was evaluated. Under optimal conditions of pH 5.23 and 3.5 mA·cm−2 of current density, the electrochemical method yields an effective reduction of chemical oxygen demand by 41.95%, biochemical oxygen demand by 83.33%, color by 60.83%, and turbidity by 26.53% at 300 minutes of treatment. The raw and treated wastewater was characterized by infrared spectroscopy to confirm the degradation of pollutants. The wastewater was oxidized at 15-minute intervals for one hour and was placed in contact with willow plants for 15 days. The coupled system yielded a reduction of the chemical oxygen demand by 14%, color by 85%, and turbidity by 93%. The best efficiency for the coupled system was achieved at 60 minutes, at which time the plants achieved more biomass and photosynthetic pigments.

  8. Efficiency of chitosan (Poly-[D] Glucosamine as natural organic coagulant in pre-treatment of active carbon effluent in Panacan, Davao City

    Directory of Open Access Journals (Sweden)

    Rezel A. Cinco

    2016-12-01

    Full Text Available The utilization of environmental friendly coagulant is widened which can be proposed as an imperative option for water treatment. In this study, the efficiency of Chitosan, a natural organic coagulant in pre-treating Active Carbon Effluent (ACE as alternative to conventional metal based coagulants in terms of Turbidity (T, Chemical Oxygen Demand (COD and Total Suspended Solid (TSS was evaluated. Collection of effluent for testing was conducted at the Philippine – Japan Active Carbon Corporation, Panacan, Davao City, Philippines. Chitosan (Deacetylated chitin; Poly- [1- 4] – β- glucosamine was obtained from Qingdao Develop Chemistry Co., Ltd., China. Suspensions added with experimental coagulant dosages (0.1, 0.5, 1.0, 5.0 and 10.0 mgL-1 were made by sediment mixer maintained at pH 5 and analyzed with the following parameters: Total Suspended Solid (TSS, Chemical Oxygen Demand (COD and Turbidity (T. The efficiency of the chitosan coagulation was found to be high in terms of turbidity (99.2%, Chemical Oxygen Demand (97.2% in 5 mg/L dose of chitosan and Total Suspended Solid (99.15% in 10 mg/L dose of chitosan. It can be concluded that Chitosan is an effective coagulant which can significantly reduce the level of turbidity, COD and TSS. A further study with different types of effluent and higher Chitosan doses are needed for recommending it for practical application as a natural organic coagulant.

  9. Manual or automated measuring of antipsychotics' chemical oxygen demand.

    Science.gov (United States)

    Pereira, Sarah A P; Costa, Susana P F; Cunha, Edite; Passos, Marieta L C; Araújo, André R S T; Saraiva, M Lúcia M F S

    2018-05-15

    Antipsychotic (AP) drugs are becoming accumulated in terrestrial and aqueous resources due to their actual consumption. Thus, the search of methods for assessing the contamination load of these drugs is mandatory. The COD is a key parameter used for monitoring water quality upon the assessment of the effect of polluting agents on the oxygen level. Thus, the present work aims to assess the chemical oxygen demand (COD) levels of several typical and atypical antipsychotic drugs in order to obtain structure-activity relationships. It was implemented the titrimetric method with potassium dichromate as oxidant and a digestion step of 2h, followed by the measurement of remained unreduced dichromate by titration. After that, an automated sequential injection analysis (SIA) method was, also, used aiming to overcome some drawbacks of the titrimetric method. The results obtained showed a relationship between the chemical structures of antipsychotic drugs and their COD values, where the presence of aromatic rings and oxidable groups give higher COD values. It was obtained a good compliance between the results of the reference batch procedure and the SIA system, and the APs were clustered in two groups, with the values ratio between the methodologies, of 2 or 4, in the case of lower or higher COD values, respectively. The SIA methodology is capable of operating as a screening method, in any stage of a synthetic process, being also more environmentally friendly, and cost-effective. Besides, the studies presented open promising perspectives for the improvement of the effectiveness of pharmaceutical removal from the waste effluents, by assessing COD values. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Assessing the risk posed by high-turbidity water to water supplies.

    Science.gov (United States)

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  11. Compact turbidity meter

    Science.gov (United States)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  12. Climate-change refugia: shading reef corals by turbidity.

    Science.gov (United States)

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change. © 2015 John Wiley & Sons Ltd.

  13. Microscopic imaging through turbid media Monte Carlo modeling and applications

    CERN Document Server

    Gu, Min; Deng, Xiaoyuan

    2015-01-01

    This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.

  14. Turbidity interferes with foraging success of visual but not chemosensory predators.

    Science.gov (United States)

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  15. Performance Evaluation of Five Turbidity Sensors in Three Primary Standards

    Science.gov (United States)

    Snazelle, Teri T.

    2015-10-28

    Open-File Report 2015-1172 is temporarily unavailable.Five commercially available turbidity sensors were evaluated by the U.S. Geological Survey, Hydrologic Instrumentation Facility (HIF) for accuracy and precision in three types of turbidity standards; formazin, StablCal, and AMCO Clear (AMCO–AEPA). The U.S. Environmental Protection Agency (EPA) recognizes all three turbidity standards as primary standards, meaning they are acceptable for reporting purposes. The Forrest Technology Systems (FTS) DTS-12, the Hach SOLITAX sc, the Xylem EXO turbidity sensor, the Yellow Springs Instrument (YSI) 6136 turbidity sensor, and the Hydrolab Series 5 self-cleaning turbidity sensor were evaluated to determine if turbidity measurements in the three primary standards are comparable to each other, and to ascertain if the primary standards are truly interchangeable. A formazin 4000 nephelometric turbidity unit (NTU) stock was purchased and dilutions of 40, 100, 400, 800, and 1000 NTU were made fresh the day of testing. StablCal and AMCO Clear (for Hach 2100N) standards with corresponding concentrations were also purchased for the evaluation. Sensor performance was not evaluated in turbidity levels less than 40 NTU due to the unavailability of polymer-bead turbidity standards rated for general use. The percent error was calculated as the true (not absolute) difference between the measured turbidity and the standard value, divided by the standard value.The sensors that demonstrated the best overall performance in the evaluation were the Hach SOLITAX and the Hydrolab Series 5 turbidity sensor when the operating range (0.001–4000 NTU for the SOLITAX and 0.1–3000 NTU for the Hydrolab) was considered in addition to sensor accuracy and precision. The average percent error in the three standards was 3.80 percent for the SOLITAX and -4.46 percent for the Hydrolab. The DTS-12 also demonstrated good accuracy with an average percent error of 2.02 percent and a maximum relative standard

  16. Assessment of erosion and sedimentation dynamic in a combined sewer network using online turbidity monitoring.

    Science.gov (United States)

    Bersinger, T; Le Hécho, I; Bareille, G; Pigot, T

    2015-01-01

    Eroded sewer sediments are a significant source of organic matter discharge by combined sewer overflows. Many authors have studied the erosion and sedimentation processes at the scale of a section of sewer pipe and over short time periods. The objective of this study was to assess these processes at the scale of an entire sewer network and over 1 month, to understand whether phenomena observed on a small scale of space and time are still valid on a larger scale. To achieve this objective the continuous monitoring of turbidity was used. First, the study of successive rain events allows observation of the reduction of the available sediment and highlights the widely different erosion resistance for the different sediment layers. Secondly, calculation of daily chemical oxygen demand (COD) fluxes during the entire month was performed showing that sediment storage in the sewer pipe after a rain period is important and stops after 5 days. Nevertheless, during rainfall events, the eroded fluxes are more important than the whole sewer sediment accumulated during a dry weather period. This means that the COD fluxes promoted by runoff are substantial. This work confirms, with online monitoring, most of the conclusions from other studies on a smaller scale.

  17. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  18. Atmospheric turbidity and the diffuse irradiance in Lagos, Nigeria

    International Nuclear Information System (INIS)

    Maduekwe, A.A.L.; Chendo, M.A.C.

    1994-06-01

    The relationships between the total hemispherical irradiance reaching the earth surface in Lagos, Nigeria and the turbidity coefficients at two wavelengths namely λ(500) and λ(880) measured with a Volz sun photometer have been investigated. Using simple piecewise linear regression relationships between the atmospheric turbidity using Angstrom turbidity coefficients and the diffuse components of solar radiation are presented. (author). 18 refs, 11 figs, 3 tabs

  19. The use of the Kelor Seeds (Moringa oleifera) as alternative coagulant in waste delivery process of textile industrial waste

    Science.gov (United States)

    Rambe, AM; Pandia, S.; Ginting, MHS; Tambun, R.; Haryanto, B.

    2018-02-01

    This research is to know the influence of moringa seed as coagulant, pH of liquid waste textile industry (jeans wash), size of moringa seed particles to decrease of turbidity percentage. Measurements were made to Total Suspended Solid, Color Rate and Chemical Oxygen Demand for wastewater textile industry by coagulation - flocculation method. Variables of this study were conducted on dosage of moringa, with particle size 212 mesh. The results showed that moringa seeds as coagulant dose optimum is 1250 mg/L for the textile industry wastewater at pH 7.8. Moringa seed powder is about 212 mesh with a dose of 1250 mg/L can lower the turbidity of 77.77%, Total Suspended Solid amounted to 83.69% and Chemical Oxygen Demand amounted to 75.86%.

  20. Biological oxygen demand in soils and hydrogel compositions for plant protection of the rhizosphere

    Science.gov (United States)

    Valentinovich Smagin, Andrey

    2018-02-01

    Potential biological activity of mineral and organogenic samples from light-textured sod-podzolic soils as well as of hydrogel compositions for protecting the root layer from pathogenic microflora and unfavorable edaphic factors were studied in laboratory conditions by oxygen consumption under the optimal hydrothermic conditions with portable gas analyzers. We have conducted ecological standardization of biological activity and organic matter destruction estimated by biological oxygen demand (BOD) in the widespread sandy soils. The primary outcome was the scale of gradations of biological oxygen uptake in soils with a range of quantities of potential biological activity from “very low” (140 g·m-3·hour-1), obtained on the basis of statistical processing of data array 1308 measurements. Acrylic polymer hydrogels had BOD = 0.2-2 g·m-3·hour-1, which corresponded to the periods of their half-lives from 0.2±0.1 to 6.8± 4.5 years, or relatively low resistance to biodestruction. In contrast to the pure gels, hydrogel compositions for rhizosphere based on ionic and colloidal silver showed low biological activity (BOD=0.01-0.2 g·m-3· hour-1) and, accordingly, significant resistance to biodegradation with half-lives from 5 to 70 years and above.

  1. Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.

    Science.gov (United States)

    Chang, Qing; Zhang, Min; Wang, Jinxi

    2009-09-30

    A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.

  2. Insolation and turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Thorp, J.M.

    1979-01-01

    From observations obtained at the Rattlesnake Observatory and the Hanford Meteorological Station, the redistribution of solar radiation as a result of aerosols in the lowest 1 km of the earth's atmosphere has been examined using several types of solar radiation measuring instruments. Large turbidity excursions are observed with high values associated with stagnant air masses and low values associated with frontal passage. Turbidities show variations in color dependence that arise because of changes in particle size distribution

  3. Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction

    Science.gov (United States)

    Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.

    2012-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies over 1 billion gallons of water per day to more than 9 million customers. DEP's "West of Hudson" reservoirs located in the Catskill Mountains are unfiltered per a renewable filtration avoidance determination granted by the EPA. While water quality is usually pristine, high volume storm events occasionally cause the reservoirs to become highly turbid. A logical strategy for turbidity control is to temporarily remove the turbid reservoirs from service. While effective in limiting delivery of turbid water and reducing the need for in-reservoir alum flocculation, this strategy runs the risk of negatively impacting water supply reliability. Thus, it is advantageous for DEP to understand how long a particular turbidity event will affect their system. In order to understand the duration, intensity and total load of a turbidity event, predictions of future in-stream turbidity values are important. Traditionally, turbidity predictions have been carried out by applying streamflow observations/forecasts to a flow-turbidity rating curve. However, predictions from rating curves are often inaccurate due to inter- and intra-event variability in flow-turbidity relationships. Predictions can be improved by applying an autoregressive moving average (ARMA) time series model in combination with a traditional rating curve. Since 2003, DEP and the Upstate Freshwater Institute have compiled a relatively consistent set of 15-minute turbidity observations at various locations on Esopus Creek above Ashokan Reservoir. Using daily averages of this data and streamflow observations at nearby USGS gauges, flow-turbidity rating curves were developed via linear regression. Time series analysis revealed that the linear regression residuals may be represented using an ARMA(1,2) process. Based on this information, flow-turbidity regressions with

  4. Turbidity-controlled suspended sediment sampling for runoff-event load estimation

    Science.gov (United States)

    Jack Lewis

    1996-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...

  5. Implementation guide for turbidity threshold sampling: principles, procedures, and analysis

    Science.gov (United States)

    Jack Lewis; Rand Eads

    2009-01-01

    Turbidity Threshold Sampling uses real-time turbidity and river stage information to automatically collect water quality samples for estimating suspended sediment loads. The system uses a programmable data logger in conjunction with a stage measurement device, a turbidity sensor, and a pumping sampler. Specialized software enables the user to control the sampling...

  6. Separating the effects of partial submergence and soil oxygen demand on plant physiology.

    Science.gov (United States)

    van Bodegom, Peter M; Sorrell, Brian K; Oosthoek, Annelies; Bakker, Chris; Aerts, Rien

    2008-01-01

    In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more

  7. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    Science.gov (United States)

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  8. Dynamic imaging through turbid media based on digital holography.

    Science.gov (United States)

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  9. A contribution to understanding the turbidity behaviour in an Amazon floodplain

    OpenAIRE

    Alcântara, E.; Novo, E.; Stech, J.; Lorenzzetti, J.; Barbosa, C.; Assireu, A.; Souza, A.

    2010-01-01

    Observations of turbidity provide quantitative information about water quality. However, the number of available in situ measurements for water quality determination is usually limited in time and space. Here, we present an analysis of the temporal and spatial variability of the turbidity of an Amazon floodplain lake using two approaches: (1) wavelet analysis of a turbidity time series measured by an automatic monitoring system, which should be improved/simplified, and (2) turbidity samples m...

  10. High Turbidity Solis Clear Sky Model: Development and Validation

    Directory of Open Access Journals (Sweden)

    Pierre Ineichen

    2018-03-01

    Full Text Available The Solis clear sky model is a spectral scheme based on radiative transfer calculations and the Lambert–Beer relation. Its broadband version is a simplified fast analytical version; it is limited to broadband aerosol optical depths lower than 0.45, which is a weakness when applied in countries with very high turbidity such as China or India. In order to extend the use of the original simplified version of the model for high turbidity values, we developed a new version of the broadband Solis model based on radiative transfer calculations, valid for turbidity values up to 7, for the three components, global, beam, and diffuse, and for the four aerosol types defined by Shettle and Fenn. A validation of low turbidity data acquired in Geneva shows slightly better results than the previous version. On data acquired at sites presenting higher turbidity data, the bias stays within ±4% for the beam and the global irradiances, and the standard deviation around 5% for clean and stable condition data and around 12% for questionable data and variable sky conditions.

  11. Turbidity of mouthrinsed water as a screening index for oral malodor.

    Science.gov (United States)

    Ueno, Masayuki; Takeuchi, Susumu; Samnieng, Patcharaphol; Morishima, Seiji; Shinada, Kayoko; Kawaguchi, Yoko

    2013-08-01

    The objectives of this research were to examine the relationship between turbidity of mouthrinsed water and oral malodor, and to evaluate whether the turbidity could be used to screen oral malodor. The subjects were 165 oral malodor patients. Gas chromatography and organoleptic test (OT) were used for oral malodor measurement. Oral examination along with collection of saliva and quantification of bacteria was conducted. Turbidity of mouthrinsed water was measured with turbidimeter. Logistic regression with oral malodor status by OT as the dependent variable and receiver operating characteristic (ROC) analysis were performed. Turbidity had a significant association with oral malodor status. In addition, ROC analysis showed that the turbidity had an ability to screen for presence or absence of oral malodor. Turbidity could reflect or represent other influential variables of oral malodor and may be useful as a screening method for oral malodor. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.

    Science.gov (United States)

    Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew

    2015-12-01

    Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments.

  13. Turbidity-controlled sampling for suspended sediment load estimation

    Science.gov (United States)

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  14. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  15. Effect of Canister Movement on Water Turbidity

    International Nuclear Information System (INIS)

    TRIMBLE, D.J.

    2000-01-01

    Requirements for evaluating the adherence characteristics of sludge on the fuel stored in the K East Basin and the effect of canister movement on basin water turbidity are documented in Briggs (1996). The results of the sludge adherence testing have been documented (Bergmann 1996). This report documents the results of the canister movement tests. The purpose of the canister movement tests was to characterize water turbidity under controlled canister movements (Briggs 1996). The tests were designed to evaluate methods for minimizing the plumes and controlling water turbidity during fuel movements leading to multi-canister overpack (MCO) loading. It was expected that the test data would provide qualitative visual information for use in the design of the fuel retrieval and water treatment systems. Video recordings of the tests were to be the only information collected

  16. Performance of alum and assorted coagulants in turbidity removal of muddy water

    Science.gov (United States)

    Malik, Qasim H.

    2018-03-01

    Coagulation is a primary and cost effective process in water treatment plants. Under optimum conditions, not only it effectively removes turbidity but also results in reduced sludge volume and subsequently minimizes sludge management costs. Highly turbid water from streams, canals, rivers and rain run offs was run through jar test for turbidity removal. The brown water with 250NTU turbidity when coagulated with alum and assorted coagulants proved that maximum turbidity removal was witnessed using alum dose of 0.25 g/l at ph 6 with a sedimentation time of 30 min.

  17. Turbidity data: Hollywood Beach, Florida, January 1990 to April 1992

    OpenAIRE

    Dompe, Philip E.; Hanes, D. M.

    1993-01-01

    This data report contains measurements of turbidity obtained near Hollywood, Florida, during the period of January 1990 to April 1992. Data were obtained within one meter of the seabed in depths of 5 m and 10 m. Turbidity was found to vary significantly under natural conditions, with values during storms sometimes exceeding 29 NTU. Tables and plots of turbidity data are presented. (Document contains 77 pages.)

  18. Use of index analysis to evaluate the water quality of a stream ...

    African Journals Online (AJOL)

    In this paper, the water quality of a stream that receives industrial effluents is evaluated through the analysis of two indices. Data (dissolved oxygen, biochemical oxygen demand, pH, turbidity, colour, temperature and thermotolerant coliforms) were collected from five stations in the Mussuré Stream, located in João Pessoa ...

  19. Turbidity threshold sampling for suspended sediment load estimation

    Science.gov (United States)

    Jack Lewis; Rand Eads

    2001-01-01

    Abstract - The paper discusses an automated procedure for measuring turbidity and sampling suspended sediment. The basic equipment consists of a programmable data logger, an in situ turbidimeter, a pumping sampler, and a stage-measuring device. The data logger program employs turbidity to govern sample collection during each transport event. Mounting configurations and...

  20. Use of Moringa oleifera seeds for the removal of turbidity of water supply

    Directory of Open Access Journals (Sweden)

    Gustavo Lopes Muniz

    2015-04-01

    Full Text Available Water used for human consumption may contain various impurities and solid particles in suspension that increase its turbidity level. Moringa oleifera Lam is a plant that has the potential to be used as coagulating agent in removing turbidity. The objective of this work was to evaluate the efficiency of Moringa oleifera seeds used in shells and without shells in the removal of turbidity from waters with different degrees of turbidity. Waters were used with 70, 250 and 400 initial NTU obtained synthetically. The extract of moringa seeds was prepared using unshelled and shelled seeds, seeking a simplified procedure and practice. The sedimentation times and dose of coagulant solution used were based on existing recommendations in the literature. All treatments were performed with three replicates and the averages depicted in graphs. The results showed that the use of extract of moringa seeds in shells was more efficient than with unshelled seeds in the removal of turbidity of all treatments and that the shelled seeds removed more than 99% of the initial turbidity of the water samples. Furthermore, there was a direct relationship between turbidity removal efficiency and the level of initial turbidity of the samples. The seeds were more efficient in removing turbidity of the water with a higher level of initial turbidity.

  1. Collagen I self-assembly: revealing the developing structures that generate turbidity.

    Science.gov (United States)

    Zhu, Jieling; Kaufman, Laura J

    2014-04-15

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    Science.gov (United States)

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  3. Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water

    Science.gov (United States)

    Cai, Youfa; Fu, Xing; Gao, Xiaolu; Li, Lianyin

    2018-02-01

    With the increasingly stricter control of pollutant emission in China, the on-line automatic monitoring of water quality is particularly urgent. The chemical oxygen demand (COD) is a comprehensive index to measure the contamination caused by organic matters, and thus it is taken as one important index of energy-saving and emission reduction in China’s “Twelve-Five” program. So far, the COD on-line automatic monitoring instrument has played an important role in the field of sewage monitoring. This paper reviews the existing methods to achieve on-line automatic monitoring of COD, and on the basis, points out the future trend of the COD on-line automatic monitoring instruments.

  4. Explorations on Temperature, Oxygen, Nutrients and Habitat Demands of Fish Species Found in River Coruh

    Directory of Open Access Journals (Sweden)

    Bilal Akbulut

    2009-04-01

    Full Text Available For the protection of our natural resources, fish species being economic and ecological richness of the natural in the basin of the Çoruh to know their request is extremely a vital important issue. In this study, temperature and oxygen demand, food and habitat of 18 fish species in six families found in river Çoruh assessed and discussed with the literature and database. Limiting the impact of water temperature on the reproductive, growth and nutrition emphasized. The fish species in the basin spawn at temperatures between 14-30°C according to database. Three species belonging to a family feed with animal food floating in the water. The species belonging to the other families more feed mixed with plant and animal foods diet in the floor or near the ground. Importance of their environmental demands has clarified for conservation and sustainable use of these fish species inhabiting in Çoruh River.

  5. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    OpenAIRE

    Cho, Hyun Jung

    2007-01-01

    Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were...

  6. Turbidity Current Head Mixing

    Science.gov (United States)

    Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo

    2010-05-01

    A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on

  7. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples) are necessary to

  8. Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels

    Science.gov (United States)

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2018-01-01

    Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.

  9. Optical imaging of objects in turbid medium with ultrashort pulses

    Science.gov (United States)

    Wang, Chih-Yu; Sun, Chia-Wei; Yang, Chih Chung; Kiang, Yean-Woei; Lin, Chii-Wann

    2000-07-01

    Photons are seriously scattered when entering turbid medium; this the images of objects hidden in turbid medium can not be obtained by just collecting the transmitted photons. Early-arriving photons, which are also called ballistic or snake protons, are much less scattered when passing through turbid medium, and contains more image information than the late-arriving ones. Therefore, objects embedded in turbid medium can be imaged by gathering the ballistic and snake photons. In the present research we try to recover images of objects in turbid medium by simultaneously time-gate and polarization-gate to obtain the snake photons. An Argon-pumped Ti-Sapphire laser with 100fs pulses was employed as a light source. A streak camera with a 2ps temporal resolution was used to extract the ballistic and snake photons. Two pieces of lean swine meat, measured 4mmX3mm and 5xxX4mm, respectively, were placed in a 10cmX10cmX3cm acrylic tank, which was full of diluted milk. A pair of polarizer and an analyzer was used to extract the light that keeps polarization unchanged. The combination of time gating and polarization gating resulted in good images of objects hidden in turbid medium.

  10. An Investigation Into The Water Quality Of Buriganga - A River Running Through Dhaka

    Directory of Open Access Journals (Sweden)

    Shaikh Sayed Ahammed

    2015-08-01

    Full Text Available Buriganga river is used for bathing drinking irrigation and industrial purposes and is considered to be the lifeline of Dhaka city. The water quality of Buriganga has become a matter of concern due to serious levels of pollution. The objective of the study was to determine the water quality of the selected section of Buriganga river which passes through Dhaka city. The water quality parameters were sampled during different seasons summer winter and autumn and in 10 different sampling points along the river along the banks of the Buriganga River. The water quality parameters studied for this study were dissolved oxygen DO biochemical oxygen demand BOD chemical oxygen demand COD pH turbidity conductivity total dissolved solids TDS nitrate and phosphate. The results showed that DO BOD COD TDS turbidity nitrate and phosphate are at an alarming level and a discussion on the possible sources of the pollution are presented.

  11. Observation technology for remote operation in contaminated turbid water

    International Nuclear Information System (INIS)

    Kishimoto, Manabu; Mitsui, Takashi

    2016-01-01

    Remote underwater work in contaminated tanks and pools is one of major decontamination and decommissioning works under high-dose radiation environment. Generally in this kind of work, visual information is limited due to turbid water caused by suspended sludge particles in the water and it makes remote underwater work difficult to be performed safely and efficiently. Therefore, some alternative observation methods to optical cameras have been required. In order to satisfy this requirement, the alternative observation technology which can obtain visual information in contaminated turbid water has been developed since 2014. It is a technology using an acoustic imaging system in a designated airtight container. It provides the visual information in real time regardless of turbidity without significant contamination of any parts of the system. This paper will present development details of this innovative observation technology and its effectiveness to various remote works in contaminated turbid water. (author)

  12. Centrifuge experiments for removal of aluminium turbidity from Dhruva heavy water

    International Nuclear Information System (INIS)

    Shetiya, R.S.; Unny, V.K.P.; Nayak, A.P.

    1989-01-01

    Aluminium turbidity and associated radioactivity was observed in the moderator cum coolant system of Dhruva during initial power operation. Ion exchange resin beds of the purification system were not able to remove aluminium turbidity and radioactivity of system heavy water. Centrifuge technique was used as a convenient alternative method to remove the turbidity and radioactivity. (author)

  13. Future butanes supply/demand

    International Nuclear Information System (INIS)

    Whitley, S.C.

    1992-01-01

    This paper graphically depicts, through in-depth supply/demand analysis, how environmental regulations can be both bad and good for an industry. In the case of n-butane, the Environmental Protection Agency (EPA) summertime gasoline volatility regulations are a culprit - threatening to ultimately destroy refinery demand for the product as a gasoline blendstock. Waiting in the wings are environmental regulations that should eventually prove to be n-butane's savior. The regulations referred to here are the Clean Air Act (CAA) of 1990's mandate for motor fuel oxygenates. The negative impact of gasoline volatility regulations on U.S. n-butane demand and the positive impact that should come from the use of n-butane as a MTBE precursor are covered. Many variables exist which make studying the effects of these environmental regulations very difficult. Over the past three years RPC Group has conducted numerous studies on n-butane supply/demand, as impacted by both EPA gasoline volatility and fuel oxygenate regulations

  14. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    Science.gov (United States)

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples

  15. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Post-lens tear turbidity and visual quality after scleral lens wear.

    Science.gov (United States)

    Carracedo, Gonzalo; Serramito-Blanco, Maria; Martin-Gil, Alba; Wang, Zicheng; Rodriguez-Pomar, Candela; Pintor, Jesús

    2017-11-01

    The aim was to evaluate the turbidity and thickness of the post-lens tear layer and its effect on visual quality in patients with keratoconus after the beginning of lens wear and before lens removal at the end of eight hours. Twenty-six patients with keratoconus (aged 36.95 ± 8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (ICRS group) and patients without ICRS (KC group). Distance visual acuity (VA), contrast sensitivity, pachymetry, post-lens tear layer height and post-lens tear layer turbidity (percentage area occupied and number of particles per mm 2 ) were evaluated with optical coherence tomography before and after wearing a scleral lens. A significant increase of turbidity was found in all groups assessed (p turbidity parameters with distance VA but no correlation between turbidity and post-lens tear layer thickness at the beginning was found (p > 0.05). A strong correlation in all groups between the post-lens tear layer at the beginning and differences of tear layer thickness between two measures was also found (p turbidity. © 2017 Optometry Australia.

  17. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    Science.gov (United States)

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  18. Light diffusion in N-layered turbid media: steady-state domain.

    Science.gov (United States)

    Liemert, André; Kienle, Alwin

    2010-01-01

    We deal with light diffusion in N-layered turbid media. The steady-state diffusion equation is solved for N-layered turbid media having a finite or an infinitely thick N'th layer. Different refractive indices are considered in the layers. The Fourier transform formalism is applied to derive analytical solutions of the fluence rate in Fourier space. The inverse Fourier transform is calculated using four different methods to test their performance and accuracy. Further, to avoid numerical errors, approximate formulas in Fourier space are derived. Fast solutions for calculation of the spatially resolved reflectance and transmittance from the N-layered turbid media ( approximately 10 ms) with small relative differences (<10(-7)) are found. Additionally, the solutions of the diffusion equation are compared to Monte Carlo simulations for turbid media having up to 20 layers.

  19. Aluminum Corrosion and Turbidity

    International Nuclear Information System (INIS)

    Longtin, F.B.

    2003-01-01

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study

  20. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  1. Electrochemical filtration for turbidity removal in industrial cooling/process water systems

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.

    2008-01-01

    Water samples of large cooling water reservoirs may look visibly clear and transparent, but still may contain sub-micron size particles at sub-parts-per-million levels. Deposition of these particles on heat exchanger surfaces, reduces the heat transfer efficiency in power industry. In nuclear power plants, additionally it creates radiation exposure problems due to activation of fine metallic turbidity in the reactor core and its subsequent transfer to out-of-core surfaces. Sub-micron filtration creates back high-pressure problem. Zeta filters available commercially are prescribed for separating either positively or negatively charged particles. They are of once-use and throw-type. Precipitation surface modified ion exchangers impart chemical impurities to the system. Thus, sub-micron size and dilute turbidity removal from large volumes of waters such as heat exchanger cooling water in nuclear and power industry poses a problem. Electro deposition of the turbidity causing particles, on porous carbon/graphite felt electrodes, is one of the best suited methods for turbidity removal from large volumes of water due to the filter's high permeability, inertness to the system and regenerability resulting in low waste generation. Initially, active indium turbidity removal from RAPS-1 heavy water moderator system, and microbes removal from heat exchanger cooling lake water of RAPS 1 and 2 were demonstrated with in-house designed and fabricated prototype electrochemical filter (ECF). Subsequently, a larger size, high flow filter was fabricated and deployed for iron turbidity removal from active process waters system of Kaiga Generation Station unit 1 and silica and iron turbidity removal from cooling water pond used for heat exchanger of a high temperature high pressure (HTHP) loop at WSCD, Kalpakkam. The ECF proved its exclusive utility for sub-micron size turbidity removal and microbes removal. ECF maneuverability with potential and current for both positively and

  2. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes.

    Science.gov (United States)

    Johansen, J L; Jones, G P

    2013-09-01

    Sedimentation is a substantial threat to aquatic ecosystems and a primary cause of habitat degradation on near-shore coral reefs. Although numerous studies have demonstrated major impacts of sedimentation and turbidity on corals, virtually nothing is known of the sensitivity of reef fishes. Planktivorous fishes are an important trophic group that funnels pelagic energy sources into reef ecosystems. These fishes are visual predators whose foraging is likely to be impaired by turbidity, but the threshold for such effects and their magnitude are unknown. This study examined the effect of sediment-induced turbidity on foraging in four species of planktivorous damselfishes (Pomacentridae) of the Great Barrier Reef, including inshore and offshore species that potentially differ in tolerance for turbidity. An experimental flow tunnel was used to quantify their ability to catch mobile and immobile planktonic prey under different levels of turbidity and velocity in the range encountered on natural and disturbed reefs. Turbidity of just 4 NTU (nephelometric turbidity units) reduced average attack success by up to 56%, with higher effect sizes for species with offshore distributions. Only the inshore species (Neopomacentrus bankieri), which frequently encounters this turbidity on coastal reefs, could maintain high prey capture success. At elevated turbidity similar to that found on disturbed reefs (8 NTU), attack success was reduced in all species examined by up to 69%. These reductions in attack success led to a 21-24% decrease in foraging rates for all mid to outer-shelf species, in spite of increasing attack rates at high turbidity. Although effects of turbidity varied among species, it always depended heavily on prey mobility and ambient velocity. Attack success was up to 14 times lower on mobile prey, leaving species relatively incapable of foraging on anything but immobile prey at high turbidity. Effects of turbidity were particularly prominent at higher velocities, as

  3. A drifter for measuring water turbidity in rivers and coastal oceans.

    Science.gov (United States)

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Interrelation of surface tension, optical turbidity, and color of operational transformer oils

    International Nuclear Information System (INIS)

    L’vov, S. Yu.; Lyut’ko, E. O.; Lankau, Ya. V.; Komarov, V. B.; Seliverstov, A. F.; Bondareva, V. N.; L’vov, Yu. N.; L’vov, M. Yu.; Ershov, B. G.

    2011-01-01

    Measurements of the acidity, optical turbidity, surface tension, and color of transformer oil from 54 power transformers, autotransformers, and shunt reactors are reported. Changes in surface tension, optical turbidity, and color are found to obey adequate linear correlations, while the acidity has no correlation with any of these properties. Numerical criteria for the maximum permissible state (quality) of the oil with respect to optical turbidity and color are obtained. Recommendations to operating staff are provided for cases in which the criteria for optical turbidity and color are exceeded.

  5. Environmental conditions and intraspecific interference: unexpected effects of turbidity on pike (Esox lucius) foraging

    DEFF Research Database (Denmark)

    Nilsson, P.A.; Jacobsen, Lene; Berg, Søren

    2009-01-01

    on pike foraging alone or among conspecifics in different levels of water turbidity, we expected high turbidity to decrease the perceived risk of intraspecific interactions among pike, and thereby decrease the strength of interference, as turbidity would decrease the visual contact between individuals...... and act as a refuge from behavioural interactions. The results show that this is not the case, but suggest that interference is induced instead of reduced in high turbidity. Per capita foraging rates do not differ between pike foraging alone or in groups in our clear and moderately turbid treatments......, indicating no effect of interference. As high turbidity enhances prey consumption for pike individuals foraging alone, but does not have this effect for pike in groups, high turbidity induces the relative interference effect. We suggest that future evaluations of the stabilizing effects of interference...

  6. Soft Measurement Modeling Based on Chaos Theory for Biochemical Oxygen Demand (BOD

    Directory of Open Access Journals (Sweden)

    Junfei Qiao

    2016-12-01

    Full Text Available The precision of soft measurement for biochemical oxygen demand (BOD is always restricted due to various factors in the wastewater treatment plant (WWTP. To solve this problem, a new soft measurement modeling method based on chaos theory is proposed and is applied to BOD measurement in this paper. Phase space reconstruction (PSR based on Takens embedding theorem is used to extract more information from the limited datasets of the chaotic system. The WWTP is first testified as a chaotic system by the correlation dimension (D, the largest Lyapunov exponents (λ1, the Kolmogorov entropy (K of the BOD and other water quality parameters time series. Multivariate chaotic time series modeling method with principal component analysis (PCA and artificial neural network (ANN is then adopted to estimate the value of the effluent BOD. Simulation results show that the proposed approach has higher accuracy and better prediction ability than the corresponding modeling approaches not based on chaos theory.

  7. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Science.gov (United States)

    Austin, Åsa N; Hansen, Joakim P; Donadi, Serena; Eklöf, Johan S

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high

  8. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Directory of Open Access Journals (Sweden)

    Åsa N Austin

    Full Text Available Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer and spatial scales (local and regional, using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales

  9. Turbidity affects foraging success of drift-feeding rosyide dace

    Science.gov (United States)

    Richard M. Zamor; Gary D. Grossman

    2007-01-01

    The effects of suspended sediment on nongame fishes are not well understood. We examined the effects of suspended sediment (i.e., turbidity) on reactive distance and prey capture success at springautumn (12°C) and summer (18°C) temperatures for royside dace Clinostomus funduloides in an artificial stream. Experimental turbidities ranged from 0 to 56...

  10. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    Science.gov (United States)

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  11. Determination of Linke turbidity factor from solar radiation measurement in northern Tunisia

    International Nuclear Information System (INIS)

    Chaabane, M.; Masmoudi, M.; Medhioub, K.

    2004-01-01

    The attenuation of solar radiation through a real atmosphere versus that through a clean dry atmosphere gives an indication of the atmospheric turbidity. Study of atmospheric turbidity is important in meteorology, climatology and for monitoring of atmospheric pollution. The Linke turbidity factor refers to the whole spectrum, that is, overall spectrally integrated attenuation, which includes presence of gaseous water vapour and aerosols. In this work, a procedure for calculation of Linke turbidity factor is adopted using pyrheliometric measurements in a coastal tourist location in Tunisia (Sidi Bou Said), during three summer months (June, July and August 1999). Real diurnal and monthly variations of the T L turbidity factor are found in the three studied months, with a maximum in August afternoon and a minimum in July morning. The increase of T L is an indication for increasing atmospheric turbidity level (pollution). The correlation between atmospheric turbidity and the local weather conditions shows that this increase is essentially due to the heavy water vapour content of maritime air masses, carried by the north-eastern winds prevalent during the afternoon. A second pollution source is the dust content of the continental air masses carried by western and southern winds prevalent in the morning. Next to this can be added the influence of traffic at rush hours and during the afternoon of summer holidays. (Author)

  12. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons.

    Science.gov (United States)

    Azpiroz-Zabala, Maria; Cartigny, Matthieu J B; Talling, Peter J; Parsons, Daniel R; Sumner, Esther J; Clare, Michael A; Simmons, Stephen M; Cooper, Cortis; Pope, Ed L

    2017-10-01

    Seabed-hugging flows called turbidity currents are the volumetrically most important process transporting sediment across our planet and form its largest sediment accumulations. We seek to understand the internal structure and behavior of turbidity currents by reanalyzing the most detailed direct measurements yet of velocities and densities within oceanic turbidity currents, obtained from weeklong flows in the Congo Canyon. We provide a new model for turbidity current structure that can explain why these are far more prolonged than all previously monitored oceanic turbidity currents, which lasted for only hours or minutes at other locations. The observed Congo Canyon flows consist of a short-lived zone of fast and dense fluid at their front, which outruns the slower moving body of the flow. We propose that the sustained duration of these turbidity currents results from flow stretching and that this stretching is characteristic of mud-rich turbidity current systems. The lack of stretching in previously monitored flows is attributed to coarser sediment that settles out from the body more rapidly. These prolonged seafloor flows rival the discharge of the Congo River and carry ~2% of the terrestrial organic carbon buried globally in the oceans each year through a single submarine canyon. Thus, this new structure explains sustained flushing of globally important amounts of sediment, organic carbon, nutrients, and fresh water into the deep ocean.

  13. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Science.gov (United States)

    2010-07-01

    ... filter turbidity requirements? 141.560 Section 141.560 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.560 Is my system subject to individual filter turbidity requirements? If your system is a subpart...

  14. [Exploration of the Essence of "Endogenous Turbidity" in Chinese Medicine].

    Science.gov (United States)

    Fan, Xin-rong; Tang, Nong; Ji, Yun-xi; Zhang, Yao-zhong; Jiang, Li; Huang, Gui-hua; Xie, Sheng; Li, Liu-mei; Song, Chun-hui; Ling, Jiang-hong

    2015-08-01

    The essence of endogenous turbidity in Chinese medicine (CM) is different from cream, fat, phlegm, retention, damp, toxicity, and stasis. Along with the development of modern scientific technologies and biology, researches on the essence of endogenous turbidity should keep pace with the time. Its material bases should be defined and new connotation endowed at the microscopic level. The essence of turbidity lies in abnormal functions of zang-fu organs. Sugar, fat, protein, and other nutrient substances cannot be properly decomposed, but into semi-finished products or intermediate metabolites. They are inactive and cannot participate in normal material syntheses and decomposition. They cannot be transformed to energy metabolism, but also cannot be synthesized as executive functioning of active proteins. If they cannot be degraded by autophagy-lysosome or ubiquitin-prosome into glucose, fatty acids, amino acids, and other basic nutrients to be used again, they will accumulate inside the human body and become endogenous turbidity. Therefore, endogenous turbidity is different from final metabolites such as urea, carbon dioxide, etc., which can transform vital qi. How to improve the function of zang-fu organs, enhance its degradation by autophagy-lysosome or ubiquitin-prosome is of great significance in normal operating of zang-fu organs and preventing the emergence and progress of related diseases.

  15. Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata

    Directory of Open Access Journals (Sweden)

    Bahman Ramavandi

    2014-08-01

    Full Text Available A biocoagulant was successfully extracted from Plantago ovata by using an FeCl3-induced crude extract (FCE. The potential of FCE to act as a natural coagulant was tested for clarification using the turbid water of a river. Experimental tests were performed to evaluate the effects of turbidity concentration, coagulant quantity, water pH, and humic acid concentration on the coagulation of water turbidity by FCE. The maximum turbidity removal was occurred at water pH<8. At the optimum dosage of FCE, only 0.8 mg/L of dissolved organic carbon was released to the treated water. An increase in the humic acid led to the promotion of the water turbidity removal. Results demonstrated that the FCE removed more than 95.6% of all initial turbidity concentrations (50–300 NTU. High bacteriological quality was achieved in the treated water. FCE as an eco-friendly biocoagulant was revealed to be a very efficient coagulant for removing turbidity from waters.

  16. Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric chloride

    Directory of Open Access Journals (Sweden)

    Mazyar Peyda

    2016-03-01

    Full Text Available Background Turbidity removal using inorganic coagulants such as iron and aluminum salts in water treatment processes causes environmental and human health concern. Historically, the use of natural coagulant to purify turbid water has been practiced for a long time. Recent research indicates that Descurainia Sophia seed can be effectively used as a natural coagulant to remove water turbidity. Method: In this work, turbidity removal efficiency of Descurainia Sophia seed extract was compared with Ferric chloride. Experiments were performed in laboratory scale. The coagulation experiments were done with kaolin as a model soil to produce turbidity in distilled water. The turbidity removal efficiency of Descurainia Sophia seed extract and Ferric chloride were conducted with jar test apparatus. In all experiments, initial turbidity was kept constant 100(NTU. Optimum combination of independent variables was used to compare two different types of coagulants. Result: The obtained results showed that Ferric chloride could remove 89.75% of the initial turbidity, while in case of Descurainia Sophia this value was 43.13%. The total organic carbon (TOC analysis of the treated water using seed extract showed an increased concentration of TOC equal to 0.99 mg/L. Conclusions: This research has shown that Descurainia Sophia seed extract has an acceptable potential in the coagulation/flocculation process to treat turbid water.

  17. A multilayer approach for turbidity currents

    Science.gov (United States)

    Fernandez-Nieto, Enrique; Castro Díaz, Manuel J.; Morales de Luna, Tomás

    2017-04-01

    When a river that carries sediment in suspension enters into a lake or the ocean it can form a plume that can be classified as hyperpycnal or hypopycnal. Hypopycnal plumes occurs if the combined density of the sediment and interstitial fluid is lower than that of the ambient. Hyperpycnal plumes are a class of sediment-laden gravity current commonly referred to as turbidity currents [7,9]. Some layer-averaged models have been previously developed (see [3, 4, 8] among others). Although this layer-averaged approach gives a fast and valuable information, it has the disadvantage that the vertical distribution of the sediment in suspension is lost. A recent technique based on a multilayer approach [1, 2, 6] has shown to be specially useful to generalize shallow water type models in order to keep track of the vertical components of the averaged variables in the classical shallow water equations. In [5] multilayer model is obtained using a vertical discontinuous Galerkin approach for which the vertical velocity is supposed to be piecewise linear and the horizontal velocity is supposed to be piecewise constant. In this work the technique introduced in [5] is generalized to derive a model for turbidity currents. This model allows to simulate hyperpycnal as well as hypopycnal plumes. Several numerical tests will be presented. References [1] E. Audusse, M. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system with mass exchanges for shallow water flows. derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis, 45(1):169-200, (2010). [2] E. Audusse, M.-O. Bristeau, M. Pelanti, and J. Sainte-Marie. Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multilayer model: Kinetic interpretation and numerical solution. Journal of Computational Physics, 230(9):3453-3478, (2011). [3] S. F. Bradford and N. D. Katopodes. Hydrodynamics of turbid underflows. i: Formulation and numerical

  18. In situ visualization and data analysis for turbidity currents simulation

    Science.gov (United States)

    Camata, Jose J.; Silva, Vítor; Valduriez, Patrick; Mattoso, Marta; Coutinho, Alvaro L. G. A.

    2018-01-01

    Turbidity currents are underflows responsible for sediment deposits that generate geological formations of interest for the oil and gas industry. LibMesh-sedimentation is an application built upon the libMesh library to simulate turbidity currents. In this work, we present the integration of libMesh-sedimentation with in situ visualization and in transit data analysis tools. DfAnalyzer is a solution based on provenance data to extract and relate strategic simulation data in transit from multiple data for online queries. We integrate libMesh-sedimentation and ParaView Catalyst to perform in situ data analysis and visualization. We present a parallel performance analysis for two turbidity currents simulations showing that the overhead for both in situ visualization and in transit data analysis is negligible. We show that our tools enable monitoring the sediments appearance at runtime and steer the simulation based on the solver convergence and visual information on the sediment deposits, thus enhancing the analytical power of turbidity currents simulations.

  19. What is the Effect of Case-Based Learning on the Academic Achievement of Students on the Topic of "Biochemical Oxygen Demand?"

    Science.gov (United States)

    Günter, Tuğçe; Alpat, Sibel Kılınç

    2017-11-01

    The purpose of this study was to investigate the effect of the case-based learning (CBL) method used in "biochemical oxygen demand (BOD)," which is a topic taught in the environmental chemistry course, at Dokuz Eylul University, on the academic achievement and opinions of students. The research had a quasi-experimental design and the study group consisted of 4th and 5th grade students (N = 18) attending the Chemistry Teaching Program in a university in Izmir. The "Biochemical Oxygen Demand Achievement Test (BODAT)" and the structured interview form were used as data collection tools. The results of BODAT post-test showed the higher increase in the achievement scores of the experimental group may be an indication of the effectiveness of the CBL method in improving academic achievement in the relevant topic. In addition, the experimental and control group students had positive opinions regarding the method, the scenario, and the material. The students found the method, the scenario, and the material to be interesting, understandable/instructional, relatable with everyday life, suitable for the topic, and enhancing active participation.

  20. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste.

    Science.gov (United States)

    Dubber, Donata; Gray, Nicholas F

    2010-10-01

    Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.

  1. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    Science.gov (United States)

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  2. Chlorine demand and residual chlorine decay kinetics of Kali river water at Kaiga project area

    International Nuclear Information System (INIS)

    Krishna Bhat, D.; Prakash, T.R.; Thimme Gowda, B.; Sherigara, B.S.; Khader, A.M.A.

    1995-01-01

    The nuclear power plant at Kaiga would use Kali river water for condenser cooling. This necessitated studies on the chemistry of chlorination such as chlorine demand, kinetics of chlorination and other water characteristics aimed at obtaining base line data. The study revealed significant seasonal variation of chlorine demand ranging from 0.5 ppm to 1.7 ppm (3.0 ppm dose, 30 min contact time) and total consumption of 5.0 ppm (10.0 ppm dose, 48 hours contact time). The reaction follows first order kinetics in chlorine. High correlation of chlorine demand with chlorophyll a, suspended matter, turbidity, silica, nitrite, phosphate and sulphate indicated that chlorine demand is greatly influenced by water quality. (author). 3 refs., 1 tab

  3. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What happens if my system's turbidity... Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.561 What happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...

  4. Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia

    Science.gov (United States)

    Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.

    2016-07-01

    A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.

  5. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  6. Single shot imaging through turbid medium and around corner using coherent light

    Science.gov (United States)

    Li, Guowei; Li, Dayan; Situ, Guohai

    2018-01-01

    Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.

  7. Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.

    Science.gov (United States)

    Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M

    2017-08-01

    This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  9. [Experimental research of turbidity influence on water quality monitoring of COD in UV-visible spectroscopy].

    Science.gov (United States)

    Tang, Bin; Wei, Biao; Wu, De-Cao; Mi, De-Ling; Zhao, Jing-Xiao; Feng, Peng; Jiang, Shang-Hai; Mao, Ben-Jiang

    2014-11-01

    Eliminating turbidity is a direct effect spectroscopy detection of COD key technical problems. This stems from the UV-visible spectroscopy detected key quality parameters depend on an accurate and effective analysis of water quality parameters analytical model, and turbidity is an important parameter that affects the modeling. In this paper, we selected formazine turbidity solution and standard solution of potassium hydrogen phthalate to study the turbidity affect of UV--visible absorption spectroscopy detection of COD, at the characteristics wavelength of 245, 300, 360 and 560 nm wavelength point several characteristics with the turbidity change in absorbance method of least squares curve fitting, thus analyzes the variation of absorbance with turbidity. The results show, In the ultraviolet range of 240 to 380 nm, as the turbidity caused by particle produces compounds to the organics, it is relatively complicated to test the turbidity affections on the water Ultraviolet spectra; in the visible region of 380 to 780 nm, the turbidity of the spectrum weakens with wavelength increases. Based on this, this paper we study the multiplicative scatter correction method affected by the turbidity of the water sample spectra calibration test, this method can correct water samples spectral affected by turbidity. After treatment, by comparing the spectra before, the results showed that the turbidity caused by wavelength baseline shift points have been effectively corrected, and features in the ultraviolet region has not diminished. Then we make multiplicative scatter correction for the three selected UV liquid-visible absorption spectroscopy, experimental results shows that on the premise of saving the characteristic of the Ultraviolet-Visible absorption spectrum of water samples, which not only improve the quality of COD spectroscopy detection SNR, but also for providing an efficient data conditioning regimen for establishing an accurate of the chemical measurement methods.

  10. Changes of turbidity during the phenol oxidation by photo-Fenton treatment.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez, Jonatan

    2014-11-01

    Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.

  11. Fabrication of an inexpensive photosensitive flow through device for turbidity measurement

    International Nuclear Information System (INIS)

    Morco, Ryan P.; Dawal, Micah S.; Sucgang, Raymond J.

    2014-01-01

    The aim of this study is the construction of a portable, simple to use, on-line photosensitive device which measures turbidity in water. The turbidity measuring device uses a light emitting diode, LED, light source shining on a light dependent resistor, LDR, which is connected in series to a circuit supplying a constant voltage and a digital voltmeter, DVM. Light shine through a tube containing the sample, and onto a photosensitive circuit. A clear tube of water is the BLANK and has zero absorbance. A fraction of the incident light that i obstructed by the turbidity of the sample can be used for calculable determination of turbidity in water. The turbidity is related to the absorbance reading, following Beer's law. The amount of incident and transmitted light are expressed in voltage units, by a voltmeter. The sample is delivered into the sampling chamber by a rubber tubing attached to a power head submersible pump which is immersed in the pool of water to be sampled. The instrument shows excellent response over the range o turbidity values (5NTU to 180 NTU). Linearity (R 2= 0.95) has been achieved using the device, working with 6 trials per particular NTU value. The NTU readings of the urbidity meter were calibrated against solutions of varying NTU's measured using a HORIBA multi-parameter probe. The other features of the device include: simplicity of operation, low-cost, rugged, handy and can be used in on-line and flow mode applications. (author)

  12. Importance of atmospheric turbidity and associated uncertainties in solar radiation and luminous efficacy modelling

    International Nuclear Information System (INIS)

    Gueymard, Christian A.

    2005-01-01

    For many solar-related applications, it is important to separately predict the direct and diffuse components of irradiance or illuminance. Under clear skies, turbidity plays a determinant role in quantitatively affecting these components. In this paper, various aspects of the effect of turbidity on both spectral and broadband radiation are addressed, as well as the uncertainty in irradiance predictions due to inaccurate turbidity data, and the current improvements in obtaining the necessary turbidity data

  13. Historical land-use influences the long-term stream turbidity response to a wildfire.

    Science.gov (United States)

    Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  14. Natural fluctuations in nearshore turbidity and the relative influences of beach renourishment

    OpenAIRE

    Dompe, Philip E.

    1993-01-01

    Turbidity is a measure of the clarity of water. Turbidity depends upon the scattering and absorption of light by suspended particles. The focus of this study was to obtain quantitative measurements of turbidity in the nearshore zone, along with measurements of associated wave parameters and currents occurring naturally and during a beach nourishment project. The objectives were to make quantitative and qualitative comparisons between natural events and those induced by the dred...

  15. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    Science.gov (United States)

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  16. Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993-2004.

    Science.gov (United States)

    Tinker, Sarah C; Moe, Christine L; Klein, Mitchel; Flanders, W Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E

    2010-01-01

    The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the United States, and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240,000 emergency department visits for gastrointestinal illness during 1993-2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants.

  17. Sedimentological regimes for turbidity currents: Depth-averaged theory

    Science.gov (United States)

    Halsey, Thomas C.; Kumar, Amit; Perillo, Mauricio M.

    2017-07-01

    Turbidity currents are one of the most significant means by which sediment is moved from the continents into the deep ocean; their properties are interesting both as elements of the global sediment cycle and due to their role in contributing to the formation of deep water oil and gas reservoirs. One of the simplest models of the dynamics of turbidity current flow was introduced three decades ago, and is based on depth-averaging of the fluid mechanical equations governing the turbulent gravity-driven flow of relatively dilute turbidity currents. We examine the sedimentological regimes of a simplified version of this model, focusing on the role of the Richardson number Ri [dimensionless inertia] and Rouse number Ro [dimensionless sedimentation velocity] in determining whether a current is net depositional or net erosional. We find that for large Rouse numbers, the currents are strongly net depositional due to the disappearance of local equilibria between erosion and deposition. At lower Rouse numbers, the Richardson number also plays a role in determining the degree of erosion versus deposition. The currents become more erosive at lower values of the product Ro × Ri, due to the effect of clear water entrainment. At higher values of this product, the turbulence becomes insufficient to maintain the sediment in suspension, as first pointed out by Knapp and Bagnold. We speculate on the potential for two-layer solutions in this insufficiently turbulent regime, which would comprise substantial bedload flow with an overlying turbidity current.

  18. Determination of Residual Chlorine and Turbidity in Drinking Water. Instructor's Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's guide presents analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. This publication is intended…

  19. Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…

  20. Water quality index for Al-Gharraf River, southern Iraq

    Directory of Open Access Journals (Sweden)

    Salam Hussein Ewaid

    2017-06-01

    Full Text Available The Water Quality Index has been developed mathematically to evaluate the water quality of Al-Gharraf River, the main branch of the Tigris River in the south of Iraq. Water samples were collected monthly from five sampling stations during 2015–2016, and 11 parameters were analyzed: biological oxygen demand, total dissolved solids, the concentration of hydrogen ions, dissolved oxygen, turbidity, phosphates, nitrates, chlorides, as well as turbidity, total hardness, electrical conductivity and alkalinity. The index classified the river water, without including turbidity as a parameter, as good for drinking at the first station, poor at stations 2, 3, 4 and very poor at station 5. When turbidity was included, the index classified the river water as unsuitable for drinking purposes in the entire river. The study highlights the importance of applying the water quality indices which indicate the total effect of the ecological factors on surface water quality and which give a simple interpretation of the monitoring data to help local people in improving water quality.

  1. Survival of Poliovirus in Flowing Turbid Seawater Treated with Ultraviolet Light

    Science.gov (United States)

    Hill, W. F.; Hamblet, F. E.; Akin, E. W.

    1967-01-01

    The effectiveness of a model ultraviolet (UV) radiation unit for treating flowing turbid seawater contaminated with poliovirus was determined. At a turbidity of 70 ppm, the observed survival ratios ranged from 1.9 × 10-3 (99.81% reduction) to 1.5 × 10-4 (99.98% reduction) at flow rates ranging from 25 to 15 liters/min; no virus was recovered at flow rates of 10 and 5 liters/min. At a turbidity of 240 ppm, the observed survival ratios ranged from 3.2 × 10-2 (96.80% reduction) to 2.1 × 10-4 (99.98% reduction) at flow rates ranging from 25 to 5 liters/min. As expected, turbidity had an adverse influence on the effectiveness of UV radiation; however, by adjusting the flow rate of the seawater through the treatment unit, adequate disinfection was shown to be predictable. Images Fig. 1 PMID:4291955

  2. Extending the range of turbidity measurement using polarimetry

    Science.gov (United States)

    Baba, Justin S.

    2017-11-21

    Turbidity measurements are obtained by directing a polarized optical beam to a scattering sample. Scattered portions of the beam are measured in orthogonal polarization states to determine a scattering minimum and a scattering maximum. These values are used to determine a degree of polarization of the scattered portions of the beam, and concentrations of scattering materials or turbidity can be estimated using the degree of polarization. Typically, linear polarizations are used, and scattering is measured along an axis that orthogonal to the direction of propagation of the polarized optical beam.

  3. Operating Conditions of Coagulation-Flocculation Process for High Turbidity Ceramic Wastewater

    Directory of Open Access Journals (Sweden)

    Sameer Al-Asheh

    2017-04-01

    Full Text Available This work attempted to determine the optimum conditions required for the coagulation and flocculation process as an essential stage of the ceramic wastewater treatment. Coagulation and flocculation is a very necessary step in industries as it lessens turbidity, color, and odor of wastewater. The experimental work was performed in several runs. The volume of wastewater used in each run was 200 mL and was kept at this value throughout. In certain runs, the speed of the mixer was varied while keeping the quantity of coagulant and flocculant constant in order to determine the optimum speed that resulted in the least turbidity. A speed of 5% was chosen as the ideal process speed according to the results obtained. Next, experiments were operated at this optimum speed while changing the dosage of coagulant and flocculant in order to decide the optimum dosage. Coagulant and flocculent amounts of 0.4 g (without booster and 0.2 g (with booster selected after the readings were taken. For all the readings, a turbidity meter was used providing results in Nephelometric Turbidity Units (NTU. Lowest turbidity was achieved when using 5% speed with 0.4 grams of coagulant and 0.4 grams of flocculant, or 5% speed with 0.2 grams of coagulant, 0.2 grams of flocculant and 0.25 g/L of booster coagulant. According to factorial design analysis, such as parameters as impeller speed and dosage have an influential impact on the turbidity; while the booster has insignificant influence and other interactions between parameters are important.

  4. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, Cristina I.C.; Frigerio, Christian [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Santos, Joao L.M., E-mail: joaolms@ff.up.pt [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal); Lima, Jose L.F.C. [Requimte, Department of Chemistry, Faculty of Pharmacy, Porto University, Rua Anibal Cunha 164, 4099-030, Porto (Portugal)

    2011-08-12

    Highlights: {yields} A novel flow method for the determination of chemical oxygen demand is proposed. {yields} CdTe nanocrystals are irradiated with UV light to generate strong oxidizing species. {yields} Reactive species promote a fast catalytic degradation of organic matter. {yields} Luminol is used as a chemiluminescence probe for indirect COD assessment. {yields} A single interface flow system was implemented to automate the assays. - Abstract: A novel flow method for the determination of chemical oxygen demand (COD) is proposed in this work. It relies on the combination of a fully automated single interface flow system, an on-line UV photocatalytic unit and quantum dot (QD) nanotechnology. The developed approach takes advantage of CdTe nanocrystals capacity to generate strong oxidizing species upon irradiation with UV light, which fostered a fast catalytic degradation of the organic compounds. Luminol was used as a chemiluminescence (CL) probe for indirect COD assessment, since it is easily oxidized by the QD generated species yielding a strong CL emission that is quenched in the presence of the organic matter. The proposed methodology allowed the determination of COD concentrations between 1 and 35 mg L{sup -1}, with good precision (R.S.D. < 1.1%, n = 3) and a sampling frequency of about 33 h{sup -1}. The procedure was applied to the determination of COD in wastewater certified reference materials and the obtained results showed an excellent agreement with the certified values.

  5. Removal of colour, turbidity, oil and grease for slaughterhouse wastewater using electrocoagulation method

    Science.gov (United States)

    Yusoff, Mohd Suffian; Azwan, Azlyza Mohd; Zamri, Mohd Faiz Muaz Ahmad; Aziz, Hamidi Abdul

    2017-10-01

    In this study electrocoagulation method is used to treat slaughterhouse wastewaters. The aim of this study is to determine the efficiency of electrocoagulation method for the removal of colour, turbidity, oil and grease of slaughterhouse wastewaters. The factors of electrode types, and voltage applied during treatment are the study parameters. The types of electrode used are Aluminium (Al) grade 6082 and Iron (Fe) grade 1050. Meanwhile, the ranges of voltage applied are 2, 4, 6, 8 volts at a time interval of 10, 20 and 30 minutes respectively. The effect of these factors on the removal of fat oil and grease (FOG), colour and turbidity are analyzed. The results show maximum removal of FOG, colour and turbidity are recorded using Fe electrode at 8 V of applied voltage with 30 minutes of treatment time. The increase in treatment time of the cell will also increase the amount of hydrogen bubbles at the cathode which results in a greater upwards flux and a faster removal of FOG,, turbidity and colour. The removal of FOG, colour and turbidity are 98%, 92% and 91 % respectively. Meanwhile, by using Al electrodes in the same condition, the removal of FOG, colour and turbidity are 91%, 85% and 87 % respectively. Whereas by using Fe-Al as electrodes pairs, the removal of FOG, colour and turbidity are found to be at 90%, 87% and 76 % respectively. In this case, the Fe-Fe pair electrodes have been proven to provide better performance for FOG, colour and turbidity removals of slaughterhouse wastewaters. Therefore, it is feasible to be considered as an alternative method for wastewater treatment.

  6. Loire and Gironde turbid plumes: Characterization and influence on thermohaline properties

    Science.gov (United States)

    Costoya, X.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, M.

    2017-12-01

    Knowledge and predictability of turbid river plumes is of great importance because they modulate the properties of the seawater adjacent to river mouths. The Loire and Gironde Rivers form the most important plumes in the Bay of Biscay, as they provide > 75% of total runoff. The development of the turbid plume under the influence of its main drivers was analyzed using Moderate Resolution Imaging Spectroradiometer satellite data from the period 2003-2015. River discharge was found to be the main driver, followed by wind, which also had an important effect in modulating the turbid plume during periods of high river discharge. Seaward and upwelling favorable winds enhanced the dispersion of plumes on seawater, whereas landward and downwelling favorable winds limited mixing with the adjacent ocean water. The maximum extension of the turbid plume was reached under landward winds. In addition, the spatio-temporal evolution of the East Atlantic pattern and the North Atlantic Oscillation was observed to affect the dynamics of plumes: positive values of both indices favored a greater extension of the plume. Thermohaline properties differed inside and outside the area affected by both rivers. In particular, these rivers maintain winter stratification inside the turbid plume, which results in a different warming ratio when compared with the adjacent ocean.

  7. The relationship between turbidity of mouth-rinsed water and oral health status.

    Science.gov (United States)

    Takeuchi, Susumu; Ueno, Masayuki; Takehara, Sachiko; Pham, Thuy Anh Vu; Hakuta, Chiyoko; Morishima, Seiji; Shinada, Kayoko; Kawaguchi, Yoko

    2013-01-01

    The purpose of this study was to examine the relationship between turbidity of mouth rinsed water and oral health status such as dental and periodontal conditions, oral hygiene status, flow rate of saliva and oral bacteria. Subjects were 165 patients who visited the Dental Hospital, Tokyo Medical and Dental University. Oral health status, including dental and periodontal conditions, oral hygiene status and flow rate of saliva, was clinically examined. The turbidity was measured with a turbidimeter. Quantification of Fusobacterium spp, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and total bacteria levels was performed using real-time PCR. The Pearson correlation and multiple regression analysis were used to explore the associations between the turbidity and oral health parameters. The turbidity showed significant correlations with the number of decayed teeth and deep pockets, the plaque index, extent of tongue coating and Fusobacterium spp, P. gingivalis, T. forsythia, T. denticola and total bacteria levels. In a multiple regression model, the turbidity was negatively associated with the flow rate of saliva and positively associated with the total number of bacteria (p turbidity of mouth rinsed water could be used as an indicator to evaluate oral health condition and the amount of bacteria in the oral cavity. In addition, the turbiditimeter appeared as a simple and objective device for screening abnormality of oral health condition at chair side as well as community-based research.

  8. Concurrent monitoring of vessels and water turbidity enhances the strength of evidence in remotely sensed dredging impact assessment

    NARCIS (Netherlands)

    Wu, G.; Leeuw, de J.; Skidmore, A.K.; Prins, H.H.T.; Liu, Y.

    2007-01-01

    Remotely sensed assessment of dredging impacts on water turbidity is straightforward when turbidity plumes show up in clear water. However, it is more complicated in turbid waters as the spatial or temporal changes in turbidity might be of natural origin. The plausibility of attributing turbidity

  9. Bifocal optical coherenc refractometry of turbid media.

    Science.gov (United States)

    Alexandrov, Sergey A; Zvyagin, Andrei V; Silva, K K M B Dilusha; Sampson, David D

    2003-01-15

    We propose and demonstrate a novel technique, which we term bifocal optical coherence refractometry, for the rapid determination of the refractive index of a turbid medium. The technique is based on the simultaneous creation of two closely spaced confocal gates in a sample. The optical path-length difference between the gates is measured by means of low-coherence interferometry and used to determine the refractive index. We present experimental results for the refractive indices of milk solutions and of human skin in vivo. As the axial scan rate determines the acquisition time, which is potentially of the order of tens of milliseconds, the technique has potential for in vivo refractive-index measurements of turbid biological media under dynamic conditions.

  10. Factors governing the pH in a heterotrophic, turbid, tidal estuary

    Science.gov (United States)

    Hofmann, A. F.; Meysman, F. J. R.; Soetaert, K.; Middelburg, J. J.

    2009-01-01

    A method to quantify the influence of kinetically modelled biogeochemical processes on the pH of an ecosystem with time variable acid-base dissociation constants is presented and applied to the heterotrophic, turbid Scheldt estuary (SW Netherlands, N Belgium). Nitrification is identified as the main process governing the pH profile of this estuary, while CO2 degassing and advective-dispersive transport "buffer" the effect of nitrification. CO2 degassing accounts for the largest proton turnover per year in the whole estuary. There is a clear inverse correlation between oxygen turnover and proton turnover. The main driver of long-term changes in the mean estuarine pH from 2001 to 2004 is a changing freshwater flow which influences the pH "directly" via [∑CO2] and [TA] and to a significant amount also "indirectly" via [∑NH4+] and the nitrification rates in the estuary.

  11. Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events.

    Science.gov (United States)

    Lacour, C; Joannis, C; Gromaire, M-C; Chebbo, G

    2009-01-01

    Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification and common parameters, such as the antecedent dry weather period, total event volume per impervious hectare and both the mean and maximum hydraulic flow for each event, was also studied. Moreover, the dynamics of flow and turbidity signals were compared at the event scale. No simple relation between turbidity responses, hydraulic flow dynamics and the chosen parameters was derived from this effort. Knowledge of turbidity dynamics could therefore potentially improve wet weather management, especially when using pollution-based real-time control (P-RTC) since turbidity contains information not included in hydraulic flow dynamics and not readily predictable from such dynamics.

  12. Effects of turbidity and prey density on the foraging success of age 0 year yellow perch Perca flavescens.

    Science.gov (United States)

    Wellington, C G; Mayer, C M; Bossenbroek, J M; Stroh, N A

    2010-05-01

    Laboratory experiments were conducted to determine how larval and juvenile yellow perch Perca flavescens respond to changes in prey density when exposed to different levels and types of turbidity (phytoplanktonic or sedimentary). Across prey densities, consumption by P. flavescens tended to be less in phytoplanktonic turbidity compared with sedimentary turbidity. For larvae, this effect was dependent on turbidity level (consumption differed between turbidity types only at high turbidity), while for juveniles the difference with turbidity type was equal across turbidity levels. These results suggest that phytoplankton blooms are detrimental to the ability of late season age 0 year P. flavescens to forage and support the need to control factors leading to excessive phytoplankton growth in lakes.

  13. MassFLOW-3D as a simulation tool for turbidity currents

    NARCIS (Netherlands)

    Basani, Riccardo; Janocko, Michal; Cartigny, Matthieu J.B.; Hansen, Ernst W.M.; Eggenhuisen, Joris T.

    2014-01-01

    Turbidity currents are the most important mechanism for the dispersal and deposition of sand in the deep-sea setting and thus the main phenomenon leading to the formation of oil and gas reservoirs in deep water deposits. The flow characteristics of turbidity currents are difficult to observe and

  14. Enhancing the numerical aperture of lenses using ZnO nanostructure-based turbid media

    International Nuclear Information System (INIS)

    Khokhra, Richa; Barman, Partha Bir; Kumar, Rajesh; Kumar, Manoj; Rawat, Nitin; Jang, Hwanchol; Lee, Heung-No

    2013-01-01

    Nanosheets, nanoparticles, and microstructures of ZnO were synthesized via a wet chemical method. ZnO films with a thickness of 44–46 μm were fabricated by spray coating, and these have been investigated for their potential use in turbid lens applications. A morphology-dependent comparative study of the transmittance of ZnO turbid films was conducted. Furthermore, these ZnO turbid films were used to enhance the numerical aperture (NA) of a Nikon objective lens. The variation in NA with different morphologies was explained using size-dependent scattering by the fabricated films. A maximum NA of around 1.971 of the objective lens with a turbid film of ZnO nanosheets was achieved. (paper)

  15. Pyrheliometric determination of atmospheric turbidity in harmattan over Ile-Ife, Nigeria

    International Nuclear Information System (INIS)

    Adeyefa, Z.D.; Adedokun, J.A.

    1990-02-01

    Measurements of direct solar radiation intensity, using an Angstrom compensation pyrheliometer carried out over three harmattan seasons (1985-1987) at Ile-Ife (7.29N, 4.34E) Nigeria, have been used to determine atmospheric turbidity based on five different models of turbidity, viz: Schuepp (B), Angstrom (β), Kastrov (C), Unsworth (τ a ) and Linke (T). The five parameters indicate high aerosol loading of the atmosphere during the period and high correlation is established between them: (0.919 ≤ τ ≤ 0.999). An inverse relationship has been noticed between horizontal visibility and atmospheric turbidity: (-0.80 ≤ τ ≤ -0.76). (author). 35 refs, 15 figs, 4 tabs

  16. Past 20,000-year history of Himalayan aridity: Evidence from oxygen isotope records in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.

    Late Quaternary climate history of the Himalayas is inferred from sea surface salinity (SSS) changes determined from the oxygen isotope in planktonic foraminifers, in a turbidity-free, 14C-dated core from the Bay of Bengal. The heaviest d18O...

  17. Extraction of natural coagulant from peanut seeds for treatment of turbid water

    International Nuclear Information System (INIS)

    Birima, A H; Desa, M N M; Muda, Z C; Hammad, H A

    2013-01-01

    This study investigates the potential of peanut seeds as an environmental friendly and natural coagulant for the treatment of high turbid water. The peanut seeds have been used after oil extraction; and the active coagulation component was extracted by distilled water and salt solution of different salt concentrations. The salts used were NaCl, KNO 3 , KCl, NH 4 Cl and NaNO 3 . Synthetic water with 200 NTU turbidity was used. Peanut extracted with NaCl (PC-NaCl) could effectively remove 92% of the 200 NTU turbidity using only 20 mg/l, while peanut seeds extracted with distilled water (PC-DW) could remove only 31.5% of the same turbidity with the same dosage. The coagulant dosage did not affected by the concentration of the salt solution, however, residual turbidity decreased with increasing the concentration of the salt; and the relationship was found to be a second order polynomial curve with R 2 of 0.9312. The other salts tested were also found to be good solvents to extract the active coagulation component with no much difference from NaCl solution in terms of efficiency.

  18. The design of rapid turbidity measurement system based on single photon detection techniques

    Science.gov (United States)

    Yang, Yixin; Wang, Huanqin; Cao, Yangyang; Gui, Huaqiao; Liu, Jianguo; Lu, Liang; Cao, Huibin; Yu, Tongzhu; You, Hui

    2015-10-01

    A new rapid turbidity measurement system has been developed to measure the turbidity of drinking water. To determinate the turbidity quantitatively, the total intensity of scattering light has been measured and quantified as number of photons by adopting the single photon detection techniques (SPDT) which has the advantage of high sensitivity. On the basis of SPDT, the measurement system has been built and series of experiments have been carried out. Combining then the 90° Mie scattering theory with the principle of SPDT, a turbidity measurement model has been proposed to explain the experimental results. The experimental results show that a turbidity, which is as low as 0.1 NTU (Nephelometric Turbidity Units), can be measured steadily within 100 ms. It also shows a good linearity and stability over the range of 0.1-400 NTU and the precision can be controlled within 5% full scale. In order to improve its precision and stability, some key parameters, including the sampling time and incident light intensity, have been discussed. It has been proved that, to guarantee an excellent system performance, a good compromise between the measurement speed and the low power consumption should be considered adequately depending on the practical applications.

  19. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    International Nuclear Information System (INIS)

    Kasinski, Slawomir; Wojnowska-Baryla, Irena

    2014-01-01

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m 3 /h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold

  20. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.

    Science.gov (United States)

    Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min

    2016-07-01

    River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. 40 CFR 136.6 - Method modifications and analytical requirements.

    Science.gov (United States)

    2010-07-01

    ... modifications and analytical requirements. (a) Definitions of terms used in this section. (1) Analyst means the..., oil and grease, total suspended solids, total phenolics, turbidity, chemical oxygen demand, and.... Except as set forth in paragraph (b)(3) of this section, an analyst may modify an approved test procedure...

  2. Optics of turbid slabs

    International Nuclear Information System (INIS)

    Kokhanovsky, A.A.

    2002-01-01

    This paper is devoted to an alternative derivation of the asymptotic equations for the reflection and transmission functions of turbid slabs. The derivation is based on the reciprocity principle and the law of conservation of energy. Thus it is very general. This allows us to apply the obtained equations even in cases where the foundations of the radiative transfer theory are in question (e.g. for highly concentrated suspensions and pastes). (author)

  3. 40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?

    Science.gov (United States)

    2010-07-01

    ... effluent turbidity limits must my system meet? 141.551 Section 141.551 Protection of Environment... Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system meet? Your system must meet two strengthened combined filter effluent turbidity limits. (a) The first...

  4. Recovering low-turbidity cutting liquid from silicon slurry waste.

    Science.gov (United States)

    Tsai, Tzu-Hsuan; Shih, Yu-Pei

    2014-04-30

    In order to recover a low-turbidity polyalkylene glycol (PAG) liquid from silicon slurry waste by sedimentation, temperatures were adjusted, and acetone, ethanol or water was used as a diluent. The experimental results show that the particles in the waste would aggregate and settle readily by using water as a diluent. This is because particle surfaces had lower surface potential value and weaker steric stabilization in PAG-water than in PAG-ethanol or PAG-acetone solutions. Therefore, water is the suggested diluent for recovering a low-turbidity PAG (sedimentation. After 50 wt.% water-assisted sedimentation for 21 days, the solid content of the upper liquid reduced to 0.122 g/L, and the turbidity decreased to 44 NTU. The obtained upper liquid was then vacuum-distillated to remove water. The final recovered PAG with 0.37 NTU had similar viscosity and density to the unused PAG and could be reused in the cutting process. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Oxygenates to hike gasoline price

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that cost of achieving required US gasoline formulations this winter in Environmental Protection Agency carbon monoxide (CO) nonattainment areas could reach 3-5 cents/gal, an Energy Information Administration analysis has found. EIA says new winter demand for gasoline blending oxygenates such as methyl tertiary butyl ether (MTBE) or ethanol created by 190 amendments to the Clean Air Act (CAA) will exceed US oxygenate production by 140,000-220,000 b/d. The shortfall must be made up from inventory or imports. EIA estimates the cost of providing incremental oxygenate to meet expected gasoline blending demand likely will result in a price premium of about 20 cents/gal of MTBE equivalent over traditional gasoline blend octane value. That cost likely will be added to the price of oxygenated gasoline

  6. USING TURBIDITY DATA TO PREDICT SUSPENDED SEDIMENT CONCENTRATIONS: POSSIBILITIES, LIMITATIONS, AND PITFALLS

    Science.gov (United States)

    This talk will look at the relationships between turbidity and suspended sediment concentrations in a variety of geographic areas, geomorphic river types, and river sizes; and attempt to give guidance on using existing turbidity data to predict suspended sediment concentrations.

  7. Removal of chemical oxygen demand from textile wastewater using a natural coagulant

    Energy Technology Data Exchange (ETDEWEB)

    Ramavandi, Bahman [Bushehr University of Medical Sciences, Bushehr (Iran, Islamic Republic of); Farjadfard, Sima [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-01-15

    A biomaterial was successfully synthesized from Plantago ovata by using an FeCl{sub 3}-induced crude extract (FCE). The potential of FCE to act as a natural coagulant was tested for the pretreatment of real textile wastewater. Tests were performed to evaluate the effects of FCE quantity, salt concentration, and wastewater pH on chemical oxygen demand (COD) reduction during a coagulation/flocculation process. Experimental results indicated that the wastewater could be effectively treated by using a coagulation/flocculation process, where the BOD{sub 5}/COD ratio of the effluent was improved to 0.48. A low coagulant dose, 1.5mg/L, achieved a high COD removal percentage, 89%, at operational conditions of neutral pH and room temperature. The experimental data revealed that the maximum COD removal occurred at water pH<8. Increasing the salt promoted the COD removal. The settling and filterability characteristics of the sludge were also studied. Scanning electron microscopy and energy dispersive spectroscopy studies were conducted to determine the sludge structure and composition, respectively. Overall, FCE as an eco-friendly biomaterial was revealed to be a very efficient coagulant and a promising option for the removal of COD from wastewaters.

  8. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.

    Science.gov (United States)

    Mull, Bonnie; Hill, Vincent R

    2012-12-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.

  9. EFFECTIVENESS OF CHITOSAN AS NATURAL COAGULANT AID IN TREATING TURBID WATERS

    Directory of Open Access Journals (Sweden)

    B. Bina ، M. H. Mehdinejad ، M. Nikaeen ، H. Movahedian Attar

    2009-10-01

    Full Text Available During the last decade, there has been a concern about the relation between aluminum residuals in treated water and Alzheimer disease, and more interest has been considered on the development of natural coagulants such as chitosan. Chitosan, a natural linear biopolyaminosaccharide, is obtained by alkaline deacetylation of chitin. The present study was aimed to investigate the effects of alum as coagulant in conjunction with chitosan as coagulant aid on the removal of turbidity, hardness and Escherichia coli from water. A conventional jar test apparatus was employed for the tests. The optimum pH was observed between 7 to 7.5 for all turbidities. The optimum doses of alum and chitosan when used in conjunction, were 10mg/L and 1mg/L, 5mg/L and 0.5mg/L, and 5mg/L and 0.5mg/L in low, medium and high turbidities, respectively. Turbidity removal efficiency was resulted between %74.3 to %98.2 by alum in conjunction with chitosan. Residual Al+3 in treated water was less than 0.2 mg/L, meeting the international guidelines. The results showed that turbidity decrease provided also a primary Escherichia coli reduction of 2-4 log units within the first 1 to 2 hr of treatment. Hardness removal efficiency decreased when the total hardness increased from 102 to 476mg/L as CaCO3. At low initial turbidity, chitosan showed marginally better performance on hardness, especially at the ranges of 100 to 210 mg/L as CaCO3. In conclusion, coagulant aid showed a useful method for coagulation process. By using natural coagulants, considerable savings in chemicals and sludge handling cost may be achieved.

  10. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  11. Turbidity forecasting at a karst spring using combined machine learning and wavelet multiresolution analysis.

    Science.gov (United States)

    Savary, M.; Massei, N.; Johannet, A.; Dupont, J. P.; Hauchard, E.

    2016-12-01

    25% of the world populations drink water extracted from karst aquifer. The comprehension and the protection of these aquifers appear as crucial due to an increase of drinking water needs. In Normandie(North-West of France), the principal exploited aquifer is the chalk aquifer. The chalk aquifer highly karstified is an important water resource, regionally speaking. Connections between surface and underground waters thanks to karstification imply turbidity that decreases water quality. Both numerous parameters and phenomenons, and the non-linearity of the rainfall/turbidity relation influence the turbidity causing difficulties to model and forecast turbidity peaks. In this context, the Yport pumping well provides half of Le Havreconurbation drinking water supply (236 000 inhabitants). The aim of this work is thus to perform prediction of the turbidity peaks in order to help pumping well managers to decrease the impact of turbidity on water treatment. Database consists in hourly rainfalls coming from six rain gauges located on the alimentation basin since 2009 and hourly turbidity since 1993. Because of the lack of accurate physical description of the karst system and its surface basin, the systemic paradigm is chosen and a black box model: a neural network model is chosen. In a first step, correlation analyses are used to design the original model architecture by identifying the relation between output and input. The following optimization phases bring us four different architectures. These models were experimented to forecast 12h ahead turbidity and threshold surpassing. The first model is a simple multilayer perceptron. The second is a two-branches model designed to better represent the fast (rainfall) and low (evapotranspiration) dynamics. Each kind of model is developed using both a recurrent and feed-forward architecture. This work highlights that feed-forward multilayer perceptron is better to predict turbidity peaks when feed-forward two-branches model is

  12. DRINKING WATER TURBIDITY AND EMERGENCY DEPARTMENT VISITS FOR GASTROINTESTINAL ILLNESS IN ATLANTA, 1993 – 2004

    Science.gov (United States)

    Tinker, Sarah C.; Moe, Christine L.; Klein, Mitchel; Flanders, W. Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E.

    2013-01-01

    Background The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well-understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the U.S., and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. Methods We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240 000 emergency department visits for gastrointestinal illness during 1993–2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. Results For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. This association was not observed for all treatment plants in plant-specific analyses. Conclusions Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants. PMID:18941478

  13. Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events

    OpenAIRE

    LACOUR, Céline; JOANNIS, Claude; GROMAIRE, MC; CHEBBO, Ghassan

    2009-01-01

    Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification...

  14. Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed

    Science.gov (United States)

    Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng

    2018-02-01

    The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.

  15. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  16. Drinking water turbidity and emergency department visits for gastrointestinal illness in New York City, 2002-2009.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hsieh

    Full Text Available Studies have examined whether there is a relationship between drinking water turbidity and gastrointestinal (GI illness indicators, and results have varied possibly due to differences in methods and study settings.As part of a water security improvement project we conducted a retrospective analysis of the relationship between drinking water turbidity and GI illness in New York City (NYC based on emergency department chief complaint syndromic data that are available in near-real-time.We used a Poisson time-series model to estimate the relationship of turbidity measured at distribution system and source water sites to diarrhea emergency department (ED visits in NYC during 2002-2009. The analysis assessed age groups and was stratified by season and adjusted for sub-seasonal temporal trends, year-to-year variation, ambient temperature, day-of-week, and holidays.Seasonal variation unrelated to turbidity dominated (~90% deviance the variation of daily diarrhea ED visits, with an additional 0.4% deviance explained with turbidity. Small yet significant multi-day lagged associations were found between NYC turbidity and diarrhea ED visits in the spring only, with approximately 5% excess risk per inter-quartile-range of NYC turbidity peaking at a 6 day lag. This association was strongest among those aged 0-4 years and was explained by the variation in source water turbidity.Integrated analysis of turbidity and syndromic surveillance data, as part of overall drinking water surveillance, may be useful for enhanced situational awareness of possible risk factors that can contribute to GI illness. Elucidating the causes of turbidity-GI illness associations including seasonal and regional variations would be necessary to further inform surveillance needs.

  17. Drinking water turbidity and emergency department visits for gastrointestinal illness in New York City, 2002-2009.

    Science.gov (United States)

    Hsieh, Jennifer L; Nguyen, Trang Quyen; Matte, Thomas; Ito, Kazuhiko

    2015-01-01

    Studies have examined whether there is a relationship between drinking water turbidity and gastrointestinal (GI) illness indicators, and results have varied possibly due to differences in methods and study settings. As part of a water security improvement project we conducted a retrospective analysis of the relationship between drinking water turbidity and GI illness in New York City (NYC) based on emergency department chief complaint syndromic data that are available in near-real-time. We used a Poisson time-series model to estimate the relationship of turbidity measured at distribution system and source water sites to diarrhea emergency department (ED) visits in NYC during 2002-2009. The analysis assessed age groups and was stratified by season and adjusted for sub-seasonal temporal trends, year-to-year variation, ambient temperature, day-of-week, and holidays. Seasonal variation unrelated to turbidity dominated (~90% deviance) the variation of daily diarrhea ED visits, with an additional 0.4% deviance explained with turbidity. Small yet significant multi-day lagged associations were found between NYC turbidity and diarrhea ED visits in the spring only, with approximately 5% excess risk per inter-quartile-range of NYC turbidity peaking at a 6 day lag. This association was strongest among those aged 0-4 years and was explained by the variation in source water turbidity. Integrated analysis of turbidity and syndromic surveillance data, as part of overall drinking water surveillance, may be useful for enhanced situational awareness of possible risk factors that can contribute to GI illness. Elucidating the causes of turbidity-GI illness associations including seasonal and regional variations would be necessary to further inform surveillance needs.

  18. Petrographic study of the Korean anthracite for utilization (VII)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong Soo; Lee, Choon Oh; Park, Suk Whan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research was initiated for the development of filtering materials those can be used in waste water treatment sites. The selected Jangseong coal for filtering material has low Hardgrove Grindability Index(HGI:38.38). For feasibility study, the small scale of filtration tester was built on the waste water treatment plant of Samdu dye Co. to use the precipitated water during filtration test processed by purifying system. Measurement items are filtration rate, temperature of waste water, Electric Conductivity(EC), pH, Turbidity, Dissolved Oxygen(DO), Chemical Oxygen Demand (COD), Bio-chemical Oxygen Demand(BOD), Salinity, Total Dissolved solids(TDS) and trace elements content(Zn, Si, Fe, Mg, K, Cu, Sr, Mn, Ca, Na, SO{sub 4}, Ni, Pb, Cd) of the supplied water and filtered water were carried out to find the filtration capacity of coal. The results indicated decreasing degree in turbidity (15.1%), COD(22.1%), BOD(56.8%), color(7.4%) and increasing degree in DO(10.5%). Trace elements removal degree of filtered waste water were about 17.1% for Fe and 10.7% for Zn. (author). 40 refs., 22 tabs., 26 figs.

  19. Monitoring of impact of anthropogenic inputs on water quality of mangrove ecosystem of Uran, Navi Mumbai, west coast of India.

    Science.gov (United States)

    Pawar, Prabhakar R

    2013-10-15

    Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite-nitrogen (NO2-N), Nitrate-nitrogen (NO3-N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3-N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effect of substituted hydroxyl groups in the changes of solution turbidity in the oxidation of aromatic contaminants.

    Science.gov (United States)

    Villota, N; Jm, Lomas; Lm, Camarero

    2017-01-01

    This paper deals with the changes of turbidity that are generated in aqueous solutions of phenol when they are oxidized by using different Fenton technologies. Results revealed that if the Fenton reaction was promoted with UV light, the turbidity that was generated in the water doubled. Alternatively, the use of ultrasonic waves produced an increase in turbidity which initially proceeded slowly, reaching intensities eight times higher than in the conventional Fenton treatment. As well, the turbidity showed a high dependence on pH. It is therefore essential to control acidity throughout the reaction. The maximum turbidity was generated when operating at pH = 2.0, and it slowly decreased with increasing to a value of pH = 3.0, at which the turbidity was the lowest. This result was a consequence of the presence of ferric ions in solution. At pH values greater than 3.5, the turbidity increased almost linearly until at pH = 5.0 reached its maximum intensity. In this range, ferrous ions may generate an additional contribution of radicals that promote the degradation of the phenol species that produce turbidity. Turbidity was enhanced at ratios R = 4.0 mol H 2 O 2 /mol C 6 H 6 O. This value corresponds to the stoichiometric ratio that leads to the production of turbidity-precursor species. Therefore, muconic acid would be a species that generate high turbidity in solution according to its isomerism. Also, the results revealed that the turbidity is not a parameter to which species contribute additively since interactions may occur among species that would enhance their individual contributions to it. Analyzing the oxidation of phenol degradation intermediates, the results showed that meta-substituted compounds (resorcinol) generate high turbidity in the wastewater. The presence of polar molecules, such as muconic acid, would provide the structural features that are necessary for resorcinol to act as a clip between two carboxylic groups, thus establishing

  1. Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada

    Science.gov (United States)

    Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.

    2007-12-01

    Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost

  2. Oxygen requirements of the earliest animals

    DEFF Research Database (Denmark)

    Mills, Daniel Brady; Ward, Lewis M.; Jones, CarriAyne

    2014-01-01

    likely exhibited a physiology and morphology similar to that of a modern sponge, its oxygen demands may have been met well before the enhanced oxygenation of the Ediacaran Period. Therefore, the origin of animals may not have been triggered by a contemporaneous rise in the oxygen content...

  3. Sex in murky waters: algal-induced turbidity increases sexual selection in pipefish.

    Science.gov (United States)

    Sundin, Josefin; Aronsen, Tonje; Rosenqvist, Gunilla; Berglund, Anders

    2017-01-01

    Algal-induced turbidity has been shown to alter several important aspects of reproduction and sexual selection. However, while turbidity has been shown to negatively affect reproduction and sexually selected traits in some species, it may instead enhance reproductive success in others, implying that the impact of eutrophication is far more complex than originally believed. In this study, we aimed to provide more insight into these inconsistent findings. We used molecular tools to investigate the impact of algal turbidity on reproductive success and sexual selection on males in controlled laboratory experiments, allowing mate choice, mating competition, and mate encounter rates to affect reproduction. As study species, we used the broad-nosed pipefish, Syngnathus typhle , a species practicing male pregnancy and where we have previously shown that male mate choice is impaired by turbidity. Here, turbidity instead enhanced sexual selection on male size and mating success as well as reproductive success. Effects from mating competition and mate encounter rates may thus override effects from mate choice based on visual cues, producing an overall stronger sexual selection in turbid waters. Hence, seemingly inconsistent effects of turbidity on sexual selection may depend on which mechanisms of sexual selection that have been under study. Algal blooms are becoming increasingly more common due to eutrophication of freshwater and marine environments. The high density of algae lowers water transparency and reduces the possibility for fish and other aquatic animals to perform behaviors dependent on vision. We have previously shown that pipefish are unable to select the best partner in mate choice trials when water transparency was reduced. However, fish might use other senses than vision to compensate for the reduction in water transparency. In this study, we found that when fish were allowed to freely interact, thereby allowing competition between partners and direct contact

  4. Operational monitoring of turbidity in rivers: how satellites can contribute

    Science.gov (United States)

    Hucke, Dorothee; Hillebrand, Gudrun; Winterscheid, Axel; Kranz, Susanne; Baschek, Björn

    2016-10-01

    The applications of remote sensing in hydrology are diverse and offer significant benefits for water monitoring. Up to now, operational river monitoring and sediment management in Germany mainly rely on in-situ measurements and on results obtained from numerical modelling. Remote sensing by satellites has a great potential to supplement existing data with two-dimensional information on near-surface turbidity distributions at greater spatial scales than in-situ measurements can offer. Within the project WasMon-CT (WaterMonitoring-Chlorophyll/Turbidity), the Federal Institute of Hydrology (BfG) aims at the implementation of an operational monitoring of turbidity distributions based on satellite images (esp. Sentinel-2, Landsat7 and 8). Initially, selected federal inland and estuarine waterways will be addressed: Rhine, Elbe, Ems, Weser. WasMon-CT is funded within the German Copernicus activities. Within the project, a database of atmospherically corrected, geo-referenced turbidity data will be assembled. The collected corresponding meta-data will include aspects of satellite data as well as hydrological data, e.g. cloud cover and river run-off. Based on this catalogue of spatially linked meta-data, the satellite data will be selected by e.g. cloud cover or run-off. The permanently updated database will include past as well as recent satellite images. It is designed with a long-term perspective to optimize the existing in-situ measurement network, which will serve partly for calibration and partly as validation data set. The aim is to extend, but not to substitute, the existing frequent point measurements with spatially extensive, satellite-derived data from the near surface part of the water column. Here, turbidity is used as proxy for corresponding suspended sediment concentrations. For this, the relationship between turbidity and suspended sediment concentrations will be investigated. Products as e.g. longitudinal profiles or virtual measurement stations will be

  5. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  6. Turbidity monitoring at select MDOT construction sites.

    Science.gov (United States)

    2012-06-01

    The objective of this project was to establish baseline turbidity conditions at select construction : sites by establishing a water quality monitoring program and documenting MDOT approved : BMPs on site. In 2009 the United States Environmental Prote...

  7. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.

    Science.gov (United States)

    Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders

    2012-07-01

    Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Oxygen therapy reduces postoperative tachycardia

    DEFF Research Database (Denmark)

    Stausholm, K; Kehlet, H; Rosenberg, J

    1995-01-01

    Concomitant hypoxaemia and tachycardia in the postoperative period is unfavourable for the myocardium. Since hypoxaemia per se may be involved in the pathogenesis of postoperative tachycardia, we have studied the effect of oxygen therapy on tachycardia in 12 patients randomly allocated to blinded...... air or oxygen by facemask on the second or third day after major surgery. Inclusion criteria were arterial hypoxaemia (oxygen saturation 90 beat.min-1). Each patient responded similarly to oxygen therapy: an increase in arterial oxygen saturation and a decrease...... in heart rate (p oxygen has a positive effect on the cardiac oxygen delivery and demand balance....

  9. Triggering of frequent turbidity currents in Monterey Canyon and the role of antecedent conditioning

    Science.gov (United States)

    Clare, M. A.; Rosenberger, K. J.; Talling, P.; Barry, J.; Maier, K. L.; Parsons, D. R.; Simmons, S.; Gales, J. A.; Gwiazda, R.; McGann, M.; Paull, C. K.

    2017-12-01

    Turbidity currents pose a hazard to seafloor infrastructure, deliver organic carbon and nutrients to deep-sea communities, and form economically important deposits. Thus, determining the tempo of turbidity current activity and whether different triggers result in different flow modes is important. Identification of specific triggers is challenging, however, because most studies of turbidity currents are based on their deposits. New direct monitoring of flows and environmental conditions provides the necessary temporal constraints to identify triggering mechanisms. The Coordinated Canyon Experiment (CCE) in Monterey Canyon, offshore California is the most ambitious attempt yet to measure turbidity flows and their triggers. The CCE provides precise constraint on flow timing, initiation, and potential triggers based on measurements at 7 different instrumented moorings and 2 metocean buoys. Fifteen turbidity flows were measured in 18 months; with recorded velocities >8 m/s and run-outs of up to 50 km. Presence of live estuarine foraminifera within moored sediment traps suggests that that flows originated in water depths of Turbidity currents are thought to be triggered by processes including earthquakes, river floods and storm waves. Here we analyse seismicity, local river discharge, internal tides, wave height, direction and period data. We identify no clear control of any of these individual variables on flow timing. None of the recorded earthquakes (

  10. Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs.

    Science.gov (United States)

    Chung, S W; Lee, H S

    2009-01-01

    In monsoon climate area, turbidity flows typically induced by flood runoffs cause numerous environmental impacts such as impairment of fish habitat and river attraction, and degradation of water supply efficiency. This study was aimed to characterize the physical dynamics of turbidity plume induced into a stratified reservoir using field monitoring and numerical simulations, and to assess the effect of different withdrawal scenarios on the control of downstream water quality. Three different turbidity models (RUN1, RUN2, RUN3) were developed based on a two-dimensional laterally averaged hydrodynamic and transport model, and validated against field data. RUN1 assumed constant settling velocity of suspended sediment, while RUN2 estimated the settling velocity as a function of particle size, density, and water temperature to consider vertical stratification. RUN3 included a lumped first-order turbidity attenuation rate taking into account the effects of particles aggregation and degradable organic particles. RUN3 showed best performance in replicating the observed variations of in-reservoir and release turbidity. Numerical experiments implemented to assess the effectiveness of different withdrawal depths showed that the alterations of withdrawal depth can modify the pathway and flow regimes of the turbidity plume, but its effect on the control of release water quality could be trivial.

  11. Temperature- and Turbidity-Dependent Competitive Interactions Between Invasive Freshwater Mussels.

    Science.gov (United States)

    Huang, Qihua; Wang, Hao; Ricciardi, Anthony; Lewis, Mark A

    2016-03-01

    We develop a staged-structured population model that describes the competitive dynamics of two functionally similar, congeneric invasive species: zebra mussels and quagga mussels. The model assumes that the population survival rates are functions of temperature and turbidity, and that the two species compete for food. The stability analysis of the model yields conditions on net reproductive rates and intrinsic growth rates that lead to competitive exclusion. The model predicts quagga mussel dominance leading to potential exclusion of zebra mussels at mean water temperatures below [Formula: see text] and over a broad range of turbidities, and a much narrower set of conditions that favor zebra mussel dominance and potential exclusion of quagga mussels at temperatures above [Formula: see text] and turbidities below 35 NTU. We then construct a two-patch dispersal model to examine how the dispersal rates and the environmental factors affect competitive exclusion and coexistence.

  12. Turbidity of a Binary Fluid Mixture: Determining Eta

    Science.gov (United States)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  13. Efficiency of sewage treatment with septic tanks followed by constructed wetlands with different support materials

    Directory of Open Access Journals (Sweden)

    Delvio Sandri

    2013-04-01

    Full Text Available This study seeks to assess the efficiency of a sewage treatment plant comprised of three compartmentalized septic tanks installed in series followed by three parallel wetlands and seeded with species Typha sp. with subsurface flow, filled with support material of natural gravel, gravel # 2 and washed gravel, respectively. The station treats sewage generated at Unity University for Science and Technology, State University of Goiás – UnUCET/UEG. A total of 20 sewage samples were collected in order to evaluate treatment efficiency from November to December 2010 and March to April 2011. The points of analysis were at the input of the first tank (raw sewage, the output of the third septic tank and the outputs of each of the three wetlands. The total removal efficiencies were: 65.40% for chemical oxygen demand; 79.01% for biochemical oxygen demand; 59.79% for total solids; 87.12% for the total suspended solids; 92.00% for total coliforms; 95.71% for E. coli and 82.54% for turbidity. The system was effective for the treatment of sewage, within the current legislative parameters for pH, turbidity, total solids and biochemical oxygen demand. No significant difference was observed between the three different means of support, suggesting that gravel, natural gravel and washed gravel may potentially be used to fill wetlands.

  14. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    OpenAIRE

    Douglas L. Rickman; Frank E. Muller-Karger; Max J. Moreno-Madrinan; Mohammad Z. Al-Hamdan

    2010-01-01

    Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time con...

  15. [Domiciliary oxygen therapy].

    Science.gov (United States)

    Abdel Kafi, S

    2010-09-01

    In Belgium, oxygen therapy is becoming more and more accessible. When oxygen is needed for short periods or for special indications as palliative care, an agreement between mutual insurance companies and pharmacists allows the practitioner the home installation of gazeous oxygen cylinder or of oxygen concentrator. When long term oxygen therapy (LTOT) is indicated for patients with respiratory insufficiency, the pneumologist must first ask the INAMI the authorization to install one of the following modalities: oxygen concentrator with or without demand oxygen delivery cylinder and liquid oxygen. The goal of LTOT is to increase survival and quality of life. The principal and well accepted indication for LTOT is severe hypoxemia. The beneficial effects of oxygen therapy limited at night or on exertion are controversial. In order to increase patient's autonomy, oxygen can be prescribed for ambulation, respecting prescription's rules. At each step of oxygen therapy implementing (indication, choice of the device and follow-up) the patient under oxygen may benefit from a joint approach between the general practitioner and the chest specialist.

  16. Review of Epidemiological Studies of Drinking-Water Turbidity in Relation to Acute Gastrointestinal Illness.

    Science.gov (United States)

    De Roos, Anneclaire J; Gurian, Patrick L; Robinson, Lucy F; Rai, Arjita; Zakeri, Issa; Kondo, Michelle C

    2017-08-17

    Turbidity has been used as an indicator of microbiological contamination of drinking water in time-series studies attempting to discern the presence of waterborne gastrointestinal illness; however, the utility of turbidity as a proxy exposure measure has been questioned. We conducted a review of epidemiological studies of the association between turbidity of drinking-water supplies and incidence of acute gastrointestinal illness (AGI), including a synthesis of the overall weight of evidence. Our goal was to evaluate the potential for causal inference from the studies. We identified 14 studies on the topic (distinct by region, time period and/or population). We evaluated each study with regard to modeling approaches, potential biases, and the strength of evidence. We also considered consistencies and differences in the collective results. Positive associations between drinking-water turbidity and AGI incidence were found in different cities and time periods, and with both unfiltered and filtered supplies. There was some evidence for a stronger association at higher turbidity levels. The studies appeared to adequately adjust for confounding. There was fair consistency in the notable lags between turbidity measurement and AGI identification, which fell between 6 and 10 d in many studies. The observed associations suggest a detectable incidence of waterborne AGI from drinking water in the systems and time periods studied. However, some discrepant results indicate that the association may be context specific. Combining turbidity with seasonal and climatic factors, additional water quality measures, and treatment data may enhance predictive modeling in future studies. https://doi.org/10.1289/EHP1090.

  17. Sediment Transport Capacity of Turbidity Currents: from Microscale to Geological Scale.

    Science.gov (United States)

    Eggenhuisen, J. T.; Tilston, M.; Cartigny, M.; Pohl, F.; de Leeuw, J.; van der Grind, G. J.

    2016-12-01

    A big question in sedimentology concerns the magnitude of fluxes of sediment particles, solute matter and dissolved gasses from shallow marine waters to deep basins by turbidity current flow. Here we establish sediment transport capacity of turbidity current flow on three levels. The most elementary level is set by the maximum amount of sediment that can be contained at the base of turbidity currents without causing complete extinction of boundary layer turbulence. The second level concerns the capacity in a vertical column within turbidity currents. The third level involves the amount of sediment that can be transported in turbidite systems on geological timescales. The capacity parameter Γ compares turbulent forces near the boundary of a turbulent suspension to gravity and buoyancy forces acting on suspended particles. The condition of Γ>1 coincides with complete suppression of coherent boundary layer turbulence in Direct Numerical Simulations of sediment-laden turbulent flow. Γ=1 coincides with the upper limit of observed suspended particle concentrations in flume and field measurements. Γ is grainsize independent, yet capacity of the full vertical structure of turbidity currents becomes grainsize dependent. This is due to the appearance of grainsize dependent vertical motions within turbulence as a primary control on the shape of the vertical concentration profile. We illustrate this dependence with experiments and theory and conclude that capacity depends on the competence of prevailing turbulence to suspend particle sizes. The concepts of capacity and competence are thus tangled. Finally, the capacity of turbidity current flow structure is coupled to geological constraints on recurrence times, channel and lobe life cycles, and allogenic forcing on system activity to arrive at system scale sediment transport capacity. We demonstrate a simple model that uses the fundamental process insight described above to estimate geological sediment budgets from

  18. Significance of multiple scattering in imaging through turbid media

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.

    1986-01-01

    The degradation of image quality in a turbid medium is analyzed within the framework of the small-angle approximation, the diffusion approximation, and a rigorous two-dimensional radiative transfer equation. These three approaches allow us to emphasize different aspects of the imaging problem when multiple scattering effects are important. For a medium with a forward-peaked phase function, the separation of multiple scattering into a series of scatterings of various order provides a fruitful technique. The use of the diffusion approximation and transport theory extends the determination of the modulation transfer function to a turbid medium with an arbitrary degree of anisotropy

  19. How well do basic models describe the turbidity currents coming down Monterey and Congo Canyon?

    Science.gov (United States)

    Cartigny, M.; Simmons, S.; Heerema, C.; Xu, J. P.; Azpiroz, M.; Clare, M. A.; Cooper, C.; Gales, J. A.; Maier, K. L.; Parsons, D. R.; Paull, C. K.; Sumner, E. J.; Talling, P.

    2017-12-01

    Turbidity currents rival rivers in their global capacity to transport sediment and organic carbon. Furthermore, turbidity currents break submarine cables that now transport >95% of our global data traffic. Accurate turbidity current models are thus needed to quantify their transport capacity and to predict the forces exerted on seafloor structures. Despite this need, existing numerical models are typically only calibrated with scaled-down laboratory measurements due to the paucity of direct measurements of field-scale turbidity currents. This lack of calibration thus leaves much uncertainty in the validity of existing models. Here we use the most detailed observations of turbidity currents yet acquired to validate one of the most fundamental models proposed for turbidity currents, the modified Chézy model. Direct measurements on which the validation is based come from two sites that feature distinctly different flow modes and grain sizes. The first are from the multi-institution Coordinated Canyon Experiment (CCE) in Monterey Canyon, California. An array of six moorings along the canyon axis captured at least 15 flow events that lasted up to hours. The second is the deep-sea Congo Canyon, where 10 finer grained flows were measured by a single mooring, each lasting several days. Moorings captured depth-resolved velocity and suspended sediment concentration at high resolution (turbidity currents; the modified Chézy model. This basic model has been very useful for river studies over the past 200 years, as it provides a rapid estimate of how flow velocity varies with changes in river level and energy slope. Chézy-type models assume that the gravitational force of the flow equals the friction of the river-bed. Modified Chézy models have been proposed for turbidity currents. However, the absence of detailed measurements of friction and sediment concentration within full-scale turbidity currents has forced modellers to make rough assumptions for these parameters. Here

  20. The effect of turbidity levels and Moringa oleifera concentration on the effectiveness of coagulation in water treatment.

    Science.gov (United States)

    Nkurunziza, T; Nduwayezu, J B; Banadda, E N; Nhapi, I

    2009-01-01

    Laboratory experiments were carried out to assess the water purification and antimicrobial properties of Moringa oleifera (MO). Hence different concentrations (25 to 300 mg/L) were prepared from a salt (1 M NaCl) extract of MO fine powder and applied to natural surface water whose turbidity levels ranged from 50 to 450 NTU. The parameters determined before and after coagulation were turbidity, pH, colour, hardness, iron, manganese and Escherichia coli. The experiments showed that turbidity removal is influenced by the initial turbidity since the lowest turbidity removal of 83.2% was observed at 50 NTU, whilst the highest of 99.8% was obtained at 450 NTU. Colour removal followed the same trend as the turbidity. The pH exhibited slight variations through the coagulation. The hardness removal was very low (0 to 15%). However, high removals were achieved for iron (90.4% to 100%) and manganese (93.1% to 100%). The highest E. coli removal achieved was 96.0%. Its removal was associated with the turbidity removal. The optimum MO dosages were 150 mg/L (50 NTU and 150 NTU) and 125 mg/L for the rest of the initial turbidity values. Furthermore all the parameters determined satisfied the WHO guidelines for drinking water except for E. coli.

  1. Determination atmospheric conditions by evaluating clearness index, turbidity and brightness of the sky

    International Nuclear Information System (INIS)

    Kandilli, C.

    2005-01-01

    There are fifteen different sky types which range from totally overcast sky to low turbidity clear sky have been defined by CIE (International Commission on Illumination). For the applications of solar energy engineering and day lighting purposes, it has a great importance to determine the physical characteristics of atmosphere and the sky type. The most important parameters which define the sky type are clearness index, turbidity and brightness. In this study, the parameters of clearness index, turbidity and brightness of the sky belong to Izmir was calculated and their relations with solar radiation and its components were represented according to 10 years data (1994-2004) of meteorology station of Ege University Solar Energy Institute. In this study, clearness index, turbidity, sky clearness and brightness were evaluated to put forward the effects of the these parameters on the atmospheric condition for designing and engineering purposes

  2. Report Task 2.3: Particulate waste and turbidity in (marine) RAS

    OpenAIRE

    Kals, J.; Schram, E.; Brummelhuis, E.B.M.; Bakel, van, B.

    2006-01-01

    Particulate waste management and removal is one of the most problematic parts of recirculation aquaculture systems (RAS). Particulate waste and thereby turbidity originates from three major sources: fish (faeces), feed and biofilm (heterotrophic bacteria and fungi). Based on size and density there are roughly four categories of particulate waste: settable, suspended, floatable and fine or dissolved solids. Specific problems related to high turbidity are a decreasing feed intake by fish, causi...

  3. Diel turbidity cycles in a headwater stream: evidence of nocturnal bioturbation?

    OpenAIRE

    Cooper, Richard J.; Outram, Faye; Hiscock, Kevin M.

    2016-01-01

    Purpose: A small number of recent studies have linked daily cycles in stream turbidity to nocturnal bioturbation by aquatic fauna, principally crayfish, and demonstrated this process can significantly impact upon water quality under baseflow conditions. Adding to this limited body of research, we use high-resolution water quality monitoring data to investigate evidence of diel turbidity cycles in a lowland, headwater stream with a known signal crayfish (Pacifastacus leniusculus) population an...

  4. A note on the comparative turbidity of some estuaries of the Americas

    Science.gov (United States)

    Uncles, R.J.; Smith, R.E.

    2005-01-01

    Field data from 27 estuaries of the Americas are used to show that, in broad terms, there is a large difference in turbidity between the analyzed east and west-coast estuaries and that tidal range and tidal length have an important influence on that turbidity. Generic, numerical sediment-transport modeling is used to illustrate this influence, which exists over a range of space scales from, e.g., the Rogue River Estuary (few km, few mg l-1) to the Bay of Fundy (hundreds of km, few g l-1). The difference in Pacific and Atlantic seaboard estuarine turbidity for the analyzed estuaries is ultimately related to the broad-scale geomorphology of the two continents.

  5. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    Science.gov (United States)

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  6. A polychromatic turbidity microplate assay to distinguish discovery stage drug molecules with beneficial precipitation properties.

    Science.gov (United States)

    Morrison, John; Nophsker, Michelle; Elzinga, Paul; Donoso, Maria; Park, Hyunsoo; Haskell, Roy

    2017-10-05

    A material sparing microplate screening assay was developed to evaluate and compare the precipitation of discovery stage drug molecules as a function of time, concentration and media composition. Polychromatic turbidity time course profiles were collected for cinnarizine, probucol, dipyridamole as well as BMS-932481, and compared with turbidity profiles of monodisperse particle size standards. Precipitation for select sample conditions were further characterized at several time points by size, morphology, amount and form via laser diffraction, microscopy, size based particle counting and X-ray diffraction respectively. Wavelength dependent turbidity was found indicative of nanoprecipitate, while wavelength independent turbidity was consistent with larger microprecipitate formation. A transition from wavelength dependent to wavelength independent turbidity occurred for nanoparticle to microparticle growth, and a decrease in wavelength independent turbidity correlated with continued growth in size of microparticles. Other sudden changes in turbidity signal over time such as rapid fluctuation, a decrease in slope or a sharp inversion were correlated with very large or aggregated macro-precipitates exceeding 100μm in diameter, a change in the rate of precipitate formation or an amorphous to crystalline form conversion respectively. The assay provides an effective method to efficiently monitor and screen the precipitation fates of drug molecules, even during the early stages of discovery with limited amounts of available material. This capability highlights molecules with beneficial precipitation properties that are able to generate and maintain solubility enabling amorphous or nanoparticle precipitates. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Impact of different metal turbidities on radiolytic hydrogen generation in nuclear power plants

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Belapurkar, A.D.; Venkateswaran, G.; Kishore, K.

    2005-01-01

    Radiolytic hydrogen generation on γ irradiation of turbid solutions containing metal turbidities such as titanium, nickel, iron, chromium, copper, indium, and aluminium was studied. It is suggested that the chemical reactivity of the metal in the turbid solution with e aq -/H/OH produced by radiolysis of water interferes with the recombination reactions which destroy H 2 and H 2 O 2 , thus leading to higher yield of hydrogen. The rate of generation of hydrogen and the G(H 2 ) value is related to the reactivity of the metal ion/hydroxylated species with the free radicals. (orig.)

  8. An improved solution of first order kinetics for biochemical oxygen ...

    African Journals Online (AJOL)

    This paper evaluated selected Biochemical Oxygen Demand first order kinetics methods. Domesticinstitutional wastewaters were collected twice in a month for three months from the Obafemi Awolowo University, Ile-Ife waste stabilization ponds. Biochemical Oxygen Demand concentrations at different days were determined ...

  9. Using Coagulation Process in Optimizing Natural Organic Matter Removal from Low Turbidity Waters

    Directory of Open Access Journals (Sweden)

    Alireza Mesdaghinia

    2006-03-01

    Full Text Available Optimization of coagulation process  for efficient removal of Natural Organic Matters (NOM has gained a lot of focus over the last years to meet the requirements of enhanced coagulation. NOM comprises both particulate and soluble components which the latter usually comprises the main portion. Removal of soluble NOM from low turbidity waters by coagulation is not a successful process unless enough attention is paid to stages of formation and development of both micro and macro-flocs. This study, which presents experimental results from pilot scale research studies aimed at optimizing coagulation process applied to synthetic raw waters supplemented by adding commercial humic acid with low turbidity levels, explains how pH and turbidity can be controlled to maximize soluble NOM removal. The removal of NOM at various coagulant doses and coagulation pHs has been assessed through raw and treated (coagulated-settled water measurements of total organic carbon (TOC. For low turbidity waters, essential floc nucleation sites can be provided by creating synthetic turbidities, for example by adding clay. Adjusting the initial pH at 5.5 or adding clay before coagulant addition allows the formation of micro-flocs as well as formation of the insoluble flocs at low coagulant doses.

  10. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Hestir, E.L.; Schoellhamer, David H.; Jonathan Greenberg,; Morgan-King, Tara L.; Ustin, S.L.

    2016-01-01

    Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.

  11. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  12. Quality improvement in determination of chemical oxygen demand in samples considered difficult to analyze, through participation in proficiency-testing schemes

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    2010-01-01

    Chemical oxygen demand (COD) is a critical analytical parameter in waste and wastewater treatment, more specifically in anaerobic digestion, although little is known about the quality of measuring COD of anaerobic digestion samples. Proficiency testing (PT) is a powerful tool that can be used...... to test the performance achievable in the participants laboratories, so we carried out a second PT of COD determination in samples considered ‘‘difficult’’ to analyze (i.e. solid samples and liquid samples with high concentrations of suspended solids). The results obtained (based on acceptable z...

  13. Perbedaan Efektivitas Zeolit Dan Manganese Greensand Untuk Menurunkan Kadar Fosfat Dan Chemical Oxygen Demand Limbah Cair “Laundry Zone” Di Tembalang

    OpenAIRE

    Lavina, Dahona Lenthe; Sulistyani, Sulistyani; Rahadjo, Mursid

    2016-01-01

    Laundry business is a business in clothes washing services. Preliminary test results show that the levels of phosphate and COD laundry liquid wastes is 12,36 mg/l and 5.920 mg/l. These levels exceeded the water quality standard of waste that phosphate concentration of 2 mg/l and COD concentration of 100 mg/l. This research aimed to determine the difference effectiveness of zeolite and manganese greensand to decrease phosphate and chemical oxygen demand on waste "laundry zone" in Tembalang. T...

  14. Turbidity removal: Gravel and charcoal as roughing filtration media

    Directory of Open Access Journals (Sweden)

    Josiah A. Adeyemo

    2010-10-01

    Full Text Available Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was used in developing the criteria. We compared the performance of gravel as a filter medium to that of another locally available material, charcoal, for the removal of turbidity in wastewater. The pilot plant was monitored continuously for 90 days from commissioning until the end of the project. The overall performance of the roughing filter in turbidity removal, using gravel or charcoal, was considered efficient for the pre-treatment of waste water. Charcoal performed slightly better than gravel as a filter medium for the removal of turbidity, possibly because charcoal has a slightly higher specific surface area and porosity than gravel, which could enhance sedimentation and other filtration processes, such as adsorption, respectively.

  15. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales

    OpenAIRE

    Austin, ?sa N.; Hansen, Joakim P.; Donadi, Serena; Ekl?f, Johan S.

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal model...

  16. Experimental evidence of an effective medium seen by diffuse light in turbid colloids

    International Nuclear Information System (INIS)

    Contreras-Tello, H; Garcia-Valenzuela, A

    2011-01-01

    The propagation of diffuse light in turbid media is usually modeled with radiative transfer theory. When diffuse light travelling in a turbid colloid is reflected and transmitted at a flat interface where there is a refractive index mismatch, it is not clear whether one should assume the incident diffuse-light is travelling in a medium with a refractive index equal to that of the background medium (usually referred to as the matrix) or if one should assume it travels in an effective medium. Most authors simply avoid this issue and most often use the refractive index of the matrix. While this might be a good approximation for dilute turbid media one may suspect that for highly scattering materials it may not be the case. In this work we investigate experimentally this issue. Our experimental results provide clear evidence that diffuse light inside the turbid colloid travels in an effective medium and not in the matrix.

  17. Comparison of ultrafiltration and dissolved air flotation efficiencies in industrial units during the papermaking process

    OpenAIRE

    Monte Lara, Concepción; Ordóñez Sanz, Ruth; Hermosilla Redondo, Daphne; Sánchez González, Mónica; Blanco Suárez, Ángeles

    2011-01-01

    The efficiency of an ultrafiltration unit has been studied and compared with a dissolved air flotation system to get water with a suited quality to be reused in the process. The study was done at a paper mill producing light weight coated paper and newsprint paper from 100% recovered paper. Efficiency was analysed by removal of turbidity, cationic demand, total and dissolved chemical oxygen demand, hardness, sulphates and microstickies. Moreover, the performance of the ultrafiltration unit an...

  18. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1994-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  19. Oxygen nitrogen and ozone: application in wastewater treatment and environment protection

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Julio A.G. [Oxigenio do Brasil, Sao Paulo, SP (Brazil)

    1993-12-31

    Oxygen`s versatility as an oxidant and as a combustion atmosphere provides clean solutions to different industries. Oxygen also finds excellent application for the regeneration of eutrophic surface waters where high biochemical oxygen demand loading demands extra available oxygen for life support. When even stronger oxidizing properties are needed, ozone may act as a supplement. Nitrogen, on the other hand, has excellent cooling capacity, resulting in practical application in solvent recapture, enabling processes to meet emission standards while allowing solvent recycle for reuse. 7 figs., 1 tab.

  20. A feasibility study for a remote laser water turbidity meter

    Science.gov (United States)

    Hickman, G. D.; Ghovanlou, A. H.; Friedman, E. J.; Gault, C. S.; Hogg, J. E.

    1974-01-01

    A technique to remotely determine the attenuation coefficient (alpha) of the water was investigated. The backscatter energy (theta = 180 deg) of a pulse laser (lambda = 440 - 660 nm) was found directly related to the water turbidity. The greatest sensitivity was found to exist at 440 nm. For waters whose turbidity was adjusted using Chesapeake Bay sediment, the sensitivity in determining alpha at 440 nm was found to be approximately 5 - 10%. A correlation was also found to exist between the water depth (time) at which the peak backscatter occurs and alpha.

  1. Morphodynamics of supercritical high-density turbidity currents

    NARCIS (Netherlands)

    Cartigny, M.

    2012-01-01

    Seafloor and outcrop observations combined with numerical and physical experiments show that turbidity currents are likely 1) to be in a supercritical flow state and 2) to carry high sediment concentrations (being of high-density). The thesis starts with an experimental study of bedforms

  2. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  3. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    Science.gov (United States)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most

  4. Coagulation of highly turbid suspensions using magnesium hydroxide: effects of slow mixing conditions.

    Science.gov (United States)

    Ayoub, George M; BinAhmed, Sara W; Al-Hindi, Mahmoud; Azizi, Fouad

    2014-09-01

    Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213 ± 36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg(2+) was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7 ± 1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400-90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.

  5. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs.

    Science.gov (United States)

    Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A

    2010-06-01

    The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.

  6. Turbidity as a factor in the decline of Great Lakes fishes with special reference to Lake Erie

    Science.gov (United States)

    Van Oosten, John

    1948-01-01

    Fish live and thrive in water with turbidities that range above 400 p.p.m. and average 200 p.p.m. The waters of the Great Lakes usually are clear except in Lake Erie where the turbidities of the inshore areas averaged 37 p.p.m.; the turbidities of the offshore waters averaged less. Lake Erie waters were no clearer 50 years ago than they are now. In fact, the turbidity values are less now than they were in the earlier years; the annual average of the inshore waters dropped from 44 p.p.m. before 1930 to 32 p.p.m. in 1930 and later, and the April-May values decreased from 72 p.p.m. to 46 p.p.m. Any general decline in the Lake Erie fishes cannot be attributed to increased turbidities. Furthermore, these turbidities averaged well below 100 p.p.m. and, therefore, were too low to affect fishes adversely.

  7. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida

    Directory of Open Access Journals (Sweden)

    Douglas L. Rickman

    2010-12-01

    Full Text Available Turbidity is a commonly-used index of the factors that determine light penetration in the water column. Consistent estimation of turbidity is crucial to design environmental and restoration management plans, to predict fate of possible pollutants, and to estimate sedimentary fluxes into the ocean. Traditional methods monitoring fixed geographical locations at fixed intervals may not be representative of the mean water turbidity in estuaries between intervals, and can be expensive and time consuming. Although remote sensing offers a good solution to this limitation, it is still not widely used due in part to required complex processing of imagery. There are satellite-derived products, including the Moderate Resolution Imaging Spectroradiometer (MODIS Terra surface reflectance daily product (MOD09GQ Band 1 (620–670 nm which are now routinely available at 250 m spatial resolution and corrected for atmospheric effect. This study shows this product to be useful to estimate turbidity in Tampa Bay, Florida, after rainfall events (R2 = 0.76, n = 34. Within Tampa Bay, Hillsborough Bay (HB and Old Tampa Bay (OTB presented higher turbidity compared to Middle Tampa Bay (MTB and Lower Tampa Bay (LTB.

  8. Pharmaceutical wastewater treatment: a physicochemical study

    International Nuclear Information System (INIS)

    Saleem, M.

    2007-01-01

    A physicochemical study for the treatment of pharmaceutical wastewater was performed. Objective of the laboratory investigation was to study the removal of color, Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), turbidity and phenol and bring them up to the allowable limits for reuse purposes. Efficiency of coagulation, flocculation, sedimentation, sand filtration followed by activated carbon adsorption was determined. It was found that tested coagulants (alum, ferric chloride, and ferrous sulphate) are not much effective and required high dosage for the removal; of TSS, BOD, COD and turbidity. Alum was found to be more effective among tested coagulants and reduce TSS, BOD, COD and turbidity 79.6%, 34.8, 48.6% and 69.2% respectively. Sand filtration further reduced the studied parameters 97.7%, 95.7%, 93.9% and 76.9% respectively. As the concentration of phenol in the studied pharmaceutical wastewater was 100 mg/l, granular activated carbon was used to remove phenol up to the allowable limit for reuse purpose. Activated carbon adsorption further reduces phenol, TDS, TSS, BOD, and COD up to 99.9%, 99.1%, 21.4%, 81.3% and 71.1% respectively. High removal of color observed after activated carbon adsorption. It was concluded that the suggested treatment scheme is suitable to bring the effluent quality up to the water quality standards. (author)

  9. Removal of turbidity and suspended solids backwash water from rapid sand filter by using electrocoagulation

    Directory of Open Access Journals (Sweden)

    AR Yari

    2016-07-01

    Full Text Available Introduction: By appropriate method can be recycled more than 95 percent effluent backwashing the filter. This study aimed to examine the efficiency of the electrocoagulation process on turbidity and suspended solids removal from backwash effluent of rapid sand filter of water treatment plants No 1 in Karaj. Methods: This bench-scale experimental study was carried out on the samples of backwash effluent in a batch system. The Plexiglas tank with a volume of 4 liters, containing of 4 plate electrodes made of aluminum and iron was connected to a direct current power supply. Samples every 15 minutes to measure turbidity and suspended solids collected in the middle of the reactor and examined. Effect of several parameters such as current density, reaction time and voltage were studied. The total number of samples tested were 48. Turbidity and total suspended solids was measured by nephlometry and gravimetric method, respectively. Results: The highest removal efficiency of turbidity and suspended solids in reaction time of 60 minutes, current density of 2 mA and a voltage of 45 mV was observed. The highest removal efficiency of turbidity in aluminum and iron electrodes were 96.83 and 83.77 %, respectively. Also The highest removal efficiency of suspended solids were 96.73 and 86.22 %, respectively. Conclusion: The results showed that electro- coagulation process can be a good choice to remove turbidity and suspended from backwash of rapid sand filter. Aluminum electrode efficiency in the removal of turbidity and suspended solids was greater than the iron electrode.

  10. Holographic characterization of colloidal particles in turbid media

    Science.gov (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.

    2017-10-01

    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  11. Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater.

    Science.gov (United States)

    Agbovi, Henry K; Wilson, Lee D

    2018-06-01

    An amphoteric flocculant (CMC-CTA) was synthesized by grafting 3-chloro-2-hydroxypropyl trimethylammonium chloride onto carboxymethyl chitosan (CMC). The turbidity and orthophosphate (P i ) removal properties of chitosan (CHI), CMC, and CMC-CTA were compared in the presence (and absence) of FeCl 3 coagulant. At a fixed FeCl 3 dosage, the effects of flocculant dosage, pH and settling time were evaluated. Turbidity removal (%) and optimal dosage (FeCl 3 ; mg/L) was determined: CMC-CTA (95.8%;5), CHI (88.8%;7.0) and CMC (68.8%;9.0). The corresponding P i removal (%) and dosage (mg/L) are listed: (93.4%;10), (90.6%;10), and (67.4%;5). Optimal turbidity and P i removal occurred at pH 4, where CMC-CTA had greater efficiency over CMC and CHI. The turbidity removal kinetics was described by the pseudo-second-order model, while P i removal followed the pseudo-first-order model. The removal process involves cooperative Coulombic interactions between the biopolymer/Fe(III)/P i and/or kaolinite colloids, along with polymer bridging effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The association between drinking water turbidity and gastrointestinal illness: a systematic review.

    OpenAIRE

    Mann, AG; Tam, CC; Higgins, CD; Rodrigues, LC

    2007-01-01

    Abstract Background Studies suggest that routine variations in public drinking water turbidity may be associated with endemic gastrointestinal illness. We systematically reviewed the literature on this topic. Methods We searched databases and websites for relevant studies in industrialized countries. Studies investigating the association between temporal variations in drinking water turbidity and incidence of acute gastrointestinal illness were assessed for quality. We reviewed good quality s...

  13. Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef

    Science.gov (United States)

    Fabricius, Katharina E.; De'ath, Glenn; Humphrey, Craig; Zagorskis, Irena; Schaffelke, Britta

    2013-01-01

    Seawater turbidity is a fundamental driver of the ecology of coastal marine systems, and is widely used as indicator for environmental reporting. However, the time scales and processes leading to changes in turbidity in tropical coastal waters remain poorly understood. This study investigates the main determinants of inshore turbidity in four inshore regions along ˜1000 km of the Australian Great Barrier Reef, based on ˜3 years of almost continuous in situ turbidity logger data on 14 reefs. Generalized additive mixed models were used to predict spatial and temporal variation in weekly mean turbidity based on variation in resuspension and runoff conditions. At any given wave height, wave period and tidal range, turbidity was significantly affected by river flow and rainfall. Averaged across all reefs, turbidity was 13% lower (range: 5-37%) in weeks with low compared with high rainfall and river flows. Additionally, turbidity was on average 43% lower 250 days into the dry season than at the start of the dry season on reefs with long-term mean turbidity >1.1 NTU. The data suggest the time scale of winnowing or consolidation of newly imported materials in this zone is months to years. In contrast, turbidity returned to low levels within weeks after river flows and rainfall on reefs with long-term mean turbidity of <1.1 NTU. Turbidity was also up to 10-fold higher on reefs near compared to away from river mouths, suggesting inter-annual accumulation of fine resuspendible sediments. The study suggests that a reduction in the river loads of fine sediments and nutrients through improved land management should lead to measurably improved inshore water clarity in the most turbid parts of the GBR.

  14. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Science.gov (United States)

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  15. Which Triggers Produce the Most Erosive, Frequent, and Longest Runout Turbidity Currents on Deltas?

    Science.gov (United States)

    Hizzett, J. L.; Hughes Clarke, J. E.; Sumner, E. J.; Cartigny, M. J. B.; Talling, P. J.; Clare, M. A.

    2018-01-01

    Subaerial rivers and turbidity currents are the two most voluminous sediment transport processes on our planet, and it is important to understand how they are linked offshore from river mouths. Previously, it was thought that slope failures or direct plunging of river floodwater (hyperpycnal flow) dominated the triggering of turbidity currents on delta fronts. Here we reanalyze the most detailed time-lapse monitoring yet of a submerged delta; comprising 93 surveys of the Squamish Delta in British Columbia, Canada. We show that most turbidity currents are triggered by settling of sediment from dilute surface river plumes, rather than landslides or hyperpycnal flows. Turbidity currents triggered by settling plumes occur frequently, run out as far as landslide-triggered events, and cause the greatest changes to delta and lobe morphology. For the first time, we show that settling from surface plumes can dominate the triggering of hazardous submarine flows and offshore sediment fluxes.

  16. Spatial-temporal variation of surface water quality in the downstream region of the Jakara River, north-western Nigeria: A statistical approach.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Ramli, Mohammad Firuz; Juahir, Hafizan

    2012-01-01

    The pollution status of the downstream section of the Jakara River was investigated. Dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), suspended solids (SS), pH, conductivity, salinity, temperature, nitrogen in the form of ammonia (NH(3)), turbidity, dissolved solids (DS), total solids (TS), nitrates (NO(3)), chloride (Cl) and phosphates (PO(3-)(4)) were evaluated, using both dry and wet season samples, as a measure of variation in surface water quality in the area. The results obtained from the analyses were correlated using Pearson's correlation matrix, principal component analysis (PCA) and paired sample t-tests. Positive correlations were observed for BOD(5), NH(3), COD, and SS, turbidity, conductivity, salinity, DS, TS for dry and wet seasons, respectively. PCA was used to investigate the origin of each water quality parameter, and yielded 5 varimax factors for each of dry and wet seasons, with 70.7 % and 83.1 % total variance, respectively. A paired sample t-test confirmed that the surface water quality varies significantly between dry and wet season samples (P < 0.01). The source of pollution in the area was concluded to be of anthropogenic origin in the dry season and natural origins in the wet season.

  17. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    Science.gov (United States)

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    Science.gov (United States)

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in areas of high-velocity tidal currents, and by turbulence from vessels passing over fine material deposited in shallow areas. Where turbidity barriers were not used, turbidity plumes visible at the surface were good indicators of the location of turbid water at depth. Where turbidity barriers were used, turbid bottom water was found at locations having no visible surface plumes. A region of rapidly accelerating then decelerating flow

  19. Computing time-series suspended-sediment concentrations and loads from in-stream turbidity-sensor and streamflow data

    Science.gov (United States)

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Doug; Ziegler, Andrew C.

    2010-01-01

    Over the last decade, use of a method for computing suspended-sediment concentration and loads using turbidity sensors—primarily nephelometry, but also optical backscatter—has proliferated. Because an in- itu turbidity sensor is capa le of measuring turbidity instantaneously, a turbidity time series can be recorded and related directly to time-varying suspended-sediment concentrations. Depending on the suspended-sediment characteristics of the measurement site, this method can be more reliable and, in many cases, a more accurate means for computing suspended-sediment concentrations and loads than traditional U.S. Geological Survey computational methods. Guidelines and procedures for estimating time s ries of suspended-sediment concentration and loading as a function of turbidity and streamflow data have been published in a U.S. Geological Survey Techniques and Methods Report, Book 3, Chapter C4. This paper is a summary of these guidelines and discusses some of the concepts, s atistical procedures, and techniques used to maintain a multiyear suspended sediment time series.

  20. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...... the mean weight-specific respiratory rate of macroinvertebrates declined by only 50%, from 400 to 3800 m. We suggest that this disproportionately large gap between availability and demand of oxygen at high altitudes may imply a potential oxygen deficiency for the fauna, and we discuss how oxygen deficiency...

  1. Oxygen therapy for cluster headache

    DEFF Research Database (Denmark)

    Petersen, Anja S; Barloese, Mads Cj; Lund, Nunu Lt

    2017-01-01

    -controlled, crossover inpatient study, and 102 CH attacks were treated with 100% oxygen delivered by demand valve oxygen (DVO), O2ptimask or simple mask (15 liters/min) or placebo delivered by DVO for 15 minutes. Primary endpoint: Two-point decrease of pain on a five-point rating scale within 15 minutes. Results Only...

  2. Turbidity. Training Module 5.240.2.77.

    Science.gov (United States)

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with candle turbidimeter and the nephelometric method of turbidity analysis. Included are objectives, an instructor guide, student handout, and transparency masters. A video tape is also available from the author. This module considers use…

  3. Estimating oxygen needs for childhood pneumonia in developing country health systems: a new model for expecting the unexpected.

    Directory of Open Access Journals (Sweden)

    Beverly D Bradley

    Full Text Available Planning for the reliable and cost-effective supply of a health service commodity such as medical oxygen requires an understanding of the dynamic need or 'demand' for the commodity over time. In developing country health systems, however, collecting longitudinal clinical data for forecasting purposes is very difficult. Furthermore, approaches to estimating demand for supplies based on annual averages can underestimate demand some of the time by missing temporal variability.A discrete event simulation model was developed to estimate variable demand for a health service commodity using the important example of medical oxygen for childhood pneumonia. The model is based on five key factors affecting oxygen demand: annual pneumonia admission rate, hypoxaemia prevalence, degree of seasonality, treatment duration, and oxygen flow rate. These parameters were varied over a wide range of values to generate simulation results for different settings. Total oxygen volume, peak patient load, and hours spent above average-based demand estimates were computed for both low and high seasons.Oxygen demand estimates based on annual average values of demand factors can often severely underestimate actual demand. For scenarios with high hypoxaemia prevalence and degree of seasonality, demand can exceed average levels up to 68% of the time. Even for typical scenarios, demand may exceed three times the average level for several hours per day. Peak patient load is sensitive to hypoxaemia prevalence, whereas time spent at such peak loads is strongly influenced by degree of seasonality.A theoretical study is presented whereby a simulation approach to estimating oxygen demand is used to better capture temporal variability compared to standard average-based approaches. This approach provides better grounds for health service planning, including decision-making around technologies for oxygen delivery. Beyond oxygen, this approach is widely applicable to other areas of

  4. A novel image processing-based system for turbidity measurement in domestic and industrial wastewater.

    Science.gov (United States)

    Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin

    2018-03-01

    Wastewater treatment facilities are continually challenged to meet both environmental regulations and reduce running costs (particularly energy and staffing costs). Improving the efficiency of operational monitoring at wastewater treatment plants (WWTPs) requires the development and implementation of appropriate performance metrics; particularly those that are easily measured, strongly correlate to WWTP performance, and can be easily automated, with a minimal amount of maintenance or intervention by human operators. Turbidity is the measure of the relative clarity of a fluid. It is an expression of the optical property that causes light to be scattered and absorbed by fine particles in suspension (rather than transmitted with no change in direction or flux level through a fluid sample). In wastewater treatment, turbidity is often used as an indicator of effluent quality, rather than an absolute performance metric, although correlations have been found between turbidity and suspended solids. Existing laboratory-based methods to measure turbidity for WWTPs, while relatively simple, require human intervention and are labour intensive. Automated systems for on-site measuring of wastewater effluent turbidity are not commonly used, while those present are largely based on submerged sensors that require regular cleaning and calibration due to fouling from particulate matter in fluids. This paper presents a novel, automated system for estimating fluid turbidity. Effluent samples are imaged such that the light absorption characteristic is highlighted as a function of fluid depth, and computer vision processing techniques are used to quantify this characteristic. Results from the proposed system were compared with results from established laboratory-based methods and were found to be comparable. Tests were conducted using both synthetic dairy wastewater and effluent from multiple WWTPs, both municipal and industrial. This system has an advantage over current methods as it

  5. Speckle suppression via sparse representation for wide-field imaging through turbid media.

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Chung, Euiheon; Choi, Wonshik; Lee, Heung-No

    2014-06-30

    Speckle suppression is one of the most important tasks in the image transmission through turbid media. Insufficient speckle suppression requires an additional procedure such as temporal ensemble averaging over multiple exposures. In this paper, we consider the image recovery process based on the so-called transmission matrix (TM) of turbid media for the image transmission through the media. We show that the speckle left unremoved in the TM-based image recovery can be suppressed effectively via sparse representation (SR). SR is a relatively new signal reconstruction framework which works well even for ill-conditioned problems. This is the first study to show the benefit of using the SR as compared to the phase conjugation (PC) a de facto standard method to date for TM-based imaging through turbid media including a live cell through tissue slice.

  6. Karakteristik Total Padatan Tersuspensi (Total Suspended Solid Dan Kekeruhan (Turbidity Secara Vertikal Di Perairan Teluk Benoa, Bali

    Directory of Open Access Journals (Sweden)

    I Gede Hendrawan

    2016-06-01

    Full Text Available Benoa bay is one of estuary that located in the Southern part of Bali Island, and as a strategic tourism destination. The increased of the human activity has an important role to give an ecological pressure for the seawater ecosystem in the Benoa bay. Total suspended solid (TSS and turbidity is one of the important indicators that could be determining the quality of the seawater. As the estuary, Benoa bay received fresh water from the river discharge that also potentially carries any material to the bay. In addition, port activity is also has an important role in contributing a various material to the Benoa bay. From this research, we found that the TSS concentration and the turbidity are higher in the surface water and also in the bottom layer. TSS concentration and the turbidity also varied from the bay mouth trough the line of vessel onto the inner of bay. TSS concentration and turbidity in the bay mouth has a smaller concentration rather than in the inner part of bay. TSS concentration and turbidity in the inner of bay could be caused by the port activity. In addition, seawater circulation is also has an importan factor to contributing the TSS concentration and the turbidity. Sea current would be erroted the seabottom and with the different shape of the topography could be increased the TSS and turbidity.

  7. Physicochemical Characteristics of Pennar River, A Fresh Water Wetland in Kerala, India

    Directory of Open Access Journals (Sweden)

    P. V. Joseph

    2010-01-01

    Full Text Available Some physicochemical characteristics of a fresh water wetland were investigated. The analysis was carried out for a period of two years. Physical parameters such as colour, odour, temperature, electrical conductivity (EC total suspended solids (TSS total dissolved substances (TDS, total solids (TS, turbidity and chemical parameters such as pH, alkalinity, hardness, dissolved oxygen (DO, biochemical oxygen demand (BOD, chemical oxygen demand (COD, chloride, salinity, flouride, phosphate & nitrate were examined. Results of the study indicated that water in Pennar river is highly contaminated and not safe for drinking. Uncontrolled use of chemical fertilizers and pesticides, unscrupulous dumping of domestic wastes are the major causes of deterioration of water. Poor quality of drinking water was recorded as the major risk factor for the large-scale water-borne diseases in the area.

  8. Assessment of human impact on water quality along Manyame River

    Directory of Open Access Journals (Sweden)

    Tirivashe P. Masere

    2012-12-01

    Full Text Available Human activities such as urbanization, agriculture, sewage treatment and industrialization are affecting water resources both quantitatively and qualitatively. The impact of these activities were studied by measuring and determining the concentration and values of eight selected water quality parameters namely nitrates, phosphates, copper, iron, biochemical oxygen demand (BOD, dissolved oxygen (DO, pH and turbidity along Manyame River, in the Manyame Catchment. Thirty five sites were sampled from the source of the river which is at Seke Dam, along Manyame River and on the tributaries (Ruwa, Nyatsime, Mukuvisi and Marimba just before they join the river. The 35 sites were categorized into 5 groups (A, B, C, D and E with group A and E being the upstream and downstream of Manyame. The analysis of results was undertaken using a simple one-way ANOVA with group as the only source of variation. Turbidity values, nitrate and phosphate concentrations were found to be higher than the Zimbabwe National Water Authority (ZINWA maximum permissible standards for surface waters. DO saturation in the downstream groups was less than 75% (ZINWA standard. Agricultural and urban runoff and sewage effluent were responsible of the high nutrient levels and turbidity, which in turn, reduced the dissolved oxygen (DO.

  9. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    International Nuclear Information System (INIS)

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-01-01

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  10. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  11. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Directory of Open Access Journals (Sweden)

    G. López

    2004-09-01

    Full Text Available Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Ångström turbidity coefficient β is frequently used. In this work, we analyse the performance of three methods based on broad-band solar irradiance measurements in the estimation of β. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of β for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns.

  12. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, G.; Batlles, F.J. [Dept. de Ingenieria Electrica y Termica, EPS La Rabida, Univ. de Huelva, Huelva (Spain)

    2004-07-01

    Atmospheric turbidity is an important parameter for assessing the air pollution in local areas, as well as being the main parameter controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky conditions. Among the different turbidity indices, the Aangstroem turbidity coefficient {beta} is frequently used. In this work, we analyse the performance of three methods based on broadband solar irradiance measurements in the estimation of {beta}. The evaluation of the performance of the models was undertaken by graphical and statistical (root mean square errors and mean bias errors) means. The data sets used in this study comprise measurements of broad-band solar irradiance obtained at eight radiometric stations and aerosol optical thickness measurements obtained at one co-located radiometric station. Since all three methods require estimates of precipitable water content, three common methods for calculating atmospheric precipitable water content from surface air temperature and relative humidity are evaluated. Results show that these methods exhibit significant differences for low values of precipitable water. The effect of these differences in precipitable water estimates on turbidity algorithms is discussed. Differences in hourly turbidity estimates are later examined. The effects of random errors in pyranometer measurements and cloud interferences on the performance of the models are also presented. Examination of the annual cycle of monthly mean values of {beta} for each location has shown that all three turbidity algorithms are suitable for analysing long-term trends and seasonal patterns. (orig.)

  13. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species.

    Science.gov (United States)

    Hasenbein, Matthias; Fangue, Nann A; Geist, Juergen; Komoroske, Lisa M; Truong, Jennifer; McPherson, Rina; Connon, Richard E

    2016-01-01

    Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator-prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species endemic to the San Francisco Estuary and Sacramento-San Joaquin River Delta, USA, where it is associated with turbid waters. Turbidity is known to play an important role for the completion of the species' life cycle; however, turbidity ranges in the Delta are broad, and specific requirements for this fish species are still unknown. To evaluate turbidity requirements for early life stages, late-larval delta smelt were maintained at environmentally relevant turbidity levels ranging from 5 to 250 nephelometric turbidity units (NTU) for 24 h, after which a combination of physiological endpoints (molecular biomarkers and cortisol), behavioural indices (feeding) and whole-organism measures (survival) were determined. All endpoints delivered consistent results and identified turbidities between 25 and 80 NTU as preferential. Delta smelt survival rates were highest between 12 and 80 NTU and feeding rates were highest between 25 and 80 NTU. Cortisol levels indicated minimal stress between 35 and 80 NTU and were elevated at low turbidities (5, 12 and 25 NTU). Expression of stress-related genes indicated significant responses for gst, hsp70 and glut2 in high turbidities (250 NTU), and principal component analysis on all measured genes revealed a clustering of 25, 35, 50 and 80 NTU separating the medium-turbidity treatments from low- and high-turbidity treatments. Taken together, these data demonstrate that turbidity levels that are either too low or too high affect delta

  14. Riverbank filtration for the treatment of highly turbid Colombian rivers

    Science.gov (United States)

    Gutiérrez, Juan Pablo; van Halem, Doris; Rietveld, Luuk

    2017-05-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using riverbank filtration (RBF) for the highly turbid and contaminated waters in Colombia, emphasizing water quality improvement and the influence of clogging by suspended solids. The suspended sediments may be favorable for the improvement of the water quality, but they may also reduce the production yield capacity. The cake layer must be balanced by scouring in order for an RBF system to be sustainable. The infiltration rate must remain high enough throughout the river-aquifer interface to provide the water quantity needed, and the residence time of the contaminants must be sufficient to ensure adequate water quality. In general, RBF seems to be a technology appropriate for use in highly turbid and contaminated surface rivers in Colombia, where improvements are expected due to the removal of turbidity, pathogens and to a lesser extent inorganics, organic matter and micro-pollutants. RBF has the potential to mitigate shock loads, thus leading to the prevention of shutdowns of surface water treatment plants. In addition, RBF, as an alternative pretreatment step, may provide an important reduction in chemical consumption, considerably simplifying the operation of the existing treatment processes. However, clogging and self-cleansing issues must be studied deeper in the context of these highly turbid waters to evaluate the potential loss of abstraction capacity yield as well as the development of different redox zones for efficient contaminant removal.

  15. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  16. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  17. Turbidity and suspended-sediment transport in the Russian River Basin, California

    Science.gov (United States)

    Ritter, John R.; Brown, William M.

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  18. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    Science.gov (United States)

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives. 2013 Published by Elsevier Inc.

  19. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects.

    Science.gov (United States)

    Beck, Darren T; Martin, Jeffrey S; Casey, Darren P; Braith, Randy W

    2013-09-01

    Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120-139 mm Hg or diastolic blood pressure (DBP) = 80-89 mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18-35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects.

  20. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  1. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film

    Directory of Open Access Journals (Sweden)

    Hamdy H. Hassan

    2018-02-01

    Full Text Available A commercially available copper electrical cable and pure Cu disk were used as substrates for the electrodeposition of copper nanoparticles (nano-Cu. The surface morphology of the prepared nano-Cu/Cu electrodes was investigated by scanning electron microscope (SEM and energy dispersive X-ray spectrometer (EDX. The bare copper substrates and the nano-copper modified electrodes were utilized and optimized for electrochemical assay of chemical oxygen demand (COD using glycine as a standard. A comparison was made among the four electrodes (i.e., bare and nano-Cu coated copper cable and pure copper disk as potential COD sensors. The oxidation behavior of glycine was investigated on the surface of the prepared sensors using linear sweep voltammetry (LSV. The results indicate significant enhancement of the electrochemical oxidation of glycine by the deposited nano-Cu. The effects of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the prepared sensors were investigated. Under optimized conditions, the optimal nano-Cu based COD sensor exhibited a linear range of 2–595 mg/L, lower limit of detection (LOD as low as 1.07 mg/L (S/N = 3. The developed method exhibited high tolerance level to Cl− ion where 1.0 M Cl− exhibited minimal influence. The sensor was utilized for the detection of COD in different real water samples. The results obtained were validated using the standard dichromate method.

  2. Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran.

    Science.gov (United States)

    Mohammadi, Mohammad Javad; Takdastan, Afshin; Jorfi, Sahand; Neisi, Abdolkazem; Farhadi, Majid; Yari, Ahmad Reza; Dobaradaran, Sina; Khaniabadi, Yusef Omidi

    2017-04-01

    In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD) from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV-vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  3. Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Mohammadi

    2017-04-01

    Full Text Available In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV–vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16.

  4. Removal of COD and turbidity to improve wastewater quality using electrocoagulation technique

    International Nuclear Information System (INIS)

    Mohd Faiqun Niam; Fadil Othman; Johan Sohaili; Zulfa Fauzia

    2007-01-01

    Electrocoagulation (EC) is becoming a popular process to be used for wastewater treatment. The removal of COD and turbidity from wastewater by EC using iron (Fe) electrode material was investigated in this paper. Several working parameters, such as pH, current density, and operating time were studied in an attempt to achieve a higher removal capacity. Wastewater sample was made from milk powder with initial COD of 1140 mgL -1 and turbidity of 491 NTU. Current density was varied from 3.51 to 5.62 mA cm -2 , and operating time of between 30 and 50 minutes. The results show that the effluent wastewater was very clear and its quality exceeded the direct discharge standard. The removal efficiencies of COD and turbidity were high, being more than 65 % and 95 %. In addition, the experimental results also show that the electrocoagulation can neutralize pH of wastewater. (author)

  5. Electrocoagulation (EC and Electrocoagulation/Flotation(ECF Processes for Removing High Turbidity from Surface Water Using Al and Fe Electrodes

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2013-08-01

    Full Text Available Electrocoagulation (EC and Electrocoagulation/flotation (ECF processes are simple and efficient in water and wastewater treatment. In recent years, many investigations have focused on the use of these processes for treating of polluted water. The purpose of this study was to investigate the efficiency of EC and ECF processes in removal of high turbidity water using different electrodes in different circumstances. In present study an electrocoagulation and electrocoagulation/ flotation reactor in a lab scale to an approximate volume of 6 liters which is equipped with four Al-AL and Fe-Fe electrodes (200 * 20 * 2 mm was used  for removing of high turbidity water. The effects of operating parameters such as type of electrodes, initial water turbidity, applied voltage (10 to 30 v, initial pH of the solution (3 to 12 and reaction times (5 to 30 minutes were evaluated. The batch experimental results showed that initial turbidity water, initial pH of the solution, different applied voltages up to %88 turbidity as initial turbidity of 1200 NTU have been removed when using Al-Al and Fe-Fe electrodes and reaction times highly effective on the turbidity removal efficiency in these processes. In ECF process, 84% in optimum condition. However, in EC  process the maximum removal was found  up to 68% of initial turbidity when using Al-Al and Fe-Fe electrodes in same operation. Based on the result obtained in this study, the type of electrodes in EC and ECF processes  significantly affect the removal rate of high turbid water. Also, it was found that much higher turbidity removal could be achieved by ECF process than that by EC process in the same condition.

  6. Relationship of a turbidity of an oral rinse with oral health and malodor in Vietnamese patients.

    Science.gov (United States)

    Pham, Thuy A V

    2014-05-01

    In the present study, the relationship between the turbidity of mouth-rinse water and oral health conditions, including oral malodor, in patients with (n = 148) and without (n = 231) periodontitis was examined. The turbidity of 20 mL distilled water that the patients rinsed in their mouths 10 times was measured using a turbidimeter. Oral malodor was evaluated using an organoleptic test and Oral Chroma. Oral health conditions, including decayed teeth, periodontal status, oral hygiene status, proteolytic activity of the N-benzoyl-dl-arginine-2-napthilamide (BANA) test on the tongue coating, and salivary flow rate, were assessed. Turbidity showed significant correlations with oral malodor and all oral health parameters in the periodontitis group. In the non-periodontitis group, turbidity showed significant correlations with oral malodor and oral health parameters, including dental plaque, tongue coating, BANA test, and salivary flow rate. The regression analysis indicated that turbidity was significantly associated with methyl mercaptan and the BANA test in the periodontitis group, and with hydrogen sulfide, dental plaque, tongue coating, and salivary flow rate in the non-periodontitis group. The findings of the present study indicate that the turbidity of mouth-rinse water could be used as an indicator of oral health conditions, including oral malodor. © 2013 Wiley Publishing Asia Pty Ltd.

  7. Novel Quantification of Sediment Concentration in Turbidity Currents Through in-situ Measurements of Conductivity and Temperature

    Science.gov (United States)

    Xu, J.; Wang, Z.; Gwiazda, R.; Paull, C. K.; Talling, P.; Parsons, D. R.; Maier, K. L.; Simmons, S.; Cartigny, M.

    2017-12-01

    During a large turbidity current event observed by seven moorings placed along Monterey Canyon, offshore central California, in the axial channel between 300 and 1900 meters water depth, a conductivity/temperature sensor placed 11 meters above canyon floor on the mooring at 1500 meters water depth recorded a rapid decrease of conductivity and increase of temperature during the passage of a large turbidity current. The conductivity decline is unlikely caused by fresh water input owing to lack of precipitation in the region prior to the event. We investigated the mechanisms of turbidity currents' high sediment concentration reducing the measured conductivity. By conducting a series of laboratory experiments with a range of different concentrations, grain size, and water temperature combinations, we quantified a relationship between reduced conductivity and the elevated sediment concentration. This relationship can be used for estimating the very high sediment concentrations in a turbidity current with a condition of assuming constant salinity of the ambient seawater. The empirical relationship was then applied to the in-situ time-series of temperature and conductivity measured during this turbidity current. The highest sediment concentration, in the head of the flow, reached nearly 400 g/L (volume concentration 17%). Such a high value, which has yet been reported in literature for an oceanic turbidity current, will have significant implications for the dynamics and deposits of such flows.

  8. Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2004-09-01

    The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.

  9. Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant.

    Science.gov (United States)

    Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N

    2009-01-01

    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.

  10. Monitoring of well-controlled turbidity currents using the latest technology and a dredger

    Science.gov (United States)

    Vellinga, A. J.; Cartigny, M.; Clare, M. A.; Mastbergen, D. R.; Van den Ham, G.; Koelewijn, A. R.; de Kleine, M.; Hizzett, J. L.; Azpiroz, M.; Simmons, S.; Parsons, D. R.

    2017-12-01

    Recent advances in technology enable monitoring of turbidity currents at field scale. This now allows us to test models developed at small-scale in the laboratory. However, interpretation of field measurements is complicated, as the instruments used are not bespoke for monitoring turbidity currents. For example, Acoustic Doppler Current Profiles (ADCPs) are developed to measure clear water flows, and 3D multimode multibeam echosounders (M3s) are made to find shoals of fish. Calibration of field-scale measurements is complicated, as we often do not know fundamental information about the measured flows, such as grain size and initial sediment volume. We present field-scale measurements of two turbidity currents for which the pre- and post-flow bathymetry, grain size and initial sediment volume is known precisely. A dredger created two turbidity currents by twice discharging 500m3 of sediment on a slope in the Western Scheldt Estuary, the Netherlands. Flow velocity and echo intensity were directly measured using three frequencies of ADCPs, and two M3 sonars imaged the flow morphology in 3D. This experiment was part of the IJkdijk research program. The turbidity currents formed upstream-migrating crescentic shaped bedforms. The ADCPs measured peak flow velocities of 1-1.5 m/s. The M3s however suggest head velocities are 2-4 m/s. The two measured turbidity currents have thicknesses of about 3m, are up to 50m in width and travel downslope for about 150m. Flow dimensions, duration, and sediment discharge indicate a mean sediment concentration of 1-5 vol. %. Flow morphology evolves from a fast but thin, snout-like head, to a thicker body, and a dilute tail. The initial flow dynamics contrast with many laboratory experiments, but are coherent with direct measurements of much larger flows in the Congo Canyon. Well-constrained field studies, like this one, thus help to understand the validity of scaling from the laboratory to the deep sea.

  11. Simulation of turbid underflows generated by the plunging of a river

    Science.gov (United States)

    Kassem, Ahmed; Imran, Jasim

    2001-07-01

    When the density of sediment-laden river water exceeds that of the lake or ocean into which it discharges, the river plunges to the bottom of the receiving water body and continues to flow as a hyperpycnal flow. These particle-laden underflows, also known as turbidity currents, can travel remarkable distances and profoundly influence the seabed morphology from shoreline to abyss by depositing, eroding, and dispersing large quantities of sediment particles. Here we present a new approach to investigating the transformation of a plunging river flow into a turbidity current. Unlike previous workers using experimental and numerical treatments, we consider the evolution of a turbidity current from a river as different stages of a single flow process. From initial commotion to final stabilization, the transformation of a river (open channel flow) into a density-driven current (hyperpycnal flow) is captured in its entirety by a numerical model. Successful implementation of the model in laboratory and field cases has revealed the dynamics of a complex geophysical flow that is extremely difficult to observe in the field or model in the laboratory.

  12. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    Science.gov (United States)

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh -1 /NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Palm oil mill effluent and municipal wastewater co-treatment by zeolite augmented sequencing batch reactors: Turbidity removal

    Science.gov (United States)

    Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md

    2017-10-01

    Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.

  14. Turbidity and total suspended solid concentration dynamics in streamflow from California oak woodland watersheds

    Science.gov (United States)

    David J. Lewis; Kenneth W. Tate; Randy A. Dahlgren; Jacob Newell

    2002-01-01

    Resource agencies, private landowners, and citizen monitoring programs utilize turbidity (water clarity) measurements as a water quality indicator for total suspended solids (TSS – mass of solids per unit volume) and other constituents in streams and rivers. The dynamics and relationships between turbidity and TSS are functions of watershed-specific factors and...

  15. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    Science.gov (United States)

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  16. Using Chitosan/CHPATC as coagulant to remove color and turbidity of industrial wastewater: Optimization through RSM design.

    Science.gov (United States)

    Momeni, Meysam Mohammad; Kahforoushan, Davood; Abbasi, Farhang; Ghanbarian, Saeid

    2018-04-01

    One of the most important solid-liquid separation processes is coagulation and flocculation that is extensively used in the primary treatment of industrial wastewater. The biopolymers, because of biodegradable properties and low cost have been used as coagulants. In this study, chitosan as a natural coagulant of choice, was modified by (3-chloro 2-hydroxypropyl)trimethylammonium chloride and was used to remove the color and turbidity of industrial wastewater. To evaluate the effect of pH, settling time, the initial turbidity of wastewater, the amount of coagulant, and the concentration of dye (Melanoidin) were chosen to study their effects on removal of wastewater color and turbidity. The experiments were done in a batch system by using a jar test. To achieve the optimum conditions for the removal of color and turbidity, the response surface methodology (RSM) experimental design method was used. The results obtained from experiments showed that the optimum conditions for the removal of color were as: pH = 3, concentration of dye = 1000 mg/L, settling time = 78.93 min, and dose of coagulant = 3 g/L. The maximum color removal in these conditions was predicted 82.78% by the RSM model. The optimal conditions for the removal of turbidity of the waste water were as: pH = 5.66, initial turbidity = 60 NTU, settling time = 105 min, and amount of coagulant = 3 g/L. The maximum turbidity removal in these circumstances was predicted 94.19% by the model. The experimental results obtained in optimum conditions for removal of color and turbidity were 76.20% and 90.14%, respectively, indicating the high accuracy of the prediction model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    Science.gov (United States)

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas. Published by Elsevier Ltd.

  18. Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a crude water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water. Copyright © 2014 John Wiley & Sons, Inc.

  19. 40 CFR 141.563 - What follow-up action is my system required to take based on continuous turbidity monitoring?

    Science.gov (United States)

    2010-07-01

    ... required to take based on continuous turbidity monitoring? 141.563 Section 141.563 Protection of... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based on continuous turbidity monitoring? Follow-up action is required according to the following tables...

  20. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  1. Modelling the risk of mortality of Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) exposed to different turbidity conditions.

    Science.gov (United States)

    Avelar, W E P; Neves, F F; Lavrador, M A S

    2014-05-01

    The provision of sediment in rivers, due to erosion processes that occur in the environment, consists of a major source of pollution and alteration of the physicochemical conditions of water resources. In addition, the increase in water turbidity may cause siltation, dramatically impacting aquatic communities. Specifically considering the bivalve Corbicula fluminea (Müller, 1774), the aim of this study was to analyse the effect of exposure to different turbidity conditions of sediments, as a risk factor for the animals. For this purpose, a docking device was designed to ensure water circulation in a closed system and to maintain the desired levels of turbidity. Although C. fluminea can generally tolerate environmental changes in aquatic systems, an intolerance to high turbidity levels was experimentally observed, expressed by the mortality rate of the animals when exposed to conditions above 150 nephelometric turbidity units (NTU). This value was similar to the one recorded at study sites in the rivers Pardo (Serrana-SP-Brazil) and Mogi Guaçu (Porto Ferreira-SP-Brazil) during the rainy season. Using a logistic regression model, the experimental results were analysed and the observed mortality rates indicate that the exposure of the animals to turbidity levels above 150 nephelometric turbidity units (NTU), for periods longer than 120 hours, may be considered a probable cause of mortality for the species.

  2. Data on wastewater treatment plant by using wetland method, Babol, Iran

    Directory of Open Access Journals (Sweden)

    Yousef Dadban Shahamat

    2018-02-01

    Full Text Available Date in this paper highlights the applications of constructed horizontal surface flow (HF-CW wetland with two different local plants (Louis latifoila and Phragmites -australis (Cav. Trin at the wastewater treatment plant in Babol city. This system was designed as an advanced treatment unit in field scale after the treatment plant. Parameters such as Total Dissolved Solid (TDS, Total Suspended Solid (TSS, Turbidity, Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD, were investigated. The result shows that treatment efficiency increases with the passage of time. The efficiency of Phragmites planted setups in open environment was fairly good for all studied parameters (28.6% of TDS, 94.4% for TSS, 79.8% for turbidity, 93.7% for BOD and 82.6% for COD. The efficiency of the latifoila set up was also good, but lower than that of Phragmites (26.5% of TDS, 76.9% for TSS, 71.5% for turbidity, 79.1 for BOD and 68.8% for COD. In brief, the obtained dates show that using local plants in (HF-CW wetland not only effectively reduces various contaminants from the effluent of the wastewater according to Effluent Guideline regulations (WHO & EPA, but it is also a cost- effective and environmentally friendly method. Also, it was calculated that in full scale operation [time (1 day and a depth (0.3 m], 8 ha of wetland was needed. Keywords: BOD, Babol, COD, Horizontal subsurface flow wetland, TSS, TSD

  3. 14C assimilation in a turbid man-made lake

    International Nuclear Information System (INIS)

    Stegmann, P.

    1978-01-01

    This article discusses the phytoplankton primary production in a turbid impoundment. The use of radioactive carbon to estimate the amount of plankton is described. The results are compared to those received from a clear-water environment

  4. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    Science.gov (United States)

    Xu, Jingping; Octavio E. Sequeiros,; Noble, Marlene A.

    2014-01-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  5. Performance evaluation of different filter media in turbidity removal from water by application of modified qualitative indices.

    Science.gov (United States)

    Gholikandi, G Badalians; Dehghanifard, E; Sepehr, M Noori; Torabian, A; Moalej, S; Dehnavi, A; Yari, Ar; Asgari, Ar

    2012-01-01

    Water filtration units have been faced problems in water turbidity removal related to their media, which is determined by qualitative indices. Moreover, Current qualitative indices such as turbidity and escaping particle number could not precisely determine the efficiency of the media in water filtration, so defining new indices is essential. In this study, the efficiency of Anthracite-Silica and LECA-Silica media in turbidity removal were compared in different operating condition by using modified qualitative indices. The pilot consisted of a filter column (one meter depth) which consisted of a layer of LECA (450 mm depth) and a layer of Silica sand (350 mm depth. Turbidities of 10, 20, and 30 NTU, coagulant concentrations of 4, 8, and 12 ppm and filtration rates of 10, 15, and 20 m/h were considered as variables. The LECA-Silica media is suitable media for water filtration. Averages of turbidity removal efficiencies in different condition for the LECA-Silica media were 85.8±5.37 percent in stable phase and 69.75±3.37 percent in whole operation phase, while the efficiency of total system were 98.31±0.63 and 94.49±2.97 percent, respectively. The LECA layer efficiency in turbidity removal was independent from filtration rates and due to its low head loss; LECA can be used as a proper medium for treatment plants. Results also showed that the particle index (PI) was a suitable index as a substitute for turbidity and EPN indices.

  6. Clearing muddied waters: Capture of environmental DNA from turbid waters.

    Directory of Open Access Journals (Sweden)

    Kelly E Williams

    Full Text Available Understanding the differences in efficiencies of various methods to concentrate, extract, and amplify environmental DNA (eDNA is vital for best performance of eDNA detection. Aquatic systems vary in characteristics such as turbidity, eDNA concentration, and inhibitor load, thus affecting eDNA capture efficiency. Application of eDNA techniques to the detection of terrestrial invasive or endangered species may require sampling at intermittent water sources that are used for drinking and cooling; these water bodies may often be stagnant and turbid. We present our best practices technique for the detection of wild pig eDNA in water samples, a protocol that will have wide applicability to the detection of elusive vertebrate species. We determined the best practice for eDNA capture in a turbid water system was to concentrate DNA from a 15 mL water sample via centrifugation, purify DNA with the DNeasy mericon Food kit, and remove inhibitors with Zymo Inhibitor Removal Technology columns. Further, we compared the sensitivity of conventional PCR to quantitative PCR and found that quantitative PCR was more sensitive in detecting lower concentrations of eDNA. We show significant differences in efficiencies among methods in each step of eDNA capture, emphasizing the importance of optimizing best practices for the system of interest.

  7. Low-Cost GRIN-Lens-Based Nephelometric Turbidity Sensing in the Range of 0.1-1000 NTU.

    Science.gov (United States)

    Metzger, Michael; Konrad, Alexander; Blendinger, Felix; Modler, Andreas; Meixner, Alfred J; Bucher, Volker; Brecht, Marc

    2018-04-06

    Turbidity sensing is very common in the control of drinking water. Furthermore, turbidity measurements are applied in the chemical (e.g., process monitoring), pharmaceutical (e.g., drug discovery), and food industries (e.g., the filtration of wine and beer). The most common measurement technique is nephelometric turbidimetry. A nephelometer is a device for measuring the amount of scattered light of suspended particles in a liquid by using a light source and a light detector orientated in 90° to each other. Commercially available nephelometers cost usually-depending on the measurable range, reliability, and precision-thousands of euros. In contrast, our new developed GRIN-lens-based nephelometer, called GRINephy, combines low costs with excellent reproducibility and precision, even at very low turbidity levels, which is achieved by its ability to rotate the sample. Thereby, many cuvette positions can be measured, which results in a more precise average value for the turbidity calculated by an algorithm, which also eliminates errors caused by scratches and contaminations on the cuvettes. With our compact and cheap Arduino-based sensor, we are able to measure in the range of 0.1-1000 NTU and confirm the ISO 7027-1:2016 for low turbidity values.

  8. Performance testing of coagulants to reduce stormwater runoff turbidity.

    Science.gov (United States)

    2014-05-01

    On December 1, 2009, the US Environmental Protection Agency (EPA) published a rule in the Federal : Register establishing non-numeric and, for the first time, numeric effluent limitation guidelines (ELGs). The : numeric ELGs included a turbidity limi...

  9. Optimisation of the zinc sulphate turbidity test for the determination of immune status.

    Science.gov (United States)

    Hogan, I; Doherty, M; Fagan, J; Kennedy, E; Conneely, M; Crowe, B; Lorenz, I

    2016-02-13

    Failure of passive transfer of maternal immunity occurs in calves that fail to absorb sufficient immunoglobulins from ingested colostrum. The zinc sulphate turbidity test has been developed to test bovine neonates for this failure. The specificity of this test has been shown to be less than ideal. The objective was to examine how parameters of the zinc sulphate turbidity test may be manipulated in order to improve its diagnostic accuracy. One hundred and five blood samples were taken from calves of dairy cows receiving various rates of colostrum feeding. The zinc sulphate turbidity test was carried out multiple times on each sample, varying the solution strength, time of reaction and wavelength of light used and the results compared with those of a radial immunodiffusion test, which is the reference method for measuring immunoglobulin concentration in serum. Reducing the time over which the reaction occurs, or increasing the wavelength of light used to read the turbidity, resulted in decreased specificity without improving sensitivity. Increasing the concentration of the zinc sulphate solution used in the test was shown to improve the specificity without decreasing sensitivity. Examination of the cut-off points suggested that a lower cut-off point would improve the performance. British Veterinary Association.

  10. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    Science.gov (United States)

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality.

  11. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    Science.gov (United States)

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.

  12. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.

    Science.gov (United States)

    Epstein, Tamir; Xu, Liping; Gillies, Robert J; Gatenby, Robert A

    2014-01-01

    Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but slow-responding aerobic metabolism

  13. Improved Methods for Correlating Turbidity and Suspended Solids for Monitoring

    National Research Council Canada - National Science Library

    2000-01-01

    This technical note describes techniques normally used to measure turbidity and suspended solids in waters, how the two parameters relate to each other and to various environmental impacts, and why...

  14. Exercise Training Reduces Peripheral Arterial Stiffness and Myocardial Oxygen Demand in Young Prehypertensive Subjects

    Science.gov (United States)

    2013-01-01

    BACKGROUND Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. METHODS Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120–139mm Hg or diastolic blood pressure (DBP) = 80–89mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18–35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. RESULTS PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects. PMID:23736111

  15. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective

    Science.gov (United States)

    Piper, David J.W.; Normark, William R.

    2009-01-01

    How the processes that initiate turbidity currents influence turbidite deposition is poorly understood, and many discussions in the literature rely on concepts that are overly simplistic. Marine geological studies provide information on the initiation and flow path of turbidity currents, including their response to gradient. In case studies of late Quaternary turbidites on the eastern Canadian and western U.S. margins, initiation processes are inferred either from real-time data for historical flows or indirectly from the age and contemporary paleogeography, erosional features, and depositional record. Three major types of initiation process are recognized: transformation of failed sediment, hyperpycnal flow from rivers or ice margins, and resuspension of sediment near the shelf edge by oceanographic processes. Many high-concentration flows result from hyperpycnal supply of hyperconcentrated bedload, or liquefaction failure of coarse-grained sediment, and most tend to deposit in slope conduits and on gradients turbidity flows. In most basins, there is a complex feedback between different types of turbidity-current initiation, the transformation of the flows, and the associated slope morphology. As a result, there is no simple relationship between initiating process and type of deposit.

  16. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Using total suspended solids (TSS) and turbidity as proxies for evaluation of metal transport in river water

    International Nuclear Information System (INIS)

    Nasrabadi, T.; Ruegner, H.; Sirdari, Z.Z.; Schwientek, M.; Grathwohl, P.

    2016-01-01

    The present study was carried out in Haraz basin (Iran) that is located in south of the Caspian Sea. The goal of this study was to establish correlations amongst total suspended solids concentration (TSS) and turbidity with total pollutant concentrations to evaluate the dissolved and particle-bound concentrations of major toxic metals. It also aimed to validate TSS and/or turbidity measurements as proxies to monitor pollutant fluxes. Eight metals, namely nickel, lead, cadmium, copper, zinc, cobalt, arsenic and strontium were analyzed for dissolved and total concentrations in water at ten locations within the catchment. TSS and turbidity were also measured. Sampling campaigns were designed to cover both the rainy (December) and the dry (May) season within the basin. The robust relationship between TSS (202–1212 mg/l) and turbidity (63–501 NTUs) in both seasons warranted their interchangeable potential as proxies within the observed ranges. Total element concentrations were plotted in separate attempts versus TSS and turbidity for all locations and both events. Very good linear correlations were attained where the slopes represent the metals concentration on suspended solids and the intercept the dissolved concentration in water. The results achieved by these linear regressions were in very good agreement with independently measured values for dissolved concentration and concentrations on river bed sediments taken at the same locations. This demonstrates that turbidity and/or TSS measurements may be used for monitoring of metal loads if once calibrated against total concentration of metals. The results also revealed that in the lower Haraz catchment metal concentrations on suspended and river bed sediment were homogeneously distributed along the investigated river stretch. This is assumed to be due to intensive gravel and sand mining activities in the upper and middle part of the catchment. - Highlights: • Turbidity is evaluated as a feasible proxy to predict

  18. Comparison of airline passenger oxygen systems.

    Science.gov (United States)

    Byrne, N J

    1995-08-01

    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma.

  19. Continuous turbidity monitoring in streams of northwestern California

    Science.gov (United States)

    Rand Eads; Jack Lewis

    2002-01-01

    Abstract - Redwood Sciences Laboratory, a field office of the USDA Forest Service, Pacific Southwest Research Station has developed and refined methods and instrumentation to monitor turbidity and suspended sediment in streams of northern California since 1996. Currently we operate 21 stations and have provided assistance in the installation of 6 gaging stations for...

  20. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  1. First direct observations linking confined supercritical turbidity currents to their depositional architecture and facies characteristics

    Science.gov (United States)

    Hage, S.; Cartigny, M.; Hughes Clarke, J. E.; Clare, M. A.; Sumner, E.; Hubbard, S. M.; Talling, P.; Lintern, G.; Stacey, C.; Vardy, M. E.; Hunt, J.; Vendettuoli, D.; Yokokawa, M.; Hizzett, J. L.; Vellinga, A. J.; Azpiroz, M.

    2017-12-01

    Turbidity currents transfer globally significant amounts of sediment via submarine channels from the continental margin to deep submarine fans. Submarine channel inception is thought to result from erosive, supercritical turbidity currents that are common in proximal settings of the marine realm. Recent monitoring of submarine processes have provided the first measurements of supercritical turbidity currents (Hughes Clarke, 2016), demonstrating that they drive the upstream migration of crescentic bedforms in confined submarine channels. Although upstream-migrating bedforms are common in confined channels across the world's oceans, there is considerable debate over the type of deposits that they produce. It is important to understand what types of deposit record these supercritical bedforms to potentially identify them from geological archives. For the first time, we combine direct measurements from supercritical field-scale turbidity currents with the facies and depositional architecture resulting from such flows. We show how the subsurface architecture evolves in a highly active channel at Squamish submarine delta, British Columbia, Canada. Repeated upstream migration of bedforms is found to create two main deposit geometries. First, regular back-stepping beds result from flow deceleration on the slightly-inclined sides of the bedforms. Second, lens-shaped scour fills composed of massive deposits result from erosion of the back-stepping beds by subsequent turbidity currents. We relate our findings to a range of ancient outcrop studies to demonstrate that supercritical flows are common in proximal settings through the geological record. This study provides the first direct observation-based model to identify confined supercritical turbidity currents and their associated upslope-migrating bedforms in the sedimentary record. This is important for correctly identifying the proximal sites of ancient submarine channels that served as past conduits for globally

  2. Turbidity and oil removal from oilfield produced water, middle oil company by electrocoagulation technique

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer

    2018-01-01

    Full Text Available Huge quantity of produced water is salty water trapped in the oil wells rock and brought up along with oil or gas during production. It usually contains hydrocarbons as oil and suspended solids or turbidity. Therefore the aim of this study is to treat produced water before being discharge to surface water or re injected in oil wells. In this paper experimental results were investigated on treating produced water (which is obtained from Middle Oil Company-Iraq, through electrocoagulation (EC. The performance of EC was investigated for reduction of turbidity and oil content up to allowable limit. Effect of different parameters were studied; (pH, current density, distance between two electrodes, and electrolysis time. The experimental runs carried out by an electrocoagulation unit was assembled and installed in the lab and the reactor was made of a material Perspex, with a capacity of approximately 2.5 liters and dimensions were 20 cm in length, 14 cm in width and 16 cm height. The electrodes employed were made of commercial materials. The anode was a perforated aluminum rectangular plate with a thickness of 1.72 mm, a height of 60 mm and length of 140 mm and the cathode was a mesh iron. The current was used in the unit with different densities to test the turbidity removing efficiency (0.0025, 0.00633, 0.01266 and 0.0253 A/cm2.The experiment showed that the best turbidity removing was (10, 9.7, 9.2, 18 NTU respectively. The distance between the electrodes of the unit was 3cm. The present turbidity removing was 92.33%. A slight improvement of turbidity removing was shown when the distance between the electrodes was changed from 0.5 to 3 cm with fixation of current density. The best turbidity removing was 93.5% , (7.79 NTU when the distance between the electrodes were 1 cm. The experimental results found that concentration of oil had decreased to (10.7, 11.2, 11.7, 12.3 mg/l when different current densities (0.00253, 0.00633, 0.01266, 0.0253 A/cm2

  3. Comparison of the Performance of Poly Aluminum Chloride with Natural Co-coagulants in Removal of Turbidity from synthetic aqueous solution

    Directory of Open Access Journals (Sweden)

    Leila Mosleh

    2014-06-01

    Full Text Available Background: Contaminated water, naturally or by human, should be processed to become drinking water. Coagulation is a process that fine unsettling particles which called colloids and are important factors in the turbidity occurrence, join together and settle. The purpose of this study was to evaluate and comparison of the performance of poly aluminum chloride accompany with corn starch and okra, as a co-coagulant agent, to remove turbidity from water. Methods: This research was descriptive-functional study. In this study, the effect of two natural co-coagulant agents, corn starch and okra, with poly aluminum chloride were evaluated and R and SAS software were used in order to experimental design and data analysis. Also, after the analysis of variance, LSD test was used to compare treatment averages. Results: In the initial turbidity of 250 NTU, poly aluminum chloride and corn starch (5 ppm and 0.7 ppm, respectively, the highest percentage of turbidity removal was observed which could reduce the turbidity up to 98.48% and reached at 3.73 NTU. Moreover, in the initial turbidity of 500 NTU, maximum turbidity reduction related to poly aluminum chloride and okra (5 ppm and 0.7 ppm, respectively which reduced the turbidity up to 98.38% and reached at 8.1 NTU. Conclusions: As an economic aspect, replacement of natural polymers with synthetic polymers which have higher costs is economic and also higher turbidity reduction may be observed in compare with using chemical coagulants, solely. In addition, chemical coagulants consumption reduces, however more researches must be conducted on residual natural co-coagulants and interactions between chemical and natural and also their health effects on consumers.

  4. A time series study of drug sales and turbidity of tap water in Le Havre, France.

    Science.gov (United States)

    Beaudeau, Pascal; Le Tertre, Alain; Zeghnoun, Abdelkrim; Zanobetti, Antonella; Schwartz, Joel

    2012-06-01

    The 80,000 inhabitants of the lower part of Le Havre obtain their water supply from two karstic springs, Radicatel and Saint-Laurent. Until 2000, the Radicatel water was settled when turbidity exceeded 3 NTU, then filtered and chlorinated, whereas the Saint-Laurent water was simply chlorinated. Our study aimed to characterize the link between water turbidity and the incidence of acute gastroenteritis (AGE). Records on drug sales used for the treatment of AGE were collected from January 1994 to June 1996 (period 1) and from March 1997 to July 2000 (period 2). Daily counts of drug sales were modeled using a Poisson Regression. We used data set 2 as a discovery set, identifying relevant (i.e. both significant and plausible) exposure covariates and lags. We then tested this model on period 1 as a replication dataset. In period 2, the daily drug sales correlated with finished water turbidity at both resources. Settling substantially modified the risk related to turbidity of both raw and finished waters at Radicatel. Correlations were reproducible in period 1 for water from the Radicatel spring. Timeliness of treatment adaptation to turbidity conditions appears to be crucial for reducing the infectious risk due to karstic waters.

  5. Dynamics of turbidity plumes in Lake Ontario. [Welland Canal and Niagara, Genesee, and Oswego Rivers

    Science.gov (United States)

    Pluhowski, E. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large turbidity features along the 275 km south shore of Lake Ontario were analyzed using LANDSAT-1 images. The Niagara River plume, ranging from 30 to 500 sq km in area is, by far, the largest turbidity feature in the lake. Based on image tonal comparisons, turbidity in the Welland Canal is usually higher than that in any other water course discharging into the lake during the shipping season. Less turbid water enters the lake from the Port Dalhousie diversion channel and the Genesee River. Relatively clear water resulting from the deposition of suspended matter in numerous upstream lakes is discharged by the Niagara and Oswego Rivers. Plume analysis corroborates the presence of a prevailing eastward flowing longshore current along the entire south shore. Plumes resulting from beach erosion were detected in the images. Extensive areas of the south shore are subject to erosion but the most severely affected beaches are situated between Fifty Mile Point, Ontario and Thirty Mile Point, New York along the Rochester embayment, and between Sodus Bay and Nine Mile Point.

  6. Chromium (VI) biosorption and removal of chemical oxygen demand by Spirulina platensis from wastewater-supplemented culture medium.

    Science.gov (United States)

    Magro, Clinei D; Deon, Maitê C; De Rossi, Andreia; Reinehr, Christian O; Hemkemeier, Marcelo; Colla, Luciane M

    2012-01-01

    The inappropriate discharge of wastewater containing high concentrations of toxic metals is a serious threat to the environment. Given that the microalga Spirulina platensis has demonstrated a capacity for chromium VI (Cr (VI) biosorption, we assessed the ideal concentration of chromium-containing wastewater required for maximum removal of Cr (VI) and chemical oxygen demand (COD) from the environment by using this microalga. The Paracas and Leb-52 strains of S. platensis, with initial wastewater concentrations of 0%, 12.5%, 25%, and 50%, were cultured in Zarrouk medium diluted to 50% under controlled air, temperature, and lighting conditions. The cultures were maintained for 28 days, and pH, biomass growth, COD, and Cr (VI) were assessed. The wastewater concentration influenced microalgal growth, especially at high concentrations. Removal of 82.19% COD and 60.92% Cr (VI) was obtained, but the COD removal was greater than the Cr (VI) removal in both strains of S. platensis.

  7. Turbidity and Total Suspended Solids on the Lower Cache River Watershed, AR.

    Science.gov (United States)

    Rosado-Berrios, Carlos A; Bouldin, Jennifer L

    2016-06-01

    The Cache River Watershed (CRW) in Arkansas is part of one of the largest remaining bottomland hardwood forests in the US. Although wetlands are known to improve water quality, the Cache River is listed as impaired due to sedimentation and turbidity. This study measured turbidity and total suspended solids (TSS) in seven sites of the lower CRW; six sites were located on the Bayou DeView tributary of the Cache River. Turbidity and TSS levels ranged from 1.21 to 896 NTU, and 0.17 to 386.33 mg/L respectively and had an increasing trend over the 3-year study. However, a decreasing trend from upstream to downstream in the Bayou DeView tributary was noted. Sediment loading calculated from high precipitation events and mean TSS values indicate that contributions from the Cache River main channel was approximately 6.6 times greater than contributions from Bayou DeView. Land use surrounding this river channel affects water quality as wetlands provide a filter for sediments in the Bayou DeView channel.

  8. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  9. Site suitability for riverbed filtration system in Tanah Merah, Kelantan-A physical model study for turbidity removal

    Science.gov (United States)

    Ghani, Mastura; Adlan, Mohd Nordin; Kamal, Nurul Hana Mokhtar; Aziz, Hamidi Abdul

    2017-10-01

    A laboratory physical model study on riverbed filtration (RBeF) was conducted to investigate site suitability of soil from Tanah Merah, Kelantan for RBeF. Soil samples were collected and transported to the Geotechnical Engineering Laboratory, Universiti Sains Malaysia for sieve analysis and hydraulic conductivity tests. A physical model was fabricated with gravel packs laid at the bottom of it to cover the screen and then soil sample were placed above gravel pack for 30 cm depth. River water samples from Lubok Buntar, Kedah were used to simulate the effectiveness of RBeF for turbidity removal. Turbidity readings were tested at the inlet and outlet of the filter with specified flow rate. Results from soil characterization show that the soil samples were classified as poorly graded sand with hydraulic conductivity ranged from 7.95 x 10-3 to 6.61 x 10-2 cm/s. Turbidity removal ranged from 44.91% - 92.75% based on the turbidity of water samples before filtration in the range of 33.1-161 NTU. The turbidity of water samples after RBeF could be enhanced up to 2.53 NTU. River water samples with higher turbidity of more than 160 NTU could only reach 50% or less removal by the physical model. Flow rates of the RBeF were in the range of 0.11-1.61 L/min while flow rates at the inlet were set up between 2-4 L/min. Based on the result of soil classification, Tanah Merah site is suitable for RBeF whereas result from physical model study suggested that 30 cm depth of filter media is not sufficient to be used if river water turbidity is higher.

  10. To fear or to feed: the effects of turbidity on perception of risk by a marine fish.

    Science.gov (United States)

    Leahy, Susannah M; McCormick, Mark I; Mitchell, Matthew D; Ferrari, Maud C O

    2011-12-23

    Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats.

  11. Assessing predation risks for small fish in a large river ecosystem between contrasting habitats and turbidity conditions

    Science.gov (United States)

    Dodrill, Michael J.; Yard, Mike; Pine, William E.

    2016-01-01

    This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.

  12. To fear or to feed: the effects of turbidity on perception of risk by a marine fish

    Science.gov (United States)

    Leahy, Susannah M.; McCormick, Mark I.; Mitchell, Matthew D.; Ferrari, Maud C. O.

    2011-01-01

    Coral reefs are currently experiencing a number of worsening anthropogenic stressors, with nearshore reefs suffering from increasing sedimentation because of growing human populations and development in coastal regions. In habitats where vision and olfaction serve as the primary sources of information, reduced visual input from suspended sediment may lead to significant alterations in prey fish behaviour. Here, we test whether prey compensate for reduced visual information by increasing their antipredator responses to chemically mediated risk cues in turbid conditions. Experiments with the spiny damselfish, Acanthochromis polyacanthus, found that baseline activity levels were reduced by 23 per cent in high turbidity conditions relative to low turbidity conditions. Furthermore, risk cues elicited strong antipredator responses at all turbidity levels; the strongest antipredator responses were observed in high turbidity conditions, with fish reducing their foraging by almost 40 per cent, as compared with 17 per cent for fish in clear conditions. This provides unambiguous evidence of sensory compensation in a predation context for a tropical marine fish, and suggests that prey fish may be able to behaviourally offset some of the fitness reductions resulting from anthropogenic sedimentation of their habitats. PMID:21849308

  13. Measuring turbidity, and indicator to evaluate drinkability of waters in Southern countries? Approaches from Burkina Faso, Sudan and Argentina case studies

    Science.gov (United States)

    Lavie, Emilie; Robert, Elodie

    2013-04-01

    The relationship between proportion of suspended solids, dissolved oxygen and bacteriology has long been proven (Brock, 1966; Lechevallier et al., 1985; Bustina and Levallois, 2003; Chang and Liao, 2012), bacteria need coarse elements to hang on and develop. However, water bacteriology analyses are difficult to implement in southern countries. They are expensive and require sterile equipment, transport in cold conditions and a nearby laboratory, which remains difficult in remote areas under these hot latitudes. Yet, simple measurement devices allow to know in a few minutes the water turbidity. Is turbidity an efficient tool to evaluate the drinkability of water when no bacteriological analyses are possible? The results proposed here are taken from three different studies whose purposes were to measure different physical, chemical and bacteriological parameters of water used for human and/or animal consumption. One of the finalities was to propose a method, at lower cost, to evaluate the drinkability of water for consumption. Four case studies were chosen: the basin of the Doubegue River in Burkina Faso is a rural area of a developing country, where drinking water is taken from the alluvial aquifer close to the surface. Furthermore, the laundry is washed and the children play in running streams. Major expansion of the cultivated lands since 1980s has brought important soils losses, thus a chronicle contamination of surface water with suspended solids (Robert, 2012). The Mendoza and Tunuyán Rivers Basins in Argentina, an emerging country, have snow-glaciar regimes with naturally turbid waters. They supply drinking water to two towns, Mendoza and Tunuyán cities, respectively 1 million and 40,000 inhabitants. However, these two streams -whose watersheds are common- do not present the same managements: the Mendoza River has been equipped with large hydraulic infrastructures, moving the turbid waters into clear and erosive ones (Lavie, 2009), while the Tunuyán River

  14. Measurements of atmospheric turbidity in an arc downwind of St. Louis

    International Nuclear Information System (INIS)

    Wesely, M.L.

    1975-01-01

    A preliminary analysis of the data obtained with use of the dichopyranometer indicates that large decreases in the direct-beam irradiance occurred during August 9 - 11 at several of the monitoring sites, four of which were located on an arc about 110 km from the Gateway Arch, Jefferson Expansion National Memorial, a well-known landmark in St. Louis. The four sites have azimuthal bearings east of north from the Arch of --16 deg (EPA, Glasgow), 9 deg (Waverly), 24 deg (Sangamon Co.), and 31 deg (Sloman farm). There are figures that show the variation of four-hour averages of tau at these sites. Also shown are the turbidity measurements at the St. Louis site, which was actually in Illinois at RAMS site 103, located about 7 km northeast of the Gateway Arch in a suburban area. The urban plume from St. Louis was expected to be about 20 deg wide and perhaps 10 to 20 deg greater in azimuth than the surface wind direction would indicate. Thus, on August 8, the effects of the plume should have been detected at the site on the azimuthal bearing of 24 deg, but this was not evident from the data. On August 9, the plume should have been east of, or at a greater azimuthal bearing than, the easternmost site (at 31 deg), and this may be supported by the existence of the slightly greater values of turbidity at that easternmost site. However, on August 10 and 11, similar southwesterly wind directions were not always associated with a maximum in turbidity at the easternmost site. Hence, it appears that the St. Louis plume did not consistently have a dominant role in causing atmospheric turbidity

  15. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    OpenAIRE

    K. C. CHONG; S. O. LAI; H. S. THIAM; H. C. TEOH; S. L. HENG

    2016-01-01

    The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA). Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology...

  16. Analysis and optimization of a diffuse photon optical tomography of turbid media

    International Nuclear Information System (INIS)

    Everitt, David L.; Wei, Sung-po; Zhu, X. D.

    2000-01-01

    In a numerical study, we investigate a diffuse-photon computed tomography of a turbid medium. Using a perturbation approach, we relate through a matrix K a bulk heterogeneous distribution of the optical absorption coefficient μ a that characterizes the heterogeneity in an otherwise homogeneous turbid medium to the diffuse photon flux that emerges from its surface. By studying the condition number (N C ) of the matrix K as a function of illumination-detection schemes and choices of reconstruction grids, we explore strategies that optimize the fidelity and spatial resolution of the computed tomography. (c) 2000 The American Physical Society

  17. Turbidity-induced changes in feeding strategies of fish in estuaries

    African Journals Online (AJOL)

    1991-11-12

    Nov 12, 1991 ... in hatching success (Rosenthal & Alderdice 1976), egg sur- .... ther turbidity reduces feeding rate and thirdly whether turbi- dity reduces the reactive ...... composition and suspended sediment on insect predation by the torrent ...

  18. The relative influence of the anthropogenic air pollutants on the atmospheric turbidity factors measured at an urban monitoring station

    International Nuclear Information System (INIS)

    Elminir, Hamdy K.; Hamid, R.H.; El-Hussainy, F.; Ghitas, Ahmed E.; Beheary, M.M.; Abdel-Moneim, Khaled M.

    2006-01-01

    This work is based on simultaneous measurements of direct solar radiation along with other chemical measurements, with the objective of investigating the diurnal and seasonal variations of atmospheric turbidity factors (i.e., Linke's factor, Angstroem's coefficient, and aerosol optical depth). Relationships between atmospheric turbidity factors, expressing the solar radiation extinction, and anthropogenic air pollutants were also evaluated. The frequency of occurrence of the individual indices has been established to describe the sky conditions. The preliminary results obtained indicate high variability of aerosol loading, leading to high turbidity for most of the year. Annual averages of 0.2 and 6 with standard deviations of 0.096 and 0.98 were found for Angstroem and Linke turbidities, respectively. On the base of the frequency of occurrence, it has been found that over 50% of the dataset are around 0.25 and 6.3 for Angstroem and Linke turbidities, respectively. On average, the month of September experienced the highest turbidity, while December experienced the lowest. A possible reason for this is that the vertical distribution of the aerosol particles moves up in September due to the extent of the Sudan monsoon trough. We also note that spring values of the turbidity factors are closer to summer values, whereas the pronounced difference between the summer values in comparison with the winter values may be attributed to relatively greater difference in the water vapor level in the atmosphere

  19. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey

    2010-06-01

    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.

  20. Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers

    Science.gov (United States)

    W.F. Henley; M.A. Patterson; R.J. Neves; A. Dennis Lemly

    2000-01-01

    Sedimentation and turbidity are significant contributors to declines in populations of North American aquatic organisms. Impacts to lotic fauna may be expressed through pervasive alterations in local food chains beginning at the primary trophic level. Decreases in primary production are associated with increases in sedimentation and turbidity and produce negative...

  1. Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams.

    Science.gov (United States)

    Stutter, Marc; Dawson, Julian J C; Glendell, Miriam; Napier, Fiona; Potts, Jacqueline M; Sample, James; Vinten, Andrew; Watson, Helen

    2017-12-31

    Accurate quantification of suspended sediments (SS) and particulate phosphorus (PP) concentrations and loads is complex due to episodic delivery associated with storms and management activities often missed by infrequent sampling. Surrogate measurements such as turbidity can improve understanding of pollutant behaviour, providing calibrations can be made cost-effectively and with quantified uncertainties. Here, we compared fortnightly and storm intensive water quality sampling with semi-continuous turbidity monitoring calibrated against spot samples as three potential methods for determining SS and PP concentrations and loads in an agricultural catchment over two-years. In the second year of sampling we evaluated the transferability of turbidity calibration relationships to an adjacent catchment with similar soils and land cover. When data from nine storm events were pooled, both SS and PP concentrations (all in log space) were better related to turbidity than they were to discharge. Developing separate calibration relationship for the rising and falling limbs of the hydrograph provided further improvement. However, the ability to transfer calibrations between adjacent catchments was not evident as the relationships of both SS and PP with turbidity differed both in gradient and intercept on the rising limb of the hydrograph between the two catchments. We conclude that the reduced uncertainty in load estimation derived from the use of turbidity as a proxy for specific water quality parameters in long-term regulatory monitoring programmes, must be considered alongside the increased capital and maintenance costs of turbidity equipment, potentially noisy turbidity data and the need for site-specific prolonged storm calibration periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Atmospheric turbidity parameters affecting the incident solar solar radiation for two different areas in (Eg))

    International Nuclear Information System (INIS)

    Tadros, M.T.Y.; Mosalam, M.A.; El-metwally, M.

    1999-01-01

    Atmospheric turbidity parameters such as Linke turbidity (L-0) and true Angstrom parameters (Bita o , Alpha 0 ) have been determined from the measurements of direct solar radiation for entire spectrum and for specified spectral bands during one year starting from june 1992 to may 1993. Comparison between the industrial area in Helwan (south Cairo) with that of the agricultural area in Mansoura, in (Eg), was done. Analysis of data revealed that the atmospheric turbidity parameters (L Beta) in Helwan is higher than that in Mansoura, except for hot wet months. The increase of L in Mansoura, in summer, is due to the increase of water vapor content. The wavelength exponent Alpha shows that the size the size of particles in Helwan is larger than that in Mansoura

  3. Surging Versus Continuous Turbidity Currents: Flow Dynamics and Deposits in an Experimental Intraslope Minibasin

    OpenAIRE

    Lamb, Michael P.; Hickson, Thomas; Marr, Jeffrey G.; Sheets, Ben; Paola, Chris; Parker, Gary

    2004-01-01

    Small intraslope basins (~100 km^2), or "minibasins," such as those found on the continental slope of the Gulf of Mexico, have been filled predominantly by turbidity currents. Each minibasin is the result of local subsidence and is partially or completely isolated from neighboring basins by ridges formed from compensational uplift. We undertook a series of experiments to investigate the relationship between the flow dynamics of turbidity currents entering a minibasin and the stratal architect...

  4. Turbidity removal from surface water using Tamarindus indica crude ...

    African Journals Online (AJOL)

    Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. This paper examined the turbidity removal efficiency of Tamarindus indica fruit crude pulp extract (CPE) towards evaluating a low-cost option for drinking-water treatment. Laboratory analysis was carried out on high ...

  5. Turbidity monitoring equipment and methodology evaluation at MDOT construction sites.

    Science.gov (United States)

    2014-12-01

    State Study 261 is a continuation of State study 225, "Turbidity Monitoring at Select : MDOT Construction Sites", which was successful in establishing baseline stream data : at several active construction sites. State Study 261 focused on the equipme...

  6. The role of iron species on the turbidity of oxidized phenol solutions in a photo-Fenton system.

    Science.gov (United States)

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez-Arce, Jonatan

    2015-01-01

    This work aims at establishing the contribution of the iron species to the turbidity of phenol solutions oxidized with photo-Fenton technology. During oxidation, turbidity increases linearly with time till a maximum value, according to a formation rate that shows a dependence of second order with respect to the catalyst concentration. Next, the decrease in turbidity shows the evolution of second-order kinetics, where the kinetics constant is inversely proportional to the dosage of iron, of order 0.7. The concentration of iron species is analysed at the point of maximum turbidity, as a function of the total amount of iron. Then, it is found that using dosages FeT=0-15.0 mg/L, the majority iron species was found to be ferrous ions, indicating that its concentration increases linearly with the dosage of total iron. This result may indicate that the photo-reaction of ferric ion occurs leading to the regeneration of ferrous ion. The results, obtained by operating with initial dosages FeT=15.0 and 25.0 mg/L, suggest that ferrous ion concentration decreases while ferric ion concentration increases in a complementary manner. This fact could be explained as a regeneration cycle of the iron species. The observed turbidity is generated due to the iron being added as a catalyst and the organic matter present in the system. Later, it was found that at the point of maximum turbidity, the concentration of ferrous ions is inversely proportional to the concentration of phenol and its dihydroxylated intermediates.

  7. Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent.

    Science.gov (United States)

    Chen, Honglei; Chen, Yuancai; Zhan, Huaiyu; Fu, Shiyu

    2011-04-01

    A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02-2.45 mg/L (model 1) and 2.13-2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.

  8. Application of selected methods of remote sensing for detecting carbonaceous water pollution

    Science.gov (United States)

    Davis, E. M.; Fosbury, W. J.

    1973-01-01

    A reach of the Houston Ship Channel was investigated during three separate overflights correlated with ground truth sampling on the Channel. Samples were analyzed for such conventional parameters as biochemical oxygen demand, chemical oxygen demand, total organic carbon, total inorganic carbon, turbidity, chlorophyll, pH, temperature, dissolved oxygen, and light penetration. Infrared analyses conducted on each sample included reflectance ATR analysis, carbon tetrachloride extraction of organics and subsequent scanning, and KBr evaporate analysis of CCl4 extract concentrate. Imagery which was correlated with field and laboratory data developed from ground truth sampling included that obtained from aerial KA62 hardware, RC-8 metric camera systems, and the RS-14 infrared scanner. The images were subjected to analysis by three film density gradient interpretation units. Data were then analyzed for correlations between imagery interpretation as derived from the three instruments and laboratory infrared signatures and other pertinent field and laboratory analyses.

  9. Estimation of the dilution field near a marine outfall by using effluent turbidity as an environmental tracer and comparison with dye tracer data.

    Science.gov (United States)

    Pecly, José Otavio Goulart

    2018-01-01

    The alternative use of effluent turbidity to determine the dilution field of a domestic marine outfall located off the city of Rio de Janeiro was evaluated through field work comprising fluorescent dye tracer injection and tracking with simultaneous monitoring of sea water turbidity. A preliminary laboratory assessment was carried out with a sample of the outfall effluent whose turbidity was measured by the nephelometric method before and during a serial dilution process. During the field campaign, the dye tracer was monitored with field fluorometers and the turbidity was observed with an optical backscattering sensor interfaced to an OEM data acquisition system. About 4,000 samples were gathered, covering an area of 3 km × 3 km near the outfall diffusers. At the far field - where a drift towards the coastline was observed - the effluent plume was adequately labeled by the dye tracer. The turbidity plume was biased due to the high and variable background turbidity of sea water. After processing the turbidity dataset with a baseline detrending method, the plume presented high correlation with the dye tracer plume drawn on the near dilution field. However, dye tracer remains more robust than effluent turbidity.

  10. Coral assemblages are structured along a turbidity gradient on the Southwestern Gulf of Mexico, Veracruz

    Science.gov (United States)

    Jordán-Garza, A. G.; González-Gándara, C.; Salas-Pérez, J. J.; Morales-Barragan, A. M.

    2017-04-01

    Corals on the reef corridor of the southwestern Gulf of Mexico have evolved on a terrigenous shallow continental shelf under the influence of several natural river systems. As a result, water turbidity on these reefs can be high, with visibility as low as turbidity and chlorophyll-a, the coral species composition and environmental variables were analyzed for the three main reef systems of the reef corridor of the southwestern Gulf of Mexico. Completeness of the data set was assessed using species accumulation curves and non-parametric estimators of species richness. Differences in coral assemblages' composition between the reef systems were investigated using univariate (ANOVA) and multivariate (nMDS, ANOSIM, SIMPER) analyses and the relationship between the assemblages and environmental data was assessed using a forward selection process in canonical correspondence analysis (CCA) to eliminate non-significant environmental variables. The northern and central Veracruz reef systems share a similar number of coral species (p=0.78 mult. comp.) and both showed higher species richness than the southern system (pturbidity and productivity were significant on the final CCA configuration, which showed a gradient of increasing turbidity from north to south. Reef geomorphology and the effect of turbidity help explain differences in coral assemblages' composition. More studies are necessary to establish if turbidity could function as a refuge for future environmental stress. Each Veracruz reef system is at the same time unique and shares a pool of coral species. To protect these ecosystems it is necessary to effectively manage water quality and consider coral diversity on the reef corridor of the southwestern Gulf of Mexico.

  11. Comparison of Water Turbidity Removal Efficiencies of Moringa oleifera Seed Extract and Poly-aluminum Chloride

    Directory of Open Access Journals (Sweden)

    Bijan Bina

    2007-03-01

    Full Text Available Coagulation and flocculation are essential processes in water treatment plants. Metal salts such as aluminum sulphate and ferric chloride are commonly used in the coagulation process in Iran. Poly-aluminum chloride (PAC has been used recently in Baba-Sheykhali Water Treatment Plant in Isfahan. Synthetic coagulants have health problems associated with them and are additionally uneconomical for use in developing countries. In this study, PAC and Moringa oleifera seed extract were compared for their efficiency as coagulants. Moringa oleifera, locally called “oil gaz” in Iran, grows in southern parts of Iran. One variety of this tree, Moringa progeria, is indigenous to Iran. For the purposes of this study, lab experiments were performed using distilled water containing synthetic caoline. Four turbidity levels of 10, 50, 500, and1000 (NTU and four pH levels of 5, 6, 7, and 8 were used for the jar test. It was found that oleifera seed extract was capable of removing 98, 97, 89, and 55% of the turbidity in the four experiments at optimum concentration levels of 10-30 (mg/l for all four pH levels of 6 to 8, respectively. PAC, in contrast, removed 99, 98, 95, and 89% of the turbidity at optimum concentrations of 20-30 (mg/l for a pH level of 8. The results indicate that Moringa oleifera seed extract has little effect on pH level and enjoys higher removal efficiency for higher turbidity levels. Reducing pH level decreased PAC turbidity removal efficiency.

  12. Respirometric oxygen demand determinations of laboratory- and field-scale biofilters

    International Nuclear Information System (INIS)

    Rho, D.; Mercier, P.; Jette, J.F.

    1995-01-01

    A biofiltration experiment operated at three inlet concentrations (425, 830, and 1,450 mg m -3 ), showed that the specific oxygen consumption rate was highly correlated (R = 0.938, n = 23) with the toluene elimination capacity. A radiorespirometric test was found to be more sensitive and appropriate for the field-scale biofilter treating gasoline vapors

  13. MASEX '83, a survey of the turbidity maximum in the Weser Estuary

    International Nuclear Information System (INIS)

    Fanger, H.U.; Neumann, L.; Ohm, K.; Riethmueller, R.

    1986-01-01

    A one-week survey of the turbidity maximum in the Weser Estuary was conducted in the Fall of 1983 using the survey ship RV 'Victor Hensen'. Supplemental measurements were taken using in-situ current - conductivity - temperature - turbidity meters. The thickness of the bottom mud was determined using a gamma-ray transmission probe and compared with core sample analysis. The location of no-net tidal averaged bottom flow was determined to be at km 57. The off-ship measurements were taken using a CTD probe combined with a light attenuation meter. A comparison between salinity and attenuation gives insight into the relative importance of erosion, sedimentation and advective transport. (orig.) [de

  14. Determination of turbidity patterns in Lake Chicot from LANDSAT MSS imagery

    Science.gov (United States)

    Lecroy, S. R.

    1982-01-01

    A historical analysis of all the applicable LANDSAT imagery was conducted on the turbidity patterns of Lake Chicot, located in the southeastern corner of Arkansas. By examining the seasonal and regional turbidity patterns, a record of sediment dynamics and possible disposition can be obtained. Sketches were generated from the suitable imagery, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. Additionally, the upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  15. Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: A sensor inter-comparison study.

    Science.gov (United States)

    Rymszewicz, A; O'Sullivan, J J; Bruen, M; Turner, J N; Lawler, D M; Conroy, E; Kelly-Quinn, M

    2017-09-01

    The use of turbidity for indicating environmentally detrimental levels of suspended and colloidal matter in freshwater systems, and for defining acceptable water quality standards in national and European drinking water regulations, is well established. Turbidity is therefore frequently adopted as a surrogate for suspended sediment concentrations (SSC), or as a relative and objective measure of water clarity in monitoring programmes. Through systematic, controlled experimentation, we tested the response of 12 commercially available turbidity sensors, of various designs, to gauge their measurement consistency when benchmarked against pre-prepared sediment suspensions of known SSC. Results showed that despite calibration to a Formazin standard, sensor responses to identical SSC solutions (in the range of 20-1000 mg L -1 ) varied considerably. For a given SSC, up to five-fold differences in recorded turbidity were recorded across the tested instruments. Furthermore, inconsistent measurements were identified across instruments, regardless of whether they operated using backscatter or side-scatter optical principles. While the findings may have implications for compliance with turbidity-based water quality standards, they are less likely to be an issue when turbidity is being used as a surrogate for SSC, provided that instrument use remains constant and that instrument drift is not an issue. In this study, a field comparison of a subset of four study sensors showed that despite very different absolute turbidity readings for a given SSC, well correlated and reliable turbidity - SSC ratings were established (as evidenced by r 2 coefficients from 0.92 to 0.98). This led to reasonably consistent suspended sediment load estimates of between 64.7 and 70.8 tonnes for a rainfall event analysed. This study highlights the potential for issues to arise when interpreting water turbidity datasets that are often assumed to be comparable, in that measurement inconsistency of the

  16. THE DEVELOPMENT OF BIOCHEMICAL OXYGEN DEMAND SENSOR USING LOCAL YEAST: Candida fukuyamaensis, UICC Y-247

    Directory of Open Access Journals (Sweden)

    Endang Saepudin

    2011-04-01

    Full Text Available In order to shorten the measurement time of biochemical oxygen demand (BOD, a BOD sensor based on yeastmetabolism was developed. Local yeast, Indonesian Origin, Candida fukuyamaensis UICC Y-247, was used as atransducer. The yeast was immobilized as a thin film in agarose matrix with the auxiliary of Nafion® acting as themembrane for ion exchange process. The film was then attached to gold-modified glassy carbons and used as transduceron the working electrodes. The measurements were conducted by observing the depletion of glucose concentrationusing multipulse amperometric method and then converted to BOD values. Optimum condition was observed in awaiting measurement time of 30 min at an applied potential of 450 mV (vs. Ag/AgCl. Linearity was shown in glucoseconcentration range of 0.1–0.5 mM, which was equivalent to BOD concentration range of 10–50 mg/L. A detectionlimit of 1.13 mg/L BOD could be achieved. Good repeatability was shown by a relative standard deviation (RSD of2.7% (n = 15. However, decreasing current response of ~50% was found after 3 days. Comparing to the conventionalBOD measurement, this BOD sensor can be used as an alternative method for BOD measurements.

  17. Integrating the Fenton's Process with Biofiltration by to Reduce Chemical Oxygen Demand of Winery Effluents.

    Science.gov (United States)

    Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel

    2017-03-01

    The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Science.gov (United States)

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  19. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    Directory of Open Access Journals (Sweden)

    D Fernández-Nóvoa

    Full Text Available The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  20. Iron turbidity removal from the active process water system of the Kaiga Generating Station Unit 1 using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.

    2007-01-01

    Iron turbidity is observed in the intermediate cooling circuit of the active process water system (APWS) of Kaiga Generating Station (KGS). Deposition of hydrous/hydrated oxides of iron on the plate type heat exchanger, which is employed to transfer heat from the APWS to the active process cooling water system (APCWS), can in turn result in higher moderator D 2 O temperatures due to reduced heat transfer. Characterization of turbidity showed that the major component is γ-FeOOH. An in-house designed and fabricated electrochemical filter (ECF) containing an alternate array of 33 pairs of cathode and anode graphite felts was successfully tested for the removal of iron turbidity from the APWS of Kaiga Generating Station Unit No. 1 (KGS No. 1). A total volume of 52.5 m 3 water was processed using the filter. At an average inlet turbidity of 5.6 nephelometric turbidity units (NTU), the outlet turbidity observed from the ECF was 1.6 NTU. A maximum flow rate (10 L . min -1 ) and applied potential of 18.0-20.0 V was found to yield an average turbidity-removal efficiency of ∝ 75 %. When the experiment was terminated, a throughput of > 2.08 . 10 5 NTU-liters was realized without any reduction in the removal efficiency. Removal of the internals of the filter showed that only the bottom 11 pairs of felts had brownish deposits, while the remaining felts looked clean and unused. (orig.)

  1. Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde

    NARCIS (Netherlands)

    Goosen, N.K.; Kromkamp, J.C.; Peene, J.; Van Rijswijk, P.; Van Breugel, P.

    1999-01-01

    Biomass and production of phytoplankton and heterotrophic bacteria in spring are presented for three turbid European estuaries, the Elbe (Germany), the Westerschelde (The Netherlands) and the Gironde (France), with emphasis on the effect of turbidity on microbial community densities and activities.

  2. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing coral reef: West Maui, Hawaii

    Science.gov (United States)

    Storlazzi, C.D.; Jaffe, B.E.

    2008-01-01

    High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.

  3. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  4. Turbidity very near the critical point of methanol-cyclohexane mixtures

    Science.gov (United States)

    Kopelman, R. B.; Gammon, R. W.; Moldover, M. R.

    1984-04-01

    The turbidity of a critical mixture of methanol and cyclohexane has been measured extremely close to the consolute point. The data span the reduced-temperature range between 10 to the -7th and 10 to the -3d, which is two decades closer to Tc than previous measurements. In this temperature range, the turbidity varies approximately as 1nt, as expected from the integrated form for Ornstein-Zernike scattering. A thin cell (200-micron optical path) with a very small volume (0.08 ml) was used to avoid multiple scattering. A carefully controlled temperature history was used to mix the sample and to minimize the effects of critical wetting layers. The data are consistent with a correlation-length amplitude of 3.9 plus or minus 1.0 A, in agreement with the value 3.5 A calculated from two-scale-factor universality and heat-capacity data from the literature.

  5. Turbidity very near the critical point of methanol-cyclohexane mixtures

    Science.gov (United States)

    Kopelman, R. B.; Gammon, R. W.; Moldover, M. R.

    1984-01-01

    The turbidity of a critical mixture of methanol and cyclohexane has been measured extremely close to the consolute point. The data span the reduced-temperature range between 10 to the -7th and 10 to the -3d, which is two decades closer to Tc than previous measurements. In this temperature range, the turbidity varies approximately as 1nt, as expected from the integrated form for Ornstein-Zernike scattering. A thin cell (200-micron optical path) with a very small volume (0.08 ml) was used to avoid multiple scattering. A carefully controlled temperature history was used to mix the sample and to minimize the effects of critical wetting layers. The data are consistent with a correlation-length amplitude of 3.9 plus or minus 1.0 A, in agreement with the value 3.5 A calculated from two-scale-factor universality and heat-capacity data from the literature.

  6. Selecting an oxygen plant for a copper smelter modernization

    Science.gov (United States)

    Larson, Kenneth H.; Hutchison, Robert L.

    1994-10-01

    The selection of an oxygen plant for the Cyprus Miami smelter modernization project began with a good definition of the use requirements and the smelter process variables that can affect oxygen demand. To achieve a reliable supply of oxygen with a reasonable amount of capital, critical equipment items were reviewed and reliability was added through the use of installed spares, purchase of insurance spare parts or the installation of equipment design for 50 percent of the production design such that the plant could operate with one unit while the other unit is being maintained. The operating range of the plant was selected to cover variability in smelter oxygen demand, and it was recognized that the broader operating range sacrificed about two to three percent in plant power consumption. Careful consideration of the plant "design point" was important to both the capital and operating costs of the plant, and a design point was specified that allowed a broad range of operation for maximum flexibility.

  7. Performance test of filtering system for controlling the turbidity of secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Jo, Y. K.; Loo, J. S.; Lim, N. Y.

    2001-01-01

    There is about 80 m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30 MW research reactor. When the secondary cooling water is treated by high Ca-hardness treatment program for minimizing the blowdown loss, only the trubidity exceeds the limit. By adding filtering system it was confirned, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2 % of filtering rate without blowdown. And it was verified, through the field performace test of filtering system under normal operation condition, that the circulation pumps get proper capacity and that filter units reduce the turbidity below the limit. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  8. Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden

    Directory of Open Access Journals (Sweden)

    G. Göransson

    2013-07-01

    Full Text Available The turbidity variation in time and space is investigated in the downstream stretch of the river Göta Älv in Sweden. The river is heavily regulated and carries the discharge from the largest fresh water lake in Sweden, Lake Vänern, to the outflow point in Göteborg Harbour on the Swedish west coast. The river is an important waterway and serves as a fresh-water supply for 700 000 users. Turbidity is utilised as a water quality indicator to ensure sufficient quality of the intake water to the treatment plant. The overall objective of the study was to investigate the influence of rainfall, surface runoff, and river water flow on the temporal and spatial variability of the turbidity in the regulated river system by employing statistical analysis of an extensive data set. A six year long time series of daily mean values on precipitation, discharge, and turbidity from six stations along the river were examined primarily through linear correlation and regression analysis, combined with nonparametric tests and analysis of variance. The analyses were performed on annual, monthly, and daily bases, establishing temporal patterns and dependences, including; seasonal changes, impacts from extreme events, influences from tributaries, and the spatial variation along the river. The results showed that there is no simple relationship between discharge, precipitation, and turbidity, mainly due to the complexity of the runoff process, the regulation of the river, and the effects of Lake Vänern and its large catchment area. For the river Göta Älv, significant, positive correlations between turbidity, discharge, and precipitation could only be found during periods with high flow combined with heavy rainfall. Local precipitation does not seem to have any significant impact on the discharge in the main river, which is primarily governed by precipitation at catchment scale. The discharge from Lake Vänern determines the base level for the turbidity in the river

  9. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    OpenAIRE

    García-Morales, Marco A.; Juárez, Julio César González; Martínez-Gallegos, Sonia; Roa-Morales, Gabriela; Peralta, Ever; del Campo López, Eduardo Martin; Barrera-Díaz, Carlos; Miranda, Verónica Martínez; Blancas, Teresa Torres

    2018-01-01

    The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD) when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high conte...

  10. Turbid Media Extinction Coefficient for Near-Infrared Laser Radiation

    International Nuclear Information System (INIS)

    Dreischuh, T; Gurdev, L; Vankov, O; Stoyanov, D; Avramov, L

    2015-01-01

    In this work, extended investigations are performed of the extinction coefficient of Intralipid-20% dilutions in distilled water depending on the Intralipid concentration, for laser radiation wavelengths in the red and near-infrared regions covering the so-called tissue optical window. The extinction is measured by using an approach we have developed recently based on the features of the spatial intensity distribution of laser-radiation beams propagating through semi-infinite turbid media. The measurements are conducted using separately two dilution- containing plexiglass boxes of different sizes and volumes, in order to prove the appropriateness of the assumption of semi-infinite turbid medium. The experimental results for the extinction are in agreement with our previous results and with empiric formulae found by other authors concerning the wavelength dependence of the scattering coefficient of Intralipid – 10% and Intralipid – 20%. They are also in agreement with known data of the water absorptance. It is estimated as well that the wavelengths around 1320 nm would be advantageous for deep harmless sensing and diagnostics of tissues

  11. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    Science.gov (United States)

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  12. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia

    2018-01-01

    Climate change is predicted to influence the heat budget of aquatic ecosystems and, in turn, affect the stability of the water column leading to increased turbulence coupled with enhanced turbidity. However, the synergetic effects of turbulence and turbidity on zooplankton community structure remain to be understood in large, shallow lakes. To determine the possible synergetic effects of these factors on zooplankton communities, a 15-day mesocosm experiment was carried out and tested under four turbulence and turbidity regimes namely control (ɛ = 0, 7.6 ± 4.2 NTU), low (ɛ = 6.01 × 10 -8  m 2  s -3 , 19.4 ± 8.6 NTU), medium (ɛ = 2.95 × 10 -5  m 2  s -3 , 55.2 ± 14.4 NTU), and high (ɛ = 2.39 × 10 -4  m 2  s -3 , 741.6 ± 105.2 NTU) conditions, which were comparable to the natural conditions in Lake Taihu. Results clearly showed the negative effects of turbulence and turbidity on zooplankton survival, which also differed among taxa. Specifically, increased turbulence and turbidity levels influenced the competition among zooplankton species, which resulted to the shift from being large body crustacean-dominated (copepods and cladocerans) to rotifer-dominated community after 3 days. The shift could be associated with the decrease in vulnerability of crustaceans in such environments. Our findings suggested that changes in the level of both turbidity and turbulence in natural aquatic systems would have significant repercussions on the zooplankton communities, which could contribute to the better understanding of community and food web dynamics in lake ecosystems exposed to natural mixing/disturbances.

  13. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  14. Bioremediation of olive mill waste water and its use as a bio fertilizer

    International Nuclear Information System (INIS)

    Shetaia, Y. M.; Abd El Kareem, H.; Gomaa, O. M.; Wageeh, L.

    2012-12-01

    Olive oil mill wastewater (OMW) constitutes a major environmental problem especially for mediterranean countries, where most of the world's olive oil production. Treatment of the OMW is highly demanded due to the hazards of its high chemical oxygen demand (COD), total phenolic content (TP), turbidity and color. In the present study, penicillium chrysogen um was selected as the predominant grown fungus in the presence of phenolic compounds (13 g/l). Bio stimulation was tried to assist, TP removal, decolorization, turbidity and COD reduction before disposal to the environment. Separate addition of glucose and urea resulted in 62% removal of the phenol, while the addition of KH 2 PO 4 resulted in 70% removal with lower effect on both turbidity and coloration. Consecutive use of the filtration prior or post to the bio stimulation revealed that the use 4 kGy enhanced phenolic degradation while the use of filtration post bio stimulation was the most effective treatment for phenolic removal (70%). Turbidity was also decreased from 9.81 to 2.72, and the decolorisation was increased from 28.5% (in control samples) to 77.6% and COD was decreased by only 21%. Analysis of the treated OMW revealed the presence of trace amounts of phenolic compounds, sugars and some minerals, suggesting its potential use as a bio fertilizer. Ocimum basilicum cultivated with the treated OMW showed the highest germination percentage (60%) in comparison with that irrigated with tap water and untreated OMW (50%, 20%) respectively. (Author)

  15. Bioremediation of olive mill waste water and its use as a bio fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Shetaia, Y. M. [Microbiology Department, Ain Shams University, Cario (Egypt); Abd El Kareem, H.; Gomaa, O. M.; Wageeh, L. [Microbiology Department, National Center for Radiation Research and Technology, Cairo (Egypt)

    2012-12-15

    Olive oil mill wastewater (OMW) constitutes a major environmental problem especially for mediterranean countries, where most of the world's olive oil production. Treatment of the OMW is highly demanded due to the hazards of its high chemical oxygen demand (COD), total phenolic content (TP), turbidity and color. In the present study, penicillium chrysogen um was selected as the predominant grown fungus in the presence of phenolic compounds (13 g/l). Bio stimulation was tried to assist, TP removal, decolorization, turbidity and COD reduction before disposal to the environment. Separate addition of glucose and urea resulted in 62% removal of the phenol, while the addition of KH{sub 2}PO{sub 4} resulted in 70% removal with lower effect on both turbidity and coloration. Consecutive use of the filtration prior or post to the bio stimulation revealed that the use 4 kGy enhanced phenolic degradation while the use of filtration post bio stimulation was the most effective treatment for phenolic removal (70%). Turbidity was also decreased from 9.81 to 2.72, and the decolorisation was increased from 28.5% (in control samples) to 77.6% and COD was decreased by only 21%. Analysis of the treated OMW revealed the presence of trace amounts of phenolic compounds, sugars and some minerals, suggesting its potential use as a bio fertilizer. Ocimum basilicum cultivated with the treated OMW showed the highest germination percentage (60%) in comparison with that irrigated with tap water and untreated OMW (50%, 20%) respectively. (Author)

  16. A theoretical model for the effects of reduced hemoglobin-oxygen affinity on tumor oxygenation

    International Nuclear Information System (INIS)

    Kavanagh, Brian D.; Secomb, Timothy W.; Hsu, Richard; Lin, P.-S.; Venitz, Jurgen; Dewhirst, Mark W.

    2002-01-01

    Purpose: To develop a theoretical model for oxygen delivery to tumors, and to use the model to simulate the effects of changing the affinity of hemoglobin for oxygen on tumor oxygenation. Methods and Materials: Hemoglobin affinity is expressed in terms of P 50 , the partial pressure of oxygen (Po 2 ) at half saturation. Effects of changing P 50 on arterial Po 2 are predicted using an effective vessel approach to describe diffusive oxygen transport in the lungs, assuming fixed systemic oxygen demand and fixed blood flow rate. The decline in oxygen content of blood as it flows through normal tissue before entering the tumor region is assumed fixed. The hypoxic fraction of the tumor region is predicted using a three-dimensional simulation of diffusion from a network of vessels whose geometry is derived from observations of tumor microvasculature in the rat. Results: In air-breathing rats, predicted hypoxic fraction decreases with moderate increases in P 50 , but increases with further increases of P 50 , in agreement with previous experimental results. In rats breathing hyperoxic gases, and in humans breathing either normoxic or hyperoxic gases, increased P 50 is predicted to improve tumor oxygenation. Conclusions: The results support the administration of synthetic agents to increase P 50 during radiation treatment of tumors

  17. Removal Efficiency of Electrocoagulation Treatment Using Aluminium Electrode for Stabilized Leachate

    Science.gov (United States)

    Mohamad Zailani, L. W.; Amdan, N. S. Mohd; Zin, N. S. M.

    2018-04-01

    This research was conducted to investigate the performance of aluminium electrode in electrocoagulation process removing chemical oxygen demand (COD), ammonia, turbidity, colour and suspended solid (SS) from Simpang Renggam landfill leachate. Effects of current density, electrolysis duration and pH were observed in this study. From the data obtained, optimum condition at current density was recorded at 200 A/m2with the electrolysis duration of 20-minutes and optimum pH value at 4. The removal recorded at this condition for COD, ammonia, colour, turbidity and suspended solid were 60%, 37%, 94%, 88% and 89% respectively. Electrocoagulation treatment give a better result and can be applied for leachate treatment in future. Thus, electrocoagulation treatment has the potential to be used in treatment of leachate.

  18. IMPACT OF TURBIDITY ON TCE AND DEGRADATION PRODUCTS IN GROUND WATER

    Science.gov (United States)

    Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. H...

  19. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    Science.gov (United States)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  20. Laser measure of sea salinity, temperature and turbidity in depth

    Science.gov (United States)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  1. Spatial-Temporal Variations of Turbidity and Ocean Current Velocity of the Ariake Sea Area, Kyushu, Japan Through Regression Analysis with Remote Sensing Satellite Data

    OpenAIRE

    Yuichi Sarusawa; Kohei Arai

    2013-01-01

    Regression analysis based method for turbidity and ocean current velocity estimation with remote sensing satellite data is proposed. Through regressive analysis with MODIS data and measured data of turbidity and ocean current velocity, regressive equation which allows estimation of turbidity and ocean current velocity is obtained. With the regressive equation as well as long term MODIS data, turbidity and ocean current velocity trends in Ariake Sea area are clarified. It is also confirmed tha...

  2. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

    Science.gov (United States)

    Opitz, N; Lübbers, D W

    1987-01-01

    As the preceding considerations concerning the physical and technical features of oxygen optodes have demonstrated, fluorescence-based optochemical oxygen sensors possess certain advantages and peculiarities compared to conventionally applied electrochemical sensors such as polarographic oxygen electrodes. First, in contrast to oxygen electrodes, oxygen measurements with oxygen optodes do not suffer from distortions caused by the reference electrodes. In addition, because of the polarographic process, platinum electrodes continuously consume oxygen, which falsifies the results, especially when small sample volumes or long-term measurements, or both, are involved, whereas the sensor layer of oxygen optodes must only be equilibrated. Moreover, the surface of the platinum wire has to be catalytically clean in order to obtain a plateau of the polarogram and, consequently, to achieve a low rest current at zero PO2. Unfortunately, the demand for catalytically clean platinum surfaces turns out to be rather critical, since surface contamination occurs even with membranized electrodes, resulting in the well-known phenomenon of "electrode poisoning." The question of the specificity of oxygen electrodes also must be considered. In this context, CO2 and halothane may interfere with oxygen measurements, whereas fluorescence quenching is unaffected by CO2 and halothane affects the measurements only slightly, depending on the special indicator used. Furthermore, because of the flow dependence, oxygen measurements with the oxygen electrode show a distinct "stirring effect" caused by the turbulence in front of the electrode, which disturbs the diffusion field. Because of the completely different physical principle of fluorescence optical sensors, such influences are not observed with oxygen optodes. In addition, isolation and shielding of electrical circuits found in electrodes are not necessary for optodes. Furthermore, the sensitivity of oxygen optodes can be tuned to the desired

  3. In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications.

    Science.gov (United States)

    Khamis, K; Sorensen, J P R; Bradley, C; Hannah, D M; Lapworth, D J; Stevens, R

    2015-04-01

    Tryptophan-like fluorescence (TLF) is an indicator of human influence on water quality as TLF peaks are associated with the input of labile organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time measurement of TLF could be particularly useful for monitoring water quality at a higher temporal resolution than available hitherto. However, current understanding of TLF quenching/interference is limited for field deployable sensors. We present results from a rigorous test of two commercially available submersible tryptophan fluorometers (ex ∼ 285, em ∼ 350). Temperature quenching and turbidity interference were quantified in the laboratory and compensation algorithms developed. Field trials were then undertaken involving: (i) an extended deployment (28 days) in a small urban stream; and, (ii) depth profiling of an urban multi-level borehole. TLF was inversely related to water temperature (regression slope range: -1.57 to -2.50). Sediment particle size was identified as an important control on the turbidity specific TLF response, with signal amplification apparent 200 NTU for clay particles. Compensation algorithms significantly improved agreement between in situ and laboratory readings for baseflow and storm conditions in the stream. For the groundwater trial, there was an excellent agreement between laboratory and raw in situ TLF; temperature compensation provided only a marginal improvement, and turbidity corrections were unnecessary. These findings highlight the potential utility of real time TLF monitoring for a range of environmental applications (e.g. tracing polluting sources and monitoring groundwater contamination). However, in situations where high/variable suspended sediment loads or rapid changes in temperature are anticipated concurrent monitoring of turbidity and temperature is required and site specific calibration is recommended for long term, surface water monitoring.

  4. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    Science.gov (United States)

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Juice clarification by protease and pectinase treatments indicates new roles of pectin and protein in cherry juice turbidity

    DEFF Research Database (Denmark)

    Meyer, Anne S.; Zeuner, Birgitte; Pinelo-Jiménez, Manuel

    2010-01-01

    during cold storage (haze formation) is assumed to be due to protein–phenol interactions. Our results suggest that proteins play a decisive role in the formation of immediate turbidity in cherry juice, and point to that pectin may contribute to turbidity development during cold storage of cherry juice...

  6. Hybrid diffusion-P3 equation in N-layered turbid media: steady-state domain.

    Science.gov (United States)

    Shi, Zhenzhi; Zhao, Huijuan; Xu, Kexin

    2011-10-01

    This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3 equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3 equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a wide range of absorption coefficients.

  7. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging

    International Nuclear Information System (INIS)

    Dunsby, C; French, P M W

    2003-01-01

    This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)

  8. Environmental changes and microbiological health risks. Satellite-derived turbidity: an indicator of "health hazard" for surface water in West Africa (Bagre lake, Burkina Faso).

    Science.gov (United States)

    Robert, E.; Grippa, M.; Kergoat, L.; Martinez, J.; Pinet, S.; Gal, L.; Soumaguel, N.

    2015-12-01

    A significant correlation exists between the concentration of parasites, bacteria and some water quality parameters including surface suspended solids (SSS) and turbidity. Suspended particles can carry viruses and pathogenic bacteria affecting human health and foster their development. High SSS, associated with high turbidity, can therefore be considered as a vector of microbiological contaminants, causing diarrheal diseases. Few studies have focused on the turbidity parameter in rural Africa, while many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, lakes, and rivers. Monitoring turbidity may therefore contribute to health hazard monitoring. Turbidity refers to the optical properties of water and is known to impact water reflectance in the visible and near-infrared domain. Ideally, its spatial and temporal variability requires the use of high temporal resolution (MODIS) and spatial resolution (Landsat, SPOT, Sentinel-2). Here we investigate turbidity in West-Africa. Various algorithms and indices proposed in the literature for inland waters are applied to MODIS series and to Landsat 7 and 8 CDR images, and SPOT5 images. The data and algorithms are evaluated with field measurements: turbidity, SSS, and hyperspectral ground radiometry. We show that turbidity of the Bagre Lake displays a strong increase over 2000-2015, associated with the corresponding increase of the red and NIR reflectances, as well as a reduction of the seasonal variations. Water level derived from the Jason 2 altimeter does not explain such variations. The most probable hypothesis is a change in land use (increase in bare and degraded soils), that leads to an increase in the particles transported by surface runoff to the lake. Such an increase in turbidity reinforces the health risk. We will discuss the link between turbidity and health in view of data from health centers on diarrheal diseases as well as data on practices and uses of populations.

  9. Removal of aluminum turbidity from heavy water reactors by precipitation ion exchange using magnesium hydroxide

    International Nuclear Information System (INIS)

    Venkateswarlu, K.S.; Shanker, R.; Velmurugan, S.; Venkateswaran, G.; Rao, M.R.

    1988-01-01

    A special magnesium hydroxide MG(OH)/sub 2/ sorber, loaded onto an ion-exchange matrix has been developed to remove hydrated alumina turbidity in heavy water. This sorber was applied to the coolant/moderator system in the research reactor Dhruva. The sorber not only removed turbidity but also suspended uranium at parts per billion levels and associated β, γ activity. The sorption is based on the attraction between the positively charged Mg(OH)/sub 2/ surface and the negatively charged hydrated alumina particles

  10. Enhanced coagulation for turbidity and Total Organic Carbon (TOC) removal from river Kansawati water.

    Science.gov (United States)

    Narayan, Sumit; Goel, Sudha

    2011-01-01

    The objective of this study was to determine optimum coagulant doses for turbidity and Total Organic Carbon (TOC) removal and evaluate the extent to which TOC can be removed by enhanced coagulation. Jar tests were conducted in the laboratory to determine optimum doses of alum for the removal of turbidity and Natural Organic Matter (NOM) from river water. Various other water quality parameters were measured before and after thejar tests and included: UV Absorbance (UVA) at 254 nm, microbial concentrations, TDS, conductivity, hardness, alkalinity, and pH. The optimum alum dose for removal of turbidity and TOC was 20 mg/L for the sample collected in November 2009 and 100 mg/L for the sample collected in March 2010. In both cases, the dose for enhanced coagulation was significantly higher than that for conventional coagulation. The gain in TOC removal was insignificant compared to the increase in coagulant dose required. This is usual for low TOC (TOC need to be tested to demonstrate the effectiveness of enhanced coagulation.

  11. Effect of storage of shelled Moringa oleifera seeds from reaping time on turbidity removal.

    Science.gov (United States)

    Golestanbagh, M; Ahamad, I S; Idris, A; Yunus, R

    2011-09-01

    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.

  12. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes.

    Science.gov (United States)

    Villota, Natalia; Lomas, Jose M; Camarero, Luis M

    2017-11-01

    Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe 2+ /kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe 2+ /kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Oceanographic temperature, salinity and oxygen profiles and other measurements from CTD casts by the National Park Service (NPS) and United States Geological Survey (USGS) for the Inventory and Monitoring Program of the Southeast Alaska Network (SEAN) from multiple platforms in Glacier Bay, Alaska from 1993-07-01 to 2016-10-04 (NODC Accession 0074611)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature, salinity, pressure, photosynthetically active radiation (PAR), optical backscatterance (OBS turbidity), dissolved oxygen, and...

  14. Removal of aluminum(III)-based turbidity in water using hydrous titanium oxide dispersed in ion-exchange resins

    International Nuclear Information System (INIS)

    Venkataramani, B.; Karweer, S.B.; Iyer, R.K.; Phatak, G.M.; Iyer, R.M.

    1988-01-01

    An adsorber consisting of hydrous titanium oxide (HTiO) dispersed in a Dowex-type ion-exchange resin matrix (designated RT resins) has been developed which is capable of removing Al(III)-based colloidal dispersions in the neutral pH condition. The effect of resin crosslinking, particle size, HTiO loading, turbidity level, and flow rate on the turbidity removal efficiency of RT resins has been studied. It is demonstrated that a train of columns comprising RT resin, H + , and OH - form of resins could be used for large-scale purification operations at high flow rates. These columns, apart from removing turbidity and associated radioactivity, can effectively remove dissolved uranium present in ppb levels when used for water purification in nuclear reactors

  15. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis.

    Science.gov (United States)

    Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu

    2014-02-01

    Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.

  16. Factors affecting the performance of a single-chamber microbial fuel cell-type biological oxygen demand sensor.

    Science.gov (United States)

    Yang, Gai-Xiu; Sun, Yong-Ming; Kong, Xiao-Ying; Zhen, Feng; Li, Ying; Li, Lian-Hua; Lei, Ting-Zhou; Yuan, Zhen-Hong; Chen, Guan-Yi

    2013-01-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to degrade organic matter or sludge present in wastewater (WW), and thereby generate electricity. We developed a simple, low-cost single-chamber microbial fuel cell (SCMFC)-type biochemical oxygen demand (BOD) sensor using carbon felt (anode) and activated sludge, and demonstrated its feasibility in the construction of a real-time BOD measurement system. Further, the effects of anodic pH and organic concentration on SCMFC performance were examined, and the correlation between BOD concentration and its response time was analyzed. Our results demonstrated that the SCMFC exhibited a stable voltage after 132 min following the addition of synthetic WW (BOD concentration: 200 mg/L). Notably, the response signal increased with an increase in BOD concentration (range: 5-200 mg/L) and was found to be directly proportional to the substrate concentration. However, at higher BOD concentrations (>120 mg/L) the response signal remained unaltered. Furthermore, we optimized the SCMFC using synthetic WW, and tested it with real WW. Upon feeding real WW, the BOD values exhibited a standard deviation from 2.08 to 8.3% when compared to the standard BOD5 method, thus demonstrating the practical applicability of the developed system to real treatment effluents.

  17. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species

    OpenAIRE

    Hasenbein, Matthias; Fangue, Nann A.; Geist, Juergen; Komoroske, Lisa M.; Truong, Jennifer; McPherson, Rina; Connon, Richard E.

    2016-01-01

    Turbidity can influence trophic levels by altering species composition and can potentially affect fish feeding strategies and predator?prey interactions. The estuarine turbidity maximum, described as an area of increased suspended particles, phytoplankton and zooplankton, generally represents a zone with higher turbidity and enhanced food sources important for successful feeding and growth in many fish species. The delta smelt (Hypomesus transpacificus) is an endangered, pelagic fish species ...

  18. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection.

    Science.gov (United States)

    Qiao, Mu; Liu, Honglin; Pang, Guanghui; Han, Shensheng

    2017-08-29

    Manipulating light non-invasively through inhomogeneous media is an attractive goal in many disciplines. Wavefront shaping and optical phase conjugation can focus light to a point. Transmission matrix method can control light on multiple output modes simultaneously. Here we report a non-invasive approach which enables three-dimension (3D) light control between two turbid layers. A digital optical phase conjugation mirror measured and conjugated the diffused wavefront, which originated from a quasi-point source on the front turbid layer and passed through the back turbid layer. And then, because of memory effect, the phase-conjugated wavefront could be used as a carrier wave to transport a pre-calculated wavefront through the back turbid layer. The pre-calculated wavefront could project a desired 3D light field inside the sample, which, in our experiments, consisted of two 220-grid ground glass plates spaced by a 20 mm distance. The controllable range of light, according to the memory effect, was calculated to be 80 mrad in solid angle and 16 mm on z-axis. Due to the 3D light control ability, our approach may find applications in photodynamic therapy and optogenetics. Besides, our approach can also be combined with ghost imaging or compressed sensing to achieve 3D imaging between turbid layers.

  19. Bioremediation of Tannery Wastewater by Chromium Resistant Fungal Isolate Fusarium Chlamydosporium SPFS2-g

    OpenAIRE

    Smiley Sharma; Piyush Malaviya

    2014-01-01

    The present study assessed the bioremediation potential of Fusarium chlamydosporium SPFS2-g isolated from tannery effluent enriched soil. The isolate exhibited minimum inhibitory concentration (MIC) for Cr(VI) as 500 ppm. The treatment of tannery wastewater with Fusarium chlamydosporium in shake flask experiment resulted in the reduction of chemical oxygen demand (COD), color, Cr(VI), total suspended solids (TSS), turbidity, Na+, Cl-, and NO3- in the order of 71.80, 64.69, 100, 36.47, 22.77,...

  20. Kajian Kualitas Perairan Laut Kota Semarang Dan Kelayakannya Untuk Budidaya Laut

    OpenAIRE

    Riyadi, Agung

    2005-01-01

    Marine culture develoment at Semarang Central java coast is notincreased. Based on water quality, a good water quality conditions at line 3,beside far for human activities, the dissolved oxygen and turbidity level stillsuitable for marine culture activities. The dissolved oxygen value from 4.8 – 5mg/l. Comparing with the second station (line l and 2) dissolved oxygen (DO) israther low and turbidity level is very hight, turbidity value until 4 FTU. The method using digital device Chlorotech ty...

  1. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.

    Science.gov (United States)

    Malektaji, Siavash; Lima, Ivan T; Escobar I, Mauricio R; Sherif, Sherif S

    2017-10-01

    An accurate and practical simulator for Optical Coherence Tomography (OCT) could be an important tool to study the underlying physical phenomena in OCT such as multiple light scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue, using Monte Carlo methods. The main drawback of these earlier simulators is the long computational time required to produce accurate results. We developed a massively parallel simulator of OCT of inhomogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic scattered photons, and Class II diffusive reflectivity due to multiply scattered photons. This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), using the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a tetrahedron-based mesh and uses an advanced importance sampling scheme. This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two orders of magnitude. To demonstrate this result, we have compared the computation times of our new parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have shown that our parallel implementation reduced simulation time of OCT of the first sample medium from 407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16 GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards. Therefore our new parallel simulator is considerably more practical to use than its central processing unit (CPU)-based counterpart. Our new parallel OCT simulator could be a practical tool to study the different physical phenomena underlying OCT

  2. Quantitative polarized Raman spectroscopy in highly turbid bone tissue.

    Science.gov (United States)

    Raghavan, Mekhala; Sahar, Nadder D; Wilson, Robert H; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H; Morris, Michael D

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (pbones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  3. A Reflectance Model for Relatively Clear and Turbid Waters

    Directory of Open Access Journals (Sweden)

    S. P. Tiwari

    2013-02-01

    Full Text Available Accurate modeling of spectral remote sensing reflectance (Rrs is of great interest for ocean colour studies in highly turbid and relatively clear waters. In this work a semianalytical model that simulates the spectral curves of remote sensing reflectance of these waters is developed based on the inherent optical properties (IOPs and f and Q factors. For accommodating differences in the optical properties of the water and accounting for their directional variations, IOPs and f and Q factors are derived as a function of phytoplankton pigments, suspended sediments and solar zenith angle. Results of this model are compared with in-situ bio-optical data collected at 83 stations encompassing highly turbid/relatively cleared waters of the South Sea of Korea. Measured and modeled remote sensing reflectances agree favorably in both magnitude and spectral shape, with considerably low errors (mean relative error MRE -0.0327; root mean square error RMSE 0.205, bias -0.0727 and slope 1.15 and correlation coefficient R2 0.74. These results suggest that the new model has the ability to reproduce measured reflectance values and has potentially profound implications for remote sensing of complex waters in this region.

  4. Effects of Operating Parameters on Measurements of Biochemical Oxygen Demand Using a Mediatorless Microbial Fuel Cell Biosensor

    Directory of Open Access Journals (Sweden)

    Min-Chi Hsieh

    2015-12-01

    Full Text Available The conventional Biochemical Oxygen Demand (BOD method takes five days to analyze samples. A microbial fuel cell (MFC may be an alternate tool for rapid BOD determination in water. However, a MFC biosensor for continuous BOD measurements of water samples is still unavailable. In this study, a MFC biosensor inoculated with known mixed cultures was used to determine the BOD concentration. Effects of important parameters on establishing a calibration curve between the BOD concentration and output signal from the MFC were evaluated. The results indicate monosaccharides were good fuel, and methionine, phenylalanine, and ethanol were poor fuels for electricity generation by the MFC. Ions in the influent did not significantly affect the MFC performance. CN− in the influent could alleviate the effect of antagonistic electron acceptors on the MFC performance. The regression equation for BOD concentration and current density of the biosensor was y = 0.0145x + 0.3317. It was adopted to measure accurately and continuously the BOD concentration in actual water samples at an acceptable error margin. These results clearly show the developed MFC biosensor has great potential as an alternative BOD sensing device for online measurements of wastewater BOD.

  5. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Linares-Hernandez, Ivonne [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Barrera-Diaz, Carlos [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico)]. E-mail: cbarrera@uaemex.mx; Roa-Morales, Gabriela [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Bilyeu, Bryan [University of North Texas, Department of Materials Science and Engineering, PO Box 305310, Denton, TX 76203-5310 (United States); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico)

    2007-06-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m{sup -2} current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD{sub 5}) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  6. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    International Nuclear Information System (INIS)

    Linares-Hernandez, Ivonne; Barrera-Diaz, Carlos; Roa-Morales, Gabriela; Bilyeu, Bryan; Urena-Nunez, Fernando

    2007-01-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m -2 current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD 5 ) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  7. Combined effect of bottom reflectivity and water turbidity on steady state thermal efficiency of salt gradient solar pond

    International Nuclear Information System (INIS)

    Husain, M.; Patil, P.S.; Patil, S.R.; Samdarshi, S.K.

    2004-01-01

    In salt gradient solar ponds, the clarity of water and absorptivity of the bottom are important concerns. However, both are practically difficult to maintain beyond a certain limit. The reflectivity of the bottom causes the loss of a fraction of the incident radiation flux, resulting in lower absorption of flux in the pond. Turbidity hinders the propagation of radiation. Thereby it decreases the flux reaching the storage zone. Both these factors lower the efficiency of the pond significantly. However, the same turbidity also prevents the loss of radiation reflected from the bottom. Hence, the combined effect is compensatory to some extent. The present work is an analysis of the combined effect of the bottom's reflectivity and water turbidity on the steady state efficiency of solar ponds. It is found that in the case of a reflective bottom, turbidity, within certain limits, improves the efficiency of pond. This is apparently contradictory to the conventional beliefs about the pond. Nevertheless, this conclusion is of practical importance for design and maintenance of solar ponds

  8. Turbidity Responses from Timber Harvesting, Wildfire, and Post-Fire Logging in the Battle Creek Watershed, Northern California.

    Science.gov (United States)

    Lewis, Jack; Rhodes, Jonathan J; Bradley, Curtis

    2018-04-11

    The Battle Creek watershed in northern California was historically important for its Chinook salmon populations, now at remnant levels due to land and water uses. Privately owned portions of the watershed are managed primarily for timber production, which has intensified since 1998, when clearcutting became widespread. Turbidity has been monitored by citizen volunteers at 13 locations in the watershed. Approximately 2000 grab samples were collected in the 5-year analysis period as harvesting progressed, a severe wildfire burned 11,200 ha, and most of the burned area was salvage logged. The data reveal strong associations of turbidity with the proportion of area harvested in watersheds draining to the measurement sites. Turbidity increased significantly over the measurement period in 10 watersheds and decreased at one. Some of these increases may be due to the influence of wildfire, logging roads and haul roads. However, turbidity continued trending upwards in six burned watersheds that were logged after the fire, while decreasing or remaining the same in two that escaped the fire and post-fire logging. Unusually high turbidity measurements (more than seven times the average value for a given flow condition) were very rare (0.0% of measurements) before the fire but began to appear in the first year after the fire (5.0% of measurements) and were most frequent (11.6% of measurements) in the first 9 months after salvage logging. Results suggest that harvesting contributes to road erosion and that current management practices do not fully protect water quality.

  9. Assessing the removal of turbidity and coliform transport through canal-bed sediment at lab-scale: column experiments

    International Nuclear Information System (INIS)

    Kandhar, I.; Sahito, A.R.

    2017-01-01

    This study was conducted at lab scale to determine the performance of the canal-bed for the removal of turbidity and microorganisms TC (Total Coliforms) from surface water. The canal-bed sediments were collected and analyzed for the characteristics of sediments for grain size distribution, hydraulic conductivity and the POM (Particulate Organic Matter) percent. Canal-bed sediments were containing fine particles<0.075mm in the range of 40-58%, with hydraulic conductivity averaged 7ft/day, and the POM 2.75%. The water samples collected from the canal-water have shown average POM 3.6%. Theremoval-reduction in turbidity and TC were determined through the column experiments on the canal-bed sediments. Three columns were prepared at lab-scale by using prepared canal-bed sediment as a filter-bed in the columns for the filtration of raw water samples. Fine particles of the canal-bed grain size D10 0.2 and D10 0.1mm were selected for the filter-bed formation. The prepared concentrated and diluted influent water samples containing turbidity and TC were passed through the washed filter-bed into the columns for 8-weeks filter run. The frequency of sampling and analysis were followedafter the interval of one-week run, the influent (raw water) and effluent (filtered) water samples were collected and analyzed for the turbidity and TC concentrations. The performance of the grain size D10 0.1mm have shown 95-99.95% reduction in turbidity and TC compared to the larger grain size having D10 0.2mm particles. (author)

  10. Efficiency of electrical coagulation process using aluminum electrodes for municipal wastewater treatment: a case study at Karaj wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Samad Gholami Yengejeh

    2017-05-01

    Full Text Available Background: The reuse of treated municipal wastewater is an important source of water for different purposes. This study evaluated the efficiency of the electrocoagulation process in removing turbidity, total suspended solids (TSS, chemical oxygen demand (COD, nitrate, and phosphate from wastewater at the treatment facility in Karaj, Iran. Methods: This experimental study was performed at a pilot scale and in a batch system. A 4-liter tank made from safety glass with 4 plate electrodes made from aluminum was unipolarly connected to a direct current power supply with a parallel arrangement. Wastewater samples were taken from the influent at the Karaj wastewater treatment facility. Rates of turbidity, TSS, COD, nitrate, and phosphate removal under different conditions were determined. Results: The highest efficiency of COD, TSS, nitrate, turbidity, and phosphate elimination was achieved at a voltage of 30 volts and a reaction time of 30 minutes. The rates were 88.43%, 87.39%, 100%, 80.52%, and 82.69%, respectively. Conclusion: Based on the results of this study, electrocoagulation is an appropriate method for use in removing nitrate, phosphate, COD, turbidity, and TSS from wastewater.

  11. Report Task 2.3: Particulate waste and turbidity in (marine) RAS

    NARCIS (Netherlands)

    Kals, J.; Schram, E.; Brummelhuis, E.B.M.; Bakel, van B.

    2006-01-01

    Particulate waste management and removal is one of the most problematic parts of recirculation aquaculture systems (RAS). Particulate waste and thereby turbidity originates from three major sources: fish (faeces), feed and biofilm (heterotrophic bacteria and fungi). Based on size and density there

  12. An improved 96-well turbidity assay for T4 lysozyme activity.

    Science.gov (United States)

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  13. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    CERN Document Server

    Elghazaly, A

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement.

  14. Effect of Fresnel Reflectivity in a Spherical Turbid Medium

    International Nuclear Information System (INIS)

    Elghazaly, A.; Attia, M.T.

    2003-01-01

    Radiative transfer problem for anisotropic scattering in a spherical homogeneous, turbid medium with angular dependent (specular) reflecting boundary is solved using the pomraning-Eddington approximation method. The angular dependent reflectivity of the boundary is considered as Fresnel's reflection probability function. The partial heat flux is calculated with anisotropic scattering through a homogeneous solid sphere. our results are compared with the available data and give an excellent agreement

  15. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding

    International Nuclear Information System (INIS)

    Yan, Xiu-Fang; Chen, Zeng-Ping; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-01-01

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFM GRP ) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFM GRP has been tested on the quantitative determination of free Ca 2+ in both simulated and real turbid media using a Ca 2+ sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFM GRP could realize precise and accurate quantification of free Ca 2+ in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca 2+ bound Rhod-2. The average relative predictive error value of QFM GRP for the test simulated turbid samples was 5.9%, about 2–4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca 2+ bound Rhod-2 and eosin B. The recovery rates of QFM GRP for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry. - Highlights: • An advanced model was derived for generalized wavelength-ratiometric PEBBLEs. • The model can simplify the design of generalized wavelength-ratiometric PEBBLEs. • The model realized accurate

  16. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    Science.gov (United States)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  17. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  18. Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty

    Science.gov (United States)

    Annual total suspended solid (TSS) loads in the Mae Sa Catchment in northern Thailand, determined with an automated, turbidity-based monitoring approach, were approximately 62,000, 33,000, and 14,000 Mg during the three years of observation. These loads were equivalent to basin y...

  19. Factors governing the pH in a heterotrophic, turbid, tidal estuary

    NARCIS (Netherlands)

    Hofmann, A.F.; Meysman, F.J.R.; Soetaert, K.; Middelburg, J.J.

    2009-01-01

    A method to quantify the influence of kinetically modelled biogeochemical processes on the pH of an ecosystem with time variable acid-base dissociation constants is presented and applied to the heterotrophic, turbid Scheldt estuary (SW Netherlands, N Belgium). Nitrification is identified as the main

  20. KAJIAN KUALITAS PERAIRAN LAUT KOTA SEMARANG DAN KELAYAKANNYA UNTUK BUDIDAYA LAUT

    OpenAIRE

    Riyadi, Agung

    2011-01-01

          Marine culture develoment at Semarang Central java coast is notincreased. Based on water quality, a good water quality conditions at line 3,beside far for human activities, the dissolved oxygen and turbidity level stillsuitable for marine culture activities. The dissolved oxygen value from 4.8 – 5mg/l. Comparing with the second station (line l and 2) dissolved oxygen (DO) israther low and turbidity level is very hight, turbidity value until 4 FTU. The method using digital device Chlorot...

  1. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    Directory of Open Access Journals (Sweden)

    Mohd Zubir Bin MatJafri

    2009-10-01

    Full Text Available Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

  2. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    Science.gov (United States)

    Omar, Ahmad Fairuz Bin; MatJafri, Mohd Zubir Bin

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ. PMID:22408507

  3. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    Science.gov (United States)

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Copyright © 2014

  4. Mapping turbidity patterns in the Po river prodelta using multi-temporal Landsat 8 imagery

    Science.gov (United States)

    Braga, Federica; Zaggia, Luca; Bellafiore, Debora; Bresciani, Mariano; Giardino, Claudia; Lorenzetti, Giuliano; Maicu, Francesco; Manzo, Ciro; Riminucci, Francesco; Ravaioli, Mariangela; Brando, Vittorio Ernesto

    2017-11-01

    Thirty-meters resolution turbidity maps derived from Landsat 8 (L8) images were used to investigate spatial and temporal variations of suspended matter patterns and distribution in the area of Po River prodelta (Italy) in the period from April 2013 to October 2015. The main focus of the work was the study of small and sub-mesoscale structures, linking them to the main forcings that control the fate of suspended sediments in the northern Adriatic Sea. A number of hydrologic and meteorological events of different extent and duration was captured by L8 data, quantifying how river discharge and meteo-marine conditions modulate the distribution of turbidity on- and off-shore. At sub-mesoscale, peculiar patterns and smaller structures, as multiple plumes and sand bars, were identified thanks to the unprecedented spatial and radiometric resolution of L8 sensor. The use of these satellite-derived products provides interesting information, particularly on turbidity distribution among the different delta distributaries in specific fluvial regimes that fills the knowledge gap of traditional studies based only on in situ data. A novel approach using satellite data within model implementation is then suggested.

  5. Efficient purification and concentration of viruses from a large body of high turbidity seawater.

    Science.gov (United States)

    Sun, Guowei; Xiao, Jinzhou; Wang, Hongming; Gong, Chaowen; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2014-01-01

    Marine viruses are the most abundant entities in the ocean and play crucial roles in the marine ecological system. However, understanding of viral diversity on large scale depends on efficient and reliable viral purification and concentration techniques. Here, we report on developing an efficient method to purify and concentrate viruses from large body of high turbidity seawater. The developed method characterizes with high viral recovery efficiency, high concentration factor, high viral particle densities and high-throughput, and is reliable for viral concentration from high turbidity seawater. Recovered viral particles were used directly for subsequent analysis by epifluorescence microscopy, transmission electron microscopy and metagenomic sequencing. Three points are essential for this method:•The sampled seawater (>150 L) was initially divided into two parts, water fraction and settled matter fraction, after natural sedimentation.•Both viruses in the water fraction concentrated by tangential flow filtration (TFF) and viruses isolated from the settled matter fraction were considered as the whole viral community in high turbidity seawater.•The viral concentrates were re-concentrated by using centrifugal filter device in order to obtain high density of viral particles.

  6. Haertel's turbidity test and extraction of conifer needles by benzene as methods for the determination of smoke-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Materna, J; Hrncirova, L

    1960-01-01

    The applicability of the Haertel turbidity test to the assessment of smoke damage to conifers is based on the observation that needles from smoke damage to conifers is based on the observation that needles from smoke-damaged areas eliminate less wax than undamaged needles. Of the various organic solvent and extraction methods tested, best results were obtained by a half-hour extraction of the wax from the needle surface with cold benzene. The evaporation residue from this extraction method contained only traces of components from the inside of the needles; microscopic examination of the surface of the needles revealed that all wax was removed from the needle surface fissures. Comparison of wax quantities extracted from needles from smoke-damage areas with those from healthy needles and comparison of wax yields from areas which suffered different degrees of smoke damage confirmed that higher wax yields are obtained from healthy than from smoke-damaged needles. Comparison with results of turbidity tests disclosed that benzene extraction yields decreased with increasing turbidity test values, indicating that increased turbidity of smoke-damaged needles is not caused by wax. In the Haertel test extract, silicon, calcium, magnesium, phosphorus, potassium, sulfur, iron, nitrogenous substances, tannin, glycides, and waxes were found. It is as yet unresolved which substances contribute to increased turbidity from smoke damage.

  7. Tannery Effluent Treatment by Yeast Species Isolates from Watermelon

    Directory of Open Access Journals (Sweden)

    Stanley Irobekhian Reuben Okoduwa

    2017-02-01

    Full Text Available The quest for an effective alternative means for effluent treatment is a major concern of the modern-day scientist. Fungi have been attracting a growing interest for the biological treatment of industrial wastewater. In this study, Saccharomycescerevisiae and Torulasporadelbrueckii were isolated from spoiled watermelon and inoculated into different concentrations of effluent. The inoculants were incubated for 21-days to monitor the performance of the isolates by measurement of biochemical oxygen demand (BOD, chemical oxygen demand (COD, nitrates, conductivity, phosphates, sulphates and turbidity. The results showed that Saccharomycescerevisiae had the highest percentage decrease of 98.1%, 83.0%, 60.7%, 60.5%, and 54.2% for turbidity, sulphates, BOD, phosphates and COD, respectively, of the tannery effluent. Torulasporadelbrueckii showed the highest percentage decrease of 92.9%, 90.6%, and 61.9% for sulphates, COD, and phosphates, respectively, while the syndicate showed the highest percentage reduction of 87.4% and 70.2% for nitrate and total dissolve solid (TDS, respectively. The least percentage decrease was displayed by syndicate organisms at 51.2%, 48.1% and 40.3% for BOD, COD and conductivity, respectively. The study revealed that Saccharomycescerevisiae and Torulasporadelbrueckii could be used in the biological treatment of tannery-effluent. Hence, it was concluded that the use of these organisms could contribute to minimizing the adverse environmental risks and health-hazards associated with the disposal of untreated tannery-effluents.

  8. Visual Detection of Speckles in the Fish Xenotoca variata by the Predatory Snake Thamnophis melanogaster in Water of Different Turbidity.

    Science.gov (United States)

    Manjarrez, Javier; Rivas-González, Eric; Venegas-Barrera, Crystian S; Moyaho, Alejandro

    2015-01-01

    Semi-aquatic snakes integrate visual and chemical stimuli, and prey detection and capture success are therefore linked to the display of visual predatory behavior. The snake Thamnophis melanogaster responds preferentially to individuals of the fish Xenotoca variata with a greater number of bright, colorful spots (lateral speckles) compared with those with a smaller number; however, water turbidity can reduce underwater visibility and effect the vulnerability of fish. In this study, we tested whether the presence of iridescent speckles on the flanks of male X. variata interacted with water turbidity to modify the predatory behavior displayed by the snake T. melanogaster. We predicted that in an experimental laboratory test, the snakes would increase the frequency of their predatory behavior to the extent that the water turbidity decreases. The snakes were tested at six different levels of water turbidity, in combination with three categories of male fish (with few, a median number of, or many speckles). The results showed that in a pool with high or zero turbidity, the number of speckles is not a determining factor in the deployment of the predatory behavior of the snake T. melanogaster toward X. variata. Our findings suggest that snakes can view the fish at intermediate percentages of turbidity, but the number of speckles in male X. variata is irrelevant as an interspecific visual signal in environments with insufficient luminosity. The successful capture of aquatic prey is influenced by integration between chemical and visual signals, according to environmental factors that may influence the recognition of individual traits.

  9. A new route of bioaugmentation by allochthonous and autochthonous through biofilm bacteria for soluble chemical oxygen demand removal of old leachate.

    Science.gov (United States)

    Alijani Ardeshir, Rashid; Rastgar, Sara; Peyravi, Majid; Jahanshahi, Mohsen; Shokuhi Rad, Ali

    2017-10-01

    Landfill leachate contains environmental pollutants that are generally resistant to biodegradation. In this study, indigenous and exogenous bacteria in leachate were acclimated in both biofilm and suspension forms to increase the removal of soluble chemical oxygen demand (SCOD). The bacteria from the leachate and sewage were acclimated to gradually increasing leachate concentration prepared using a reverse osmosis membrane over 28 days. The SCOD removal was measured aerobically or nominally anaerobically. Biofilms were prepared using different carrier media (glass, rubber, and plastic). The maximum SCOD removal in suspensions was 32% (anaerobic) and in biofilms was 39% (aerobic). In the suspension form, SCOD removal using acclimated bacteria from leachate and sewage anaerobically increased in comparison with the control (P technology using biofilms and acclimations can be an effective, inexpensive, and simple way to decrease SCOD in old landfill leachate.

  10. Flame-Oxidized Stainless-Steel Anode as a Probe in Bioelectrochemical System-Based Biosensors to Monitor the Biochemical Oxygen Demand of Wastewater

    Directory of Open Access Journals (Sweden)

    Qiaochu Liang

    2018-02-01

    Full Text Available Biochemical oxygen demand (BOD is a widely used index of water quality in wastewater treatment; however, conventional measurement methods are time-consuming. In this study, we analyzed a novel flame-oxidized stainless steel anode (FO-SSA for use as the probe of bioelectrochemical system (BES-based biosensors to monitor the BOD of treated swine wastewater. A thinner biofilm formed on the FO-SSA compared with that on a common carbon-cloth anode (CCA. The FO-SSA was superior to the CCA in terms of rapid sensing; the response time of the FO-SSA to obtain the value of R2 > 0.8 was 1 h, whereas the CCA required 4 h. These results indicate that the FO-SSA offers better performance than traditional CCAs in BES biosensors and can be used to improve biomonitoring of wastewater.

  11. Turbidity of the atmospheric and water at the major ports of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Rodrigues, A.; Ramdasan, K.

    The atmospheric and water turbidity observed at nine major ports of India, namely Cochin, Mangalore, Mormugao, Mumbai, Jawaharlal Nehru (JNP), Kandla on the west coast and Tuticorin, Chennai and Visakhapatnam on the east coast, using the parameters...

  12. Optoelectronic system to measure the concentration and turbidity of suspended solids in the water

    International Nuclear Information System (INIS)

    Valente, E.S.

    1984-01-01

    The selection of the site where a nuclear power plant is to be built requires intensive study of the environmental conditions. This work presents the results reached on the development of a measurement system of suspended solids based on turbidity characteristics of the water. The system consists of an optical transducer composed of an emitter and a detector of infrared light, both solid state type, whose electrical signal is electronically treated. The equipment was calibrated and certified against turbidity and concentration standards in laboratory use. The obtained results indicate the reliability of the experimental method. The utilization of the equipment at the shore reinforces its flexibility and commodity of use. (author)

  13. Photo-oxidation: Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W.W.C.; Laane, R.W.P.M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  14. Photo-oxidation : Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W. W. C.; Laane, R. W. P. M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  15. Four-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM

    National Research Council Canada - National Science Library

    Shykoff, B

    2006-01-01

    .... Still, because the increased ventilatory demands and blood flow to the lungs during underwater exercise may cause pulmonary injury or may increase oxygen-induced injury over those ventilatory demands...

  16. Absorption coefficient instrument for turbid natural waters

    Science.gov (United States)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  17. Exploring the persistence of stream-dwelling trout populations under alternative real-world turbidity regimes with an individual-based model

    Science.gov (United States)

    Bret C. Harvey; Steven F. Railsback

    2009-01-01

    We explored the effects of elevated turbidity on stream-resident populations of coastal cutthroat trout Oncorhynchus clarkii clarkii using a spatially explicit individual-based model. Turbidity regimes were contrasted by means of 15-year simulations in a third-order stream in northwestern California. The alternative regimes were based on multiple-year, continuous...

  18. Management of turbidity current venting in reservoirs under different bed slopes.

    Science.gov (United States)

    Chamoun, Sabine; De Cesare, Giovanni; Schleiss, Anton J

    2017-12-15

    The lifetime and efficiency of dams is endangered by the process of sedimentation. To ensure the sustainable use of reservoirs, many sediment management techniques exist, among which venting of turbidity currents. Nevertheless, a number of practical questions remain unanswered due to a lack of systematic investigations. The present research introduces venting and evaluates its performance using an experimental model. In the latter, turbidity currents travel on a smooth bed towards the dam and venting is applied through a rectangular bottom outlet. The combined effect of outflow discharge and bed slopes on the sediment release efficiency of venting is studied based on different criteria. Several outflow discharges are tested using three different bed slopes (i.e., 0%, 2.4% and 5.0%). Steeper slopes yield higher venting efficiency. Additionally, the optimal outflow discharge leading to the largest venting efficiency with the lowest water loss increases when moving from the horizontal bed to the inclined positions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Deposition By Turbidity Currents In Intraslope Diapiric Minibasins: Results Of 1-D Experiments And Numerical Modeling

    Science.gov (United States)

    Lamb, M.; Toniolo, H.; Parker, G.

    2001-12-01

    The slope of the continental margin of the northern Gulf of Mexico is riddled with small basins resulting from salt tectonics. Each such minibasin is the result of local subsidence due to salt withdrawal, and is isolated from neighboring basins by ridges formed due to compensational uplift. The minibasins are gradually filled by turbidity currents, which are active at low sea stand. Experiments in a 1-D minibasin reveal that a turbidity current flowing into a deep minibasin must undergo a hydraulic jump and form a muddy pond. This pond may not spill out of the basin even with continuous inflow. The reason for this is the detrainment of water across the settling interface that forms at the top of the muddy pond. Results of both experiments and numerical modeling of the flow and the evolution of the deposit are presented. The numerical model is the first of its kind to capture both the hydraulic jump and the effect of detrainment in ponded turbidity currents.

  20. Turbidity Currents With Equilibrium Basal Driving Layers: A Mechanism for Long Runout

    Science.gov (United States)

    Luchi, R.; Balachandar, S.; Seminara, G.; Parker, G.

    2018-02-01

    Turbidity currents run out over 100 km in lakes and reservoirs, and over 1,000 km in the ocean. They do so without dissipating themselves via excess entrainment of ambient water. Existing layer-averaged formulations cannot capture this. We use a numerical model to describe the temporal evolution of a turbidity current toward steady state under condition of zero net sediment flux at the bed. The flow self-partitions itself into two layers. The lower "driving layer" approaches an invariant flow thickness, velocity profile, and suspended sediment concentration profile that sequesters nearly all of the suspended sediment. This layer can continue indefinitely at steady state over a constant bed slope. The upper "driven layer" contains a small fraction of the suspended sediment. The devolution of the flow into these two layers likely allows the driving layer to run out long distances.

  1. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    Science.gov (United States)

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-08-24

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  2. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    International Nuclear Information System (INIS)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F.; Reyes P, H.; Bilyeu, B.

    2014-01-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10 6 Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10 -5 mg L -1 . Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L -1 AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  3. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    Energy Technology Data Exchange (ETDEWEB)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico); Reyes P, H. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Bilyeu, B., E-mail: groam@uaemex.mx [Xavier University of Louisiana, Department of Chemistry, 1 Drexel Drive, New Orleans, LA 70125 (United States)

    2014-07-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10{sup 6}Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10{sup -5} mg L{sup -1}. Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L{sup -1} AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  4. Comparison of the Performance of Corn Starch Coagulant Aid Accompany with Alum, Polyaluminum Chloride and Ferric Chloride Coagulants in Turbidity Removal from Water

    Directory of Open Access Journals (Sweden)

    Leila Mosleh

    2014-09-01

    Full Text Available Background: The most important process in water treatment plant is coagulation and flocculation. Regular chemical coagulant which used in Iran are aluminum sulfate (Alum and ferric chloride. Chemical coagulants have hazardous effect on human health and their cost is high for developing country. The purpose of this study was to evaluate the comparison of chemical coagulants accompany with corn starch as a coagulant aid, for the turbidity removal from water. Methods: This study was accomplished in pilot-scale with synthetic turbid water using clay. In this research, initial turbidity of 250 and 500 NTU was experimented. Chemical coagulant dose during the experiment was 1, 2 and 5 ppm and natural coagulant dose was 0, 0.1, 0.3, 0.5 and 0.7 ppm. Results: The results showed that maximum removal efficiency of turbidity in initial turbidity of 250 NTU belonged to poly aluminum chloride with 5 ppm dosage and corn starch with 0.7 ppm dosage which removed and reduced the initial turbidity to 98.48% and 3.73 NTU, respectively. Moreover, in initial turbidity of 500 NTU the maximum removal efficiency was 98.52% which belonged to ferric chloride and corn starch (5 and 0.7 ppm respectively and reduced the initial turbidity to 7.4 NTU. Conclusions: The results of this study showed that using natural coagulant aid reduce the chemical coagulant consumption, and also does not have significant effect on pH range and reduce the health risks. While huge amount of required polyelectrolytes for water treatment plant imported to the country and the production of corn starch in our country is high, it is hope that the results of this project can be used in industrial scale.

  5. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  6. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    Science.gov (United States)

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  7. Effects of turbidity on the neural structures of two closely related ...

    African Journals Online (AJOL)

    The neural structures of the sister species Pseudobarbus afer and P. asper were compared. P. afer, a redfin minnow which inhabits clear, perennial mountain streams, was found to have larger neural structures related to vision than P. asper, which inhabits turbid, intermittent streams of the Gamtoos River system, ...

  8. Biogeochemistry of the MAximum TURbidity Zone of Estuaries (MATURE): some conclusions

    NARCIS (Netherlands)

    Herman, P.M.J.; Heip, C.H.R.

    1999-01-01

    In this paper, we give a short overview of the activities and main results of the MAximum TURbidity Zone of Estuaries (MATURE) project. Three estuaries (Elbe, Schelde and Gironde) have been sampled intensively during a joint 1-week campaign in both 1993 and 1994. We introduce the publicly available

  9. Ontogeny of antipredator performance in hatchery-reared Japanese anchovy Engraulis japonicus larvae exposed to visual or tactile predators in relation to turbidity.

    Science.gov (United States)

    Ohata, R; Masuda, R; Yamashita, Y

    2011-12-01

    Laboratory experiments revealed distinct effects of turbidity on the survival of Japanese anchovy Engraulis japonicus larvae when exposed to either visual (jack mackerel Trachurus japonicus) or tactile (moon jellyfish Aurelia aurita) predators. The experiments were conducted in 30 l tanks with three levels of turbidity obtained by dissolving 0, 50 or 300 mg l(-1) of kaolin. Predators were introduced to experimental tanks followed by larvae of E. japonicus ranging from 5 to 25 mm standard lengths (L(s) ). When exposed to T. japonicus, the mean survival rate of larvae was significantly higher in 300 mg l(-1) treatments compared to the other turbidity levels. When exposed to A. aurita, however, there was no difference in the survival rates among different turbidity treatments. The survival rates when exposed to either predator improved with larval growth. The logistic survivorship models for E. japonicus larvae when exposed to A. aurita had an inflection point at c. 12 mm L(s) , suggesting that their size refuge from A. aurita is close to this value. Comparison to a previous study suggests a high vulnerability of shirasu (long and transparent) fish larvae to jellyfish predation under turbidity. This study indicates that anthropogenic increases of turbidity in coastal waters may increase the relative effect of jellyfish predation on fish larvae. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  10. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  11. Rabbit Manure under Composting and Vermicomposting process: A quemometric Quality Evaluation

    International Nuclear Information System (INIS)

    Campitelli, P.; Rubenacker, A.; Sereno, R.; Ceppi, S.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewater/sludge disposal. A sustainable safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentiality for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  12. Oxygen rocking aqueous batteries utilizing reversible topotactic oxygen insertion/extraction in iron-based perovskite oxides Ca1-xLaxFeO3-δ

    Science.gov (United States)

    Hibino, Mitsuhiro; Kimura, Takeshi; Suga, Yosuke; Kudo, Tetsuichi; Mizuno, Noritaka

    2012-08-01

    Developments of large-scale energy storages with not only low cost and high safety but also abundant metals are significantly demanded. While lithium ion batteries are the most successful method, they cannot satisfy all conditions. Here we show the principle of novel lithium-free secondary oxygen rocking aqueous batteries, in which oxygen shuttles between the cathode and anode composed of iron-based perovskite-related oxides Ca0.5La0.5FeOz (2.5 topotactic oxygen extraction and reinsertion during discharge and charge processes.

  13. Influence of Waves and Tides on Upper Slope Turbidity Currents and their Deposits: An Outcrop and Laboratory Study

    Science.gov (United States)

    Daniller-Varghese, M. S.; Smith, E.; Mohrig, D. C.; Goudge, T. A.; Hassenruck-Gudipati, H. J.; Koo, W. M.; Mason, J.; Swartz, J. M.; Kim, J.

    2017-12-01

    Research on interactions of turbidity currents with waves and tides highlight both their importance and complexity. The Elkton Siltstone at Cape Arago, Oregon, USA, preserves rhythmically bedded deposits that we interpret as the product of tidally modified hyperpycnal flows under the influence of water-surface waves. Evidence for the interpretation of tidal influence is taken from couplet thickness measurements consistent with semidiurnal tides arranged into monthly cycles. These deposits were likely sourced from suspended-sediment laden river plumes; thinner, finer-grained beds represent deposition during flood tide, and thicker, coarser-grained beds represent deposition during ebb tide. Sedimentary structures within the rhythmites change from proximal to distal sections, but both sections preserve combined-flow bedforms within the beds, implying wave influence. Our paleo-topographic reconstruction has the proximal section located immediately down-dip of the shelf slope-break and the distal section located 1.5km further offshore in 125m greater water depth. We present experimental results from wave-influenced turbidity currents calling into question the interpretation that combined-flow bedforms necessarily require deposition at or above paleo-wave base. Turbidity currents composed of quartz silt and very fine sand were released into a 10m long, 1.2m deep tank. Currents ran down a 9-degree ramp with a motor driven wave-maker positioned at the distal end of the tank. The currents interacted with the wave field as they travelled downslope into deeper water. While oscillatory velocities measured within the wave-influenced turbidity currents decreased with distance downslope, the maximum oscillatory velocities measured in the combined-flow currents at depth were five to six times larger than those measured under a wave field without turbidity currents. These results suggest that combined-flow turbidity currents can transmit oscillating-flow signals beneath the

  14. Differential turbidity at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Stokes, G.M.

    1980-01-01

    Experiments continued in FY 1979 to examine differential turbidity effects on insolation as measured at the earth's surface. These experiments are primarily intended to provide means for interpreting insolation-data assessment studies. These data are also valuable for inferring aerosol radiative or optical effects, which is an important consideration in evaluating inadvertent climate modification and visibility degradation as a result of aerosols. The experiments are characterized by frequent, nearly simultaneous observations at the Rattlesnake Mountain Observatory (RMO) and the Hanford Meteorological Station (HMS) and take advantage of the nearly 1-km altitude difference between these two observing sites. This study indicated that nearly simultaneous measurements of the direct solar beam from stationary sites that are separated in altitude can be used to monitor the incremental optical depth arising from aerosols in the intervening layer. Once appropriate calbiration procedures have been established for the MASP unit, the direct solar data can be used to document on a routine basis aerosol variations in the first kilometer between HMS and RMO

  15. DISSOLVED OXYGEN MODELLING USING ARTIFICIAL NEURAL NETWORK: A CASE OF RIVER NZOIA, LAKE VICTORIA BASIN, KENYA

    Directory of Open Access Journals (Sweden)

    Edwin Kimutai Kanda

    2016-11-01

    Full Text Available River Nzoia in Kenya, due to its role in transporting industrial and municipal wastes in addition to agricultural runoff to Lake Victoria, is vulnerable to pollution. Dissolved oxygen is one of the most important indicators of water pollution. Artificial neural network (ANN has gained popularity in water quality forecasting. This study aimed at assessing the ability of ANN to predict dissolved oxygen using four input variables of temperature, turbidity, pH and electrical conductivity. Multilayer perceptron network architecture was used in this study. The data consisted of 113 monthly values for the input variables and output variable from 2009–2013 which were split into training and testing datasets. The results obtained during training and testing were satisfactory with R2 varying from 0.79 to 0.94 and RMSE values ranging from 0.34 to 0.64 mg/l which imply that ANN can be used as a monitoring tool in the prediction of dissolved oxygen for River Nzoia considering the non-correlational relationship of the input and output variables. The dissolved oxygen values follow seasonal trend with low values during dry periods.

  16. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

    Science.gov (United States)

    Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David

    2009-05-01

    We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

  17. The influence of bilirubin, haemolysis and turbidity on 20 analytical tests performed on automatic analysers. Results of an interlaboratory study.

    Science.gov (United States)

    Grafmeyer, D; Bondon, M; Manchon, M; Levillain, P

    1995-01-01

    The director of a laboratory has to be sure to give out reliable results for routine tests on automatic analysers regardless of the clinical context. However, he may find hyperbilirubinaemia in some circumstances, parenteral nutrition causing turbidity in others, and haemolysis occurring if sampling is difficult. For this reason, the Commission for Instrumentation of the Société Française de Biologie Clinique (SFBC) (president Alain Feuillu) decided to look into "visible" interferences--bilirubin, haemolysis and turbidity--and their effect on 20 major tests: 13 substrates/chemistries: albumin, calcium, cholesterol, creatinine, glucose, iron, magnesium, phosphorus, total bilirubin, total proteins, triacylglycerols, uric acid, urea, and 7 enzymatic activities: alkaline phosphatase, alanine aminotransferase, alpha-amylase, aspartate aminotransferase, creatine kinase, gamma-glutamyl transferase and lactate dehydrogenase measured on 15 automatic analysers representative of those found on the French market (Astra 8, AU 510, AU 5010, AU 5000, Chem 1, CX 7, Dax 72, Dimension, Ektachem, Hitachi 717, Hitachi 737, Hitachi 747, Monarch, Open 30, Paramax, Wako 30 R) and to see how much they affect the accuracy of results under routine conditions in the laboratory. The study was carried out following the SFBC protocol for the validation of techniques using spiked plasma pools with bilirubin, ditauro-bilirubin, haemoglobin (from haemolysate) and Intralipid (turbidity). Overall, the following results were obtained: haemolysis affects tests the most often (34.5% of cases); total bilirubin interferes in 21.7% of cases; direct bilirubin and turbidity seem to interfere less at around 17%. The different tests are not affected to the same extent; enzyme activity is hardly affected at all; on the other hand certain major tests are extremely sensitive, increasingly so as we go through the following: creatinine (interference of bilirubin), triacylglycerols (interference of bilirubin and

  18. An optical biosensing film for biochemical oxygen demand determination in seawater with an automatic flow sampling system

    Science.gov (United States)

    Xin, Lingling; Wang, Xudong; Guo, Guangmei; Wang, Xiaoru; Chen, Xi

    2007-09-01

    An on-line roboticized apparatus, including an optical biosensing film with an automatic flow sampling system, has been developed for biochemical oxygen demand (BOD) determination of seawater. The sensing film employed in the apparatus consisted of an organically modified silicate (ORMOSIL) film embedded with tri(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) perchlorate. Three species of microorganism cultivated from seawater were immobilized in an ORMOSIL-polyvinyl alcohol matrix. Possible factors affecting BOD determination were studied, including sampling frequency, temperature, pH and sodium chloride concentration. Based on measurements of the linear fluctuant coefficients and the reproducibility of its response to seawater, the BOD apparatus showed the advantages of high veracity and short response time. Generally, the linear fluctuant coefficient (R2) in the BOD range 0.2-40 mg l-1 was 0.9945 when using a glucose/glutamate (GGA) BOD standard solution. A reproducible response for the BOD sensing film of within ±2.8% could be obtained in the 2 mg l-1 GGA solution. The BOD apparatus was applied to the BOD determination of seawater, and the values estimated by this biosensing apparatus correlated well with those determined by the conventional 5 day BOD (BOD5) test.

  19. Enhanced removal of chemical oxygen demand, nitrogen and phosphorus using the ameliorative anoxic/anaerobic/oxic process and micro-electrolysis.

    Science.gov (United States)

    Bao, K Q; Gao, J Q; Wang, Z B; Zhang, R Q; Zhang, Z Y; Sugiura, N

    2012-01-01

    Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75-100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.

  20. The Metropolis-Hastings algorithm, a handy tool for the practice of environmental model estimation : illustration with biochemical oxygen demand data

    Directory of Open Access Journals (Sweden)

    Franck Torre

    2001-02-01

    Full Text Available Environmental scientists often face situations where: (i stimulus-response relationships are non-linear; (ii data are rare or imprecise; (iii facts are uncertain and stimulus-responses relationships are questionable. In this paper, we focus on the first two points. A powerful and easy-to-use statistical method, the Metropolis-Hastings algorithm, allows the quantification of the uncertainty attached to any model response. This stochastic simulation technique is able to reproduce the statistical joint distribution of the whole parameter set of any model. The Metropolis-Hastings algorithm is described and illustrated on a typical environmental model: the biochemical oxygen demand (BOD. The aim is to provide a helpful guideline for further, and ultimately more complex, models. As a first illustration, the MH-method is also applied to a simple regression example to demonstrate to the practitioner the ability of the algorithm to produce valid results.

  1. Honey Addition in Kefir Whey Drink in Term of Organoleptic Quality, Colour, and Turbidity

    Directory of Open Access Journals (Sweden)

    Firman Jaya

    2017-07-01

    Full Text Available The objective of this research was to determine the optimum honey addition on kefir whey drink based on organoleptic quality (colour, aroma, taste, colour test, and turbidity. The method used in this research was experiment with Completely Randomized Design (CDR by used 4 treatments and 4 replications. The treatments were P0 = without the honey added, P1=added by 20% honey, P2 = added by 30% honey and P3 = added by 40% honey (v/v. The data were analyzed by Analysis of Variance (ANOVA, if there were significantly difference, the data would analyzed by Duncan’s Multiple Range Test. The results showed that honey addition gave highly difference significant (P<0.01 on organoleptic quality (colour, aroma, taste, turbidity and lightness (L*. Honey addition didn’t give significantly difference (P<0.05 on redness (a* and yellowness (b*. The conclusion of this research was the best treatment will the value is added by 40% honey with colour 3.25±0.78, aroma 3.50±1.14, taste 3.75±1.01, lightness (L 31.57±0.5, redness (b* 0.95±0.12, yellowness (b* 0.050±0.36, and turbidity 306.7±6.65 NTU

  2. Treatment of the baker's yeast wastewater by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M. [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)], E-mail: kobya@gyte.edu.tr; Delipinar, S. [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)

    2008-06-15

    In the laboratory-scale experiments, treatment of baker's yeast production wastewater has been investigated by electrocoagulation (EC) using a batch reactor. Effects of the process variables such as pH, electrode material (Fe and Al), current density, and operating time are investigated in terms of removal efficiencies of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and operating cost, respectively. The maximum removal efficiencies of COD, TOC and turbidity under optimal operating conditions, i.e., pH 6.5 for Al electrode and pH 7 for Fe electrode, current density of 70 A/m{sup 2} and operating time of 50 min were 71, 53 and 90% for Al electrode and 69, 52 and 56% for Fe electrode, respectively. Al electrode gave 4.4 times higher removal efficiency of turbidity than Fe electrode due to interference from color of dissolved iron. The operating costs for Al and Fe electrodes in terms of $/m{sup 3} or $/kg COD were 1.54 and 0.82, 0.51 and 0.27, respectively.

  3. Treatment of the baker's yeast wastewater by electrocoagulation

    International Nuclear Information System (INIS)

    Kobya, M.; Delipinar, S.

    2008-01-01

    In the laboratory-scale experiments, treatment of baker's yeast production wastewater has been investigated by electrocoagulation (EC) using a batch reactor. Effects of the process variables such as pH, electrode material (Fe and Al), current density, and operating time are investigated in terms of removal efficiencies of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and operating cost, respectively. The maximum removal efficiencies of COD, TOC and turbidity under optimal operating conditions, i.e., pH 6.5 for Al electrode and pH 7 for Fe electrode, current density of 70 A/m 2 and operating time of 50 min were 71, 53 and 90% for Al electrode and 69, 52 and 56% for Fe electrode, respectively. Al electrode gave 4.4 times higher removal efficiency of turbidity than Fe electrode due to interference from color of dissolved iron. The operating costs for Al and Fe electrodes in terms of $/m 3 or $/kg COD were 1.54 and 0.82, 0.51 and 0.27, respectively

  4. [The oxygen consumption of ostrich embryos during incubation].

    Science.gov (United States)

    Reiner, G; Dzapo, V

    1995-02-01

    This work deals with the oxygen consumption of ostrich chicks during incubation. Brood eggs were incubated in a hermetic isolated acrylic-glass cylinder. Reduction of oxygen content in the air surrounding the egg was measured using an oxygen-sensitive electrode. A sigmoid curve could be drawn during incubation, with the steepest phase being around day 26. Maximum oxygen consumption was reached on day 36. It was slightly decreased until day 39, when the embryo switches to lung circulation, followed again by an increase until hatching. Average oxygen consumptions for the whole brood interval were calculated to 63.6 liters. Oxygen volumes consumed on day 36 result in a demand about to 240 liters of fresh air per egg and day. Oxygen consumption of the embryos on day 36 was significantly positive correlated with their vitality. Numb or less vital embryos could be clearly differentiated from others. The higher a chick's oxygen consumption, the earlier and shorter its hatching. Possible applications of the method in regard to the evaluation of incubation parameters or chicken constitution are discussed.

  5. Occupational demand and human rights. Public safety officers and cardiorespiratory fitness.

    Science.gov (United States)

    Shephard, R J

    1991-08-01

    The issue of discrimination in physically demanding employment, such as police, firefighters, prison guards and military personnel, is contentious. In terms of oxygen transport, the 'action limit' (calling for personnel selection or task redesign) is a steady oxygen consumption of 0.7 L/min, while the maximum permissible limit is 2.1 L/min. Note is taken of the commonly expressed belief that public safety duties are physically demanding, calling for personnel with an aerobic power of at least 3 L/min, or 42 to 45 ml/kg/min. The actual demands of such work can be assessed on small samples by physiological measurements (using heart rate or oxygen consumption meters), but the periods sampled may not be typical of a normal day. A Gestalt can also be formed as to the heaviness of a given job, or a detailed task analysis can be performed; most such analyses of public safety work list distance running and other aerobic activities infrequently. An arbitrary requirement of 'above average fitness' is no longer accepted by courts, but a further approach is to examine the characteristics of those currently meeting the demands of public safety jobs satisfactorily. Young men commonly satisfy the 3 L/min standard, but this is not usually the case for women or older men; in the case of female employees, it also seems unreasonable that they should be expected to satisfy the same standards as men, since a lower body mass reduces the energy cost of most of the tasks that they must perform. A second criterion sometimes applied to physically demanding work (a low vulnerability to heart attacks) is examined critically. It is concluded that the chances that a symptom-free public safety officer will develop a heart attack during a critical solo mission are so low that cardiac risk should not be a condition of employment. Arbitrary age- and sex-related employment criteria are plainly discriminatory, since some women and 65-year-old men have higher levels of physical fitness than the

  6. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  7. Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Saikat [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Wang, Bo [Pennsylvania State Univ., University Park, PA (United States).Dept. of Materials Science and Engineering; Cao, Ye [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Inst. for; Rae Cho, Myung [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Jae Shin, Yeong [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Mo Yang, Sang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Sookmyung Women' s Univ., Seoul (Republic of Korea). Dept. of Physics; Wang, Lingfei [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Kim, Minu [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy; Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Inst. for Functional Imaging of Materials; Chen, Long-Qing [Pennsylvania State Univ., University Park, PA (United States).Dept. of Materials Science and Engineering; Noh, Tae Won [Inst. for Basic Science (IBS), Seoul (Republic of Korea). Center for Correlated Electron Systems; Seoul National University (SNU), Seoul (Republic of Korea). Dept. of Physics and Astronomy

    2017-09-20

    Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. Finally, the ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.

  8. Natural Ferrihydrite as an Agent for Reducing Turbidity Caused by Suspended Clays

    Science.gov (United States)

    The turbidity of water can be reduced by the addition of positively charged compounds which coagulate negatively charged clay particles in suspension causing them to flocculate. This research was conducted to determine the effectiveness of the Fe oxide mineral ferrihydrite as a flocculating agent fo...

  9. Cross shore transport by wind-driven turbidity plumes in western Lake Superior*

    Science.gov (United States)

    Turbidity plumes frequently occur in the western arm of Lake Superior and may represent a significant cross shelf transport mechanism for sediment, nutrient and biota. We characterize a plume that formed in late April 2016 using observations from in situ sensors and remote sensin...

  10. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Mohammad Haji Gholizadeh

    2016-08-01

    Full Text Available Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM, chlorophyll-a, and pollutants. A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc. of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a, colored dissolved organic matters (CDOM, Secchi disk depth (SDD, turbidity, total suspended sediments (TSS, water temperature (WT, total phosphorus (TP, sea surface salinity (SSS, dissolved oxygen (DO, biochemical oxygen demand (BOD and chemical oxygen demand (COD.

  11. Purification of pulp and paper mill effluent using Eichornia crassipes.

    Science.gov (United States)

    Yedla, S; Mitra, A; Bandyopadhyay, M

    2002-04-01

    Konark Pulp and Paper Industries Private Limited is a medium size industry producing 1600 m3 of wastewater a day. The existing water treatment system of the industry was found to be ineffective both in performance and economy. In the present study, a new system of treatment has been developed using water hyacinth Eichornia crassipes, coagulation by lime and alum, followed by rapid sand filtration. The performance efficiency of each unit viz. Eichornia treatment; coagulation with lime, with alum, and with lime:alum combinations, and filtration was studied. Water quality parameters considered were Biological Oxygen Demand, Chemical Oxygen Demand, Dissolve Oxygen, Total Dissolved Solids, turbidity, percentage transmission, and water colour. Based on the individual performance of each unit, a continuous system has been designed and was tested. The new system of treatment could treat the wastewater to the discharge standards and also was found economically feasible. Testing culture of fish (tilapia) proved that the treated water could be safely discharged into natural waters. All fish tested, survived and remained healthy throughout the period of testing. Culture of fish further improved the water quality.

  12. IDENTIFICAÇÃO DE COMPOSTOS ORGÂNICOS EM LIXIVIADO DE ATERRO SANITÁRIO MUNICIPAL POR CROMATOGRAFIA GASOSA ACOPLADA A ESPECTROMETRIA DE MASSAS

    Directory of Open Access Journals (Sweden)

    Eliane Sloboda Rigobello

    2015-07-01

    Full Text Available The organic compounds present in leachate can contaminate soil, superficial and underground water, and the majority is considered harmful to the environment and human health. The objective of this study was to identify organic compounds present in landfill leachate located in Maringá-PR by gas chromatography coupled to mass spectrometry (GC-MS. The raw leachate was characterized by measurements of pH, Chemical Oxygen Demand (COD, Biochemical Oxygen Demand (BOQ, Dissolved Organic Carbon (DOC, apparent and true colors, turbidity and absorbance at 254 nm. The extraction of organic compounds in leachate was carried out by liquid-liquid extraction (LLE with ethyl acetate and dichloromethane solvents, while varying the pH and ionic strength. The analysis of the leachate by GC-MS showed the presence of compounds considered to have toxic effects on the environment and human health, such as pesticides and phenolic compounds. Several compounds containing oxygenated groups such as carboxylic acids and alcohols were also identified, indicating that it was highly probable that the decomposition of waste in the landfill was in the acidogenic phase.

  13. Diurnal variations in wastewater characteristics at main out fall in Lahore

    International Nuclear Information System (INIS)

    Haider, H.; Ali, W.; Ali, W.

    2012-01-01

    Variations in the flow and pollutants concentrations during the day were monitored at the Main Out fall disposal station of the city of Lahore. The laboratory analysis of the wastewater samples collected at 2 hour interval on fifth and sixth May, 2009 for pH, temperature, alkalinity, hardness, Biochemical Oxygen Demand (BOD5), BOD5 Filtered, Total Kjeldahl Nitrogen (TKN), Ammonia Nitrogen (NH/sub 3/-N), chlorides, solids, turbidity, sulphates and nitrates were carried out. Average values and standard deviations were determined to assess the type of wastewater treatment. Correlation between BOD5 and BOD5 Filtered was developed through regression analysis. Diurnal variations in the Ultimate Biochemical Oxygen Demand (BODU) at the Main Out fall based on Carbonaceous Biochemical Oxygen Demand (CBODU) and Nitrogenous Biochemical Oxygen Demand (NBODU) are also estimated. The ratio between CBODU/NBODU ranges between 0.86 to 1.8 during a day at Main Out fall. This variation is primarily due to the large diurnal variation in CBODU values as a result of industrial activities in the study area. The BOD5/ TKN ratio varies between 3.3 and 6.9 and the calculated BODU (i.e., CBODU + NBODU) was found to be almost double of BOD5 during most part of the day primarily due to inclusion of NBOD. The study results reveal the importance of NBOD while designing the wastewater treatment facilities and implementing a water quality control strategy for the River Ravi. (author)

  14. Seasonal and inter-annual turbidity variability in the Rio de la Plata from 15 years of MODIS: El Niño dilution effect

    OpenAIRE

    Dogliotti, A.I.; Ruddick, K.; Guerrero, R.

    2016-01-01

    Spatio-temporal variability of turbidity in the Río de la Plata (RdP) estuary (Argentina) at seasonal and inter-annual timescales is analyzed from 15 years (2000–2014) of MODIS data and explained in terms of river discharges and the El Niño Southern Oscillation (ENSO). Satellite estimates were first validated using in situ turbidity measurements and then the time series of monthly averages were analyzed to assess the seasonal and inter-annual variability of turbidity. A strong seasonal variab...

  15. Annual and seasonal variation of turbidity, total dissolved solids, nitrate and nitrite in the Parsabad water treatment plant, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zare

    2013-01-01

    Full Text Available Aims: This study investigated the annual and seasonal variation of turbidity; total dissolved solid (TDS, nitrate and nitrite in Parsabad water treatment plant (WTP, Iran. Materials and Methods: The water samples were obtained from the inlet and outlet of Parsabad WTP from February 2002 to June 2009. The samples′ turbidity, TDS, nitrate, nitrite, pH, and temperature were measured according to standard methods once a month and the average of these parameters were calculated for each season of year. Results: The maximum concentration of inlet turbidity, TDS, nitrate and nitrite were 691, 700.5, 25, and 0.17 mg/l, respectively. These parameters for outlet samples in the study period were 3.0, 696.7, 18, and 0.06 mg/l, respectively. While these concentrations in outlet zone were lower than World Health Organization (WHO or United States Environmental Protection Agency (US-EPA water quality guidelines, WTP could not reduce the TDS, nitrate, nitrite and pH value and these parameters were not different in the inlet and outlet samples. However, the WTP reduced the turbidity significantly with an efficiency of up to 85%. Conclusion: This study showed that a common WTP with rapid sand filtration can treat a maximum river turbidity of 700 NTU in several years. As no differences were observed between inlet and outlet TDS, nitrate, nitrite and pH in the studied WTP. It can be concluded that compensatory schemes should be predicted for modification of these parameters when they exceed the standards in the emergency situations.

  16. Decomposition of Diffuse Reflectance Images - Features for Monitoring Structure in Turbid Media

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Nielsen, Otto Højager Attermann; Andersen, Ulf

    2013-01-01

    Light scattering in turbid media can be related to the microstructure of media. Thus, light scattering can potentially be used for process control of products where the structure is a key component. However process control requires robust and sensitive input data to function properly. In this study...

  17. Long-term oxygen therapy for COPD. Improving longevity and quality of life in hypoxemic patients.

    Science.gov (United States)

    Weg, J G; Haas, C F

    1998-04-01

    Long-term oxygen therapy can increase life expectancy in hypoxemic patients with COPD. Accurate identification of hypoxemia requires arterial blood gas measurements. Pulse oximetry can be used to measure trends in oxygenation, oxygen needs, and oxygen requirements during exercise and sleep. A detailed oxygen prescription indicates: (1) the oxygen dose (L/min), (2) the number of hours per day that oxygen therapy is required, (3) the dose required during exercise, (4) the oxygen supply system: concentrator, compressed gas cylinder, or liquid oxygen reservoir, and (5) the delivery device: nasal cannula, demand-flow device, reservoir cannula, or transtracheal oxygen catheter.

  18. Measurement of the effective refractive index of a turbid colloidal suspension using light refraction

    International Nuclear Information System (INIS)

    Reyes-Coronado, A; Garcia-Valenzuela, A; Sanchez-Perez, C; Barrera, R G

    2005-01-01

    We propose and analyse a simple method to measure simultaneously the real and imaginary parts of the effective refractive index of a turbid suspension of particles. The method is based on measurements of the angle of refraction and transmittance of a laser beam that traverses a hollow glass prism filled with a colloidal suspension. We provide a comprehensive assessment of the method. It can offer high sensitivity while still being simple to interpret. We present results of experiments using an optically turbid suspension of polystyrene particles and compare them with theoretical predictions. We also report experimental evidence showing that the refractive behaviour of the diffuse component of light coming from a suspension depends on the volume fraction of the colloidal particles

  19. Reduction of turbidity and chromium content of tannery wastewater by electrocoagulation process.

    Science.gov (United States)

    2018-02-12

    The present study is carried out to remove the chromium and turbidity from tannery wastewater by the electrocoagulationprocess with aluminum electrodes. This experimental study is performed using a batch system. The applied pilot comprises a reactor containing two parallel metal electrodes (Al). The latter are connected as mono polar and a different potential is applied between them. Several working parameters, such as applied potential difference, electrolysis time, active electrode surface, inter-electrode distance and pH of the medium have been studied to achieve higher removal efficiency.The treatment achieved a maximum reduction of 99% for the turbidity and 93% for the chromium under the following conditions: a potential difference: 15V; electrodes surface: 45cm2, inter-electrode distance: 1cm; raw water pH (6.1) and a contact time of 90 min. Considering the obtained efficiency in the present study, electrocoagulation process has the potential to be utilized for the cost-effective removal of pollutants from wastewater.

  20. A new three-band algorithm for estimating chlorophyll concentrations in turbid inland lakes

    International Nuclear Information System (INIS)

    Duan Hongtao; Ma Ronghua; Zhao Chenlu; Zhou Lin; Shang Linlin; Zhang Yuanzhi; Loiselle, Steven Arthur; Xu Jingping

    2010-01-01

    A new three-band model was developed to estimate chlorophyll-a concentrations in turbid inland waters. This model makes a number of important improvements with respect to the three-band model commonly used, including lower restrictions on wavelength optimization and the use of coefficients which represent specific inherent optical properties. Results showed that the new model provides a significantly higher determination coefficient and lower root mean squared error (RMSE) with respect to the original model for upwelling data from Taihu Lake, China. The new model was tested using simulated data for the MERIS and GOCI satellite systems, showing high correlations with the former and poorer correlations with the latter, principally due to the lack of a 709 nm centered waveband. The new model provides numerous advantages, making it a suitable alternative for chlorophyll-a estimations in turbid and eutrophic waters.

  1. An improved method for estimating the Ångström turbidity coefficient β in Central China during 1961–2010

    International Nuclear Information System (INIS)

    Wang, Lunche; Salazar, Germán Ariel; Gong, Wei; Peng, Simao; Zou, Ling; Lin, Aiwen

    2015-01-01

    The accurate determination of the atmospheric turbidity is of great importance for atmospheric environment, solar energy applications and climate change studies. Daily values of horizontal direct, diffuse and global solar radiation at Wuhan, Central China during 1961–2010 are used for estimating the monthly mean Ångström turbidity coefficient β. The YHM and YHM2 (Yang hybrid models) are first used to estimate the direct and diffuse components considering the transmittances of ozone, water vapor, gas mixture, aerosol and Rayleigh effect in the radiative transfer processes. An IMW (improved model for Wuhan) is also proposed by combining the format of YHM model with the corrected spectral terms of YHM2 model. Then, the β value can be estimated by varying the estimated direct irradiation until it matches the observation. The model performance is analyzed and compared and further validated by measured values using Sun photometer CE318. It is shown that the IMW model presents more accurate estimates than YHM and YHM2 ones; it is therefore a useful tool for studying the variability and evolution of atmospheric turbidity in other places around the world. - Highlights: • Global, direct and diffuse radiation at Wuhan during 1961–2010 is used. • An improved model is proposed to determine turbidity coefficient β. • The model results have been validated by field observations. • Long-term variations of turbidity coefficient at Wuhan are analyzed

  2. AN EVALUATION OF WATER QALITY OF AKPINAR STREAM (DENİZLİ WHERE TROUT PRODUCTION TAKES PLACE

    Directory of Open Access Journals (Sweden)

    Esengül KÖSE

    2012-08-01

    Full Text Available In this study, 20 physicochemical parameters were measured mountly in 2007 and seasonaly in 2008 and 2009 on Akpınar Stream, which is located within the borders of Denizli and has 13 trout production facility. The data obtained were evaluated according to the fresh water fish directive which was agreed by the Commision of European Union (EC Directives and Water Pollution Control Regulation Criteria. We determined that, the measured parameters on the first station do not constitute any risk for Salmonids and Cyprinids according to EC Directives and in the second station, the valuesof biological oxygen demand and nitrite were high enough to adversely affect the health of fish. There is not a significant difference between two stations for the parameters of oxygen, nitrate, totalnitrogen, pH, chemical oxygen demand, acid binding capacity, total hardness and chlorine. The parametes of total suspended solids, ammonium, nitrite, secondary phosphate, total phosphorus, organicmatter, ammonia, biological oxygen demand, turbidity, temperature and flow rate were significantly high in second station (p<0.05. The reason of high levels of the parameters especially origin of organic pollution in the secod station is fish feces and feed wastes which directly given into the water. Settling ponds should be used properly and controls should be provided to increase for more healtyproduction.

  3. Three-dimensional semi-idealized model for estuarine turbidity maxima in tidally dominated estuaries

    NARCIS (Netherlands)

    Kumar, Mohit; Schuttelaars, Henk M.; Roos, Pieter C.

    2017-01-01

    We develop a three-dimensional idealized model that is specifically aimed at gaining insight in the physical mechanisms resulting in the formation of estuarine turbidity maxima in tidally dominated estuaries. First, the three-dimensional equations for water motion and suspended sediment

  4. Assessing the effectiveness and environmental impacts of using natural flocculants to manage turbidity.

    Science.gov (United States)

    2005-08-01

    The objective of this research was to determine the feasibility of using chitosan as a natural flocculant to control : turbidity during in-stream construction work. A series of field tests in Oak Creek, Corvallis, OR were conducted in : order to test...

  5. The effect of turbidity and prey fish density on consumption rates of piscivorous Eurasian perch Perca fluviatilis

    DEFF Research Database (Denmark)

    Jacobsen, Lene; Berg, Søren; Baktoft, Henrik

    2014-01-01

    piscivorous Eurasian perch Perca fluviatilis L. This was done in outdoor mesocosm (16 m2) experiments with clear water and two levels of turbidity (25 and 105 NTU) and two prey fish densities [3.1 and 12.5 roach Rutilus rutilus (L.) individuals m–2]. Perch consumption rates were affected by visibility less...... than expected, while they were highly affected by increased prey fish density. Perch responded to high prey density in all visibility conditions, indicating that prey density is more crucial for consumption than visibility in turbid lakes...

  6. The anomalous depolarization anisotropy in the central backscattering area for turbid medium with Mie scatterers

    Science.gov (United States)

    Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua

    2018-05-01

    It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.

  7. Turbidity alters pre-mating social interactions between native and invasive stream fishes

    Science.gov (United States)

    Glotzbecker, Gregory J.; Ward, Jessica L.; Walters, David M.; Blum, Michael J.

    2015-01-01

    Environmental degradation can result in the loss of aquatic biodiversity if impairment promotes hybridisation between non-native and native species. Although aquatic biological invasions involving hybridisation have been attributed to elevated water turbidity, the extent to which impaired clarity influences reproductive isolation among non-native and native species is poorly understood.

  8. Silicon Analysis of Tank 8F and Tank 40H Turbidity Samples

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    2001-01-01

    The need for silicon measurements in the field exists and can enhance the scheduling of waste transfers in both F- and H-Area Tank Farms. This report examines the use of field turbidity measurements as an at-line method to ensure that entrainment of silicon-bearing sludge materials are minimized

  9. A preliminary study of opuntia stricta as a coagulant for turbidity removal in surface waters

    International Nuclear Information System (INIS)

    Mukhtar, A.

    2015-01-01

    Natural polymers, extracted from plants, can be used as coagulants for water treatment in addition to metal salts and synthetic polymers. Natural materials may offer benefits such as local production, lesser health hazards and affordability for developing world. Opuntia stricta plant, a cactus specie native to Mexico, has been explored in this study for its efficacy as coagulant. Efficiency of Opuntia stricta was assessed on the basis of turbidity removal from lab prepared and surface water samples. The effect of water pH on its performance was also analyzed. The study results revealed that removal efficiency of Opuntia stricta for turbidity removal remains consistent within a wide pH range (pH 5 to 10), in contrast to other coagulants which are pH dependent. Furthermore, pH of the water remains constant during coagulation and pH adjustment may not be required for subsequent treatment processes, which is often needed in case metal coagulants are used. Residual turbidity below 20 NTU is conveniently achieved by using Opuntia stricta even when it is used at very low doses. Formation of exceptionally large flocs and their linear configuration reveals the possibility that mechanism of coagulation by Opuntia stricta is adsorption and inter-particle bridging. (author)

  10. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    Science.gov (United States)

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  11. A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas.

    Science.gov (United States)

    Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan

    2015-03-21

    A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Processing Methods of Alkaline Hydrolysate from Rice Husk

    Directory of Open Access Journals (Sweden)

    Olga D. Arefieva

    2017-07-01

    Full Text Available This paper devoted to finding processing methods of alkaline hydrolysate produced from rice husk pre-extraction, and discusses alkaline hydrolysate processing schemed and disengagement of some products: amorphous silica of various quality, alkaline lignin, and water and alkaline extraction polysaccharides. Silica samples were characterized: crude (air-dried, burnt (no preliminary water treatment, washed in distilled water, and washed in distilled water and burnt. Waste water parameters upon the extraction of solids from alkaline hydrolysate dropped a few dozens or thousand times depending on the applied processing method. Color decreased a few thousand times, turbidity was virtually eliminated, chemical oxygen demanded about 20–136 times; polyphenols content might decrease 50% or be virtually eliminated. The most prospective scheme obtained the two following solid products from rice husk alkaline hydrolysate: amorphous silica and alkaline extraction polysaccharide. Chemical oxygen demand of the remaining waste water decreased about 140 times compared to the silica-free solution.

  13. An Evaluation of Nitrate, fDOM, and Turbidity Sensors in New Hampshire Streams

    Science.gov (United States)

    Snyder, Lisle; Potter, Jody D.; McDowell, William H.

    2018-03-01

    A state-of-the-art network of water quality sensors was established in 2012 to gather year-round high temporal frequency hydrochemical data in streams and rivers throughout the state of New Hampshire. This spatially extensive network includes eight headwater stream and two main stem river monitoring sites, spanning a variety of stream orders and land uses. Here we evaluate the performance of nitrate, fluorescent dissolved organic matter (fDOM), and turbidity sensors included in the sensor network. Nitrate sensors were first evaluated in the laboratory for interference by different forms of dissolved organic carbon (DOC), and then for accuracy in the field across a range of hydrochemical conditions. Turbidity sensors were assessed for their effectiveness as a proxy for concentrations of total suspended solids (TSS) and total particulate C and N, and fDOM as a proxy for concentrations of dissolved organic matter. Overall sensor platform performance was also examined by estimating percentage of data loss due to sensor failures or related malfunctions. Although laboratory sensor trials show that DOC can affect optical nitrate measurements, our validations with grab samples showed that the optical nitrate sensors provide a reliable measurement of NO3 concentrations across a wide range of conditions. Results showed that fDOM is a good proxy for DOC concentration (r2 = 0.82) but is a less effective proxy for dissolved organic nitrogen (r2 = 0.41). Turbidity measurements from sensors correlated well with TSS (r2 = 0.78), PC (r2 = 0.53), and PN (r2 = 0.51).

  14. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  15. Physiological demands of downhill mountain biking.

    Science.gov (United States)

    Burr, Jamie F; Drury, C Taylor; Ivey, Adam C; Warburton, Darren E R

    2012-12-01

    Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 ± 6.9 ml · kg(-1) · min(-1) or 52 ± 14% of VO(2max) with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.

  16. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    Science.gov (United States)

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  17. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

    Science.gov (United States)

    Cui, Liping; Knox, Wayne H

    2010-01-01

    Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.

  18. A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels

    Science.gov (United States)

    Bolla Pittaluga, M.; Frascati, A.; Falivene, O.

    2018-01-01

    We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.

  19. Estimation of Staphylococcus aureus growth parameters from turbidity data: characterization of strain variation and comparison of methods.

    Science.gov (United States)

    Lindqvist, R

    2006-07-01

    Turbidity methods offer possibilities for generating data required for addressing microorganism variability in risk modeling given that the results of these methods correspond to those of viable count methods. The objectives of this study were to identify the best approach for determining growth parameters based on turbidity data and use of a Bioscreen instrument and to characterize variability in growth parameters of 34 Staphylococcus aureus strains of different biotypes isolated from broiler carcasses. Growth parameters were estimated by fitting primary growth models to turbidity growth curves or to detection times of serially diluted cultures either directly or by using an analysis of variance (ANOVA) approach. The maximum specific growth rates in chicken broth at 17 degrees C estimated by time to detection methods were in good agreement with viable count estimates, whereas growth models (exponential and Richards) underestimated growth rates. Time to detection methods were selected for strain characterization. The variation of growth parameters among strains was best described by either the logistic or lognormal distribution, but definitive conclusions require a larger data set. The distribution of the physiological state parameter ranged from 0.01 to 0.92 and was not significantly different from a normal distribution. Strain variability was important, and the coefficient of variation of growth parameters was up to six times larger among strains than within strains. It is suggested to apply a time to detection (ANOVA) approach using turbidity measurements for convenient and accurate estimation of growth parameters. The results emphasize the need to consider implications of strain variability for predictive modeling and risk assessment.

  20. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling.

    Science.gov (United States)

    Jenkins, Marion W; Tiwari, Sangam K; Darby, Jeannie

    2011-11-15

    A two-factor three-block experimental design was developed to permit rigorous evaluation and modeling of the main effects and interactions of sand size (d(10) of 0.17 and 0.52 mm) and hydraulic head (10, 20, and 30 cm) on removal of fecal coliform (FC) bacteria, MS2 bacteriophage virus, and turbidity, under two batch operating modes ('long' and 'short') in intermittent slow sand filters (ISSFs). Long operation involved an overnight pause time between feeding of two successive 20 L batches (16 h average batch residence time (RT)). Short operation involved no pause between two 20 L batch feeds (5h average batch RT). Conditions tested were representative of those encountered in developing country field settings. Over a ten week period, the 18 experimental filters were fed river water augmented with wastewater (influent turbidity of 5.4-58.6 NTU) and maintained with the wet harrowing method. Linear mixed modeling allowed systematic estimates of the independent marginal effects of each independent variable on each performance outcome of interest while controlling for the effects of variations in a batch's actual residence time, days since maintenance, and influent turbidity. This is the first study in which simultaneous measurement of bacteria, viruses and turbidity removal at the batch level over an extended duration has been undertaken with a large number of replicate units to permit rigorous modeling of ISSF performance variability within and across a range of likely filter design configurations and operating conditions. On average, the experimental filters removed 1.40 log fecal coliform CFU (SD 0.40 log, N=249), 0.54 log MS2 PFU (SD 0.42 log, N=245) and 89.0 percent turbidity (SD 6.9 percent, N=263). Effluent turbidity averaged 1.24 NTU (SD 0.53 NTU, N=263) and always remained below 3 NTU. Under the best performing design configuration and operating mode (fine sand, 10 cm head, long operation, initial HLR of 0.01-0.03 m/h), mean 1.82 log removal of bacteria (98