WorldWideScience

Sample records for oxygen carrier dissolved

  1. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  2. Method for removing dissolved oxygen from aqueous media

    International Nuclear Information System (INIS)

    Silva, S.G. de.

    1985-01-01

    Water for use in steam generation systems, which is contained in a storage tank, is deoxygenated for use in the system by adding hydrogen to a stream of the water and intimately mixing the same, pressurizing the stream to a pressure of 60 to 150 psig, and contacting the pressurized stream with a catalyst bed of palladium or platinum dispersed on a solid carrier. The hydrogen reacts with the dissolved oxygen in the presence of the catalyst at ambient temperatures, to produce a deoxygenated stream of water containing less than 10 ppb of oxygen. The deoxygenated water can be returned to the storage tank or supplied directly to the steam generation system. (author)

  3. Dissolved oxygen detection by galvanic displacement-induced

    Indian Academy of Sciences (India)

    Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite ... dissolved oxygen (DO) detection based on a galvanic displacement synthesized reduced graphene oxide–silver nanoparticles ... Current Issue

  4. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  5. Evaluation of water quality by chlorophyll and dissolved oxygen

    International Nuclear Information System (INIS)

    Latif, Z.; Tasneem, M.A.; Javed, T.; Butt, S.; Fazil, M.; Ali, M.; Sajjad, M.I.

    2002-01-01

    This paper focuses on the impact of Chlorophyll and dissolved Oxygen on water quality. Kalar Kahar and Rawal lakes were selected for this research. A Spectrophotometer was used for determination of Chlorophyll a, Chlorophyll b, Chlorophyll c and Pheophytin pigment. Dissolved Oxygen was measured in situ, using dissolved oxygen meter. The gamma O/sup 18/ of dissolved Oxygen, like concentration, is affected primarily by three processes: air water gas exchange, respiration and photosynthesis; gamma O/sup 18/ is analyzed on isotopic ratio mass spectrometer, after extraction of dissolved Oxygen from water samples, followed by purification and conversion into CO/sub 2/. Rawal lake receives most of the water from precipitation during monsoon period and supplemented by light rains in December and January. This water is used throughout the year for drinking purposes in Rawalpindi city. The water samples were collected from 5, 7.5, and 10 meters of depth for seasonal studies of physiochemical and isotopic parameters of water and dissolved Oxygen. Optimum experimental conditions for delta O/sup 18/ analysis of dissolved Oxygen from aqueous samples were determined. Stratification of dissolved Oxygen was observed in Rawal Lake before rainy season in summer. The water quality deteriorates with depth, because the respiration exceeds the photosynthesis and gas exchange. The concentration and delta O/sup 18/ of dissolved Oxygen show no variation with depth in 1998 winter sampling. Kalar Kahar lake gets water from springs, which are recharged by local rains on the nearby mountains. It is a big lake, with shallow and uniform depth of nearly 1.5 meters. A lot of vegetation can be seen on the periphery of the lake. Algae have grown on the floor of the lake Water samples were collected from the corner with large amount of vegetation and from the center of the lake for dissolved Oxygen and Chlorophyll measurements. Chlorophyll result shows that Kalar Kahar Lake falls in Eutrophic category

  6. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  7. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  8. Effect of dissolved oxygen on SCC of LP turbine steel

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Lee, J. H.; Kim, W. C.

    2002-01-01

    Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of dissolved oxygen on Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs of Low-Pressure (LP) steam turbines in electric power generating plants. The influence of dissolved oxygen on cracking in water was studied; for this purpose, specimens were strained to fracture at 150 .deg. C in water environments with various amounts of dissolved oxygen. The maximum elongation of the turbine steel decreased with increasing dissolved oxygen. Dissolved oxygen significantly affected the SCC susceptibility of turbine steel in water. The increase of the SCC susceptibility of the turbine steel in a higher dissolved oxygen environment is due to the non protectiveness of the oxide layer of the turbine steel surface and the increase of corrosion current

  9. Improved arterial blood oxygenation following intravenous infusion of cold supersaturated dissolved oxygen solution.

    Science.gov (United States)

    Grady, Daniel J; Gentile, Michael A; Riggs, John H; Cheifetz, Ira M

    2014-01-01

    One of the primary goals of critical care medicine is to support adequate gas exchange without iatrogenic sequelae. An emerging method of delivering supplemental oxygen is intravenously rather than via the traditional inhalation route. The objective of this study was to evaluate the gas-exchange effects of infusing cold intravenous (IV) fluids containing very high partial pressures of dissolved oxygen (>760 mm Hg) in a porcine model. Juvenile swines were anesthetized and mechanically ventilated. Each animal received an infusion of cold (13 °C) Ringer's lactate solution (30 mL/kg/hour), which had been supersaturated with dissolved oxygen gas (39.7 mg/L dissolved oxygen, 992 mm Hg, 30.5 mL/L). Arterial blood gases and physiologic measurements were repeated at 15-minute intervals during a 60-minute IV infusion of the supersaturated dissolved oxygen solution. Each animal served as its own control. Five swines (12.9 ± 0.9 kg) were studied. Following the 60-minute infusion, there were significant increases in PaO2 and SaO2 (P < 0.05) and a significant decrease in PaCO2 (P < 0.05), with a corresponding normalization in arterial blood pH. Additionally, there was a significant decrease in core body temperature (P < 0.05) when compared to the baseline preinfusion state. A cold, supersaturated dissolved oxygen solution may be intravenously administered to improve arterial blood oxygenation and ventilation parameters and induce a mild therapeutic hypothermia in a porcine model.

  10. Characterization of nano-bubbles as an oxygen carrier for in-situ bioremediation of organic pollutants in the subsurface

    Science.gov (United States)

    KIM, E.; Jung, J.; Kang, S.; Choi, Y.

    2016-12-01

    In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.

  11. Use of a dissolved-gas measurement system for reducing the dissolved oxygen at St. Lucie Unit 2

    International Nuclear Information System (INIS)

    Snyder, D.T.; Coit, R.L.

    1993-02-01

    When the dissolved oxygen in the condensate at St. Lucie Unit 2 could not be reduced below the administrative limit of 10 ppB, EPRI cooperated with Florida Power and Light to find the cause and develop remedies. Two problems were identified with the assistance of a dissolved gas measurement system (DGMS) that can detect leaks into condensate when used with argon blanketing. Drain piping from the air ejection system had flooded which decreased its performance, and leaks were found at a strainer flange and a couple expansion joints. Initially the dissolved oxygen content was reduced to about 9 ppB; owever, the dissolved oxygen from Condenser A was consistently higher than that from condenser B. Injection of about 0.4 cubic per minute (CFM) of argon above the hotwell considerably improved the ventilation of Condenser A, reducing the dissolved oxygen about 30% to about 6 ppB. The use of nitrogen was equally effective. While inert gas injection is helpful, it may be better to have separate air ejectors for each condenser. Several recommendations for improving oxygen removal are given

  12. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  13. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  14. ASP project. Dissolved oxygen issues in ASP project

    Directory of Open Access Journals (Sweden)

    M.Y. Bondar

    2018-03-01

    Full Text Available The article presents the latest results of studies about the effect of dissolved oxygen on the efficiency of the ASP flooding project implemented by Salym Petroleum Development N.V.. Pilot project on experimental injection of anionic surfactant solutions, soda and polymer into the reservoir for enhanced oil recovery (ASP project has been implemented since 2016. The stability of one of the components of the ASP polymer is strongly dependent on the presence of iron, stiffness cations and dissolved oxygen in the water. Since the polymer is used for injection at two stages of the project, which are essential and the longest, at the design stage of ASP project a whole complex of polymer protection had been established against negative factors, in particular from the influence of oxygen, which causes not only oxygen corrosion but also irreversible destruction polymer chains. In the paper, studies on the stability of polymer solutions are described, an analysis of viscosity loss with time in the presence of iron and oxygen for polymer solutions is carried out. The choice of chemical deoxygenation method for the control of dissolved oxygen is substantiated. The program of laboratory studies of the ASP project and the analytical instruments used are described. The technological scheme of the ASP process is presented, and recommendations for the implementation of the technology are given.

  15. A highly accurate method for determination of dissolved oxygen: Gravimetric Winkler method

    International Nuclear Information System (INIS)

    Helm, Irja; Jalukse, Lauri; Leito, Ivo

    2012-01-01

    Highlights: ► Probably the most accurate method available for dissolved oxygen concentration measurement was developed. ► Careful analysis of uncertainty sources was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. ► This development enables more accurate calibration of dissolved oxygen sensors for routine analysis than has been possible before. - Abstract: A high-accuracy Winkler titration method has been developed for determination of dissolved oxygen concentration. Careful analysis of uncertainty sources relevant to the Winkler method was carried out and the method was optimized for minimizing all uncertainty sources as far as practical. The most important improvements were: gravimetric measurement of all solutions, pre-titration to minimize the effect of iodine volatilization, accurate amperometric end point detection and careful accounting for dissolved oxygen in the reagents. As a result, the developed method is possibly the most accurate method of determination of dissolved oxygen available. Depending on measurement conditions and on the dissolved oxygen concentration the combined standard uncertainties of the method are in the range of 0.012–0.018 mg dm −3 corresponding to the k = 2 expanded uncertainty in the range of 0.023–0.035 mg dm −3 (0.27–0.38%, relative). This development enables more accurate calibration of electrochemical and optical dissolved oxygen sensors for routine analysis than has been possible before.

  16. Dissolved oxygen mapping: A powerful tool for site assessments and ground water monitoring

    International Nuclear Information System (INIS)

    Newman, W.A.; Kimball, G.

    1992-01-01

    Dissolved oxygen concentration profiles often provide an excellent indication of the natural biological activity of microorganisms in ground water. The analysis of dissolved oxygen in ground water also provides a rapid, inexpensive method for determining the areal extent of contaminant plumes containing aerobically degraded compounds such as petroleum hydrocarbons. Indigenous hydrocarbon degrading organisms are present at most petroleum product spills giving this technique an almost universal application for dissolved hydrocarbons in ground water. Data from several sites will be presented to demonstrate the relationship between oxygen and dissolved contaminant concentrations. The inverse relationship between oxygen concentrations and dissolved contaminants can be used in many ways. During the initial site assessment, rapid on-site testing of ground water can provide real time data to direct drilling by identification of potentially contaminated locations. Several analytical techniques are available that allow field analysis to be performed in less than five minutes. Dissolved oxygen testing also provides an inexpensive way to monitor hydrocarbon migration without expensive gas chromatography. Often a plume of oxygen depleted ground water extends farther downgradient than the dissolved hydrocarbon plume. The depletion of oxygen in a well can provide an early warning system that detects upgradient contamination before the well is impacted by detectable levels of contaminants. Another application is the measurement of the natural degradation potential for aerobic remediation. If an aerobic in-situ remediation is used, dissolved oxygen monitoring provides an inexpensive method to monitor the progress of the remediation

  17. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  18. Measurement and interpretation of low levels of dissolved oxygen in ground water

    Science.gov (United States)

    White, A.F.; Peterson, M.L.; Solbau, R.D.

    1990-01-01

    A Rhodazine-D colorimetric technique was adapted to measure low-level dissolved oxygen concentrations in ground water. Prepared samples containing between 0 and 8.0 ??moles L-1 dissolved oxygen in equilibrium with known gas mixtures produced linear spectrophotometric absorbance with a lower detection limit of 0.2 ??moles L-1. Excellent reproducibility was found for solutions ranging in composition from deionized water to sea water with chemical interferences detected only for easily reduced metal species such as ferric ion, cupric ion, and hexavalent chromium. Such effects were correctable based on parallel reaction stoichiometries relative to oxygen. The technique, coupled with a downhole wire line tool, permitted low-level monitoring of dissolved oxygen in wells at the selenium-contaminated Kesterson Reservoir in California. Results indicated a close association between low but measurable dissolved oxygen concentrations and mobility of oxidized forms of selenium. -from Authors

  19. Seasonal and interannual variability of dissolved oxygen around the Balearic Islands from hydrographic data

    Science.gov (United States)

    Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.

    2014-10-01

    Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.

  20. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  1. Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2015-08-01

    Full Text Available This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO. The system integrates a nanosensor that employs cerium oxide (ceria nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.

  2. Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen.

    Science.gov (United States)

    Shehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen

    2015-08-14

    This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.

  3. Modeling Fish Growth in Low Dissolved Oxygen

    Science.gov (United States)

    Neilan, Rachael Miller

    2013-01-01

    This article describes a computational project designed for undergraduate students as an introduction to mathematical modeling. Students use an ordinary differential equation to describe fish weight and assume the instantaneous growth rate depends on the concentration of dissolved oxygen. Published laboratory experiments suggest that continuous…

  4. Dissolved oxygen (DO) is essential for respiration in aquatic fauna ...

    African Journals Online (AJOL)

    spamer

    more, thermal and salinity stratification inhibits ex- change of ... 2000) and larval densities (Harris and. Cyrus 1999) ...... dissolved oxygen and effects of short-term oxygen stress ... in the shrimp Crangon crangon exposed to hypoxia, anoxia.

  5. The Evolution of Deepwater Dissolved Oxygen in the Northern South China Sea During the Past 400 ka

    Science.gov (United States)

    Wang, N.; Huang, B.; Dong, Y.

    2016-12-01

    Reconstruction of dissolved oxygen in paleo-ocean contributes toward understanding the history of ocean circulation, climate, causes of extinctions, and the evolution of marine organisms. Based on analysis of benthic foraminifera oxygen index (BFOI), the redox-sensitive trace elements (Mo/Al), the percentage of epifaunal benthic foraminifera and infaunal/epifaunal ratio at core MD12-3432, we reconstruct the evolution of deep water dissolved oxygen in northern South China Sea (SCS) during the past 400 ka and discuss the mechanisms of variable dissolved oxygen. Both BFOI and Mo/Al are redox indicators. Similar trends confirm that they reflect the variation of dissolved oxygen in seawater since 400 ka accurately. BFOI and Mo/Al indicate that dissolved oxygen was high in MIS 11-MIS 7 and decreased gradually during MIS 6- MIS 2. The percentage of epifauna decreased and infaunal/epifaunal ratio increased with decreasing dissolved oxygen. By comparison of dissolved oxygen and productivity indexes such as phytoplankton total (PT) and species abundances, we found that when PT fluctuated in the average range of 1000-1500 ng/g, the abundances of Bulimina and Uvigerina which represent high productivity increased. However, when PT reached the range of 2500-3000 ng/g, the abundances of Bulimina and Uvigerina didn't increase, but the abundances of dysoxic species Chilostomella oolina and Globobulimina pacifica increased and the dissolved oxygen reached low value. The reasons may be that the decomposition of excessive organic matter consumed more dissolved oxygen. The low dissolved oxygen suppressed the growth of Bulimina and Uvigerina and accelerated the boom of C. oolina and G. oolina. The dissolved oxygen is not only associated with productivity, but also affected by the thermohaline circulation. Benthic foraminifera F. favus is the representative species in Pacific deep water. Its appearance at 194 ka, 205 ka, 325, the 328 ka in MD12-3432 indicate that the upper border of

  6. Remote Sensing of Dissolved Oxygen and Nitrogen in Water Using Raman Spectroscopy

    Science.gov (United States)

    Ganoe, Rene; DeYoung, Russell J.

    2013-01-01

    The health of an estuarine ecosystem is largely driven by the abundance of dissolved oxygen and nitrogen available for maintenance of plant and animal life. An investigation was conducted to quantify the concentration of dissolved molecular oxygen and nitrogen in water by means of Raman spectroscopy. This technique is proposed for the remote sensing of dissolved oxygen in the Chesapeake Bay, which will be utilized by aircraft in order to survey large areas in real-time. A proof of principle system has been developed and the specifications are being honed to maximize efficiency for the final application. The theoretical criteria of the research, components of the experimental system, and key findings are presented in this report

  7. Characterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98

    Science.gov (United States)

    Feaster, Toby D.; Conrads, Paul

    2000-01-01

    In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate

  8. Kinetics of oxygen uncoupling of a copper based oxygen carrier

    International Nuclear Information System (INIS)

    Hu, Wenting; Donat, Felix; Scott, S.A.; Dennis, J.S.

    2016-01-01

    Highlights: • The kinetics of a Cu-based oxygen carrier was determined using a TGA. • A diffusion model was applied to remove mass transfer effects from rate parameters. • Thermodynamics are separated from kinetics, usually difficult for the CLOU reaction. • The rate parameters correctly described the behaviour in a fluidised bed. • The rate parameters can be used to predict performance of large CLOU systems. - Abstract: Here, an oxygen carrier consisting of 60 wt% CuO supported on a mixture of Al_2O_3 and CaO (23 wt% and 17 wt% respectively) was synthesised by wet-mixing powdered CuO, Al(OH)_3 and Ca(OH)_2, followed by calcination at 1000 °C. Its suitability for chemical looping with oxygen uncoupling (CLOU) was investigated. After 25 repeated redox cycles in either a thermogravimetric analyser (TGA) or a laboratory-scale fluidised bed, (with 5 vol% H_2 in N_2 as the fuel, and air as the oxidant) no significant change in either the oxygen uncoupling capacity or the overall oxygen availability of the carrier was found. In the TGA, it was found that the rate of oxygen release from the material was controlled by intrinsic chemical kinetics and external transfer of mass from the surface of the particles to the bulk gas. By modelling the various resistances, values of the rate constant for the decomposition were obtained. The activation energy of the reaction was found to be 59.7 kJ/mol (with a standard error of 5.6 kJ/mol) and the corresponding pre-exponential factor was 632 m"3/mol/s. The local rate of conversion within a particle was assumed to occur either (i) by homogeneous chemical reaction, or (ii) in uniform, non-porous grains, each reacting as a kinetically-controlled shrinking core. Upon cross validation against a batch fluidised bed experiment, the homogeneous reaction model was found to be more plausible. By accurately accounting for the various artefacts (e.g. mass transfer resistances) present in both TGA and fluidised bed experiments, it was

  9. First principles study of dissolved oxygen water adsorption on Fe (001 surfaces

    Directory of Open Access Journals (Sweden)

    Dong ZHANG

    2018-02-01

    Full Text Available In order to study the mechanism of dissolved oxygen content on the surface corrosion behavior of Fe-based heat transfer, the first principle is used to study the adsorption of O2 monomolecular, H2O monolayer and dissolved oxygen system on Fe-based heat transfer surface. The GGA/PBE approximation is used to calculate the adsorption energy, state density and population change during the adsorption process. Calculations prove that when the dissolved oxygen is adsorbed on the Fe-based surface, the water molecule tends to adsorb at the top sites, and the oxygen molecule tends to adsorb at Griffiths. When the H2O molecule adsorbs and interacts on the Fe (001 surface, the charge distribution of the interfacial double electric layer changes to cause the Fe atoms to lose electrons, resulting in the change of the surface potential. When the O2 molecule adsorbs on the Fe (001 crystal surfaces, the electrons on the Fe (001 surface are lost and the surface potential increases. O2 molecule and the surface of the Fe atoms are prone to electron transfer, in which O atom's 2p orbit for the adsorption of O2 molecule on Fe (001 crystal surface play a major role. With the increase of the proportion of O2 molecule in the dissolved oxygen water, the absolute value of the adsorption energy increases, and the interaction of the Fe-based heat transfer surface is stronger. This study explores the influence law of different dissolved oxygen on the Fe base heat exchange surface corrosion, and the base metal corrosion mechanism for experimental study provides a theoretical reference.

  10. The Dissolved Oxygen Prediction Method Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Zhong Xiao

    2017-01-01

    Full Text Available The dissolved oxygen (DO is oxygen dissolved in water, which is an important factor for the aquaculture. Using BP neural network method with the combination of purelin, logsig, and tansig activation functions is proposed for the prediction of aquaculture’s dissolved oxygen. The input layer, hidden layer, and output layer are introduced in detail including the weight adjustment process. The breeding data of three ponds in actual 10 consecutive days were used for experiments; these ponds were located in Beihai, Guangxi, a traditional aquaculture base in southern China. The data of the first 7 days are used for training, and the data of the latter 3 days are used for the test. Compared with the common prediction models, curve fitting (CF, autoregression (AR, grey model (GM, and support vector machines (SVM, the experimental results show that the prediction accuracy of the neural network is the highest, and all the predicted values are less than 5% of the error limit, which can meet the needs of practical applications, followed by AR, GM, SVM, and CF. The prediction model can help to improve the water quality monitoring level of aquaculture which will prevent the deterioration of water quality and the outbreak of disease.

  11. The effect of dissolved oxygen on water radiolysis behaviour

    International Nuclear Information System (INIS)

    Yakabuskie, P.A.; Joseph, J.M.; Wren, J.C.; Stuart, C.R.

    2012-09-01

    A quantitative understanding of the chemical or redox environments generated in water by ionizing radiation is important for material selection, development of maintenance programs, and safety assessments for water-cooled nuclear power reactors. The highly reactive radicals (·OH, ·H, ·e aq - , ·HO 2 , and ·O 2 - ) and molecular species (H 2 and H 2 O 2 ) generated by water radiolysis can compete in reactions with other dissolved compounds and impose changes to the system chemistry by altering the steady-state concentrations of water radiolysis products, which could impact the degradation of materials in contact with the aqueous phase. Understanding in detail how a given chemical additive changes the long-term radiolysis kinetics can help us to determine what chemistry control steps may be required to return the system to an optimal redox condition, and in turn, enhance the lifetime of reactor components. This study outlines the effect of dissolved oxygen gas, which could be introduced due to air ingress, on long-term water radiolysis behaviour. The effects of solution pH and initial dissolved O 2 concentration on the radiolytic production of molecular H 2 and H 2 O 2 have been investigated by performing experiments with three different O 2 concentrations at pH 6.0 and 10.6 under steady-state radiolysis conditions. The aqueous and gas phase analyses were performed using UV-Vis spectrophotometry and gas-chromatography equipped with electron capture and thermal conductivity detectors. The experimental results were compared with kinetic model calculations of steady-state radiolysis and were found to be in good agreement. The concentrations of water radiolysis products, H 2 O 2 and H 2 , were found to increase in the presence of dissolved oxygen, but the degree of increase was shown to depend on the solution pH. Furthermore, the steady-state concentration of H 2 did not increase as greatly as that of H 2 O 2 at either pH studied. The kinetic analyses have shown

  12. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    Science.gov (United States)

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  13. Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment

    Science.gov (United States)

    Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.

    2008-02-01

    This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.

  14. Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers

    Directory of Open Access Journals (Sweden)

    Kongzhai Li

    2013-01-01

    Full Text Available Conversion of methane to syngas using a chemical-looping concept is a novel method for syngas generation. This process is based on the transfer of gaseous oxygen source to fuel (e.g., methane by means of a cycling process using solid oxides as oxygen carriers to avoid direct contact between fuel and gaseous oxygen. Syngas is produced through the gas-solid reaction between methane and solid oxides (oxygen carriers, and then the reduced oxygen carriers can be regenerated by a gaseous oxidant, such as air or water. The oxygen carrier is recycled between the two steps, and the syngas with a ratio of H2/CO = 2.0 can be obtained successively. Air is used instead of pure oxygen allowing considerable cost savings, and the separation of fuel from the gaseous oxidant avoids the risk of explosion and the dilution of product gas with nitrogen. The design and elaboration of suitable oxygen carriers is a key issue to optimize this method. As one of the most interesting oxygen storage materials, ceria-based and perovskite oxides were paid much attention for this process. This paper briefly introduced the recent research progresses on the oxygen carriers used in the chemical-looping selective oxidation of methane (CLSOM to syngas.

  15. Mathematical model for dissolved oxygen prediction in Cirata ...

    African Journals Online (AJOL)

    This paper presents the implementation and performance of mathematical model to predict theconcentration of dissolved oxygen in Cirata Reservoir, West Java by using Artificial Neural Network (ANN). The simulation program was created using Visual Studio 2012 C# software with ANN model implemented in it. Prediction ...

  16. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  17. Dissolved Oxygen Availability on Traditional Pond Using Silvofishery Pattern in Mahakam Delta

    Directory of Open Access Journals (Sweden)

    Ismail Fahmy Almadi

    2013-06-01

    Full Text Available The development of aquaculture system should meet the community’s basic need economically by taking into account the carrying capacity and environmental sustainability. The development of the environmentally friendly system such as silvofishery is being promoted by government however its yield has not reached the target yet. Dissolved oxygen availability is an important indicator which determines the success of the aquaculture system. The objective of the research was to determine dissolved oxygen availability on traditional pond systems using silvofishery pattern. Time series data collection was conducted once in 14 days with 2 measuring times; in the morning (06.00 am and in the evening (06.00 pm for 112 days. The research was conducted at four different silvofishery pond patterns, Pond Pattern 1 (0% mangrove canopy covered, Pond Pattern 2 (35% mangrove canopy covered, Pond Pattern 3 (67% mangrove canopy covered, and Pond Pattern 4 (75% mangrove canopy covered. Measurement was observed openly in the pond (in situ with parameters: dissolved oxygen, temperature, Water pH, Salinity, Transparency, Wind Speed, and Depth of Water Table, while chlorofil-a was ex-situ measured. The result from each parameter was compared to optimum concentration rate for shrimp growth. From the experiment, Pond Pattern 1 showed the most satisfaction results. Its dissolved oxygen availability during the research was ≥ 4 mg/L which was 5.88 mg/L ±0.48 mg/L in the evening (06.00 pm and 4.33 mg/L ±1.24 mg/L in the morning (06.00 am. It was also supported by optimum condition of other parameters such as temperature, Water pH, Salinity, Wind Speed, and Depth of Water Table. However, it was not supported by fertility and transparency of water. Thus, the traditional pattern of conservation still needs additional technology to maintain adequate dissolved oxygen availability for optimum shrimp growth.

  18. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.

    Science.gov (United States)

    Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P

    2010-06-11

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level

    International Nuclear Information System (INIS)

    Sahoo, P.; Ananthanarayanan, R.; Malathi, N.; Rajiniganth, M.P.; Murali, N.; Swaminathan, P.

    2010-01-01

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 μg L -1 levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L -1 levels, with modification in methodology for accurate detection of end point even at 10.0 μg L -1 levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 μg L -1 O 2 . Finally, several water samples containing dissolved oxygen from mg L -1 to μg L -1 levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 μg L -1 O 2 level is 0.14 (n = 5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 μg L -1 levels.

  20. Low-head hydropower impacts on steam dissolved oxygen

    International Nuclear Information System (INIS)

    Thene, J.R.; Stefan, H.G.; Daniil, E.I.

    1989-01-01

    A method to evaluate the effect of hydropower development on downstream dissolved oxygen (DO) is presented for a low head dam. Water, previously aerated during release over spillways and under gates, is diverted through the hydropower facility without further aeration. The oxygen transfer that occurs as a result of air entrainment at the various release points of a dam is measured. Oxygen transfer efficiencies are calculated and incorporated into an oxygen transfer model to predict average release DO concentrations. This model is used to systematically determine the effect of hydropower operation on downstream DO. Operational alternatives are investigated and a simple operational guide is developed to mitigate the effects of hydropower operation. Combinations of reduced generation and optimal releases from the dam allow the hydropower facility to operate within DO standards

  1. The effect of the oxygen dissolved in the adsorption of gold in activated carbon

    International Nuclear Information System (INIS)

    Navarro, P.; Wilkomirsky, I.

    1999-01-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs

  2. Bottom Dissolved Oxygen Maps From SEAMAP Summer Groundfish/Shrimp Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottom dissolved oxygen (DO) data was extracted from environmental profiles acquired during the Southeast Fisheries Science Center Mississippi Laboratories summer...

  3. Hydrogen ion (Ph), ammonia, dissolved oxygen and nitrite ...

    African Journals Online (AJOL)

    Hydrogen ion (pH), dissolved oxygen, ammonia and nitrite concentrations were studied monthly in two systems (re-circulatory and semi-intensive of 3 m2 sizes) each for six months. The systems were each stocked with 200 g of Clarias gariepinus fingerlings. Results showed that all parameters were within acceptable limits ...

  4. Mathematical modeling of dissolved oxygen in fish ponds

    African Journals Online (AJOL)

    TUOYO

    A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide .... chlorophyll, the energy obtained splits water, and oxygen ... is a function of temperature T, light L, substrate, and pH as shown in ..... plants and its relation to the concentration of carbon dioxide and.

  5. Control systems for the dissolved oxygen concentration in condensate- and feed-water systems in nuclear power plants

    International Nuclear Information System (INIS)

    Mikajiri, Motohiko; Hosaka, Seiichi.

    1981-01-01

    Purpose: To surely prevent the generation of corrosion products and contaminations in the systems thereby decreasing the exposure dose to operators in BWR type nuclear power plants. Constitution: Dissolved oxygen concentration in condensates is measured by a dissolved oxygen concentration meter disposed to the pipeway down stream of the condensator and the measured value is sent to an injection amount control mechanism for heater drain water. The control mechanism controls the injection amount from the injection mechanism that injection heater drain water from a feed-water heater to the liquid phase in the hot wall of the condensator. Thus, heater drawin water at high dissolved oxygen is injected to the condensates in the condensator which is de-airated and reduced with dissolved oxygen concentration, to maintain the dissolved oxygen concentration at a predetermined level, whereby stable oxide films are formed to the inner surface of the pipeways to prevent the generation of corrosion products such as rusts. (Furukawa, Y.)

  6. The dynamics of dissolved oxygen concentration for water quality monitoring and assessment in polder ditches

    NARCIS (Netherlands)

    Veeningen, R.

    1983-01-01

    This study deals with the use of the dynamics of dissolved oxygen concentration for water quality assessment in polder ditches. The dynamics of the dissolved oxygen concentration, i.e. the temporal and spatial variations in a few polder ditches under a range of natural, pollution and management

  7. Influence of the dissolved oxygen concentration on the penicillin biosynthetic pathway in steady-state cultures of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Henriksen, Claus Maxel; Nielsen, Jens Bredal; Villadsen, John

    1997-01-01

    The influence the of dissolved oxygen concentration on penicillin biosynthesis was studied in steady-state continuous cultures of a high-yielding strain of Penicillium chrysogenum operated at a dilution rate of 0.05 h-l. The dissolved oxygen concentration was varied between 0.019 and 0.344 m...... penicillin productivity decreases, and a value of 17 (mu mol/g of DW)/h was obtained when the dissolved oxygen concentration was 0.042 mM. A further lowering of the dissolved oxygen concentration to 0.019 mM resulted in the loss of penicillin production. However, penicillin productivity was instantly...

  8. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    Science.gov (United States)

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  9. Functional State Modelling of Cultivation Processes: Dissolved Oxygen Limitation State

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2015-04-01

    Full Text Available A new functional state, namely dissolved oxygen limitation state for both bacteria Escherichia coli and yeast Saccharomyces cerevisiae fed-batch cultivation processes is presented in this study. Functional state modelling approach is applied to cultivation processes in order to overcome the main disadvantages of using global process model, namely complex model structure and a big number of model parameters. Alongwith the newly introduced dissolved oxygen limitation state, second acetate production state and first acetate production state are recognized during the fed-batch cultivation of E. coli, while mixed oxidative state and first ethanol production state are recognized during the fed-batch cultivation of S. cerevisiae. For all mentioned above functional states both structural and parameter identification is here performed based on experimental data of E. coli and S. cerevisiae fed-batch cultivations.

  10. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  11. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-09-01

    Full Text Available Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC and chemical-looping gasification (CLG have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coal may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA has been widely used for the development of oxygen carriers (e.g., oxide reactivity. Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC and Chemical-Looping with Oxygen Uncoupling (CLOU. The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.

  12. Use of Hopcalite derived Cu-Mn mixed oxide as Oxygen Carrier for Chemical Looping with Oxygen Uncoupling Process

    OpenAIRE

    Adánez-Rubio, Iñaki; Abad Secades, Alberto; Gayán Sanz, Pilar; Adánez-Rubio, Imanol; Diego Poza, Luis F. de; Garcia-Labiano, Francisco; Adánez Elorza, Juan

    2016-01-01

    Chemical-Looping with Oxygen Uncoupling (CLOU) is an alternative Chemical Looping process for the combustion of solid fuels with inherent CO2 capture. The CLOU process needs a material as oxygen carrier with the ability to give gaseous O2 at suitable temperatures for solid fuel combustion, e.g. copper oxide and manganese oxide. In this work, treated commercial Carulite 300® was evaluated as oxygen carrier for CLOU. Carulite 300® is a hopcalite material composed of 29.2 wt.% CuO and 67.4 wt.% ...

  13. [Proteomic analysis of curdlan-producing Agrobacterium sp. ATCC 31749 in response to dissolved oxygen].

    Science.gov (United States)

    Dai, Xiaomeng; Yang, Libo; Zheng, Zhiyong; Chen, Haiqin; Zhan, Xiaobei

    2015-08-04

    Curdlan is produced by Agrobacterium sp. ATCC 31749 under nitrogen limiting condition. The biosynthesis of crudlan is a typical aerobic bioprocess, and the production of curdlan would be severely restricted under micro-aerobic and anoxic conditions. Proteomic analysis of Agrobacterium sp. was conducted to investigate the effect of dissolved oxygen on the crucial enzymes involved in curdlan biosynthesis. Two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Agrobacterium sp. ATCC 31749 cultured under various dissolved oxygen levels (75%, 50%, 25% and 5%). In addition, a comparative proteomic analysis of the intracellular proteins expression level under various dissolved oxygen levels was done. Significant differently expressed proteins were identified by MALDI-TOF/TOF. Finally, we identified 15 differently expressed proteins involved in polysaccharide synthesis, fatty acid synthesis, amino acid synthesis pathway. Among these proteins, phosphoglucomutase and orotidine 5-phosphate decarboxylase were the key metabolic enzymes directing curdlan biosynthesis. Oxygen could affect the expression of the proteins taking charge of curdlan synthesis significantly.

  14. Effect of dissolved oxygen on biological denitrification using biodegradable plastic as the carbon source

    Science.gov (United States)

    Zhang, Xucai; Zhang, Jianmei

    2018-02-01

    Biological denitrification is currently a common approach to remove nitrate from wastewater. This study was conducted to evaluate the influence of dissolved oxygen on denitrification in wastewater treatment using biodegradable plastic as carbon source by designing the aerated, anoxic, and low-oxygen experimental treatment groups. The results showed that the removal rates of nitrate in anoxic and low-oxygen groups were 30.6 g NO3 --Nm-3 d-1 and 30.8 g NO3 --N m-3 d-1 at 83 h, respectively, both of which were higher than that of the aerated group. There was no significant difference between the anoxic and low-oxygen treatment groups for the nitrate removal. Additional, the nitrite accumulated during the experiments, and the nitrite concentrations in anoxic and aerated groups were lower than those in low-oxygen group. No nitrite was detected in all groups at the end of the experiments. These findings indicated that dissolved oxygen has important influence on denitrification, and anoxic and low-oxygen conditions can support completely denitrification when using BP as carbon source in nitrate-polluted wastewater treatment.

  15. DISSOLVED OXYGEN MODELLING USING ARTIFICIAL NEURAL NETWORK: A CASE OF RIVER NZOIA, LAKE VICTORIA BASIN, KENYA

    Directory of Open Access Journals (Sweden)

    Edwin Kimutai Kanda

    2016-11-01

    Full Text Available River Nzoia in Kenya, due to its role in transporting industrial and municipal wastes in addition to agricultural runoff to Lake Victoria, is vulnerable to pollution. Dissolved oxygen is one of the most important indicators of water pollution. Artificial neural network (ANN has gained popularity in water quality forecasting. This study aimed at assessing the ability of ANN to predict dissolved oxygen using four input variables of temperature, turbidity, pH and electrical conductivity. Multilayer perceptron network architecture was used in this study. The data consisted of 113 monthly values for the input variables and output variable from 2009–2013 which were split into training and testing datasets. The results obtained during training and testing were satisfactory with R2 varying from 0.79 to 0.94 and RMSE values ranging from 0.34 to 0.64 mg/l which imply that ANN can be used as a monitoring tool in the prediction of dissolved oxygen for River Nzoia considering the non-correlational relationship of the input and output variables. The dissolved oxygen values follow seasonal trend with low values during dry periods.

  16. Relation between flows and dissolved oxygen in the Roanoke River between Roanoke Rapids Dam and Jamesville, North Carolina, 2005-2009

    Science.gov (United States)

    Wehmeyer, Loren L.; Wagner, Chad R.

    2011-01-01

    The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years

  17. Development of an oxygen carrier nanoemulsion for organ preservation

    CSIR Research Space (South Africa)

    Barnard, A

    2010-08-31

    Full Text Available high levels of chemical stability and biological inertness which makes them suitable for biological use1,2. Perfluorooctyl bromide (PFOB) is the particular PFC used in the CSIR oxygen carrier emulsion1,2....

  18. Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Mahasri, G.; Saskia, A.; Apandi, P. S.; Dewi, N. N.; Rozi; Usuman, N. M.

    2018-04-01

    The purpose of this research was to discover the process of enrichment of dissolved oxygen in fish cultivation media using nanobubble technology. This study was conducted with two treatments, namely a cultivation media without fish and a cultivation media containing 8 fish with an average body length of 24.5 cm. The results showed that the concentration of dissolved oxygen increased from 6.5 mg/L to 25 mg/L. The rate of increase in dissolved oxygen concentration for 30 minutes is 0.61 pp/minute. The rate of decrease in dissolved oxygen concentration in treatment 1 is 3.08 ppm/day and in treatment 2 is 0.23 ppm/minute. It was concluded that nanobubble is able to increase dissolved oxygen.

  19. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    Science.gov (United States)

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  20. Biogeochemical modelling of dissolved oxygen in a changing ocean

    Science.gov (United States)

    Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha

    2017-08-01

    Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  1. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  2. Maps showing predicted probabilities for selected dissolved oxygen and dissolved manganese threshold events in depth zones used by the domestic and public drinking water supply wells, Central Valley, California

    Science.gov (United States)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2018-01-31

    The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, supply water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.

  3. Evaluation of dissolved oxygen and organic substances concentrations in water of the nature reserve Alluvium Zitavy

    International Nuclear Information System (INIS)

    Palaticka, A.; Noskovic, J.; Babosova, M.

    2007-01-01

    In 2006 concentrations of dissolved oxygen and organic substances were evaluated in water in the Nature Reserve Alluvium Zitavy (indirect method based on their oxidation by K 2 Cr 2 0 7 was used). The results are represented in mg of O 2 · dm -3 . Taking of samples took place in 6 sampling sites in regular month intervals. Based on obtained data and according to the standard STN 75 7221 (Water quality -The classification of the water surface quality) water in individual sampling sites was ranked into the classes of the .water surface quality. From the data it is clear that the concentrations of dissolved oxygen and organic substances in the Nature Reserve Alluvium Zitavy changed in dependence on sampling sites and time. The highest mean concentrations of dissolved oxygen in dependence on sampling time were found out in spring months and the lowest concentrations in summer months. They ranged from 1.6 mg 0 2 · dm -3 (July) to 9.0 mg O 2 · dm -3 (March). Falling dissolved oxygen values can be related to successive increase of water temperature, thus good conditions were created for decomposition of organic matter by microorganisms in water and sediments in which they use dissolved oxygen. In dependence on sampling place the highest mean concentration of dissolved oxygen was in sampling site No. 4 (6.0 mg 0 2 · dm -3 ) which is situated in the narrowest place in the NR. The lowest value was in sampling site No. 2 (3.6 mg 0 2 · dm -3 ) which is a typical wetland ecosystem. High mean values of COD Cr in dependence on sampling time were determined in summer months and low values during winter moths. Dependence of COD Cr values on sampling site was also manifested. The lowest mean value was obtained in sampling site No. 4 (59.5 mg · dm -3 ) and the highest value in sampling site No. 5 (97.1 mg · dm -3 ) which is also a typical wetland. Based on the results and according to the STN 75 7221 we ranked water in all sampling sites into the 5 th class of the water

  4. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  5. Artificial oxygen carriers as a possible alternative to red cells in clinical practice

    Directory of Open Access Journals (Sweden)

    Fabiano Timbó Barbosa

    Full Text Available Fluid resuscitation is intended to eliminate microcirculatory disorders and restore adequate tissue oxygenation. The safety limits for a restrictive transfusion policy are given by patients' individual tolerance of acute normovolemic anemia. Artificial oxygen carriers based on perfluorocarbon or hemoglobin are attractive alternatives to allogenic red blood cells. There are many risks involved in allogenic blood transfusions and they include transmission of infections, delayed postoperative wound healing, transfusion reactions, immunomodulation and cancer recurrence. Regardless of whether artificial oxygen carriers are available for routine clinical use, further studies are needed in order to show the safety and efficacy of these substances for clinical practice.

  6. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures

    International Nuclear Information System (INIS)

    Chiba, H.; Sakai, H.

    1985-01-01

    Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300 deg C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H 2 SO 4 0 and H 2 O at low pH, and between HSO 4 - and H 2 O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 10 9 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates. (author)

  7. The biogeochemistry of nutrients, dissolved oxygen and chlorophyll a in the Catalan Sea (NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mariona Segura-Noguera

    2016-09-01

    Full Text Available Reference depth profiles of dissolved inorganic nutrients, dissolved oxygen and chlorophyll a are described for the Catalan Sea using quality controlled data. Phosphate, nitrate and silicate show typical nutrient profiles, with nutriclines at different depths. Maximums of nitrite, dissolved oxygen and occasionally ammonium are found within the photic zone, close to the deep chlorophyll maximum. In intermediate waters we found a minimum of dissolved oxygen coincident with maximum concentrations of phosphate and nitrate. Ammonium concentration is unexpectedly high in the mesopelagic zone, where there are still measurable nitrite concentrations. The origin of such high ammonium and nitrite concentrations remains unclear. We also identify and describe anomalous data and profiles resulting from eutrophication, western Mediterranean Deep Water formation and dense shelf water cascading. The N:P ratio in deep waters is 22.4, which indicates P limitation relative to the Redfield ratio. However, the N:P ratio above the deep chlorophyll maximum in stratified surface waters is < 4 (< 8 including ammonium. The depth profiles of key biogeochemical variables described in this study will be a useful reference for future studies in the Catalan Sea (NW Mediterranean Sea in order to validate data sampled in this area, to identify anomalous processes, and to study the evolution of the ecosystem following the undergoing global change.

  8. Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart †.

    Science.gov (United States)

    Wrobeln, Anna; Schlüter, Klaus D; Linders, Jürgen; Zähres, Manfred; Mayer, Christian; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    The aim of this study was to prove whether albumin-derived perfluorocarbon-based nanoparticles (capsules) can operate as a novel artificial oxygen carrier in a rat Langendorff-heart perfusion model. Hearts perfused with capsules showed increased left ventricular pressure and rate pressure product compared to hearts perfused with pure Krebs-Henseleit (KH)-buffer. The capsules prevented the myocardium from functional fail when in their absence a noxious ischemia was observed. Capsules did not change rheological properties of KH-buffer and could repeatedly reload with oxygen. This albumin-derived perfluorocarbon-based artificial oxygen carrier preserved the function of rat hearts due to the transport of oxygen in a satisfactory manner. Because of these positive results, the functionality of the applied capsules should be verified in living animals.

  9. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    Science.gov (United States)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  10. Effect of dissolved oxygen on IGSCC of Alloy 600

    International Nuclear Information System (INIS)

    Maeng, W.Y.; Choi, M.S.; Kim, U.C.

    2002-01-01

    The effect of dissolved oxygen on the SCC of Alloy 600 was studied by the slow strain rate test(SSRT) method. The SSRT tests were carried out in aerated and in deaerated pure water at 360 C at the strain rate of 2.5 x 10 -7 /s. Hump specimens were used to shorten test time. The SCC susceptibility was higher in the deaerated water environment than in aerated water environments. The shape of load-deformation curves of the tests in those two environments indicates that oxygen content in water significantly influences the SCC susceptibility of Alloy 600. It was considered that the increase of SCC resistance in aerated water is due to the high corrosion potential of the metal surface, and the according decrease of corrosion current due to the formation of a protective oxide layer. (authors)

  11. Episodes of low dissolved oxygen indicated by ostracodes and sediment geochemistry at Crystal Lake, Illinois, USA

    Science.gov (United States)

    Curry, B. Brandon; Filippelli, G.M.

    2010-01-01

    Low dissolved oxygen during the summer and early fall controls profundal continental ostracode distribution in Crystal Lake (McHenry County), Illinois, favoring Cypria ophthalmica and Physocypria globula at water depths from 6 to 13 m. These species also thrived in the lake's profundal zone from 14,165 to 9600 calendar year before present (cal yr b.p.) during the late Boiling, Allerod, and Younger Dryas chronozones, and early Holocene. Characterized by sand, cemented tubules, large aquatic gastropod shells, and littoral ostracode valves, thin (1-6 cm) tempestite deposits punctuate thicker deposits of organic gyttja from 16,080 to 11,900 cal yr b.p. The succeeding 2300 yr (11,900-9600 cal yr b.p.) lack tempestites, and reconstructed water depths were at their maximum. Deposition of marl under relatively well-oxygenated conditions occurred during the remainder of the Holocene until the arrival of Europeans, when the lake returned to a pattern of seasonally low dissolved oxygen. Such conditions are also indicated in the lake sediment by the speciation of phosphorus, high concentrations of organic carbon, and abundant iron and manganese occluded to mineral grains. Initial low dissolved oxygen was probably caused by the delivery of dissolved P and Fe in shallow groundwater, the chemistry of which was influenced by Spodosol pedogenesis under a spruce forest. The triggering may have been regionally warm and wet conditions associated with retreat of the Lake Michigan lobe (south-central Laurentide Ice Sheet). ?? 2010, by the American Society of Limnology and Oceanography Inc.

  12. Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10 kW pilot

    International Nuclear Information System (INIS)

    Schmitz, Matthias; Linderholm, Carl Johan

    2016-01-01

    Highlights: • A manganese-based perovskite material was used as oxygen carrier in chemical looping combustion. • The oxygen carrier’s performance was superior to materials previously tested in this reactor throughout the testing period. • Under stable conditions, oxygen demand was as low as 2.1% with a carbon capture efficiency of up to 98%. • No signs of agglomeration were detected. • Gaseous oxygen was released at all relevant fuel reactor temperatures. - Abstract: Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are carbon capture technologies which achieve gas separation by means of cycling oxidation and reduction of a solid oxygen carrier. In this study, the performance and CLOU properties of an oxygen carrier with perovskite structure, CaMn_0_._9Mg_0_._1O_3_−_δ_, were investigated in a 10 kW pilot. The fuel consisted of biochar with very low sulphur content. Around 37 h of operation with fuel were carried out in the 10 kW chemical looping combustor. Previous operational experience in this unit has been achieved using different natural minerals as oxygen carrier – mainly ilmenite and manganese ore. Parametric studies performed in this work included variation of fuel flow, solids circulation rate, temperature and fluidization gas in the fuel reactor. The oxygen carrier was exposed to a total 73 h of hot fluidization (T > 600 °C). No hard particle agglomerations were formed during the experiments. An oxygen demand as low as 2.1% could be reached under stable operating conditions, with a carbon capture efficiency of up to 98%. CLOU properties were observed at all fuel reactor temperatures, ensuring stable operation even without steam as gasification agent present in the fuel reactor. The results suggest that CaMn_0_._9Mg_0_._1O_3_−_δ is suitable for the use as oxygen carrier in chemical looping combustion of solid biochar and offers higher gas conversion than previously tested materials without CLOU

  13. Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor

    International Nuclear Information System (INIS)

    Jacobs, M.; Van Noyen, J.; Larring, Y.; Mccann, M.; Pishahang, M.; Amini, S.; Ortiz, M.; Galluci, F.; Sint-Annaland, M.V.; Tournigant, D.; Louradour, E.; Snijkers, F.

    2015-01-01

    Highlights: • Ilmenite-based oxygen carriers were developed for packed-bed chemical looping. • Addition of Mn_2O_3 increased mechanical strength and microstructure of the carriers. • Oxygen carriers were able to withstand creep and thermal cycling up to 1200 °C. • Ilmenite-based granules are a promising shape for packed-bed reactor conditions. - Abstract: Chemical looping combustion (CLC) is a promising carbon capture technology where cyclic reduction and oxidation of a metallic oxide, which acts as a solid oxygen carrier, takes place. With this system, direct contact between air and fuel can be avoided, and so, a concentrated CO_2 stream is generated after condensation of the water in the exit gas stream. An interesting reactor system for CLC is a packed bed reactor as it can have a higher efficiency compared to a fluidized bed concept, but it requires other types of oxygen carrier particles. The particles must be larger to avoid a large pressure drop in the reactor and they must be mechanically strong to withstand the severe reactor conditions. Therefore, oxygen carriers in the shape of granules and based on the mineral ilmenite were subjected to thermal cycling and creep tests. The mechanical strength of the granules before and after testing was investigated by crush tests. In addition, the microstructure of these oxygen particles was studied to understand the relationship between the physical properties and the mechanical performance. It was found that the granules are a promising shape for a packed bed reactor as no severe degradation in strength was noticed upon thermal cycling and creep testing. Especially, the addition of Mn_2O_3 to the ilmenite, which leads to the formation of an iron–manganese oxide, seems to results in stronger granules than the other ilmenite-based granules.

  14. Digitized Onondaga Lake Dissolved Oxygen Concentrations and Model Simulated Values using Bayesian Monte Carlo Methods

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset is lake dissolved oxygen concentrations obtained form plots published by Gelda et al. (1996) and lake reaeration model simulated values using Bayesian...

  15. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    Efforts are underway to identify actions that would improve water quality in the Link River to Keno Dam reach of the Upper Klamath River in south-central Oregon. To provide further insight into water-quality improvement options, three scenarios were developed, run, and analyzed using previously calibrated CE-QUAL-W2 hydrodynamic and water-quality models. Additional scenarios are under development as part of this ongoing study. Most of these scenarios evaluate changes relative to a "current conditions" model, but in some cases a "natural conditions" model was used that simulated the reach without the effect of point and nonpoint sources and set Upper Klamath Lake at its Total Maximum Daily Load (TMDL) targets. These scenarios were simulated using a model developed by the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc. for the years 2006–09, referred to here as the "USGS model." Another model of the reach was developed by Tetra Tech, Inc. for years 2000 and 2002 to support the Klamath River TMDL process; that model is referred to here as the "TMDL model." The three scenarios described in this report included (1) an analysis of whether this reach of the Upper Klamath River would be in compliance with dissolved oxygen standards if sources met TMDL allocations, (2) an application of more recent datasets to the TMDL model with comparison to results from the USGS model, and (3) an examination of the effect on dissolved oxygen in the Klamath River if particulate material were stopped from entering Klamath Project diversion canals. Updates and modifications to the USGS model are in progress, so in the future these scenarios will be reanalyzed with the updated model and the interim results presented here will be superseded. Significant findings from this phase of the investigation include: * The TMDL analysis used depth-averaged dissolved oxygen concentrations from model output for comparison with dissolved oxygen standards. The Oregon dissolved oxygen

  16. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    Science.gov (United States)

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  17. A Bovine Hemoglobin-Based Oxygen Carrier as Pump Prime for Cardiopulmonary Bypass: Reduced Systemic Lactic Acidosis and Improved Cerebral Oxygen Metabolism During Low-flow in a Porcine Model

    Science.gov (United States)

    2010-11-10

    1 A bovine hemoglobin-based oxygen carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral...2010 2. REPORT TYPE Final Report 3. DATES COVERED (From - To) June 2007 - November 2010 4. TITLE AND SUBTITLE A bovine hemoglobin-based oxygen...carrier as pump prime for cardiopulmonary bypass: reduced systemic lactic acidosis and improved cerebral oxygen metabolism during low-flow in a

  18. Fabrication and processing of next-generation oxygen carrier materials for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nadarajah, Arunan [Univ. of Toledo, OH (United States)

    2017-04-26

    Among numerous methods of controlling the global warming effect, Chemical Looping Combustion is known to be the most viable option currently. A key factor to a successful chemical looping process is the presence of highly effective oxygen carriers that enable fuel combustion by going through oxidation and reduction in the presence of air and fuel respectively. In this study, CaMnO3-δ was used as the base material and doped on the A-site (Sr or La) and B-site (Fe, Ti, Zn and Al) by 10 mol % of dopants. Solid state reaction followed by mechanical extrusion (optimized paste formula) was used as the preparation method A series of novel doped perovskite-type oxygen carrier particles (CaxLa (Or Sa)1-x Mn1-yByO3-δ (B-site = Fe, Ti, Al, or Zr)) were synthesized by the proposed extrusion formula. The produced samples were characterized with XRD, SEM, BET and TGA techniques. According to the results obtained from TGA analysis, the oxygen capacity of the samples ranged between 1.2 for CLMZ and 1.75 for CSMF. Reactivity and oxygen uncoupling behaviors of the prepared samples were also evaluated using a fluidized bed chemical looping reactor using methane as the fuel at four different temperatures (800, 850, 900, 950 °C). All of the oxygen carriers showed oxygen uncoupling behavior and they were able to capture and release oxygen. Mass-based conversion of the perovskites was calculated and temperature increase proved to increase the mass-based conversion rate in all of the samples under study. Gas yield was calculated at 950 °C as well, and results showed that CLMZ, CM and CSMF showed 100% gas yields and CLMF and CSMZ showed approximately 85% yield in fluidized bed reactor, which is a high and acceptable quantity. Based on extended reactor tests the modified calcium manganese perovskite structures (CSMF) can be a good candidate for future pilot tests.

  19. Distribution of dissolved manganese in the Peruvian Upwelling and Oxygen Minimum Zone

    Science.gov (United States)

    Vedamati, Jagruti; Chan, Catherine; Moffett, James W.

    2015-05-01

    The geochemistry of manganese (Mn) in seawater is dominated by its redox chemistry, as Mn(II) is soluble and Mn(IV) forms insoluble oxides, and redox transformations are mediated by a variety of processes in the oceans. Dissolved Mn (DMn) accumulates under reducing conditions and is depleted under oxidizing conditions. Thus the Peruvian upwelling region, characterized by highly reducing conditions over a broad continental shelf and a major oxygen minimum zone extending far offshore, is potentially a large source of Mn to the eastern Tropical South Pacific. In this study, DMn was determined on cruises in October 2005 and February 2010 in the Peruvian Upwelling and Oxygen Minimum Zone, to evaluate the relationship between Mn, oxygen and nitrogen cycle processes. DMn concentrations were determined using simple dilution and matrix-matched external standardization inductively coupled mass spectrometry. Surprisingly, DMn was depleted under the most reducing conditions along the Peruvian shelf. Concentrations of dissolved Mn in surface waters increased offshore, indicating that advection of Mn offshore from the Peruvian shelf is a minor source. Subsurface Mn maxima were observed within the oxycline rather than within the oxygen minimum zone (OMZ), indicating they arise from remineralization of organic matter rather than reduction of Mn oxides. The distribution of DMn appears to be dominated by non-redox processes and inputs from the atmosphere and from other regions associated with specific water masses. Lower than expected DMn concentrations on the shelf probably reflect limited fluvial inputs from the continent and efficient offshore transport. This behavior is in stark contrast to Fe, reported in a companion study which is very high on the shelf and undergoes dynamic redox cycling.

  20. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    Science.gov (United States)

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for SEAMAP Cruises of 2001 - 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana-Florida continental shelf...

  2. Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers.

    Science.gov (United States)

    Tian, Yanqing; Shumway, Bradley R; Youngbull, A Cody; Li, Yongzhong; Jen, Alex K-Y; Johnson, Roger H; Meldrum, Deirdre R

    2010-06-03

    Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pK(a) values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values.

  3. Effect of spatiotemporal variation of rainfall on dissolved oxygen depletion in integrated catchment studies

    NARCIS (Netherlands)

    Moreno Rodenas, A.M.; Cecinati, F.; ten Veldhuis, J.A.E.; Langeveld, J.G.; Clemens, F.H.L.R.

    2016-01-01

    This study addresses the effect of spatial and temporal resolution of rainfall fields on the performance of a simplified integrated catchment model for predicting dissolved oxygen concentrations in a river. For that purpose we propose a procedure to generate rainfall products with increasing spatial

  4. Evaluation of different oxygen carriers for biomass tar reforming

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Johansen, Joakim Myung; Utrilla, Rubén

    2011-01-01

    , in a concentration of 600–2000ppmv, was chosen as a tar model compound. Experiments were performed in a TGA apparatus and a fixed bed reactor. Four oxygen carriers (60% NiO/MgAl2O4 (Ni60), 40% NiO/NiAl2O4 (Ni40), 40% Mn3O4/Mg–ZrO2 (Mn40) and FeTiO3 (Fe)) were tested under alternating reducing/oxidizing cycles...

  5. Effects of Hemoglobin-Based Oxygen Carriers on Blood Coagulation

    Directory of Open Access Journals (Sweden)

    Kimia Roghani

    2014-12-01

    Full Text Available For many decades, Hemoglobin-based oxygen carriers (HBOCs have been central in the development of resuscitation agents that might provide oxygen delivery in addition to simple volume expansion. Since 80% of the world population lives in areas where fresh blood products are not available, the application of these new solutions may prove to be highly beneficial (Kim and Greenburg 2006. Many improvements have been made to earlier generation HBOCs, but various concerns still remain, including coagulopathy, nitric oxide scavenging, platelet interference and decreased calcium concentration secondary to volume expansion (Jahr et al. 2013. This review will summarize the current challenges faced in developing HBOCs that may be used clinically, in order to guide future research efforts in the field.

  6. In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen

    International Nuclear Information System (INIS)

    Wu, Weimin; Carley, Jack M.; Luo, Jian; Ginder-Vogel, Matthew A.; Cardenas, Erick; Leigh, Mary Beth; Hwang, Chaichi; Kelly, Shelly D.; Ruan, Chuanmin; Wu, Liyou; Van Nostrand, Joy; Gentry, Terry J.; Lowe, Kenneth Alan; Mehlhorn, Tonia L.; Carroll, Sue L.; Luo, Wensui; Fields, Matthew Wayne; Gu, Baohua; Watson, David B.; Kemner, Kenneth M.; Marsh, Terence; Tiedje, James; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K.; Jardine, Philip M.; Criddle, Craig

    2007-01-01

    Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 (micro)M uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agency maximum contaminant limit (MCL) for drinking water ( -1 or 0.126 (micro)M). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L -1 ) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from <0.13 to 2.0 (micro)M at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. At the completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 (micro)M. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp

  7. Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment

    OpenAIRE

    Hatamoto, Masashi; Miyauchi, Tomo; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-01-01

    Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (OHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2 h and volumetric air supply rate of 12.95 m(3)-air...

  8. Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine - an artificial neural network approach.

    Science.gov (United States)

    Zaqoot, Hossam Adel; Ansari, Abdul Khalique; Unar, Mukhtiar Ali; Khan, Shaukat Hyat

    2009-01-01

    Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs - Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight's dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.

  9. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  10. Performance of nickel-based oxygen carrier produced using renewable fuel aloe vera

    Science.gov (United States)

    Afandi, NF; Devaraj, D.; Manap, A.; Ibrahim, N.

    2017-04-01

    Consuming and burning of fuel mainly fossil fuel has gradually increased in this upcoming era due to high-energy demand and causes the global warming. One of the most effective ways to reduce the greenhouse gases is by capturing carbon dioxide (CO2) during the combustion process. Chemical looping combustion (CLC) is one of the most effective methods to capture the CO2 without the need of an energy intensive air separation unit. This method uses oxygen carrier to provide O2 that can react with fuel to form CO2 and H2O. This research focuses on synthesizing NiO/NiAl2O4 as an oxygen carrier due to its properties that can withstand high temperature during CLC application. The NiO/NiAl2O4 powder was synthesized using solution combustion method with plant extract renewable fuel, aloe vera as the fuel. In order to optimize the performance of the particles that can be used in CLC application, various calcination temperatures were varied at 600°C, 800°C, 1050°C and 1300°C. The phase and morphology of obtained powders were characterized using X-ray diffraction (XRD) and Field Emission Microscopy (FESEM) respectively together with the powder elements. In CLC application, high reactivity can be achieved by using smaller particle size of oxygen carrier. This research succeeded in producing nano-structured powder with high crystalline structure at temperature 1050°C which is suitable to be used in CLC application.

  11. Biomarkers of dissolved oxygen stress in oysters: a tool for restoration and management efforts.

    Science.gov (United States)

    Patterson, Heather K; Boettcher, Anne; Carmichael, Ruth H

    2014-01-01

    The frequency and intensity of anoxic and hypoxic events are increasing worldwide, creating stress on the organisms that inhabit affected waters. To understand the effects of low dissolved oxygen stress on oysters, hatchery-reared oysters were placed in cages and deployed along with continuously recording environmental data sondes at a reef site in Mobile Bay, AL that typically experiences low oxygen conditions. To detect and measure sublethal stress, we measured growth and survival of oysters as well as expression of three biomarkers, heat shock protein 70 (HSP70), hypoxia inducible factor (HIF) and phospho-p38 MAP kinase, in tissues from juvenile and adult oysters. Survival rates were high for both juvenile and adult oysters. Expression levels of each of the 3 isoforms of HSP 70 were negatively correlated to dissolved oxygen (DO) concentrations, suggesting that HSP 70 is useful to quantify sublethal effects of DO stress. Results for HIF and phospho-p38 MAP kinase were inconclusive. Test deployments of oysters to assess expression of HSP 70 relative to environmental conditions will be useful, in addition to measuring abiotic factors, to identify appropriate sites for restoration, particularly to capture negative effects of habitat quality on biota before lethal impacts are incurred.

  12. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations.

    Science.gov (United States)

    Ninomiya, Kazuaki; Yamada, Ryuji; Matsumoto, Masami; Fukiya, Satoru; Katayama, Takane; Ogino, Chiaki; Shimizu, Nobuaki

    2013-02-01

    An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    Science.gov (United States)

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.

  14. Fast Oxidation Processes in a Naturally Reduced Aquifer Zone Caused by Dissolved Oxygen

    Science.gov (United States)

    Davis, J. A.; Jemison, N. E.; Williams, K. H.; Hobson, C.; Bush, R. P.

    2014-12-01

    The occurrence of naturally reduced zones is quite common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. The naturally reduced zones are heterogeneously dispersed in such aquifers and are characterized by high concentrations of organic carbon and reduced phases, including iron sulfides and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases that are found in association with these natural reducing zones, although there is little understanding of the relative importance of various potential oxidants. Three field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO wherein groundwater associated with naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in these field systems if supplied to the naturally reduced zones. Small concentrations of nitrate were also observed in the previously nitrate-free groundwater, and Fe(II) decreased to the detection limit. These results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS) rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table, and seasonal variations

  15. The Influence of Physical Forcing on Bottom-water Dissolved Oxygen within the Caloosahatchee River Estuary, FL

    Science.gov (United States)

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...

  16. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    Science.gov (United States)

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Manganese and iron as oxygen carriers to anoxie estuarine sediment

    Science.gov (United States)

    Brayner, F. M. M.; Matvienko, B.

    2003-05-01

    We studied the concentration of a series of transition metals including Mn and Fe in an estuarine fishpond. The pond is situated at latitude 8°10'S and longitude 34°55'W, in the Capibaribe River estuary, within the Recife city boundaries, which is located in Pernambuco, a state of the Brazilian Northeast Pond area is 1.5 ha and it bas a 0.5 m depth. It is separated from the river by dikes. Water temperature at 28° C is stable throughout the year. Light breezes keep the water aerated, but intense ongoing decomposition makes the sediment anoxie. The area, originally of mangrove type, has been changed by antropic action on its fauna and vegetation. The study focuses on changes in behaviour of heavy metals. Samples of bottom sediments wore collected by Eckman dredge sediment sampler and total metal concentration was determined by the lithium borate fusion method. Water, recent sediment, and consolidated sediment were examined in this fishpond where Mn and Fe are brought in periodically by water and then gradually go into the sediment at respective rates of 10.52 and 1332 mg m^{-2}a^{-1}. Strong bioturbation re-suspends sediment while simultaneously re-dissolution of these ions is going on fhrough reduction in the anoxie sédiment. As soluble species these ions migrate from sediment to water and are there continually oxidized by dissolved oxygen, becoming insoluble. With their precipitation, chemically bound oxygen is carried down to the sediment, constituting a parallel channel of transport in addition to migration into the sediment bydiffusion of the oxygen dissolved in the water. The estimated flow rates are 3.25 and 76 mg O2 m^{-2}a^{-1} due to Mn and Fe respectively. The rates were established using natural silicon as a tracer.

  18. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

    NARCIS (Netherlands)

    Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O.J.

    2009-01-01

    The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF),

  19. EQUILIBRIUM AND KINETIC NITROGEN AND OXYGEN-ISOTOPE FRACTIONATIONS BETWEEN DISSOLVED AND GASEOUS N2O

    NARCIS (Netherlands)

    INOUE, HY; MOOK, WG

    1994-01-01

    Experiments were performed to determine the equilibrium as well as kinetic stable nitrogen and oxygen isotope fractionations between aqueous dissolved and gaseous N2O. The equilibrium fractionations, defined as the ratio of the isotopic abundance ratios (15R and 18R, respectively) of gaseous and

  20. Air-sea gas transfer in a shallow, flowing and coastal environment estimated by dissolved inorganic carbon and dissolved oxygen analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Abe, O.; Watanabe, A.; Sarma, V.V.S.S.; Matsu, Y.; Yamano, H.; Yoshida, N.; Saino, T.

    crest and an outflow through a prominent 8 channel, whereas southern wind conditions this pattern is weakened or disturbed 9 (Yamano et al., 1998). Thus, during northern to northeastern winds, metabolic activities 10 with respect to primary production...). Dissolved oxygen was almost less than saturation during the observation period, 16 except on 8 March (Fig. 3f), when the daytime concentration exceeded saturation level 17 due to the increase of net productivity associated with solar radiation. DIC and DO...

  1. Influence of dissolved oxygen concentration on the toxicity of potassium cyanide to rainbow trout. [Salmo gairdneri

    Energy Technology Data Exchange (ETDEWEB)

    Downing, K M

    1954-01-01

    The present work was undertaken to see if similar results were obtained when fish were tested in a continuous flow of water in which the concentrations of oxygen and cyanide were kept constant. Periods of survival were measured this way to minimize distortion of results by accumulation of metabolic waste, depletion of oxygen or depletion of poison. Results are summarized as follows: rainbow trout survival in potassium cyanide increased with increase in dissolved oxygen; increase in survival times did not decline as oxygen saturation was approached; and medium survival times of 3.3 minutes or less were normally distributed while those of greater than 13 minutes were log normally distributed. 6 references, 1 figure.

  2. The concentration of optimum dissolved oxygen levels for growth of mangrove crab Scylla serrata seed in recirculation system

    Directory of Open Access Journals (Sweden)

    Kurnia Faturrohman

    2017-07-01

    Full Text Available ABSTRACT This study aimed to determine optimum dissolved oxygen (DO through the addition of aeration and to evaluate the role of dissolved oxygen on production performance and stress responses of mangrove crab Scylla serrata. Experimental design used was complete randomized design with four treatments namely no aeration (A, one point aeration (B, two points aeration (C, and three points aeration (D. All treatments replicated three times. The crab with the average of body weight 45.6±2.1 g/individual cultured in a plastic box (40×30×30 cm3. The stocking densities was 10 crab/box. Crab was cultured within 42 days and were fed two times a day by restricted method (15% of the total biomass. The result showed that C treatment produced 5.51 mg/L dissolved oxygen and gave the best result of mangrove crabs production performance  with 60% survival, 0.83±0.03 g/day absolute growth rate and food conversion ratio 1.1. It also showed good response to the stress that indicated by the cortisol level (10.159 µg/dL. The best results of coefficient of diversity showed by D treatment that was 13.5%. The water quality during study period was fluctuative as affected by different dissolved oxygen value. Keyword: mangrove crabs, dissolved oxygen, production performance  ABSTRAK Penelitian ini bertujuan menentukan kadar oksigen terlarut (OT atau dissolved oxygen (DO yang optimum melalui penentuan titik aerasi serta mengevalusi peranan oksigen terlarut terhadap kinerja produksi dan respons stres kepiting bakau Scylla serrata. Rancangan penelitian yang digunakan adalah rancangan acak lengkap dengan empat pelakuan (penambahan titik aerasi dengan rincian A, tidak menggunakan titik aerasi; B, satu titik aerasi; C, dua titik aerasi dan D, tiga titik aerasi dan tiga ulangan. Kepiting bakau yang digunakan memiliki berat rata-rata 45,6±2,1 g/ekor dengan padat tebar 10 ekor/wadah. Wadah yang digunakan selama pemeliharaan adalah bak fiber plastik yang berukuran 40

  3. On the mechanism controlling the redox kinetics of Cu-based oxygen carriers

    NARCIS (Netherlands)

    San Pio Bordeje, M.A.; Gallucci, F.; Roghair, I.; van Sint Annaland, M.

    2017-01-01

    Copper oxide on alumina is often used as oxygen carrier for chemical looping combustion owing to its very high reduction rates at lower temperatures and its very good mechanical and chemical stability at temperatures below 1000 °C. In this work, the redox behaviour of CuO/Al2O3 has been studied in

  4. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  5. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  6. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  7. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  8. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  9. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  10. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  11. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  12. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  13. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  14. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  15. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  16. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  17. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for June and July SEAMAP Cruise of 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  18. Gulf of Mexico Hypoxia Watch Bottom Dissolved Oxygen Contours for October and November SEAMAP Cruise of 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Hypoxia Watch project provides near-real-time, web-based maps of dissolved oxygen near the sea floor over the Texas-Louisiana continental shelf during a...

  19. Impact of Spatiotemporal Characteristics of Rainfall Inputs on Integrated Catchment Dissolved Oxygen Simulations

    Directory of Open Access Journals (Sweden)

    Antonio M. Moreno-Rodenas

    2017-11-01

    Full Text Available Integrated Catchment Modelling aims to simulate jointly urban drainage systems, wastewater treatment plant and rivers. The effect of rainfall input uncertainties in the modelling of individual urban drainage systems has been discussed in several studies already. However, this influence changes when simultaneously simulating several urban drainage subsystems and their impact on receiving water quality. This study investigates the effect of the characteristics of rainfall inputs on a large-scale integrated catchment simulator for dissolved oxygen predictions in the River Dommel (The Netherlands. Rainfall products were generated with varying time-aggregation (10, 30 and 60 min deriving from different sources of data with increasing spatial information: (1 Homogeneous rainfall from a single rain gauge; (2 block kriging from 13 rain gauges; (3 averaged C-Band radar estimation and (4 kriging with external drift combining radar and rain gauge data with change of spatial support. The influence of the different rainfall inputs was observed at combined sewer overflows (CSO and dissolved oxygen (DO dynamics in the river. Comparison of the simulations with river monitoring data showed a low sensitivity to temporal aggregation of rainfall inputs and a relevant impact of the spatial scale with a link to the storm characteristics to CSO and DO concentration in the receiving water.

  20. Regime of the dissolved oxygen in Iron Gates lakes

    International Nuclear Information System (INIS)

    Gruia, Emil; Marcoci, Simona

    1992-01-01

    During the period 1964-1987, in the dissolved oxygen regime of the Danube water elevate modifications occurred in the Iron Gates I and II area, in comparison with the relative stability of the previous period. The causes of this evolution were the water organic pollution, as a result of the socio-economical development of the riparian countries in the mentioned period, and the modifications of the water flow entailed by the building of the Iron Gates power system. As a result, physical, chemical and biological processes, different as intensity and manifestation from those in the previous period occurred. Consequently, the general ratio between demand and re-aeration processes has been modified. The paper has the following content: 1. Introduction; 2. Physico-chemical aspects; 3. Biological aspects; 4. Conclusions. (authors)

  1. Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production

    DEFF Research Database (Denmark)

    Liu, Shuai; He, Fang; Huang, Zhen

    2016-01-01

    ) methods were used to prepare NiFe2O4 oxygen carriers. Samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, as well as Barrett-Joyner-Halenda (BJH......The objective of this paper is to systematically investigate the influences of different preparation methods on the properties of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production (CLH). The solid state (SS), coprecipitation (CP), hydrothermal (HT), and sol-gel (SG...... gas (24% H2 + 24% CO + 12% CO2 + N2 balance), then reacted with steam to produce H2, and finally fully oxidized by air. The NiFe2O4 oxygen carrier prepared by the sol gel method showed the best capacity for hydrogen production and the highest recovery degree of lattice oxygen, in agreement...

  2. Streamflow and nutrient dependence of temperature effects on dissolved oxygen in low-order forest streams

    Science.gov (United States)

    April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich

    2007-01-01

    Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....

  3. Enzymatic scavenging of oxygen dissolved in water: Application of response surface methodology in optimization of conditions

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available In this work, removal of dissolved oxygen in water through reduction by glucose, which was catalyzed by glucose oxidase – catalase enzyme, was studied. Central composite design (CCD technique was applied to achieve optimum conditions for dissolved oxygen scavenging. Linear, square and interactions between effective parameters were obtained to develop a second order polynomial equation. The adequacy of the obtained model was evaluated by the residual plots, probability-value, coefficient of determination, and Fisher’s variance ratio test. Optimum conditions for activity of two enzymes in water deoxygenation were obtained as follows: pH=5.6, T=40°C, initial substrate concentration [S] = 65.5 mmol/L and glucose oxidase activity [E] = 252 U/Lat excess amount of catalase. The deoxygenation process during 30 seconds, in the optimal conditions, was predicted 98.2%. Practical deoxygenation in the predicted conditions was achieved to be 95.20% which was close to the model prediction.

  4. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    Directory of Open Access Journals (Sweden)

    Takeki Hamasaki

    Full Text Available Electrochemically reduced water (ERW is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  5. Time evolution of dissolved oxygen and redox conditions in a HLW repository

    International Nuclear Information System (INIS)

    Wersin, P.; Spahiu, K.; Bruno, J.

    1994-02-01

    The evolution of oxygen in a HLW repository has been studied using presently available geochemical background information. The important processes affecting oxygen migration in the near-field include diffusion and oxidation of pyrite and dissolved Fe(II). The evaluation of time scales of oxygen decrease is carried out with 1. an analytical approach involving the coupling of diffusion and chemical reaction, 2. a numerical geochemical approach involving the application of a newly developed diffusion-extended version of the STEADYQL code. Both approaches yield consistent rates of oxygen decrease and indicate that oxidation of pyrite impurities in the clay is the dominant process. The results obtained fRom geochemical modelling are interpreted in terms of evolution of redox conditions. Moreover, a sensitivity analysis of the major geochemical and physical parameters is performed. These results indicate that the uncertainties associated with reactive pyrite surface area impose the overall uncertainties of prediction of time scales. Thus, the obtained time of decrease to 1% of initial O 2 concentrations range between 7 and 290 years. The elapsed time at which the transition to anoxic conditions occurs is estimated to be within the same time range. Additional experimental information on redox sensitive impurities in the envisioned buffer and backfill material would further constrain the evaluated time scales. 41 refs

  6. Bottom Dissolved Oxygen Maps From SEAMAP Summer and Fall Groundfish/Shrimp Surveys from 1982 to 1998 (NCEI Accession 0155488)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottom dissolved oxygen (DO) data was extracted from environmental profiles acquired during the Southeast Fisheries Science Center Mississippi Laboratories summer...

  7. The effect of the oxygen dissolved in the adsorption of gold in activated carbon; Efecto del oxigeno disuelto en la adsorcion de oro en carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P. [Universidad de Santiago. Chile (Chile); Wilkomirsky, I. [Universidad de Concepcion. Chile (Chile)

    1999-07-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs.

  8. Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale

    International Nuclear Information System (INIS)

    Berdugo Vilches, Teresa; Lind, Fredrik; Rydén, Magnus; Thunman, Henrik

    2017-01-01

    Highlights: • First large scale experience (MW) of biomass combustion at CLC-relevant conditions. • Manganese and ilmenite were applied successfully at semi-industrial scale. • 60% combustion under challenging conditions: 830 °C, over-bed fuel feeding. • Volatiles conversion limited by mixing to a significant extent. - Abstract: This paper presents an overview of the experience gained from operating a dual fluidized bed system with oxygen carriers and biomass for more than 1000 h. The tests were carried out in the Chalmers boiler/gasifier loop (with inputs of 12 MW_t_h and 2–4 MW_t_h, respectively), which is 2–4 orders of magnitude larger than most existing CLC units. Coarse biomass particles (i.e., commercial wood pellets) were fed as fuel onto the surface of a mild fluidized bed. This limits significantly the contacts between the volatiles and the oxygen carrier particles, as the flotsam fuel tends to remain on the surface of the bed while the volatiles are released. The oxygen carrier materials tested were ilmenite and a manganese ore. The influences on biomass conversion of fluidization velocity, fuel feeding rate, and circulation rate of the bed material were investigated. Both bed materials efficiently transported oxygen between the reactors, achieving up to 60% combustion of the gases released in the reactor at a relatively low temperature, i.e., 830 °C. The ilmenite outperformed the manganese ore under the conditions investigated. With oxygen carriers, the yield of hydrocarbons heavier than benzene was in the range of 10–11 g/N m"3, which was 70% (w/w) lower than that obtained in a reference case with silica-sand as the bed material. The conversion of volatile species to CO_2 was limited by gas-solids mixing, which could be enhanced by altering the fluidization velocity. The circulation rate of the bed material and the fuel feeding rate were found to have important influences on the rate of char gasification. Given the relatively low

  9. A Closer Look on Spatiotemporal Variations of Dissolved Oxygen in Waste Stabilization Ponds Using Mixed Models

    Directory of Open Access Journals (Sweden)

    Long Ho

    2018-02-01

    Full Text Available Dissolved oxygen is an essential controlling factor in the performance of facultative and maturation ponds since both take many advantages of algal photosynthetic oxygenation. The rate of this photosynthesis strongly depends on the time during the day and the location in a pond system, whose roles have been overlooked in previous guidelines of pond operation and maintenance (O&M. To elucidate these influences, a linear mixed effect model (LMM was built on the data collected from three intensive sampling campaigns in a waste stabilization pond in Cuenca, Ecuador. Within two parallel lines of facultative and maturation ponds, nine locations were sampled at two depths in each pond. In general, the output of the mixed model indicated high spatial autocorrelations of data and wide spatiotemporal variations of the oxygen level among and within the ponds. Particularly, different ponds showed different patterns of oxygen dynamics, which were associated with many factors including flow behavior, sludge accumulation, algal distribution, influent fluctuation, and pond function. Moreover, a substantial temporal change in the oxygen level between day and night, from zero to above 20 mg O2·L−1, was observed. Algal photosynthetic activity appeared to be the main reason for these variations in the model, as it was facilitated by intensive solar radiation at high altitude. Since these diurnal and spatial patterns can supply a large amount of useful information on pond performance, insightful recommendations on dissolved oxygen (DO monitoring and regulations were delivered. More importantly, as a mixed model showed high predictive performance, i.e., high goodness-of-fit (R2 of 0.94, low values of mean absolute error, we recommended this advanced statistical technique as an effective tool for dealing with high autocorrelation of data in pond systems.

  10. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Science.gov (United States)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  11. The Use of an Acellular Oxygen Carrier in a Human Liver Model of Normothermic Machine Perfusion.

    Science.gov (United States)

    Laing, Richard W; Bhogal, Ricky H; Wallace, Lorraine; Boteon, Yuri; Neil, Desley A H; Smith, Amanda; Stephenson, Barney T F; Schlegel, Andrea; Hübscher, Stefan G; Mirza, Darius F; Afford, Simon C; Mergental, Hynek

    2017-11-01

    Normothermic machine perfusion of the liver (NMP-L) is a novel technique that preserves liver grafts under near-physiological conditions while maintaining their normal metabolic activity. This process requires an adequate oxygen supply, typically delivered by packed red blood cells (RBC). We present the first experience using an acellular hemoglobin-based oxygen carrier (HBOC) Hemopure in a human model of NMP-L. Five discarded high-risk human livers were perfused with HBOC-based perfusion fluid and matched to 5 RBC-perfused livers. Perfusion parameters, oxygen extraction, metabolic activity, and histological features were compared during 6 hours of NMP-L. The cytotoxicity of Hemopure was also tested on human hepatic primary cell line cultures using an in vitro model of ischemia reperfusion injury. The vascular flow parameters and the perfusate lactate clearance were similar in both groups. The HBOC-perfused livers extracted more oxygen than those perfused with RBCs (O2 extraction ratio 13.75 vs 9.43 % ×10 per gram of tissue, P = 0.001). In vitro exposure to Hemopure did not alter intracellular levels of reactive oxygen species, and there was no increase in apoptosis or necrosis observed in any of the tested cell lines. Histological findings were comparable between groups. There was no evidence of histological damage caused by Hemopure. Hemopure can be used as an alternative oxygen carrier to packed red cells in NMP-L perfusion fluid.

  12. Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment.

    Science.gov (United States)

    Hatamoto, Masashi; Miyauchi, Tomo; Kindaichi, Tomonori; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-11-01

    Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (DHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2h and volumetric air supply rate of 12.95m(3)-airm(-3)day(-1), greater than 90% oxidation of dissolved methane, ammonium, sulfide, and organic matter was achieved. With reduction in the air supply rate, ammonium oxidation first ceased, after which methane oxidation deteriorated. Sulfide oxidation was disrupted in the final step, indicating that COD and sulfide oxidation occurred prior to methane oxidation. A microbial community analysis revealed that peculiar methanotrophic communities dominating the Methylocaldum species were formed in the DHS reactor operation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Heterogeneity in a Suburban River Network: Understanding the Impact of Fluvial Wetlands on Dissolved Oxygen and Metabolism in Headwater Streams

    Science.gov (United States)

    Cain, J. S.; Wollheim, W. M.; Sheehan, K.; Lightbody, A.

    2014-12-01

    Low dissolved oxygen content in rivers threatens fish populations, aquatic organisms, and the health of entire ecosystems. River systems with high fluvial wetland abundance and organic matter, may result in high metabolism that in conjunction with low re-aeration rates, lead to low oxygen conditions. Increasing abundance of beaver ponds in many areas may exacerbate this phenomenon. This research aims to understand the impact of fluvial wetlands, including beaver ponds, on dissolved oxygen (D.O.) and metabolism throughout the headwaters of the Ipswich R. watershed, MA, USA. In several fluvial wetland dominated systems, we measured diel D.O. and metabolism in the upstream inflow, the surface water transient storage zones of fluvial wetland sidepools, and at the outflow to understand how the wetlands modify dissolved oxygen. D.O. was also measured longitudinally along entire surface water flow paths (x-y km long) to determine how low levels of D.O. propagate downstream. Nutrient samples were also collected to understand how their behavior was related to D.O. behavior. Results show that D.O. in fluvial wetlands has large swings with periods of very low D.O. at night. D.O. swings were also seen in downstream outflow, though lagged and somewhat attenuated. Flow conditions affect the level of inundation and the subsequent effects of fluvial wetlands on main channel D.O.. Understanding the D.O. behavior throughout river systems has important implications for the ability of river systems to remove anthropogenic nitrogen.

  14. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes.

    Science.gov (United States)

    Andersen, Mikkel R; Kragh, Theis; Sand-Jensen, Kaj

    2017-09-13

    A common perception in limnology is that shallow lakes are homogeneously mixed owing to their small water volume. However, this perception is largely gained by downscaling knowledge from large lakes to their smaller counterparts. Here we show that shallow vegetated lakes (less than 0.6 m), in fact, undergo recurring daytime stratification and nocturnal mixing accompanied by extreme chemical variations during summer. Dense submerged vegetation effectively attenuates light and turbulence generating separation between warm surface waters and much colder bottom waters. Photosynthesis in surface waters produces oxygen accumulation and CO 2 depletion, whereas respiration in dark bottom waters causes anoxia and CO 2 accumulation. High daytime pH in surface waters promotes precipitation of CaCO 3 which is re-dissolved in bottom waters. Nocturnal convective mixing re-introduces oxygen into bottom waters for aerobic respiration and regenerated inorganic carbon into surface waters, which supports intense photosynthesis. Our results reconfigure the basic understanding of local environmental gradients in shallow lakes, one of the most abundant freshwater habitats globally. © 2017 The Author(s).

  15. Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen.

    Science.gov (United States)

    Al-Abdul-Wahid, M Sameer; Verardi, Raffaello; Veglia, Gianluigi; Prosser, R Scott

    2011-09-01

    In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 Å. The transmembrane helix was found to have an average immersion depth of 5.4 Å, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.

  16. Topology and immersion depth of an integral membrane protein by paramagnetic rates from dissolved oxygen

    International Nuclear Information System (INIS)

    Al-Abdul-Wahid, M. Sameer; Verardi, Raffaello; Veglia, Gianluigi; Prosser, R. Scott

    2011-01-01

    In studies of membrane proteins, knowledge of protein topology can provide useful insight into both structure and function. In this work, we present a solution NMR method for the measurement the tilt angle and average immersion depth of alpha helices in membrane proteins, from analysis of the paramagnetic relaxation rate enhancements arising from dissolved oxygen. No modification to the micelle or protein is necessary, and the topology of both transmembrane and amphipathic helices are readily determined. We apply this method to the measure the topology of a monomeric mutant of phospholamban (AFA-PLN), a 52-residue membrane protein containing both an amphipathic and a transmembrane alpha helix. In dodecylphosphocholine micelles, the amphipathic helix of AFA-PLN was found to have a tilt angle of 87° ± 1° and an average immersion depth of 13.2 Å. The transmembrane helix was found to have an average immersion depth of 5.4 Å, indicating residues 41 and 42 are closest to the micelle centre. The resolution of paramagnetic relaxation rate enhancements from dissolved oxygen compares favourably to those from Ni (II), a hydrophilic paramagnetic species.

  17. The effect of high and low dissolved oxygen on the toxicity of oil sands coke and its leachate to Chironomus tentans

    International Nuclear Information System (INIS)

    Squires, A.J.; Liber, K.

    2003-01-01

    A study was conducted to assess the effect of low dissolved oxygen on the long-term leaching potential of the toxic constituents found in coke. Coke is one of the waste products produced during the oil sand upgrading process used at Syncrude Canada Ltd. and Suncor Energy Inc. Coke is contaminated by metals and organic compounds which can leach into the environment. In this study, coke from both companies was exposed to reconstituted water and high dissolved oxygen for a period of 30 days, during which time the overlying water containing the leachate and the coke pore-water was chemically analyzed. The benthic macroinvertebrate, Chironomus tentans, was exposed to the aged coke and the overlying leachate after the 30 day period. The study did not reveal any major difference in the survival or growth between the dissolved oxygen treatments or any of the leachate treatments. The macroinvertebrate in the aged Syncrude grew significantly while the Suncor coke strongly inhibited both survival and growth of the macroinvertebrate. The study demonstrates that coke has the potential to negatively affect benthic organisms if it is used uncovered in an aquatic reclamation effort

  18. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

    Science.gov (United States)

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu

    2017-11-01

    Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious

  19. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Directory of Open Access Journals (Sweden)

    Frederic Bailleul

    Full Text Available The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO. Southern elephant seals (Mirounga leonina proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project. Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  20. Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans and Investigating the Functioning of Marine Ecosystems.

    Science.gov (United States)

    Bailleul, Frederic; Vacquie-Garcia, Jade; Guinet, Christophe

    2015-01-01

    The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems' health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. We present the first results obtained from a dissolved oxygen sensor added to Argos CTD-SRDL tags and deployed on 5 female elephant seals at Kerguelen. From October 2010 and October 2011, 742 oxygen profiles associated with temperature and salinity measurements were recorded. Whether a part of the data must be considered cautiously, especially because of offsets and temporal drifts of the sensors, the range of values recorded was consistent with a concomitant survey conducted from a research vessel (Keops-2 project). Once again, elephant seals reinforced the relationship between marine ecology and oceanography, delivering essential information about the water masses properties and the biological status of the Southern Ocean. But more than the presentation of a new stage of development in animal-borne instrumentation, this pilot study opens a new field of investigation in marine ecology and could be enlarged in a near future to other key marine predators, especially large fish species like swordfish, tuna or sharks, for which dissolved oxygen is expected to play a crucial role in distribution and behaviour.

  1. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin.

    Science.gov (United States)

    Taverne, Yannick J; de Wijs-Meijler, Daphne; Te Lintel Hekkert, Maaike; Moon-Massat, Paula F; Dubé, Gregory P; Duncker, Dirk J; Merkus, Daphne

    2017-05-01

    Hemoglobin-based oxygen carrier (HBOC)-201 is a cell-free modified hemoglobin solution potentially facilitating oxygen uptake and delivery in cardiovascular disorders and hemorrhagic shock. Clinical use has been hampered by vasoconstriction in the systemic and pulmonary beds. Therefore, we aimed to 1 ) determine the possibility of counteracting HBOC-201-induced pressor effects with either adenosine (ADO) or nitroglycerin (NTG); 2 ) assess the potential roles of nitric oxide (NO) scavenging, reactive oxygen species (ROS), and endothelin (ET) in mediating the observed vasoconstriction; and 3 ) compare these effects in resting and exercising swine. Chronically instrumented swine were studied at rest and during exercise after administration of HBOC-201 alone or in combination with ADO. The role of NO was assessed by supplementation with NTG or administration of the eNOS inhibitor N ω -nitro-l-arginine. Alternative vasoactive pathways were investigated via intravenous administration of the ET A /ET B receptor blocker tezosentan or a mixture of ROS scavengers. The systemic and to a lesser extent the pulmonary pressor effects of HBOC-201 could be counteracted by ADO; however, dosage titration was very important to avoid systemic hypotension. Similarly, supplementation of NO with NTG negated the pressor effects but also required titration of the dose. The pressor response to HBOC-201 was reduced after eNOS inhibition and abolished by simultaneous ET A /ET B receptor blockade, while ROS scavenging had no effect. In conclusion, the pressor response to HBOC-201 is mediated by vasoconstriction due to NO scavenging and production of ET. Further research should explore the effect of longer-acting ET receptor blockers to counteract the side effect of hemoglobin-based oxygen carriers. NEW & NOTEWORTHY Hemoglobin-based oxygen carrier (HBOC)-201 can disrupt hemodynamic homeostasis, mimicking some aspects of endothelial dysfunction, resulting in elevated systemic and pulmonary blood

  2. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  3. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    Science.gov (United States)

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dissolved oxygen control in a coupled fluidized bed system

    International Nuclear Information System (INIS)

    Jones, R.M.; Melcer, H.

    1988-01-01

    The biological fluidized bed process is a modification of more conventional fixed film processes, such as the trickling filter, in which wastewater is passed upward through a bed of granular support medium, typically sand, at a sufficient velocity to expand or fluidize the medium. The granular medium provides a large surface area for the establishment of a biological film. The fluidized bed process was selected to investigate the treatment of coking plant wastewaters in view of the significant advantages offered in terms of reduced reactor volumes that result from the high biomass concentration maintained on the support medium. The technical feasibility of treating coal distillation condensates was evaluated during a 3-year study at Environment Canada's Wastewater Technology Centre (WTC). The feed to the pilot scale test system consisted of effluent from fixed and free leg ammonia stills at the by-product coke plant of Dofasco Inc. in Hamilton, Ontario. The pilot plant consisted of two fluidized bed reactors in series, coupled to provide carbon oxidation, nitrification and denitrification in the predenitrification operating mode. The anoxic denitrification reactor was 115 mm in diameter and the oxygenic nitrification reactor, 290 mm in diameter. The bed heights and reactor volumes were adjustable by relocation of the position of the sand/biomass wasting valve. The experimental objective of this research was to determine those operating conditions required to maintain stable nitrification and complete denitrification under both steady state and dynamic operating conditions. Details regarding operating, sampling and analytic procedures have been presented elsewhere. A specific operating problem existed relating to the control of the dissolved oxygen concentration in the oxygenic fluidized bed reactor, the solution of which forms the basis of the paper

  5. Oxidation of naturally reduced uranium in aquifer sediments by dissolved oxygen and its potential significance to uranium plume persistence

    Science.gov (United States)

    Davis, J. A.; Smith, R. L.; Bohlke, J. K.; Jemison, N.; Xiang, H.; Repert, D. A.; Yuan, X.; Williams, K. H.

    2015-12-01

    The occurrence of naturally reduced zones is common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. Such reduced zones are usually heterogeneously dispersed in these aquifers and characterized by high concentrations of organic carbon, reduced mineral phases, and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases found in association with these reducing zones, although there is little understanding of the relative importance of various potential oxidants. Four field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO, wherein groundwater associated with the naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in such field systems if supplied to the naturally reduced zones. Dissolved Fe(II) concentrations decreased to the detection limit, but increases in sulfate could not be detected due to high background concentrations. Changes in nitrogen species concentrations were variable. The results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS), rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table

  6. PHOTOGENERATION OF SINGLET OXYGEN AND FREE RADICALS IN DISSOLVED ORGANIC MATTER ISOLATED FROM THE MISSISSIPPI AND ATCHAFALAYA RIVER PLUMES

    Science.gov (United States)

    The photoreactivity to UV light of ultrafiltered dissolved organic matter (DOM) collected during cruises along salinity transects in the Mississippi and Atchafalaya River plumes was examined by measuring photogenerated free radicals and singlet molecular oxygen (1O2) photosensiti...

  7. Dissolved oxygen removal on radiolysis: studies in context of use of nitrogen atmosphere above PHT storage bag in Indian PHWRs

    International Nuclear Information System (INIS)

    Kumbhar, A.G.; Venkateswaran, G.; Kishore, K.; Kumar, Sangeeta D.; Naik, D.B.

    2008-01-01

    Dissolved oxygen content of the water (N 2 in gas phase) sample on radiolysis was measured and it was observed that up to 2 M Rad dose, oxygen content decreases linearly and at higher doses remains constant. Results are compared with nitrate ion yield in water-N 2 systems determined earlier. In aerated solutions also, nitrate ion yield was measured as function of dose. (author)

  8. Dissolved oxygen and dietary phosphorus modulate utilization and effluent partitioning of phosphorus in rainbow trout (Oncorhynchus mykiss) aquaculture

    International Nuclear Information System (INIS)

    McDaniel, Nichole K.; Sugiura, Shozo H.; Kehler, Thomas; Fletcher, John W.; Coloso, Relicardo M.; Weis, Peddrick; Ferraris, Ronaldo P.

    2005-01-01

    Phosphorus (P) is the limiting nutrient in freshwater primary production, and excessive levels cause premature eutrophication. P levels in aquaculture effluents are now tightly regulated. Increasing our understanding of waste P partitioning into soluble, particulate, and settleable fractions is important in the management of effluent P. When water supply is limited, dissolved oxygen concentration (DO) decreases below the optimum levels. Therefore, we studied effects of DO (6 and 10 mg/L) and dietary P (0.7 and 1.0% P) on rainbow trout growth, P utilization, and effluent P partitioning. Biomass increased by 40% after 3 weeks. DO at 10 mg/L significantly increased fish growth and feed efficiency, and increased the amount of P in the soluble fraction of the effluent. Soluble effluent P was greater in fish fed 1.0% P. DO increases fish growth and modulates P partitioning in aquaculture effluent. - Dissolved oxygen concentration not only influences fish growth rate, but also affects dietary phosphorus utilization by fish in intensive aquaculture

  9. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    Directory of Open Access Journals (Sweden)

    M. Veronica Rigo

    2012-01-01

    Full Text Available Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol precursors, which increase the hydrophobicity of the film surface.

  10. Invasive Macrophytes Control the Spatial and Temporal Patterns of Temperature and Dissolved Oxygen in a Shallow Lake: A Proposed Feedback Mechanism of Macrophyte Loss

    Directory of Open Access Journals (Sweden)

    Maria P. Vilas

    2017-12-01

    Full Text Available Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia. Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time (r2 = 0.98, and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season (r2 > 0.78 at all times. As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we

  11. Invasive Macrophytes Control the Spatial and Temporal Patterns of Temperature and Dissolved Oxygen in a Shallow Lake: A Proposed Feedback Mechanism of Macrophyte Loss.

    Science.gov (United States)

    Vilas, Maria P; Marti, Clelia L; Adams, Matthew P; Oldham, Carolyn E; Hipsey, Matthew R

    2017-01-01

    Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia). Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time ( r 2 = 0.98), and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season ( r 2 > 0.78 at all times). As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we hypothesized

  12. DISSOLVED OXYGEN REDUCTION IN THE DIII-D NEUTRAL BEAM ION SOURCE COOLING SYSTEM

    International Nuclear Information System (INIS)

    YIP, H.; BUSATH, J.; HARRISON, S.

    2004-03-01

    OAK-B135 Neutral beam ion sources (NBIS) are critical components for the neutral beam injection system supporting the DIII-D tokamak. The NBIS must be cooled with 3028 (ell)/m (800 gpm) of de-ionized and de-oxygenated water to protect the sources from overheating and failure. These ions sources are currently irreplaceable. Since the water cooled molybdenum components will oxidize in water almost instantaneously in the presence of dissolved oxygen (DO), de-oxygenation is extremely important in the NBIS water system. Under normal beam operation the DO level is kept below 5 ppb. However, during weeknights and weekends when neutral beam is not in operation, the average DO level is maintained below 10 ppb by periodic circulation with a 74.6 kW (100 hp) pump, which consumes significant power. Experimental data indicated evidence of continuous oxygen diffusion through non-metallic hoses in the proximity of the NBIS. Because of the intermittent flow of the cooling water, the DO concentration at the ion source(s) could be even higher than measured downstream, and hence the concern of significant localized oxidation/corrosion. A new 3.73 kW (5 hp) auxiliary system, installed in the summer of 2003, is designed to significantly reduce the peak and the time-average DO levels in the water system and to consume only a fraction of the power

  13. Study of dimensional changes during redox cycling of oxygen carrier materials for chemical looping combustion

    NARCIS (Netherlands)

    Fossdal, A.; Darell, O.; Lambert, A.; Schols, E.; Comte, E.; Leenman, R.N.; Blom, R.

    2015-01-01

    Dimensional and phase changes of four candidate oxygen carrier materials for chemical looping combustion are investigated by dilatometry and high-temperature X-ray diffraction during four redox cycles. NiO/Ni2AlO4 does not exhibit significant dimensional changes during cycling, and it is shown that

  14. Influence of dissolved oxygen on the nitrification kinetics in a circulating bed biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, R.; Melo, L.F. [University of Minho, Braga (Portugal). Dept. Bioengineering; Lazarova, V.; Manem, J. [Centre of International Research for Water and Environment (CIRSEE), Lyonnaise des Eaux, Le Pecq (France)

    1998-12-01

    The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5-2 gO{sub 2}/gN-NH{sub 4}{sup +} for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k{sub L}a) determined in the laboratory scale reactor was 0.017 s{sup -1} for a superficial air velocity of 0.02 m s{sup -1}, and the one determined in the pilot scale reactor was 0.040 s{sup -1} for a superficial air velocity of 0.031 m s{sup -1}. The k{sub L}a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm. (orig.) With 7 figs., 5 tabs., 24 refs.

  15. Artificial oxygen carrier with pharmacologic actions of adenosine-5'-triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions.

    Science.gov (United States)

    Simoni, Jan; Simoni, Grace; Moeller, John F; Feola, Mario; Wesson, Donald E

    2014-08-01

    Effective artificial oxygen carriers may offer a solution to tackling current transfusion medicine challenges such as blood shortages, red blood cell storage lesions, and transmission of emerging pathogens. These products, could provide additional therapeutic benefits besides oxygen delivery for an array of medical conditions. To meet these needs, we developed a hemoglobin (Hb)-based oxygen carrier, HemoTech, which utilizes the concept of pharmacologic cross-linking. It consists of purified bovine Hb cross-linked intramolecularly with open ring adenosine-5'-triphosphate (ATP) and intermolecularly with open ring adenosine, and conjugated with reduced glutathione (GSH). In this composition, ATP prevents Hb dimerization, and adenosine promotes formation of Hb polymers as well as counteracts the vasoconstrictive and pro-inflammatory properties of Hb via stimulation of adenosine receptors. ATP also serves as a regulator of vascular tone through activation of purinergic receptors. GSH blocks Hb's extravasation and glomerular filtration by lowering the isoelectric point, as well as shields heme from nitric oxide and reactive oxygen species. HemoTech and its manufacturing technology have been broadly tested, including viral and prion clearance validation studies and various nonclinical pharmacology, toxicology, genotoxicity, and efficacy tests. The clinical proof-of-concept was carried out in sickle cell anemia subjects. The preclinical and clinical studies indicate that HemoTech works as a physiologic oxygen carrier and has efficacy in treating: (i) acute blood loss anemia by providing a temporary oxygen bridge while stimulating an endogenous erythropoietic response; (ii) sickle cell disease by counteracting vaso-occlusive/inflammatory episodes and anemia; and (iii) ischemic vascular diseases particularly thrombotic and restenotic events. The pharmacologic cross-linking of Hb with ATP, adenosine, and GSH showed usefulness in designing an artificial oxygen carrier for

  16. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydé n, Magnus; Lyngfelt, Anders; Mattisson, Tobias

    2011-01-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor

  17. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media.

    Science.gov (United States)

    Le Pape, Fiona; Cosnuau-Kemmat, Lucie; Richard, Gaëlle; Dubrana, Frédéric; Férec, Claude; Zal, Franck; Leize, Elisabeth; Delépine, Pascal

    2017-04-01

    Human mesenchymal stem cells (MSCs) are promising candidates for therapeutic applications such as tissue engineering. However, one of the main challenges is to improve oxygen supply to hypoxic areas to reduce oxygen gradient formation while preserving MSC differentiation potential and viability. For this purpose, a marine hemoglobin, HEMOXCell, was evaluated as an oxygen carrier for culturing human bone marrow MSCs in vitro for future three-dimensional culture applications. Impact of HEMOXCell on cell growth and viability was assessed in human platelet lysate (hPL)-supplemented media. Maintenance of MSC features, such as multipotency and expression of MSC specific markers, was further investigated by biochemical assays and flow cytometry analysis. Our experimental results highlight its oxygenator potential and indicate that an optimal concentration of 0.025 g/L HEMOXCell induces a 25%-increase of the cell growth rate, preserves MSC phenotype, and maintains MSC differentiation properties; a two-fold higher concentration induces cell detachment without altering cell viability. Our data suggest the potential interest of HEMOXCell as a natural oxygen carrier for tissue engineering applications to oxygenate hypoxic areas and to maintain cell viability, functions and "stemness." These features will be further tested within three-dimensional scaffolds. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Dissolved Oxygen Dynamics in Backwaters of North America's Largest River Swamp

    Science.gov (United States)

    Bueche, S. M.; Xu, Y. J.; Reiman, J. H.

    2017-12-01

    The Atchafalaya River (AR) is the largest distributary of the Mississippi River flowing through south-central Louisiana, creating North America's largest river swamp basin - the Atchafalaya River Basin (ARB). Prior to human settlement, the AR's main channel was highly connected to this large wetland ecosystem. However, due to constructed levee systems and other human modifications, much of the ARB is now hydrologically disconnected from the AR's main channel except during high flow events. This lack of regular inputs of fresh, oxygenated water to these wetlands, paired with high levels of organic matter decomposition in wetlands, has caused low oxygen-deprived hypoxic conditions in the ARB's back waters. In addition, due to the incredibly nutrient-rich and warm nature of the ARB, microbial decomposition in backwater areas with limited flow often results in potentially stressful, if not lethal, levels of DO for organisms during and after flood pulses. This study aims to investigate dynamics of dissolved oxygen in backwaters of the Atchafalaya River Basin, intending to answer a crucial question about hydrological and water quality connectivity between the river's mainstem and its floodplain. Specifically, the study will 1) conduct field water quality measurements, 2) collect composite water samples for chemical analysis of nutrients and carbon, 3) investigate DO dynamics over different seasons for one year, and 4) determine the major factors that affect DO dynamics in this unique swamp ecosystem. The study is currently underway; therefore, in this presentation we will share the major findings gained in the past several months and discuss backwater effects on river chemistry.

  19. The role of orthophosphate and dissolved oxygen in the performance of arsenic-iron removal plants in Bangladesh.

    Science.gov (United States)

    Brennan, Ryan T; McBean, Edward A

    2011-01-01

    Arsenic iron removal plants (AIRPs) are used in some locations in Bangladesh to remove arsenic from groundwater to provide access to safer drinking water. In this study, the influence of orthophosphate in influent water on the performance of 21 (of 105) AIRPs installed in the Manikganj District was evaluated. The degree of aeration was also estimated, and the role of dissolved oxygen in AIRP performance is discussed. AIRP installations were done by a local non-governmental organization (The Society for People's Action in Change and Equity) with financial assistance from the Australian High Commission, Dhaka under the Direct Aid Program of the Australian Government. The presence of orthophosphate in the influent did not influence arsenic removal efficiency in the tested AIRPs, likely due to the high iron concentrations at all sites. The high iron provides adequate surface area for both orthophosphate and arsenic to be removed. Orthophosphate co-precipitated with iron oxides much more quickly than arsenic, in one cleaning cycle study, and is expected to play a more significant role in interfering with arsenic removal at sites with much lower iron concentrations. The aeration trays studied are estimated to introduce at least 2.4-3.7 mg/L of dissolved oxygen. In normal operation, sufficient oxygen is introduced through the aeration tray to fully oxidize all influent iron. The AIRPs studied show promise for use in areas of Bangladesh with high natural iron, where users are concerned with arsenic, iron, or both, in their drinking water.

  20. BLOOD SUBSTITUTES: EVOLUTION FROM NON-CARRYING TO OXYGEN AND GAS CARRYING FLUIDS

    Science.gov (United States)

    Cabrales, Pedro; Intaglietta, Marcos

    2013-01-01

    The development of oxygen (O2) carrying blood substitutes has evolved from the goal of replicating blood O2 transports properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to “O2 therapeutics” that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin based O2 carriers (HBOCs) and perfluorocarbon based O2 carriers (PFCOCs), with emphasis on the physiological conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2 carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving and delivering gases with biological activity. It is concluded that current blood substitutes development has amplified their applications horizon by devising therapeutic functions for oxygen carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2 carrying capacity re-establishment awaits control of O2 carrier toxicity. PMID:23820271

  1. The calcium phosphate coating of soy lecithin nanoemulsion with performance in stability and as an oxygen carrier

    Science.gov (United States)

    Han, Kyu B.

    This work studied the relationship between surfactant, oil, and water, by building ternary phase diagrams, the goal of which was to identify the oil-in-water phase composition. The resulting nano-sized emulsion was coated with dicalcium phosphate by utilizing the ionic affinity between calcium ions and the emulsion surface. Since the desired function of the particle is as an oxygen carrier, the particle stability, oxygen capacity, and oxygen release rate were investigated. The first step in the process was to construct ternary phase diagrams with 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) and soy derived lecithin. The results showed that the lecithin surfactant formed an oil-in-water phase region that was 36 times greater than that of DOPA. With the desired phase composition set, the lecithin emulsion was extruded, resulting in a well-dispersed nanosized particle. A pH titration study of the emulsion found an optimized calcium phosphate coating condition at pH 8.8, at which, the calcium ion had a greater affinity for the emulsion surface than phosphate. A Hill plot was used to show calcium cooperativeness on the emulsion surface which suggested one calcium ion binds to one lecithin molecule. The lecithin emulsion particles were then coated with calcium phosphate using a layering technique that allowed for careful control of the coating thickness. The overall particle hydrodynamic radius was consistent with the growth of the calcium phosphate coating, from 8 nm to 28 nm. This observation was further supported with cryo-TEM measurements. The stability of the coated emulsion was tested in conditions that simulate practical thermal, physical, and time-dependent conditions. Throughout the tests, the coated emulsion exhibited a constant mono-dispersed particle size, while the uncoated emulsion size fluctuated greatly and exhibited increased polydispersion. The fast mixing method with the stopped-flow apparatus was employed to test the product as an oxygen carrier, and it

  2. Dissolved oxygen content as an index of water quality in San Vicente Bay, Chile (36 degrees 45'S).

    Science.gov (United States)

    Rudolph, Anny; Ahumada, Ramón; Pérez, Claudio

    2002-08-01

    The present report describes some effects of industrial and municipal effluents on the waters of San Vicente Bay. Analyses of the main substances contained in the fishing industry effluent suggest rating criteria based on the oxygen saturation of the water as an assessment of organic pollution. Six cruises were carried out throughout the Bay, from June to December 1996. Water samples were analyzed for dissolved oxygen, oil and grease content, and sediment samples for organic matter content. Water parameters (salinity, temperature) were used to characterize the Bay's hydrography, and to calculate values for oxygen saturation. The measurements demonstrated a local broad range of oxygen deficit, with a maximum of 45% in the winter to 95% in the spring. In November more than 65% of the Bay's area showed oxygen deficits greater than 40%. Organic matter was unusually high in sediments along the northern sector of the Bay. The results suggest that the oxygen depletion was a representative parameter for establishing a relative scale of water quality in this Bay.

  3. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  4. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity.

    Science.gov (United States)

    He, Weiwei; Cai, Junhui; Jiang, Xiumei; Yin, Jun-Jie; Meng, Qingbo

    2018-06-13

    The combination of semiconductor and plasmonic nanostructures, endowed with high efficiency light harvesting and surface plasmon confinement, has been a promising way for efficient utilization of solar energy. Although the surface plasmon resonance (SPR) assisted photocatalysis has been extensively studied, the photochemical mechanism, e.g. the effect of SPR on the generation of reactive oxygen species and charge carriers, is not well understood. In this study, we take Au@TiO2 nanostructures as a plasmonic photocatalyst to address this critical issue. The Au@TiO2 core/shell nanostructures with tunable SPR property were synthesized by the templating method with post annealing thermal treatment. It was found that Au@TiO2 nanostructures exhibit enhanced photocatalytic activity in either sunlight or visible light (λ > 420 nm). Electron spin resonance spectroscopy with spin trapping and spin labeling was used to investigate the enhancing effect of Au@TiO2 on the photo-induced reactive oxygen species and charge carriers. The formation of Au@TiO2 core/shell nanostructures resulted in a dramatic increase in light-induced generation of hydroxyl radicals, singlet oxygen, holes and electrons, as compared with TiO2 alone. This enhancement under visible light (λ > 420 nm) irradiation may be dominated by SPR induced local electrical field enhancement, while the enhancement under sunlight irradiation is dominated by the higher electron transfer from TiO2 to Au. These results unveiled that the superior photocatalytic activity of Au@TiO2 nanostructures correlates with enhanced generation of reactive oxygen species and charge carriers.

  5. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    Science.gov (United States)

    Buckeridge, J.; Catlow, C. R. A.; Farrow, M. R.; Logsdail, A. J.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Woodley, S. M.; Sokol, A. A.; Walsh, A.

    2018-05-01

    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3 ,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3 , but also in SnO2 and ZnO.

  6. Relative Linkages of Stream Dissolved Oxygen with the Hydroclimatic and Biogeochemical Drivers across the Gulf Coast of U.S.A.

    Science.gov (United States)

    Gebreslase, A. K.; Abdul-Aziz, O. I.

    2017-12-01

    Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.

  7. Temperature, salinity, dissolved oxygen, nutrients, and currents data from the Chesapeake Bay region from multiple platforms, July 1949 - July 1965 (NODC Accession 7000995)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are currently only available in analog form. A digital scan of the pages containing measured values for temperature, salinity, dissolved oxygen,...

  8. Incorporation of oxygen contribution by plant roots into classical dissolved oxygen deficit model for a subsurface flow treatment wetland.

    Science.gov (United States)

    Bezbaruah, Achintya N; Zhang, Tian C

    2009-01-01

    It has been long established that plants play major roles in a treatment wetland. However, the role of plants has not been incorporated into wetland models. This study tries to incorporate wetland plants into a biochemical oxygen demand (BOD) model so that the relative contributions of the aerobic and anaerobic processes to meeting BOD can be quantitatively determined. The classical dissolved oxygen (DO) deficit model has been modified to simulate the DO curve for a field subsurface flow constructed wetland (SFCW) treating municipal wastewater. Sensitivities of model parameters have been analyzed. Based on the model it is predicted that in the SFCW under study about 64% BOD are degraded through aerobic routes and 36% is degraded anaerobically. While not exhaustive, this preliminary work should serve as a pointer for further research in wetland model development and to determine the values of some of the parameters used in the modified DO deficit and associated BOD model. It should be noted that nitrogen cycle and effects of temperature have not been addressed in these models for simplicity of model formulation. This paper should be read with this caveat in mind.

  9. Ce-Fe-O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas

    Institute of Scientific and Technical Information of China (English)

    魏永刚; 王华; 李孔斋

    2010-01-01

    The Ce-Fe-O mixed oxide with a ratio of Ce/Fe=7:3, which was prepared by coprecipitation method and employed as oxygen carrier, for direct partial oxidation of methane to syngas in the absence of gaseous oxygen was explored. The mixed oxide was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the catalytic performances were studied in a fixed-bed quartz reactor and a thermogravimetric reactor, respectively. Approximately 99.4% H2 se...

  10. Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor

    NARCIS (Netherlands)

    Jacobs, M.; Van Noyen, J.; Larring, Y.; McCann, M.; Pishahang, M.; Amini, S.; Ortiz, M.; Galluci, F.; Sint-Annaland, M. V.; Tournigant, D.; Louradour, E.; Snijkers, F.

    2015-01-01

    Chemical looping combustion (CLC) is a promising carbon capture technology where cyclic reduction and oxidation of a metallic oxide, which acts as a solid oxygen carrier, takes place. With this system, direct contact between air and fuel can be avoided, and so, a concentrated CO2 stream is generated

  11. The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter

    Science.gov (United States)

    Waggoner, Derek C.; Wozniak, Andrew S.; Cory, Rose M.; Hatcher, Patrick G.

    2017-07-01

    Evidence suggests that reactive oxygen species (ROS) are important in transforming the chemical composition of the large pool of terrestrially-derived dissolved organic matter (DOM) exported from land to water annually. However, due to the challenges inherent in isolating the effects of individual ROS on DOM composition, the role of ROS in the photochemical alteration of DOM remains poorly characterized. In this work, terrestrial DOM was independently exposed to singlet oxygen (1O2), and superoxide (O2-rad under controlled laboratory conditions). Using ultra-high resolution mass spectrometry to track molecular level alterations of DOM by ROS, these findings suggest exposure to 1O2 (generated using Rose Bengal and visible light) removed formulas with an O/C > 0.3, and primarily resulted in DOM comprised of formulas with higher oxygen content, while O2-rad exposure (from KO2 in DMSO) removed formulas with O/C 1.5). Comparison of DOM altered by ROS in this study to riverine and coastal DOM showed that (20-80%) overlap in formulas, providing evidence for the role of ROS in shaping the composition of DOM exported from rivers to oceans.

  12. Modelling of L-valine Repeated Fed-batch Fermentation Process Taking into Account the Dissolved Oxygen Tension

    Directory of Open Access Journals (Sweden)

    Tzanko Georgiev

    2009-03-01

    Full Text Available This article deals with synthesis of dynamic unstructured model of variable volume fed-batch fermentation process with intensive droppings for L-valine production. The presented approach of the investigation includes the following main procedures: description of the process by generalized stoichiometric equations; preliminary data processing and calculation of specific rates for main kinetic variables; identification of the specific rates takes into account the dissolved oxygen tension; establishment and optimisation of dynamic model of the process; simulation researches. MATLAB is used as a research environment.

  13. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    Science.gov (United States)

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mg O2 L -1 , which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    Science.gov (United States)

    Irby, Isaac D.; Friedrichs, Marjorie A. M.; Da, Fei; Hinson, Kyle E.

    2018-05-01

    The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic-biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO) concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L-1) will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  15. Hydrogen Production from Cyclic Chemical Looping Steam Methane Reforming over Yttrium Promoted Ni/SBA-16 Oxygen Carrier

    Directory of Open Access Journals (Sweden)

    Sanaz Daneshmand-Jahromi

    2017-09-01

    Full Text Available In this work, the modification of Ni/SBA-16 oxygen carrier (OC with yttrium promoter is investigated. The yttrium promoted Ni-based oxygen carrier was synthesized via co-impregnation method and applied in chemical looping steam methane reforming (CL-SMR process, which is used for the production of clean energy carrier. The reaction temperature (500–750 °C, Y loading (2.5–7.4 wt. %, steam/carbon molar ratio (1–5, Ni loading (10–30 wt. % and life time of OCs over 16 cycles at 650 °C were studied to investigate and optimize the structure of OC and process temperature with maximizing average methane conversion and hydrogen production yield. The synthesized OCs were characterized by multiples techniques. The results of X-ray powder diffraction (XRD and energy dispersive X-ray spectroscopy (EDX of reacted OCs showed that the presence of Y particles on the surface of OCs reduces the coke formation. The smaller NiO species were found for the yttrium promoted OC and therefore the distribution of Ni particles was improved. The reduction-oxidation (redox results revealed that 25Ni-2.5Y/SBA-16 OC has the highest catalytic activity of about 99.83% average CH4 conversion and 85.34% H2 production yield at reduction temperature of 650 °C with the steam to carbon molar ratio of 2.

  16. Linking Stream Dissolved Oxygen with the Dynamic Environmental Drivers across the Pacific Coast of U.S.A.

    Science.gov (United States)

    Araya, F. Z.; Abdul-Aziz, O. I.

    2017-12-01

    This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.

  17. Measurements of the 18O/16O ratio of dissolved oxygen in the North Sea during FLEX 76

    International Nuclear Information System (INIS)

    Foerstel, H.; Zielke, H.

    1978-01-01

    In spring 1976 a special part of the North Sea was the subject of research by a group of international scientists in the so-called 'Fladenground Experiment 1976 (FLEX 76). The team participated aboard the research ship Planet in an attempt to study the oxygen exchange between sea and atmosphere and the mixing within the water column. The water samples were taken in a small area during a period of two weeks. The water depth did not exceed 140 m. The dissolved oxygen was extracted using a vacuum system, and stored after adsorption on a molecular sieve. In the laboratory the oxygen was burned to carbon dioxide and the 18 O/ 16 O ratio was determined with a mass spectrometer. At the surface the sea water was saturated with air and showed the 18 O/ 16 O ratio of atmospheric oxygen. Towards the deeper layers the oxygen was consumed, and as a result the heavier isotope 18 O was enriched. This enrichment can be seen in a very marked manner even in the upper 100 m of the sea. In our case the 18 O enrichment indicates that the mixing processes did not exchange the oxygen of the layers beneath the surface rapidly. (Auth.)

  18. Simulation of Feedforward-Feedback Control of Dissolved Oxygen of Microbial Repeated Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Ling Gao

    2016-09-01

    Full Text Available Fed-batch culture is often used in industry, and dissolved oxygen (DO concentration control is important in fermentation process control. DO control is often applied by using feedback (FB control strategy. But, feedforward-feedback (FF-FB control has the advantage in dealing with the time-varying characteristics resulted from the cell growth during the fermentation process. Mathematical modeling and computer simulation is a useful tool in analysis of the control system.  In this research, the FF-FB DO control and FB substrate control of repeated fed-batch culture process is modeled and simulated. The results showed the feasibility of the control strategy. These results are useful for control system development and process analyses and optimization.

  19. Tolerance of Oncomelania hupensis quadrasi to varying concentrations of dissolved oxygen and organic pollution*

    Science.gov (United States)

    Garcia, Rolando G.

    1972-01-01

    Ecological investigations were made of habitats containing natural populations of the snail Oncomelania hupensis quadrasi and of habitats free from the snail in the island of Leyte, Philippines. This species of snail is a vector of Schistosoma japonicum in the Philippines. Snail-infested habitats had dissolved oxygen levels of 3.8-9.85 ppm but snail-free habitats had levels of only 0.08-3.6 ppm. Snail-infested habitats were less polluted by organic matter than habitats that were snail-free. Larger numbers of chlorophyll-bearing algae were present in both the water and the soil of snail-infested habitats. Other factors, including temperature, pH, hydrogen carbonate alkalinity, and relative humidity, were also investigated. PMID:4538906

  20. The Reduction Reaction of Dissolved Oxygen in Water by Hydrazine over Platinum Catalyst Supported on Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Moon, J.S. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    The reduction reaction of dissolved oxygen (DO) by hydrazine was investigated on activated carbon fiber (ACF) and Pt/ACF catalysts using a batch reactor with an external circulating loop. The ACF itself showed catalytic activity and this was further improved by supporting platinum on ACF. The catalytic role platinum is ascribed to its acceleration of hydrazine decomposition, based on electric potential and current measurements as well as the kinetic study. (author). 15 refs., 13 figs.

  1. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay

    Directory of Open Access Journals (Sweden)

    I. D. Irby

    2018-05-01

    Full Text Available The Chesapeake Bay region is projected to experience changes in temperature, sea level, and precipitation as a result of climate change. This research uses an estuarine-watershed hydrodynamic–biogeochemical modeling system along with projected mid-21st-century changes in temperature, freshwater flow, and sea level rise to explore the impact climate change may have on future Chesapeake Bay dissolved-oxygen (DO concentrations and the potential success of nutrient reductions in attaining mandated estuarine water quality improvements. Results indicate that warming bay waters will decrease oxygen solubility year-round, while also increasing oxygen utilization via respiration and remineralization, primarily impacting bottom oxygen in the spring. Rising sea level will increase estuarine circulation, reducing residence time in bottom waters and increasing stratification. As a result, oxygen concentrations in bottom waters are projected to increase, while oxygen concentrations at mid-depths (3 < DO < 5 mg L−1 will typically decrease. Changes in precipitation are projected to deliver higher winter and spring freshwater flow and nutrient loads, fueling increased primary production. Together, these multiple climate impacts will lower DO throughout the Chesapeake Bay and negatively impact progress towards meeting water quality standards associated with the Chesapeake Bay Total Maximum Daily Load. However, this research also shows that the potential impacts of climate change will be significantly smaller than improvements in DO expected in response to the required nutrient reductions, especially at the anoxic and hypoxic levels. Overall, increased temperature exhibits the strongest control on the change in future DO concentrations, primarily due to decreased solubility, while sea level rise is expected to exert a small positive impact and increased winter river flow is anticipated to exert a small negative impact.

  2. Oxygen consumption by hydrazine in long sample lines

    International Nuclear Information System (INIS)

    Chi, Lisheng; Turner, Carl-W.

    2012-09-01

    In nuclear power plants secondary side system dissolved oxygen concentration is a strictly controlled chemistry parameter intended to minimize corrosion and fouling of steam cycle components. Low dissolved oxygen concentration is maintained by a combination of mechanical de-aeration and chemical reaction. The dissolved oxygen concentration in feedwater is monitored by sampling systems to ensure it remains within station specification during operation. The sample lines in a nuclear power plant's sampling system can be from 5 to nearly 200 meters in length, resulting in sample residence times between the take-off point to the analyzer from a few seconds to several minutes, depending on the flow rate and the length of the sample line. For many chemical parameters the residence time is of no concern. For measurements of dissolved oxygen and hydrazine in the secondary coolant, however, for residence times longer than one minute, it is uncertain whether the sample is representative of conditions in the secondary coolant, especially for samples taken from locations where the temperature is well over 100 deg. C. To address this concern, a series of tests were conducted under both warm-up and power operation conditions, respectively, to investigate the effect of temperature, residence time, sample line length, surface area, hydrazine-to-oxygen ratio, and the concentrations of dissolved oxygen and hydrazine on the consumption of oxygen by hydrazine. The test results revealed that dissolved oxygen measurements in CANDU plants are underestimated to various degrees, depending on the sampling system operating conditions. Two distinct types of behaviours are observed for the oxygen removal rate: 1) the percentage removal of dissolved oxygen is invariant with time during the tests, and increases with increasing residence time in the test section, when the reaction between hydrazine and oxygen is better described by a homogenous reaction mechanism, and 2) the percentage oxygen

  3. Methods and Best Practice to Intercompare Dissolved Oxygen Sensors and Fluorometers/Turbidimeters for Oceanographic Applications

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2016-05-01

    Full Text Available In European seas, ocean monitoring strategies in terms of key parameters, space and time scale vary widely for a range of technical and economic reasons. Nonetheless, the growing interest in the ocean interior promotes the investigation of processes such as oxygen consumption, primary productivity and ocean acidity requiring that close attention is paid to the instruments in terms of measurement setup, configuration, calibration, maintenance procedures and quality assessment. To this aim, two separate hardware and software tools were developed in order to test and simultaneously intercompare several oxygen probes and fluorometers/turbidimeters, respectively in the same environmental conditions, with a configuration as close as possible to real in-situ deployment. The chamber designed to perform chlorophyll-a and turbidity tests allowed for the simultaneous acquisition of analogue and digital signals of several sensors at the same time, so it was sufficiently compact to be used in both laboratory and onboard vessels. Methodologies and best practice committed to the intercomparison of dissolved oxygen sensors and fluorometers/turbidimeters have been used, which aid in the promotion of interoperability to access key infrastructures, such as ocean observatories and calibration facilities. Results from laboratory tests as well as field tests in the Mediterranean Sea are presented.

  4. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    Science.gov (United States)

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  5. Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration.

    Science.gov (United States)

    Castro, Felipe D; Sedman, Jacqueline; Ismail, Ashraf A; Asadishad, Bahareh; Tufenkji, Nathalie

    2010-06-01

    The effects of dissolved oxygen tension during bacterial growth and acclimation on the cell surface properties and biochemical composition of the bacterial pathogens Escherichia coli O157:H7 and Yersinia enterocolitica are characterized. Three experimental techniques are used in an effort to understand the influence of bacterial growth and acclimation conditions on cell surface charge and the composition of the bacterial cell: (i) electrophoretic mobility measurements; (ii) potentiometric titration; and (iii) ATR-FTIR spectroscopy. Potentiometric titration data analyzed using chemical speciation software are related to measured electrophoretic mobilities at the pH of interest. Titration of bacterial cells is used to identify the major proton-active functional groups and the overall concentration of these cell surface ligands at the cell membrane. Analysis of titration data shows notable differences between strains and conditions, confirming the appropriateness of this tool for an overall charge characterization. ATR-FTIR spectroscopy of whole cells is used to further characterize the bacterial biochemical composition and macromolecular structures that might be involved in the development of the net surficial charge of the organisms examined. The evaluation of the integrated intensities of HPO(2)(-) and carbohydrate absorption bands in the IR spectra reveals clear differences between growth protocols. Taken together, the three techniques seem to indicate that the dissolved oxygen tension during cell growth or acclimation can noticeably influence the expression of cell surface molecules and the measurable cell surface charge, though in a strain-dependent fashion.

  6. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir.

  7. Cultivation of Biogranules in a Continuous Flow Reactor at Low Dissolved Oxygen

    International Nuclear Information System (INIS)

    Chen Yuancai; Lin Chejen; Chen Honglei; Fu Shiyu; Zhan Huaiyu

    2009-01-01

    This study investigated sludge granulation inoculated with various mixtures of aerobic and anaerobic sludge at low dissolved oxygen (DO; 0.3-0.6 mg/l) or aerobic (>2.5 mg/l) conditions in four parallel flow reactor systems. Formation of high-density coupled granules was achieved in the reactor system inoculated with anaerobic and aerobic sludge seeds (1:1 mass ratio) at low DO concentrations, with a mean size of 2.5 mm after only 27 days of cultivation. The highest ratio of protein (PN) to polysaccharide (PS; 3.3) was observed for the coupled sludge compared to granules cultivated under aerobic conditions. The PN/PS ratio correlated well with high hydrophobicity, low sludge volumetric index, and compact granular structure. Activity tests of the specific anaerobic and aerobic biomass confirmed that anaerobes and aerobes coexisted in the same coupled granule. Based on the optical microscopic and SEM observations, the process of coupled granule formation was proposed.

  8. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    International Nuclear Information System (INIS)

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee ''General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir

  9. High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake

    Science.gov (United States)

    Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew

    2017-12-01

    Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.

  10. Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum

    International Nuclear Information System (INIS)

    Pflugmacher, S.; Pietsch, C.; Rieger, W.; Steinberg, C.E.W.

    2006-01-01

    Dissolved natural organic matter (NOM) is dead organic matter exceeding, in freshwater systems, the concentration of organic carbon in all living organisms by far. 80-90% (w/w) of the NOM is made up of humic substances (HS). Although NOM possesses several functional groups, a potential effect on aquatic organisms has not been studied. In this study, direct effects of NOM from various origins on physiological and biochemical functions in the aquatic plant Ceratophyllum demersum are presented. Environmentally relevant concentrations of NOM cause inhibitory effects on the photosynthetic oxygen production of C. demersum. Various NOM sources and the synthetic humic substance HS1500 inhibit the photosynthetic oxygen production of the plant as observed with 1-amino-anthraquinone, a known inhibitor of plant photosynthesis. 1-Aminoanthraquinone may serve as an analogue for the quinoid structures in NOM and HS. Most likely, the effects of NOM may be related to quinoid structures and work downstream of photosynthesis at photosystem (PS) II

  11. Effect of dissolved oxygen on the corrosion behavior of 304 SS in 0.1 N nitric acid containing chloride

    Science.gov (United States)

    Khobragade, Nilay N.; Bansod, Ankur V.; Patil, Awanikumar P.

    2018-04-01

    A study was undertaken in several selected mixed nitric acid/chloride ({{{{NO}}}3}-/{{{Cl}}}- ratio) electrolytes with the nitric acid concentration of 0.1 N and chloride concentration of 0, 10, 100, 1000 and 10 000 ppm. Electrochemical tests like potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis (M-S) were carried out when the electrolytes were in deaerated condition and were in open to air (OTA) condition, and the effect of dissolved oxygen was evaluated on the corrosion behavior of 304 SS. It was found that at a critical {{{{NO}}}3}-/{{{Cl}}}- ratio, a passive state is attained at the earliest in OTA condition. Also, the passive film resistance showed higher values in OTA condition than in deaerated condition exhibiting the effect of dissolved oxygen. The results of EIS results confirmed the results obtained by potentiodynamic polarization wherein the low passive current densities were obtained in OTA condition. Mott-Schottky analysis revealed the lowest defect densities in 100 ppm Cl‑ solution in OTA condition and in 10 ppm Cl‑ solution in deaerated condition indicating less defective films formed in these solutions. XPS analysis showed that the film was bilayer in nature in confirmation with M-S analysis. The results were discussed with point defect model (PDM) and by competitive surface adsorption.

  12. Model development for prediction and mitigation of dissolved oxygen sags in the Athabasca River, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Nancy, E-mail: nancy@ualberta.ca [Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2W2 (Canada); McEachern, Preston [Tervita Corporation, AB (Canada); Yu, Tong; Zhu, David Z. [Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2W2 (Canada)

    2013-01-15

    Northern rivers exposed to high biochemical oxygen demand (BOD) loads are prone to dissolved oxygen (DO) sags in winter due to re-aeration occurring within limited open water leads. Additionally, photosynthesis is reduced by decreased daylight hours, inability of solar radiation to pass through ice, and slower algal growth in winter. The low volumetric flow decreases point-source dilution while their travel time increases. The Athabasca River in Alberta, Canada, has experienced these sags which may affect the aquatic ecosystem. A water quality model for an 800 km reach of this river was customized, calibrated, and validated specifically for DO and the factors that determine its concentration. After validation, the model was used to assess the assimilative capacity of the river and mitigation measures that could be deployed. The model reproduced the surface elevation and water temperature for the seven years simulated with mean absolute errors of < 15 cm and < 0.9 °C respectively. The ice cover was adequately predicted for all seven winters, and the simulation of nutrients and phytoplankton primary productivity were satisfactory. The DO concentration was very sensitive to the sediment oxygen demand (SOD), which represented about 50% of the DO sink in winter. The DO calibration was improved by implementing an annual SOD based on the BOD load. The model was used to estimate the capacity of the river to assimilate BOD loads in order to maintain a DO concentration of 7 mg/L, which represents the chronic provincial guideline plus a buffer of 0.5 mg/L. The results revealed the maximum assimilative BOD load of 8.9 ton/day at average flow conditions, which is lower than the maximum permitted load. In addition, the model predicted a minimum assimilative flow of about 52 m{sup 3}/s at average BOD load. Climate change scenarios could increase the frequency of this low flow. A three-level warning-system is proposed to manage the BOD load proactively at different river

  13. Timescales for determining temperature and dissolved oxygen trends in the Long Island Sound (LIS) estuary

    Science.gov (United States)

    Staniec, Allison; Vlahos, Penny

    2017-12-01

    Long-term time series represent a critical part of the oceanographic community's efforts to discern natural and anthropogenically forced variations in the environment. They provide regular measurements of climate relevant indicators including temperature, oxygen concentrations, and salinity. When evaluating time series, it is essential to isolate long-term trends from autocorrelation in data and noise due to natural variability. Herein we apply a statistical approach, well-established in atmospheric time series, to key parameters in the U.S. east coast's Long Island Sound estuary (LIS). Analysis shows that the LIS time series (established in the early 1990s) is sufficiently long to detect significant trends in physical-chemical parameters including temperature (T) and dissolved oxygen (DO). Over the last two decades, overall (combined surface and deep) LIS T has increased at an average rate of 0.08 ± 0.03 °C yr-1 while overall DO has dropped at an average rate of 0.03 ± 0.01 mg L-1yr-1 since 1994 at the 95% confidence level. This trend is notably faster than the global open ocean T trend (0.01 °C yr-1), as might be expected for a shallower estuarine system. T and DO trends were always significant for the existing time series using four month data increments. Rates of change of DO and T in LIS are strongly correlated and the rate of decrease of DO concentrations is consistent with the expected reduced solubility of DO at these higher temperatures. Thus, changes in T alone, across decadal timescales can account for between 33 and 100% of the observed decrease in DO. This has significant implications for other dissolved gases and the long-term management of LIS hypoxia.

  14. Method for dissolving ceramic beryllia

    International Nuclear Information System (INIS)

    Sands, A.E.

    1975-01-01

    A process is described for dissolving a nuclear fuel composition consisting of a sintered mass containing beryllia, a nuclear fuel selected from uranium and plutonium and a stabilizing agent, sintered at a temperature of at least 1500 0 C to a density of about 2.7 gs/cc. The process comprises contacting said sintered mass with a stoichiometric excess of lithium oxide dissolved or dispersed in a carrier selected from lithium hydroxide, sodium hydroxide or sodium nitrate at a temperature in the range 750--850 0 C to convert the beryllia to lithium beryllate and thereafter recovering the nuclear fuel content of said mass. (U.S.)

  15. Spectrophotometric determination of dissolved oxygen in water and heavy water through the formation of argentocyanide complex from silver sol (Preprint No. CA-5)

    International Nuclear Information System (INIS)

    Pal, Tarasankar; Das, P.K.; Pal, Anjali

    1989-04-01

    A yellow silver sol is used as the colour reagent for the determination of trace amounts of dissolved oxygen in water by following the oxygen and cyanide-dependent decrease in intensity of the coloured silver sol at 415nm. The method is best suited to the routine determination of DO in industrial and natural waters at concentrations down to 50 pph. This is the first report of the determination of DO in water using a yellow silver sol in an alkaline medium. (author). 32 refs., 2 tabs

  16. Dissolved oxygen, salinity, temperature, and depth data from bottle casts in the North Atlantic Ocean from 07 February 1987 to 18 February 1991 (NODC Accession 0000290)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved oxygen, salinity, temperature, and depth data were collected using bottle casts in the North Atlantic Ocean from February 7, 1987 to February 18, 1991....

  17. INVESTIGATION OF DISSOLVED SULPHATE IN VARIOUS GEOTHERMAL FIELDS OF SUMATRA USING OXYGEN AND SULPHUR ISOTOPES

    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati

    2010-06-01

    Full Text Available There are at least 30 high temperature systems; eleven active volcanoes, five degassing volcanoes and one caldera volcano controlled by Sumatra Fault Zone over a length of 1700 km. To understand this geothermal field system, some information about geochemistry including isotope composition in its fluid is needed. Sulphur-34 and oxygen-18 isotopes in dissolved sulphate pair have been used to determine the origin of acidic fluid of sulphate and to evaluate the process involved. The fluids from eight hot springs, two fumaroles, four deep wells and crater have been collected in along Sumatra geothermal fields. Sulphur-34 (d 34S (SO4, 0/00 CDT and oxygen-18 (d 18O (SO4, 0/00 SMOW in sulphate is analyzed according to Robinson-Kusakabe and Rafter method, respectively. The d 34S (SO4 values from Sibayak wells are more enriched of 16.8 0/00 to 18.2 0/0 that may indicate the dissolution of anhydrite minerals or isotope partitioning in hydration of SO2. The d 34S (SO4 values from two fumaroles (Pusuk Bukit - North Sumatra and Rantau Dadap - South Sumatra are at depleted value of -0.150/00 and 1.80/00, those are close to d 34S from magmatic sulphur.  In general, the d 34S (SO4 of springs spread in a wide range of 5.250/00 to14.20/00 and show a mixing process between atmospheric sulphate and sulphate from deep wells. The d 18O (SO4 from wells exhibits depleted value around -3.60/00 suggesting that 87.5% of sulphate oxygen is derived from groundwater oxygen and 12.5% is derived from atmospheric molecular oxygen in sulphide oxidation reaction. In the other hand, hot springs (except Semurup, crater and fumaroles have enriched value of d 18O (SO4. These enriched values suggest that a higher percentage of atmospherically derived oxygen compared to those from the depth.   Keywords: isotope, geothermal, Sumatra

  18. Dissolved oxygen, salinity, temperature, and depth data from bottle casts in the North Atlantic Ocean from 05 February 1973 to 19 August 1980 (NODC Accession 0000289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved oxygen, salinity, temperature, and depth data were collected using bottle casts in the North Atlantic Ocean from February 5, 1973 to August 19, 1980. These...

  19. Extreme dissolved oxygen variability in urbanised tropical wetlands: The need for detailed monitoring to protect nursery ground values

    Science.gov (United States)

    Dubuc, Alexia; Waltham, Nathan; Malerba, Martino; Sheaves, Marcus

    2017-11-01

    Little is known about levels of dissolved oxygen fish are exposed to daily in typical urbanised tropical wetlands found along the Great Barrier Reef coastline. This study investigates diel dissolved oxygen (DO) dynamics in one of these typical urbanised wetlands, in tropical North Queensland, Australia. High frequency data loggers (DO, temperature, depth) were deployed for several days over the summer months in different tidal pools and channels that fish use as temporal or permanent refuges. DO was extremely variable over a 24 h cycle, and across the small-scale wetland. The high spatial and temporal DO variability measured was affected by time of day and tidal factors, namely water depth, tidal range and tidal direction (flood vs ebb). For the duration of the logging time, DO was mainly above the adopted threshold for hypoxia (50% saturation), however, for around 11% of the time, and on almost every logging day, DO values fell below the threshold, including a severe hypoxic event (nursery ground value. There is a substantial discontinuity between the recommended DO values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality and the values observed in this wetland, highlighting the limited value of these guidelines for management purposes. Local and regional high frequency data monitoring programs, in conjunction with local exposure risk studies are needed to underpin the development of the management that will ensure the sustainability of coastal wetlands.

  20. Oxygen and minority carrier lifetimes in N-and P-type AL0.2GA0.8AS grown by metal organics vapor phase epitaxy

    International Nuclear Information System (INIS)

    Zahraman, Khaled; Leroux, M.; Gibart, P.; Zaidi, M.A.; Bremond, G.; Guillot, G.

    2000-01-01

    author.The minority carrier lifetimes in Al x Ga 1-x As grown by Metal-Organics Vapor Phase Epitaxy (MOVPE) is generally lower than in GaAs. This is believed to be due to oxygen incorporation in the layers. We describe a study of radiative and non radiative minority carriers lifetimes in n-and p-type Al 0.2 Ga 0.8 As as a function of growth parameters, in correlation with oxygen concentration measurements and deep level transient spectroscopy (DLTS) studies. Long non radiative lifetimes and low oxygen contents are achieved using temperature growth. A main minority hole lifetime killer appears to be 0.4 eV deep O related electron trap detected by DLTS at concentrations three orders of magnitude lower than the atomic oxygen one. Record lifetimes in MOVPE grown n-and p-type Al 0.2 Ga 0.8 As are obtained. An Al 0.85 Ga 0.15 As/Al 0.2 Ga 0.8 As surface recombination velocity lower than 4.5x10 3 cm.s -1 is measured

  1. Study of dissolved oxygen content in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan)

    Science.gov (United States)

    Grigoryeva, N. I.

    2017-09-01

    Seasonal changes in the dissolved oxygen (DO) content in water were analyzed based on long-term observations (2006-2013) in the Eastern Bosporus Strait (Peter the Great Bay, Sea of Japan). It was found that the monthly average DO concentrations at the bottom of the strait were significantly lower in summer than the average annual long-term data. The minimum DO contents were recorded during four months, from July to October. It was shown that the DO content in water depended on changes in current directions in the strait: lower DO contents resulted from hypoxic water inflow, mostly from Amur Bay.

  2. Millstone 3 condensate dissolved gas monitoring

    International Nuclear Information System (INIS)

    Burns, T.F.; Grondahl, E.E.; Snyder, D.T.

    1988-01-01

    Condensate dissolved oxygen problems at Millstone Point Unit 3 (MP3) were investigated using the Dissolved Gas Monitoring System developed by Radiological and Chemical Technology, Inc. under EPRI sponsorship. Argon was injected into the turbine exhaust basket tips to perform a dissolved gas transport analysis and determine steam jet air ejector gas removal efficiency. The operating configuration of the steam jet air ejector system was varied to determine the effect on gas removal efficiency. Following circulating water chlorination, the gas removal efficiency was determined to evaluate the effect of condenser tube fouling on steam jet air ejector performance

  3. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation

    Science.gov (United States)

    Heller, Maija I.; Lam, Phoebe J.; Moffett, James W.; Till, Claire P.; Lee, Jong-Mi; Toner, Brandy M.; Marcus, Matthew A.

    2017-08-01

    Oxygen minimum zones (OMZs) have been proposed to be an important source of dissolved iron (Fe) into the interior ocean. However, previous studies in OMZs have shown a sharp decrease in total dissolved Fe (dFe) and/or dissolved Fe(II) (dFe(II)) concentrations at the shelf-break, despite constant temperature, salinity and continued lack of oxygen across the shelf-break. The loss of both total dFe and dFe(II) suggests a conversion of the dFe to particulate form, but studies that have coupled the reduction-oxidation (redox) speciation of both dissolved and particulate phases have not previously been done. Here we have measured the redox speciation and concentrations of both dissolved and particulate forms of Fe in samples collected during the U.S. GEOTRACES Eastern tropical Pacific Zonal Transect (EPZT) cruise in 2013 (GP16). This complete data set allows us to assess possible mechanisms for loss of dFe. We observed an offshore loss of dFe(II) within the oxygen deficient zone (ODZ), where dissolved oxygen is undetectable, accompanied by an increase in total particulate Fe (pFe). Total pFe concentrations were highest in the upper ODZ. X-ray absorption spectroscopy revealed that the pFe maximum was primarily in the Fe(III) form as Fe(III) oxyhydroxides. The remarkable similarity in the distributions of total particulate iron and nitrite suggests a role for nitrite in the oxidation of dFe(II) to pFe(III). We present a conceptual model for the rapid redox cycling of Fe that occurs in ODZs, despite the absence of oxygen.

  4. Dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected from profile, discrete sampling, and time series observations using CTD, Niskin bottle, and other instruments from R/V Gulf Challenger near a buoy off the coast of New Hampshire, U.S. in the Gulf of Maine from 2011-01-11 to 2015-11-18 (NCEI Accession 0142327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains discrete measurements of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected at the buoy off...

  5. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (exercise and DO concentration on growth, feed conversion, survival and fin condition. By study's end, both increased swimming speed and higher DO were independently associated with a statistically significant increase in growth performance (p exercise and dissolved oxygen at saturation during Atlantic salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  6. Quantitative measurement of trace amounts of dissolved oxygen in the primary and secondary systems of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Castaneda, H.B.; Neale, T.A.

    1989-01-01

    Establishing and maintaining the correct water chemistry conditions in the primary and secondary systems of pressurized water reactor (PWR) nuclear power plants is essential in order to maximize the operating life and guarantee the uninterrupted availability of the major components of each PWR unit. The exact specifications for maintaining the correct water chemistry are well established. One of the most important parameters that must be closely monitored in a modern power generation plant is the level of dissolved oxygen (DO) present in the system. Because of the high temperatures and pressures involved, even minute traces of DO---on the order of a few parts per billion (ppb)---can be detrimental to the heat transfer surfaces in steam generators, heaters, etc. The authors argue that the method of determining trace levels of DO presented here is a modification of the original method that has greatly increased the detection level obtainable with Rhodazine-D. Measurements down to less than 1 ppb (μg/Liter), with a resolution of 0.5 ppb (μ/Liter), are now easily obtainable. No calibration procedures are required and no maintenance of critical components is needed. This quantitative method is based on the instantaneous stoichiometric reaction of Rhodazine-D with oxygen. After less than one minute the oxidation reaction is complete and the fully developed color is compared with a set of stable liquid color standards. The color standards are formulated using the oxidized form of Rhodazine-D, thus providing an exact color match for the reacted sample-reagent. Supporting data are presented that confirm the relative accuracy and sensitivity of the new method, as well as results of a comparative evaluation of the method versus in-line dissolved oxygen analyzers

  7. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico

    Science.gov (United States)

    Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco

    2016-07-01

    Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring

  8. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    Science.gov (United States)

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The impact of UV irradiation on the radical initiating capacity of dissolved dyes

    International Nuclear Information System (INIS)

    Vig, A.; Czilik, M.; Rusznak, I.

    2002-01-01

    Complete text of publication follows. Kinetics of photodecomposition of three model dyes dissolved in isopropanol-water mixture has been determined after exposure to UV radiation in the range from 360 through 400 nm and from 220 through 400 nm, respectively. It has been disclosed earlier that photodecomposition of the dissolved dyes was decelerated initially by the presence of the dissolved oxygen in the system. The presence of a radical initiator, AIBN was indispensable for arriving at the decomposition of the irradiated dye solution in the range from 360 through 400 nm. The equation of W i D = [O 2 ]/τ D was used for the calculation of radical initiating rate of the irradiated dye molecule on the isopropanol (W i D (mol/l x s)), where [O 2 ] (mol/l) is the dissolved oxygen concentration in the system and τ D (s) is duration of the induction period of the photodestruction of the dissolved dye. The equation is valid only for photodecomposition which are not chain reaction. The photodegradation of dissolved dyes was also other then chain reaction, consequently the above equation could be applied in the study too. The average radical initiating rate of the dyes applied in this study was in the order of magnitude equal to that of AIBN. The number of cycles between the first radical formation and the last regeneration of the dye molecule could be calculated in bath systems (in the presence and absence of oxygen, respectively): K = W i D /W D , where K is the number of cycles, W D (mol/l x s) is the initial rate of the decomposition of the dissolved dyed. The number of cycles in the oxygen containing systems significantly exceeded those obtained in the oxygen systems because W D was markedly higher in the latter system than in the former one

  10. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Atlantic salmon fry were stocked into twelve circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5-2 body-lengths per second, or BL/s) or low (less than 0.5 BL/s) swimming speeding and high (100% saturation) or low (70% saturation) dissolved oxygen (DO) while being raised fr...

  11. Predicting Impact of Climate Change on Water Temperature and Dissolved Oxygen in Tropical Rivers

    Directory of Open Access Journals (Sweden)

    Al-Amin Danladi Bello

    2017-07-01

    Full Text Available Predicting the impact of climate change and human activities on river systems is imperative for effective management of aquatic ecosystems. Unique information can be derived that is critical to the survival of aquatic species under dynamic environmental conditions. Therefore, the response of a tropical river system under climate and land-use changes from the aspects of water temperature and dissolved oxygen concentration were evaluated. Nine designed projected climate change scenarios and three future land-use scenarios were integrated into the Hydrological Simulation Program FORTRAN (HSPF model to determine the impact of climate change and land-use on water temperature and dissolved oxygen (DO concentration using basin-wide simulation of river system in Malaysia. The model performance coefficients showed a good correlation between simulated and observed streamflow, water temperature, and DO concentration in a monthly time step simulation. The Nash–Sutcliffe Efficiency for streamflow was 0.88 for the calibration period and 0.82 for validation period. For water temperature and DO concentration, data from three stations were calibrated and the Nash–Sutcliffe Efficiency for both water temperature and DO ranged from 0.53 to 0.70. The output of the calibrated model under climate change scenarios show that increased rainfall and air temperature do not affects DO concentration and water temperature as much as the condition of a decrease in rainfall and increase in air temperature. The regression model on changes in streamflow, DO concentration, and water temperature under the climate change scenarios illustrates that scenarios that produce high to moderate streamflow, produce small predicted change in water temperatures and DO concentrations compared with the scenarios that produced a low streamflow. It was observed that climate change slightly affects the relationship between water temperatures and DO concentrations in the tropical rivers that we

  12. Dissolved gases

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1981-01-01

    The concentrations of gaseous nitrogen, argon, oxygen and helium dissolved in groundwater are often different from their concentrations in rain and surface waters. These differences reflect changes in the gas content occurring after rain or surface water, having infiltrated into the ground, become isolated from equilibrium contact with the atmosphere. A study of these changes can give insight into the origin and subsequent subsurface history of groundwater. Nitrogen and argon concentrations for many groundwaters in southern Africa indicate that excess air is added to water during infiltration. The amount of excess air is believed to reflect the physical structure of the unsaturated zone and the climate of the recharge area. Since nitrogen and argon are essentially conservative in many aquifer environments in South Africa, their concentrations can be used in distinguishing grondwaters of different recharge origins. In some areas the high helium content of the groundwater suggests that much of the helium is derived through migration from a source outside (e.g. below) the aquifer itself. Radiogenic helium concentrations nevertheless show, in two artesian aquifers, a close linear relationship to the radiocarbon age of the groundwater. This indicates a uniformity in the factors responsible for the accumulation of helium, and suggests that in these circumstances helium data can be used to give information on the age of very old groundwater. In some groundwater dissolved oxygen concentrations are found to decrease with increasing groundwater age. Whilst the rate of decrease may be very different for different aquifers, the field measurement of oxygen may be useful in preliminary surveys directed toward the location of recharge areas

  13. Implementing oxygen control in chip-based cell and tissue culture systems.

    Science.gov (United States)

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  14. Effect of phytoremediation on concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site, Charleston, South Carolina, USA, 1998–2014

    Science.gov (United States)

    Landmeyer, James E.; Effinger, Thomas N.

    2016-01-01

    Concentrations of benzene, toluene, naphthalene, and dissolved oxygen in groundwater at a former manufactured gas plant site near Charleston, South Carolina, USA, have been monitored since the installation of a phytoremediation system of hybrid poplar trees in 1998. Between 2000 and 2014, the concentrations of benzene, toluene, and naphthalene (BT&N) in groundwater in the planted area have decreased. For example, in the monitoring well containing the highest concentrations of BT&N, benzene concentrations decreased from 10,200 µg/L to less than 4000 µg/L, toluene concentrations decreased from 2420 µg/L to less than 20 µg/L, and naphthalene concentrations decreased from 6840 µg/L to less than 3000 µg/L. Concentrations of BT&N in groundwater in all wells were observed to be lower during the summer months relative to the winter months of a particular year during the first few years after installing the phytoremediation system, most likely due to increased transpiration and contaminant uptake by the hybrid poplar trees during the warm summer months; this pathway of uptake by trees was confirmed by the detection of benzene, toluene, and naphthalene in trees during sampling events in 2002, and later in the study in 2012. These data suggest that the phytoremediation system affects the groundwater contaminants on a seasonal basis and, over multiple years, has resulted in a cumulative decrease in dissolved-phase contaminant concentrations in groundwater. The removal of dissolved organic contaminants from the aquifer has resulted in a lower demand on dissolved oxygen supplied by recharge and, as a result, the redox status of the groundwater has changed from anoxic to oxic conditions. This study provides much needed information for water managers and other scientists on the viability of the long-term effectiveness of phytoremediation in decreasing groundwater contaminants and increasing dissolved oxygen at sites contaminated by benzene, toluene, and naphthalene.

  15. Oxygen defects in Fe-substituted Tl-system superconductors

    Institute of Scientific and Technical Information of China (English)

    李阳; 曹国辉; 王耘波; 马庆珠; 熊小涛; 陈宁; 马如璋; 郭应焕; 许祝安; 王劲松; 张小俊; 焦正宽; 彭获田; 周思海

    1996-01-01

    For Fe-doped T1-1223 phase,the excess oxygen defects induced by Fe dopants are studied by means of Hall coefficient,thermogravimetric measurements,Mossbauer spectroscopy,and the model calculation of the effective bond valence.The extra oxygen defects have effects on carrier density and microstructure of the superconductors.In the light doping level of Fe (x=0-0.05),the superconducting transition and carrier density have significant corresponding relation--the zero resistance temperature Tco and carrier densities decrease linearly with Fe dopants increasing.The thermogravimetric measurements show that the Fe3+ ions’ substituting for Cu2+ ions can bring the extra oxygen into the lattice to form extra oxygen defects.The calculation of the effective bond valence shows that the decrease of carrier density originates the strongly localized binding of the extra oxygen defects.The distortion of Cu-O layer induced by the extra oxygen defects decreases the superconductive transition temperature.The microstructure

  16. Effects of Support on the Performance of NiO-Based Oxygen Carriers Effets du support sur les performances de matériaux transporteurs d’oxygène à base d’oxyde de nickel

    Directory of Open Access Journals (Sweden)

    Baek J.-I.

    2011-05-01

    Full Text Available The performance of an oxygen carrier for Chemical Looping Combustion varies with the support material used. NiO oxygen carriers were prepared using 60 or 70 wt% NiO and different raw support materials (γ-Al2O3, pseudoboehmite, α-Al2O3, γ-Al2O3 mixed with MgO, hydrotalcite, MgAl2O4, and γ-Al2O3 with added graphite by the mechanical mixing method. Reactivity tests were conducted using a thermogravimetric analyzer (TGA at 950˚C. The oxygen carriers prepared using γ-Al2O3, γ-Al2O3 mixed with a small amount of MgO, hydrotalcite, and MgAl2O4 showed high oxygen transfer capacity, high oxygen utilization, and a high oxygen transfer rate. Graphite addition to γ-Al2O3 did not increase the surface area or reactivity. The use of pseudoboehmite as a support led to a significant decrease in oxygen transfer capacity and severe agglomeration of the oxygen carriers during the redox reaction. The increase in MgO content in the raw support materials decreased the reduction reactivity. The oxygen carriers prepared with α-Al2O3 showed less oxygen transfer capacity than the other oxygen carriers. The differences in the reactivity according to the support type were explained by the relative strength of NiO-support interaction obtained from the temperature-programmed reduction analysis. The reactivity test results in this work indicate that γ-Al2O3 and hydrotalcite could be desirable raw support materials to prepare highly reactive NiO oxygen carriers with high NiO content. Les performances des materiaux transporteurs d’oxygene varient en fonction du support utilise dans le procede de combustion en boucle chimique. Differents materiaux a base d’oxyde de Nickel ont ete synthetises avec des concentrations elevees en NiO, comprises entre 60 et 70 %, sur differents supports (γ-Al2O3, pseudobohemite, α-Al2O3, γ-Al2O3 melangee avec MgO, hydrotalcite, MgAl2O4 et γ-Al2O3 additivees avec du graphite par melange mecanique. Des tests de reactivite ont ete

  17. Development of a Novel Cu(II Complex Modified Electrode and a Portable Electrochemical Analyzer for the Determination of Dissolved Oxygen (DO in Water

    Directory of Open Access Journals (Sweden)

    Salvatore Gianluca Leonardi

    2016-04-01

    Full Text Available The development of an electrochemical dissolved oxygen (DO sensor based on a novel Cu(II complex-modified screen printed carbon electrode is reported. The voltammetric behavior of the modified electrode was investigated at different scan rates and oxygen concentrations in PBS (pH = 7. An increase of cathodic current (at about −0.4 vs. Ag/AgCl with the addition of oxygen was observed. The modified Cu(II complex electrode was demonstrated for the determination of DO in water using chronoamperometry. A small size and low power consumption home-made portable electrochemical analyzer based on custom electronics for sensor interfacing and operating in voltammetry and amperometry modes has been also designed and fabricated. Its performances in the monitoring of DO in water were compared with a commercial one.

  18. Versatile common instrumentation for optical detection of pH and dissolved oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Sardesai, Neha [Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States); Rao, Govind [Center for Advanced Sensor Technology and Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States); Kostov, Yordan, E-mail: kostov@umbc.edu [Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States); Center for Advanced Sensor Technology and Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 (United States)

    2015-07-15

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devices while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring.

  19. Versatile common instrumentation for optical detection of pH and dissolved oxygen

    International Nuclear Information System (INIS)

    Sardesai, Neha; Rao, Govind; Kostov, Yordan

    2015-01-01

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devices while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring

  20. Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    International Nuclear Information System (INIS)

    Fujieda, S.; Fukamichi, K.; Suzuki, S.

    2014-01-01

    Highlights: • The aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe 0.88 Si 0.12 ) 13 becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe 0.88 Si 0.12 ) 13 is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe 0.88 Si 0.12 ) 13 in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration

  1. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    Science.gov (United States)

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  2. Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions

    Directory of Open Access Journals (Sweden)

    Peña Carlos F

    2011-02-01

    Full Text Available Abstract Background The oxygen transfer rate (OTR and dissolved oxygen tension (DOT play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax in cultures where the dissolved oxygen tension (DOT was kept constant. Results The results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%. This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR, reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT, the MMM of the polymer was practically the same (around 200 kDa at 300 and 700 rpm, and this remained constant throughout the cultivation. Conclusions Overall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.

  3. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    Science.gov (United States)

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  4. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    Directory of Open Access Journals (Sweden)

    Fengmei Li

    2015-12-01

    Full Text Available Dissolved oxygen (DO is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  5. Dissolved oxygen fluctuations in karst spring flow and implications for endemic species: Barton Springs, Edwards aquifer, Texas, USA

    Science.gov (United States)

    Mahler, Barbara J.; Bourgeais, Renan

    2013-01-01

    Karst aquifers and springs provide the dissolved oxygen critical for survival of endemic stygophiles worldwide, but little is known about fluctuations of dissolved oxygen concentrations (DO) and factors that control those concentrations. We investigated temporal variation in DO at Barton Springs, Austin, Texas, USA. During 2006–2012, DO fluctuated by as much as a factor of 2, and at some periods decreased to concentrations that adversely affect the Barton Springs salamander (Eurycea sorosum) (≤4.4 mg/L), a federally listed endangered species endemic to Barton Springs. DO was lowest (≤4.4 mg/L) when discharge was low (≤1 m3/s) and spring water temperature was >21 °C, although not at a maximum; the minimum DO recorded was 4.0 mg/L. Relatively low DO (3/s) and maximum T (22.2 °C). A four-segment linear regression model with daily data for discharge and spring water temperature as explanatory variables provided an excellent fit for mean daily DO (Nash–Sutcliffe coefficient for the validation period of 0.90). DO also fluctuated at short-term timescales in response to storms, and DO measured at 15-min intervals could be simulated with a combination of discharge, spring temperature, and specific conductance as explanatory variables. On the basis of the daily-data regression model, we hypothesize that more frequent low DO corresponding to salamander mortality could result from (i) lower discharge from Barton Springs resulting from increased groundwater withdrawals or decreased recharge as a result of climate change, and (or) (ii) higher groundwater temperature as a result of climate change.

  6. Bubble growth as a means to measure dissolved nitrogen concentration in aerated water

    Science.gov (United States)

    Ando, Keita; Yamashita, Tatsuya

    2017-11-01

    Controlling the amount of dissolved gases in water is important, for example, to food processing; it is essential to quantitatively evaluate dissolved gas concentration. The concentration of dissolved oxygen (DO) can be measured by commercial DO meters, but that of dissolved nitrogen (DN) cannot be obtained easily. Here, we propose a means to measure DN concentration based on Epstein-Plesset-type analysis of bubble growth under dissolved gas supersaturation. DO supersaturation in water is produced by oxygen microbubble aeration. The diffusion-driven growth of bubbles nucleated at glass surfaces in contact with the aerated water is first observed. The observed growth is then compared to the extended Epstein-Plesset theory that considers Fick's mass transfer of both DO and DN across bubble interfaces; in this comparison, the unknown DN concentration is treated as a fitting parameter. Comparisons between the experiment and the theory suggest, as expected, that DN can be effectively purged by oxygen microbubble aeration. This study was supported in part by the Mizuho Foundation for the Promotion of Science and by a MEXT Grant-in-Aid for the Program for Leading Graduate Schools.

  7. Cell-free oxygen carriers: scientific foundations, clinical development, and new directions.

    Science.gov (United States)

    Winslow, Robert M

    2008-10-01

    The most significant hurdle to the development of a safe and effective hemoglobin-based oxygen carrier ("blood substitute") is generally thought to be its propensity to cause vasoconstriction in the microcirculation and hypertension. Two theories for this effect are currently being studied: in one, scavenging NO by hemoglobin reduces vasorelaxation; in the other, cell-free hemoglobin oversupplies O2 (a known vasoconstrictor) to vascular walls by facilitated diffusion. While both mechanisms might lead to reduction of local NO concentration, the important distinction between the two is that if the NO scavenging theory is correct, it greatly diminishes the prospects to develop any solution based on free hemoglobin. However, if the O2-oversupply theory is correct, modifications to the hemoglobin molecule can be envisioned that can prevent oversupply and reduce toxicity. This review summarizes the development of Hemospan, a novel modification of human hemoglobin whose design is based on the O2-oversupply theory. Because of its low P50 and increased molecular size, the release of O2 in resistance vessels (arterioles) by Hemospan is restricted, and vasoconstriction is greatly reduced.

  8. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    Science.gov (United States)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of

  9. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    Science.gov (United States)

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  10. Transcriptome and Multivariable Data Analysis of Corynebacterium glutamicum under Different Dissolved Oxygen Conditions in Bioreactors

    Science.gov (United States)

    Sun, Yang; Guo, Wenwen; Wang, Fen; Peng, Feng; Yang, Yankun; Dai, Xiaofeng; Liu, Xiuxia; Bai, Zhonghu

    2016-01-01

    Dissolved oxygen (DO) is an important factor in the fermentation process of Corynebacterium glutamicum, which is a widely used aerobic microbe in bio-industry. Herein, we described RNA-seq for C. glutamicum under different DO levels (50%, 30% and 0%) in 5 L bioreactors. Multivariate data analysis (MVDA) models were used to analyze the RNA-seq and metabolism data to investigate the global effect of DO on the transcriptional distinction of the substance and energy metabolism of C. glutamicum. The results showed that there were 39 and 236 differentially expressed genes (DEGs) under the 50% and 0% DO conditions, respectively, compared to the 30% DO condition. Key genes and pathways affected by DO were analyzed, and the result of the MVDA and RNA-seq revealed that different DO levels in the fermenter had large effects on the substance and energy metabolism and cellular redox balance of C. glutamicum. At low DO, the glycolysis pathway was up-regulated, and TCA was shunted by the up-regulation of the glyoxylate pathway and over-production of amino acids, including valine, cysteine and arginine. Due to the lack of electron-acceptor oxygen, 7 genes related to the electron transfer chain were changed, causing changes in the intracellular ATP content at 0% and 30% DO. The metabolic flux was changed to rebalance the cellular redox. This study applied deep sequencing to identify a wealth of genes and pathways that changed under different DO conditions and provided an overall comprehensive view of the metabolism of C. glutamicum. The results provide potential ways to improve the oxygen tolerance of C. glutamicum and to modify the metabolic flux for amino acid production and heterologous protein expression. PMID:27907077

  11. Variations of dissolved oxygen in Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    DeSousa, S.N.; SenGupta, R.

    During non-monsoon months the estuaries were well mixed showing uniform oxygen concentrations from surface to bottom. However, during monsoon months both the estuaries showed stratified conditions with surface water showing high oxygen concentration...

  12. Dissolved carbohydrate in the central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Dhople, V.M.; Bhosle, N.B.

    with chlorophyll a (P 0.001) and phaeopigments (P 0.001) suggesting its release from the former and zooplankton grazing in the latter. Inverse correlations with dissolved oxygen, phosphate and nitrate indicated the possibility of the release of carbohydrate from...

  13. Determination of dissolved oxygen in saline waters applying mathematical methods and as a membrane electrode sensor; Determinacion de oxigeno disuelto en aguas salinas aplicando modelos matematicos y como sensor electrodo de membrana

    Energy Technology Data Exchange (ETDEWEB)

    Mayari, R.; Espinosa, M. C.; Ruiz, M. [Centro Nacional de Investigaciones Ceintificas. La Habana (Cuba); Romero, E. [Universidad de Huelva (Spain)

    2000-07-01

    This work shows as specific methodology for the determination of dissolved oxygen in saline waters that allows to consider the variations of temperature and of concentration of salts. Both factors influence the solubility of the gases in water, making possible in place measurements, in bodies of water with content of salts unto of the concentration of sea water, with greater dependability. The mathematical models obtained are shown, the errors due to equipment, as well as the results obtained when applying this methodology in saline waters with diverse levels of contamination this allows to discern when the decrease of dissolved oxygen levels is due to an increase in the salinity or to an increase in the contamination of the water body. (Author) 7 refs.

  14. Acid extraction by supported liquid membranes containing basic carriers

    International Nuclear Information System (INIS)

    Danesi, P.R.; Cianetti, C.; Horwitz, E.P.

    1983-01-01

    The extraction of HNO 3 (nitric acid) from aqueous solutions by permeation through a number of supported liquid membranes containing basic carriers dissolved in diethylbenzene has been studied. The results have shown that the best permeations are obtained with long chain aliphatic amines (TLA, Primene JM-T) followed by TOPO (trioctylphosphine oxide) and then by other monofunctional and bifunctional organophosphorous basic carriers. The influence of an aliphatic diluent on the permeability of HNO 3 through a supported liquid membrane containing TLA as carrier was also investigated. In this case the permeability to HNO 3 decreases as a result of the lower diffusion coefficient of the acid-carrier complex in the more vicous aliphatic solvent. 4 figures

  15. Impact of upwelling events on the sea water carbonate chemistry and dissolved oxygen concentration in the Gulf of Papagayo (Culebra Bay, Costa Rica: Implications for coral reefs

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2012-04-01

    Full Text Available The Gulf of Papagayo, Pacific coast of Costa Rica, is one of the three seasonal upwelling areas of Mesoamerica. In April 2009, a 29-hour experiment was carried out at the pier of the Marina Papagayo, Culebra Bay. We determined sea surface temperature (SST, dissolved oxygen concentration, salinity, pH, and the partial pressure of CO2 (pCO2. The aragonite saturation state (Ωa as well as the other parameters of the marine carbonate system such as the total dissolved inorganic carbon (DIC and the total alkalinity (TA were calculated based on the measured pH and the pCO2. The entrainment of subsurface waters raised the pCO2 up to 645 µatm. SSTs, dissolved oxygen concentrations decreased form 26.4 to 23.7°C and from 228 to 144 µmol l-1. Ωa dropped down to values of 2.1. Although these changes are assumed to reduce the coral growth, the main reef building coral species within the region (Pocillopora spp. and Pavona clavus reveal growth rates exceeding those measured at other sites in the eastern tropical Pacific. This implies that the negative impact of upwelling on coral growth might be overcompensated by an enhanced energy supply caused by the high density of food and nutrients and more favorable condition for coral growth during the non-upwelling season.

  16. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    Science.gov (United States)

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Synthesis and Application of Cerium-Incorporated SBA-16 Supported Ni-Based Oxygen Carrier in Cyclic Chemical Looping Steam Methane Reforming

    Directory of Open Access Journals (Sweden)

    Maryam Meshksar

    2018-01-01

    Full Text Available Hydrogen, as a clean energy carrier, could be produced aided by cyclic oxidation-reduction of oxygen carriers (OCs in contact with carbonaceous fuel in chemical looping steam methane reforming (CL-SMR process. In this study, the cerium was incorporated into the SBA-16 support structure to synthesize the Ni/Ce-SBA-16 OC. The supports were synthesized using hydrothermal method followed by impregnation of Ni and characterized via low and wide angle X-ray diffraction (XRD, Brunauer-Emmett-Teller (BET, scanning electron microscopy (SEM, coupled with energy dispersive X-ray (EDX spectroscopy, and transmission electron micrograph (TEM techniques. In addition, the effect of various Si/Ce molar ratios (20–60 in the support structure, Ni loading (10–30 wt %, reaction temperature (500–750 °C, and life time of optimal oxygen carrier over 16 cycles were investigated. The results of wide angle XRD and SEM revealed that the incorporation of CeO2 in the channels of SBA-16 caused the formation of nickel metallic particles with smaller size and prevents the coke formation. The results showed that OC with 15 wt % Ni and Si/Ce molar ratio of 40 (15Ni/Ce-SBA-16(40 has the best performance when compared with other OCs in terms of catalytic activity and structural properties. The methane conversion of about 99.7% was achieved at 700 °C using 15Ni/Ce-SBA-16(40 OC. We anticipate that the strategy can be extended to investigate a variety of novel modified mesoporous silica as the supporting material for the Ni based OCs.

  18. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    International Nuclear Information System (INIS)

    Hallam, Brett; Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart

    2016-01-01

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation

  19. Photoluminescence of colloidal CdSe nano-tetrapods and quantum dots in oxygenic and oxygen-free environments

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lijuan [Donghua University, Applied Physics Department, Shanghai (China); Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Pang, Qi; Ge, Weikun; Wang, Jiannong [Hong Kong University of Science and Technology, Physics Department and the Institute of Nano-Science and Technology, Hong Kong (China); Yang, Shihe [Hong Kong University of Science and Technology, Chemistry Department and the Institute of Nano-Science and Technology, Hong Kong (China)

    2011-05-15

    The effects of oxygenic versus oxygen-free environments on colloidal CdSe nano-tetrapods and quantum dots (QDs) were studied using both continuous and time-resolved photoluminescence (PL) measurements. The decays of PL intensities for tetrapods and QDs in oxygen-free solution (chloroform) and in air (on silicon) can be well fitted by a bi-exponential function. Based on the emission-energy dependence of carrier lifetimes and the amplitude ratio of the fast-decay component to the slow-decay component, the fast and slow PL decays of CdSe nanocrystals are attributed to the recombination of delocalized carriers in the core states and localized carriers in the surface states, respectively. The PL intensities of CdSe nano-tetrapods and QDs were found to be five times and an order of magnitude higher in air than in vacuum, respectively, which is explained by the passivation of surface defects by the polar gas (oxygen) absorption. The lower enhancement in PL intensities of CdSe nano-tetrapods is explained by the special morphology of the tetrapods. (orig.)

  20. Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand

    Science.gov (United States)

    Delzer, Gregory C.; McKenzie, Stuart W.

    1999-01-01

    The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.

  1. Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions.

    Science.gov (United States)

    Zhang, Hong-Tao; Zhan, Xiao-Bei; Zheng, Zhi-Yong; Wu, Jian-Rong; Yu, Xiao-Bin; Jiang, Yun; Lin, Chi-Chung

    2011-07-01

    Expression at the mRNA level of ten selected genes in Agrobacterium sp. ATCC 31749 under various dissolved oxygen (DO) levels during curdlan fermentation related to electron transfer chain (ETC), tricarboxylic acid (TCA) cycle, peptidoglycan/lipopolysaccharide biosynthesis, and uridine diphosphate (UDP)-glucose biosynthesis were determined by qRT-PCR. Experiments were performed at DO levels of 30%, 50%, and 75%, as well as under low-oxygen conditions. The effect of high cell density on transcriptional response of the above genes under low oxygen was also studied. Besides cytochrome d (cyd A), the transcription levels of all the other genes were increased at higher DO and reached maximum at 50% DO. Under 75% DO, the transcriptional levels of all the genes were repressed. In addition, transcription levels of icd, sdh, cyo A, and fix N genes did not exhibit significant fluctuation with high cell density culture under low oxygen. These results suggested a mechanism for DO regulation of curdlan synthesis through regulation of transcriptional levels of ETCs, TCA, and UDP-glucose synthesis genes during curdlan fermentation. To our knowledge, this is the first report that DO concentration apparently regulates curdlan biosynthesis in Agrobacterium sp. ATCC 31749 providing essential lead for the optimization of the fermentation at the industrial scale.

  2. Regulatory approaches for addressing dissolved oxygen concerns at hydropower facilities

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddlemon, Gerald K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-03-01

    Low dissolved oxygen (DO) concentrations are a common water quality problem downstream of hydropower facilities. At some facilities, structural improvements (e.g. installation of weir dams or aerating turbines) or operational changes (e.g., spilling water over the dam) can be made to improve DO levels. In other cases, structural and operational approaches are too costly for the project to implement or are likely to be of limited effectiveness. Despite improvements in overall water quality below dams in recent years, many hydropower projects are unable to meet state water quality standards for DO. Regulatory agencies in the U.S. are considering or implementing dramatic changes in their approach to protecting the quality of the Nation’s waters. New policies and initiatives have emphasized flexibility, increased collaboration and shared responsibility among all parties, and market-based, economic incentives. The use of new regulatory approaches may now be a viable option for addressing the DO problem at some hydropower facilities. This report summarizes some of the regulatory-related options available to hydropower projects, including negotiation of site-specific water quality criteria, use of biological monitoring, watershed-based strategies for the management of water quality, and watershed-based trading. Key decision points center on the health of the local biological communities and whether there are contributing impacts (i.e., other sources of low DO effluents) in the watershed. If the biological communities downstream of the hydropower project are healthy, negotiation for site-specific water quality standards or biocriteria (discharge performance criteria based on characteristics of the aquatic biota) might be pursued. If there are other effluent dischargers in the watershed that contribute to low DO problems, watershed-scale strategies and effluent trading may be effective. This report examines the value of regulatory approaches by reviewing their use in

  3. Dissolved oxygen analysis for hydropower additions on the Illinois River

    International Nuclear Information System (INIS)

    Sundquist, M.J.; Elver, S.A.

    1993-01-01

    The Illinois Waterway is comprised of a system of eight locks along the Illinois River, the Des Plaines River, and the Chicago Sanitary Ship Canal which allow commercial barge traffic between the Mississippi River and Lake Michigan at the City of Chicago. Opportunities for production of hydroelectric power is present at several of these lock and dams. This paper presents the field study and computer simulation conducted to determine the feasibility of constructing hydroelectric powerhouses on two of these lock and dams. So as not to degrade recent improvements to water quality, the Federal Energy Regulatory Commission (FERC), in issuing the construction and operating licenses for these two hydroelectric facilities, requires the hydropower additions to not reduce the dissolved oxygen (D.O.) level downstream of the hydroelectric facilities below 6 parts per million (ppm). Presently, the waterway discharge passes through taintor gates at both of these lock and dam facilities which creates aeration. The addition of hydroelectric powerhouses would divert water from these spillways through generation equipment; consequently, the spillway aeration would not occur. The purpose of the study was to determine the amount of power generation from these facilities, given the existing waterway water quality and the FERC D.O. criteria. A computer simulation generation analysis was conducted to provide a database of the waterway water quality. A four-month extensive field collection survey was conducted over the 63 kilometer (39 mile) reach of the waterway which comprises the two downstream pools of the Brandon Road and Dresden Island projects, and 3 kilometers (2 miles) upstream of the Brandon Road Project. The analysis revealed that the hydroelectric additions were economically feasible and are an example of how the benefits of hydroelectric development can be balanced with environmental concerns

  4. Oxygen requirement of separated hybrid catfish eggs

    Science.gov (United States)

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  5. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    Science.gov (United States)

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  7. Nature of oxygen donors and radiation defects in oxygen-doped germanium

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Atobe, Kozo; Honda, Makoto; Matsuda, Koji.

    1991-01-01

    The nature of oxygen donors and radiation defects in oxygen-doped germanium were studied through measurements of the infrared absorption spectrum, deep level transient spectroscopy spectrum and carrier concentration. It is revealed that a new donor is not formed in oxygen-doped germanium. An A-center (interstitial oxygen-vacancy pair) forms a complex with a thermal donor in its annealing stage at 60degC-140degC. The introduction rate of defects by 1.5 MeV electron irradiation was enhanced in thermal-donor-doped samples. (author)

  8. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  9. Dissolved nitrogen in liquid lithium - a problem in fusion reactor chemistry

    International Nuclear Information System (INIS)

    Hubberstey, P.

    1984-01-01

    When dissolved in liquid lithium, nitrogen adopts the role filled by oxygen in liquid sodium systems, reacting readily with stainless steel containment materials to form Li 9 CrN 5 as a surface product; extended reaction leads to pronounced corrosion and embrittlement problems. It also interacts with both carbon and silicon impurities forming Li 2 NCN and Li 5 SiN 3 , respectively; it is inert, however, to oxygen impurity. Although dissolved nitrogen reacts with neither the tritium generated in the breeding process nor the lead added to act as a neutron multiplier, its presence may seriously influence tritium recovery processes since it reacts with and hence may poison the majority of the transition metals (Y,Ti,Zr) presently being considered as tritium getter materials. Its reactivity with these metals forms the basis of the hot trapping technique used to remove dissolved nitrogen from liquid lithium systems; cold trapping is ineffective because of its large solubility even at temperatures just above the melting point of pure lithium (453.6K). Whenever possible, the chemistry of nitrogen dissolved in liquid lithium is rationalised using the thermodynamic concepts and its significance to fusion reactor technology stressed. (author)

  10. Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain river

    Science.gov (United States)

    Sandra M. Clinton; Rick T. Edwards; Stuart E.G. Findlay

    2010-01-01

    We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were...

  11. Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions: Reactor operation and evaluation using modelling.

    Science.gov (United States)

    Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Béline, Fabrice; Magrí, Albert

    2018-02-01

    Swine wastewater was treated in two continuously aerated activated sludge (AS) systems at high (AS1: 1.7-2.6 mg/L) and low (AS2: 0.04-0.08 mg/L) dissolved oxygen (DO), and at three temperatures (10, 20, and 30 °C). Biochemical oxygen demand (BOD) removal was >94.8%. Meanwhile, total nitrogen (N) removal was significantly higher in AS2, at 64, 89, and 88%, than in AS1, at 12, 24, and 46%, for 10, 20, and 30 °C, respectively. The experimental data were considered in a simulation study using an AS model for BOD and N removal, which also included nitrite, free ammonia, free nitrous acid, and temperature. Simulations at high-DO showed that ammonium was partly oxidized into nitrate but not removed, whereas at low-DO ammonium was removed mainly through the nitrite shortcut in simultaneous nitrification-denitrification. This study demonstrates that treatment at low-DO is an effective method for removing N, and modelling a helpful tool for its optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bioavailability of dissolved organic nitrogen (DON) in wastewaters from animal feedlots and storage lagoons

    Science.gov (United States)

    Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...

  13. Effect of hydraulic retention time on ABR tail water treatment by contact oxidation process under low oxygen condition

    Science.gov (United States)

    Huang, Xiaolong; Shi, Chunhong; Wang, Zhenbao; Jiang, Kai

    2018-02-01

    Biological contact oxidation process of low dissolved oxygen was applied to the treatment of ABR tail water, which were pretreatment effluent for Island sewage. The reactor was built and filled with polyurethane suspension filler as carrier for biofilm growth in laboratory. The dissolved oxygen in the reactor is kept at 1.3-1.8mg/L to distinguish between traditional method which is 2.5-3.5mg/L. Influence of hydraulic retention time(HRT) on ABR tail water treatment by the process was studied. Results show that the system has good effect on removal of COD and TN under this condition. When HRT is among 4h to 12h, the removal rate of COD can be maintained at 80-90%.From period 1 to period 3, the removal rate of NH4 +N and TN at the end of each period can be recovered to a higher level, and the average removal rate after stabilization is 99% and 67% respectively which can come up to first grade of the national standard GB18918-2002. It is remarkable that when HRT is 4h, the removal rate of NH4 +-N and TN showed a significant decrease trend, the concentration of effluent was 14.79mg/L and 19.5mg/L, respectively.

  14. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production.

    Science.gov (United States)

    Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao

    2017-10-01

    Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH 3 -N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DOpigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure surgery. HSD and HSS have received regulatory approval in 14 and 3 countries, respectively, with 81,000+ units sold. The primary reported use was head injury and trauma resuscitation. Complications and reported adverse events are surprisingly rare and not significantly different from other solutions.HBOCs are potent volume expanders in addition to oxygen carriers with volume expansion greater than standard colloids. Several investigators have evaluated small volume hyperoncotic HBOCs or HS-HBOC formulations for hypotensive and normotensive resuscitation in animals. A consistent finding in resuscitation with HBOCs is depressed cardiac output. There is some evidence that HBOCs more efficiently unload oxygen from plasma hemoglobin as well as facilitate RBC

  16. Separation and determination of reduced vitamin C in polymerized hemoglobin-based oxygen carriers of the human placenta.

    Science.gov (United States)

    Chen, Gang; Mo, Ling; Li, Shen; Zhou, Wentao; Wang, Hong; Liu, Jiaxin; Yang, Chengmin

    2015-06-01

    The molybdenum blue method was used to determine the content of reduced vitamin C (Vc) in a solution of polymerized hemoglobin-based oxygen carriers (HBOCs) of the human placenta. The conditions of absorption wavelength, HCl addition, and reaction time, were investigated. The results of validation experiments showed that under the optimized conditions, a standard curve was confirmed with good linearity of 0.9985, for the Vc amount ranging from 0-200 μg. The values for relative standard deviation (RSD) of the precision and repeatability were both below 5%. Vc recovery was in the range of 97-102%. The conclusion could be made that a reduction in Vc content could be tested effectively by the molybdenum blue method.

  17. Depth distribution of carrier lifetime in 65 MeV oxygen ion irradiated silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kanjilal, D. [Nuclear Science Centre, New Delhi (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in

    2006-03-15

    CZ-grown, n-doped crystalline Si(1 1 1) of resistivity 60 {omega} cm and 140 {omega} cm were irradiated with 65 MeV energy oxygen ions, in the fluence range of 2 x 10{sup 1}-10{sup 14} ions/cm{sup 2}. The depth and spatial profile of excess minority carrier recombination time {tau} (lifetime) was measured using photoconductive decay (PCD) method. Lifetime measurements were carried out before the stopping range of impinging ions. Results show a monotonous decrease in lifetime with fluence, which is attributed to defect creation mechanism by electronic energy loss based on the thermal spike model. Also, surface modification is expected with a small loss in crystalline quality. This surface is considered to be a multi-crystalline surface with large grain boundaries that act as trapping sites for excess holes in n-Si(1 1 1). Annealing of the irradiated samples showed a near complete recovery at 750 deg. C for a period of 1 h.

  18. Suppression of aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} by reducing dissolved oxygen concentration for high-performance magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fujieda, S., E-mail: fujieda@tagen.tohoku.ac.jp; Fukamichi, K.; Suzuki, S.

    2014-07-05

    Highlights: • The aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} and its suppression were investigated. • The lattice expansion after immersion was caused by the hydrogen absorption. • The itinerant-electron metamagnetic transition became indistinct after immersion. • The aqueous corrosion was suppressed by reducing the dissolved oxygen concentration. - Abstract: The itinerant-electron metamagnetic transition of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} becomes indistinct after immersion in distilled-water containing about 8 ppm of the dissolved oxygen (DO) concentration because of aqueous corrosion. However, the aqueous corrosion of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} is significantly suppressed by reducing the DO concentration. Thus, isothermal magnetic entropy change after immersion for 30 days in deaerated distilled-water with a DO concentration less than 0.1 ppm is larger than that after immersion for 5 days in distilled-water containing about 8 ppm of the DO concentration. Consequently, the reduction of the DO concentration is effective for preservation of the excellent magnetocaloric effects of La(Fe{sub 0.88}Si{sub 0.12}){sub 13} in an aqueous solution, which is a promising heat transfer fluid of room-temperature magnetic refrigeration.

  19. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  20. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.

    Science.gov (United States)

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene

    2015-03-01

    Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both

  1. Theoretical analysis and experimental study of oxygen transfer under regular and non-breaking waves

    Institute of Scientific and Technical Information of China (English)

    尹则高; 梁丙臣; 王乐

    2013-01-01

    The dissolved oxygen concentration is an important index of water quality, and the atmosphere is one of the important sources of the dissolved oxygen. In this paper, the mass conservation law and the dimensional analysis method are employed to study the oxygen transfer under regular and non-breaking waves, and a unified oxygen transfer coefficient equation is obtained with consi-deration of the effect of kinetic energy and wave period. An oxygen transfer experiment for the intermediate depth water wave is per-formed to measure the wave parameters and the dissolved oxygen concentration. The experimental data and the least squares method are used to determine the constant in the oxygen transfer coefficient equation. The experimental data and the previous reported data are also used to further validate the oxygen transfer coefficient, and the agreement is satisfactory. The unified equation shows that the oxygen transfer coefficient increases with the increase of a parameter coupled with the wave height and the wave length, but it de-creases with the increase of the wave period, which has a much greater influence on the oxygen transfer coefficient than the coupled parameter.

  2. A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features

    Directory of Open Access Journals (Sweden)

    Chen Li

    2018-03-01

    Full Text Available To increase prediction accuracy of dissolved oxygen (DO in aquaculture, a hybrid model based on multi-scale features using ensemble empirical mode decomposition (EEMD is proposed. Firstly, original DO datasets are decomposed by EEMD and we get several components. Secondly, these components are used to reconstruct four terms including high frequency term, intermediate frequency term, low frequency term and trend term. Thirdly, according to the characteristics of high and intermediate frequency terms, which fluctuate violently, the least squares support vector machine (LSSVR is used to predict the two terms. The fluctuation of low frequency term is gentle and periodic, so it can be modeled by BP neural network with an optimal mind evolutionary computation (MEC-BP. Then, the trend term is predicted using grey model (GM because it is nearly linear. Finally, the prediction values of DO datasets are calculated by the sum of the forecasting values of all terms. The experimental results demonstrate that our hybrid model outperforms EEMD-ELM (extreme learning machine based on EEMD, EEMD-BP and MEC-BP models based on the mean absolute error (MAE, mean absolute percentage error (MAPE, mean square error (MSE and root mean square error (RMSE. Our hybrid model is proven to be an effective approach to predict aquaculture DO.

  3. The structural features of hemicelluloses dissolved out at different cooking stages of active oxygen cooking process.

    Science.gov (United States)

    Shi, Jianbin; Yang, Qiulin; Lin, Lu

    2014-04-15

    This work described the morphologic changes of corn stalk and the structural characterization of its hemicelluloses dissolved in yellow liquor at different cooking stages. The results showed that active oxygen cooking process was an efficient method to depolymerize the corn stalk into cellulose, hemicelluloses, and lignin as a pretreatment of biomass conversion. This cooking process can also be divided into three phases: bulk delignification, extended delignification, and residual delignification. During the heating-up period 57.67% of hemicelluloses and 62.31% of lignin were removed from the raw material. However, only 15% of hemicelluloses and 23.21% of lignin were removed during at temperature' period. The hemicelluloses from the corn stalk and yellow liquor were composed of (1→4)-β-D-xylopyranose backbones substituted with α-l-arabinofuranosyl, 4-O-methyl-α-D-glucuronic acid, and some methoxyl residues. The backbones of hemicelluloses were gradually cleaved during the cooking process. The acetyl groups substituted with xylopyranosyl residues were completely cleaved during the cooking process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Gas-solids kinetics of CuO/Al2O3 as an oxygen carrier for high-pressure chemical looping processes : the influence of the total pressure

    NARCIS (Netherlands)

    San Pio Bordeje, M.A.; Gallucci, F.; Roghair, I.; van Sint Annaland, M.

    2017-01-01

    Copper oxide on alumina is often used as oxygen carrier for chemical looping combustion owing to its very high reduction rates at lower temperatures and its very good mechanical and chemical stability at not too high temperatures. In this work, the redox kinetics of CuO/Al2O3 have been studied at

  5. One year of Seaglider dissolved oxygen concentration profiles at the PAP site

    Science.gov (United States)

    Binetti, Umberto; Kaiser, Jan; Heywood, Karen; Damerell, Gillian; Rumyantseva, Anna

    2015-04-01

    Oxygen is one of the most important variables measured in oceanography, influenced both by physical and biological factors. During the OSMOSIS project, 7 Seagliders were used in 3 subsequent missions to measure a multidisciplinary suite of parameters at high frequency in the top 1000 m of the water column for one year, from September 2012 to September 2013. The gliders were deployed at the PAP time series station (nominally at 49° N 16.5° W) and surveyed the area following a butterfly-shaped path. Oxygen concentration was measured by Aanderaa optodes and calibrated using ship CTD O2 profiles during 5 deployment and recovery cruises, which were in turn calibrated by Winkler titration of discrete samples. The oxygen-rich mixed layer deepens in fall and winter and gets richer in oxygen when the temperature decreases. The spring bloom did not happen as expected, but instead the presence of a series of small blooms was measured throughout spring and early summer. During the summer the mixed layer become very shallow and oxygen concentrations decreased. A Deep Oxygen Maximum (DOM) developed along with a deep chlorophyll maximum during the summer and was located just below the mixed layer . At this depth, phytoplankton had favourable light and nutrient conditions to grow and produce oxygen, which was not subject to immediate outgassing. The oxygen concentration in the DOM was not constant, but decreased, then increased again until the end of the mission. Intrusions of oxygen rich water are also visible throughout the mission. These are probably due to mesoscale events through the horizontal transport of oxygen and/or nutrients that can enhance productivity, particularly at the edge of the fronts. We calculate net community production (NCP) by analysing the variation in oxygen with time. Two methods have been proposed. The classical oxygen budget method assumes that changes in oxygen are due to the sum of air-sea flux, isopycnal advection, diapycnal mixing and NCP. ERA

  6. Improving the knowledge about dissolved oxygen and chlorophyll variability at ESTOC by using autonomous vehicles.

    Science.gov (United States)

    Cianca, A.; Caudet, E.; Vega, D.; Barrera, C.; Hernandez Brito, J.

    2016-02-01

    The European Station for Time Series in the Ocean, Canary Islands "ESTOC" is located in the Eastern Subtropical North Atlantic Gyre (29'10ºN, 15'30ºW). ESTOC started operations in 1994 based on a monthly ship-based sampling, in addition to hydrographic and sediment trap moorings. Since 2002, ESTOC is part of the European network for deep sea ocean observatories through several projects, among others ANIMATE (Atlantic Network of Interdisciplinary Moorings and Time-series for Europe), EuroSITES (European Ocean Observatory Network) and Fixed point Open Ocean Observatory network (FixO3). The main purpose of these projects was to improve the time-resolution of the biogeochemical measurements through moored biogeochemical sensors. Additionally, ESTOC is included in the Marine-Maritime observational network of the Macaronesian region, which is supported by the European overseas territories programs since 2009. This network aims to increase the quantity and quality of marine environmental observations. The goal is to understand phenomena which impact in the environment, and consequently at the socio-economy of the region to attempt their prediction. With this purpose, ESTOC has included the use of autonomous vehicles "glider" in order to increase the observational resolution and, by comparison with the parallel observational programs, to study the biogeochemical processes at different time scale resolutions. This study investigates the time variability of the dissolved oxygen and chlorophyll distributions in the water column focusing on the diel cycle, looking at the relevance of this variability in the already known seasonal distributions. Our interest is assessing net community production and remineralization rates through the use of oxygen variations, establishing the relationship between the DO anomalies values and those from the chlorophyll distribution in the water column.

  7. Seasonal and inter-annual variations of dissolved oxygen in the northwestern Mediterranean Sea (DYFAMED site)

    Science.gov (United States)

    Coppola, Laurent; Legendre, Louis; Lefevre, Dominique; Prieur, Louis; Taillandier, Vincent; Diamond Riquier, Emilie

    2018-03-01

    Dissolved oxygen (O2) is a relevant tracer to interpret variations of both water mass properties in the open ocean and biological production in the surface layer of both coastal and open waters. Deep-water formation is very active in the northwestern Mediterranean Sea, where it influences intermediate and deep waters properties, nutrients replenishment and biological production. This study analyses, for the first time, the 20-year time series of monthly O2 concentrations at the DYFAMED long-term sampling site in the Ligurian Sea. Until the winters of 2005 and 2006, a thick and strong oxygen minimum layer was present between 200 and 1300 m because dense water formation was then local, episodic and of low intensity. In 2005-2006, intense and rapid deep convection injected 24 mol O2 m-2 between 350 and 2000 m from December 2005 to March 2006. Since this event, the deep layer has been mostly ventilated during winter time by newly formed deep water spreading from the Gulf of Lion 250 km to the west and by some local deep mixing in early 2010, 2012 and 2013. In the context of climate change, it is predicted that the intensity of deep convection will become weaker in the Mediterranean, which could potentially lead to hypoxia in intermediate and deep layers with substantial impact on marine ecosystems. With the exception of winters 2005 and 2006, the O2 changes in surface waters followed a seasonal trend that reflected the balance between air-sea O2 exchanges, changes in the depth of the mixed layer and phytoplankton net photosynthesis. We used the 20-year O2 time series to estimate monthly and annual net community production. The latter was 7.1 mol C m-2 yr-1, consistent with C-14 primary production determinations and sediment-trap carbon export fluxes at DYFAMED.

  8. Hemoglobin-Based Oxygen Carrier (HBOC) Development in Trauma: Previous Regulatory Challenges, Lessons Learned, and a Path Forward.

    Science.gov (United States)

    Keipert, Peter E

    2017-01-01

    Historically, hemoglobin-based oxygen carriers (HBOCs) were being developed as "blood substitutes," despite their transient circulatory half-life (~ 24 h) vs. transfused red blood cells (RBCs). More recently, HBOC commercial development focused on "oxygen therapeutic" indications to provide a temporary oxygenation bridge until medical or surgical interventions (including RBC transfusion, if required) can be initiated. This included the early trauma trials with HemAssist ® (BAXTER), Hemopure ® (BIOPURE) and PolyHeme ® (NORTHFIELD) for resuscitating hypotensive shock. These trials all failed due to safety concerns (e.g., cardiac events, mortality) and certain protocol design limitations. In 2008 the Food and Drug Administration (FDA) put all HBOC trials in the US on clinical hold due to the unfavorable benefit:risk profile demonstrated by various HBOCs in different clinical studies in a meta-analysis published by Natanson et al. (2008). During standard resuscitation in trauma, organ dysfunction and failure can occur due to ischemia in critical tissues, which can be detected by the degree of lactic acidosis. SANGART'S Phase 2 trauma program with MP4OX therefore added lactate >5 mmol/L as an inclusion criterion to enroll patients who had lost sufficient blood to cause a tissue oxygen debt. This was key to the successful conduct of their Phase 2 program (ex-US, from 2009 to 2012) to evaluate MP4OX as an adjunct to standard fluid resuscitation and transfusion of RBCs. In 2013, SANGART shared their Phase 2b results with the FDA, and succeeded in getting the FDA to agree that a planned Phase 2c higher dose comparison study of MP4OX in trauma could include clinical sites in the US. Unfortunately, SANGART failed to secure new funding and was forced to terminate development and operations in Dec 2013, even though a regulatory path forward with FDA approval to proceed in trauma had been achieved.

  9. Dissolved hydrogen and oxygen sensors using semiconductor devices

    International Nuclear Information System (INIS)

    Hara, Nobuyoshi; Sugimoto, Katsuhisa

    1995-01-01

    The concentrations of DH and DO in aqueous solution are the factors that determine the equilibrium potential of hydrogen and oxygen electrode reactions, respectively, and are the quantities which directly related to the rates of hydrogen generation type and oxygen consumption type corrosion reactions, therefore, they have the important meaning in the electrochemistry of corrosion. In the hydrogen injection into BWR cooling water, the concentration of hydrogen must be controlled strictly, accordingly DH and DO sensors and electrochemical potential sensors are required. For the chemical sensors used in reactor cooling water, the perfectly solid state sensors made of high corrosion resistance materials, which are small size and withstand high temperature and high pressure, must be developed. The structure and the characteristics of the semiconductor devices used as gas sensors, and the principles of DH and DO sensors are described. If the idea of porous or discontinuous membrane gate is developed, the ion sensor of solid structure with one-body reference electrode may be made. (K.I.)

  10. Temperature, salinity, dissolved oxygen, phosphate, nitrite, pH, alkalinity, bottom depth, and meteorology data collected from Arctic Seas and North Western Pacific by various Soviet Union institutions from 1925-11-16 to 1989-05-18 (NODC Accession 0075099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, dissolved oxygen, phosphate, nitrite, pH, alkalinity, bottom depth, and meteorology data collected from Arctic Seas and North Western Pacific...

  11. Identification of deep trap energies and influences of oxygen plasma ashing on semiconductor carrier lifetime

    International Nuclear Information System (INIS)

    Koprowski, A; Humbel, O; Plappert, M; Krenn, H

    2015-01-01

    We have performed an analytical study of the effects of oxygen plasma ashing processes in semiconductor device fabrication and its impact on minority carrier lifetime in high voltage semiconductor devices. Our work includes a critical background study of life time killing mechanisms by deep traps imparted into the semiconductor by barrel plasma ashing. The Elymat technique provides the opportunity to measure lifetime and diffusion length of minority carriers and surface photo voltage (SPV) measurement was used to analyse influences of process parameters such as photoresist, time budget and positioning in the process chamber. It was shown that in microwave plasma processes the diffusion length changes severely with tempering at 200 °C, whereas RF-plasma processes show a significant process time-dependence. Batch tools in general suffer from a strong first wafer effect which could be correlated with the static electrical parameters of the semiconductor devices. The trap identities were detected by using deep level transient spectroscopy and the chemical species of the traps has been proven by inductive coupled plasma mass spectrometry. The deep-bandgap trap energies are reliable fingerprints of the chosen process parameters such as process time and of resist-influences. By microwave plasma processes intrinsic Fe and FeB-complex levels were identified and a good agreement with the SPV-measurement and electrical device characteristic was shown. RF-plasma processes impart levels attributed to Pt levels and an additional level, which could be identified as a trap level probably forming a complex of Pt and H. (paper)

  12. An effective device for gas-liquid oxygen removal in enclosed microalgae culture.

    Science.gov (United States)

    Su, Zhenfeng; Kang, Ruijuan; Shi, Shaoyuan; Cong, Wei; Cai, Zhaoling

    2010-01-01

    A high-performance gas-liquid transmission device (HPTD) was described in this paper. To investigate the HPTD mass transfer characteristics, the overall volumetric mass transfer coefficients, K(A)(La,CO(2)) for the absorption of gaseous CO(2) and K(A)(La,O(2)) for the desorption of dissolved O(2) were determined, respectively, by titration and dissolved oxygen electrode. The mass transfer capability of carbon dioxide was compared with that of dissolved oxygen in the device, and the operating conditions were optimized to suit for the large-scale enclosed micro-algae cultivation. Based on the effectiveness evaluation of the HPTD applied in one enclosed flat plate Spirulina culture system, it was confirmed that the HPTD can satisfy the demand of the enclosed system for carbon supplement and excessive oxygen removal.

  13. Under-ice eddy covariance flux measurements of heat, salt, momentum, and dissolved oxygen in an artificial sea ice pool

    DEFF Research Database (Denmark)

    Else, B. G T; Rysgaard, S.; Attard, K.

    2015-01-01

    as one possible cause of the high fluxes. Momentum fluxes showed interesting correlations with ice growth and melt but were generally higher than expected. We concluded that with the exception of the conductivity sensor, the eddy covariance system worked well, and that useful information about turbulent......Turbulent exchanges under sea ice play a controlling role in ice mass balance, ice drift, biogeochemistry, and mixed layer modification. In this study, we examined the potential to measure under-ice turbulent exchanges of heat, salt, momentum, and dissolved oxygen using eddy covariance...... in an experimental sea ice facility. Over a 15-day period in January 2013, an underwater eddy covariance system was deployed in a large (500 m3) inground concrete pool, which was filled with artificial seawater and exposed to the ambient (−5 to −30 °C) atmosphere. Turbulent exchanges were measured continuously...

  14. Dissolved oxygen and aeration in ictalurid catfish aquaculture

    Science.gov (United States)

    Feed-based production of ictalurid catfish in ponds is the largest aquaculture sector in the United States. The feed biochemical oxygen demand (FBOD) typically is 1.1-1.2 kg O2/kg feed. Feed also results in a substantial increase of carbon dioxide, ammonia nitrogen, and phosphate to ponds, and this ...

  15. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  16. Characterization of urban runoff pollution between dissolved and particulate phases.

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  17. Effect of Dissolved Oxygen and Immersion Time on the Corrosion Behaviour of Mild Steel in Bicarbonate/Chloride Solution

    Directory of Open Access Journals (Sweden)

    Gaius Debi Eyu

    2016-09-01

    Full Text Available The electrochemical behavior of mild steel in bicarbonate solution at different dissolved oxygen (DO concentrations and immersion times has been studied under dynamic conditions using electrochemical techniques. The results show that both DO and immersion times influence the morphology of the corrosion products. In comparative tests, the corrosion rate was systematically found to be lower in solutions with lower DO, lower HCO3− concentrations and longer immersion time. The SEM analyses reveal that the iron dissolution rate was more severe in solutions containing higher DO. The decrease in corrosion rate can be attributed to the formation of a passive layer containing mainly α -FeO (OH and ( γ -Fe2O3/Fe3O4 as confirmed by the X-ray diffractometry (XRD and X-ray photoelectron spectroscopy (XPS. Passivation of mild steel is evident in electrochemical test at ≈ −600 mVSCE at pH ≥ 8 in dearated ( ≤ 0.8 ppm DO chloride bicarbonate solution under dynamic conditions.

  18. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors.

    Science.gov (United States)

    Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak

    2014-07-01

    An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Solís-Fernández, Pablo [Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580 (Japan); Yunus, Rozan Mohamad [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Hibino, Hiroki [School of Science and Technology, Kwansei Gakuin University, Hyogo, 669-1337 (Japan); Ago, Hiroki, E-mail: ago.hiroki.974@m.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580 (Japan)

    2017-06-30

    Highlights: • Growth mechanism of large graphene grains on oxidized Cu was revealed by investigating the behavior of oxygen in the Cu. • Only the heating up step was found to be crucial for obtaining large graphene grains. • The copper oxide layer was found to promote some oxygen atoms to dissolve into the Cu foil. • The dissolved oxygen contributes to the reduction of a nucleation density of graphene. - Abstract: Decreasing the nucleation density of graphene grown on copper (Cu) foil by chemical vapor deposition (CVD) is essential for the synthesis of large-area single-crystalline graphene. Here, the behavior of the copper oxide layer and its impact on the graphene growth have been investigated. We found that a small amount of oxygen dissolves into the Cu when the oxide layer decomposes during the heating up in a non-reducing Ar environment. The remaining oxygen in the Cu foil can play an important role in decreasing the graphene nucleation density. The dissolved oxygen can withstand at high temperatures even in reducing H{sub 2} environments without completely losing its effectiveness for maintaining a low graphene nucleation density. However, heating up in a H{sub 2} environment significantly reduces the copper oxide layer during the very first moments of the process at low temperatures, preventing the oxygen to dissolve into the Cu and significantly increasing the nucleation density. These findings will help to improve the graphene growth on Cu catalyst by increasing the grain size while decreasing the grain density.

  20. THE OXYGEN REGIME OF A SHALLOW LAKE

    Directory of Open Access Journals (Sweden)

    Galina Zdorovennova

    2016-01-01

    Full Text Available The year-round measurement data of water temperature and dissolved oxygen content in a small boreal Lake Vendyurskoe in 2007–2013 were used to explore the hydrophysical prerequisits of anoxia and accumulation and emission of greenhouse gases. Typically, anoxia appears in the bottom layers of lakes in mid-winter and during the summer  stagnation. The thickness of the benthic anaerobic zone (dissolved oxygen concentration <2 mg·l–1 reached one meter in the end of the winter and at the peak of the summer stratification, except for the extremely hot summer of 2010, when it reached five meters. Synoptic conditions had a crucial influence on the formation and destruction of the benthic anaerobic zones in summer. The most favorable oxygen dynamics was observed during the cold summers of 2008, 2009, and 2012, when the repeated full mixings of the water column occurred under conditions of the cyclonic weather. In the winter periods, the early dates of ice season resulted in the most pronounced deficiency of oxygen.

  1. Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bonneau, S.; Schipper, D.

    2003-01-01

    The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures....... from 15 to 7%AS, r(p) (total) increased to 25 mumol g DW-1 h(-1), mainly due to a two-fold increase in the adipoyl-6-aminopenicillanic acid (ad-6-APA) specific productivity....

  2. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  3. 3-D Numerical Investigation on Oxygen Transfer in a Horizontal Venturi Flow with Two Holes

    Directory of Open Access Journals (Sweden)

    Zegao Yin

    2018-02-01

    Full Text Available In order to investigate the dissolved oxygen increase caused by air suction in a horizontal Venturi flow with two holes, a 3-D computational fluid dynamics model was used to explore the water and bubble mixture flow, coupled with a dissolved oxygen transfer model. A series of experiments were conducted to validate the mathematical model. A relative saturation coefficient correlation was examined factoring in dissolved oxygen concentration at the inlet, water velocity at the inlet, the hole’s diameter, contraction ratio at throat section, and the downstream length of Venturi pipe. It was found that the relative saturation coefficient increases with increasing dissolved oxygen concentration at the inlet and downstream length of Venturi pipe respectively. However, it increases with decreasing water velocity at the inlet and contraction ratio at the throat section to some extent. The hole’s diameter plays a complex role in the relative saturation coefficient. The dimensional analysis method and the least square method were used to deduce a simple formula for the relative saturation coefficient, and this was consistent with related data.

  4. Update on the use of dissolved oxygen addition to monitor the effectiveness of noble metal applications in external manifolds

    International Nuclear Information System (INIS)

    Varela, J.A.; Huie, H.H.; Seeman, R.A.; Bourne, C.M.; Odell, A.D.

    2014-01-01

    Electrochemical corrosion potential (ECP) measurements in a Mitigation Monitoring System (MMS) ECP manifold have historically been a primary indicator of the effectiveness of an On-Line NobleChem™ (OLNC) application, with the MMS ECP intended to measure the catalytic effect of noble metal deposited on the ECP manifold surface. In some plants ECP measurements made on untreated surfaces prior to an OLNC application were significantly lower than what would be expected for stainless steel under reactor bulk chemistry conditions. This is due to the consumption and depletion of bulk liquid dissolved oxygen (DO) in the lines supplying reactor water to these external ECP measurement locations. This phenomenon degrades the ability to use these external manifolds to confirm noble metal deposition. Previous papers have described how the injection of an oxygen-rich stream to the MMS supply stream (DO Addition) can be used to re-establish the capability of external ECP measurements to monitor the catalytic behavior of platinum deposited during an OLNC injection. This paper will provide an update of how this method is being successfully used in operating BWRs to monitor OLNC injections. The paper will outline the overall approach used to characterize the catalytic behavior of external ECP manifolds before and after the noble metal application and present plant data collected during DO Additions performed under various conditions. (author)

  5. Osmotic phenomena in application for hyperbaric oxygen treatment.

    Science.gov (United States)

    Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G

    2011-03-01

    Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood

  6. Elements of a decision support system for real-time management ofdissolved oxygen in the San Joaquin River deep water ship channel

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Jacobs, Karl; Chen, Carl W.; Stringfellow, WilliamT.

    2004-07-15

    A decision support system (DSS) has been designed and will be implemented over the next three years to assist in the control and management of episodes of low dissolved oxygen (DO) in a Deep Water Ship Channel (DWSC), located near Stockton, California. The DSS integrates three information technology functions. The first part is the collection and management of data on flow, pollution loads and water quality. The second part is the simulation model which can forecast the dissolved oxygen sag in the DWSC and determine management actions necessary to improve dissolved oxygen concentrations. The third part is the graphical user interface, which facilitates the computer simulations and posting of the forecasted dissolved oxygen and remedial measures to a stakeholder group for implementations.

  7. Quadruple labelled dual oxygen and pH-sensitive ratiometric nanosensors

    Directory of Open Access Journals (Sweden)

    Veeren M. Chauhan

    2016-05-01

    Full Text Available Nanosensors capable of simultaneously measuring dissolved oxygen concentrations from 0 to 100% saturation and pH over the full physiological range, from pH 3.5 to 7.5, that advance the methods towards understanding of key biological gradients, were synthesised. A library of water soluble oxygen-sensitive porphyrins, with three substituted charged functional groups and a chemically flexible carboxylate functional group were spectroscopically analysed to assess their sensitivity to changes in dissolved oxygen concentrations as free species in solution and in suspension as nanoparticle conjugates. A platinum cationic porphyrin was taken forward to fabricate ratiometric oxygen-sensitive nanosensors, using 5-(and-6-carboxytetramethylrhodamine (TAMRA as internal standard. In addition, quadruple labelled dual oxygen and pH-sensitive nanosensors were synthesised using the cationic Pt porphyrin, pH-sensitive fluorescein dyes, carboxyfluorescein (FAM and Oregon Green (OG, in a 1:1 ratio, and TAMRA. We envisage the dual oxygen and pH nanosensors will find broad utility in the characterisation of diverse microenvironments, where there are complex interactions between molecular oxygen and pH. Keywords: Fluorescent, Phosphorescent, Nanosensor, Oxygen, pH, Ratiometric, Platinum metalloporphyrin

  8. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    Science.gov (United States)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several

  9. Oxygen enhancement of groundwater using an oxygen releasing compound in a funnel-and-gate system

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D G

    1994-01-01

    ORC is a fine white MgO[sub 2] powder treated with a patented process so that a slow, relatively steady release of oxygen occurs when the powder is in contact with water. Recent work suggests ORC could potentially be used to increase the dissolved oxygen (DO) concentration of ground water, thereby enhancing the biodegradation of dissolved phase contaminants such as benzene and toluene from gasoline spills. Field and laboratory tests were performed to evaluate the oxygen release characteristics of ORC when mixed with filter sand and exposed to groundwater from an aquifer in Ontario. Quasi steady state oxygen release rates of 0.013-0.030 and 0.030 mg O[sub 2]/d per g of ORC were determined from the column and field tests respectively. The column tests indicated that steady state oxygen release conditions from the ORC required ca 90 d after initial contact with water, but field data indicated that oxygen release rate may continue to decrease. Falling head permeameter tests indicated that a maximum drop in hydraulic conductivity occurred within the first 48 h of exposure of ORC to water. Both laboratory and field studies indicated that ORC-contacted water increased in pH. Field studies further suggested an inverse correlation between pH increases and the ability of ORC to enhance DO concentration of ground water. The use of ORC in a funnel-and-gate scheme appears to be an effective means of increasing the DO concentration in ground water, thereby stimulating the in-situ bioremediation of many organic contaminants. 30 refs., 17 figs., 12 tabs.

  10. Production of an accelerated oxygen-14 beam

    CERN Document Server

    Powell, J; Cerny, J

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 sup 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has bee...

  11. Effects of GC temperature and carrier gas flow rate on on-line oxygen isotope measurement as studied by on-column CO injection.

    Science.gov (United States)

    Chen, Zhi-Gang; Yin, Xi-Jie; Zhou, Youping

    2015-08-01

    Although deemed important to δ 18 O measurement by on-line high-temperature conversion techniques, how the GC conditions affect δ 18 O measurement is rarely examined adequately. We therefore directly injected different volumes of CO or CO-N 2 mix onto the GC column by a six-port valve and examined the CO yield, CO peak shape, CO-N 2 separation, and δ 18 O value under different GC temperatures and carrier gas flow rates. The results show the CO peak area decreases when the carrier gas flow rate increases. The GC temperature has no effect on peak area. The peak width increases with the increase of CO injection volume but decreases with the increase of GC temperature and carrier gas flow rate. The peak intensity increases with the increase of GC temperature and CO injection volume but decreases with the increase of carrier gas flow rate. The peak separation time between N 2 and CO decreases with an increase of GC temperature and carrier gas flow rate. δ 18 O value decreases with the increase of CO injection volume (when half m/z 28 intensity is rate. On average, the δ 18 O value of the injected CO is about 1‰ higher than that of identical reference CO. The δ 18 O distribution pattern of the injected CO is probably a combined result of ion source nonlinearity and preferential loss of C 16 O or oxygen isotopic exchange between zeolite and CO. For practical application, a lower carrier gas flow rate is therefore recommended as it has the combined advantages of higher CO yield, better N 2 -CO separation, lower He consumption, and insignificant effect on δ 18 O value, while a higher-than-60 °C GC temperature and a larger-than-100 µl CO volume is also recommended. When no N 2 peak is expected, a higher GC temperature is recommended, and vice versa. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Evaluation of different oxygen carriers for biomass tar reforming

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Johansen, Joakim Myung; Utrilla, Rubén

    2011-01-01

    –ZrO2 (Mn40) and FeTiO3 (Fe) and their tendency to carbon deposition was analyzed in the temperature range 873–1073K. In the present paper, the reactivity of these carriers to other compounds in the gasification gas is studied, also with special emphasis on the tendency to carbon deposition. Experiments...

  13. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  14. USING OXYGEN-CONSUMING THERMOSET PLASTICS TO GENERATE HYPOXIC CONDITIONS IN MICROFLUIDIC DEVICES FOR POTENTIAL CELL CULTURE APPLICATIONS

    DEFF Research Database (Denmark)

    Sticker, Drago; Rothbauer, Mario; Ehgartner, Josef

    The precise control of the oxygen concentration in a cellular environment allows the study of cells under physiologically relevant conditions. This work reports on a novel method for the generation of reduced dissolved oxygen concentrations in microfluidic chambers for cell- and organ-on-chip app......The precise control of the oxygen concentration in a cellular environment allows the study of cells under physiologically relevant conditions. This work reports on a novel method for the generation of reduced dissolved oxygen concentrations in microfluidic chambers for cell- and organ...

  15. Removal of cellular-type hemoglobin-based oxygen carrier (hemoglobin-vesicles) from blood using centrifugation and ultrafiltration.

    Science.gov (United States)

    Sakai, Hiromi; Sou, Keitaro; Horinouchi, Hirohisa; Tsuchida, Eishun; Kobayashi, Koichi

    2012-02-01

    The hemoglobin-vesicle (HbV) is an artificial oxygen carrier encapsulating a concentrated hemoglobin solution in a phospholipid vesicle (liposome). During or after transporting oxygen, macrophages capture HbVs in the reticuloendothelial system (RES) with an approximate circulation half-life of 3 days. Animal studies show transient splenohepatomegaly after large doses, but HbVs were completely degraded, and the components were excreted in a few weeks. If a blood substitute is used for emergency use until red blood cell transfusion becomes available or for temporary use such as a priming fluid for an extracorporeal circuit, then one option would be to remove HbVs from the circulating blood without waiting a few weeks for removal by the RES. Using a mixture of beagle dog whole blood and HbV, we tested the separation of HbV using a centrifugal Fresenius cell separator and an ultrafiltration system. The cell separator system separated the layers of blood cell components from the HbV-containing plasma layer by centrifugal force, and then the HbV was removed from plasma phase by the ultrafiltration system. The HbVs (250-280 nm) are larger than plasma proteins (blood cell components (> 3 µm). The size of HbVs is advantageous to be separated from the original blood components, and the separated blood components can be returned to circulation. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Long-term performance of Aanderaa optodes and sea-bird SBE-43 dissolved-oxygen sensors bottom mounted at 32 m in Massachusetts Bay

    Science.gov (United States)

    Martini, Marinna A.; Butman, Bradford; Mickelson, Michael J.

    2007-01-01

    A field evaluation of two new dissolved-oxygen sensing technologies, the Aanderaa Instruments AS optode model 3830 and the Sea-Bird Electronics, Inc., model SBE43, was carried out at about 32-m water depth in western Massachusetts Bay. The optode is an optical sensor that measures fluorescence quenching by oxygen molecules, while the SBE43 is a Clark polarographic membrane sensor. Optodes were continuously deployed on bottom tripod frames by exchanging sensors every 4 months over a 19-month period. A Sea-Bird SBE43 was added during one 4-month deployment. These moored observations compared well with oxygen measurements from profiles collected during monthly shipboard surveys conducted by the Massachusetts Water Resources Authority. The mean correlation coefficient between the moored measurements and shipboard survey data was >0.9, the mean difference was 0.06 mL L−1, and the standard deviation of the difference was 0.15 mL L−1. The correlation coefficient between the optode and the SBE43 was >0.9 and the mean difference was 0.07 mL L−1. Optode measurements degraded when fouling was severe enough to block oxygen molecules from entering the sensing foil over a significant portion of the sensing window. Drift observed in two optodes beginning at about 225 and 390 days of deployment is attributed to degradation of the sensing foil. Flushing is necessary to equilibrate the Sea-Bird sensor. Power consumption by the SBE43 and required pump was 19.2 mWh per sample, and the optode consumed 0.9 mWh per sample, both within expected values based on manufacturers’ specifications.

  17. Theoretical basis of oxygen pressure control in liquid Pb-Bi using YSZ

    International Nuclear Information System (INIS)

    Jung, S. H.; Hwang, I. S.; Park, B. K.

    2002-01-01

    To develop a liquid Pb-Bi cooled reactor, it is necessary to solve the structural material corrosion problem caused by Pb-Bi. This experiment examine the fundamental behaviors to practically test the oxide film formation on the surface of structural material known as solution of corrosion inhibition in liquid Pb-Bi. The corrosion inhibition through oxide film formation is to prevent metals from dissolving into liquid Pb-Bi though not forming coolants slug resulted from oxidation. In this paper, we examined the oxygen pressure controllability using YSZ in cover gas, and theoretically derived the relationship between oxygen cover gas pressure and dissolved oxygen in liquid Pb-Bi

  18. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    Science.gov (United States)

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (alloys are expected to open a new paradigm in commercial alloy design.

  19. Study of Factors Influencing Oxygen-18 Isotopic Contents of Dissolved Sulphate in the Shallow Groundwater In Karawang Area

    International Nuclear Information System (INIS)

    Ristin Pujiindiyati, E.; Bungkus Pratikno

    2010-01-01

    The study was conducted to investigate the factors influencing oxygen-18 isotopic contents of dissolved sulphate in shallow groundwater from Karawang area. The δ 18 O is a relative abundance of O-18 compared to O-16 in CO 2 gas. CO 2 gas was released from the equilibrium between water samples and CO 2 gas, and from the reduction of sulphate samples with graphite. From this investigation, the δ 18 O (H 2 O) values were in the range of -3.21 0 / 00 to 6.25 0 / 00 whereas the δ 18 O (SO 4 2- ) values were 9.64 0 / 00 to 20.72 0 / 00 . The wide variation of δ 18 O (SO 4 2- ) values might be result due to inhomogeneity of sulphate sources in groundwater where the groundwater sulphates were generally derived from the dissolution of marine evaporites rocks. The groundwaters and Citarum River near waters to Johar site showed lowering of δ 18 O (SO 4 2- ) values. It might be related to the present of the traditional market in this location. The lowering of these values might be due to the increase of the sulphate reduction process caused by anaerobic bacteria growth in organic garbage deposition. Plotting between δ 18 O (SO 4 2- ) and δ 18 O (H 2 O) exhibited that the oxygen contribution from H 2 O to form sulphate was less than 25%. This indicated that the shallow groundwater in Karawang is located in a non-saturated zone and had a biotic condition. (author)

  20. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter

    Science.gov (United States)

    Nelson, Norman B.; Siegel, David A.; Carlson, Craig A.; Swan, Chantal M.

    2010-02-01

    Basin-scale distributions of light absorption by chromophoric dissolved organic matter (CDOM) are positively correlated (R2 > 0.8) with apparent oxygen utilization (AOU) within the top kilometer of the Pacific and Indian Oceans. However, a much weaker correspondence is found for the Atlantic (R2 organic matter from sinking particles. The observed meridional-depth sections of CDOM result from a balance between biogeochemical processes (autochthonous production and solar bleaching) and the meridional overturning circulation. Rapid mixing in the Atlantic dilutes CDOM in the interior and implies that the time scale for CDOM accumulation is greater than ˜50 years. CDOM emerges as a unique tracer for diagnosing changes in biogeochemistry and the overturning circulation, similar to dissolved oxygen, with the additional feature that it can be quantified from satellite observation.

  1. Low oxygen eddies in the eastern tropical North Atlantic

    DEFF Research Database (Denmark)

    Grundle, D. S.; Löscher, C. R.; Krahmann, G.

    2017-01-01

    Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in th...

  2. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts

    Science.gov (United States)

    Stolper, Daniel A.; Keller, C. Brenhin

    2018-01-01

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  3. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts.

    Science.gov (United States)

    Stolper, Daniel A; Keller, C Brenhin

    2018-01-18

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O 2 ) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe 3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  4. Comparison of airline passenger oxygen systems.

    Science.gov (United States)

    Byrne, N J

    1995-08-01

    The principal sources of oxygen for inflight passenger use, scheduled and unscheduled, are examined. Present practices of assessment of the passenger's "fitness to fly" are described. Three partner airlines, British Airways, U.S. Air, and Qantas, catering for more than 8000 oxygen requests annually, are compared. Analysis of customer use suggests that medical oxygen requests are frequently not clinically justified. The growth in demand, for both scheduled and unscheduled use of an expensive resource, supports the need for a "recommended best practice" among carriers. Passengers with respiratory disorders who will most benefit from inflight oxygen are vulnerable either to hypoxia or asthma.

  5. Methodology for the assessment of oxygen as an energy carrier

    Science.gov (United States)

    Yang, Ming Wei

    Due to the energy intensity of the oxygen generating process, the electric power grid would benefit if the oxygen generating process was consumed electric power only during low demand periods. Thus, the question to be addressed in this study is whether oxygen production and/or usage can be modified to achieve energy storage and/or transmission objectives at lower cost. The specific benefit to grid would be a leveling, over time, of the demand profile and thus would require less installation capacity. In order to track the availability of electricity, a compressed air storage unit is installed between the cryogenic distillation section and the main air compressor of air separation unit. A profit maximizing scheme for sizing storage inventory and related equipments is developed. The optimum scheme is capable of market responsiveness. Profits of steel maker, oxy-combustion, and IGCC plants with storage facilities can be higher than those plants without storage facilities, especially, at high-price market. Price tracking feature of air storage integration will certainly increase profit margins of the plants. The integration may push oxy-combustion and integrated gasification combined cycle process into economic viability. Since oxygen is used in consumer sites, it may generate at remote locations and transport to the place needed. Energy losses and costs analysis of oxygen transportation is conducted for various applications. Energy consumptions of large capacity and long distance GOX and LOX pipelines are lower than small capacity pipelines. However, transportation losses and costs of GOX and LOX pipelines are still higher than electricity transmission.

  6. Nitrogen transformation under different dissolved oxygen levels by the anoxygenic phototrophic bacterium Marichromatium gracile.

    Science.gov (United States)

    Hong, Xuan; Chen, Zhongwei; Zhao, Chungui; Yang, Suping

    2017-06-01

    Marichromatium gracile: YL28 (M. gracile YL28) is an anoxygenic phototrophic bacterial strain that utilizes ammonia, nitrate, or nitrite as its sole nitrogen source during growth. In this study, we investigated the removal and transformation of ammonium, nitrate, and nitrite by M. gracile YL28 grown in a combinatorial culture system of sodium acetate-ammonium, sodium acetate-nitrate and sodium acetate-nitrite in response to different initial dissolved oxygen (DO) levels. In the sodium acetate-ammonium system under aerobic conditions (initial DO = 7.20-7.25 mg/L), we detected a continuous accumulation of nitrate and nitrite. However, under semi-anaerobic conditions (initial DO = 4.08-4.26 mg/L), we observed a temporary accumulation of nitrate and nitrite. Interestingly, under anaerobic conditions (initial DO = 0.36-0.67 mg/L), there was little accumulation of nitrate and nitrite, but an increase in nitrous oxide production. In the sodium acetate-nitrite system, nitrite levels declined slightly under aerobic conditions, and nitrite was completely removed under semi-anaerobic and anaerobic conditions. In addition, M. gracile YL28 was able to grow using nitrite as the sole nitrogen source in situations when nitrogen gas produced by denitrification was eliminated. Taken together, the data indicate that M. gracile YL28 performs simultaneous heterotrophic nitrification and denitrification at low-DO levels and uses nitrite as the sole nitrogen source for growth. Our study is the first to demonstrate that anoxygenic phototrophic bacteria perform heterotrophic ammonia-oxidization and denitrification under anaerobic conditions.

  7. Oxygen Carrier Aided Combustion (OCAC of Wood Chips in a Semi-Commercial Circulating Fluidized Bed Boiler Using Manganese Ore as Bed Material

    Directory of Open Access Journals (Sweden)

    Magnus Rydén

    2016-11-01

    Full Text Available Oxygen Carrier Aided Combustion (OCAC is realized by using an active oxygen-carrying bed material in fluidized bed boilers. The active material is reduced in fuel rich parts of the boiler and oxidized in air rich parts. Advantages could be achieved such as new mechanisms for oxygen transport in space and time. Here calcined manganese ore has been used as active bed material in a 12 MWth circulating fluidized bed boiler. The fuel was wood chips and the campaign lasted more than two weeks. From an operational point of view, manganese ore worked excellently. From the temperature profile of the boiler it can be concluded that fuel conversion was facilitated, especially in the dense bottom bed. The effect did not always translate to reduced emissions, which suggests that final combustion in the cyclone outlet was also influenced. Substituting 10% of the sand bed with manganese ore made it possible to reduce the air to fuel ratio without generating large amounts of CO. The use of 100% manganese ore resulted in higher emissions of CO than the sand reference, but, when combined sulphur feeding, dramatic reductions in CO emissions, up to 90% compared to sand reference, was achieved.

  8. Echo-planar MR imaging of dissolved hyperpolarized 129Xe. Potential for M angiography

    International Nuclear Information System (INIS)

    Maansson, S.

    2002-01-01

    Purpose: The feasibility of hyperpolarized 129 Xe for fast MR angiography (MRA) was evaluated using the echo-planar imaging (EPI) technique. Material and Methods: Hyperpolarized Xe gas was dissolved in ethanol; a carrier agent with high solubility for Xe (Ostwald solubility coefficient 2.5) and long relaxation times. The dissolved Xe was injected as a bolus into a flow phantom where the mean flow velocity was 15 cm/s. Ultrafast EPI images with 44 ms scan time were acquired of the flowing bolus and the signal-to-noise ratios (SNR) were measured. Results: The relaxation times of hyperpolarized Xe in ethanol were measured to T1=160±11 s and T2 ≅ 20 s. The resulting images of the flowing liquid were of reasonable quality and had an SNR of about 70. Conclusion: Based on the SNR of the obtained Xe EPI images; it was estimated that rapid in vivo MRA with 129 Xe may be feasible; provided that an efficient; biologically acceptable carrier for Xe can be found and polarization levels of more than 25% can be achieved in isotopically enriched 129 Xe

  9. Difficulty of carrier generation in orthorhombic PbO

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Min; Takemoto, Seiji; Toda, Yoshitake; Tada, Tomofumi [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Xiao, Zewen; Kamiya, Toshio; Hosono, Hideo, E-mail: hosono@msl.titech.ac.jp [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan); Quantum Beam Unit, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-04-28

    Polycrystalline β-PbO films were grown by pulsed laser deposition in atmospheres ranging from oxygen-poor (the oxygen pressure of 0.01 Pa) to oxygen-rich (13 Pa) conditions, and the oxygen chemical potential was further enhanced by ozone annealing to examine hole doping. It was found that each of the as-grown β-PbO films showed poor electrical conductivity, σ < 1.4 × 10{sup −7} S cm{sup −1}, regardless of the oxygen pressure. The density functional calculations revealed that native defects including Pb and O vacancies have deep transition levels and extremely high formation enthalpies, which indicates difficulty of carrier generation in β-PbO and explains the experimentally observed poor electrical conductivity. The analysis of the electronic structures showed that the interaction between Pb 6s and O 2p orbitals is weak due to the deep energy level of Pb 6s and does not raise the valence band maximum (VBM) level unlike that observed in SnO, which is also supported by ultraviolet photoemission spectroscopy measurements. The deep acceptor transition levels of the native defects are attributed to the deep VBM of β-PbO. On the other hand, annealing β-PbO films in reactive oxygen-containing atmospheres (i.e., O{sub 3}) led to a significantly enhanced electrical conductivity (i.e., σ > 7.1 × 10{sup 2} S cm{sup −1}) but it is the result of the formation of an n-type PbO{sub 2} phase because oxygen chemical potential exceeded the phase boundary limit. The striking difference in carrier generation between PbO and SnO is discussed based on the electronic structures calculated by density functional theory.

  10. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree

    Science.gov (United States)

    Heddam, Salim; Kisi, Ozgur

    2018-04-01

    In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.

  11. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    Science.gov (United States)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  12. Oxygen response of the wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient, nitrogen-limited enological conditions.

    Science.gov (United States)

    Aceituno, Felipe F; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W; Melo, Francisco; Agosin, Eduardo

    2012-12-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.

  13. Oxygen enriched air using membrane for palm oil wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ramlah Mohd Tajuddin

    2002-11-01

    Full Text Available A research aimed to explore new method of aeration using oxygen enriched air performance on BOD reduction of palm oil wastewater was conducted. The oxygen enriched air was obtained from an Oxygen Enriched System (OES developed using asymmetric polysulfone hollow fiber membrane with composition consisting of PSF: 22%, DMAc: 31.8%, THF: 31.8%, EtOH: 14.4%. Palm oil wastewater samples were taken from facultative pond effluent. These samples were tested for its initial biochemical oxygen demand (BOD, total suspended solids (TSS, pH, conductivity, turbidity, dissolved oxygen (DO, suspended solids (SS, and total dissolved solids (TDS before being subjected to two modes of aeration system, that is diffused air and oxygen enriched air. These water quality concentrations were tested for every 20 minutes for two-hour period during the aeration process. Results of BOD, TSS, pH, conductivity, DO, SS and TDS concentrations against time of samples from the two modes of aeration were then compared. It was found that DO concentration achieved in oxygen enriched air aeration was better than aeration using diffused air system. Aeration using OES improve the DO concentration in the wastewater and thus improve the BOD reduction and also influence other physical characteristics of wastewater. This phenomenon indicates the advantage of using air with higher oxygen concentration for wastewater aeration instead of diffused air system.

  14. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    Science.gov (United States)

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  15. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  16. A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen

    International Nuclear Information System (INIS)

    Silva, Saimon M.; Aguiar, Lucas F.; Carvalho, Rita M. S.; Tanaka, Auro A.; Damos, Flavio S.; Luz, Rita C. S.

    2016-01-01

    The authors describe a platform for the electrochemical reduction of oxygen. It is based on the use of a glassy carbon electrode (GCE) that was modified in a single-step microwave assisted reaction with a N4-macrocycle containing iron(III) (FeN4) and with reduced graphene oxide. The FeN4/rGO composite was characterized by cyclic voltammetry, differential pulse voltammetry, and scanning electrochemical microscopy (SECM). Cyclic voltammetry showed the composite to enable efficient reduction of O_2 at a very low overpotential (−0.05 V vs. Ag/AgCl). SECM measurements were carried out to map (in the redox competition mode) the activity of a GCE microelectrode modified with FeN4/rGO. Under optimized conditions, the response to dissolved O_2 ranges from 0.8 up to 25 mg⋅L"-"1, and the limit of detection is 0.2 mg⋅L"-"1. (author)

  17. Analytical interference of HBOC-201 (Hemopure, a synthetic hemoglobin-based oxygen carrier) on four common clinical chemistry platforms.

    Science.gov (United States)

    Korte, Erik A; Pozzi, Nicole; Wardrip, Nina; Ayyoubi, M Tayyeb; Jortani, Saeed A

    2018-07-01

    There are 13 million blood transfusions each year in the US. Limitations in the donor pool, storage capabilities, mass casualties, access in remote locations and reactivity of donors all limit the availability of transfusable blood products to patients. HBOC-201 (Hemopure®) is a second-generation glutaraldehyde-polymer of bovine hemoglobin, which can serve as an "oxygen bridge" to maintain oxygen carrying capacity while transfusion products are unavailable. Hemopure presents the advantages of extended shelf life, ambient storage, and limited reactive potential, but its extracellular location can also cause significant interference in modern laboratory analyzers similar to severe hemolysis. Observed error in 26 commonly measured analytes was determined on 4 different analytical platforms in plasma from a patient therapeutically transfused Hemopure as well as donor blood spiked with Hemopure at a level equivalent to the therapeutic loading dose (10% v/v). Significant negative error ratios >50% of the total allowable error (>0.5tAE) were reported in 23/104 assays (22.1%), positive bias of >0.5tAE in 26/104 assays (25.0%), and acceptable bias between -0.5tAE and 0.5tAE error ratio was reported in 44/104 (42.3%). Analysis failed in the presence of Hemopure in 11/104 (10.6%). Observed error is further subdivided by platform, wavelength, dilution and reaction method. Administration of Hemopure (or other hemoglobin-based oxygen carriers) presents a challenge to laboratorians tasked with analyzing patient specimens. We provide laboratorians with a reference to evaluate patient samples, select optimal analytical platforms for specific analytes, and predict possible bias beyond the 4 analytical platforms included in this study. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. SU-E-T-274: Does Atmospheric Oxygen Affect the PRESAGE Dosimeter?

    Energy Technology Data Exchange (ETDEWEB)

    Alqathami, M; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States); Blencowe, A [The University of South Australia, South Australia, SA (Australia)

    2015-06-15

    Purpose: To experimentally determine the influence of atmospheric oxygen on the efficiency of the PRESAGE dosimeter and its reporting system. Methods: Batches of the reporting system – a mixture of chloroform and leuchomalachite green dye – and PRESAGE were prepared in aerobic and anaerobic conditions. For anaerobic batches, samples were deoxygenated by bubbling nitrogen through the dosimeter precursors or reporting system for 10 min. The dosimeters and reporting systems were prepared in spectrophotometric cuvettes and glass vials, respectively, and were irradiated with 6 MV photons to various radiation doses using a clinical linear accelerator. Changes in optical density of the dosimeters and reporting system before and after irradiation were measured using a spectrophotometer. In addition, the concentrations of dissolved oxygen were measured using a dissolved oxygen meter. Results: The experiments revealed that oxygen has little influence on the characteristics of PRESAGE, with the radical initiator oxidizing the leucomalachite green even in the presence of oxygen. However, deoxygenation of the reporting system leads to an increase in sensitivity to radiation dose by ∼ 30% when compared to the non-deoxygenated system. A slight improvement in sensitivity (∼ 5%) was also achieved by deoxygenating the PRESAGE precursor prior to casting. Measurement of the dissolved oxygen revealed low levels (0.4 ppm) in the polyurethane precursor used to fabricate the dosimeters, as compared to water (8.6 ppm). In addition, deoxygenation had no effect on the retention of the post-response absorption value of the PRESAGE dosimeter. Conclusion: The results suggest that the presence of oxygen does not inhibit the radiochromic properties of the PRESAGE system. In addition, there were no observed changes in the dose linearity, absorption spectrum and post-response photofading characteristics of the PRESAGE under the conditions investigated.

  19. Process for dissolving the radioactive corrosion products from internal surfaces in nuclear reactors

    International Nuclear Information System (INIS)

    Brown, W.W.

    1976-01-01

    This invention concerns a process for dissolving in the coolant flowing in a reactor the radioactive substances from the corrosion of the internal surfaces of the reactor to which they cling. When a reactor is operating, the fission occurring in the fuel generates gases and fission substances, such as iodine 131 and 133, cesium 134 and 137, molybdenum 99, xenon 133 and activates the structural materials of the reactor such as nickel by giving off cobalt 58 and similar substances. Under this invention an oxygen rich solution is injected in the reactor coolant after the temperature and pressure reduction stage, during the preparation prior to refuelling and repairs. The oxygen in the solution speeds up the release of cobalt 58 and other radioactive substances from the internal surfaces of the reactor and their dissolving in the oxygenated cold coolant at the start of the cooling procedures of the installation. This allows them to be removed by an ion exchanger before the reactor is emptied. By utilising this process, about half a day may be gained in refuelling time when this has to be done once a week [fr

  20. Sources of carrier F-19 in F-18 fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Link, J. M.; Shoner, S. C.; Krohn, K. A. [University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States)

    2012-12-19

    Fluorine-18 is used for many PET radiopharmaceuticals. Theoretically {sup 18}F should be carrier free and a good candidate for nanochemistry. However, {sup 18}F has 10 to 1000 times more stable fluorine atoms than radioactive atoms. In order to understand the source of carrier fluoride and other ions associated with {sup 18}F radiosynthesis, anion concentrations of different components of {sup 18}F target systems as well as solvents and chemicals used in radiosynthesis were measured. Results: The enriched water used for production of {sup 18}F had low levels of anions. In general, the sources of anions, particularly of fluoride, were the chemical reagents used for synthesis and trace contaminants in tubing, valves and fittings. A major component of contamination was nitrate from irradiation of dissolved nitrogen gas in the target water.

  1. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  2. A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River

    Directory of Open Access Journals (Sweden)

    Ehsan Olyaie

    2017-05-01

    Full Text Available Most of the water quality models previously developed and used in dissolved oxygen (DO prediction are complex. Moreover, reliable data available to develop/calibrate new DO models is scarce. Therefore, there is a need to study and develop models that can handle easily measurable parameters of a particular site, even with short length. In recent decades, computational intelligence techniques, as effective approaches for predicting complicated and significant indicator of the state of aquatic ecosystems such as DO, have created a great change in predictions. In this study, three different AI methods comprising: (1 two types of artificial neural networks (ANN namely multi linear perceptron (MLP and radial based function (RBF; (2 an advancement of genetic programming namely linear genetic programming (LGP; and (3 a support vector machine (SVM technique were used for DO prediction in Delaware River located at Trenton, USA. For evaluating the performance of the proposed models, root mean square error (RMSE, Nash–Sutcliffe efficiency coefficient (NS, mean absolute relative error (MARE and, correlation coefficient statistics (R were used to choose the best predictive model. The comparison of estimation accuracies of various intelligence models illustrated that the SVM was able to develop the most accurate model in DO estimation in comparison to other models. Also, it was found that the LGP model performs better than the both ANNs models. For example, the determination coefficient was 0.99 for the best SVM model, while it was 0.96, 0.91 and 0.81 for the best LGP, MLP and RBF models, respectively. In general, the results indicated that an SVM model could be employed satisfactorily in DO estimation.

  3. Comparison of ultrafiltration and dissolved air flotation efficiencies in industrial units during the papermaking process

    OpenAIRE

    Monte Lara, Concepción; Ordóñez Sanz, Ruth; Hermosilla Redondo, Daphne; Sánchez González, Mónica; Blanco Suárez, Ángeles

    2011-01-01

    The efficiency of an ultrafiltration unit has been studied and compared with a dissolved air flotation system to get water with a suited quality to be reused in the process. The study was done at a paper mill producing light weight coated paper and newsprint paper from 100% recovered paper. Efficiency was analysed by removal of turbidity, cationic demand, total and dissolved chemical oxygen demand, hardness, sulphates and microstickies. Moreover, the performance of the ultrafiltration unit an...

  4. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  5. Capacity spectroscopy of minority-carrier radiation traps in n-type silicon

    International Nuclear Information System (INIS)

    Kuchinskij, P.V.; Lomako, V.M.; Shakhlevich, L.N.

    1987-01-01

    Minority charge-carrier radiation traps in n-silicon, produced by neutron transmutation doping (NTD) and zone melting method, were studied using unsteady capacity spectroscopy method. Studying the parameters of defects, formed in the lower half of the restricted zone, was performed using minority carrier injection by forward current pulses. Samples were p + -n-structures, produced on the basis of silicon with different oxygen content. It is shown, that a trap with activation energy ≅E v +0.34 eV appears to be the main defect in oxygen p-silicon. Investigation into thermal stability has shown, that centers with E v +0.34 eV and E v +0.27 eV activation energies are annealed within the same temperature interval (300-400 deg C)

  6. Oxygen Response of the Wine Yeast Saccharomyces cerevisiae EC1118 Grown under Carbon-Sufficient, Nitrogen-Limited Enological Conditions

    Science.gov (United States)

    Aceituno, Felipe F.; Orellana, Marcelo; Torres, Jorge; Mendoza, Sebastián; Slater, Alex W.; Melo, Francisco

    2012-01-01

    Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations. PMID:23001663

  7. Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr

    Directory of Open Access Journals (Sweden)

    L. Stramma

    2012-10-01

    Full Text Available Observations and model runs indicate trends in dissolved oxygen (DO associated with current and ongoing global warming. However, a large-scale observation-to-model comparison has been missing and is presented here. This study presents a first global compilation of DO measurements covering the last 50 yr. It shows declining upper-ocean DO levels in many regions, especially the tropical oceans, whereas areas with increasing trends are found in the subtropics and in some subpolar regions. For the Atlantic Ocean south of 20° N, the DO history could even be extended back to about 70 yr, showing decreasing DO in the subtropical South Atlantic. The global mean DO trend between 50° S and 50° N at 300 dbar for the period 1960 to 2010 is –0.066 μmol kg−1 yr−1. Results of a numerical biogeochemical Earth system model reveal that the magnitude of the observed change is consistent with CO2-induced climate change. However, the pattern correlation between simulated and observed patterns of past DO change is negative, indicating that the model does not correctly reproduce the processes responsible for observed regional oxygen changes in the past 50 yr. A negative pattern correlation is also obtained for model configurations with particularly low and particularly high diapycnal mixing, for a configuration that assumes a CO2-induced enhancement of the C : N ratios of exported organic matter and irrespective of whether climatological or realistic winds from reanalysis products are used to force the model. Depending on the model configuration the 300 dbar DO trend between 50° S and 50° N is −0.027 to –0.047 μmol kg−1 yr−1 for climatological wind forcing, with a much larger range of –0.083 to +0.027 μmol kg−1 yr−1 for different initializations of sensitivity runs with reanalysis wind forcing. Although numerical models reproduce the overall sign and, to

  8. Oxygen dosing the surface of SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dudy, L.; Scheiderer, P.; Schuetz, P.; Gabel, J.; Buchwald, M.; Sing, M.; Claessen, R. [Physikalisches Institut, Universitaet Wuerzburg (Germany); Denlinger, J.D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270 (United States); Schlueter, C.; Lee, T.L. [Diamond Light Source Ltd., Didcot, Oxfordshire (United Kingdom)

    2015-07-01

    The highly mobile two-dimensional electron system (2DES) on the surface of the insulating SrTiO{sub 3}(STO) offers exciting perspectives for advanced material design. This 2DES resides in a depletion layer caused by oxygen deficiency of the surface. With photoemission spectroscopy, we monitor the appearance of quasi-particle weight (QP) at the Fermi energy and oxygen vacancy induced states in the band gap (IG). Both, QP and IG weight, increase and decrease respectively upon exposure to extreme ultraviolet (XUV) light and in-situ oxygen dosing. By a proper adjustment of oxygen dosing, any intermediate state can be stabilized providing full control over the charge carrier density. From a comparison of the charge carrier concentrations obtained from an analysis of core-level spectra and the Fermi-surface volume, we conclude on a spatially inhomogeneous surface electronic structure with at least two different phases.

  9. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: the effect of the polysaccharide carrier and naproxen concentration.

    Science.gov (United States)

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-05-15

    The purpose of this study was to prepare solid SMEDDS (sSMEDDS) particles produced by spray-drying using maltodextrin (MD), hypromellose (HPMC), and a combination of the two as a solid carrier. Naproxen (NPX) as the model drug was dissolved (at 6% concentration) or partially suspended (at 18% concentration) in a liquid SMEDDS composed of Miglyol(®) 812, Peceol™, Gelucire(®) 44/14, and Solutol(®) HS 15. Among the sSMEDDSs tested, the MD-based sSMEDDSs (with a granular, smooth-surfaced, microspherical appearance) preserved the self-microemulsifying properties of liquid SMEDDSs and exhibited dissolution profiles similar to those of liquid SMEDDSs, irrespective of the concentration of NPX. In contrast, HPMC-based sSMEDDSs (irregular-shaped microparticles) exhibited slightly prolonged release times due to the polymeric nature of the carrier. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Raman mapping analysis confirmed molecularly dissolved NPX (at 6% of drug loading), whereas at 18% NPX loading drug is partially molecularly dissolved and partially in the crystalline state. Copyright © 2015. Published by Elsevier B.V.

  10. Method of eliminating undesirable gaseous products resulting in underground uranium ore leaching

    International Nuclear Information System (INIS)

    Krizek, J.; Dedic, K.; Johann, J.; Haas, F.; Sokola, K.

    1980-01-01

    The method described is characteristic of the fact that gases being formed or dissolved are oxidized using a combined oxidation-reduction system consisting of airborne oxygen, oxygen carriers and a strong irreversible oxidant. The oxygen carrier system consists of a mixture of Fe 2+ and Fe 3+ cations or of Cu + and Cu 2+ cations introduced in solutions in form of iron salts at a concentration of 0.0001 to 0.003 M, or copper salts maximally of 0.0003 M. The irreversible oxidant shows a standard redox potential of at least +1.0 V. In addition to undesirable product elimination, the method allows increasing the leaching process yield. (J.B.)

  11. Short communication: effect of oxygen on symbiosis between Lactobacillus bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    Horiuchi, H; Sasaki, Y

    2012-06-01

    Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) and Streptococcus thermophilus are traditionally used for the manufacture of yogurt. It is said that a symbiotic relationship exists between Strep. thermophilus and L. bulgaricus and this decreases fermentation time. It is well known that L. bulgaricus is stimulated by the formate produced by Strep. thermophilus, and Strep. thermophilus is stimulated by free amino acids and peptides liberated from milk proteins by L. bulgaricus in symbiotic fermentation. We found that acid production by starter culture LB81 composed of L. bulgaricus 2038 and Strep. thermophilus 1131 was greatly accelerated by decreasing dissolved oxygen (DO) to almost 0 mg/kg in the yogurt mix (reduced dissolved oxygen fermentation) and that DO interferes with the symbiotic relationship between L. bulgaricus 2038 and Strep. thermophilus 1131. We attributed the acceleration of acid production of LB81 by reduced dissolved oxygen fermentation mainly to the acceleration of formate production and the suppression of acid production of LB81 by DO mainly to the suppression of formate production. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2001-01-01

    Experiments on aqueous TiO 2 photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO 2 photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5∼3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs

  13. A study on the photocatalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2001-01-01

    Experiments on aqueous TiO{sup 2} photocatalytic reaction characteristics of 4 nitrogen-containing and 12 aromatic organic compounds were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photocatalytic decomposition were estimated. It was shown that the dependence of decomposition of the N-containing compounds were linearly proportional to their nitrogen atomic charge values, while that of the aromatic compounds were inversely proportional. The effects of aqueous pH, oxygen content and concentration on the TiO{sup 2} photocatalytic characteristics of EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5{approx}3.0 and with more dissolved oxygen. These results could be applied to a unit process for removal of organic impurities dissolved in a source water of the system water, and for treatment of EDTA-containing liquid waste produced by chemical cleaning process in the domestic NPPs.

  14. Benthic phosphorus cycling in the Peruvian oxygen minimum zone

    Science.gov (United States)

    Lomnitz, Ulrike; Sommer, Stefan; Dale, Andrew W.; Löscher, Carolin R.; Noffke, Anna; Wallmann, Klaus; Hensen, Christian

    2016-03-01

    Oxygen minimum zones (OMZs) that impinge on continental margins favor the release of phosphorus (P) from the sediments to the water column, enhancing primary productivity and the maintenance or expansion of low-oxygen waters. A comprehensive field program in the Peruvian OMZ was undertaken to identify the sources of benthic P at six stations, including the analysis of particles from the water column, surface sediments, and pore fluids, as well as in situ benthic flux measurements. A major fraction of solid-phase P was bound as particulate inorganic P (PIP) both in the water column and in sediments. Sedimentary PIP increased with depth in the sediment at the expense of particulate organic P (POP). The ratio of particulate organic carbon (POC) to POP exceeded the Redfield ratio both in the water column (202 ± 29) and in surface sediments (303 ± 77). However, the POC to total particulate P (TPP = POP + PIP) ratio was close to Redfield in the water column (103 ± 9) and in sediment samples (102 ± 15). This suggests that the relative burial efficiencies of POC and TPP are similar under low-oxygen conditions and that the sediments underlying the anoxic waters on the Peru margin are not depleted in P compared to Redfield. Benthic fluxes of dissolved P were extremely high (up to 1.04 ± 0.31 mmol m-2 d-1), however, showing that a lack of oxygen promotes the intensified release of dissolved P from sediments, whilst preserving the POC / TPP burial ratio. Benthic dissolved P fluxes were always higher than the TPP rain rate to the seabed, which is proposed to be caused by transient P release by bacterial mats that had stored P during previous periods when bottom waters were less reducing. At one station located at the lower rim of the OMZ, dissolved P was taken up by the sediments, indicating ongoing phosphorite formation. This is further supported by decreasing porewater phosphate concentrations with sediment depth, whereas solid-phase P concentrations were comparatively

  15. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.; Wang, Hanting; Gutié rrez, Leonardo A.; Romero-Maraccini, Ofelia C.; Niu, Xi-Zhi; Gin, Karina; Croue, Jean-Philippe; Nguyen, Thanh Ha

    2013-01-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3'-methoxyacetophenone (3'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  16. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  17. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies

    DEFF Research Database (Denmark)

    Skolimowski, Maciej; Weiss Nielsen, Martin; Emnéus, Jenny

    2010-01-01

    . The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used...... for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions....

  18. Effect of hypolimnetic oxygenation on oxygen depletion rates in two water-supply reservoirs.

    Science.gov (United States)

    Gantzer, Paul A; Bryant, Lee D; Little, John C

    2009-04-01

    Oxygenation systems, such as bubble-plume diffusers, are used to improve water quality by replenishing dissolved oxygen (DO) in the hypolimnia of water-supply reservoirs. The diffusers induce circulation and mixing, which helps distribute DO throughout the hypolimnion. Mixing, however, has also been observed to increase hypolimnetic oxygen demand (HOD) during system operation, thus accelerating oxygen depletion. Two water-supply reservoirs (Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR)) that employ linear bubble-plume diffusers were studied to quantify diffuser effects on HOD. A recently validated plume model was used to predict oxygen addition rates. The results were used together with observed oxygen accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Plume-induced mixing correlated well with applied gas flow rate and was observed to increase HOD. Linear relationships between applied gas flow rate and HOD were found for both SHR and CCR. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that HOD is controlled by induced mixing. Despite transient increases in HOD, oxygenation caused an overall decrease in background HOD, as well as a decrease in induced HOD during diffuser operation, over several years. This suggests that the residual or background oxygen demand decreases from one year to the next. Despite diffuser-induced increases in HOD, hypolimnetic oxygenation remains a viable method for replenishing DO in thermally-stratified water-supply reservoirs such as SHR and CCR.

  19. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon Salmo salar

    Science.gov (United States)

    Waldrop, Thomas; Summerfelt, Steven T.; Mazik, Patricia M.; Good, Christopher

    2018-01-01

    Swimming exercise, typically measured in body-lengths per second (BL/s), and dissolved oxygen (DO), are important environmental variables in fish culture. While there is an obvious physiological association between these two parameters, their interaction has not been adequately studied in Atlantic salmon Salmo salar. Because exercise and DO are variables that can be easily manipulated in modern aquaculture systems, we sought to assess the impact of these parameters, alone and in combination, on the performance, health and welfare of juvenile Atlantic salmon. In our study, Atlantic salmon fry were stocked into 12 circular 0.5 m3 tanks in a flow-through system and exposed to either high (1.5–2 BL/s) or low (salmon early rearing can result in improved growth performance and a lower incidence of precocious parr.

  20. The isotopic chemical and dissolved gas concentrations in groundwater near Venterstad, Cape Province

    International Nuclear Information System (INIS)

    Vogel, J.C.; Talma, A.S.; Heaton, T.H.E.

    1980-01-01

    Groundwater was collected for a multi parameter investigation from 27 boreholes within a radius of 120 km from Venterstad (Cape Province). The samples were analysed for the isotopes carbon-14, carbon-13, oxygen-18, tritium and radon-222, for the dissolved gases nitrogen, oxygen, argon, methane and helium and for the major ionic species. These data, with those collected during previous investigations of the flooding of the Orange Fish tunnel, are used to discuss the geohydrology of the area. Three water types of different origin were delineated

  1. Patterns, drivers and implications of dissolved oxygen dynamics in tropical mangrove forests

    Science.gov (United States)

    Mattone, Carlo; Sheaves, Marcus

    2017-10-01

    Estuarine mangrove forests regulate and facilitate many ecological processes, and provide nursery ground for many commercially important species. However, mangroves grow in sediments with high carbon loading and high respiration rates which can potentially influencing the dissolved oxygen (DO) dynamics of tidal water flowing into mangrove forests, as bacteria strip DO from the incoming water to carry out metabolic functions. In turn this is likely to influence the way nekton and other aquatic organisms utilize mangrove forests. Despite these possibilities, previous work has focused on looking at DO dynamics within mangrove creeks, with little research focusing on understanding DO dynamics within the mangrove forests themselves during tidal inundation or of DO levels of pools within the forest remaining once the tide has ebbed. The present study investigates the pattern in DO at various distances within an estuarine Rhizophora stylosa forest in tropical north Queensland. DO levels were recorded at 5 min interval over 2 days and multiple tidal cycles, data were collected between 2013 and 2014 for a total of 32 tidal cycles encompassing multiples seasons and tidal amplitudes. There were substantial fluctuations in DO, often varying from normoxic to hypoxic within the same tidal cycle. A range of factors influenced DO dynamics, in particular: tidal height, amount of sunlight, tidal phase, and distance from the outer edge of the mangrove forest. In fact, spring tides tend to have high DO saturation, particularly during the flooding phase, however as the tide starts ebbing, DO depletes rapidly especially in areas further inside the forest. Moreover during tidal disconnection the remnant pools within the forest quickly became anoxic. These variations in DO suggest that the use of mangrove forests by animals is likely to be constrained by their ability to withstand low DO levels, and provides a plausible explanation for the apparent paucity of benthic organism observed

  2. Development of oxygen scavenger additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, B.D.; Demunshi, R.; Sharief, V.; Tian, D.; Teng, Y. [Duquesne Univ., Pittsburgh, PA (United States)

    1995-05-01

    Our current research program is in response to the US Air Force`s FY93 New Initiative entitled {open_quotes}Advanced Fuel Composition and Use.{close_quotes} The critical goal of this initiative is to develop aircraft fuels which can operate at supercritical conditions. This is a vital objective since future aircraft designs will transfer much higher heat loads into the fuel as compared with current heat loads. In this paper it is argued that the thermal stability of most jet fuels would be dramatically improved by the efficient in flight-removal of a fuel`s dissolved oxygen. It is proposed herein to stabilize the bulk fuel by the addition of an additive which will be judiciously designed and programmed to react with oxygen and produce an innocuous product. It is envisioned that a thermally activated reaction will occur, between the oxygen scavenging additive and dissolved oxygen, in a controlled and directed manner. Consequently formation of insoluble thermal degradation products will be limited. It is believed that successful completion of this project will result in the development of a new type of jet fuel additive which will enable current conventional jet fuels to obtain sufficient thermal stability to function in significantly higher temperature regimes. In addition, it is postulated that the successful development of thermally activated oxygen scavengers will also provide the sub-critical thermal stability necessary for future development of endothermic fuels.

  3. The protective role of dissolved carbon dioxide against wine oxidation: a simple and rational approach

    Directory of Open Access Journals (Sweden)

    Audrey Devatine

    2011-09-01

    Significance and impact of the study: The physical understanding of this phenomenon can be found in the fact that as soon as a gaseous air or pure oxygen phase is in contact with a carbon dioxide saturated liquid, the dissolved carbon dioxide, which is not at equilibrium with the gaseous phase, tends to escape into this gaseous phase. This study points out the complexity of the gas-liquid equilibrium when two dissolved gases are simultaneously present in a liquid and its implication in the winemaking process.

  4. In situ measurements of oxygen dynamics in unsaturated archaeological deposits

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hollesen, Jørgen; Dunlop, Rory

    2015-01-01

    Oxygen is a key parameter in the degradation of archaeological material, but little is known of its dynamics in situ. In this study, 10 optical oxygen sensors placed in a 2 m deep test pit in the cultural deposits at Bryggen in Bergen have monitored oxygen concentrations every half hour for more ...... of the soil exceeds 10–15% vol, while oxygen dissolved in infiltrating rainwater is of less importance for the supply of oxygen in the unsaturated zone....... than a year. It is shown that there is a significant spatial and temporal variation in the oxygen concentration, which is correlated to measured soil characteristics, precipitation, soil water content and degradation of organic material. In these deposits oxygen typically occurs when the air content...

  5. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Uberuaga, Blas P.

    2015-01-01

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2 Zr 2 O 7 (GZO) and Gd 2 Ti 2 O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusion with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.

  6. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  7. An oxygen pressure sensor using surface acoustic wave devices

    Science.gov (United States)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  8. Aspects of the uptake of dissolved oxygen in Cabiúnas and Imboassica Lagoons (Macaé, RJ

    Directory of Open Access Journals (Sweden)

    Paulo R. Brum

    1999-01-01

    Full Text Available In this work, we describe qualitative and quantitative aspects of the cycling of detritus of aquatic macrophytes and carbohydrates in two coastal lagoons of the northeastern part of the State of Rio de Janeiro. Samples of water of the Imboassica and Cabiúnas lagoons were enriched with sucrose. Samples of water of the Cabiúnas lagoon were also utilized to arrange mineralization chambers with fragments of three species of aquatic macrophytes found in these lagoons (Typha domingensis, Potamogeton stenostachys and Nymphaea ampla. Following that, the bottles were aerated and incubated (in the laboratory for a period of 8 days. The concentrations of dissolved oxygen, the pH, the electrical conductivity and the temperature were daily measured. The anaerobic processes were inhibited by periodical aeration of the bottles. The results suggested that the mineralization process in Imboassica lagoon was more efficient; in Cabiúnas lagoon the process of immobilization of the organic matter was dominant. In the short term, maximum oxygen uptake occurred in the mineralization of N. ampla, followed by the mineralization of P. stenostachys and of T. domingensis. However, it was estimated that in long term the mineralization of P. stenostachys showed a greater oxygen uptake.Nesta pesquisa, descrevemos aspectos qualitativos e quantitativos da ciclagem de detritos de macrófitas aquáticas e carboidratos em duas lagoas costeiras do nordeste do Estado do Rio de Janeiro. Amostras de água das lagoas Imboassica e Cabiúnas foram enriquecidas com sacarose. Amostras de água da lagoa Cabiúnas foram também utilizadas para a montagem de câmaras de mineralização com fragmentos de três espécies de macrófitas aquáticas encontradas nestas lagoas (Typha domingensis, Potamogeton stenostachys e Nymphaea ampla. Em seguida, as garrafas foram aeradas e incubadas (no laboratório por um período de 8 dias. As concentrações de oxigênio dissolvido, o pH, a condutividade

  9. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2000-01-01

    Experiments on aqueous TiO 2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO 2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  10. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  11. Temperature profile, salinity, dissolved oxygen, phosphate and other measurements collected using bottle and CTD casts from the New Horizon and NOAA Ship David Starr Jordan in the North East Pacific Ocean as part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 23 March - 2004-07-28 (NODC Accession 0002180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, dissolved oxygen, phosphate, conductivity, phytoplankton, and other data were collected using CalBOBL, manta net, pairovet, bottle, and CTD...

  12. Oxygen sensor development and low temperature corrosion study in lead-alloy coolant loop

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Bahn, Chi Bum; Lee, Seung Gi; Jeong, Seung Ho; Nam, Hyo On; Lim, Jun

    2007-07-01

    Oxygen sensor to measure dissolved oxygen concentration at liquid lead-bismuth eutectic environments have been developed. Developed oxygen sensor for application in lead-bismuth eutectic (LBE) system was based on the oxygen ion conductor made of YSZ ceramic having Bi/Bi2O3 reference joined by electro-magnetic swaging. Leakage problem, which was major problem of existing sensors, can be solved by using electro-magnetic swaging method. A new calibration strategy combining the oxygen titration with electrochemical impedance spectroscopy (EIS) was performed to increase the reliability of sensor. Another calibration was also conducted by controlling the oxygen concentration using OCS (oxygen control system). Materials corrosion tests of various metals (SS316, EP823, T91 and HT9) were conducted for up to 1,000 hours with specimen inspection after every 333hours at 450 .deg. C in HELIOS. Oxygen concentration was controlled at 10 -6 wt% by using the direct gas bubbling of Ar+4%H 2 , Ar+5%O 2 and pure Ar. The dissolved oxygen concentration in LBE was also monitored by two calibrated YSZ oxygen sensors located at different places under different temperatures within HELIOS. It shows a good performance during 1000 hours. Liquid metal embrittlement (LME) test of SS316L specimen in the LBE was performed at various temperature and strain rate. The result shows that the liquid metal embrittlement effect is not crucial at tested conditions

  13. δ34S and δ18O of dissolved sulfate as biotic tracer of biogeochemical influences on arsenic mobilization in groundwater in the Hetao Plain, Inner Mongolia, China.

    Science.gov (United States)

    Li, M D; Wang, Y X; Li, P; Deng, Y M; Xie, X J

    2014-12-01

    Environmental isotopology of sulfur and oxygen of dissolved sulfate in groundwater was conducted in the Hetao Plain, northwestern China, aiming to better understand the processes controlling arsenic mobilization in arsenic-rich aqueous systems. A total of 22 groundwater samples were collected from domestic wells in the Hetao Plain. Arsenic concentrations ranged from 11.0 to 388 μg/L. The δ(34)S-SO4 and δ(18)O-SO4 values of dissolved sulfate covered a range from +1.48 to +22.4‰ and +8.17‰ to +14.8‰ in groundwater, respectively. The wide range of δ(34)S-SO4 values reflected either an input of different sources of sulfate, such as gypsum dissolution and fertilizer application, or a modification from biogeochemical process of bacterial sulfate reduction. The positive correlation between δ(34)S-SO4 and arsenic concentrations suggested that bacteria mediated processes played an important role in the mobilization of arsenic. The δ(18)O-SO4 values correlated non-linearly with δ(34)S-SO4, but within a relatively narrow range (+8.17 to +14.8‰), implying that complexities inherent in the sulfate-oxygen (O-SO4(2-)) origins, for instance, water-derived oxygen (O-H2O), molecular oxygen (O-O2) and isotope exchanging with dissolved oxides, are accounted for oxygen isotope composition of dissolved sulfate in groundwater in the Hetao Plain.

  14. Dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations using flow-through pump from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (ECOA) Cruise from 2015-06-19 to 2015-07-24 (NCEI Accession 0157485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations during...

  15. Anaerobe Tolerance to Oxygen and the Potentials of Anaerobic and Aerobic Cocultures for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    M.T. Kato

    1997-12-01

    Full Text Available The anaerobic treatment processes are considered to be well-established methods for the elimination of easily biodegradable organic matter from wastewaters. Some difficulties concerning certain wastewaters are related to the possible presence of dissolved oxygen. The common belief is that anaerobes are oxygen intolerant. Therefore, the common practice is to use sequencing anaerobic and aerobic steps in separate tanks. Enhanced treatment by polishing off the residual biodegradable oxygen demand from effluents of anaerobic reactors, or the biodegradation of recalcitrant wastewater pollutants, usually requires sequenced anaerobic and aerobic bacteria activities. However, the combined activity of both bacteria can also be obtained in a single reactor. Previous experiments with either pure or mixed cultures showed that anaerobes can tolerate oxygen to a certain extent. The oxygen toxicity to methanogens in anaerobic sludges was quantified in batch experiments, as well as in anaerobic reactors. The results showed that methanogens have a high tolerance to oxygen. In practice, it was confirmed that dissolved oxygen does not constitute any detrimental effect on reactor treatment performance. This means that the coexistence of anaerobic and aerobic bacteria in one single reactor is feasible and increases the potentials of new applications in wastewater treatment

  16. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen.

    Science.gov (United States)

    Li, Liang; Dong, Yihua; Qian, Guangsheng; Hu, Xiaomin; Ye, Linlin

    2018-06-01

    A pair of Fe-C electrodes was installed in a traditional submerged membrane bioreactor (MBR, Rc), and a novel asynchronous periodic reversal bio-electrocoagulation system (Re) was developed. The simultaneous nitrification and denitrification (SND) performance was discussed under limited dissolved oxygen (DO). Results showed that electrocoagulation enhanced total nitrogen (TN) removal from 59.48% to 75.09% at 1.2 mg/L DO. Additionally, Fe electrode could increase sludge concentration, particle size, and enzyme activities related to nitrogen removal. The enzyme activities of Hydroxylamine oxidoreductase (HAO), Nitrate Reductase (NAR), nitric oxide reductase NOR and nitrous oxide reductase (N 2 OR) in Re were 38.35%, 21.59%, 89.96% and 38.64% higher than Rc, respectively. Moreover, electrocoagulation was advantageous for nitrite accumulation, indicating partial nitrification and denitrification were more easily achieved in Re. Besides, results from high throughput sequencing analysis revealed that electrocoagulation increased the relative abundance of most genera related to nitrogen removal, including Nitrosomonas, Comamonadaceae_unclassified, Haliangium and Denitratisoma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.

    2009-01-01

    overpredicted the oxygen transfer by a factor of 1.3 relative to the result calculated from the outlet gas oxygen concentration, which was considered the most accurate of the measured benchmarks. A mass transfer coefficient derived from the clean water testing with oxygen sensors at the membrane......-liquid interface was the most accurate of the predictive models (overpredicted by a factor of 1.1) while a coefficient determined by measuring bulk liquid dissolved oxygen underpredicted the oxygen transfer by a factor of 3. The mechanistic model was found to be an adequate tool for design because it used...

  18. A Novel Bio-carrier Fabricated Using 3D Printing Technique for Wastewater Treatment

    Science.gov (United States)

    Dong, Yang; Fan, Shu-Qian; Shen, Yu; Yang, Ji-Xiang; Yan, Peng; Chen, You-Peng; Li, Jing; Guo, Jin-Song; Duan, Xuan-Ming; Fang, Fang; Liu, Shao-Yang

    2015-01-01

    The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth. PMID:26202477

  19. Response coefficient analysis of a fed-batch bioreactor to dissolved oxygen perturbation in complementary cultures during PHB production

    Directory of Open Access Journals (Sweden)

    Patnaik Pratap R

    2008-03-01

    Full Text Available Abstract Background Although the production of poly-β-hydroxybutyrate (PHB has many biological, energetic and environmental advantages over chemically synthesized polymers, synthetic polymers continue to be produced industrially since the productivities of fermentation processes fr PHB are not yet economically competitive. Improvement of a PHB fermentation requires good understanding and optimization under the realistic conditions of large bioreactors. Laboratory-scale studies have shown that co-cultures of Ralstonia eutropha and Lactobacillus delbrueckii generate better fermentation efficiencies than R. eutropha alone. In large bioreactors, incomplete dispersioin and perturbations in the dissolved oxygen (DO concentration, both of which affect the fermentation, have to be considered. This study analyzes the effect of DO fluctuations on bioreactor performance for both ideal and optimally dispersed broths. Results Response coefficient analysis was employed to obtain quantitative information on the effect of DO perturbations on different variables. Three values of the Peclet number (Pe cheracterized three levels of dispersion: Pe = 0.01 for nearly complete dispersion, Pe = 20 for optimum dispersion and Pe = 60 for insufficient dispersion. The response coefficients (RCs of the pairs of bacterial concentrations and the main substrates, glucose and ammonium chloride, showed contrasting variations with time. Lactate, a critical intermediate, and PHB had similar RC profiles but those of lactate were one to two orders of magnitude larger than other RCs. Significantly, the optimum Pe also resulted in the largest RCs, suggesting a balance between productivity and reactor stability. Conclusion Since R. eutropha requires oxygen for its growth whereas L. delbrueckii does not, fluctuations in the DO concentartion have a strong influence on the fermentation. Apart from this, the mechanism of PHB biosynthesis indicates that control of lactate is a critical

  20. Biogeochemical relationships between ultrafiltered dissolved organic matter and picoplankton activity in the Eastern Mediterranean Sea

    NARCIS (Netherlands)

    Meador, Travis B.; Gogou, Alexandra; Spyres, Georgina; Herndl, Gerhard J.; Krasakopoulou, Evangelia; Psarra, Stella; Yokokawa, Taichi; De Corte, Daniele; Zervakis, Vassilis; Repeta, Daniel J.

    2010-01-01

    We targeted the warm, subsurface waters of the Eastern Mediterranean Sea (EMS) to investigate processes that are linked to the chemical composition and cycling of dissolved organic carbon (DOC) in seawater. The apparent respiration of semi-labile DOC accounted for 27 +/- 18% of oxygen consumption in

  1. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations

    International Nuclear Information System (INIS)

    Liu Fang; Zhao Chaocheng; Zhao Dongfeng; Liu Guohua

    2008-01-01

    An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH 4 + -N and total nitrogen (TN) in the effluent were 31, 2 and 8 mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78 m 3 /(m 2 h), the removal efficiencies of COD, NH 4 + -N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH 4 + -N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1 mg/L, the removal efficiencies of COD and NH 4 + -N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%

  2. Significance of dissolved methane in effluents of anaerobically ...

    Science.gov (United States)

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  3. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Cao Zhong; Zhang Ling; Guo Chaoyan; Gong Fuchun; Long Shu; Tan Shuzhen; Xia Changbin; Xu Fen; Sun Lixian

    2009-01-01

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10 -5 ng.cm -2 .s -1 , corresponding to 1.3 x 10 8 Au atoms.cm -2 .s -1 , that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  4. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    International Nuclear Information System (INIS)

    Slama, C.; Gardner Costa, J.; Ciborowski, J.

    2010-01-01

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  5. Sediment oxygen demand of wetlands in the oil sands region of northeastern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Slama, C.; Gardner Costa, J.; Ciborowski, J. [Windsor Univ., ON (Canada)

    2010-07-01

    Sediment oxygen demand (SOD) can significantly influence the dissolved oxygen concentrations in shallow water bodies. This study discussed the types of sediments used to reclaim wetlands and their influence on SOD, successional processes, and ecosystem trajectories. The study hypothesized that oil sands process material (OSPM) affected wetlands would support cyanobacterial biofilms as opposed to submergent macrophytes as a result of insufficient phosphorus levels. SOD was assessed by monitoring dissolved oxygen concentrations within domes placed on the sediment surface for a 3-hour period. Gas flux and composition analyses were used to quantify the biological SOD components. Chemical SOD components were then determined by subtraction. Concentrations of phosphorus bioavailable to the macrophytes were estimated using plant root simulator probes. The study showed that OSPM wetlands exhibited higher chemical SOD and SOD than reference wetlands, and supported benthic biofilms as opposed to the submergent macrophyte communities typically found in northeastern Alberta wetlands.

  6. Estimating of gas transfer velocity using triple isotopes of dissolved oxygen.

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Abe, O.; Honda, M.; Saino, T.

    variations in oxygen isotopes are found to be higher than the direct estimations at low wind speed (<5 m s sup(-1)) and lower at high wind speeds (>13 m s sup(-1)) and showed significant spatial variability. The method presented here can be used to derive...

  7. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    Science.gov (United States)

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-06

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.

  8. IMPACT OF OXYGEN CONCENTRATION ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2003-01-27

    These tests have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels in environments having dissolved oxygen (DO) concentrations ranging from very low to very high. The results suggest that the highest mussel kill can be achieved in moderately to highly aerated environments, while kill may be 0-20% lower under conditions of very low oxygen. For example, under highly oxygenated conditions 97% kill was achieved while conditions having low DO produced 79% mussel kill. Service water measured in a local power plant indicated that DO concentrations were in the range of 8-9 ppm (e.g., highly aerated) within their pipes. Therefore, we will not expect to see decreases in the efficacy of CL0145A treatments due to oxygen levels within such power plant pipes.

  9. IMPACT OF OXYGEN CONCENTRATION ON ZEBRA MUSSEL MORTALITY

    International Nuclear Information System (INIS)

    Molloy, Daniel P.

    2003-01-01

    These tests have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels in environments having dissolved oxygen (DO) concentrations ranging from very low to very high. The results suggest that the highest mussel kill can be achieved in moderately to highly aerated environments, while kill may be 0-20% lower under conditions of very low oxygen. For example, under highly oxygenated conditions 97% kill was achieved while conditions having low DO produced 79% mussel kill. Service water measured in a local power plant indicated that DO concentrations were in the range of 8-9 ppm (e.g., highly aerated) within their pipes. Therefore, we will not expect to see decreases in the efficacy of CL0145A treatments due to oxygen levels within such power plant pipes

  10. Dynamics of dissolved organic matter in fjord ecosystems: Contributions of terrestrial dissolved organic matter in the deep layer

    Science.gov (United States)

    Yamashita, Youhei; McCallister, S. Leigh; Koch, Boris P.; Gonsior, Michael; Jaffé, Rudolf

    2015-06-01

    Annually, rivers and inland water systems deliver a significant amount of terrestrial organic matter (OM) to the adjacent coastal ocean in both particulate and dissolved forms; however, the metabolic and biogeochemical transformations of OM during its seaward transport remains one of the least understood components of the global carbon cycle. This transfer of terrestrial carbon to marine ecosystems is crucial in maintaining trophic dynamics in coastal areas and critical in global carbon cycling. Although coastal regions have been proposed as important sinks for exported terrestrial materials, most of the global carbon cycling data, have not included fjords in their budgets. Here we present distributional patterns on the quantity and quality of dissolved OM in Fiordland National Park, New Zealand. Specifically, we describe carbon dynamics under diverse environmental settings based on dissolved organic carbon (DOC) depth profiles, oxygen concentrations, optical properties (fluorescence) and stable carbon isotopes. We illustrate a distinct change in the character of DOC in deep waters compared to surface and mid-depth waters. Our results suggest that, both, microbial reworking of terrestrially derived plant detritus and subsequent desorption of DOC from its particulate counterpart (as verified in a desorption experiment) are the main sources of the humic-like enriched DOC in the deep basins of the studied fjords. While it has been suggested that short transit times and protection of OM by mineral sorption may ultimately result in significant terrestrial carbon burial and preservation in fjords, our data suggests the existence of an additional source of terrestrial OM in the form of DOC generated in deep, fjord water.

  11. Fuel-coolant interactions: preliminary experiments on the effect of gases dissolved in the 'coolant'

    International Nuclear Information System (INIS)

    Asher, R.C.; Davies, D.; Jones, P.G.

    1976-12-01

    A simple apparatus has been used to study fuel-coolant interactions under reasonably well controlled conditions. Preliminary experiments have used water as the 'coolant' and molten tin at 800 0 C as the 'fuel' and have investigated how the violence of the interaction is affected by dissolving gases (oxygen, nitrogen, carbon dioxide and nitrous oxide) in the water. It was found that saturating the water with carbon dioxide or nitrous oxide completely suppresses the violent interaction. Experiments in which the concentrations of these gases were varied showed that a certain critical concentration was needed; below this concentration the dissolved gas has no significant effect but above it the suppression is

  12. Multimillennium changes in dissolved oxygen under global warming: results from an AOGCM and offline ocean biogeochemical model

    Science.gov (United States)

    Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.

    2016-12-01

    Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.

  13. Method for removing and decolorizing aqueous waste effluents containing dissolved or dispersed organic matter

    International Nuclear Information System (INIS)

    Case, F.N.; Ketchen, E.E.

    1975-01-01

    A method is provided for treating organic waste material dissolved or dispersed in an aqueous effluent, which comprises contacting the effluent with an inert particulate carbonaceous sorbent at an oxygen pressure up to 2000 psi, irradiating the resultant mixture with high energy radiation until a decolorized liquid is produced, and then separating the decolorized liquid

  14. Interactive effects of oxygen, carbon dioxide and flow on photosynthesis and respiration in the scleractinian coral Galaxea fascicularis

    NARCIS (Netherlands)

    Osinga, Ronald; Derksen-Hooijberg, Marlous; Wijgerde, Tim; Verreth, Johan A.J.

    2017-01-01

    Rates of dark respiration and net photosynthesis were measured for six replicate clonal fragments of the stony coral Galaxea fascicularis (Linnaeus 1767), which were incubated under 12 different combinations of dissolved oxygen (20%, 100% and 150% saturation), dissolved carbon dioxide (9.5 and

  15. Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters

    Science.gov (United States)

    Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.

    2016-01-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.

  16. Damage induced by high energy multiply charged oxygen ions in oxide coated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India)]. E-mail: sanjay@physics.unipune.ernet.in; Dahiwale, S.S. [Department of Physics, University of Pune, Pune 411 007 (India); Kulkarni, V.R. [Department of Physics, University of Pune, Pune 411 007 (India); Bogle, K.A. [Department of Physics, University of Pune, Pune 411 007 (India); Shinde, N.S. [Ecotopia Science Institute, Division of Energy Science, Nagoya University, Nagoya (Japan); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India)

    2006-03-15

    P-type oxide coated silicon samples of resistivity 120 {omega} cm were irradiated with 60 MeV oxygen ions of fixed charge states 4{sup +}, 5{sup +}, 6{sup +} and 7{sup +} at an equal fluence of, {phi}, {approx}10{sup 13} ions/cm{sup 2}. The induced damage was estimated by Hall voltage, Hall coefficient, carrier concentration and lifetime of minority carriers. The results indicate that Hall voltage (V {sub H}) and Hall coefficient (R {sub H}) increases, while carrier concentration (n) decreases with the charge state of impinging oxygen ions. The V {sub H} increases from 22 mV to 76.5 mV at typical current of 0.5 mA, R {sub H} from 0.42 x 10{sup 5} cm{sup 3}/C to 2.16 x 10{sup 5} cm{sup 3}/C and n decreases from 9 x 10{sup 13} cm{sup -3} to 2.88 x 10{sup 13} cm{sup -3} for the different charge states. This fact is an evidence that the oxygen ions with an individual fixed charge state passing through very thin 40 A layer of silicon dioxide, induces significant damage at the SiO{sub 2}-Si interface through the mechanism of electronic stopping power. The lifetime of minority charge carriers, {tau} (bulk property), remains constant at around 6 {mu}s for all the charge states of the 60 MeV energy oxygen ion irradiated samples at a constant fluence of, {phi}, 10{sup 13} ions/cm{sup 2}.

  17. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    Science.gov (United States)

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  18. Drug Carrier for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  19. Dissolved oxygen, CDOM, Chl a, temperature, salinity and other variables collected from profile and continuous observations using CTD and other instruments from NOAA Ship Gordon Gunter off the U.S. East Coast during the 2015 East Coast Ocean Acidification (ECOA) Cruise from 2015-06-20 to 2015-07-23 (NCEI Accession 0157080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains CTD profile data of dissolved oxygen, CDOM, chlorophyll a, temperature and salinity data that were collected during the East Coast...

  20. Influence of oceanographic fronts and low oxygen on the distribution ...

    African Journals Online (AJOL)

    The horizontal and vertical distributions of eggs and larvae of sardine Sardinops sagax, anchovy Engraulis encrasicolus and horse mackerel Trachurus trachurus capensis were examined in relation to distribution patterns of temperature, salinity and dissolved oxygen. Samples were collected during February–March 2002 ...

  1. Oxygen isotope partitioning between rhyolitic glass/melt and CO2: An experimental study at 550-950 degrees C and 1 bar

    International Nuclear Information System (INIS)

    Palin, J.M.; Epstein, S.; Stolper, E.M.

    1996-01-01

    Oxygen isotope partitioning between gaseous CO 2 and a natural rhyolitic glass and melt (77.7 wt% SiO 2 , 0.16 wt% H 2 O total ) has been measured at 550-950 degrees C and approximately 1 bar. Equilibrium oxygen isotope fractionation factors (α CO2-rhyolite = ( 18 O/ 16 O) rhyolite ) determined in exchange experiments of 100-255 day duration. These values agree well with predictions based on experimentally determined oxygen isotope fractionation factors for CO 2 -silica glass and CO 2 -albitic glass/melt, if the rhyolitic glass is taken to be a simple mixture of normative silica and alkali feldspar components. The results indicate that oxygen isotope partitioning in felsic glasses and melts can be modeled by linear combinations of endmember silicate constituents. Rates of oxygen isotope exchange observed in the partitioning experiments are consistent with control by diffusion of molecular H 2 O dissolved in the glass/melt and are three orders of magnitude faster than predicted for rate control solely by diffusion of dissolved molecular CO 2 under the experimental conditions. Additional experiments using untreated and dehydrated (0.09 wt% H 2 O total ) rhyolitic glass quantatively support these interpretations. We conclude that diffusive oxygen isotope exchange in rhyolitic glass/melt, and probably other polymerized silicate materials, it controlled by the concentrations and diffusivities of dissolved oxygen-bearing volatile species rather than diffusion of network oxygen under all but the most volatile-poor conditions. 25 refs., 6 figs., 1 tab

  2. Study of the Carrier-Aided Thin Film Electrode Array Design for Cochlear Insertion

    Directory of Open Access Journals (Sweden)

    Yuchen Xu

    2018-04-01

    Full Text Available The micro-fabricated thin film electrode array (TFEA has been a promising design for cochlear implants (CIs because of its cost-effectiveness and fabrication precision. The latest polymer-based cochlear TFEAs have faced difficulties for cochlear insertion due to the lack of structural stiffness. To stiffen the TFEA, dissolvable stiffening materials, TFEAs with different structures, and TFEAs with commercial CIs as carriers have been invested. In this work, the concept of enhancing a Parylene TFEA with Kapton tape as a simpler carrier for cochlear insertion has been proved to be feasible. The bending stiffness of the Kapton-aided TFEA was characterized with an analytical model, a finite element model, and a cantilever bending experiment, respectively. While the Kapton tape increased the bending stiffness of the Parylene TFEA by 103 times, the 6-μm-thick TFEA with a similar Young’s modulus, as a polyimide, in turn significantly increased the bending stiffness of the 170-μm-thick Kapton carrier by 60%. This result indicated that even the TFEA is ultra-flexible and that its bending stiffness should not be neglected in the design or selection of its carrier.

  3. Oxygen sensor using proton-conductor thick-film operative at room temperature. Puroton dodentai atsumaku wo mochiita joon sadogata sanso sensor

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Norio; Yoshida, Nobuaki; Matayoshi, Naoko; Shimizu, Yoichi; Yamazoe, Noboru; Kuwata, Shigeki [Kyushu Univ., Fukuoka, (Japan) Niihama National College of Tech., Ehime, (Japan)

    1989-10-01

    An amperometric solid-state oxygen sensor using a proton-conductor thick-film was examined as a miniaturized and intelligent oxygen sensor operative at room temperature. The good-conditioned proton-conductor film of about 10{mu}m in thickness without holes was formed on a porous alumina substrate by spin-coating the paste containing antimonic acid and a polyvinyl alcohol binder. Using this material, the thick-film oxygen sensor was made. A limiting current, controlled by oxygen permeation through the gas-diffusion layer, was observed when an external voltage was over 1.4V. The limiting current increased linearly with an increase in oxygen partial pressure up to 1.0 atm at an external voltage of 1.6V. The 90% response time for increasing oxygen partial pressure was about 40 seconds at 30 centigrade. Moreover, it was found that the sensor could also respond to dissolved oxygen in water at room temperature. With a sensor using a hydrophobic gas-diffusion layer containing a polystyrene binder, the limiting current was linear to the dissolved oxygen concentration up to 20ppm. 15 refs., 5 figs.

  4. Development of oxygen sensors for use in liquid metal

    International Nuclear Information System (INIS)

    Van Nieuwenhove, Rudi; Ejenstam, Jesper; Szakalos, Peter

    2015-01-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  5. Development of oxygen sensors for use in liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, Rudi [Institutt for Energiteknikk, Halden, (Norway); Ejenstam, Jesper; Szakalos, Peter [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Stockholm, (Sweden)

    2015-07-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  6. An electrochemical sensor for monitoring oxygen or hydrogen in water

    International Nuclear Information System (INIS)

    Leitai Yang; Morris, D.R.; Lister, D.H.

    1997-01-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ''Nafion'' (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a ∼1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab

  7. An electrochemical sensor for monitoring oxygen or hydrogen in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Leitai; Morris, D R; Lister, D H [University of New Brunswick, Fredericton (Canada). Dept. of Chemical Engineering

    1997-02-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ``Nafion`` (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a {approx}1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab.

  8. LUMOS - A Sensitive and Reliable Optode System for Measuring Dissolved Oxygen in the Nanomolar Range

    DEFF Research Database (Denmark)

    Lehner, Philipp; Larndorfer, Christoph; Garcia-Robledo, Emilio

    2015-01-01

    Most commercially available optical oxygen sensors target the measuring range of 300 to 2 mu mol L-1. However these are not suitable for investigating the nanomolar range which is relevant for many important environmental situations. We therefore developed a miniaturized phase fluorimeter based...... for read out of less sensitive optical oxygen sensors based on the same or similar indicator dyes, for example for monitoring oxygen at physiological conditions. The presented sensor system exhibits lower noise, higher resolution and higher sensitivity than the electrochemical STOX sensor previously used...... measurement system called the LUMOS (Luminescence Measuring Oxygen Sensor). It consists of a readout device and specialized "sensing chemistry" that relies on commercially available components. The sensor material is based on palladium(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin embedded...

  9. Electrical property studies of oxygen in Czochralski-grown neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fukuoka, N.

    1980-10-01

    Electically active oxygen-related donors can be formed in Czochralski (Cz) Si either during crystal growth or during subsequent heat treatment; conventional n- or p-type dopant carrier concentrations are altered if these oxygen donors are present. Neutron transmutation doping (NTD) has been used to introduce a uniform concentration of 31 P in Si. However, oxygen donors can also be formed in NTD Cz Si during the process of annealing to remove NTD radiation damage. In the present experiments, the carrier concentration of Cz and NTD Cz Si samples was determined as a function of the initial dopant, oxygen, and 31 P concentration before and after isothermal or isochronal annealing. It is shown that low temperature (350 to 500 0 C) heat treatment can introduce a significant oxygen donor concentration in Cz Si and in NTD Cz Si that contains radiation-induced lattice defects. Intermediate temperature (550 to 750 0 C) heat treatment, which is intended to remove oxygen donors or lattice defects, can introduce other oxygen donors; annealing above 750 0 C is required to remove any of these oxygen donors. Extended (20 h) high-temperature (1000 to 1200 0 C) annealing can remove oxygen donors and lattice defects, but a significant concentration of oxygen donors can still be introduced by subsequent low temperature heat treatment. These results suggest that oxygen-related donor formation in NTD Cz Si at temperatures below 750 0 C may serve to mask any annealing study of lattice defects. It is concluded that annealing for 30 min at 750 0 C is sufficient to remove radiation damage in NTD Cz Si when the separate effects of oxygen donor formation are included

  10. Biotite dissolution and oxygen consumption in aqueous media at 100 degrees C

    International Nuclear Information System (INIS)

    Taylor, P.; Owen, D.G.

    1997-04-01

    The ability of biotite to consume dissolved oxygen, and hence restore reducing conditions in a nuclear fuel waste vault after closure, has been assessed experimentally. Oxygen consumption has been measured directly, and also deduced from experimental biotite dissolution rates. Results from the dissolution experiments on granitic biotite from the Lac du Bonnet region, Manitoba indicate that the biotite component of granite backfill should consume entrained oxygen in about 50 years at 100 degrees C. Direct measurements of oxygen consumption by commercial biotite specimens originating from Bancroft, Ontario were reasonably consistent with this finding. Magnetite is significantly more effective than biotite at oxygen consumption, perhaps two orders of magnitude faster at 100 degrees C. (author)

  11. Fuzzy control of dissolved oxygen, pH and temperature of bubble column bioreactor for Candida utilis biomass production

    Directory of Open Access Journals (Sweden)

    Hubert Arteaga Miñano

    2012-06-01

    Full Text Available An automatic control system by dissolved oxygen (DO fuzzy logic, pH and temperature in a bubble column bioreactor (BCB for Candida utilis CECT 10704 biomass production was implemented. Their performance was compared with the classical proportional control. A data acquisition card for the control was designed, built and programmed, using the 4.14 Eagle software for the design and the 3.0 Microcode Studio Plus for programming. A program in 6.0 Visual Basic, which linked up with 7.0 MatLab for fuzzy control was developed; using Mandani inference, membership functions of input and output trapezoidal and triangular; 4 rules for the DO, 3 for pH and 3 for temperature, with connector and type and for defuzzifying the centroid method. Evaluation of biomass production was performed by determining dry weight and growth kinetics with the Gompertz model.The fuzzy control performance of DO, pH and temperature showed superiority in proportional control, characterized by a very close control to set point and a low standard deviation. DO Fuzzy control at 6 ppm, pH of 6 and 30°C, allowed to have the greatest dry weight of 7.65±0.02 g/L and the highest maximum growth of 1.51±0.2, the lowest adaptation phase of 0.27±0.01 h and the greatest specific speed of Candida utilis growth rate of 0.7±0.01 h-1.

  12. Carrier-free separation of 228Th from BaSO4 (228Ra)

    International Nuclear Information System (INIS)

    Tomida, E.K.; Abrao, A.

    1978-01-01

    A procedure for the separation of 228 Th from BaSO 4 ( 228 Ra) is presented. Reasonably great amount of this material is stocked as a result of mesothorium decontamination of rare earth chlorides from the Brazilian industrial processing plant. Thorium-228 is selectively dissolved in nitric acid leaching of a 232 Th-free barium sulfate. Carrier-free 228 Th is obtained using a strong anion exchanger, thorium being retained as nitrato complex and eluted with 2,4M HCl [pt

  13. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  14. Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.

    Science.gov (United States)

    Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès

    2015-01-01

    Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.

  15. Microscopic oxygen imaging based on fluorescein bleaching efficiency measurements

    DEFF Research Database (Denmark)

    Beutler, Martin; Heisterkamp, Ines M.; Piltz, Bastian

    2014-01-01

    by a charge-coupled-device (ccd) camera mounted on a fluorescence microscope allowed a pixelwise estimation of the ratio function in a microscopic image. Use of a microsensor and oxygen-consuming bacteria in a sample chamber enabled the calibration of the system for quantification of absolute oxygen......Photobleaching of the fluorophore fluorescein in an aqueous solution is dependent on the oxygen concentration. Therefore, the time-dependent bleaching behavior can be used to measure of dissolved oxygen concentrations. The method can be combined with epi-fluorescence microscopy. The molecular...... states of the fluorophore can be expressed by a three-state energy model. This leads to a set of differential equations which describe the photobleaching behavior of fluorescein. The numerical solution of these equations shows that in a conventional wide-field fluorescence microscope, the fluorescence...

  16. Coolant Chemistry Control: Oxygen Mass Transport in Lead Bismuth Eutectic

    International Nuclear Information System (INIS)

    Weisenburger, A.; Mueller, G.; Bruzzese, C.; Glass, A.

    2015-01-01

    In lead-bismuth cooled transmutation systems, oxygen, dissolved in the coolant at defined quantities, is required for stable long-term operation by assuring the formation of protective oxide scales on structural steel surfaces. Extracted oxygen must be permanently delivered to the system and distributed in the entire core. Therefore, coolant chemistry control involves detailed knowledge on oxygen mass transport. Beside the different flow regimes a core might have stagnant areas at which oxygen delivery can only be realised by diffusion. The difference between oxygen transport in flow paths and in stagnant zones is one of the targets of such experiments. To investigate oxygen mass transport in flowing and stagnant conditions, a dedicated facility was designed based on computational fluid dynamics (CFD). CFD also was applied to define the position of oxygen sensors and ultrasonic Doppler velocimetry transducers for flow measurements. This contribution will present the test facility, design relevant CFD calculations and results of first tests performed. (authors)

  17. Removing oxygen from a solvent extractant in an uranium recovery process

    International Nuclear Information System (INIS)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds

  18. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    Science.gov (United States)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  19. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    Science.gov (United States)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  20. Oxygen consumption during mineralization of organic compounds in water samples from a small sub-tropical reservoir (Brazil

    Directory of Open Access Journals (Sweden)

    Cunha-Santino Marcela Bianchessi da

    2003-01-01

    Full Text Available Assays were carried out to evaluate the oxygen consumption resulting from mineralization of different organic compounds: glucose, sucrose, starch, tannic acid, lysine and glycine. The compounds were added to 1 l of water sample from Monjolinho Reservoir. Dissolved oxygen and dissolved organic carbon were monitored during 20 days and the results were fitted to first order kinetics model. During the 20 days of experiments, the oxygen consumption varied from 4.5 mg.l-1 (tannic acid to 71.5 mg.l-1 (glucose. The highest deoxygenation rate (kD was observed for mineralization of tannic acid (0.321 day-1 followed by glycine, starch, lysine, sucrose and glucose (0.1004, 0.0504, 0.0486, 0.0251 and 0.0158 day-1, respectively. From theoretical calculations and oxygen and carbon concentrations we obtained the stoichiometry of the mineralization processes. Stoichiometric values varied from 0.17 (tannic acid to 2.55 (sucrose.

  1. Dissolved Oxygen (DO) and Nutrients Analysis in the Río Piedras River, San Juan, Puerto Rico

    Science.gov (United States)

    Santiago, I.; Infante, G.

    2016-02-01

    The Río Piedras is the only River in the metropolitan area of Puerto Rico. This River was the first water supplier and is part of the ancient aqueduct, the first treatment plant of the San Juan urban area. Because of its cultural and historic importance the ancient aqueduct was cataloged as a National Treasure by the National Trust of History Preservation in 2014. Actually, is protected by Para La Naturaleza (before named in Spanish as the "Fideicomiso de Conservación de Puerto Rico"). The research objectives were to evaluate and measure the dissolved oxygen (DO), total phosphorus (TP) and the heavy metals (HM) concentrations of the River. Also, to examine if the DO, TP and HM (Cu, Fe, Pb, Mn, Al, and Zn) concentrations were in compliance with the Environmental Protection Agency (EPA) standards. Using DO bottles, water samples were collected on three points during six dates. DO concentrations were measured with the YSI Pro GBOD. TP concentrations were analyzed using the UV-Vis spectrophotometer "HACH" (DR 5000). Utilizing the ICP (Inductively Coupled Plasma) spectrophotometer emission technique and the EPA protocols HM concentrations were measured. Preliminary results show that the DO measurements were from 5.00 mg/L to 7.00 mg/L (p-value=0.282). HM concentrations findings were 0.456 (correlation coefficient=0.9997), 1.205 (correlation coefficient=0.9972) and 3.287 (correlation coefficient=0.9950) for Zn, Cu and Cr, respectively. We expected highest HM concentrations in our finals results due to the drought weather during each samples collection. Data analysis for DO, TP and HM concentrations will be presented. Finally, the results obtained and the project details will be explained during the poster presentation.

  2. Some aspects of the oxygen-deficient conditions and denitrification in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    Utilizing a fairly large amount of recently collected data, some outstanding questions concerning the Arabian Sea denitrification problem are addressed. The true level of dissolved oxygen, determined colorimetrically, are about an order of magnitude...

  3. OPTIMUM, CRITICAL AND THRESHOLD VALUES FOR WATER OXYGENATION FOR MULLETS (MUGILIDAE AND FLATFISHES (PLEURONECTIDAE IN ONTOGENESIS

    Directory of Open Access Journals (Sweden)

    P. Shekk

    2014-12-01

    Full Text Available Purpose. To determine the optimum, critical, and threshold values of water oxygenation for embryos, larvae and fingerlings of mullets and flatfishes under different temperature conditions. Methodology. Oxygen consumption was studied in chronic experiments with «interrupted flow» method with automatic fixation of dissolved oxygen in water with the aid of an oxygen sensor and automatic, continuous recording of the obtained results. «Critical» (Pcrit., and the «threshold» (Pthr. oxygen tension in the water have been determined. Findings. Under optimum conditions, the normal embryogenesis of mullets and flatfish to the gastrulation stage, provided 90–130% oxygen saturation. The critical content was 80–85%, the threshold – 65–70% of the saturation. At the stage of «movable embryo» depending on water temperature and fish species, the optimum range of water oxygenation was within 70‒127.1%. The most tolerant to oxygen deficiency was flounder Platichthys luscus (Pcrit – 25.4–27,5; Pthr. – 20.5–22.5%, the least resistant to hypoxia was striped mullet Mugil серhalus (Pcrit. – 50–60; Pthr. – 35–40%. The limits of the critical and threshold concentration of dissolved oxygen directly depended on the temperature and salinity, at which embryogenesis occurred. An increase in water temperature and salinity resulted in an increase in critical and threshold values for oxygen tension embryos. Mullet and flatfish fingerlings in all stages of development had a high tolerance to hypoxia, which increased as they grew. They were resistant to the oversaturation of water with oxygen. The most demanding for the oxygen regime are larvae and fingerlings of striped mullet and Liza aurata. Hypoxia tolerance of Psetta maeoticus (Psetta maeoticus and flounder at all stages of development is very high. The fingerlings of these species can endure reduction of the dissolved oxygen in water to 2.10 and 1.65 mgO2/dm3 respectively for a long time

  4. Economic process to co-produce poly(ε-l-lysine) and poly(l-diaminopropionic acid) by a pH and dissolved oxygen control strategy.

    Science.gov (United States)

    Xu, Zhaoxian; Feng, Xiaohai; Sun, Zhuzhen; Cao, Changhong; Li, Sha; Xu, Zheng; Xu, Zongqi; Bo, Fangfang; Xu, Hong

    2015-01-01

    This study tended to apply biorefinery of indigenous microbes to the fermentation of target-product generation through a novel control strategy. A novel strategy for co-producing two valuable homopoly(amino acid)s, poly(ε-l-lysine) (ε-PL) and poly(l-diaminopropionic acid) (PDAP), was developed by controlling pH and dissolved oxygen concentrations in Streptomyces albulus PD-1 fermentation. The production of ε-PL and PDAP got 29.4 and 9.6gL(-1), respectively, via fed-batch cultivation in a 5L bioreactor. What is more, the highest production yield (21.8%) of similar production systems was achieved by using this novel strategy. To consider the economic-feasibility, large-scale production in a 1t fermentor was also implemented, which would increase the gross profit of 54,243.5USD from one fed-batch bioprocess. This type of fermentation, which produces multiple commercial products from a unified process is attractive, because it will improve the utilization rate of raw materials, enhance production value and enrich product variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  6. Hyperbaric oxygen and radiotherapy

    International Nuclear Information System (INIS)

    Mayer, R.; Hamilton-Farrell, M.R.; Kleij, A.J. van der

    2005-01-01

    Background: Hyperbaric oxygen (HBO) therapy is the inhalation of 100% oxygen at a pressure of at least 1.5 atmospheres absolute (150 kPa). It uses oxygen as a drug by dissolving it in the plasma and delivering it to the tissues independent of hemoglobin. For a variety of organ systems, HBO is known to promote new vessel growth into areas with reduced oxygen tension due to poor vascularity, and therewith promotes wound healing and recovery of radiation-injured tissue. Furthermore, tumors may be sensitized to irradiation by raising intratumoral oxygen tensions. Methods: A network of hyperbaric facilities exists in Europe, and a number of clinical studies are ongoing. The intergovernmental framework COST B14 action 'Hyperbaric Oxygen Therapy' started in 1999. The main goal of the Working Group Oncology is preparation and actual implementation of prospective study protocols in the field of HBO and radiation oncology in Europe. Results: In this paper a short overview on HBO is given and the following randomized clinical studies are presented: (a) reirradiation of recurrent squamous cell carcinoma of the head and neck after HBO sensitization; (b) role of HBO in enhancing radiosensitivity on glioblastoma multiforme; (c) osseointegration in irradiated patients; adjunctive HBO to prevent implant failures; (d) the role of HBO in the treatment of late irradiation sequelae in the pelvic region. The two radiosensitization protocols (a, b) allow a time interval between HBO and subsequent irradiation of 10-20 min. Conclusion: Recruitment of centers and patients is being strongly encouraged, detailed information is given on www.oxynet.org. (orig.)

  7. A New Optic Technology for Measuring Oxygen Dissolved in Water: Luminescence Dissolved Oxygen (LDO); Nueva tecnologia optica para la medicion de oxigeno disuelto en agua: oxigeno disuelto por luminiscencia (LDO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Continual measurement of oxygen in the active sludge tank is a very important parameter is the biological treatment of waste waters. Traditional electrochemical sensors are based on polarographic or galvanic cells, a technique which produces electrolyte consumption and progressive deterioration of the anode. Both effects inevitable lead to a drift in the measurement signal, which requires periodical calibration. Lange has developed a completely new technique for its new LDO sensor for measuring oxygen concentration in waste waters. This technique is based on the luminescent radiation of a luminescent substance (luminophore) and reduces the determination to the purely physical measurement of time, so that, in theory it is free of drift and there is no need for the use to calibrate the sensor. (Author)

  8. Bioavailability of autochthonous dissolved organic nitrogen in marine plankton communities

    DEFF Research Database (Denmark)

    Knudsen, Helle; Markager, Svend Stiig; Søndergaard, Morten

    The purpose of this study was to investigate the bioavailability of dissolved organic nitrogen (DON) produced during a phytoplankton bloom. The experiments were conducted with natural plankton communities as batch growth experiments over approximately 30 days with nitrogen limitation. Five to six...... times during the exponential and stationary phases of each experimental bloom the bioavailability of DON was measured over 60 days together with DOC and oxygen consumption. The overall aim was to quantify remineralization of the added nitrate. The results showed that maximum 33 % of the added nitrate...

  9. Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river

    Science.gov (United States)

    Desmet, N. J. S.; Van Belleghem, S.; Seuntjens, P.; Bouma, T. J.; Buis, K.; Meire, P.

    When macrophytes are growing in the river, the vegetation induces substantial changes to the water quality. Some effects are the result of direct interactions, such as photosynthetic activity or nutrient uptake, whereas others may be attributed to indirect effects of the water plants on hydrodynamics and river processes. This research focused on the direct effect of macrophytes on oxygen dynamics and nutrient cycling. Discharge, macrophyte biomass density, basic water quality, dissolved oxygen and nutrient concentrations were in situ monitored throughout the year in a lowland river (Nete catchment, Belgium). In addition, various processes were investigated in more detail in multiple ex situ experiments. The field and aquaria measurement results clearly demonstrated that aquatic plants can exert considerable impact on dissolved oxygen dynamics in a lowland river. When the river was dominated by macrophytes, dissolved oxygen concentrations varied from 5 to 10 mg l -1. Considering nutrient retention, it was shown that the investigated in-stream macrophytes could take up dissolved inorganic nitrogen (DIN) from the water column at rates of 33-50 mg N kgdry matter-1 h. And DIN fluxes towards the vegetation were found to vary from 0.03 to 0.19 g N ha -1 h -1 in spring and summer. Compared to the measured changes in DIN load over the river stretch, it means that about 3-13% of the DIN retention could be attributed to direct nitrogen uptake from the water by macrophytes. Yet, the role of macrophytes in rivers should not be underrated as aquatic vegetation also exerts considerable indirect effects that may have a greater impact than the direct fixation of nutrients into the plant biomass.

  10. Temporal variability of dissolved iron species in the mesopelagic zone at Ocean Station PAPA

    Science.gov (United States)

    Schallenberg, Christina; Ross, Andrew R. S.; Davidson, Ashley B.; Stewart, Gillian M.; Cullen, Jay T.

    2017-08-01

    Deposition of atmospheric aerosols to the surface ocean is considered an important mechanism for the supply of iron (Fe) to remote ocean regions, but direct observations of the oceanic response to aerosol deposition are sparse. In the high nutrient, low chlorophyll (HNLC) subarctic Pacific Ocean we observed a dissolved Fe and Fe(II) anomaly at depth that is best explained as the result of aerosol deposition from Siberian forest fires in May 2012. Interestingly, there was no evidence of enhanced dFe concentrations in surface waters, nor was there a detectable phytoplankton bloom in response to the suspected aerosol deposition. Dissolved Fe (dFe) and Fe(II) showed the strongest enhancement in the subsurface oxygen deficient zone (ODZ), where oxygen concentrations <50 μmol kg-1 are prevalent. In the upper 200 m, dFe concentrations were at or below historic background levels, consistent with a short residence time of aerosol particles in surface waters and possible scavenging loss of dFe. Aerosol toxicity and/or dominance of particle scavenging over dissolution of Fe in the upper water column may have contributed to the lack of a strong phytoplankton response.

  11. A new immersion sensor for rapid electrochemical determination of dissolved oxygen in liquid metals

    International Nuclear Information System (INIS)

    Janke, D.; Schwerdtfeger, K.

    1978-01-01

    Development of a new solid electrolyte 'needle sensor' with ZrO 2 or ThO 2 electrolyte and metal-metal oxide reference mixture for the rapid determination of oxygen in steel melts. Details of the manufacture of the layer-structured, miniaturized probe. Test results of simultaneous measurements performed with the newly developed ZrO 2 needle sensor and the hitherto usual tubular sensor in iron melts at oxygen activities between 0.00005 and 0.030. (orig.) [de

  12. Application of two component biodegradable carriers in a particle-fixed biofilm airlift suspension reactor: development and structure of biofilms.

    Science.gov (United States)

    Hille, Andrea; He, Mei; Ochmann, Clemens; Neu, Thomas R; Horn, Harald

    2009-01-01

    Two component biodegradable carriers for biofilm airlift suspension (BAS) reactors were investigated with respect to development of biofilm structure and oxygen transport inside the biofilm. The carriers were composed of PHB (polyhydroxybutyrate), which is easily degradable and PCL (caprolactone), which is less easily degradable by heterotrophic microorganisms. Cryosectioning combined with classical light microscopy and CLSM was used to identify the surface structure of the carrier material over a period of 250 days of biofilm cultivation in an airlift reactor. Pores of 50 to several hundred micrometers depth are formed due to the preferred degradation of PHB. Furthermore, microelectrode studies show the transport mechanism for different types of biofilm structures, which were generated under different substrate conditions. At high loading rates, the growth of a rather loosely structured biofilm with high penetration depths of oxygen was found. Strong changes of substrate concentration during fed-batch mode operation of the reactor enhance the growth of filamentous biofilms on the carriers. Mass transport in the outer regions of such biofilms was mainly driven by advection.

  13. Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean

    Directory of Open Access Journals (Sweden)

    R. Röttgers

    2012-07-01

    Full Text Available Measurements of light absorption by chromophoric dissolved organic matter (CDOM from subsurface waters of the tropical Atlantic and Pacific Oceans showed a distinct absorption shoulder at 410–415 nm. This indicates an underlying absorption of a pigment whose occurrence is partly correlated with the apparent oxygen utilization (AOU but also found in the deep chlorophyll maximum. A similar absorption maximum at ~415 nm was also found in the particulate fraction of samples taken below the surface mixing layer and is usually attributed to absorption by respiratory pigments of heterotrophic unicellular organisms. In our study, fluorescence measurements of pre-concentrated dissolved organic matter (DOM samples from 200–6000 m confirmed a previous study suggesting that the absorption at ~415 nm was related to fluorescence at 650 nm in the oxygen minimum zone. The absorption characteristics of this fluorophore was examined by fluorescence emission/excitation analysis and showed a clear excitation maximum at 415 nm that could be linked to the absorption shoulder in the CDOM spectra. The spectral characteristics of the substance found in the dissolved and particulate fraction did not match with those of chlorophyll a degradation products (as found in a sample from the sea surface but can be explained by the occurrence of porphyrin pigments from either heterotrophs or autotrophs. Combining the observations of the fluorescence and the 415-nm absorption shoulder suggests that there are high concentrations of a pigment degradation product in subsurface DOM of all major oceans. Most pronouncedly we found this signal in the deep chlorophyll maximum and the oxygen minimum zone of tropical regions. The origin, chemical nature, turnover rate, and fate of this molecule is so far unknown.

  14. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.

    1995-01-01

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  15. Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers

    OpenAIRE

    Tian, Yanqing; Shumway, Bradley R.; Youngbull, A. Cody; Li, Yongzhong; Jen, Alex K.-Y.; Johnson, Roger H.; Meldrum, Deirdre R.

    2010-01-01

    Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited usi...

  16. Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system.

    Science.gov (United States)

    Lara, Alvaro R; Leal, Lidia; Flores, Noemí; Gosset, Guillermo; Bolívar, Francisco; Ramírez, Octavio T

    2006-02-05

    Escherichia coli, expressing recombinant green fluorescent protein (GFP), was subjected to dissolved oxygen tension (DOT) oscillations in a two-compartment system for simulating gradients that can occur in large-scale bioreactors. Cells were continuously circulated between the anaerobic (0% DOT) and aerobic (10% DOT) vessels of the scale-down system to mimic an overall circulation time of 50 s, and a mean residence time in the anaerobic and aerobic compartments of 33 and 17 s, respectively. Transcription levels of mixed acid fermentation genes (ldhA, poxB, frdD, ackA, adhE, pflD, and fdhF), measured by quantitative RT-PCR, increased between 1.5- to over 6-fold under oscillatory DOT compared to aerobic cultures (constant 10% DOT). In addition, the transcription level of fumB increased whereas it decreased for sucA and sucB, suggesting that the tricarboxylic acid cycle was functioning as two open branches. Gene transcription levels revealed that cytrochrome bd, which has higher affinity to oxygen but lower energy efficiency, was preferred over cytochrome bO3 in oscillatory DOT cultures. Post-transcriptional processing limited heterologous protein production in the scale-down system, as inferred from similar gfp transcription but 19% lower GFP concentration compared to aerobic cultures. Simulated DOT gradients also affected the transcription of genes of the glyoxylate shunt (aceA), of global regulators of aerobic and anaerobic metabolism (fnr, arcA, and arcB), and other relevant genes (luxS, sodA, fumA, and sdhB). Transcriptional changes explained the observed alterations in overall stoichiometric and kinetic parameters, and production of ethanol and organic acids. Differences in transcription levels between aerobic and anaerobic compartments were also observed, indicating that E. coli can respond very fast to intermittent DOT conditions. The transcriptional responses of E. coli to DOT gradients reported here are useful for establishing rational scale-up criteria and

  17. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at

  18. Tidal impact on the dynamic behavior of dissolved pharmaceuticals in the Yangtze Estuary, China.

    Science.gov (United States)

    Zhao, Heng; Zhou, Jun Liang; Zhang, Jing

    2015-12-01

    The dynamic behavior of 24 dissolved pharmaceuticals over tidal cycles in the Yangtze Estuary, China was studied to assess the tidal impact on the fate of pharmaceutical residues. The results show that most pharmaceuticals were frequently detected with concentrations from below detection to 27.2 ng/L, with sulfamethoxazole, sulfamethazine, erythromycin, thiamphenicol and florfenicol dominating. During tidal cycles, pharmaceutical concentrations decreased during tidal rise, then increasing during tidal receding for all locations, except at site S2 which showed an opposite trend due to unique water movement there. It was observed that most compounds showed a non-conservative behavior, while diazepam and sulfamethoxazole displayed a conservative behavior. The pharmaceutical concentrations were found to increase with dissolved organic carbon (DOC) concentration, suggesting DOC as a carrier of pharmaceuticals. In addition, many compounds showed a significant negative relationship with suspended particulate matter (SPM) concentration, indicating SPM-water interactions as a control of pharmaceutical behavior in estuarine environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.

    Science.gov (United States)

    Hu, Junlang; Lei, Pan; Mohsin, Ali; Liu, Xiaoyun; Huang, Mingzhi; Li, Liang; Hu, Jianhua; Hang, Haifeng; Zhuang, Yingping; Guo, Meijin

    2017-09-12

    Riboflavin, an intermediate of primary metabolism, is one kind of important food additive with high economic value. The microbial cell factory Bacillus subtilis has already been proven to possess significant importance for the food industry and have become one of the most widely used riboflavin-producing strains. In the practical fermentation processes, a sharp decrease in riboflavin production is encountered along with a decrease in the dissolved oxygen (DO) tension. Influence of this oxygen availability on riboflavin biosynthesis through carbon central metabolic pathways in B. subtilis is unknown so far. Therefore the unveiled effective metabolic pathways were still an unaccomplished task till present research work. In this paper, the microscopic regulation mechanisms of B. subtilis grown under different dissolved oxygen tensions were studied by integrating 13 C metabolic flux analysis, metabolomics and transcriptomics. It was revealed that the glucose metabolic flux through pentose phosphate (PP) pathway was lower as being confirmed by smaller pool sizes of metabolites in PP pathway and lower expression amount of ykgB at transcriptional level. The latter encodes 6-phosphogluconolactonase (6-PGL) under low DO tension. In response to low DO tension in broth, the glucose metabolic flux through Embden-Meyerhof-Parnas (EMP) pathway was higher and the gene, alsS, encoding for acetolactate synthase was significantly activated that may result due to lower ATP concentration and higher NADH/NAD + ratio. Moreover, ResE, a membrane-anchored protein that is capable of oxygen regulated phosphorylase activity, and ResD, a regulatory protein that can be phosphorylated and dephosphorylated by ResE, were considered as DO tension sensor and transcriptional regulator respectively. This study shows that integration of transcriptomics, 13 C metabolic flux analysis and metabolomics analysis provides a comprehensive understanding of biosynthesized riboflavin's regulatory mechanisms in

  20. Hydrographic parameters and distribution of dissolved Cu, Ni, Zn and nutrients near Jeddah desalination plant

    Directory of Open Access Journals (Sweden)

    Fallatah Mohammad M.

    2018-04-01

    Full Text Available The development of safe desalination plants with low environmental impact is as important an issue as the supply of drinking water. The desalination plant in Jeddah (Saudi Arabia, Red Sea coast produces freshwater from seawater by multi-stage flash distillation (MSFD and reverse osmosis (RO. The process produces brine as by-product, which is dumped into the sea. The aim of this study was to assess the impact of Jeddah desalination plant on the coastal water in the nearby of the plant. Total concentrations of dissolved Cu, Ni, Zn and nutrients in several locations around the plant were analyzed by cathodic stripping voltammetry. The average levels of dissolved Cu, Ni, and Zn on surface in the sampling locations were 15.02, 11.02, and 68.03 nM respectively, whereas the levels at the seafloor near the discharging point were much higher. Distribution of temperature, salinity, nutrients and dissolved oxygen were quite normal both on surface and in depth.

  1. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy

    International Nuclear Information System (INIS)

    Gray, L.H.; Conger, A.D.; Ebert, M.; Hornsey, S.; Scott, O.C.A.

    1984-01-01

    The sensitivity of tumour cells to X rays has been shown to be about three times as great when irradiated in a well-oxygenated medium as under anoxic conditions. The manner in which sensitivity depends on oxygen tension closely resembles that found by other workers for plant and insect tissues. The sensitivity of the tumour cells to fast neutron radiation is only slightly affected by oxygen tension. Consideration is given to the supply of oxygen to tissues as a factor in radiotherapy, and it is concluded on the basis of existing knowledge that in certain circumstances the effectiveness of X-ray treatment might be increased if the patient were breathing oxygen at the time of irradiation

  2. Nanostructured Lipid Carriers (NLC) as Vehicles for Topical Administration of Sesamol: In Vitro Percutaneous Absorption Study and Evaluation of Antioxidant Activity.

    Science.gov (United States)

    Puglia, Carmelo; Lauro, Maria Rosaria; Offerta, Alessia; Crascì, Lucia; Micicchè, Lucia; Panico, Anna Maria; Bonina, Francesco; Puglisi, Giovanni

    2017-03-01

    Sesamol is a natural phenolic compound extracted from Sesamum indicum seed oil. Sesamol is endowed with several beneficial effects, but its use as a topical agent is strongly compromised by unfavorable chemical-physical properties. Therefore, to improve its characteristics, the aim of the present work was the formulation of nanostructured lipid carriers as drug delivery systems for topical administration of sesamol.Two different nanostructured lipid carrier systems have been produced based on the same solid lipid (Compritol® 888 ATO) but in a mixture with two different kinds of oil phase such as Miglyol® 812 (nanostructured lipid carrier-M) and sesame oil (nanostructured lipid carrier-PLUS). Morphology and dimensional distribution of nanostructured lipid carriers have been characterized by differential scanning calorimetry and photon correlation spectroscopy, respectively. The release pattern of sesamol from nanostructured lipid carriers was evaluated in vitro determining drug percutaneous absorption through excised human skin. Furthermore, an oxygen radical absorbance capacity assay was used to determine their antioxidant activity.From the results obtained, the method used to formulate nanostructured lipid carriers led to a homogeneous dispersion of particles in a nanometric range. Sesamol has been encapsulated efficiently in both nanostructured lipid carriers, with higher encapsulation efficiency values (> 90 %) when sesame oil was used as the oil phase (nanostructured lipid carrier-PLUS). In vitro evidences show that nanostructured lipid carrier dispersions were able to control the rate of sesamol diffusion through the skin, with respect to the reference formulations.Furthermore, the oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of sesamol, especially when vehiculated by nanostructured lipid carrier-PLUS. Georg Thieme Verlag KG Stuttgart · New York.

  3. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.; Barasheed, Abeer Z.; Alshareef, Husam N.

    2013-01-01

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  4. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  5. Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo-O2 Data

    Science.gov (United States)

    Wolf, Mitchell K.; Hamme, Roberta C.; Gilbert, Denis; Yashayaev, Igor; Thierry, Virginie

    2018-04-01

    Deep water formation supplies oxygen-rich water to the deep sea, spreading throughout the ocean by means of the global thermohaline circulation. Models suggest that dissolved gases in newly formed deep water do not come to equilibrium with the atmosphere. However, direct measurements during wintertime convection are scarce, and the controls over the extent of these disequilibria are poorly quantified. Here we show that, when convection reached deeper than 800 m, oxygen in the Labrador Sea was consistently undersaturated at -6.1% to -7.6% at the end of convection. Deeper convection resulted in greater undersaturation, while convection ending later in the year resulted in values closer to equilibrium, from which we produce a predictive relationship. We use dissolved oxygen data from six profiling Argo floats in the Labrador Sea between 2003 and 2016, allowing direct observations of wintertime convection. Three of the six optode oxygen sensors displayed substantial average in situ drift of -3.03 μmol O2 kg-1 yr-1 (-0.94% O2 yr-1), which we corrected to stable deepwater oxygen values from repeat ship surveys. Observations of low oxygen intrusions during restratification and a simple mixing calculation demonstrate that lateral processes act to lower the oxygen inventory of the central Labrador Sea. This suggests that the Labrador Sea is a net sink for atmospheric oxygen, but uncertainties in parameterizing gas exchange limit our ability to quantify the net uptake. Our results constrain the oxygen concentration of newly formed Labrador Sea Water and allow more precise estimates of oxygen utilization and nutrient regeneration in this water mass.

  6. Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler, Illinois

    Science.gov (United States)

    Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.

    2011-01-01

    Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium

  7. Dissolved Carbon Fluxes During the 2017 Mississippi River Flood

    Science.gov (United States)

    Reiman, J. H.; Xu, Y. J.

    2017-12-01

    The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.

  8. Dissolved Platinum Concentrations in Coastal Seawater: Boso to Sanriku Areas, Japan.

    Science.gov (United States)

    Mashio, Asami Suzuki; Obata, Hajime; Gamo, Toshitaka

    2017-08-01

    Platinum, one of the rarest elements in the earth's crust, is now widely used in a range of products, such as catalytic converters in automobiles and anticancer drugs. Increasing use and dispersal of platinum has the potential to affect aquatic environments. Platinum concentrations in open ocean seawater have been found to be very low (approximately 0.2 pmol/L); however, Pt distributions and biogeochemical cycles in coastal areas are unknown. In this study, we investigated Pt concentrations in coastal waters between the Boso and Sanriku areas, Japan, after the 2011 tsunami. We determined sub-picomolar levels of dissolved Pt using isotope-dilution Inductively coupled plasma mass spectrometry after column preconcentration with an anion exchange resin. Dissolved Pt concentrations were found to be in the range 0.20-1.5 pmol/L, with the highest concentration in bottom water of the Boso coastal area, and at stations close to Tokyo Bay. Assuming thermodynamical equilibrium, Pt was determined to be present in the form PtCl 5 (OH) 2- , even in low-oxygen coastal waters. Vertical profiles indicated Pt levels increased toward seafloors near coastal stations and were similar to those of the open ocean at trench stations. High concentrations of dissolved Pt are thought to be derived from coastal sediments.

  9. Solubility and dissolution enhancement of flurbiprofen by solid dispersion using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Bhaskar Daravath

    2018-05-01

    Full Text Available ABSTRACT The intent of the current work is to study the effect of polyethylene glycol 8000 and polyethylene glycol 10000 as hydrophilic carriers on dissolution behaviour of flurbiprofen. In the present study, solvent evaporation method was used to prepare flurbiprofen solid dispersions and evaluated for physico-chemical properties, drug-carrier compatibility studies and dissolution behaviour of drug. Solubility studies showed more solubility in higher pH values and formulations SD4 and SD8 were selected to prepare the fast dissolving tablets. FTIR and DSC study showed no interaction and drug was dispersed molecularly in hydrophilic carrier. XRD studies revealed that there was change in the crystallinity of the drug. The results of In vitro studies showed SD8 formulation confer significant improvement (p<0.05 in drug release, Q20 was 99.08±1.35% compared to conventional and marketed tablets (47.31±0.74% and 56.86±1.91%. The mean dissolution time (MDT was reduced to 8.79 min compared to conventional and marketed tablets (25.76 and 22.22 min. indicating faster drug release. The DE (% dissolution efficiency was increased by 2.5 folds (61.63% compared to conventional tablets (23.71%. From the results, it is evident that polyethylene glycol solid dispersions in less carrier ratio may enhance the solubility and there by improve the dissolution rate of flurbiprofen.

  10. Redox Homeostasis in Plants under Abiotic Stress: Role of electron carriers, energy metabolism mediators and proteinaceous thiols

    Directory of Open Access Journals (Sweden)

    Dhriti Kapoor

    2015-03-01

    Full Text Available Contemporaneous presence of both oxidized and reduced forms of electron carriers is mandatory in efficient flux by plant electron transport cascades. This requirement is considered as redox poising that involves the movement of electron from multiple sites in respiratory and photosynthetic electron transport chains to molecular oxygen. This flux triggers the formation of superoxide, consequently give rise to other reactive oxygen species (ROS under adverse environmental conditions like drought, high or low temperature, heavy metal stress etc. that plants owing during their life span. Plant cells synthesize ascorbate, an additional hydrophilic redox buffer, which protect the plants against oxidative challenge. Large pools of antioxidants also preside over the redox homeostasis. Besides, tocopherol is a liposoluble redox buffer, which efficiently scavenges the ROS like singlet oxygen. In addition, proteinaceous thiol members such as thioredoxin, peroxiredoxin and glutaredoxin, electron carriers and energy metabolism mediators phosphorylated (NADP and non-phosphorylated (NAD+ coenzyme forms interact with ROS, metabolize and maintain redox homeostasis.

  11. Different hydrodynamic processes regulated on water quality (nutrients, dissolved oxygen, and phytoplankton biomass) in three contrasting waters of Hong Kong.

    Science.gov (United States)

    Zhou, Weihua; Yuan, Xiangcheng; Long, Aimin; Huang, Hui; Yue, Weizhong

    2014-03-01

    The subtropical Hong Kong (HK) waters are located at the eastern side of the Pearl River Estuary. Monthly changes of water quality, including nutrients, dissolved oxygen (DO), and phytoplankton biomass (Chl-a) were routinely investigated in 2003 by the Hong Kong Environmental Protection Department in three contrasting waters of HK with different prevailing hydrodynamic processes. The western, eastern, and southern waters were mainly dominated by nutrient-replete Pearl River discharge, the nutrient-poor coastal/shelf oceanic waters, and mixtures of estuarine and coastal seawater and sewage effluent of Hong Kong, respectively. Acting in response, the water quality in these three contrasting areas showed apparently spatial–temporal variation pattern. Nutrients usually decreased along western waters to eastern waters. In the dry season, the water column was strongly mixed by monsoon winds and tidal currents, which resulted in relatively low Chl-a (4 mg l(−1)), suggesting that mixing enhanced the buffering capacity of eutrophication in HK waters. However, in the wet season, surface Chl-a was generally >10 μg l(−1) in southern waters in summer due to halocline and thermohaline stratification, adequate nutrients, and light availability. Although summer hypoxia (DO waters induced by vertical stratification, the eutrophication impacts in HK waters were not as severe as expected owing to P limitation and short water residence time in the wet season.

  12. Enhancement of Cellulase and Xylanase Production Using pH-Shift and Dissolved Oxygen Control Strategy with Streptomyces griseorubens JSD-1.

    Science.gov (United States)

    Zhang, Dan; Luo, Yanqing; Chu, Shaohua; Zhi, Yuee; Wang, Bin; Zhou, Pei

    2016-01-01

    In this study, the production of cellulase and xylanase by Streptomyces griseorubens JSD-1 was improved by integrating the pH-shift and dissolved oxygen (DO)-constant control strategies. The pH-shift control strategy was carried out by analyzing the specific cell growth rate (μ) and specific enzyme formation rate (Q p) of S. griseorubens JSD-1. The pH was controlled at 8.0 during the first 48 h to maintain high cell growth, which then shifted to 7.5 after 48 h to improve the production of cellulase and xylanase. Using this method, the maximum activities of cellulase, xylanase, and filter paper enzyme (FPase) increased by 47.9, 29.5, and 113.6 %, respectively, compared to that obtained without pH control. On the basis of pH-shift control, the influence of DO concentrations on biomass and enzyme production was further investigated. The maximum production of cellulase, xylanase, and FPase reached 114.38 ± 0.96 U mL(-1), 330.57 ± 2.54 U mL(-1), and 40.11 ± 0.38 U mL(-1), which were about 1.6-fold, 0.6-fold, and 3.2-fold higher than that of neutral pH without DO control conditions. These results supplied a functional approach for improving cellulase and xylanase production.

  13. Magnetism and metal-insulator transition in oxygen deficient SrTiO3

    Science.gov (United States)

    Lopez-Bezanilla, Alejandro; Ganesh, P.; Littlewood, Peter

    2015-03-01

    We report new findings in the electronic structure and magnetism of oxygen vacancies in SrTiO3. By means of first-principles calculations we show that the appearance of magnetism in oxygen-deficient SrTiO3 is not determined solely by the presence of a single oxygen vacancy but by the density of free carriers and the relative proximity of the vacant sites. While an isolated vacancy behaves as a non-magnetic double donor, manipulation of the doping conditions allows the stability of a single donor state with emergent local moments. Strong local lattice distortions enhance the binding of this state. Consequently we find that the free-carrier density and strain are fundamental components to obtaining trapped spin-polarized electrons in oxygen-deficient SrTiO3, which may have important implications in the design of switchable magneto-optic devices. AL-B and PBL were supported by DOE-BES under Contract No. DE-AC02-06CH11357. PG was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT- Battelle, LLC, for the US Department of Energy.

  14. Impact of upwelling events on the sea water carbonate chemistry and dissolved oxygen concentration in the Gulf of Papagayo (Culebra Bay, Costa Rica: Implications for coral reefs

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2012-04-01

    Full Text Available The Gulf of Papagayo, Pacific coast of Costa Rica, is one of the three seasonal upwelling areas of Mesoamerica. In April 2009, a 29-hour experiment was carried out at the pier of the Marina Papagayo, Culebra Bay. We determined sea surface temperature (SST, dissolved oxygen concentration, salinity, pH, and the partial pressure of CO2 (pCO2. The aragonite saturation state (Ωa as well as the other parameters of the marine carbonate system such as the total dissolved inorganic carbon (DIC and the total alkalinity (TA were calculated based on the measured pH and the pCO2. The entrainment of subsurface waters raised the pCO2 up to 645 µatm. SSTs, dissolved oxygen concentrations decreased form 26.4 to 23.7°C and from 228 to 144 µmol l-1. Ωa dropped down to values of 2.1. Although these changes are assumed to reduce the coral growth, the main reef building coral species within the region (Pocillopora spp. and Pavona clavus reveal growth rates exceeding those measured at other sites in the eastern tropical Pacific. This implies that the negative impact of upwelling on coral growth might be overcompensated by an enhanced energy supply caused by the high density of food and nutrients and more favorable condition for coral growth during the non-upwelling season.El Golfo de Papagayo, costa Pacífica de Costa Rica, es una de las tres regiones de afloramiento estacional de Mesoamérica. Las características físicas y químicas del agua que aflora no habían sido estudiadas. Durante 29 horas en Abril 2009, se estudiaron la temperatura superficial del mar (TSM, la concentración de oxígeno disuelto, salinidad, pH y la presión parcial de CO2 (pCO2, en la Marina Papagayo, Bahía Culebra. Con base en las mediciones de pH y pCO2 se calculó el estado de saturación de la aragonita (Ω y otros parámetros del sistema de carbonatos como lo es el carbono orgánico disuelto (COD y la alcalinidad total (AT. Los resultados indican que el arrastre por convecci

  15. Oxygen availability in model solutions and purées during heat treatment and the impact on vitamin C degradation

    OpenAIRE

    Herbig , Anna-Lena; Maingonnat , Jean Francois; Renard , Catherine

    2017-01-01

    Oxygen availability in different media during heat treatment (8 h at 80°C) and the related vitamin C loss was assessed. Dissolved oxygen in water containing 3 mmol kg-1 of ascorbic acid decreased initially and seemed to be replaced by oxygen from the headspace in the course of time, as oxygen values increased again. In apple puree and carrot puree in contrast, oxygen was depleted within 60 min. Vitamin C in ultrapure water was stable even in the presence of oxygen. A trigger seemed to be cruc...

  16. Optimizing dissolved air flotation design system

    Directory of Open Access Journals (Sweden)

    L.A. Féris

    2000-12-01

    Full Text Available Dissolved Air (Pressure Flotation-DAF, is a well-established separation process that employs micro-bubbles as a carrier phase. This work shows results concerning bubble generation at low working pressures in modified DAF-units to improve the collection of fragile coagula by bubbles. DAF of Fe (OH3 (as model was studied as a function of saturation pressure in the absence and presence of surfactants in the saturator. DAF was possible at 2 atm by lowering the air/water surface tension. This fact, which leads to substantial energy savings, was explained in terms of decreasing the "minimum" energy required for bubble nucleation and cavity in the nozzle. More, bubbles-fragile coagula attachment was improved by dividing the recycling water into two: 1 the inclined inlet to the cell (traditional and 2 inside the separation tank through a water flow inlet situated below the floating bed using a "mushroom" type diffuser. Because of the reduction observed in the degree of turbulence in the conventional collection zone, DAF performance improved yielding high precipitate recoveries.

  17. Dissolved helium, inert gases, radium and radon in groundwaters from the Altnabreac research site

    International Nuclear Information System (INIS)

    Andrews, J.N.; Kay, R.L.F.

    1985-01-01

    A groundwater geochemical study has been carried out at Altnabreac, Cenithness, Scotland, to investigate the feasibility of disposal of high-level radioactive wastes in crystalline rock. A groundwater flow model was constructed for sampling a section at depths up to 300 m. Measurements of inert gases dissolved in groundwaters are used, with parallel measurements of 14 C, tritium, oxygen and hydrogen isotopes to infer groundwater ages and residence times. (UK)

  18. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Nalbant, Perihan [University of Duisburg-Essen, Faculty of Biology, Institute of Molecular Cell Biology (Germany); Buer, Jan; Knuschke, Torben; Westendorf, Astrid M. [University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-06-15

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  19. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Science.gov (United States)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-06-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  20. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    International Nuclear Information System (INIS)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-01-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100–250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  1. Gasometer: An inexpensive device for continuous monitoring of dissolved gases and supersaturation

    Science.gov (United States)

    Bouck, G.R.

    1982-01-01

    The “gasometer” is a device that measures differential dissolved-gas pressures (δP) in water relative to barometric pressure (as does the “Weiss saturometer”), but operates continuously without human attention. The gasometer can be plumbed into a water-supply system and requires 8 liters/minute of water or more at 60 kilopascals. The gasometer's surfaces are nontoxic, and flow-through water can be used for fish culture. The gasometer may be connected to a small submersible pump and operated as a portable unit. The gasometer can activate an alarm system and thus protect fish from hyperbaric (supersaturation) or hypobaric gas pressures (usually due to low dissolved oxygen). Instructions are included for calculating and reporting data including the pressure and saturation of individual gases. Construction and performance standards are given for the gasometer. Occasional cleaning is required to remove biofouling from the gas-permeable tubing.PDF

  2. Cardiovascular fitness is associated with altered cortical glucose metabolism during working memory in ɛ4 carriers.

    Science.gov (United States)

    Deeny, Sean P; Winchester, Jeanna; Nichol, Kathryn; Roth, Stephen M; Wu, Joseph C; Dick, Malcolm; Cotman, Carl W

    2012-07-01

    The possibility that ɛ4 may modulate the effects of fitness in the brain remains controversial. The present exploratory FDG-PET study aimed to better understand the relationship among ɛ4, fitness, and cerebral metabolism in 18 healthy aged women (nine carriers, nine noncarriers) during working memory. Participants were evaluated using maximal level of oxygen consumption, California Verbal Learning Test, and FDG-PET, which were collected at rest and during completion of the Sternberg working memory task. Resting FDG-PET did not differ between carriers and noncarriers. Significant effects of fitness on FDG-PET during working memory were noted in the ɛ4 carriers only. High fit ɛ4 carriers had greater glucose uptake in the temporal lobe than the low fit ɛ4 carriers, but low fit ɛ4 carriers had greater glucose uptake in the frontal and parietal lobes. We demonstrate that fitness differentially affects cerebral metabolism in ɛ4 carriers only, consistent with previous findings that the effects of fitness may be more pronounced in populations genetically at risk for cognitive decline. Published by Elsevier Inc.

  3. Modeling Diel Oxygen Dynamics and Ecosystem Metabolism in a Shallow, Eutrophic Estuary

    Science.gov (United States)

    Weeks Bay is a shallow eutrophic estuary that exhibits frequent summertime diel-cycling hypoxia and periods of dissolved oxygen (DO) oversaturation during the day. Diel DO dynamics in shallow estuaries like Weeks Bay are complex, and may be influenced by wind forcing, vertical an...

  4. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  5. Controlled oxygen vacancy induced p-type conductivity in HfO{sub 2-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Mueller, Mathis M.; Kleebe, Hans-Joachim; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, 15236 Frankfurt/Oder (Germany)

    2011-09-12

    We have synthesized highly oxygen deficient HfO{sub 2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10{sup 21} charge carriers per cm{sup 3}. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.

  6. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

    OpenAIRE

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-01-01

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen ...

  7. The effect of oxygen tension in the sediment on the behaviour of waste radionuclides at the NEA Atlantic dumpsite

    International Nuclear Information System (INIS)

    Rutgers van der Loeff, M.M.; Waijers, D.A.

    1985-01-01

    Predictions of the transport and fate of waste radionuclides at the NEA Atlantic dumpsite require a knowledge of the behaviour of these nuclides within the sediment. Since redox conditions are known to influence the mobility of many elements in deep-sea sediments, we have investigated the speciation of some trace elements in relation to the dissolved oxygen concentration in sediments from the dumpsite. Dissolved oxygen in these sediments penetrates mostly between 50 and 100 cm, although at topographic highs and on hillsides oxygen penetrates more than 2 m into the sediment because of the special hydrodynamic and sedimentological conditions there. Remobilization at lowered redox potentials below the depth where oxygen reaches zero causes an upward diffusive transport of Mn and the manganese-associated trace metals Co and Ni. Whether this diagenetic mobilization influences other elements such as rare earth elements and actinides as well, remains to be investigated. Under normal sedimentological condition this mobilization can not be expected to return radioactivity to the water column through an oxidized sediment layer of 50 cm. However, burial of radioactivity to depths beyond the reach of deep burrowing organisms can be significantly delayed. Kd values (solid/dissolved partition coefficients) of redox sensitive elements vary over orders of magnitude and are inappropriate to model the behaviour of these elements in sediments with redox gradients

  8. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    Science.gov (United States)

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  9. Reaeration of oxygen in shallow, macrophyte rich streams. 1

    International Nuclear Information System (INIS)

    Thyssen, N.; Erlandsen, M.; Jeppesen, E.

    1987-01-01

    The rate coefficient K 2 for the exchange of oxygen between flowing water and the atmosphere (reaeration) has been studied in six Danish streams covering a relatively wide range of hydraulic conditions, pollutional loading, and macrophyte abundance. 103 K 2 measurements were performed in 1978-85. 82 measurements were obtained applying 5 different indirect methods all balancing the sources and sinks of stream dissolved oxygen under conditions of normal operation of the system (3 methods) and under artificial depletion of the oxygen concentration of the stream water by addition of sodium sulfite (2 methods). 21 K 2 values were determined directly applying the gaseous tracer 85 Kr for reaeration. Guidelines for selecting a proper method to determine K 2 knowing macrophyte biomass and loading characteristics of the particular stream are provided. (author)

  10. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    Science.gov (United States)

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Relationship between Mollusks and Oxygen Concentrations in Todos Santos Bay, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    J. Gabriel Kuk-Dzul

    2016-01-01

    Full Text Available This study describes the relationship between mollusks, physicochemical properties of seawater, and sediments under natural conditions of low impact. Thirty-nine stations were sampled in October 1994 using a Van Veen grab (0.1 m−2. Temperature, salinity, and dissolved oxygen (DO concentrations of bottom water were obtained with a CTD. Organic matter content and sediment grain analysis were determined. A total of 836 mollusks were collected. Gastropoda was the most abundant (52% and diverse class with 27 genera, followed by Bivalvia with eight genera and Scaphopoda with only one genus. According to CCA analysis, dominant mollusks were significantly related with high DO concentrations. Donax, Natica, Acteocina, Bulla, Anachis, Odostomia, and Crucibulum can be classified as sensitive genera because they were found mainly in high oxygen concentrations (3.1–5.6 mL L−1; on the other hand, Cardiomya, Nuculana, Laevicardium, Chione, Truncatella, and Dentalium can be classified as tolerant genera (1.0–5.6 mL L−1. Todos Santos Bay hosts a diverse malacological fauna (36 genera; our results show that the dominant genera were mainly related to high dissolved oxygen concentrations. Mollusks can be a useful tool in environmental monitoring programs related with oxygen depletion in coastal areas.

  12. Automated production of no carrier added holmium-166

    International Nuclear Information System (INIS)

    Izard, M.E.; Dadchova, E.

    1996-01-01

    Full text: An automated system has been developed to produce no carrier added 166 Ho from the decay of 166 Dy produced by neutron activation of 164 Dy 2 O 3 . Targets consisting of 5-10 mg of 164 Dy 2 O 3 are irradiated in HIFAR at 5 x 10 13 n.s -1 .cm -2 for 12h then allowed to cool for 2 days. The irradiation can is then transferred to the automated system located in a 'hot' cell in the radiopharmaceutical research building. A two dimension robotic arm encompassing a grab and motorized screwdriver is used to open the irradiation can. A second arm carrying a teflon tube introduces 9M HCI into the can to dissolve the target. A second tube carries the dissolved target via a peristaltic pump to a heated vial where it is evaporated to dryness under a flow of N 2 . A Peltier cooled trap is used to prevent release of HCl fumes into the cell. A motorized syringe pump dispenses 1 mL of 0.1 M HNO 3 to redissolve the digest which is then transferred by peristaltic pump via a hollow fibre filter and auto injector into an Aminex- A5 HPLC column. 166 Dy is eluted from the column in 0.132 M α-HIBA into a heated cyclone flask and evaporated to dryness under a stream of N 2 heated to about 50 deg C. After two days the evaporated Dy/ 166 Ho digest is dissolved in another 1 mL of 0.1 M HNO 3 and injected onto the HPLC column. 166 Ho is collected in 20-25 mL of α-HIBA and evaporated to dryness as before at about 400 C to ensure complete decomposition of the α-HIBA. The product is finally dissolved in about I mL of 0.1 M HCI and pumped through a 0.22 μM filter to a product vial

  13. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.

    Science.gov (United States)

    Kheir, John N; Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; Black, Katherine J; Lee, Robert W; Wilking, James N; Graham, Adam C; Bell, David C; McGowan, Francis X

    2013-08-01

    Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Canary in the coal mine: Historical oxygen decline in the Gulf of St. Lawrence due to large scale climate changes

    Science.gov (United States)

    Claret, M.; Galbraith, E. D.; Palter, J. B.; Gilbert, D.; Bianchi, D.; Dunne, J. P.

    2016-02-01

    The regional signature of anthropogenic climate change on the atmosphere and upper ocean is often difficult to discern from observational timeseries, dominated as they are by decadal climate variability. Here we argue that a long-term decline of dissolved oxygen concentrations observed in the Gulf of S. Lawrence (GoSL) is consistent with anthropogenic climate change. Oxygen concentrations in the GoSL have declined markedly since 1930 due primarily to an increase of oxygen-poor North Atlantic Central Waters relative to Labrador Current Waters (Gilbert et al. 2005). We compare these observations to a climate warming simulation using a very high-resolution global coupled ocean-atmospheric climate model. The numerical model (CM2.6), developed by the Geophysical Fluid Dynamics Laboratory, is strongly eddying and includes a biogeochemical module with dissolved oxygen. The warming scenario shows that oxygen in the GoSL decreases and it is associated to changes in western boundary currents and wind patterns in the North Atlantic. We speculate that the large-scale changes behind the simulated decrease in GoSL oxygen have also been at play in the real world over the past century, although they are difficult to resolve in noisy atmospheric data.

  15. Competition for spectral irradiance between epilimnetic optically active dissolved and suspended matter and phytoplankton in the metalimnion. Consequences for limnology and chemistry.

    Science.gov (United States)

    Bracchini, Luca; Dattilo, Arduino Massimo; Falcucci, Margherita; Hull, Vincent; Tognazzi, Antonio; Rossi, Claudio; Loiselle, Steven Arthur

    2011-06-01

    In deep lakes, water column stratification isolates the surface water from the deeper bottom layers, creating a three dimensional differentiation of the chemical, physical, biological and optical characteristics of the waters. Chromophoric dissolved organic matter (CDOM) and total suspended solids (TSS) play an important role in the attenuation of ultraviolet and photosynthetically active radiation. In the present analysis of spectral irradiance, we show that the wavelength composition of the metalimnetic visible irradiance was influenced by epilimnetic spatial distribution of CDOM. We found a low occurrence of blue-green photons in the metalimnion where epilimnetic concentrations of CDOM are high. In this field study, the spatial variation of the spectral irradiance in the metalimnion correlates with the observed metalimnetic concentrations of chlorophyll a as well as chlorophyll a : chlorophyll b/c ratios. Dissolved oxygen, pH, and nutrients trends suggest that chlorophyll a concentrations were representative of the phytoplankton biomass and primary production. Thus, metalimnetic changes of spectral irradiance may have a direct impact on primary production and an indirect effect on the spatial trends of pH, dissolved oxygen, and inorganic nutrients in the metalimnion.

  16. Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum.

    Science.gov (United States)

    Ma, Guo-Ming; Zhao, Shu-Jing; Jiang, Jun; Song, Hong-Tu; Li, Cheng-Rong; Luo, Ying-Ting; Wu, Hao

    2017-11-02

    Dissolved gas analysis (DGA) is widely used in monitoring and diagnosing of power transformer, since the insulation material in the power transformer decomposes gases under abnormal operation condition. Among the gases, acetylene, as a symbol of low energy spark discharge and high energy electrical faults (arc discharge) of power transformer, is an important monitoring parameter. The current gas detection method used by the online DGA equipment suffers from problems such as cross sensitivity, electromagnetic compatibility and reliability. In this paper, an optical gas detection system based on TDLAS technology is proposed to detect acetylene dissolved in transformer oil. We selected a 1530.370 nm laser in the near infrared wavelength range to correspond to the absorption peak of acetylene, while using the wavelength modulation strategy and Herriott cell to improve the detection precision. Results show that the limit of detection reaches 0.49 ppm. The detection system responds quickly to changes of gas concentration and is easily to maintenance while has no electromagnetic interference, cross-sensitivity, or carrier gas. In addition, a complete detection process of the system takes only 8 minutes, implying a practical prospect of online monitoring technology.

  17. Net community production from autonomous oxygen observations in the Sargasso Sea

    Science.gov (United States)

    Feen, M.; Estapa, M. L.

    2016-02-01

    Optical sensors on autonomous floats provide high-resolution profiles of oxygen concentration over time. Improved spatiotemporal resolution in our measurements of oxygen will allow for better estimates of net community production and a greater understanding of the biological pump. Two autonomous profiling floats (NAVIS BGCi, Sea-Bird) equipped with SBE-63 optodes to measure dissolved oxygen were deployed in the Sargasso Sea on a series of five Bermuda Atlantic Time-series Study (BATS) cruises from July 2013 to April 2014. In situ calibration of the oxygen sensors to Winkler titration bottle samples at BATS did not show systematic drift in the oxygen sensors over time. Calibrations were applied to determine oxygen concentrations in profiles collected in the Sargasso Sea at 1.5 to 2.5 day intervals over a year. Oxygen concentrations were used to quantify sub-mixed layer net community production. Changes in production rates from this study were compared with upper water column biology and particle flux measurements obtained independently from optical sensors on the profiling floats, allowing us to examine processes controlling carbon export into the deep ocean.

  18. Fate of dissolved organic nitrogen in two stage trickling filter process.

    Science.gov (United States)

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Phosphogenesis and active phosphorite formation in sediments from the Arabian Sea oxygen minimum zone

    NARCIS (Netherlands)

    Schenau, S.J.; Slomp, C.P.; Lange, G.J. de

    2000-01-01

    In this study, porewater chemistry, solid-phase analysis and microscopic observations were combined to evaluate phosphogenesis in three boxcores located within the intensive oxygen minimum zone of the Arabian Sea. Three parameters, namely a decrease of the dissolved phosphate and fluoride

  20. Spatially complex distribution of dissolved manganese in a fjord as revealed by high-resolution in situ sensing using the autonomous underwater vehicle Autosub.

    Science.gov (United States)

    Statham, P J; Connelly, D P; German, C R; Brand, T; Overnell, J O; Bulukin, E; Millard, N; McPhail, S; Pebody, M; Perrett, J; Squire, M; Stevenson, P; Webb, A

    2005-12-15

    Loch Etive is a fjordic system on the west coast of Scotland. The deep waters of the upper basin are periodically isolated, and during these periods oxygen is lost through benthic respiration and concentrations of dissolved manganese increase. In April 2000 the autonomous underwater vehicle (AUV) Autosub was fitted with an in situ dissolved manganese analyzer and was used to study the spatial variability of this element together with oxygen, salinity, and temperature throughout the basin. Six along-loch transects were completed at either constant height above the seafloor or at constant depth below the surface. The ca. 4000 in situ 10-s-average dissolved Mn (Mnd) data points obtained provide a new quasi-synoptic and highly detailed view of the distribution of manganese in this fjordic environment not possible using conventional (water bottle) sampling. There is substantial variability in concentrations (600 nM) and distributions of Mnd. Surface waters are characteristically low in Mnd reflecting mixing of riverine and marine end-member waters, both of which are low in Mnd. The deeper waters are enriched in Mnd, and as the water column always contains some oxygen, this must reflect primarily benthic inputs of reduced dissolved Mn. However, this enrichment of Mnd is spatially very variable, presumably as a result of variability in release of Mn coupled with mixing of water in the loch and removal processes. This work demonstrates how AUVs coupled with chemical sensors can reveal substantial small-scale variability of distributions of chemical species in coastal environments that would not be resolved by conventional sampling approaches. Such information is essential if we are to improve our understanding of the nature and significance of the underlying processes leading to this variability.

  1. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations.

    Science.gov (United States)

    Wen, Xin; Gong, Benzhou; Zhou, Jian; He, Qiang; Qing, Xiaoxia

    2017-08-01

    Simultaneous partial nitrification, anammox and denitrification (SNAD) process was studied in a sequencing batch biofilm reactor (SBBR) fed with synthetic wastewater in a range of 2200 mgN/L ∼ 50 mgN/L. Important was an external real-time precision dissolved oxygen (DO) intelligent control system that consisted of feed forward control system and feedback control system. This DO control system permitted close control of oxygen supply according to influent concentration, effluent quality and other environmental factors in the reactor. In this study the operation was divided into six phases according to influent nitrogen applied. SNAD system was successfully set up after adding COD into a CANON system. And the presence of COD enabled the survival of denitrifiers, and made Thauera and Pseudomonas predominant as functional denitrifiers in this system. Denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and 16S rRNA amplicon pyrosequencing were used to analyze the microbial variations of different substrate concentrations. Results indicated that the relative population of ammonia oxidizing bacteria (AOB) members decreased when influent ammonia concentration decreased from 2200 mg/L to 50 mg/L, while no dramatic drop of the percent of anammox bacteria was seen. And Nitrosomonas europaea was the predominant AOB in SNAD system treating sewage, while Candidatus Brocadia was the dominant anammox bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The impact of oxygen on the final alcohol content of wine fermented by a mixed starter culture.

    Science.gov (United States)

    Morales, Pilar; Rojas, Virginia; Quirós, Manuel; Gonzalez, Ramon

    2015-05-01

    We have developed a wine fermentation procedure that takes advantage of the metabolic features of a previously characterized Metschnikowia pulcherrima strain in order to reduce ethanol production. It involves the use of M. pulcherrima/Saccharomyces cerevisiae mixed cultures, controlled oxygenation conditions during the first 48 h of fermentation, and anaerobic conditions thereafter. The influence of different oxygenation regimes and initial inoculum composition on yeast physiology and final ethanol content was studied. The impact of oxygenation on yeast physiology goes beyond the first aerated step and influences yields and survival rates during the anaerobic stage. The activity of M. pulcherrima in mixed oxygenated cultures resulted in a clear reduction in ethanol yield, as compared to S. cerevisiae. Despite relatively low initial cell numbers, S. cerevisiae always predominated in mixed cultures by the end of the fermentation process. Strain replacement was faster under low oxygenation levels. M. pulcherrima confers an additional advantage in terms of dissolved oxygen, which drops to zero after a few hours of culture, even under highly aerated conditions, and this holds true for mixed cultures. Alcohol reduction values about 3.7 % (v/v) were obtained for mixed cultures under high aeration, but they were associated to unacceptable volatile acidity levels. In contrast, under optimized conditions, only 0.35 g/L acetic acid was produced, for an alcohol reduction of 2.2 % (v/v), and almost null dissolved oxygen during the process.

  3. Controlling the Carrier Density of SrTiO3-Based Heterostructures with Annealing

    DEFF Research Database (Denmark)

    Christensen, Dennis Valbjørn; von Soosten, Merlin; Trier, Felix

    2017-01-01

    The conducting interface between the insulating oxides LaAlO3 (LAO) and SrTiO3 (STO) displays numerous physical phenomena that can be tuned by varying the carrier density, which is generally achieved by electrostatic gating or adjustment of growth parameters. Here, it is reported how annealing...... in oxygen at low temperatures (T

  4. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    International Nuclear Information System (INIS)

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  5. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    International Nuclear Information System (INIS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-01-01

    Due to increasing atmospheric CO 2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO 2 and those which involve CO 2 -induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO 2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO 2 -induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO 2 -induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change. (letters)

  6. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    Directory of Open Access Journals (Sweden)

    Andreas F Haas

    Full Text Available Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta, a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii and a dominant hermatypic coral (Porites lobata. Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻², stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹ and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻². Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence

  7. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    Science.gov (United States)

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  8. Design and Fabrication of a Ratiometric Planar Optode for Simultaneous Imaging of pH and Oxygen

    Directory of Open Access Journals (Sweden)

    Zike Jiang

    2017-06-01

    Full Text Available This paper presents a simple, high resolution imaging approach utilizing ratiometric planar optode for simultaneous measurement of dissolved oxygen (DO and pH. The planar optode comprises a plastic optical film coated with oxygen indicator Platinum(II octaethylporphyrin (PtOEP and reference quantum dots (QDs embedded in polystyrene (PS, pH indicator 5-Hexadecanoylamino-fluorescein (5-Fluorescein embedded in Hydromed D4 matrix. The indicator and reference dyes are excited by utilizing an LED (Light Emitting Diode source with a central wavelength of 405 nm, the emission respectively matches the different channels (red, green, and blue of a 3CCD camera after eliminating the excitation source by utilizing the color filter. The result shows that there is low cross-sensitivity between the two analytes dissolved oxygen and pH, and it shows good performance in the dynamic response ranges of 0–12 mg/L and a dynamic range of pH 6−8. The optode has been tested with regard to the response times, accuracy, photostability and stability. The applied experiment for detecting pH/Oxygen of sea-water under the influence of the rain drops is demonstrated. It is shown that the planar optode measuring system provides a simple method with low cross-talk for pH/Oxygen imaging in aqueous applications.

  9. Bottom water oxygenation changes in the northern Okinawa Trough since the last 88ka: Controlled by local hydrology and climate

    Science.gov (United States)

    Zou, Jianjun; Shi, Xuefa; Zhu, Aimei; Bai, Yazhi; Selvaraj, Kandasamy

    2014-05-01

    Dissolved oxygen content in oceanic bottom water is closely related to the surface organic carbon export and subsurface water stratification, regulating the biogeochemical cycles of some key nutrients and trace elements in intermediate and deep water columns. Further, the rate of organic carbon flux to sediments and bottom water oxygen concentration together determine the intensity of reducing conditions in sediments. In this study, we obtain high-resolution geochemical elements (TOC, TN, TS, CaCO3, Cd, U, Mn and Mo) in a radiocarbon (14C) and δ18O dated, sediment core CSH1 collected from the northern Okinawa Trough to reconstruct the history of bottom water redox conditions over 88 ka. Our data revealed the presence of hypoxic bottom water in the northern Okinawa Trough during late MIS5a-early MIS4, Last Glacial Maximum, and the early Last Deglacial intervals. During the Holocene and the early MIS5a, the dissolved oxygen content in bottom water has increased with decreasing water stratification, which was probably caused by the increased upwelling from the bottom in tandem with the climbing of Kuroshio Current and subdued freshwater effect in the northern Okinawa Trough. The reasons that caused the change of dissolved oxygen content in bottom water in the northern Okinawa Trough varied during different periods. The main factors are related to sea level, strengths of East Asian monsoon and the Kuroshio Current, and the shift of Westerly Jet Axis. The semi-closed topography in the northern Okinawa Trough provides a space framework for the presence of anoxia, while the sea level together with the Kuroshio Current, the East Asian monsoon and the Westerly Jet Axis seems to affect the strength of water stratification and the nutrient supply; thereby, regulating the dissolved oxygen exchange between surface and bottom waters. This work was supported by the National Natural Science Foundation of China(Grant No.:40906035,40710069004) and by basic scientific fund for

  10. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  11. Interactive effects of oxygen, carbon dioxide and flow on photosynthesis and respiration in the scleractinian coral Galaxea fascicularis.

    Science.gov (United States)

    Osinga, Ronald; Derksen-Hooijberg, Marlous; Wijgerde, Tim; Verreth, Johan A J

    2017-06-15

    Rates of dark respiration and net photosynthesis were measured for six replicate clonal fragments of the stony coral Galaxea fascicularis (Linnaeus 1767), which were incubated under 12 different combinations of dissolved oxygen (20%, 100% and 150% saturation), dissolved carbon dioxide (9.5 and 19.1 µmol l -1 ) and water flow (1-1.6 versus 4-13 cm s -1 ) in a repeated measures design. Dark respiration was enhanced by increased flow and increased oxygen saturation in an interactive way, which relates to improved oxygen influx into the coral tissue. Oxygen saturation did not influence net photosynthesis: neither hypoxia nor hyperoxia affected net photosynthesis, irrespective of flow and pH, which suggests that hyperoxia does not induce high rates of photorespiration in this coral. Flow and pH had a synergistic effect on net photosynthesis: at high flow, a decrease in pH stimulated net photosynthesis by 14%. These results indicate that for this individual of G. fascicularis , increased uptake of carbon dioxide rather than increased efflux of oxygen explains the beneficial effect of water flow on photosynthesis. Rates of net photosynthesis measured in this study are among the highest ever recorded for scleractinian corals and confirm a strong scope for growth. © 2017. Published by The Company of Biologists Ltd.

  12. Seasonal variability in oxygen and nutrients in the central and eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    De; DileepKumar, M.; Sardessai, S.; Sarma, V.V.S.S.; Shirodkar, P.V.

    5. Northhyphenminussouth variations in nitrate deficit (DELN, ?M), along 64?E. CURRENT SCIENCE, VOL. 71, NO. 11, 10 DECEMBER 1996 SPECIAL SECTION: JGOFS (INDIA) Figure 6. Dissolved oxygen (at <60 ?M) versus DELN (?M) during different seasons along 64.... This occurred to the east of 72?E where the surface temhyphenminus peratures were less than 28?C. The effect could also be Table 1. Average values of oxygen and nitrate deficit (DELN) in denitrification zone and surface Chlorophyll a in the Arabian Sea 850...

  13. Oxygen vacancy induced two-dimensional electron system in disordered-crystalline LaAlO{sub 3}/KTaO{sub 3} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Michael; Gabel, Judith; Scheiderer, Philipp; Dudy, Lenart; Sing, Michael; Claessen, Ralph [Physikalisches Institut and Roentgen Center for Complex Material Systems (RCCM), Universitaet Wuerzburg (Germany); Schlueter, Christoph; Lee, Tien-Lin [Diamond Light Source Ltd., Didcot (United Kingdom)

    2016-07-01

    Two-dimensional electron systems (2DESs) in oxide heterostructures based on SrTiO{sub 3} are considered to be a promising platform for future microelectronic technology. A variety of interesting properties such as ferromagnetism, resistive switching and superconductivity are linked to interfacial n-doping involving oxygen vacancies. The introduction of a high Z-cation with large spin-orbit coupling like Ta offers an exciting new parameter. We report on a new oxygen vacancy induced 2DES located at the interface of disordered LaAlO{sub 3} and crystalline KTaO{sub 3}, which exhibits remarkably high electron mobilities and charge carrier concentrations. The number of charge carriers can be readily manipulated by the film thickness and irradiation with intense X-rays. Our synchrotron-based hard X-ray photoemission experiments provide a direct probe of the Ta 5d charge carriers at the buried interface to obtain information on the charge carrier density, its depth distribution, and the band structure.

  14. Carbon and oxygen dynamics on the Louisiana continental shelf: role of water column primary production and respiration

    Science.gov (United States)

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column net metabolism and the formation of hypoxia (dissolved oxygen respiration (R) and primary p...

  15. Photomineralization and photomethanification of dissolved organic matter in Saguenay River surface water

    Science.gov (United States)

    Zhang, Y.; Xie, H.

    2015-11-01

    Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr-1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7-8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10-6 mol m-2 yr-1 in the Saguenay River and, by extrapolation, of (1.9-8.1) × 108 mol yr-1 in the global ocean. AQYCH4 changed little with

  16. Effects of dissolved species on radiolysis of diluted seawater

    International Nuclear Information System (INIS)

    Hata, Kuniki; Hanawa, Satoshi; Kasahara, Shigeki; Motooka, Takafumi; Tsukada, Takashi; Muroya, Yusa; Yamashita, Shinichi; Katsumura, Yosuke

    2014-01-01

    Fukushima Daiichi Nuclear Power Plants (NPPs) experienced seawater injection into the cores and fuel pools as an emergent measure after the accident. After the accident, retained water has been continuously desalinized, and subsequently the concentration of chloride ion (Cl"-) has been kept at a lower level these days. These ions in seawater are known to affect water radiolysis, which causes the production of radiolytic products, such as hydrogen peroxide (H_2O_2), molecular hydrogen (H_2) and molecular oxygen (O_2). However, the effects of dissolved ions relating seawater on the production of the stable radiolytic products are not well understood in the diluted seawater. To understand of the production behavior in diluted seawater under radiation, radiolysis calculations were carried out. Production of H_2 is effectively suppressed by diluting by up to vol10%. The concentrations of oxidants (H_2O_2 and O_2) are also suppressed by dilution of dissolved species. The effect of oxidants on corrosion of materials is thought to be low when the seawater was diluted by less than 1 vol% by water. It is also shown that deaeration is one of the effective measure to suppress the concentrations of oxidants at a lower level for any dilution conditions. (author)

  17. Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium-air battery electrolytes.

    Science.gov (United States)

    Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher

    2016-04-28

    This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.

  18. NOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task.

    Science.gov (United States)

    Kopf, Juliane; Schecklmann, Martin; Hahn, Tim; Dresler, Thomas; Dieler, Alica C; Herrmann, Martin J; Fallgatter, Andreas J; Reif, Andreas

    2011-08-15

    Nitric oxide (NO) synthase produces NO, which serves as first and second messenger in neurons, where the protein is encoded by the NOS1 gene. A functional variable number of tandem repeats (VNTR) polymorphism in the promoter region of the alternative first exon 1f of NOS1 is associated with various functions of human behavior, for example increased impulsivity, while another, non-functional variant was linked to decreased verbal working memory and a heightened risk for schizophrenia. We therefore investigated the influence of NOS1 ex 1f-VNTR on working memory function as reflected by both behavioral measures and prefrontal oxygenation. We hypothesized that homozygous short allele carriers exhibit altered brain oxygenation in task-related areas, namely the dorsolateral and ventrolateral prefrontal cortex and the parietal cortex. To this end, 56 healthy subjects were stratified into a homozygous long allele group and a homozygous short allele group comparable for age, sex and intelligence. All subjects completed a letter n-back task (one-, two-, and three-back), while concentration changes of oxygenated (O(2)Hb) hemoglobin in the prefrontal cortex were measured with functional near-infrared spectroscopy (fNIRS). We found load-associated O(2)Hb increases in the prefrontal and parts of the parietal cortex. Significant load-associated oxygenation differences between the two genotype groups could be shown for the dorsolateral prefrontal cortex and the parietal cortex. Specifically, short allele carriers showed a significantly larger increase in oxygenation in all three n-back tasks. This suggests a potential compensatory mechanism, with task-related brain regions being more active in short allele carriers to compensate for reduced NOS1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Analysis of oxygen content in steel by means of 14 MeV neutrons

    International Nuclear Information System (INIS)

    Chuang, L.S.; Wong, K.C.; Chiu, W.Y.

    1975-01-01

    A sealed-tube type 14 MeV neutron generator with maximum neutron output of 10 11 n/sec, incorporating a pneumatic sample transfer system of single-tube type and with a single rotation of the sample during neutron irradiation, is used to develop a method suitable for routine work in industrial applications. A pulse shape analyser system incorporating an organic scintillation detector is used for monitoring neutron flux level during the neutron irradiation of the sample. Polyethylene, of oxygen content 163 ppm determined by comparison with lucite, is used as the steel sample carrier. A 3 x 3 in. NaI(Tl) crystal is used with a single channel analyser to count the 6.1 and 7.1 MeV gamma rays emitted from 16 N as a result of the reaction 16 O(n,p) 16 N. As the present activation analysis makes use of the comparison method, a steel-mylar standard made of layered steel and mylar discs is prepared and a calibration curve constructed. A method of correcting the oxygen contribution in the polyethylene sample carrier is devised and the content of oxygen in the steel standard is determined. A survey of neutron flux distribution is also attempted and it is found that nearly symmetrical distribution of the flux, about the centre of the sample carrier which is placed with its axis in parallel to the plane of the disc-shaped target of the neutron-generating tube, is far from being flat. (Auth.)

  20. Micro-oxygenation of red wine: techniques, applications, and outcomes.

    Science.gov (United States)

    Schmidtke, Leigh M; Clark, Andrew C; Scollary, Geoff R

    2011-02-01

    Wine micro-oxygenation (MOX) is the controlled addition of oxygen to wine in a manner designed to ensure that complete mass transfer of molecular oxygen from gaseous to dissolved state occurs. MOX was initially developed to improve the body, structure, and fruitfulness in red wines with high concentrations of tannins and anthocyanins, by replicating the ingress of oxygen thought to arise from barrel maturation, but without the need for putting all wine to barrel. This review describes the operational parameters essential for the effective performance of the micro-oxidation process as well as the chemical and microbiological outcomes. The methodologies for introducing oxygen into the wine, the rates of oxygen addition, and their relationship to oxygen solubility in the wine matrix are examined. The review focuses on the techniques used for monitoring the MOX process, including sensory assessment, physicochemical properties, and the critical balance of the rate of oxygen addition in relation to maintaining the sulfur dioxide concentration. The chemistry of oxygen reactivity with wine components, the changes in wine composition that occur as a consequence of MOX, and the potential for wine spoilage if proper monitoring is not adopted are examined. Gaps in existing knowledge are addressed focusing on the limitations associated with the transfer of concepts from research trials in small volume tanks to commercial practice, and the dearth of kinetic data for the various chemical and physical processes that are claimed to occur during MOX.

  1. Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.

    Science.gov (United States)

    Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P

    2014-12-01

    This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    Science.gov (United States)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  3. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

    Science.gov (United States)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2017-10-01

    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  4. Preparation of Oxygen Meter Based Biosensor for Determination of Triglyceride in Serum

    Directory of Open Access Journals (Sweden)

    M. BHAMBI

    2006-05-01

    Full Text Available A method is described for preparation of a dissolved oxygen meter (make Aqualytic, Germany based triglyceride biosensor employing a polyvinyl chloride (PVC membrane bound lipase, glycerol kinase (GK and glycerol-3-phosphate oxidase The biosensor measures dissolved O2 utilized in the oxidation of triglyceride (TG by membrane bound lipase, glycerol kinase (GK and glycerol-3-phosphate oxidase (GPO, which is directly proportional to (TG concentration. The biosensor showed optimum response within 10-15 sec at pH 7.5 and 39.5 ºC. A linear relationship was obtained between the (TG concentration from 5mM to 20mM and oxygen consumed (mg/L. The biosensor was employed for determination of triglyceride in serum. The within and between batch coefficient of variation (CV were < 2.18 % and < 1.7% respectively. The minimum detection limit of the biosensor was 0.35 mM. A study of interference revealed that ascorbic acid, cholesterol and bilirubin caused 13%, 15%, and 12% interference, respectively.The biosensor is portable and can be used outside the laboratory.

  5. High impact of uranyl ions on carrying-releasing oxygen capability of hemoglobin-based blood substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Li; Du, Lili; Liu, Wenyuan; Liu, Zhichao [Northwest Institute of Nuclear Technology, Xi' an, Shaanxi (China); Jia, Yi; Li, Junbai [Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing (China)

    2015-01-07

    The effect of radioactive UO{sub 2}{sup 2+} on the oxygen-transporting capability of hemoglobin-based oxygen carriers has been investigated in vitro. The hemoglobin (Hb) microspheres fabricated by the porous template covalent layer-by-layer (LbL) assembly were utilized as artificial oxygen carriers and blood substitutes. Magnetic nanoparticles of iron oxide (Fe{sub 3}O{sub 4}) were loaded in porous CaCO{sub 3} particles for magnetically assisted chemical separation (MACS). Through the adsorption spectrum of magnetic Hb microspheres after adsorbing UO{sub 2}{sup 2+}, it was found that UO{sub 2}{sup 2+} was highly loaded in the magnetic Hb microspheres, and it shows that the presence of UO{sub 2}{sup 2+} in vivo destroys the structure and oxygen-transporting capability of Hb microspheres. In view of the high adsorption capacity of UO{sub 2}{sup 2+}, the as-assembled magnetic Hb microspheres can be considered as a novel, highly effective adsorbent for removing metal toxins from radiation-contaminated bodies, or from nuclear-power reactor effluent before discharge into the environment. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  7. [Recent technical advances in portable oxygen delivery systems].

    Science.gov (United States)

    Machida, K; Kawabe, Y; Mori, M; Haga, T

    1992-08-01

    According to a Japanese national survey (June 30, 1990), the number of patients receiving home oxygen therapy (HOT) has been greater than 18,000 since March 1985, when HOT was first covered by health insurance. The oxygen concentrator, especially the molecular sieve type, is the most common method of delivery (more than 90%). In April 1988, the portable oxygen cylinder was acknowledged by health insurance, and the liquid oxygen supply system in April 1990. Three types of portable oxygen delivery systems are available; oxygen cyclinder, liquid oxygen system, and oxygen concentrator (membrane type), of which the oxygen cylinder is most commonly used. In our hospital, portable oxygen supply systems were used in 80% of 168 HOT cases in 1990, and the use of 400 L aluminum oxygen cylinders at a flow rate of 1-2 L/min has been most popular. There is an strong desire from patients for lighter portable oxygen supply system of longer duration. In 19 patients with chronic respiratory failure, we evaluated a newly designed demand oxygen delivery system (DODS), which weighs 2.4 kg including the DOD device (TER-20 Teijin), 1.1 L oxygen cylinder made of ultressor, nasal cannula, and carrier. Arterial blood gases at rest (room air) were PaO2 61.9 +/- 6.3 torr, PaCO2 63.8 +/- 9.4 torr and pH 7.40 +/- 0.04. A crossover trial was performed under three conditions; breathing room air with no weight, and pulse oxygen flow and continuous oxygen flow each carrying 2.4 kg of weight. Both 6 minute walking (E1) and walking on a slow speed treadmill (E2) were studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. NODC Standard Format Seabed Oxygen Consumption from In-Situ Sources (F050) Data (1974-1978) (NODC Accession 0014186)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data type contains data from analyses of seabed oxygen consumption determined from measurements over a specified time interval of initial and final dissolved...

  9. Plankton community respiration, net ecosystem metabolism, and oxygen dynamics on the Louisiana continental shelf: implications for hypoxia

    Science.gov (United States)

    We conducted a multi-year study of the Louisiana continental shelf (LCS) to better understand the linkages between water column metabolism and the formation of hypoxia (dissolved oxygen respiration rates (WR) were measured on 10 cr...

  10. Paraffin as oxygen vector modulates tyrosine phenol lyase production by Citrobacter freundii MTCC 2424.

    Science.gov (United States)

    Azmi, Wamik; Kumar, Ajay; Dev, Varun

    2013-06-01

    The efficiency of three oxygen-vectors liquid paraffin, silicone oil and n-dodecane in the production of tyrosine phenol lyase (TPL) by Citrobacter freundii MTCC 2424 was evaluated at 4% (v/v) concentration. The liquid paraffin as oxygenvectors was found to exhibit a stimulatory effect on TPL synthesis. The liquid paraffin at 6% (v/v) resulted in 34% increase in the TPL synthesis accompanied by a 13% increase in the production of cell mass at a 10 L scale. This improvement in TPL and cell mass production in the presence of liquid paraffin can be related to the fact that liquid paraffin was capable of maintaining dissolved O2 concentration above 28% throughout the course of the fermentation. Maintenance of the dissolved O2 concentration above 28% could be viewed in terms of an adequate oxygen supply to the rapidly dividing cells of the bacterium, which in turn resulted in enhanced synthesis of TPL and cell mass.

  11. Oxygen Sorption and Desorption Properties of Selected Lanthanum Manganites and Lanthanum Ferrite Manganites

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Skou, Eivind M.; Jacobsen, Torben

    2015-01-01

    Temperature‐programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid‐oxide fuel cell (SOFC) cathode materials (La0.85Sr0.15)0.95MnO3+δ (LSM) and La0.60Sr0.40Fe0.80Mn0.20O3‐δ (LSFM). The powders were characterized...... by X‐ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over...... time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second‐order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate‐determining step...

  12. Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.

    Science.gov (United States)

    Taylor, C D

    1979-06-01

    The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.

  13. Sediment-Overlying Water Relationships Affecting Wintertime Dissolved Oxygen Conditions in the Big Eau Pleine Reservoir, Wisconsin.

    Science.gov (United States)

    1992-07-01

    22202-4302. and to the Office of Managel ent and Bidget . P worki Reduction Pfo4ect(07T4-016 Wahington. DC 20S03. -1. AGENCY USE ONLY (Leave blank) 2...higher pool elevation can not be maintained, it is likely that additional aerators must be installed for incremental use to meet periodic heavy oxygen...install additional aerators throughout the reservoir for incremental use as needed to enhance oxygen diffusion processes. The difficulty with this

  14. Singlet oxygen produced by quasi-continuous photo-excitation of hypericin in dimethyl-sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Varchola, J.; Želonková, K. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Chorvat Jr, D. [International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Jancura, D. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); Miskovsky, P. [Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); International Laser Centre, Ilkovicova 3, 841 05 Bratislava (Slovakia); Center for Interdisciplinary Biosciences, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice (Slovakia); and others

    2016-09-15

    Singlet oxygen (O{sub 2}({sup 1}Δ{sub g})) production by photo-excited hypericin (Hyp) dissolved in dimethyl-sulfoxide (DMSO) was studied by means of time-resolved phosphorescence measurements. In order to minimize photo-bleaching, the samples were excited in quasi-continuous mode using long-pulse (35 μs) laser excitation. The measured lifetime of singlet oxygen is τ{sub Δ}=5.5±0.3 μs. This result helps to resolve the discrepancy existing in the literature concerning singlet oxygen lifetime in DMSO. The obtained quantum yield of singlet oxygen photosensitized by Hyp in air-saturated DMSO is Φ{sub Δ}=0.4±0.03. The rate constant for Hyp triplet state depopulation in reaction with ground state molecular oxygen is measured to be k{sub q}=1.6±0.3×10{sup 9} M{sup −1} s{sup −1}.

  15. Variação sazonal de oxigênio dissolvido, temperatura e salinidade na costa sul brasileira (28º-35ºS; 48º-54ºW Seasonal variation of dissolved oxygen, temperature and salinity in southern Brazilian coast (28 - 35ºS; 48 - 54ºW

    Directory of Open Access Journals (Sweden)

    Argeo Magliocca

    1982-01-01

    Full Text Available The seasonal and spacial distributions of dissolved oxygen, temperature and salinity of surface and bottom waters over the continental shelf south of Torres, southern Brazil, were investigated from April 1968 to March 1969. The maxima and minima values of oxygen concentration in the upper layers were observed during the winter and summer along the coast (10-35 nm, respectively. Near the bottom this characteristics changes reflecting the northward advection of low oxygen water along the coast. For the sections along the continental shelf covering distances up to 100 nautical miles, the association of high oxygen concentration with low temperatures and low oxygen concentration with higher temperatures was also observed for distances no longer than 60 ran. Further east and below the surface layer, this tendency is modified by the advection of oceanic water from tropical and subantarctic origin. Near the coast, the oxygen maxima (5.0 ml/l is associated with salinity values ranging from 30 to 33‰ (temperature values between 12 and 15ºC, indicating that (its occurrence is probably due to the fresh water run-off from La Plata River. Some results of the changes in the nutrient concentrations during 1972 are also described.

  16. Strategies for Small Volume Resuscitation: Hyperosmotic-Hyperoncotic Solutions, Hemoglobin Based Oxygen Carriers and Closed-Loop Resuscitation

    Science.gov (United States)

    Kramer, George C.; Wade, Charles E.; Dubick, Michael A.; Atkins, James L.

    2004-01-01

    Introduction: Logistic constraints on combat casualty care preclude traditional resuscitation strategies which can require volumes and weights 3 fold or greater than hemorrhaged volume. We present a review of quantitative analyses of clinical and animal data on small volume strategies using 1) hypertonic-hyperosmotic solutions (HHS); 2) hemoglobin based oxygen carriers (HBOCs) and 3) closed-loop infusion regimens.Methods and Results: Literature searches and recent queries to industry and academic researchers have allowed us to evaluate the record of 81 human HHS studies (12 trauma trials), 19 human HBOCs studies (3trauma trials) and two clinical studies of closed-loop resuscitation.There are several hundreds animal studies and at least 82 clinical trials and reports evaluating small volume7.2%-7.5% hypertonic saline (HS) most often combined with colloids, e.g., dextran (HSD) or hetastarch(HSS). HSD and HSS data has been published for 1,108 and 392 patients, respectively. Human studies have documented volume sparing and hemodynamic improvements. Meta-analyses suggest improved survival for hypotensive trauma patients treated with HSD with significant reductions in mortality found for patients with blood pressure blood use and lower mortality compared to historic controls of patients refusing blood. Transfusion reductions with HBOC use have been modest. Two HBOCs (Hemopure and Polyheme) are now in new or planned large-scale multicenter prehospital trials of trauma treatment. A new implementation of small volume resuscitation is closed-loop resuscitation (CLR), which employs microprocessors to titrate just enough fluid to reach a physiologic target . Animal studies suggest less risk of rebleeding in uncontrolled hemorrhage and a reduction in fluid needs with CLR. The first clinical application of CLR was treatment of burn shock and the US Army. Conclusions: Independently sponsored civilian trauma trials and clinical evaluations in operational combat conditions of

  17. The effect of X-irradiation on aqueous media containing traces of oxygen

    International Nuclear Information System (INIS)

    Evans, N.T.S.

    1981-01-01

    The effect of X-irradiation on small amounts of oxygen dissolved in 1 mM potassium chloride solution, tap water or Eagle's tissue culture medium has been followed with polarographic electrodes. Oxygen is removed from all these solutions down to concentrations corresponding to a few parts per million in the gas phase. Small amounts of hydrogen are also produced by irradiation and can be measured polarographically. Except in Eagle's medium, hydrogen peroxide is formed in the anoxic solutions, and molecular oxygen can be detected after irradiation when catalase is present in the solution. A non-volatile polarographically reducible substance is generated by irradiation of anoxic Eagle's medium. It is not decomposed by catalase but decays spontaneously in solution at a slow rate. (author)

  18. Ammonia, silicate, phosphate, nitrite+nitrate, dissolved oxygen, and other variables collected from profile and discrete sample observations using CTD, nutrient autoanalyzer, and other instruments from NOAA Ship Delaware II, NOAA Ship Gordon Gunter, NOAA Ship Henry B. Bigelow, NOAA Ship Okeanos Explorer, and NOAA Ship Pisces in the Gulf of Maine, Georges Bank, and Mid-Atlantic Bight from 2009-11-03 to 2016-08-19 (NCEI Accession 0127524)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains nutrient concentrations, temperature, salinity, density and dissolved oxygen values measured by CTD profiles on the U.S. Northeast Continental...

  19. Factors influencing the dissolved iron input by river water to the open ocean

    Science.gov (United States)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    2005-05-01

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  20. A comparative kinetic and mechanistic study between tetrahydrozoline and naphazoline toward photogenerated reactive oxygen species.

    Science.gov (United States)

    Criado, Susana; García, Norman A

    2010-01-01

    Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet ((3)Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca. 5.0 mM and 0.02 mM Rf, (3)Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O(2)((1)Delta(g)), O(2)(*-), HO(*) and H(2)O(2), generated from (3)Rf* and Rf(*-), were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H(2)O(2) was involved in the photo-oxidation. In the case of THZ, O(2)(*-), HO(*) and H(2)O(2) were detected, whereas only HO(*) was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O(2)((1)Delta(g)), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.