WorldWideScience

Sample records for oxygen atoms bonded

  1. Atomic resolution chemical bond analysis of oxygen in La2CuO4

    Science.gov (United States)

    Haruta, M.; Nagai, T.; Lugg, N. R.; Neish, M. J.; Nagao, M.; Kurashima, K.; Allen, L. J.; Mizoguchi, T.; Kimoto, K.

    2013-08-01

    The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent.

  2. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  3. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    Science.gov (United States)

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important

  4. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  5. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    Science.gov (United States)

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  6. Formation and properties of metal-oxygen atomic chains

    DEFF Research Database (Denmark)

    Thijssen, W.H.A.; Strange, Mikkel; de Brugh, J.M.J.A.

    2008-01-01

    of longer atomic chains. The mechanical and electrical properties of these diatomic chains have been investigated by determining local vibration modes of the chain and by measuring the dependence of the average chain-conductance on the length of the chain. Additionally, we have performed calculations......Suspended chains consisting of single noble metal and oxygen atoms have been formed. We provide evidence that oxygen can react with and be incorporated into metallic one-dimensional atomic chains. Oxygen incorporation reinforces the linear bonds in the chain, which facilitates the creation...

  7. Bonding in Sulfur-Oxygen Compounds-HSO/SOH and SOO/OSO: An Example of Recoupled Pair π Bonding.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Woon, David E; Dunning, Thom H

    2013-10-08

    The ground states (X(2)A″) of HSO and SOH are extremely close in energy, yet their molecular structures differ dramatically, e.g., re(SO) is 1.485 Å in HSO and 1.632 Å in SOH. The SO bond is also much stronger in HSO than in SOH: 100.3 kcal/mol versus 78.8 kcal/mol [RCCSD(T)-F12/AVTZ]. Similar differences are found in the SO2 isomers, SOO and OSO, depending on whether the second oxygen atom binds to oxygen or sulfur. We report generalized valence bond and RCCSD(T)-F12 calculations on HSO/SOH and OSO/SOO and analyze the bonding in all four species. We find that HSO has a shorter and stronger SO bond than SOH due to the presence of a recoupled pair bond in the π(a″) system of HSO. Similarly, the bonding in SOO and OSO differs greatly. SOO is like ozone and has substantial diradical character, while OSO has two recoupled pair π bonds and negligible diradical character. The ability of the sulfur atom to form recoupled pair bonds provides a natural explanation for the dramatic variation in the bonding in these and many other sulfur-oxygen compounds.

  8. Controlling the bond scission sequence of oxygenates for energy applications

    Science.gov (United States)

    Stottlemyer, Alan L.

    The so called "Holy Grail" of heterogeneous catalysis is a fundamental understanding of catalyzed chemical transformations which span multidimensional scales of both length and time, enabling rational catalyst design. Such an undertaking is realizable only with an atomic level understanding of bond formation and destruction with respect to intrinsic properties of the metal catalyst. In this study, we investigate the bond scission sequence of small oxygenates (methanol, ethanol, ethylene glycol) on bimetallic transition metal catalysts and transition metal carbide catalysts. Oxygenates are of interest both as hydrogen carriers for reforming to H2 and CO and as fuels in direct alcohol fuel cells (DAFC). To address the so-called "materials gap" and "pressure gap" this work adopted three parallel research approaches: (1) ultra high vacuum (UHV) studies including temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) on polycrystalline surfaces; (2) DFT studies including thermodynamic and kinetic calculations; (3) electrochemical studies including cyclic voltammetry (CV) and chronoamperometry (CA). Recent studies have suggested that tungsten monocarbide (WC) may behave similarly to Pt for the electrooxidation of oxygenates. TPD was used to quantify the activity and selectivity of oxygenate decomposition for WC and Pt-modifiedWC (Pt/WC) as compared to Pt. While decomposition activity was generally higher on WC than on Pt, scission of the C-O bond resulted in alkane/alkene formation on WC, an undesired product for DAFC. When Pt was added to WC by physical vapor deposition C-O bond scission was limited, suggesting that Pt synergistically modifies WC to improve the selectivity toward C-H bond scission to produce H2 and CO. Additionally, TPD confirmed WC and Pt/WC to be more CO tolerant than Pt. HREELS results verified that surface intermediates were different on Pt/WC as compared to Pt or WC and evidence of aldehyde

  9. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    International Nuclear Information System (INIS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-01-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion

  10. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    Science.gov (United States)

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (alloys are expected to open a new paradigm in commercial alloy design.

  11. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    Science.gov (United States)

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  12. Atomic structure of diamond {111} surfaces etched in oxygen water vapor

    International Nuclear Information System (INIS)

    Theije, F.K. de; Reedijk, M.F.; Arsic, J.; Enckevort, W.J.P. van; Vlieg, E.

    2001-01-01

    The atomic structure of the {111} diamond face after oxygen-water-vapor etching is determined using x-ray scattering. We find that a single dangling bond diamond {111} surface model, terminated by a full monolayer of -OH fits our data best. To explain the measurements it is necessary to add an ordered water layer on top of the -OH terminated surface. The vertical contraction of the surface cell and the distance between the oxygen atoms are generally in agreement with model calculations and results on similar systems. The OH termination is likely to be present during etching as well. This model experimentally confirms the atomic-scale mechanism we proposed previously for this etching system

  13. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin

    2017-10-12

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated with dangling bonds around the vacancies and Pt atoms. These bonds not only alter the thermodynamics and kinetics for the aggregation and effectively immobilize Pt atoms, but also significantly change the composition and energetic distribution of the electronic states of the composites to circumvent CO poisoning and to favour coadsorption of CO and O2, which further regulates the reactions to proceed through a Langmuir-Hinshelwood mechanism. The CO oxidation over Pt atoms immobilized at N-vacancies involves formation of an intermediate with –C(O)-O−O- bonded to Pt, the generation of CO2 by peroxo O−O bond scission and the reduction of the remnant oxygen, and the calculated energy barriers are 0.49, 0.23 and 0.18 eV, respectively. Such small energy barriers are comparable to those over Pt atoms trapped at B-vacancies, showing the effectiveness of Pt/hexagonal boron nitride atomic composites as catalysts for CO oxidation. These findings also suggest the feasibility of regulating the reaction pathways over single atom catalysts via interfacial engineering.

  14. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe3 Mn-Iodosobenzene Adducts.

    Science.gov (United States)

    de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor

    2017-04-18

    We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Simulation of the Atomic and Electronic Structure of Oxygen Vacancies and Polyvacancies in ZrO2

    Science.gov (United States)

    Perevalov, T. V.

    2018-03-01

    Cubic, tetragonal, and monoclinic phases of zirconium oxide with oxygen vacancies and polyvacancies are studied by quantum chemical modeling of the atomic and electronic structure. It is demonstrated that an oxygen vacancy in ZrO2 may act as both an electron trap and a hole one. An electron added to the ZrO2 structure with an oxygen vacancy is distributed between two neighboring Zr atoms and is a bonding orbital by nature. It is advantageous for each subsequent O vacancy to form close to the already existing ones; notably, one Zr atom has no more than two removed O atoms related to it. Defect levels from oxygen polyvacancies are distributed in the bandgap with preferential localization in the vicinity of the oxygen monovacancy level.

  16. Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.

    Science.gov (United States)

    Oña, Ofelia B; De Clercq, Olivier; Alcoba, Diego R; Torre, Alicia; Lain, Luis; Van Neck, Dimitri; Bultinck, Patrick

    2016-09-19

    The Fukui function is often used in its atom-condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms-in-molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld-I atoms-in-molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld-I approach to obtain atom- and bond-condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms-in-molecule approach shows low correlation between the two partitioning schemes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanism and kinetics of Fe, Cr, Mo and Mn atom interaction with molecular oxygen

    International Nuclear Information System (INIS)

    Akhmadov, U.S.; Zaslonko, I.S.; Smirnov, V.N.

    1988-01-01

    Rate constants of atomic interaction of some transition metals (Fe, Cr, Mo, Mn) with molecular oxygen are measured in shock waves using the resonance atomic-absorption method. A new method for determination of the parameter γ in the modified Lambert-Beer law D=ε(lN)γ is suggested and applied. Bond strength in CrO and MoO molecules is estimated

  18. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  19. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin films • Oxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  20. Atom interaction propensities of oxygenated chemical functions in crystal packings

    Directory of Open Access Journals (Sweden)

    Christian Jelsch

    2017-03-01

    Full Text Available The crystal contacts of several families of hydrocarbon compounds substituted with one or several types of oxygenated chemical groups were analyzed statistically using the Hirshfeld surface methodology. The propensity of contacts to occur between two chemical types is described with the contact enrichment descriptor. The systematic large enrichment ratios of some interactions like the O—H...O hydrogen bonds suggests that these contacts are a driving force in the crystal packing formation. The same statement holds for the weaker C—H...O hydrogen bonds in ethers, esters and ketones, in the absence of polar H atoms. The over-represented contacts in crystals of oxygenated hydrocarbons are generally of two types: electrostatic attractions (hydrogen bonds and hydrophobic interactions. While Cl...O interactions are generally avoided, in a minority of chloro-oxygenated hydrocarbons, significant halogen bonding does occur. General tendencies can often be derived for many contact types, but outlier compounds are instructive as they display peculiar or rare features. The methodology also allows the detection of outliers which can be structures with errors. For instance, a significant number of hydroxylated molecules displaying over-represented non-favorable oxygen–oxygen contacts turned out to have wrongly oriented hydroxyl groups. Beyond crystal packings with a single molecule in the asymmetric unit, the behavior of water in monohydrate compounds and of crystals with Z′ = 2 (dimers are also investigated. It was found in several cases that, in the presence of several oxygenated chemical groups, cross-interactions between different chemical groups (e.g. water/alcohols; alcohols/phenols are often favored in the crystal packings. While some trends in accordance with common chemical principles are retrieved, some unexpected results can however appear. For example, in crystals of alcohol–phenol compounds, the strong O—H...O hydrogen bonds between

  1. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao

    2013-03-07

    To understand structural and chemical properties of metal-graphene composites, it is crucial to unveil the chemical bonding along the interface. We provide direct experimental evidence of atomic bonding between typical metal nano structures and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal atoms and clusters under electron irradiation. We demonstrate no electron-instigated interaction between Cr clusters and pristine graphene, though Cr has been reported to be highly reactive to graphene. The metal-mediated etching is a dynamic effect between metal clusters and pre-existing defects. The resolved atomic configurations of typical nano metal structures on graphene offer insight into modeling and simulations on properties of metal-decorated graphene for both catalysis and future carbon-based electronics. © 2013 American Chemical Society.

  2. Atomic oxygen adsorption and its effect on the oxidation behaviour of ZrB2-ZrC-SiC in air

    International Nuclear Information System (INIS)

    Gao Dong; Zhang Yue; Xu Chunlai; Song Yang; Shi Xiaobin

    2011-01-01

    Research highlights: → Atomic oxygen was adsorbed on the surface of ZrB 2 -ZrC-SiC ceramics. → Atomic oxygen was preferred reacted with borides according to XPS spectra. → The atomic oxygen adsorption is detrimental to the oxidation resistance. → The porosity should be the major reason which provides diffusion path for the atomic oxygen. → The structure evolution of the ceramics during oxidation is analyzed. - Abstract: Atomic oxygen is adsorbed on the surface of the hot-pressed ZrB 2 -ZrC-SiC ceramic composites, and then the ceramic composites are oxidized in air up to 1500 deg. C with the purpose of clarifying the effect of atomic oxygen adsorption on the oxidation behaviour of the ceramic composites. The XPS spectra are employed to identify the adsorption mechanism of atomic oxygen on the surface of the ceramic composites, and the formation of O-B, O-Zr, and O-Si bonds indicates that atomic oxygen is chemically adsorbed on the surface of the ceramic. In addition, atomic oxygen is preferred to be adsorbed on the surface of borides according to the Zr 3d core level spectrum. On the other hand, the atomic oxygen adsorption is detrimental to the oxidation resistance according to experimental results, and the porosity of the ceramic should be the major reason which provides diffusion path for the atomic oxygen. Furthermore, the structure evolution of the ceramic composites during oxidation process is analyzed.

  3. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  4. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  5. The Atom-Bond Connectivity Index of Catacondensed Polyomino Graphs

    OpenAIRE

    Chen, Jinsong; Liu, Jianping; Li, Qiaoliang

    2013-01-01

    Let G=(V,E) be a graph. The atom-bond connectivity (ABC) index is defined as the sum of weights ((du+dv−2)/dudv)1/2 over all edges uv of G, where du denotes the degree of a vertex u of G. In this paper, we give the atom-bond connectivity index of the zigzag chain polyomino graphs. Meanwhile, we obtain the sharp upper bound on the atom-bond connectivity index of catacondensed polyomino graphs with h squares and determine the corresponding extremal graphs.

  6. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    Science.gov (United States)

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  7. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    Science.gov (United States)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  8. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  9. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    Science.gov (United States)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  10. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    Science.gov (United States)

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  11. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  12. The extended variant of the bond valence-bond length correlation curve for boron(III)-oxygen bonds

    International Nuclear Information System (INIS)

    Sidey, Vasyl

    2015-01-01

    The extended variant of the bond valence (s)-bond length (r) correlation curve for boron(III)-oxygen bonds has been closely approximated using the three-parameter function s = [k/(r - l)] - m, where s is measured in valence units (vu), r is measured in Aa, k = 0.53 Aa.vu, l = 0.975(1) Aa and m = 0.32 vu. The function s = exp[(r 0 - r)/b] traditionally used in the modern bond valence model requires the separate set of the bond valence parameters (r 0 = 1.362 Aa; b = 0.23 Aa) in order to approximate the above s-r curve for the bonds shorter than ∝1.3 Aa.

  13. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms

    Directory of Open Access Journals (Sweden)

    Xin-Ping Wu

    2018-05-01

    Full Text Available Combined quantum mechanical and molecular mechanical (QM/MM methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM−MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM−MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM−MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  14. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    Science.gov (United States)

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  15. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  16. Raman spectroscopy of supported chromium oxide catalysts : determination of chromium-oxygen bond distances and bond orders

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.

    1996-01-01

    An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies

  17. An atomic oxygen device based on PIG oxygen negative ion source

    International Nuclear Information System (INIS)

    Yu Jinxiang; Cai Minghui; Han Jianwei

    2008-01-01

    It is an important research subject for the spaceflight countries to conduct equivalent simulation of 5 eV atomic oxygen effects for the spaceflight material in low earth orbit. This paper introduces an apparatus used for producing atomic oxygen, which consists of a PIG ion source with permanent magnet, two electrodes extraction system, an electron deflector, an einzel lens, an ion decelerating electrode and a sample bracket. At present it has been used on the small debris accelerator in the Center for Space Science and Applied Research, Chinese Academy of Sciences, and the producing experiments of O - are carried out. 200-300μA of O - ions are extracted at the extraction voltage of 2-3 kV. The experiments for decelerating of O - ions and erosion of kapton foil are carried out also. Because of the target room used for both the atomic oxygen device and the small debris accelerator, the facility can be used for small debris impinging and atomic erosion for spaceflight materials simultaneously. (authors)

  18. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    Science.gov (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  19. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond

    International Nuclear Information System (INIS)

    Kazin, Pavel E.; Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V.; Magdysyuk, Oxana V.; Dinnebier, Robert E.

    2016-01-01

    Crystal structures of substituted apatites with general formula Ca 10−x M x (PO 4 ) 6 (OH 1−δ ) 2−x O x , where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca 2+ and M 3+ -ions localized near Ca2-site were determined. The M 3+ -ion was found shifted toward the hexagonal channel center with respect to the Ca 2+ -ion, forming very short bond with the intrachannel O 2− , while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO + ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO + and LaO + were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La 2 O 3 . The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO + and LaO + with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  20. Atomic oxygen-MoS sub 2 chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.B.; Martin, J.A. (Los Alamos National Lab., NM (USA)); Pope, L.E. (Sandia National Labs., Albuquerque, NM (USA)); Koontz, S.L. (National Aeronautics and Space Administration, Johnson Space Center, Houston, TX (USA))

    1990-10-01

    The present study shows that an O-atom translation energy of 1.5 eV, SO{sub 2} is generated and outgases from an anhydrous MoS{sub 2} surface with an initial reactivity nearly 50% that of kapton. The reaction of atomic oxygen with MoS{sub 2} has little or no translational energy barrier, i.e. thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. For MoS{sub 2} films sputter-deposited at 50-70deg C, friction measurements showed a high initial friction coefficient (up to 0.25) for MoS{sub 2} surfaces exposed to atomic oxygen, which dropped to the normal low values after several cycles of operation in air and ultrahigh vacuum. For MoS{sub 2} films deposited at 200deg C, the friction coefficient was not affected by the O-atom exposure. (orig.).

  1. Hydrogen-bonding patterns involving a cyclic phosphate

    Indian Academy of Sciences (India)

    Administrator

    Phosphates, which always have electronegative oxygen atoms, bear no exception in their involvement in ... water makes the study of structural patterns due to H-bonding much too complicated. We ... H-bonding features found in all the above.

  2. Creep effects in diffusion bonding of oxygen-free copper

    CERN Document Server

    Moilanen, Antti

    Diffusion is the transport of atoms or particles through the surrounding material. Various microstructural changes in metals are based on the diffusion phenomena. In solid metals the diffusion is closely related to crystallographic defects. In single-component metals the dominant mechanism of diffusion is the vacancy mechanism. Diffusion bonding is a direct technological application of diffusion. It is an advanced solidstate joining process in which the surfaces of two components are brought to contact with each other and heated under a pressing load in a controlled environment. During the process, the contact surfaces are bonded by atomic diffusion across the interface and as a result, one solid piece is formed. The condition of high temperature and low applied stress combined with relatively long process duration enables the creep effects to take place in bonded metals. Furthermore, creep causes unwanted permanent deformations in the bonded components. Some authors suggest that there could be a threshold fo...

  3. Electronic and Structural Parameters of Phosphorus-Oxygen Bonds in Inorganic Phosphate Crystals

    Science.gov (United States)

    Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V.

    Wide set of experimental results on binding energy of photoelectrons emitted from P 2p, P 2s, and O 1s core levels has been observed for inorganic phosphate crystals and the parameters were compared using energy differences Δ(O 1s - P 2p) and Δ (O 1s - P 2s) as most robust characteristics. Linear dependence of the binding energy difference on mean chemical bond length L(P-O) between phosphorus and oxygen atoms has been found. The functions are of the forms: Δ (O 1s - P 2p) (eV) = 375.54 + 0.146 · L(P-O) (pm) and Δ (O 1s - P 2s) (eV) = 320.77 + 0.129 · L(P-O) (pm). The dependencies are general for inorganic phosphates and may be used in quantitative component analysis of X-ray photoemission spectra of complex oxide compounds including functional groups with different coordination of P and O atoms.

  4. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  5. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  6. Covalent bond orders and atomic valences from correlated wavefunctions

    Science.gov (United States)

    Ángyán, János G.; Rosta, Edina; Surján, Péter R.

    1999-01-01

    A comparison is made between two alternative definitions for covalent bond orders: one derived from the exchange part of the two-particle density matrix and the other expressed as the correlation of fluctuations (covariance) of the number of electrons between the atomic centers. Although these definitions lead to identical formulae for mono-determinantal SCF wavefunctions, they predict different bond orders for correlated wavefunctions. It is shown that, in this case, the fluctuation-based definition leads to slightly lower values of the bond order than does the exchange-based definition, provided one uses an appropriate space-partitioning technique like that of Bader's topological theory of atoms in a molecule; however, use of Mulliken partitioning in this context leads to unphysical behaviour. The example of H 2 is discussed in detail.

  7. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  8. Development of bonding techniques between tungsten and copper alloy for plasma facing components by HIP method. 1. Bonding between tungsten and oxygen free copper

    International Nuclear Information System (INIS)

    Saito, Shigeru; Fukaya, Kiyoshi; Ishiyama, Shintaro; Eto, Motokuni; Akiba, Masato

    1999-08-01

    In recent years, it has been considered that W (tungsten) is one of candidate materials for armor tiles of plasma facing components, like first wall or divertor, of fusion reactor. On the other hand, oxygen free high thermal conductivity (OFHC)-copper is proposed as heat sink materials behind the plasma facing materials because of its high thermal conductivity. However, plasma facing components are exposed to cyclic high heat load and heavily irradiated by 14 MeV neutron. Under these conditions, many unfavorable effects, for instance, thermal stresses of bonding interface, irradiation damage and He atom production by nuclear transmutation, will be decreased bonding strength between W and Cu alloys. Therefore, it is necessary to develop a reliable bonding techniques in order to make plasma facing components which can resist them. Then, we started the bonding technology development by hot isostatic press (HIP) method to bond W with Cu alloys. In this experiments, to optimize HIP bonding conditions, four point bending were performed for each bonded conditions at temperature from R.T. to 873 K and we could get the best HIP bonding conditions for W and OFHC-Cu as 1273 K x 2 hours x 147 MPa. To evaluate bonding strength of the specimen bonded at these conditions, tensile tests were also performed at same temperature range. The tensile strength was similar with OFHC-Cu which were treated at same conditions. (author)

  9. Oxygen-storage behavior and local structure in Ti-substituted YMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Levin, I., E-mail: igor.levin@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Krayzman, V.; Vanderah, T.A. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Tomczyk, M. [Department of Ceramics and Glass Engineering, University of Aveiro, Aveiro 3810-193 (Portugal); Wu, H. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Tucker, M.G. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Playford, H.Y. [ISIS Facility, Rutherford Appleton Laboratory, Didcot, Oxford (United Kingdom); Woicik, J.C.; Dennis, C.L. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Vilarinho, P.M. [Department of Ceramics and Glass Engineering, University of Aveiro, Aveiro 3810-193 (Portugal)

    2017-02-15

    Hexagonal manganates RMnO{sub 3} (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn{sub 1−x}Ti{sub x})O{sub 3} solid solutions exhibit facile oxygen absorption/desorption via reversible Ti{sup 3+}↔Ti{sup 4+} and Mn{sup 3+}↔Mn{sup 4+} reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn{sup 3+}{sub 1−x-y}Mn{sup 4+}{sub y}Ti{sup 4+}{sub x}O{sub 3+δ}. The presence of Ti promotes the oxidation of Mn{sup 3+} to Mn{sup 4+}, which is almost negligible for YMnO{sub 3} in air, thereby increasing the uptake of oxygen beyond that required for a given Ti{sup 4+} concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO{sub 5}] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO{sub 3} structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO{sub 5}] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti{sup 4+}(and Mn{sup 4+}) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded

  10. Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics

    Science.gov (United States)

    Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi

    2017-10-01

    Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.

  11. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    Science.gov (United States)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  12. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO{sup +} and BiO{sup +} with a very short metal–oxygen bond

    Energy Technology Data Exchange (ETDEWEB)

    Kazin, Pavel E., E-mail: kazin@inorg.chem.msu.ru [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Magdysyuk, Oxana V.; Dinnebier, Robert E. [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2016-05-15

    Crystal structures of substituted apatites with general formula Ca{sub 10−x}M{sub x}(PO{sub 4}){sub 6}(OH{sub 1−δ}){sub 2−x}O{sub x}, where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca{sup 2+} and M{sup 3+}-ions localized near Ca2-site were determined. The M{sup 3+}-ion was found shifted toward the hexagonal channel center with respect to the Ca{sup 2+}-ion, forming very short bond with the intrachannel O{sup 2−}, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO{sup +} ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO{sup +} and LaO{sup +} were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La{sub 2}O{sub 3}. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO{sup +} and LaO{sup +} with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  13. Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K C [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Liao, E [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Ong, W L [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Wong, J D S [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Agarwal, A [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Nagarajan, R [Semiconductor Process Technologies Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Yobas, L [Bioelectronics/BioMEMS Laboratory, Institute of Microelectronics, 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore)

    2006-04-01

    Oxygen plasma treatment has been used extensively to bond polydimethyl siloxane to polydimethyl siloxane or glass in the rapid prototyping of microfluidic devices. This study aimed to improve the bonding quality of polydimethyl siloxane to passivated silicon using oxygen plasma treatment, and also to evaluate the bonding quality. Four types of passivated silicon were used: phosphosilicate glass, undoped silicate glass, silicon nitride and thermally grown silicon dioxide. Bonding strength was evaluated qualitatively and quantitatively using manual peel and mechanical shear tests respectively. Through peel tests we found that the lowering of plasma pressure from 500 to 30 mTorr and using a plasma power between 20 to 60 W helped to improve the bond quality for the first three types of passivation. Detailed analysis and discussion were conducted to explain the discrepancy between the bonding strength results and peeling results. Our results suggested that polydimethyl siloxane can be effectively bonded to passivated silicon, just as to polydimethyl siloxane or glass.

  14. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    Science.gov (United States)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  15. Working group written presentation: Atomic oxygen

    International Nuclear Information System (INIS)

    Leger, L.J.; Visentine, J.T.

    1989-01-01

    Earlier Shuttle flight experiments have shown NASA and SDIO spacecraft designed for operation in low-Earth orbit (LEO) must take into consideration the highly oxidative characteristics of the ambient flight environment. Materials most adversely affected by atomic oxygen interactions include organic films, advanced (carbon-based) composites, thermal control coatings, organic-based paints, optical coatings, and thermal control blankets commonly used in spacecraft applications. Earlier results of NASA flight experiments have shown prolonged exposure of sensitive spacecraft materials to the LEO environment will result in degraded systems performance or, more importantly, lead to requirements for excessive on-orbit maintenance, with both conditions contributing significantly to increased mission costs and reduced mission objectives. Flight data obtained from previous Space Shuttle missions and results of the Solar Max recovery mission are limited in terms of atomic oxygen exposure and accuracy of fluence estimates. The results of laboratory studies to investigate the long-term (15 to 30 yrs) effects of AO exposure on spacecraft surfaces are only recently available, and qualitative correlations of laboratory results with flight results have been obtained for only a limited number of materials. The working group recommended the most promising ground-based laboratories now under development be made operational as soon as possible to study the full-life effects of atomic oxygen exposure on spacecraft systems

  16. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics.......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  17. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  18. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  19. Mechanistic insights into dioxygen activation, oxygen atom exchange and substrate epoxidation by AsqJ dioxygenase from quantum mechanical/molecular mechanical calculations.

    Science.gov (United States)

    Song, Xudan; Lu, Jiarui; Lai, Wenzhen

    2017-08-02

    Herein, we use in-protein quantum mechanical/molecular mechanical (QM/MM) calculations to elucidate the mechanism of dioxygen activation, oxygen atom exchange and substrate epoxidation processes by AsqJ, an Fe II /α-ketoglutarate-dependent dioxygenase (α-KGD) using a 2-His-1-Asp facial triad. Our results demonstrated that the whole reaction proceeds through a quintet surface. The dioxygen activation by AsqJ leads to a quintet penta-coordinated Fe IV -oxo species, which has a square pyramidal geometry with the oxo group trans to His134. This penta-coordinated Fe IV -oxo species is not the reactive one in the substrate epoxidation reaction since its oxo group is pointing away from the target C[double bond, length as m-dash]C bond. Instead, it can undergo the oxo group isomerization followed by water binding or the water binding followed by oxygen atom exchange to form the reactive hexa-coordinated Fe IV -oxo species with the oxo group trans to His211. The calculated parameters of Mössbauer spectra for this hexa-coordinated Fe IV -oxo intermediate are in excellent agreement with the experimental values, suggesting that it is most likely the experimentally trapped species. The calculated energetics indicated that the rate-limiting step is the substrate C[double bond, length as m-dash]C bond activation. This work improves our understanding of the dioxygen activation by α-KGD and provides important structural information about the reactive Fe IV -oxo species.

  20. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  1. Density functional theory study of the structural and bonding mechanism of molecular oxygen (O2) with C3Si

    Science.gov (United States)

    Parida, Saroj K.; Behera, C.; Sahu, Sridhar

    2018-07-01

    The investigations of pure and heteroatom doped carbon clusters have created great interest because of their enormous prospective applications in various research zones, for example, optoelectronics, semiconductors, material science, energy storage devices, astro-science and so on. In this article, the interaction of molecular oxygen (O2) with C3Si has explored within a density functional theory (DFT). Different possible types of structure for C3SiO2 have collected. Among five different kinds of structure, the structure-1a, 1A1 is more energetically stable. The nature of the bonding of O2 and C3Si, in C3SiO2 has been studied by using Bader's topological analysis of the electron charge density distribution ρ(r) , Laplacian ∇2 ρ(r) and total energy density H(r) at the bond critical points (BCPs) of the structures within the framework of the atoms in molecules theory (AIM). The bonding mechanism of O2 and C3Si in C3SiO2 prompts to the fundamental understanding of the interaction of C3Si with oxygen molecule. It is interesting to note that, two types of bonding mechanism are established in same C3SiO2 system such as (i) shared-kind interactions (ii) closed-shell interactions. From various kinds of structure, Csbnd C bonds in all structures are shown as shared-kind interactions whereas Csbnd Si, Osbnd O bonds are classified as closed-shell type interactions with a certain degree of covalent character.

  2. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    Science.gov (United States)

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  3. Detection of atomic oxygen in flames by absorption spectroscopy

    International Nuclear Information System (INIS)

    Cheskis, S.; Kovalenko, S.A.

    1994-01-01

    The absolute concentration of atomic oxygen in an atmospheric pressure hydrogen/air flame has been measured using Intracavity Laser Spectroscopy (ICLS) based on a dye laser pumped by an argon-ion laser. Absorptions at the highly forbidden transitions at 630.030 nm and 636.380 nm were observed at an equivalent optical length of up to 10 km. The relatively low intensity of the dye laser avoids photochemical interferences that are inherent to some other methods for detecting atomic oxygen. The detection sensitivity is about 6x10 14 atom/cm 3 and can be improved with better flame and laser stabilization. (orig.)

  4. Proceedings of the NASA workshop on atomic oxygen effects

    International Nuclear Information System (INIS)

    Brinza, D.E.

    1987-06-01

    A workshop was held to address the scientific issues concerning the effects of atomic oxygen on materials in the low Earth orbital (LEO) environment. The program included 18 invited speakers plus contributed posters covering topics such as LEO spaceflight experiments, interaction mechanisms, and atomic oxygen source development. Discussion sessions were also held to organize a test program to evaluate atomic oxygen exposure facilities. The key issues raised in the workshop were: (1) the need to develop a reliable predictive model of the effects of long-term exposure of materials to the LEO environment; (2) the ability of ground-based exposure facilities to provide useful data for development of durable materials; and (3) accurate determination of the composition of the LEO environment. These proceedings include the invited papers, the abstracts for the contributed posters, and an account of the test program discussion sessions

  5. Bond formation in hafnium atom implantation into SiC induced by high-energy electron irradiation

    International Nuclear Information System (INIS)

    Yasuda, H.; Mori, H.; Sakata, T.; Naka, M.; Fujita, H.

    1992-01-01

    Bilayer films of Hf (target atoms)/α-SiC (substrate) were irradiated with 2 MeV electrons in an ultra-high voltage electron microscope (UHVEM), with the electron beam incident on the hafnium layer. As a result of the irradiation, hafnium atoms were implanted into the SiC substrate. Changes in the microstructure and valence electronic states associated with the implantation were studied by a combination of UHVEM and Auger valence electron spectroscopy. The implantation process is summarized as follows. (1) Irradiation with 2 MeV electrons first induces a crystalline-to-amorphous transition in α-SiC. (2) Hafnium atoms which have been knocked-off from the hafnium layer by collision with the 2 MeV electrons are implanted into the resultant amorphous SiC. (3) The implanted hafnium atoms make preferential bonding to carbon atoms. (4) With continued irradiation, the hafnium atoms repeat the displacement along the beam direction and the subsequent bonding with the dangling hybrids of carbon and silicon. The repetition of the displacement and subsequent bonding lead to the deep implantation of hafnium atoms into the SiC substrate. It is concluded that implantation successfully occurs when the bond strength between a constituent atom of a substrate and an injected atom is stronger than that between constituent atoms of a substrate. (Author)

  6. Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge

    Science.gov (United States)

    Dvořák, P.; Mrkvičková, M.; Obrusník, A.; Kratzer, J.; Dědina, J.; Procházka, V.

    2017-06-01

    Concentration of atomic oxygen was measured in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar + O2(+ H2) at atmospheric pressure. Two-photon absorption laser induced fluorescence (TALIF) of atomic oxygen was used and this method was calibrated by TALIF of Xe in a mixture of argon and a trace of xenon. The calibration was performed at atmospheric pressure and it was shown that quenching by three-body collisions has negligible effect on the life time of excited Xe atoms. The concentration of atomic oxygen in the DBD was around 1021 m-3 and it was stable during the whole discharge period. The concentration did not depend much on the electric power delivered to the discharge provided that the power was sufficiently high so that the visible discharge filled the whole reactor volume. Both the addition of hydrogen or replacing of argon by helium led to a significant decrease of atomic oxygen concentration. The TALIF measurements of O concentration levels in the DBD plasma performed in this work are made use of e.g. in the field analytical chemistry. The results contribute to understanding the processes of analyte hydride preconcentration and subsequent atomization in the field of trace element analysis where DBD plasma atomizers are employed.

  7. Characterization of a 5-eV neutral atomic oxygen beam facility

    Science.gov (United States)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  8. Measuring oxidation processes: Atomic oxygen flux monitor

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Of the existing 95 high-energy accelerators in the world, the Stanford Linear Collider (SLC) at the Stanford Linear Accelerator Center (SLAC) is the only one of the linear-collider type, where electrons and positrons are smashed together at energies of 50 GeV using linear beams instead of beam rings for achieving interactions. Use of a collider eliminates energy losses in the form of x-rays due to the curved trajectory of the rings, a phenomena known as bremsstrauhlung. Because these losses are eliminated, higher interaction energies are reached. Consequently the SLC produced the first Z particle in quantities large enough to allow measurement of its physical properties with some accuracy. SLAC intends to probe still deeper into the structure of matter by next polarizing the electrons in the beam. The surface of the source for these polarized particles, typically gallium arsenide, must be kept clean of contaminants. One method for accomplishing this task requires the oxidation of the surface, from which the oxidized contaminants are later boiled off. The technique requires careful measurement of the oxidation process. SLAC researchers have developed a technique for measuring the atomic oxygen flux in this process. The method uses a silver film on a quartz-crystal, deposition-rate monitor. Measuring the initial oxidation rate of the silver, which is proportional to the atomic oxygen flux, determines a lower limit on that flux in the range of 10 13 to 10 17 atoms per square centimeter per second. Furthermore, the deposition is reversible by exposing the sensor to atomic hydrogen. This technique has wider applications to processes in solid-state and surface physics as well as surface chemistry. In semiconductor manufacturing where a precise thickness of oxide must be deposited, this technique could be used to monitor the critical flux of atomic oxygen in the process

  9. Passivation of CdZnTe surfaces by oxidation in low energy atomic oxygen

    International Nuclear Information System (INIS)

    Chen, H.; Chattopadhyay, K.; Chen, K.; Burger, A.; George, M.A.; Gregory, J.C.; Nag, P.K.; Weimer, J.J.; James, R.B.

    1999-01-01

    A method of surface passivation of Cd 1-x Zn x Te (CZT) x-ray and gamma ray detectors has been established by using microwave-assisted atomic oxygen bombardment. Detector performance is significantly enhanced due to the reduction of surface leakage current. CZT samples were exposed to an atomic oxygen environment at the University of Alabama in Huntsville close-quote s Thermal Atomic Oxygen Facility. This system generates neutral atomic oxygen species with kinetic energies of 0.1 - 0.2 eV. The surface chemical composition and its morphology modification due to atomic oxygen exposure were studied by x-ray photoelectron spectroscopy and atomic force microscopy and the results were correlated with current-voltage measurements and with room temperature spectral responses to 133 Ba and 241 Am radiation. A reduction of leakage current by about a factor of 2 is reported, together with significant improvement in the gamma-ray line resolution. copyright 1999 American Vacuum Society

  10. Hot oxygen atoms: Their generation and chemistry

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta 2 O 5 and V 2 O 5 . Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O( 3 P) with cis- and trans-butenes were investigated

  11. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    Science.gov (United States)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  12. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1998-01-01

    Smoke damage, as a result of a fire, can be difficult to remove from some types of painting media without causing swelling, leaching or pigment movement or removal. A non-contact technique has been developed which can remove soot from the surface of a painting by use of a gently flowing gas containing atomic oxygen. The atomic oxygen chemically reacts with the soot on the surface creating gasses such as carbon monoxide and carbon dioxide which can be removed through the use of an exhaust system. The reaction is limited to the surface so that the process can be timed to stop when the paint layer is reached. Atomic oxygen is a primary component of the low Earth orbital environment, but can be generated on Earth through various methods. This paper will discuss the results of atomic oxygen treatment of soot exposed acrylic gesso, ink on paper, and a varnished oil painting. Reflectance measurements were used to characterize the surfaces before and after treatment.

  13. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  14. The importance of atomic and molecular correlation on the bonding in transition metal compounds

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1986-01-01

    The determination of accurate spectroscopic parameters for molecular systems containing transition metal atoms is shown to require extensive data sets and a high level correlation treatment, and techniques and their limitations are considered. Extensive results reported on the transition metal atoms, hydrides, oxides, and dimers makes possible the design of a calculation to correctly describe the mixing of different atomic asymptotes, and to give a correct balance between molecular bonding and exchange interactions. Examples considered include the dipole moment of the 2Delta state of NiH, which can help determine the mixture of 3d(8)4s(2) and 3d(9)4s(1) in the NiH wavefunction, and the bonding in CrO, where an equivalent description of the relative energies associated with the Cr 3d-3d atomic exchange and the Cr-O bond is important.

  15. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  16. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  17. The Interaction between Graphene and Oxygen Atom

    Directory of Open Access Journals (Sweden)

    Hao Yifan

    2016-01-01

    Full Text Available Based on the density function theory (DFT method, the interaction between the graphene and oxygen atom is simulated by the B3LYP functional with the 6-31G basis set. Due to the symmetry of graphene (C54H18, D6h, a representative patch is put forward to represent the whole graphene to simplify the description. The representative patch on the surface is considered to gain the potential energy surface (PES. By the calculation of the PES, four possible stable isomers of the C54H18-O radical can be obtained. Meanwhile, the structures and energies of the four possible stable isomers, are further investigated thermodynamically, kinetically, and chemically. According to the transition states, the possible reaction mechanism between the graphene and oxygen atom is given.

  18. Water Induced Surface Reconstruction of the Oxygen (2x1) covered Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Sabine; Cabrera-Sanfelix, Pepa; Stass, Ingeborg; Sanchez-Portal, Daniel; Arnau, Andres; Salmeron, Miquel

    2010-08-06

    Low temperature scanning tunneling microscopy (STM) and density functional theory (DFT) were used to study the adsorption of water on a Ru(0001) surface covered with half monolayer of oxygen. The oxygen atoms occupy hcp sites in an ordered structure with (2x1) periodicity. DFT predicts that water is weakly bound to the unmodified surface, 86 meV compared to the ~;;200 meV water-water H-bond. Instead, we found that water adsorption causes a shift of half of the oxygen atoms from hcp sites to fcc sites, creating a honeycomb structure where water molecules bind strongly to the exposed Ru atoms. The energy cost of reconstructing the oxygen overlayer, around 230 meV per displaced oxygen atom, is more than compensated by the larger adsorption energy of water on the newly exposed Ru atoms. Water forms hydrogen bonds with the fcc O atoms in a (4x2) superstructure due to alternating orientations of the molecules. Heating to 185 K results in the complete desorption of the water layer, leaving behind the oxygen honeycomb structure, which is metastable relative to the original (2x1). This stable structure is not recovered until after heating to temperatures close to 260K.

  19. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  20. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Science.gov (United States)

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Oxygen-induced restructuring with release of gold atoms from Au(111)

    International Nuclear Information System (INIS)

    Min, B.K.; Deng, X.; Schalek, R.; Pinnaduwage, D.; Friend, C.M.

    2005-01-01

    Adsorption of oxygen atoms, achieved via electron-induced dissociation of nitrogen dioxide, induces restructuring of the 'herringbone' to a striped, soliton-wall structure accompanied by release of gold from the 'elbows' in the herringbone structure. The number density of 'elbows' (dislocations corresponding to a change in direction of the reconstruction) decreases as a function of increasing atomic oxygen coverage while the long range order observed in low energy electron diffraction (LEED) changes from (√(3)x22)-rec. to (1x22) in the limit of saturation coverage. Small islands and serrated step edges were formed due to the release of gold atoms from elbow sites of Au(111). The overall structural change of the Au(111) surface may result from the reduction of anisotropy related to the tensile stress relief of the Au(111) surface by oxygen atoms

  2. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    Science.gov (United States)

    Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.

    2014-06-01

    Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.

  3. Cleaning of Fire Damaged Watercolor and Textiles Using Atomic Oxygen

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.; Haytas, Christy A.

    2000-01-01

    A noncontact technique is described that uses atomic oxygen generated under low pressure in the presence of nitrogen to remove soot from the surface of a test watercolor panel and strips of cotton, wool and silk. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of soot removal from test panels of six basic watercolors (alizarin crimson, burnt sienna, lemon yellow, yellow ochre, cerulean blue and ultramarine blue) and strips of colored cotton, wool and silk was measured using reflectance spectroscopy. The atomic oxygen removed soot effectively from the treated areas and enabled partial recovery of charred watercolors. However, overexposure can result in removal of sizing, bleaching, and weakening of the structure. With the proper precautions, atomic oxygen treatment appears to have great potential to salvage heavily smoke damaged artworks which were previously considered unrestorable.

  4. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NARCIS (Netherlands)

    Marinov, D.; Drag, C.; Blondel, C.; Guaitella, O.; Golda, J.; Klarenaar, B.L.M.; Engeln, R.A.H.; Schulz-von der Gathen, V.; Booth, J.-P.

    2016-01-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was

  5. Atomic hydrogen and oxygen adsorptions in single-walled zigzag silicon nanotubes

    International Nuclear Information System (INIS)

    Chen, Haoliang; Ray, Asok K.

    2013-01-01

    Ab initio calculations have been performed to study the electronic and geometric structure properties of zigzag silicon nanotubes. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP hybrid functional. The largest zigzag SiNT studied here, (12, 0), has a binding energy per atom of 3.584 eV. Atomic hydrogen and oxygen adsorptions on (9, 0) and (10, 0) nanotubes have also been studied by optimizing the distances of the adatoms from both inside and outside the tube. The adatom is initially placed in four adsorption sites-parallel bridge (PB), zigzag bridge (ZB), hollow, and on-top site. The on-top site is the most preferred site for hydrogen atom adsorbed on (9, 0), with an adsorption energy of 3.0 eV and an optimized distance of 1.49 Å from the adatom to the nearest silicon atom. For oxygen adsorption on (9, 0), the most preferred site is the ZB site, with an adsorption energy of 5.987 eV and an optimized distance of 1.72 Å. For atomic hydrogen adsorption on (10, 0), the most preferred site is also the on-top site with an adsorption energy of 3.174 eV and an optimized distance of 1.49 Å. For adsorption of atomic oxygen on (10, 0), the most preferred site is PB site, with an adsorption energy of 6.306 eV and an optimized distance of 1.71 Å. The HOMO–LUMO gaps of (9, 0) after adsorptions of hydrogen and oxygen atoms decrease while the HOMO–LUMO gaps of (10, 0) increase after adsorption of hydrogen and oxygen

  6. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  7. Atomic Charges and Chemical Bonding in Y-Ga Compounds

    Directory of Open Access Journals (Sweden)

    Yuri Grin

    2018-02-01

    Full Text Available A negative deviation from Vegard rule for the average atomic volume versus yttrium content was found from experimental crystallographic information about the binary compounds of yttrium with gallium. Analysis of the electron density (DFT calculations employing the quantum theory of atoms in molecules revealed an increase in the atomic volumes of both Y and Ga with the increase in yttrium content. The non-linear increase is caused by the strengthening of covalent Y-Ga interactions with stronger participation of genuine penultimate shell electrons (4d electrons of yttrium in the valence region. Summing the calculated individual atomic volumes for a unit cell allows understanding of the experimental trend. With increasing yttrium content, the polarity of the Y-Ga bonding and, thus its ionicity, rises. The covalency of the atomic interactions in Y-Ga compounds is consistent with their delocalization from two-center to multi-center ones.

  8. Tailoring of materials by atomic oxygen from ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, Munzer; Bhoraskar, S.V.

    2002-01-01

    Full text: An intense source of oxygen finds important applications in many areas of science, technology and industry. It has been successfully used for surface activation and cleaning in the electronic, chemical and automotive industries. Atomic oxygen and interaction with materials have also a significant importance in space science and technology. This paper describes the detailed studies related to the surface modification and processing of different materials, which include metals and polymers by atomic oxygen produced in microwave assisted electron cyclotron resonance plasma. The energy distribution of ions was measured as a function of plasma parameters and density measurements were supplemented by catalytic probe using nickel and oxidation of silver surface

  9. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    Science.gov (United States)

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  10. Atomic Oxygen Treatment and Its Effect on a Variety of Artist's Media

    Science.gov (United States)

    Miller, Sharon K. R.; Banks, Bruce A.; Waters, Deborah L.

    2005-01-01

    Atomic oxygen treatment has been investigated as an unconventional option for art restoration where conventional methods have not been effective. Exposure of surfaces to atomic oxygen was first performed to investigate the durability of materials in the low Earth orbit environment of space. The use of the ground based environmental simulation chambers, developed for atomic oxygen exposure testing, has been investigated in collaboration with conservators at a variety of institutions, as a method to clean the surfaces of works of art. The atomic oxygen treatment technique has been evaluated as a method to remove soot and char from the surface of oil paint (both varnished and unvarnished), watercolors, acrylic paint, and fabric as well as the removal of graffiti and other marks from surfaces which are too porous to lend themselves to conventional solvent removal techniques. This paper will discuss the treatment of these surfaces giving an example of each and a discussion of the treatment results.

  11. The Relative Hydrogen Bonding Strength of Oxygen and Nitrogen Atoms as a Proton Acceptor

    International Nuclear Information System (INIS)

    Hyun, Jong Cheol; Lee, Ho Jin; Kim, Nak Kyoon; Choi, Young Sang; Park, Jeung Hee; Yoon, Chang Ju

    1999-01-01

    The thermodynamic parameters for the formation of the hydrogen bonding were widely used to understand the protein- ligand interaction. We have been interested in the hydrogen bonding strength of various proton acceptors toward the amide in a nonpolar solvent, This work is in the line of our interest. In drug design, the functional group is often replaced in order to enhance or reduce the binding affinity, which is usually determined by hydrogen bonding strength. Therefore, to understand this biochemical process the knowledge of relative hydrogen bonding strength is of importance.

  12. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  13. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  14. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    Science.gov (United States)

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  15. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  16. Catalytic behavior of ‘Pt-atomic chain encapsulated gold nanotube’: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Nigam, Sandeep, E-mail: snigam@barc.gov.in; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-05-23

    With an aim to design novel material and explore its catalytic performance towards CO oxidation, Pt atomic chain was introduced inside gold nanotube (Au-NT). Theoretical calculations at the level of first principles formalism was carried out to investigate the atomic and electronic properties of the composite. Geometrically Pt atoms prefer to align in zig-zag fashion. Significant electronic charge transfer from inside Pt atoms to the outer wall Au atoms is observed. Interaction of O{sub 2} with Au-NT wall follows by injection of additional electronic charge in the anti-bonding orbital of oxygen molecule leading to activation of the O-O bond. Further interaction of CO molecule with the activated oxygen molecule leads to spontaneous oxidation reaction and formation of CO{sub 2}.

  17. Density functional theory investigation of oxygen interaction with boron-doped graphite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Density-functional approach is applied to study the interaction of oxygen with boron-doped graphite. • Adsorption and diffusion of oxygen atoms on boron doped graphite surfaces are studied. • Recombination of oxygen is investigated by ER and LH mechanisms. • Low boron concentration facilitates O{sub 2} formation while high boron loading inhibits the recombination. • The presence of B−B bonds due to boron accumulation makes it impossible for oxygen recombination. - Abstract: Boron inserted as impurity by substitution of carbon atoms in graphite is known to change (improve or deteriorate) oxidation resistance of nuclear graphite, but the reason for both catalytic and inhibiting oxidation is still uncertain. As a first step, this work is more specially devoted to the adsorption and diffusion of oxygen atoms on the surface and related to the problem of oxygen retention on the pure and boron-containing graphite surfaces. Adsorption energies and energy barriers associated to the diffusion for molecular oxygen recombination are calculated in the density functional theory framework. The existence of boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for O. However, low boron loading makes it easier for the recombination into molecular oxygen. For high boron concentration, it induces a better O retention capability in graphite because the presence of B-B bonds decreases recombination of the adsorbed oxygen atoms. A possible explanation for both catalytic and inhibiting effects of boron in graphite is proposed.

  18. Halogen bond preferences of thiocyanate ligand coordinated to Ru(II) via sulphur atom

    Science.gov (United States)

    Ding, Xin; Tuikka, Matti; Hirva, Pipsa; Haukka, Matti

    2017-09-01

    Halogen bonding between [Ru(bpy)(CO)2(S-SCN)2] (bpy = 2,2'-bipyridine), I2 was studied by co-crystallising the metal compound and diiodine from dichloromethane. The only observed crystalline product was found to be [Ru(bpy)(CO)2(S-SCN)2]ṡI2 with only one NCSṡṡṡI2 halogen bond between I2 and the metal coordinated S atom of one of the thiocyanate ligand. The dangling nitrogen atoms were not involved in halogen bonding. However, computational analysis suggests that there are no major energetic differences between the NCSṡṡṡI2 and SCNṡṡṡI2 bonding modes. The reason for the observed NCSṡṡṡI2 mode lies most probably in the more favourable packing effects rather than energetic preferences between NCSṡṡṡI2 and SCNṡṡṡI2 contacts.

  19. Oxidation of Ni(Pt)Si by molecular vs. atomic oxygen

    International Nuclear Information System (INIS)

    Manandhar, Sudha; Copp, Brian; Kelber, J.A.

    2008-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to characterize the oxidation of a clean Ni(Pt)Si surface under two distinct conditions: exposure to a mixed flux of atomic and molecular oxygen (O + O 2 ; P O+O 2 = 5 x 10 -6 Torr) and pure molecular oxygen (O 2 ; P O 2 = 10 -5 Torr) at ambient temperatures. Formation of the clean, stoichiometric (nickel monosilicide) phase under vacuum conditions results in the formation of a surface layer enriched in PtSi. Oxidation of this surface in the presence of atomic oxygen initially results in formation of a silicon oxide overlayer. At higher exposures, kinetically limited oxidation of Pt results in Pt silicate formation. No passivation of oxygen uptake of the sample is observed for total O + O 2 exposure 4 L, at which point the average oxide/silicate overlayer thickness is 23 (3) A (uncertainty in the last digit in parentheses). In contrast, exposure of the clean Ni(Pt)Si surface to molecular oxygen only (maximum exposure: 5 x 10 5 L) results in slow growth of a silicon oxide overlayer, without silicate formation, and eventual passivation at a total average oxide thickness of 8(1) A, compared to a oxide average thickness of 17(2) A (no silicate formation) for the as-received sample (i.e., exposed to ambient.) The aggressive silicon oxidation by atomic oxygen, results in Ni-rich silicide formation in the substrate and the kinetically limited oxidation of the Pt

  20. Nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]: Synthesis, structure, and the nature of the K–O chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical-Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2016-07-15

    The crystal structure of nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]—a three-dimensional coordination polymer—was determined. The potassium atom is coordinated by seven oxygen atoms belonging to the six nearest ligand molecules, resulting in distorted monocapped octahedral coordination geometry. The complex contains the four-membered chelate ring K–O–P–O. The K–O chemical bond is predominantly ionic. Meanwhile, the bonds of the potassium atom with some oxygen atoms have a noticeable covalent component. In addition to coordination bonds, the molecules in the crystal packing are linked by hydrogen bonds.

  1. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.

    Science.gov (United States)

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-12

    barrierless. In the absence of O(2), alternate weaker oxidants, such as H(2)O or CO(2), lead to a final kinetic regime in which C-H bond dissociation on *-* pairs at bare cluster surfaces limit CH(4) conversion rates. Rates become first-order in CH(4) and independent of coreactant and normal CH(4)/CD(4) kinetic isotope effects are observed. In this case, turnover rates increase with increasing dispersion, because low-coordination Pt atoms stabilize the C-H bond activation transition states more effectively via stronger binding to CH(3) and H fragments. These findings and their mechanistic interpretations are consistent with all rate and isotopic data and with theoretical estimates of activation barriers and of cluster size effects on transition states. They serve to demonstrate the essential role of the coverage and reactivity of chemisorbed oxygen in determining the type and effectiveness of surface structures in CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants, as well as the diversity of rate dependencies, activation energies and entropies, and cluster size effects that prevail in these reactions. These results also show how theory and experiments can unravel complex surface chemistries on realistic catalysts under practical conditions and provide through the resulting mechanistic insights specific predictions for the effects of cluster size and surface coordination on turnover rates, the trends and magnitude of which depend sensitively on the nature of the predominant adsorbed intermediates and the kinetically relevant steps.

  2. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  3. Influence of Atomic Oxygen Exposure on Friction Behavior of 321 Stainless Steel

    Science.gov (United States)

    Liu, Y.; Yang, J.; Ye, Z.; Dong, S.; Zhang, L.; Zhang, Z.

    Atomic oxygen (AO) exposure testing has been conducted on a 321 stainless steel rolled 1 mm thick sheet to simulate the effect of AO environment on steel in low Earth orbit (LEO). An atomic oxygen exposure facility was employed to carry out AO experiments with the fluence up to ~1021 atom/cm2. The AO exposed specimens were evaluated in air at room temperature using a nanoindenter and a tribological system. The exposed surfaces were analyzed usign XPS technique.

  4. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the PEACE Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; de Groh, Kim K.; Banks, Bruce A.

    2009-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were forty-one different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although space flight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground-laboratory erosion yield values. Using the PEACE polymers' asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  5. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    International Nuclear Information System (INIS)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-01-01

    Highlights: • H 2 dissociates in heterolytic way following H atoms migration to form O−H bond. • H 2 dissociation occurs at low temperature on perfect and oxygen defective Co 3 O 4 . • Oxygen vacancy promotes hydrogenation thermodynamically and kinetically. • O−H bond is weakened on oxygen defective surface. • Hydrogenation requires compromise between H−H activation and O−H breakage. - Abstract: Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co 3 O 4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H 2 dissociation on Co 3 O 4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co 3 O 4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of O−H bond is a crucial factor for the hydrogenation reaction which involves the breakage of O−H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of O−H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  6. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloy

    Institute of Scientific and Technical Information of China (English)

    高英俊; 班冬梅; 韩永剑; 钟夏平; 刘慧

    2004-01-01

    The valence electron structures of Al-Mg alloy with minor Sc and Zr were calculated according to the empirical electron theory(EET) in solid. The results show that because of the strong interaction of Al atom with Zr and Sc atom in melting during solidification, the Al3 Sc and Al3 (Sc1-xZrx) particles which act as heterogeneous nuclear are firstly crystallized in alloy to make grains refine. In progress of solidification, the Al-Sc, Al-Zr-Sc segregation regions are formed in solid solution matrix of Al-Mg alloy owing to the strong interaction of Al atom with Zr, Scatoms in bulk of alloy, so in the following homogenization treatment, the finer dispersed Al3 Sc and Al3 (Sc1-x Zrx) second-particles which are coherence with the matrix are precipitated in the segregation region. These finer second particles with the strong Al-Zr, Al-Sc covalent bonds can strengthen the covalent bonds in matrix of the alloy, and also enhance the hardness and strength of Al-Mg alloy. Those finer second-particles precipitated in interface of sub-grains can also strengthen the covalence bonds there, and effectively hinder the interface of sub-grains from migrating and restrain the sub-grains from growing, and cause better thermal stability of Al-Mg alloy.

  7. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model

    International Nuclear Information System (INIS)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Wang, Wan-Tsang; Hsu, Yu-Chi; Wu, Chieh-Lung; Gau, Ming-Hong; Chen, Chun-Nan; Ren, Chung-Yuan; Lee, Meng-En

    2012-01-01

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion over k-vector at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  8. Inactivation of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Raballand, V; Benedikt, J; Keudell, A von [Research Group Reactive Plasmas, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Wunderlich, J [Fraunhofer Institut for Process Engineering and Packaging, Giggenhauser Strasse 35, 85354 Freising (Germany)], E-mail: Achim.vonKeudell@rub.de

    2008-06-07

    The inactivation of spores of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms is studied. Thereby, the conditions occurring in oxygen containing low pressure plasmas are mimicked and fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms has no effect on the viability of the spores and that no etching of the spore coat occurs up to an O atom fluence of 3.5 x 10{sup 19} cm{sup -2}. The impact of argon ions with an energy of 200 eV does not cause significant erosion for fluences up to 1.15 x 10{sup 18} cm{sup -2}. However, the combined impact of argon ions and oxygen molecules or atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion-induced defect at the surface of the spore reacts with either the incident bi-radical O{sub 2} or with an incident O atom. This leads to the formation of CO, CO{sub 2} and H{sub 2}O and thus to erosion.

  9. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  10. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    Science.gov (United States)

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  11. Muon-oxygen bonding in V2O3

    International Nuclear Information System (INIS)

    Chan, K.C.B.; Lichti, R.L.; Boekema, C.

    1986-01-01

    A muon site search using calculated internal fields has been performed for V 2 O 3 , where purely dipolar fields allow a site determination free from covalent complications. The obtained sites are a subset of the Rodriguez and Bates sites found in α-Fe 2 O 3 and indicate muon oxygen bond formation. The sites missing at low temperatures are consistent with the vanadium pairing mechanism for the metal-to-insulator (corundum-to-monoclinic) phase transition. (orig.)

  12. Energy variable monoenergetic positron beam study of oxygen atoms in Czochralski grown Si

    International Nuclear Information System (INIS)

    Tanigawa, S.; Wei, L.; Tabuki, Y.; Nagai, R.; Takeda, E.

    1992-01-01

    A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski-grown Si with the coverage of SiO 2 (100 nm) and poly-Si (200 nm)/SiO 2 (100 nm), respectively. It was found that (i) the growth of SiO 2 gives rise to a strong Doppler broadening of positron annihilation radiations in the bulk of Si, (ii) such a broadening can be recovered to the original level by annealing at 450degC, by the removal of overlayers using chemical etching and long-term aging at room temperature, (iii) the film stress over the CZ-grown Si is responsible for the rearrangement of oxygen atoms in S and (iv) only tensile stress gives rise to the clustering of oxygen atoms. The observed broadening was assigned to arise from the positron trapping by oxygen interstitial clusters. It was concluded that film stress is responsible for the rearrangement of oxygen atoms in CZ-grown Si. (author)

  13. Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms.

    Science.gov (United States)

    Carter, Korey P; Kalaj, Mark; Surbella, Robert G; Ducati, Lucas C; Autschbach, Jochen; Cahill, Christopher L

    2017-11-02

    Engaging the nominally terminal oxo atoms of the linear uranyl (UO 2 2+ ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oxidation of MoS2 by thermal and hyperthermal atomic oxygen

    International Nuclear Information System (INIS)

    Cross, J.B.; Martin, J.A.; Pope, L.E.; Koontz, S.L.

    1989-01-01

    The present study shows that, at 1.5 eV O-atom translational energy, SO 2 is generated and outgases from an anhydrous MoS 2 surface with a reactivity nearly that of kapton. The reaction of atomic oxygen with MoS 2 has little or no translational energy barrier; i.e., thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. It is also shown that water present in the flowing afterglow apparatus used to study thermal O-atom reactivity formed sulfates on the MoS 2 surface and that the sulfate is most likely in the form of sulfuric acid. These results imply that water dumps or outgasing in low earth orbit have the potential of forming sulfuric acid covered surfaces on MoS 2 lubricants. Friction measurements show a high initial friction coefficient (0.2) for O-atom exposed MoS 2 surfaces which drops to the normal low value (0.05) after several cycles of operation

  15. New conception in the theory of chemical bonding; the role of core and valence atomic orbitals in formation of chemical bonds

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Kostikov, Yu.P.; Korol'kov, D.V.

    1986-01-01

    An analysis of x-ray photoelectron spectra leads to a simple and consistent conception in the theory of chemical bonding, which satisfies (unlike the simple MO-LCAO theory) the virial theorem and defines the roles of the core and valence atomic orbitals in the formation of chemical bonds. Its essence is clear from the foregoing: the exothermic effects of the formation of complexes are caused by the lowering of the energies of the core levels of the central atoms with simultaneous small changes in the energies of the core levels of the ligands despite the significant destabilization of the delocalized valence MO's in comparison to the orbital energies of the corresponding free atoms. In order to confirm these ideas, they recorded the x-ray photoelectron spectra of the valence region and the inner levels of single-crystal silicon carbide, silicon, and graphite

  16. bond activation and catalysis by Ru -pac complexes

    Indian Academy of Sciences (India)

    and their reactivity towards oxidation of a few organic compounds. Keywords. Kinetics; catalysis; -O–O- bond activation; Ru-pac complex; oxidation. 1. Introduction. Ru-pac complexes exhibit catalytic properties,1 in homogeneous conditions in the presence of oxygen atom donors, that mimic the biological enzymatic oxi-.

  17. Behaviour of atomic oxygen in a pulsed dielectric barrier discharge measured by laser-induced fluorescence

    International Nuclear Information System (INIS)

    Ono, Ryo; Yamashita, Youta; Takezawa, Kei; Oda, Tetsuji

    2005-01-01

    Atomic oxygen is measured in a pulsed dielectric barrier discharge (DBD) using two-photon absorption laser-induced fluorescence (TALIF). The ground-level atomic oxygen is excited to the 3p 3 P state by two-photon absorption at 226 nm. Negative (-40 kV) or positive (+30 kV) pulsed DBD occurs in an O 2 -N 2 mixture at atmospheric pressure. The pulse width of the DBD current is approximately 50 ns. The TALIF experiment shows that the decay rate of atomic oxygen increases linearly with O 2 concentration. This result proves that atomic oxygen decays mainly by the third-body reaction, O + O 2 + M → O 3 + M. The rate coefficient of the third-body reaction is estimated to be 2.2 x 10 -34 cm 6 s -1 in the negative DBD and 0.89 x 10 -34 cm 6 s -1 in the positive DBD. It is shown that the decay rate of atomic oxygen increases linearly with humidity. This can explain the well-known fact that ozone production in DBD is suppressed by increasing humidity

  18. Use of O2 airglow for calibrating direct atomic oxygen measurements from sounding rockets

    Directory of Open Access Journals (Sweden)

    G. Witt

    2009-12-01

    Full Text Available Accurate knowledge about the distribution of atomic oxygen is crucial for many studies of the mesosphere and lower thermosphere. Direct measurements of atomic oxygen by the resonance fluorescence technique at 130 nm have been made from many sounding rocket payloads in the past. This measurement technique yields atomic oxygen profiles with good sensitivity and altitude resolution. However, accuracy is a problem as calibration and aerodynamics make the quantitative analysis challenging. Most often, accuracies better than a factor 2 are not to be expected from direct atomic oxygen measurements. As an example, we present results from the NLTE (Non Local Thermodynamic Equilibrium sounding rocket campaign at Esrange, Sweden, in 1998, with simultaneous O2 airglow and O resonance fluorescence measurements. O number densities are found to be consistent with the nightglow analysis, but only within the uncertainty limits of the resonance fluorescence technique. Based on these results, we here describe how better atomic oxygen number densities can be obtained by calibrating direct techniques with complementary airglow photometer measurements and detailed aerodynamic analysis. Night-time direct O measurements can be complemented by photometric detection of the O2 (b1∑g+−X3∑g- Atmospheric Band at 762 nm, while during daytime the O2 (a1Δg−X3∑g- Infrared Atmospheric Band at 1.27 μm can be used. The combination of a photometer and a rather simple resonance fluorescence probe can provide atomic oxygen profiles with both good accuracy and good height resolution.

  19. Periodic density functional theory study of ethylene hydrogenation over Co3O4 (1 1 1) surface: The critical role of oxygen vacancies

    Science.gov (United States)

    Lu, Jinhui; Song, JiaJia; Niu, Hongling; Pan, Lun; Zhang, Xiangwen; Wang, Li; Zou, Ji-Jun

    2016-05-01

    Recently, metal oxides are attracting increasing interests as hydrogenation catalyst. Herein we studied the hydrogenation of ethylene on perfect and oxygen defective Co3O4 (1 1 1) using periodic density functional theory. The energetics and pathways of ethylene hydrogenation to ethane were determined. We have demonstrated that (i) H2 dissociation on Co3O4 is a complicated two-step process through a heterolytic cleavage, followed by the migration of H atom and finally yields the homolytic product on both perfect and oxygen defective Co3O4 (1 1 1) surfaces easily. (ii) After introducing the surface oxygen vacancy, the stepwise hydrogenation of ethylene by atomic hydrogen is much easier than that on perfect surface due to the weaker bond strength of OH group. The strength of Osbnd H bond is a crucial factor for the hydrogenation reaction which involves the breakage of Osbnd H bond. The formation of oxygen vacancy increases the electronic charges at the adjacent surface O, which reduces its capability of further gaining electrons from adsorbed atomic hydrogen and then weakens the strength of Osbnd H bond. These results emphasize the importance of the oxygen vacancies for hydrogenation on metal oxides.

  20. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes.

    Science.gov (United States)

    Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (padhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (puniversal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.

  1. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Karakalos, Stavros; Luo, Langli; Qiao, Zhi; Xie, Xiaohong; Wang, Chongmin; Su, Dong; Shao, Yuyan; Wu, Gang (BNL); (Oregon State U.); (SC); (PNNL); (Buffalo)

    2017-09-26

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). Here, we report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunable through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. Using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe3+ to Fe2+) likely bonded with pyridinic N (FeN4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H2SO4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μgPt/cm2). Enhanced stability

  2. Behaviour of oxygen atoms near the surface of nanostructured Nb2O5

    International Nuclear Information System (INIS)

    Cvelbar, U; Mozetic, M

    2007-01-01

    Recombination of neutral oxygen atoms on oxidized niobium foil was studied. Three sets of samples have been prepared: a set of niobium foils with a film of polycrystalline niobium oxide with a thickness of 40 nm, another one with a film thickness of about 2 μm and a set of foils covered with dense bundles of single-crystal Nb 2 O 3 nanowires. All the samples were prepared by oxidation of a pure niobium foil. The samples with a thin oxide film were prepared by exposure of as-received foils to a flux of O-atoms, the samples with a thick polycrystalline niobium oxide were prepared by baking the foils in air at a temperature of 800 deg. C, while the samples covered with nanowires were prepared by oxidation in a highly reactive oxygen plasma. The samples were exposed to neutral oxygen atoms from a remote oxygen plasma source. Depending on discharge parameters, the O-atom density in the postglow chamber, as measured with a catalytic probe, was between 5 x 10 20 and 8 x 10 21 m -3 . The O-atom density in the chamber without the samples was found rather independent of the probe position. The presence of the samples caused a decrease in the O-atom density. Depending on the distance from the samples, the O-atom density was decreased up to 5 times. The O-atom density also depended on the surface morphology of the samples. The strongest decrease in the O-atom density was observed with the samples covered with dense bundles of nanowires. The results clearly showed that niobium oxide nanowires exhibit excellent catalytic behaviour for neutral radicals and can be used as catalysts of exhaust radicals found in many applications

  3. Coordination-resolved local bond contraction and electron binding-energy entrapment of Si atomic clusters and solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin; Huang, Yongli; Zhang, Ting [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Zhang, Xi [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ywang8@hnust.edu.cn, E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Xiangtan University, Hunan 411105 (China); School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China)

    2014-04-14

    Consistency between x-ray photoelectron spectroscopy measurements and density-function theory calculations confirms our bond order-length-strength notation-incorporated tight-binding theory predictions on the quantum entrapment of Si solid skin and atomic clusters. It has been revealed that bond-order deficiency shortens and strengthens the Si-Si bond, which results in the local densification and quantum entrapment of the core and valence electrons. Unifying Si clusters and Si(001) and (111) skins, this mechanism has led to quantification of the 2p binding energy of 96.089 eV for an isolated Si atom, and their bulk shifts of 2.461 eV. Findings evidence the significance of atomic undercoordination that is of great importance to device performance.

  4. Behaviour of atomic oxygen in a pulsed dielectric barrier discharge measured by laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ryo [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 227-8568 (Japan); Yamashita, Youta [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Takezawa, Kei [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Oda, Tetsuji [Department of Electrical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2005-08-21

    Atomic oxygen is measured in a pulsed dielectric barrier discharge (DBD) using two-photon absorption laser-induced fluorescence (TALIF). The ground-level atomic oxygen is excited to the 3p {sup 3}P state by two-photon absorption at 226 nm. Negative (-40 kV) or positive (+30 kV) pulsed DBD occurs in an O{sub 2}-N{sub 2} mixture at atmospheric pressure. The pulse width of the DBD current is approximately 50 ns. The TALIF experiment shows that the decay rate of atomic oxygen increases linearly with O{sub 2} concentration. This result proves that atomic oxygen decays mainly by the third-body reaction, O + O{sub 2} + M {yields} O{sub 3} + M. The rate coefficient of the third-body reaction is estimated to be 2.2 x 10{sup -34} cm{sup 6} s{sup -1} in the negative DBD and 0.89 x 10{sup -34} cm{sup 6} s{sup -1} in the positive DBD. It is shown that the decay rate of atomic oxygen increases linearly with humidity. This can explain the well-known fact that ozone production in DBD is suppressed by increasing humidity.

  5. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin; Zhu, Hongdan; Linguerri, Roberto; Han, Yu; Chambaud, Gilberte; Meng, Changgong

    2017-01-01

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated

  6. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  7. Activation of C-H bond in methane by Pd atom from the bonding evolution theory perspective.

    Science.gov (United States)

    Nizovtsev, Anton S

    2013-08-15

    We report detailed study focused on the electron density redistribution during the simple oxidative addition reaction being the crucial stage of various catalytic processes. The bonding evolution theory based on the electron localization function and Thom's catastrophe theory shows that activation of methane's C-H bond by Pd atom consist of six elementary steps. The important feature revealed is the pronounced reorganization of Pd's outer core maxima corresponding to N-shell electrons of metal. Electronic rearrangements identified in this model reaction are likely to be the case in the more complex reactions of the same type involving transition metal compounds and, in principle, can be observed by modern ultrafast spectroscopy and diffraction techniques. Copyright © 2013 Wiley Periodicals, Inc.

  8. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  9. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  10. Molecular structure, spectroscopic studies, and coppersbnd oxygen bond strength of α-methyl and α-ethyl derivatives of copper (II) acetylacetonate; Experimental and theoretical approach

    Science.gov (United States)

    Seyedkatouli, Seyedabdollah; Vakili, Mohammad; Tayyari, Sayyed Faramarz; Afzali, Raheleh

    2018-05-01

    This paper presents a combined experimental and theoretical study on the Cusbnd O bond strength of copper (II) α-methylacetylacetonate, Cu(3-Meacac)2, and copper (II) α-ethylacetylacetonate, Cu(3-Etacac)2, complexes in comparison to that in copper (II) acetylacetonate, Cu(acac)2. For this purpose, the molecular structure, UV spectra, and complete vibrational assignment of target molecules were investigated by DFT, Natural Bond Orbital (NBO) theory, and Atoms-in-Molecules (AIM) analysis at the B3LYP/6-311G* level of theory. The mentioned results are compared with those in Cu(acac)2. Fourier transform-Raman, IR, and UV spectra of these complexes have been also recorded. A complete assignment of the observed band frequencies has been done. All theoretical and experimental spectroscopic results are consisting with a stronger metal-oxygen bond in Cu(3-Meacac)2 and Cu(3-Etacac)2 complexes compared with Cu(acac)2. In addition, these results confirm that there is no significant difference between the Cusbnd O bond strength of the Cu(3-Meacac)2 and Cu(3-Etacac)2 complexes.

  11. Direct observation of oxygen configuration on individual graphene oxide sheets

    DEFF Research Database (Denmark)

    Liu, Zilong; Nørgaard, Kasper; Overgaard, Marc H.

    2018-01-01

    a resolution high enough to unambiguously identify oxygen configuration. We used a new, label free spectroscopic technique to map oxygen bonding on GO, with spatial resolution of nanometres and high chemical specificity. AFM-IR, atomic force microscopy coupled with infrared spectroscopy, overcomes conventional...... structural model for GO, with C[dbnd]O on its edge and plane, which confirms parts of earlier proposed models. The results have interesting implications. Determining atomic position and configuration from precise imaging offers the possibility to link nanoscale structure and composition with material...

  12. Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen.

    Science.gov (United States)

    Gurlo, Alexander

    2006-10-13

    Tin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas-sensing effects on SnO(2) is not fully understood. The key step is the understanding of the electronic response of SnO(2) in the presence of background oxygen. For a long time, oxygen interaction with SnO(2) has been treated within the framework of the "ionosorption theory". The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for "ionosorbed" oxygen species. Neither superoxide ions O(2)(-), nor charged atomic oxygen O,(-) nor peroxide ions O(2)(2-) have been observed on SnO(2) under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead-end form of low-temperature oxygen adsorption on reduced metal oxide.

  13. Optical emissions from oxygen atom reactions with adsorbates

    Science.gov (United States)

    Oakes, David B.; Fraser, Mark E.; Gauthier-Beals, Mitzi; Holtzclaw, Karl W.; Malonson, Mark; Gelb, Alan H.

    1992-12-01

    Although most optical materials are inert to the ambient low earth orbit environment, high velocity oxygen atoms will react with adsorbates to produce optical emissions from the ultraviolet into the infrared. The adsorbates arise from chemical releases or outgassing from the spacecraft itself. We have been investigating kinetic and spectral aspects of these phenomenon by direct observation of the 0.2 to 13 micrometers chemiluminescence from the interaction of a fast atomic oxygen beam with a continuously dosed surface. The dosing gases include fuels, combustion products and outgassed species such as unsymmetrical dimethylhydrazine (UDMH), NO, H2O and CO. The surface studied include gold and magnesium fluoride. In order to relate the results to actual spacecraft conditions these phenomena have been explored as a function of O atom velocity, dosant flux and substrate temperature. UDMH dosed surfaces exhibit spectra typical (wavelength and intensity) of carbonaceous surfaces. The primary emitters are CO, CO2, and OH. H2O dosed surfaces are dominated by OH and /or H2O emission while CO dosed surfaces are dominated by CO and CO2 emissions. The nitric oxide dosed surface produces a glow from 0.4 to 5.4 micrometers due to NO2* continuum emission. The emission was observed to increase by a factor of two upon cooling the surface from 20 degree(s)C to -35 degree(s)C.

  14. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    Science.gov (United States)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  15. Electron and Oxygen Atom Transfer Chemistry of Co(II) in a Proton Responsive, Redox Active Ligand Environment.

    Science.gov (United States)

    Cook, Brian J; Pink, Maren; Pal, Kuntal; Caulton, Kenneth G

    2018-05-21

    The bis-pyrazolato pyridine complex LCo(PEt 3 ) 2 serves as a masked form of three-coordinate Co II and shows diverse reactivity in its reaction with several potential outer sphere oxidants and oxygen atom transfer reagents. N-Methylmorpholine N-oxide (NMO) oxidizes coordinated PEt 3 from LCo(PEt 3 ) 2 , but the final cobalt product is still divalent cobalt, in LCo(NMO) 2 . The thermodynamics of a variety of oxygen atom transfer reagents, including NMO, are calculated by density functional theory, to rank their oxidizing power. Oxidation of LCo(PEt 3 ) 2 with AgOTf in the presence of LiCl as a trapping nucleophile forms the unusual aggregate [LCo(PEt 3 ) 2 Cl(LiOTf) 2 ] 2 held together by Li + binding to very nucleophilic chloride on Co(III) and triflate binding to those Li + . In contrast, Cp 2 Fe + effects oxidation to trivalent cobalt, to form (HL)Co(PEt 3 ) 2 Cl + ; proton and the chloride originate from solvent in a rare example of CH 2 Cl 2 dehydrochlorination. An unexpected noncomplementary redox reaction is reported involving attack by 2e reductant PEt 3 nucleophile on carbon of the 1e oxidant radical Cp 2 Fe + , forming a P-C bond and H + ; this reaction competes in the reaction of LCo(PEt 3 ) 2 with Cp 2 Fe + .

  16. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    Science.gov (United States)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  17. Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective

    Science.gov (United States)

    Navas, Javier; Araujo, Daniel; Piñero, José Carlos; Sánchez-Coronilla, Antonio; Blanco, Eduardo; Villar, Pilar; Alcántara, Rodrigo; Montserrat, Josep; Florentin, Matthieu; Eon, David; Pernot, Julien

    2018-03-01

    Phenomena related with the diamond surface of both power electronic and biosensor devices govern their global behaviour. In particular H- or O-terminations lead to wide variations in their characteristics. To study the origins of such aspects in greater depth, different methods to achieve oxygen terminated diamond were investigated following a multi-technique approach. DFT calculations were then performed to understand the different configurations between the C and O atoms. Three methods for O-terminating the diamond surface were performed: two physical methods with ozone at different pressures, and an acid chemical treatment. X-ray photoelectron spectroscopy, spectroscopic ellipsometry, HRTEM, and EELS were used to characterize the oxygenated surface. Periodic-DFT calculations were undertaken to understand the effect of the different ways in which the oxygen atoms are bonded to carbon atoms on the diamond surface. XPS results showed the presence of hydroxyl or ether groups, composed of simple Csbnd O bonds, and the acid treatment resulted in the highest amount of O on the diamond surface. In turn, ellipsometry showed that the different treatments led to the surface having different optical properties, such as a greater refraction index and extinction coefficient in the case of the sample subjected to acid treatment. TEM analysis showed that applying temperature treatment improved the distribution of the oxygen atoms at the interface and that this generates a thinner amount of oxygen at each position and higher interfacial coverage. Finally, DFT calculations showed both an increase in the number of preferential electron transport pathways when π bonds and ether groups appear in the system, and also the presence of states in the middle of the band gap when there are π bonds, Cdbnd C or Cdbnd O.

  18. A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions

    International Nuclear Information System (INIS)

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; Ruedenberg, Klaus

    2013-01-01

    Through a basis-set-independent web of localizing orbital-transformations, the electronic wave function of a molecule is expressed in terms of a set of orbitals that reveal the atomic structure and the bonding pattern of a molecule. The analysis is based on resolving the valence orbital space in terms of an internal space, which has minimal basis set dimensions, and an external space. In the internal space, oriented quasi-atomic orbitals and split-localized molecular orbitals are determined by new, fast localization methods. The density matrix between the oriented quasi-atomic orbitals as well as the locations of the split-localized orbitals exhibit atomic populations and inter-atomic bonding patterns. A correlation-adapted quasi-atomic basis is determined in the external orbital space. The general formulations are specified in detail for Hartree-Fock wave functions. Applications to specific molecules exemplify the general scheme

  19. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics

    Science.gov (United States)

    Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito

    2018-05-01

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.

  20. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    Science.gov (United States)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  1. Calculation on uranium carbon oxygen system molecular structure by DFT

    International Nuclear Information System (INIS)

    Zhang Guangfeng; Wang Xiaolin; Zou Lexi; Sun Ying; Xue Weidong; Zhu Zhenghe; Wang Hongyan

    2001-01-01

    The authors study on the possible molecular structures U-C-O, U-O-C, C-U-O (angular structure C a nd linear structure C ∞υ ) of carbon monoxide interacting on uranium metal surface by Density functional theory (DFT). The uranium atom is used RECP (Relativistic Effective Core Potential) and contracted valence basis sets (6s5p2d4f)/[3s3p2d2f], and for carbon and oxygen atoms all are 6-311G basis sets. The author presents the results of energy optimum which shows that triple and quintuple state are more stable. The authors get the electronic state, geometry structure, energy, harmonic frequency, mechanical property, etc. of these twelve triple and quintuple state relative stable structures. The normal vibrational analytical figure of angular structure (C s ) and linear structure (C ∞υ ) is given at the same time. It is indicated that angular structure has lower energy than linear structure, moreover the angular structure of U-C-O( 3 A ) has the lowest energy. The bond strength between uranium atom and carbon monoxide is weak and between uranium atom and oxygen atom is slightly stronger than between uranium atom and carbon atom which the authors can know by superposition population and bond energy analysis among atoms

  2. Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation

    International Nuclear Information System (INIS)

    Nagasako, Naoyuki; Asahi, Ryoji; Isheim, Dieter; Seidman, David N.; Kuramoto, Shigeru; Furuta, Tadahiko

    2016-01-01

    A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations.

  3. Influence of average ion energy and atomic oxygen flux per Si atom on the formation of silicon oxide permeation barrier coatings on PET

    Science.gov (United States)

    Mitschker, F.; Wißing, J.; Hoppe, Ch; de los Arcos, T.; Grundmeier, G.; Awakowicz, P.

    2018-04-01

    The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiO x ) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiO x network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.

  4. Model analysis of molecular conformations in terms of weak interactions between non bonded atoms

    International Nuclear Information System (INIS)

    Lombardi, E.

    1988-01-01

    The aim of the present paper is to establish a reliable basis for the evaluation of stable conformations and rotational barriers for molecules, with possible applications to systems of biological interest. It is proceeded in two steps: first, the effect of chemical environment on orbitals of a given atom is studied for diatomic units, adopting a valence-bond approach and considering, as prototypes, the two simplest series of diatomic molecules with one valence electron each, i.e. the alkali diatomics and the alkali hydrides. In the model, the orbital of the hydrogen atom by a simple (''1S'') gaussian function, the valence orbital of an alkali atom by a function (r 2 -a 2 ) times a simple gaussian (''2S'' gaussian). Dissociation energies D e and equilibrium distances R e are calculated using a scanning procedure. Agreement with experiment is quantitative for the alkali diatomics. For alkali hydrides, good agreement is obtained only if validity of a rule β e R e =constant, for the two atoms separately, is postulated; β e is the characteristic parameter of a ''1S'' gaussian (hydrogen) or a ''2S'' gaussian (alkali atom) function. In a second step, the authors assume validity of the same rule in conformational analysis for any single bonded A-B molecule with A=C, O, N, P, Si, Ge and B=H, or a halogen atom. Gauge β e values for H, F and C are obtained by fitting experimental rotational barriers in C 2 H 6 , C 2 F 6 and C 3 H 8 . Stable conformation of, and barriers to rotation in, ethane-like rotors are determined, applying first-order exchange perturbation theory, in terms of two- and many-center exchange interactions in cluster of non-bonded atoms. Some 60 molecules are analyzed. Agreement with experiments is strikngly good except for a few systematic deviation. Reasons for such discrepancies are discussed

  5. Oxygen etching mechanism in carbon-nitrogen (CNx) domelike nanostructures

    International Nuclear Information System (INIS)

    Acuna, J. J. S.; Figueroa, C. A.; Kleinke, M. U.; Alvarez, F.; Biggemann, D.

    2008-01-01

    We report a comprehensive study involving the ion beam oxygen etching purification mechanism of domelike carbon nanostructures containing nitrogen. The CN x nanodomes were prepared on Si substrate containing nanometric nickel islands catalyzed by ion beam sputtering of a carbon target and assisting the deposition by a second nitrogen ion gun. After preparation, the samples were irradiated in situ by a low energy ion beam oxygen source and its effects on the nanostructures were studied by x-ray photoelectron spectroscopy in an attached ultrahigh vacuum chamber, i.e., without atmospheric contamination. The influence of the etching process on the morphology of the samples and structures was studied by atomic force microscopy and field emission gun-secondary electron microscopy, respectively. Also, the nanodomes were observed by high resolution transmission electron microscopy. The oxygen atoms preferentially bond to carbon atoms by forming terminal carbonyl groups in the most reactive parts of the nanostructures. After the irradiation, the remaining nanostructures are grouped around two well-defined size distributions. Subsequent annealing eliminates volatile oxygen compounds retained at the surface. The oxygen ions mainly react with nitrogen atoms located in pyridinelike structures

  6. Bonding analysis of planar hypercoordinate atoms via the generalized BLW-LOL.

    Science.gov (United States)

    Bomble, Laetitia; Steinmann, Stephan N; Perez-Peralta, Nancy; Merino, Gabriel; Corminboeuf, Clemence

    2013-10-05

    The multicenter bonding pattern of the intriguing hexa-, hepta-, and octacoordinate boron wheel series (e.g., CB62-, CB7-, B82-, and SiB8 as well as the experimentally detected CB7- isomer) is revised using the block-localized wave function analyzed by the localized orbital locator (BLW-LOL). The more general implementation of BLW combined with the LOL scalar field is not restricted to the analysis of the out-of-plane π-system but can also provide an intuitive picture of the σ-radial delocalization and of the role of the central atom. The results confirm the presence of a π-ring current pattern similar to that of benzene. In addition, the LOLπ isosurfaces along with the maximum intensity in the ΔLOL profiles located above and below the ring suggest that the central atom plays a minor role in the π-delocalized bonding pattern. Finally, the analysis of the σ-framework in these boron wheels is in line with a moderated inner cyclic rather than disk-type delocalization. Copyright © 2013 Wiley Periodicals, Inc.

  7. Bond breaking and bond making in tetraoxygen: analysis of the O2(X3Sigma(g)-) + O2(X3Sigma(g)-) O4 reaction using the electron pair localization function.

    Science.gov (United States)

    Scemama, Anthony; Caffarel, Michel; Ramírez-Solís, Alejandro

    2009-08-06

    We study the nature of the electron pairing at the most important critical points of the singlet potential energy surface of the 2O2 O4 reaction and its evolution along the reaction coordinate using the electron pair localization function (EPLF) [Scemama, A.; Chaquin, P.; Caffarel, M. J. Chem. Phys. 2004, 121, 1725]. To do that, the 3D topology of the EPLF calculated with quantum Monte Carlo (at both variational and fixed-node-diffusion Monte Carlo levels) using Hartree-Fock, multiconfigurational CASSCF, and explicitly correlated trial wave functions is analyzed. At the O4 equilibrium geometry the EPLF analysis reveals four equivalent covalent bonds and two lone pairs on each oxygen atom. Along the reaction path toward dissociation it is found that the two oxygen-oxygen bonds are not broken simultaneously but sequentially, and then the lone pairs are rearranged. In a more general perspective, the usefulness of the EPLF as a unique tool to analyze the topology of electron pairing in nontrivial chemical bonding situations as well as to visualize the major steps involved in chemical reactivity is emphasized. In contrast with most standard schemes to reveal electron localization (atoms in molecules, electron localization function, natural bond orbital, etc.), the newly introduced EPLF function gives a direct access to electron pairings in molecules.

  8. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    Science.gov (United States)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  9. Hydrogen–Hydrogen Bonding in Planar Biphenyl, Predicted by Atoms-In-Molecules Theory, Does Not Exist

    NARCIS (Netherlands)

    Poater, J; Sola, M.; Bickelhaupt, F.M.

    2006-01-01

    Based on an Atoms-in-Molecules (AIM) analysis, Matta et al. (Chem. Eur. J.2003, 9, 1940) recently claimed evidence for the existence of hydrogen–hydrogen bonding between ortho-hydrogen atoms, pointing towards each other from adjacent phenyl groups in planar biphenyl. This AIM result is opposed to

  10. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  11. The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory

    International Nuclear Information System (INIS)

    Nilsson, A.; Ogasawara, H.; Cavalleri, M.; Nordlund, D.; Nyberg, M.; Wernet, Ph.; Pettersson, L.G.M.

    2005-01-01

    We combine photoelectron and x-ray absorption spectroscopy with density functional theory to derive a molecular orbital picture of the hydrogen bond in ice. We find that the hydrogen bond involves donation and back-donation of charge between the oxygen lone pair and the O-H antibonding orbitals on neighboring molecules. Together with internal s-p rehybridization this minimizes the repulsive charge overlap of the connecting oxygen and hydrogen atoms, which is essential for a strong attractive electrostatic interaction. Our joint experimental and theoretical results demonstrate that an electrostatic model based on only charge induction from the surrounding medium fails to properly describe the internal charge redistributions upon hydrogen bonding

  12. Absolute photoionization cross sections of atomic oxygen

    Science.gov (United States)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  13. ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen

    Directory of Open Access Journals (Sweden)

    Oliver Tiedt

    2016-08-01

    Full Text Available Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA to benzoyl-coenzyme A (BzCoA and HF, catalyzed by class I BzCoA reductase (BCR. Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA.

  14. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  15. Influences of alloying elements and oxygen on the stability and elastic properties of Mg17Al12

    International Nuclear Information System (INIS)

    Dai, Jianhong; Song, Yan; Yang, Rui

    2014-01-01

    Highlights: • Most alloying elements stabilize Mg 17 Al 12 with negative occupation energy. • The alloying element and oxygen co-existed Mg 17 Al 12 are stable. • Strong bonding interactions existed between alloying element and host atoms. - Abstract: Influence of alloying elements (Ca, Mn, Ni, Cu, Zn, Zr, Sn, and La) and oxygen on stability and elastic properties of Mg 17 Al 12 has been studied by first principles total energy calculations. The occupation preferences of oxygen and alloying elements in Mg 17 Al 12 are identified. Ca, Zr, and La tend to substitute for Mg atoms, Zn, Cu, and Ni prefer to occupy Al site, and Mn and Sn show positive occupation energy for substituting both Mg and Al atoms. The impurity oxygen prefers to occupy interstitial sites surrounded by four Mg atoms regardless the presence of alloying elements in this system. Elastic constants were estimated to evaluate the mechanical stability of alloyed systems. The results show that alloys which own negative occupation energy also satisfy the mechanical stability criteria. Electronic structures were analyzed to clarify the intrinsic mechanisms of how alloying elements and oxygen influence the stability of Mg 17 Al 12 . The stabilization effect of alloying elements and oxygen was found to originate from the strong bonding interaction with the matrix

  16. Reaction mechanism of oxygen atoms with unsaturated hydrocarbons by the crossed molecular beams method

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.; Baseman, R.J.; Guozhong, H.; Lee, Y.T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  17. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  18. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  19. Effect of oxygen and nitroaromatic cell radiosensitizers on radiation-induced cleavage of internucleotide bonds: ApA, dApA, and poly(A)

    International Nuclear Information System (INIS)

    Raleigh, J.A.; Kremers, W.; Whitehouse, R.

    1975-01-01

    Irradiation of the dinucleoside monophosphates ApA and dApA in deoxygenated solution leads to a preferential cleavage of the 3' end of the internucleotide bond. Cleavage at the 3' bond is favored to the extent of 2 to 1 over 5' cleavage. Oxygen and nitroaromatic compounds inhibit 3' bond breaking in ApA and dApA in agreement with earlier findings from studies of 3'- and 5'-mononucleotides. In contrast to the mononucleotide results, no enhancement of 5' cleavage is observed for ApA and dApA irradiated in the presence of oxygen or the nitroaromatic additives. The over-all effect of the additives is to decrease the combined (3' and 5') yield of internucleotide bond breaking in ApA and dApA. This phenomenon is also observed for polyadenylic acid in the presence of the nitroaromatics. Oxygen marginally enhances internucleotide bond breaking in polyadenylic acid (factor 1.1) over that seen in deoxygenated solution. Postirradiation alkaline hydrolysis of dApA leads to further ester cleavage revealing the presence of radiation-induced alkali-labile bonds. The number of these bonds decreases in the order oxygen greater than nitrofurans greater than nitrobenzenes approximately irradiation in the absence of additives

  20. Laser diagnostics of atomic hydrogen and oxygen production in rf and microwave plasma discharges

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1993-01-01

    The research for this thesis involved the application of two-photon allowed laser-induced fluorescence (TALIF) to the study of atomic hydrogen and oxygen production in industrial scale radio-frequency and microwave plasma discharge apparatus. Absolute atomic hydrogen concentration profiles were measured in a Gaseous Electronics Conference Reference Cell installed at Wright-Patterson AFB, Ohio operating with a simple H 2 discharge. Two-dimensional atomic hydrogen concentration profiles were also measured in an ASTEX HPMM microwave plasma diamond deposition reactor during actual diamond growth. In addition absolute atomic oxygen concentrations were measured in the ASTEX system. Particular attention as paid to refining the concentration calibration technique and in determining a correction to account for the collisional quenching of excited state fluorescence in high pressure gases

  1. Atomic origin of high-temperature electron trapping in metal-oxide-semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiao, E-mail: xiao.shen@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Pantelides, Sokrates T. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-04-06

    MOSFETs based on wide-band-gap semiconductors are suitable for operation at high temperature, at which additional atomic-scale processes that are benign at lower temperatures can get activated, resulting in device degradation. Recently, significant enhancement of electron trapping was observed under positive bias in SiC MOSFETs at temperatures higher than 150 °C. Here, we report first-principles calculations showing that the enhanced electron trapping is associated with thermally activated capturing of a second electron by an oxygen vacancy in SiO{sub 2} by which the vacancy transforms into a structure that comprises one Si dangling bond and a bond between a five-fold and a four-fold Si atoms. The results suggest a key role of oxygen vacancies and their structural reconfigurations in the reliability of high-temperature MOS devices.

  2. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    Science.gov (United States)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO

  3. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    Science.gov (United States)

    Solimannejad, Mohammad; Massahi, Shokofeh; Alkorta, Ibon

    2009-07-01

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH⋯N and NH⋯O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol -1 and 12-19 kJ mol -1, respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm -1 is predicted for dimers and trimers, respectively.

  4. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    Science.gov (United States)

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  5. β-diketones containing oxygen atom in fluorinated radical

    International Nuclear Information System (INIS)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G.

    1981-01-01

    The synthesis of a number of new aliphatic fluorinated β- diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed [ru

  6. beta. -diketones containing oxygen atom in fluorinated radical

    Energy Technology Data Exchange (ETDEWEB)

    Shivanyuk, A.F.; Kudryavtseva, L.S.; Lozinskij, M.O.; Neplyuev, V.M.; Fialkov, Yu.A.; Bratolyubova, A.G. (AN Ukrainskoj SSR, Kiev. Inst. Organicheskoj Khimii)

    1981-10-01

    The synthesis of a number of new aliphatic fluorinated ..beta..-diketones containing oxygen atom in fluorinated radical of linear or cyclic structure is described. The reaction of combination with aryldiazonium salts resulting in the formation of corresponding arylhydrazones of fluorinated triketones is studied. It is shown that as a result of arylhydrazone condensation with hydroxylamine, hydrazine and its substituted derivatives the fluorine-containing derivatives of isoxazol and pyrazol are formed.

  7. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  8. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  9. Non-penetrating states of atomic oxygen

    International Nuclear Information System (INIS)

    Chang, E.S.; Barowy, W.M.; Sakai, H.

    1988-01-01

    Atomic Rydberg transitions have been observed in the 1-5 μm emission spectrum of an oxygen discharge. Proper analysis of these lines requires reinterpretation of previous 3d-nf measurements by explicit inclusion of the theoretical F-level fine structure in the experimental line profiles. The revised triplet-quintet differences in the nF levels are now seen to vary smoothly with n, analogous to the polarization energy in an Edlen plot. The new levels, 5g, 6g, 7g, and 7h also form a straight line according to the polarization formula, thereby confirming the ionization limit to a higher accuracy. (orig.)

  10. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Špalek, Otomar; Čenský, Miroslav; Picková, Irena; Kodymová, Jarmila; Jakubec, Ivo

    2007-01-01

    Roč. 334, - (2007), s. 167-174 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Grant - others:USAF European Office for Research and Development(XE) FA 8655-05-M-4027 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.805, year: 2007

  11. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    Science.gov (United States)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  12. Adatom Bond Dissociation in the Collision Between an Adsorbed Atom and Incident Diatomic Molecule: A Classical Trajectory Study

    International Nuclear Information System (INIS)

    Bayhan, U.

    2004-01-01

    The collisional dissociation of the Atom-Surface bond in the diatomic molecule (gas) / atom (ads) collision taking place on a bcc-structure surface have been studied by classical trajectory methods over the collision energy ranges and the attractive well depth of the diatomic molecule (gas) / atom (ads) interactions

  13. Study of the Dissociative Processes in O_2 Discharges. Development of an Atomic Oxygen Beam Source

    International Nuclear Information System (INIS)

    Pagnon, Daniel

    1992-01-01

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [fr

  14. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    Science.gov (United States)

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society

  15. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    Science.gov (United States)

    Niaz, Shanawer; Zdetsis, Aristides D.; Koukaras, Emmanuel N.; Gülseren, Oǧuz; Sadiq, Imran

    2016-11-01

    In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si29 nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  16. Eosin Y as a Direct Hydrogen Atom Transfer Photocatalyst for the Functionalization of C-H Bonds.

    Science.gov (United States)

    Fan, Xuan-Zi; Rong, Jia-Wei; Wu, Hao-Lin; Zhou, Quan; Deng, Hong-Ping; Tan, Jin Da; Xue, Cheng-Wen; Wu, Li-Zhu; Tao, Hai-Rong; Wu, Jie

    2018-05-02

    Eosin Y, a well-known economical alternative to metal catalysts in visible-light-driven single-electron transfer-based organic transformations, can behave as an effective direct hydrogen atom transfer catalyst for C-H activation. Using the alkylation of C-H bonds with electron-deficient alkenes as a model study revealed an extremely broad substrate scope, enabling easy access to a variety of important synthons. This eosin Y-based photocatalytic hydrogen atom transfer strategy is promising for diverse functionalization of a wide range of native C-H bonds in a green and sustainable manner. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  18. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  19. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Jirasek, Vit; Spalek, Otomar; Censky, Miroslav; Pickova, Irena; Kodymova, Jarmila; Jakubec, Ivo

    2007-01-01

    A method of the chemical generation of atomic iodine for a chemical oxygen-iodine laser (COIL) using atomic fluorine as a reaction intermediate was studied experimentally. This method is based on the reaction between F 2 and NO providing F atoms, and the reaction of F with HI resulting in iodine atoms generation. Atomic iodine was produced with efficiency exceeding 40% relative to initial F 2 flow rate. This efficiency was nearly independent on pressure and total gas flow rate. The F atoms were stable in the reactor up to 2 ms. An optimum ratio of the reactants flow rates was F 2 :NO:HI = 1:1:1. A rate constant of the reaction of F 2 with HI was determined. The numerical modelling showed that remaining HI and IF were probably consumed in their mutual reaction. The reaction system was found suitable for employing in a generator of atomic iodine with its subsequent injection into a supersonic nozzle of a COIL

  20. Chemical shifts of oxygen-17 NMR in polyoxotungstates

    International Nuclear Information System (INIS)

    Kazanskij, L.P.; Fedotov, M.A.; Spitsyn, V.I.

    1977-01-01

    17 O NMR spectra of aqueous solutions containing paratungstate BH 2 W 12 O 42 10- and metatungstate H 2 W 12 O 40 6- anions have been measured. On the basis of the obtained data a scale of chemical shifts for oxygen atoms connected by various bonds with tungsten atoms is suggested. The obtained data are compared with the Raman spectra of crystalline salts and their aqueous solutions. Chemical shifts of 17 O NMR spectra have been also measured in other heteropolyanions

  1. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    Science.gov (United States)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  2. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Solimannejad, Mohammad, E-mail: m-solimannejad@araku.ac.ir [Quantum Chemistry Group, Department of Chemistry, Arak University, 38156-879 Arak (Iran, Islamic Republic of); Massahi, Shokofeh [Quantum Chemistry Group, Department of Chemistry, Arak University, 38156-879 Arak (Iran, Islamic Republic of); Alkorta, Ibon, E-mail: ibon@iqm.csic.es [Instituto de Quimica Medica (CSIC), Juan de la Cierva, 3, 28006 Madrid (Spain)

    2009-07-30

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH{center_dot}{center_dot}{center_dot}N and NH{center_dot}{center_dot}{center_dot}O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol{sup -1} and 12-19 kJ mol{sup -1}, respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm{sup -1} is predicted for dimers and trimers, respectively.

  3. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    International Nuclear Information System (INIS)

    Solimannejad, Mohammad; Massahi, Shokofeh; Alkorta, Ibon

    2009-01-01

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH···N and NH···O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol -1 and 12-19 kJ mol -1 , respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm -1 is predicted for dimers and trimers, respectively.

  4. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    International Nuclear Information System (INIS)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe 3 ) 4 Ru(X)(Y) and (DMPM) 2 Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe 3 ) 4 Ru(Ph)(Me) or (PMe 3 ) 4 Ru(Ph) 2 leads to the ruthenium benzyne complex (PMe 3 ) 4 Ru(η 2 -C 6 H 4 ) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO 2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe 3 ) 4 Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs

  5. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  6. Oxygen adsorption on the Al9Co2(001) surface: first-principles and STM study

    International Nuclear Information System (INIS)

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Dubois, J-M; Gaudry, É; Gille, P

    2013-01-01

    Atomic oxygen adsorption on a pure aluminum terminated Al 9 Co 2 (001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a ‘bridge’ type site between the cluster entities exposed at the (001) surface termination. The Al–O bonding between the adsorbate and the substrate presents a covalent character, with s–p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al–O distances are in agreement with those reported in Al 2 O and Al 2 O 3 oxides and for oxygen adsorption on Al(111). (paper)

  7. Locations of oxygen, nitrogen and carbon atoms in vanadium determined by neutron diffraction

    International Nuclear Information System (INIS)

    Hiraga, K.; Onozuka, T.; Hirabayashi, M.

    1977-01-01

    The occupation sites of oxygen, nitrogen, and carbon atoms dissolved interstitially in vanadium have been determined by means of neutron diffraction with use of single crystals of VOsub(0.032), VNsub(0.013) and VCsub(0.006). It is revealed that the interstitial atoms occupy, randomly, the octahedral sites in the b.c.c. host lattice of the three crystals. Neutron diffraction is advantageous for the present purpose, since the coherent scattering amplitudes of the solute atoms are much larger than that of the vanadium atom. (Auth.)

  8. Study of the Dissociative Processes in O{sub 2} Discharges. Development of an Atomic Oxygen Beam Source; Etude de la dissociation de O{sub 2} dans les decharges d'oxygene. Application a la realisation de sources d'atomes

    Energy Technology Data Exchange (ETDEWEB)

    Pagnon, Daniel

    1992-09-24

    The first part of this work is devoted to the study of dissociative processes in an oxygen glow discharge at low pressure (0,1-5 Torr, 1-80 mA). The kinetics of oxygen atoms has been determined supported by the measurements of atomic concentrations by VUV absorption spectroscopy and actinometry. The reaction coefficients for dissociative excitation and direct excitation of oxygen atoms have been calculated using the cross sections of the literature and a previously calculated EEDF. It has been demonstrated that dissociative excitation is negligible in respect with direct excitation for dissociation rates smaller than 2,5 %. An upper limit of 20 % for dissociative rates is observed. This limit has been explained by the increase of the atomic recombination at the discharge wall with increasing wall temperature. Using all these results, we have designed and optimized a source of oxygen atoms which has then been adapted on a MBE device. The spatial distribution of the atomic density has been measured in molecular jet by laser induced fluorescence (LIF) and Resonant Multi-Photon Ionization (RMPI). A stimulated emission has been evidenced and the coefficient for this process evaluated. A model for the effusion of atoms has been developed from which the flow of atoms on the sample can be predicted. This source has already been used in industrial MBE devices for in-situ oxidation of copper films, superconductors, and substrates for VLSI high speed applications. The methodology of this work and the diagnostics developed can be applied to other kinds of discharges, of other molecular gases, to design sources of atoms for the treatment of large area samples. (author) [French] Ce travail debute par l'etude de la dissociation dans une decharge luminescente d'oxygene a basse pression (0,1-5 torr, 1-80 ma). La cinetique des atomes d'oxygene a ete etablie a partir de la mesure des concentrations atomiques par spectroscopie d'absorption vuv et par actinometrie. Les coefficients de

  9. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    Science.gov (United States)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  10. The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide

    Science.gov (United States)

    Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.

    2009-12-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  11. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  12. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    Science.gov (United States)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  13. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  14. Interactions of atomic hydrogen with amorphous SiO2

    Science.gov (United States)

    Yue, Yunliang; Wang, Jianwei; Zhang, Yuqi; Song, Yu; Zuo, Xu

    2018-03-01

    Dozens of models are investigated by the first-principles calculations to simulate the interactions of an atomic hydrogen with a defect-free random network of amorphous SiO2 (a-SiO2) and oxygen vacancies. A wide variety of stable configurations are discovered due to the disorder of a-SiO2, and their structures, charges, magnetic moments, spin densities, and density of states are calculated. The atomic hydrogen interacts with the defect-free a-SiO2 in positively or negatively charged state, and produces the structures absent in crystalline SiO2. It passivates the neutral oxygen vacancies and generates two neutral hydrogenated E‧ centers with different Si dangling bond projections. Electron spin resonance parameters, including Fermi contacts, and g-tensors, are calculated for these centers. The atomic hydrogen interacts with the positive oxygen vacancies in dimer configuration, and generate four different positive hydrogenated defects, two of which are puckered like the Eγ‧ centers. This research helps to understand the interactions between an atomic hydrogen, and defect-free a-SiO2 and oxygen vacancies, which may generate the hydrogen-complexed defects that play a key role in the degeneration of silicon/silica-based microelectronic devices.

  15. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  16. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    International Nuclear Information System (INIS)

    Song, J.-L.; Mao, J.-G.; Sun, Y.-Q.; Zeng, H.-Y.; Kremer, R.K.; Clearfield, Abraham

    2004-01-01

    Hydrothermal reactions of N,N-bis(phosphonomethyl)aminoacetic acid (HO 2 CCH 2 N(CH 2 PO 3 H 2 ) 2 ) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2 [O 2 CCH 2 N(CH 2 PO 3 )(CH 2 PO 3 H)]·H 2 O (1) and {NH 3 CH 2 CH 2 NH 3 }{Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ](H 2 O) 2 } 2 (2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ][H 2 O] 2 } - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected

  17. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    Science.gov (United States)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  18. Density functional study the interaction of oxygen molecule with defect sites of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Qi Xuejun [State Key Laboratory of Coal Combustion, Wuhan 430074 (China); Guo Xin, E-mail: guoxin@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Wuhan 430074 (China); Zheng Chuguang [State Key Laboratory of Coal Combustion, Wuhan 430074 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The defect sites existed on the graphite surface create active sites and enhance the reactivity of carbonaceous material. Black-Right-Pointing-Pointer Oxygen molecule more favor chemisorbed on the graphene surface contains defect sites than the perfect surface. Black-Right-Pointing-Pointer The single active oxygen atom adsorbed on the defect surfaces, it completely insert into the surface. - Abstract: The present article reports a theoretical study of oxygen interacted with graphene surface containing defect sites on the atomic level by employing the density functional theory combined with the graphene cluster model. It was founded that oxygen molecule prefers to be chemisorbed on the graphene surface containing defect sites compared to the perfect surface. The adsorption energy of O{sub 2} on the double defect site is about 2.5 times as large as that on the perfect graphene surface. Moreover, the oxygen molecule interacts with S-W defect site gives rise to stable epoxy structure, which pulling the carbon atom outward from the original site in the direction perpendicular to the surface. If the oxygen molecule is adsorbed on the single vacancy site, two C-O bonds are formed on the graphene surface. However, when the oxygen molecule is chemisorbed on the double vacancy site, the oxygen atoms substitute the missing carbon atom's position in the carbon plane and form a hexagonal structure on the graphene network. The results indicate that single active oxygen atom approaches the defect site, it's completely adsorbed in the plane and high energy is released. In all cases, the interaction of an oxygen atom with defect surface involves an exothermic process. The defect site creates active sites on the surface of graphene and produces catalytic effects during the process of oxidation of carbonaceous materials.

  19. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    Science.gov (United States)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  20. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  1. Hydrogen bonding interactions between ethylene glycol and water:density,excess molar volume,and spectral study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  2. Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps

    International Nuclear Information System (INIS)

    Lang, Haojie; Peng, Yitian; Zeng, Xingzhong

    2017-01-01

    Highlights: • Bending of uncovered step edge of 2-dimensional materials could be a common phenomenon during friction processes. • 2-dimensional materials with large interlayer bonding strength possess good frictional properties at step. • Increased bending stiffness of step edge could be the major reason that lateral force increased with step height. - Abstract: Atomic-scale steps generally presented in 2-dimensional materials have important influence on the overall nanotribological properties of surface. Frictional properties at atomic-scale steps of two types of 2-dimensional materials are studied using calibrated atomic force microscopy (AFM) tip sliding against the steps. The lateral force at uncovered step is larger than covered step due to the bending of step edge. The lateral force at monolayer uncovered step edge of h-BN is lower than graphene because h-BN possesses higher interlayer bonding strength than graphene and the bending of h-BN step edge is suppressed to some extent. The high uncovered step exhibits much larger lateral force than low uncovered step, which could be mainly induced by increased bending stiffness of step edge rather than increased step height. The results revealed that interlayer bonding strength and bending stiffness have great influence on the lateral force at atomic-scale steps. The studies can provide a further understanding of frictional properties at atomic scale steps and could be helpful for the applications of 2-dimensional materials as lubricant coating.

  3. Effect of interlayer bonding strength and bending stiffness on 2-dimensional materials’ frictional properties at atomic-scale steps

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Haojie; Peng, Yitian, E-mail: yitianpeng@dhu.edu.cn; Zeng, Xingzhong

    2017-07-31

    Highlights: • Bending of uncovered step edge of 2-dimensional materials could be a common phenomenon during friction processes. • 2-dimensional materials with large interlayer bonding strength possess good frictional properties at step. • Increased bending stiffness of step edge could be the major reason that lateral force increased with step height. - Abstract: Atomic-scale steps generally presented in 2-dimensional materials have important influence on the overall nanotribological properties of surface. Frictional properties at atomic-scale steps of two types of 2-dimensional materials are studied using calibrated atomic force microscopy (AFM) tip sliding against the steps. The lateral force at uncovered step is larger than covered step due to the bending of step edge. The lateral force at monolayer uncovered step edge of h-BN is lower than graphene because h-BN possesses higher interlayer bonding strength than graphene and the bending of h-BN step edge is suppressed to some extent. The high uncovered step exhibits much larger lateral force than low uncovered step, which could be mainly induced by increased bending stiffness of step edge rather than increased step height. The results revealed that interlayer bonding strength and bending stiffness have great influence on the lateral force at atomic-scale steps. The studies can provide a further understanding of frictional properties at atomic scale steps and could be helpful for the applications of 2-dimensional materials as lubricant coating.

  4. Materials selection for long life in LEO: a critical evaluation of atomic oxygen testing with thermal atom systems

    International Nuclear Information System (INIS)

    Koontz, S.L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material

  5. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  6. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    Czech Academy of Sciences Publication Activity Database

    Pandiyan, B. V.; Kolandaivel, P.; Deepa, Palanisamy

    2014-01-01

    Roč. 112, č. 12 (2014), s. 1609-1623 ISSN 0026-8976 Institutional support: RVO:61388963 Keywords : hydrogen bond * proton affinity * deprotanation enthalpy * atoms in molecules * chemical shift Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.720, year: 2014

  7. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    Science.gov (United States)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  8. Quantum mechanics models of the methanol dimer: OH⋯O hydrogen bonds of β-d-glucose moieties from crystallographic data.

    Science.gov (United States)

    Cintrón, Michael Santiago; Johnson, Glenn P; French, Alfred D

    2017-04-18

    The interaction of two methanol molecules, simplified models of carbohydrates and cellulose, was examined using a variety of quantum mechanics (QM) levels of theory. Energy plots for hydrogen bonding distance (H⋯O) and angle (OH⋯O) were constructed. All but two experimental structures were located in stabilized areas on the vacuum phase energy plots. Each of the 399 models was analyzed with Bader's atoms-in-molecules (AIM) theory, which showed a widespread ability by the dimer models to form OH⋯O hydrogen bonds that have bond paths and Bond Critical Points. Continuum solvation calculations suggest that a portion of the energy-stabilized structures could occur in the presence of water. A survey of the Cambridge Structural Database (CSD) for all donor-acceptor interactions in β-D-glucose moieties examined the similarities and differences among the hydroxyl groups and acetal oxygen atoms that participate in hydrogen bonds. Comparable behavior was observed for the O2H, O3H, O4H, and O6H hydroxyls, acting either as acceptors or donors. Ring O atoms showed distinct hydrogen bonding behavior that favored mid-length hydrogen bonds. Published by Elsevier Ltd.

  9. Iron(II)-catalyzed intermolecular amino-oxygenation of olefins through the N-O bond cleavage of functionalized hydroxylamines.

    Science.gov (United States)

    Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao

    2014-09-24

    An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.

  10. Energy transfers between N_2(A"3Σ) nitrogen metastable molecules and oxygen atoms and molecules

    International Nuclear Information System (INIS)

    De Souza, Antonio Rogerio

    1985-01-01

    This research thesis aims at determining reaction coefficients for energy transfers between nitrogen in its metastable status and oxygen atoms and molecules, the variation of these coefficients with respect to temperature (mainly in the 200-400 K range), products formed and more particularly branching rates of O("1S) oxygen and of NO_2. Reaction coefficients are experimentally determined by using the technique of post-discharge in flow. The experimental set-up is described and the study of the best operating conditions is reported. In the next part, the author reports the study of the energy transfer between nitrogen in its metastable status N_2(A) and oxygen molecules. Reaction coefficients are determined for the first three vibrational levels. The author then reports the study of the transfer of N_2(A) molecules on oxygen atoms in their fundamental status. Reactions coefficients and their variations are determined for the three first vibrational levels. The author describes the dissociation method and the method of detection of atomic oxygen. A kinetic model is proposed for the analysis of formed products during a post-discharge in flow, and the branching rate for the formation of O("1S) oxygen between 190 and 365 K is determined. The author finally discusses publications on the role of these reactions in the interpretation of some atmospheric phenomena

  11. Unlocking the Electrocatalytic Activity of Chemically Inert Amorphous Carbon-Nitrogen for Oxygen Reduction: Discerning and Refactoring Chaotic Bonds

    DEFF Research Database (Denmark)

    Zhang, Caihong; Zhang, Wei; Wang, Dong

    2017-01-01

    Mild annealing enables inactive nitrogen (N)-doped amorphous carbon (a-C) films abundant with chaotic bonds prepared by magnetron sputtering to become effective for the oxygen reduction reaction (ORR) by virtue of generating pyridinic N. The rhythmic variation of ORR activity elaborates well...... on the subtle evolution of the amorphous C−N bonds conferred by spectroscopic analysis....

  12. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  13. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  14. Density functional theory studies of the adsorption of ethylene and oxygen on Pt(111) and Pt3Sn(111)

    DEFF Research Database (Denmark)

    Watwe, R.M.; Cortright, R.D.; Mavrikakis, Manos

    2001-01-01

    Density functional theory, employing periodic slab calculations, was used to investigate the interactions of ethylene and oxygen with Pt(111) and Pt3Sn(111). The predicted energetics and structures of adsorbed species on Pt(111) are in good agreement with experimental data. The binding energies...... more than adsorption on two-fold and one-fold sites. Oxygen atoms bond as strongly on Pt3Sn(111) as on Pt(111), and these atoms prefer to adsorb near Sn atoms on the surface. The addition of Sn to Pt(111) leads to a surface heterogeneity, wherein ethylidyne species prefer to adsorb away from Sn atoms...

  15. Subpicosecond oxygen trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.

    Science.gov (United States)

    Kruglik, Sergei G; Jasaitis, Audrius; Hola, Klara; Yamashita, Taku; Liebl, Ursula; Martin, Jean-Louis; Vos, Marten H

    2007-05-01

    Dissociation of oxygen from the heme domain of the bacterial oxygen sensor protein FixL constitutes the first step in hypoxia-induced signaling. In the present study, the photodissociation of the heme-O2 bond was used to synchronize this event, and time-resolved resonance Raman (TR(3)) spectroscopy with subpicosecond time resolution was implemented to characterize the heme configuration of the primary photoproduct. TR(3) measurements on heme-oxycomplexes are highly challenging and have not yet been reported. Whereas in all other known six-coordinated heme protein complexes with diatomic ligands, including the oxymyoglobin reported here, heme iron out-of-plane motion (doming) occurs faster than 1 ps after iron-ligand bond breaking; surprisingly, no sizeable doming is observed in the oxycomplex of the Bradyrhizobium japonicum FixL sensor domain (FixLH). This assessment is deduced from the absence of the iron-histidine band around 217 cm(-1) as early as 0.5 ps. We suggest that efficient ultrafast oxygen rebinding to the heme occurs on the femtosecond time scale, thus hindering heme doming. Comparing WT oxy-FixLH, mutant proteins FixLH-R220H and FixLH-R220Q, the respective carbonmonoxy-complexes, and oxymyoglobin, we show that a hydrogen bond of the terminal oxygen atom with the residue in position 220 is responsible for the observed behavior; in WT FixL this residue is arginine, crucially implicated in signal transmission. We propose that the rigid O2 configuration imposed by this residue, in combination with the hydrophobic and constrained properties of the distal cavity, keep dissociated oxygen in place. These results uncover the origin of the "oxygen cage" properties of this oxygen sensor protein.

  16. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    interaction and (ii) a (mostly) repulsive interaction between the phenolic oxygen atom and the other non-H-bonded carbonyl substituent. 3. Proton motion and proton transfer in the formic acid dimmer. A PAW molecular dynamics study. A first principles molecular dynamic study on proton motion and double proton transfer in the formic acid dimmer has been performed with the 'Projector Augmented Wave' method. Trajectories were calculated with a time interval of 0.12 fs for evolution time periods up to 20 ps and for temperatures in the range from 500-700 K. Four typical situations could be distinguished: (i) normal periods, in which the proton remains firmly trapped at one oxygen atom, (ii) isolated transitions, where the proton rapidly moves from one to the other oxygen atom, (iii) crossing-recrossing events, where the proton moves from on to the other oxygen atom but immediately turns back (iv) shuttling transition regions, where several consecutive proton transitions take place. Moreover, one may distinguish between single processes, where only one O-H..O group is involved, or double processes, where both O-H..O groups are simultaneously involved. (author)

  17. Oxygen vacancy defects in Ta{sub 2}O{sub 5} showing long-range atomic re-arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuzheng; Robertson, John [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2014-03-17

    The structure, formation energy, and energy levels of the various oxygen vacancies in Ta{sub 2}O{sub 5} have been calculated using the λ phase model. The intra-layer vacancies give rise to unusual, long-range bonding rearrangements, which are different for each defect charge state. The 2-fold coordinated intra-layer vacancy is the lowest cost vacancy and forms a deep level 1.5 eV below the conduction band edge. The 3-fold intra-layer vacancy and the 2-fold inter-layer vacancy are higher cost defects, and form shallower levels. The unusual bonding rearrangements lead to low oxygen migration barriers, which are useful for resistive random access memory applications.

  18. Electronic dipole moment and tunneling state of hydrogen atom in hydrogen-bond materials revealed by neutron and X-ray structure analyses

    International Nuclear Information System (INIS)

    Kiyanagi, Ryoji; Noda, Yukio; Mochida, Tomoyuki; Sugawara, Tadashi

    2007-01-01

    The isolated hydrogen-bonded materials, 5-methyl-9-hydroxyphenalenone (MeHPLN) and 5-bromo-9-hydroxyphenalenone (Br-HPLN), were studied by means of X-ray and neutron diffraction methods. It was found that the position of the nucleus of the hydrogen atom in the hydrogen-bond region does not agree with the center of mass of the electron cloud of the hydrogen atom. This leads to a local electronic dipole moment in the hydrogen-bond region. Using the experimentally obtained dipole moment, phase transition temperatures for MeHPLN and BrHPLN were calculated based on a tunneling model. Result shows good agreement with the ones obtained by a dielectric measurement. (author)

  19. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Niaz, Shanawer, E-mail: shanawersi@gmail.com [Department of Physics, Bilkent University, Ankara 06800 (Turkey); Molecular Engineering Laboratory, at the Department of Physics, University of Patras, Patras, GR-26500 (Greece); Zdetsis, Aristides D.; Koukaras, Emmanuel N. [Molecular Engineering Laboratory, at the Department of Physics, University of Patras, Patras, GR-26500 (Greece); Gülseren, Oǧuz [Department of Physics, Bilkent University, Ankara 06800 (Turkey); Sadiq, Imran [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2016-11-30

    Highlights: • Understanding surface science of oxygenated silicon nanocrystals by means of their composition, stoichiometry and spatial distribution. • Drastic change observed in binding energy, localization of frontier orbitals and HOMO-LUMO gap up to 1.48 eV. • Might be a safe alternative of size dependent bandgap tunability. - Abstract: In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si{sub 29} nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  20. Systematic spatial and stoichiometric screening towards understanding the surface of ultrasmall oxygenated silicon nanocrystal

    International Nuclear Information System (INIS)

    Niaz, Shanawer; Zdetsis, Aristides D.; Koukaras, Emmanuel N.; Gülseren, Oǧuz; Sadiq, Imran

    2016-01-01

    Highlights: • Understanding surface science of oxygenated silicon nanocrystals by means of their composition, stoichiometry and spatial distribution. • Drastic change observed in binding energy, localization of frontier orbitals and HOMO-LUMO gap up to 1.48 eV. • Might be a safe alternative of size dependent bandgap tunability. - Abstract: In most of the realistic ab initio and model calculations which have appeared on the emission of light from silicon nanocrystals, the role of surface oxygen has been usually ignored, underestimated or completely ruled out. We investigate theoretically, by density functional theory (DFT/B3LYP) possible modes of oxygen bonding in hydrogen terminated silicon quantum dots using as a representative case of the Si 29 nanocrystal. We have considered Bridge-bonded oxygen (BBO), Doubly-bonded oxygen (DBO), hydroxyl (OH) and Mix of these oxidizing agents. Due to stoichiometry, all comparisons performed are unbiased with respect to composition whereas spatial distribution of oxygen species pointed out drastic change in electronic and cohesive characteristics of nanocrytals. From an overall perspective of this study, it is shown that bridge bonded oxygenated Si nanocrystals accompanied by Mix have higher binding energies and large electronic gap compared to nanocrystals with doubly bonded oxygen atoms. In addition, it is observed that the presence of OH along with BBO, DBO and mixed configurations further lowers electronic gaps and binding energies but trends in same fashion. It is also demonstrated that within same composition, oxidizing constituent, along with their spatial distribution substantially alters binding energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) gap (up to 1.48 eV) and localization of frontier orbitals.

  1. Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.

    Science.gov (United States)

    Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue

    2018-06-06

    Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.

  2. Lasing and thermal characteristics of Yb:YAG/YAG composite with atomic diffusion bonding

    Czech Academy of Sciences Publication Activity Database

    Nagisetty, Siva S.; Severová, Patricie; Miura, Taisuke; Smrž, Martin; Kon, H.; Uomoto, M.; Shimatsu, T.; Kawasaki, M.; Higashiguchi, T.; Endo, Akira; Mocek, Tomáš

    2017-01-01

    Roč. 14, č. 1 (2017), 1-6, č. článku 015001. ISSN 1612-2011 R&D Projects: GA MŠk LM2015086; GA MŠk LO1602 Institutional support: RVO:68378271 Keywords : composite Yb:YAG ceramic * atomic diffusion bonding * thermal effects Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.537, year: 2016

  3. Characterization of atomic oxygen from an ECR plasma source

    International Nuclear Information System (INIS)

    Naddaf, M; Bhoraskar, V N; Mandale, A B; Sainkar, S R; Bhoraskar, S V

    2002-01-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ∼1x10 20 to ∼10x10 20 atom m -3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe

  4. Characterization of atomic oxygen from an ECR plasma source

    Science.gov (United States)

    Naddaf, M.; Bhoraskar, V. N.; Mandale, A. B.; Sainkar, S. R.; Bhoraskar, S. V.

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from ~1×1020 to ~10×1020 atom m-3 as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  5. Characterization of atomic oxygen from an ECR plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Bhoraskar, V N [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Mandale, A B [National Chemical Laboratory, Pashan, Pune 411008 (India); Sainkar, S R [National Chemical Laboratory, Pashan, Pune 411008 (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2002-11-01

    A low-power microwave-assisted electron cyclotron resonance (ECR) plasma system is shown to be a powerful and effective source of atomic oxygen (AO) useful in material processing. A 2.45 GHz microwave source with maximum power of 600 W was launched into the cavity to generate the ECR plasma. A catalytic nickel probe was used to determine the density of AO. The density of AO is studied as a function of pressure and axial position of the probe in the plasma chamber. It was found to vary from {approx}1x10{sup 20} to {approx}10x10{sup 20} atom m{sup -3} as the plasma pressure was varied from 0.8 to 10 mTorr. The effect of AO in oxidation of silver is investigated by gravimetric analysis. The stoichiometric properties of the oxide are studied using the x-ray photoelectron spectroscopy as well as energy dispersive x-ray analysis. The degradation of the silver surface due to sputtering effect was viewed by scanning electron spectroscopy. The sputtering yield of oxygen ions in the plasma is calculated using the TRIM code. The effects of plasma pressure and the distance from the ECR zone on the AO density were also investigated. The density of AO measured by oxidation of silver is in good agreement with results obtained from the catalytic nickel probe.

  6. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben; Zhu, Zhiyong; Al-Kassab, Talaat; Schwingenschlö gl, Udo

    2012-01-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations

  7. The anomalous halogen bonding interactions between chlorine and bromine with water in clathrate hydrates.

    Science.gov (United States)

    Dureckova, Hana; Woo, Tom K; Udachin, Konstantin A; Ripmeester, John A; Alavi, Saman

    2017-10-13

    Clathrate hydrate phases of Cl 2 and Br 2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl 2 and Br 2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl 2 and Br 2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.

  8. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  9. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation

    Science.gov (United States)

    Zhang, Haijing; Ren, Siming; Pu, Jibin; Xue, Qunji

    2018-06-01

    Graphene has been demonstrated as a protective coating for Cu under ambient condition because of its high impermeability and light-weight oxidation barrier. However, it lacks the research of graphene as a protective coating in space environment. Here, we experimentally and theoretically study the oxidation behavior of graphene-coated Cu in vacuum atomic oxygen (AO) condition. After AO irradiation, the experimental results show multilayer graphene has better anti-oxidation than monolayer graphene. Meanwhile, the calculation results show the oxidation appeared on the graphene's grain boundaries or the film's vacancy defects for the monolayer graphene coated Cu foil. Moreover, the calculation results show the oxidation process proceeds slowly in multilayers because of the matched defects overlaps each other to form a steric hindrance to suppress the O atom diffusion in the vertical direction, and the mismatched defects generates potential energy barriers for interlayer to suppress the O atom diffusion in the horizontal direction. Hence, multilayer graphene films could serve as protection coatings to prevent diffusion of O atom.

  10. Bonding in inorganic compounds: a study by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Avanzino, S.C.

    1978-10-01

    Core electron binding energies were measured for a variety of inorganic and organometallic compounds using gas-phase X-ray photoelectron spectroscopy (XPS). The atomic charge distributions in these molecules are deduced from the binding energies, often leading to a better understanding of the bonding in these compounds. The XPS spectra of fifteen volatile tin compounds were recorded. The data suggest that the metal d orbitals are not significantly involved in the bonding. The oxygen ls XPS spectra of gaseous CH 3 Mn(CO) 5 , [π-C 5 H 5 Fe(CO) 2 ] 2 , and Co 4 (CO) 12 can be readily resolved into separate peaks due to bridging and terminal carbonyl groups. The C ls spectrum of Fe(CO) 5 consists of a single symmetric peak. The carbonyl ligand core binding energies of transition-metal carbonyl complexes are sensitive to differences in the metal-to-CO ligand bonding. Both C ls and O ls carbonyl binding energies correlate well with average C-O stretching force constants or average C-O stretching frequencies. The metal and carbonyl binding energies in a series of pentacarbonylmanganese complexes LMn(CO) 5 are a good measure of the relative electronegativities of the ligands L. High-quality X-ray photoelectron spectra have been obtained for compounds dissolved in glycerin solutions, and aqueous solutions were converted into glycerin solutions which gave good XRSspectra of the solutes. The technique appears promising as a future analytical application of X-ray photoelectron spectroscopy. The shifts in the binding energies of oxygen, chlorine, and carbon atoms in some isoelectronic isostructural compounds can be explained in terms of simple trends in atomic charges

  11. MCrAlY bond coat with enhanced Yttrium layer

    Science.gov (United States)

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  12. Hot oxygen atoms: Their generation and chemistry. [Production by sputtering; reaction with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta/sub 2/O/sub 5/ and V/sub 2/O/sub 5/. Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O(/sup 3/P) with cis- and trans-butenes were investigated. (DLC)

  13. 127I Moessbauer study of some oxygen bonded iodine(I) and iodine(III) complexes

    International Nuclear Information System (INIS)

    Bardhan, M.; Birchall, T.; Frampton, C.; Kapoor, P.

    1988-01-01

    127 I Moessbauer spectra have been recorded at 4.2 0 K for a series of oxygen bonded iodine(I) and iodine(III) complexes. The sign of the quadrupole coupling constant is dependant only on the primary arrangement of ligands about the central iodine nucleus whereas the magnitude and the asymmetry parameter are more sensitive to ligand electronegativity and type. (orig.)

  14. The interaction of oxygen with TiC(001): Photoemission and first-principles studies

    International Nuclear Information System (INIS)

    Rodriguez, J.A.; Liu, P.; Dvorak, J.; Jirsak, T.; Gomes, J.; Takahashi, Y.; Nakamura, K.

    2004-01-01

    High-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of oxygen with a TiC(001) surface. Atomic oxygen is present on the TiC(001) substrate after small doses of O 2 at room temperature. A big positive shift (1.5-1.8 eV) was detected for the C 1s core level. These photoemission studies suggest the existence of strong O↔C interactions. A phenomenon corroborated by the results of first-principles calculations, which show a CTiTi hollow as the most stable site for the adsorption of O. Ti and C atoms are involved in the adsorption and dissociation of the O 2 molecule. In general, the bond between O and the TiC(001) surface contains a large degree of ionic character. The carbide→O charge transfer is substantial even at high coverages (>0.5 ML) of oxygen. At 500 K and large doses of O 2 , oxidation of the carbide surface occurs with the removal of C and formation of titanium oxides. There is an activation barrier for the exchange of Ti-C and Ti-O bonds which is overcome only by the formation of C-C or C-O bonds on the surface. The mechanism for the removal of a C atom as CO gas involves a minimum of two O adatoms, and three O adatoms are required for the formation of CO 2 gas. Due to the high stability of TiC, an O adatom alone cannot induce the generation of a C vacancy in a flat TiC(001) surface

  15. Rate of reaction of dimethylmercury with oxygen atoms in the gas phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge

    1986-01-01

    The rate constant for the reaction of atomic oxygen (O(3P)) with dimethylmercury has been measured at room temperature at a pressure of about 1 Torr using a fast flow system with electron paramagnetic resonance and mass spectrometric detection. Some reaction products were identified. The rate...

  16. Study of the metastable singlet of molecular nitrogen and of oxygen atoms in discharges and post-discharges

    International Nuclear Information System (INIS)

    Magne, Lionel

    1991-01-01

    Whereas discharges in nitrogen, in oxygen and in their mixtures are used in many different industrial processes (surface treatment, nitridation, oxidation, and so on), in order to get a better knowledge on nitrogen electronic states, this research thesis reports the study of the metastable singlet state of molecular nitrogen, and of oxygen atoms in their fundamental state. The molecular metastable has been observed by far-UV optical emission spectroscopy, in the positive column of a continuous discharge and in time post-discharge. As far as continuous discharge is concerned, the author measured the vibrational distribution of this state. A kinetic model has been developed, and calculated vibrational distributions are in good agreement with measurements. The density of oxygen atoms in fundamental state in time post-discharge has been measured by far-UV absorption optical spectroscopy. The probability of atom re-association of glass walls is deduced from the obtained results [fr

  17. Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar

    Science.gov (United States)

    Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.

    2017-12-01

    Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.

  18. A reactive empirical bond order (REBO) potential for hydrocarbon-oxygen interactions

    International Nuclear Information System (INIS)

    Ni, Boris; Lee, Ki-Ho; Sinnott, Susan B

    2004-01-01

    The expansion of the second-generation reactive empirical bond order (REBO) potential for hydrocarbons, as parametrized by Brenner and co-workers, to include oxygen is presented. This involves the explicit inclusion of C-O, H-O, and O-O interactions to the existing C-C, C-H, and H-H interactions in the REBO potential. The details of the expansion, including all parameters, are given. The new, expanded potential is then applied to the study of the structure and chemical stability of several molecules and polymer chains, and to modelling chemical reactions among a series of molecules, within classical molecular dynamics simulations

  19. Observation of weakly adsorbed oxygen on Y5Ba6Cu11Oy

    International Nuclear Information System (INIS)

    Kao, Sendjaja; Ng, K.Y.S.

    1992-01-01

    In the Y-Ba-Cu-O compound, several investigators have observed superconductivity-like phenomena at higher temperatures, some even reaching zero resistance at 250 K. Huang et al. reported an observation of sharp resistivity drops, at least four orders of magnitude at ca. 230 K, in one annealed sample of Eu 1 Ba 2 Cu 3 O 6+x . But the resistance drop disappeared after thermal cycling, although the correlated magnetic anomalies observed in their magnetic measurements persisted for many thermal cycles. Recently, Chen et al reported that the superconductivity-like transition at a temperature above 200 K in their mixed-phase YBaCuO persisted for 29 thermal cycles. The samples were treated by a low-temperature (50-70C) oxygenation process and enclosed in oxygen environment during electrical and magnetic measurements. They also found that this higher-temperature transition could not survive thermal cycling when the sample was in helium atmosphere. The role oxygen plays in their observations is not clear, but they speculated that weakly bonded oxygen atom/atoms are responsible for the high-temperature phase. This observation of T c > 200 K in oxygen environment is recently confirmed by Schonberger et al. in highly oriented multiphase Y-Ba-Cu-O thin film. Here, the authors observed, for the first time, adsorption of weakly bonded oxygen at low temperature (≤250C) by a Y 5 Ba 6 Cu 11 O y sample, using thermogravimetric analysis. The resulting oxygen enriched phase in the surface layers may be attributed to the observation of a superconductivity-like transition at above 200 K

  20. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Energy Technology Data Exchange (ETDEWEB)

    López-Moreno, S., E-mail: sinlopez@uacam.mx [Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari 480, Campeche, Campeche 24029 (Mexico); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  1. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Science.gov (United States)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  2. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    International Nuclear Information System (INIS)

    López-Moreno, S.; Romero, A. H.

    2015-01-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O 2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered

  3. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    Science.gov (United States)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  4. Influence of driving frequency on oxygen atom density in O2 radio frequency capacitively coupled plasma

    International Nuclear Information System (INIS)

    Kitajima, Takeshi; Noro, Kouichi; Nakano, Toshiki; Makabe, Toshiaki

    2004-01-01

    The influence of the driving frequency on the absolute oxygen atom density in an O 2 radio frequency (RF) capacitively coupled plasma (CCP) was investigated using vacuum ultraviolet absorption spectroscopy with pulse modulation of the main plasma. A low-power operation of a compact inductively coupled plasma light source was enabled to avoid the significant measurement errors caused by self-absorption in the light source. The pulse modulation of the main plasma enabled accurate absorption measurement for high plasma density conditions by eliminating background signals due to light emission from the main plasma. As for the effects of the driving frequency, the effect of VHF (100 MHz) drive on oxygen atom production was small because of the modest increase in plasma density of electronegative O 2 in contrast to the significant increase in electron density previously observed for electropositive Ar. The recombination coefficient of oxygen atoms on the electrode surface was obtained from a decay rate in the afterglow by comparison with a diffusion model, and it showed agreement with previously reported values for several electrode materials

  5. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities.

    Science.gov (United States)

    Neumann, Piotr; Tittmann, Kai

    2014-12-01

    Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    Science.gov (United States)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  7. Atomic and electronic structures of an extremely fragile liquid.

    Science.gov (United States)

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-12-18

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.

  8. MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis

    Science.gov (United States)

    McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.

    2010-01-01

    Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.

  9. The atomic arrangement of iimoriite-(Y), Y2(SiO4)(CO3)

    Science.gov (United States)

    Hughes, J.M.; Foord, E.E.; Jai-Nhuknan, J.; Bell, J.M.

    1996-01-01

    Iimoriite-(Y) from Bokan Mountain, Prince of Wales Island, Alaska has been studied using single-crystal X-ray-diffraction techniques. The mineral, ideally Y2(SiO4)(CO3), crystallizes in space group P1, with a 6.5495(13), b 6.6291(14), c 6.4395(11)A??, ?? 116.364(15), ?? 92.556(15) and ?? 95.506(17)??. The atomic arrangement has been solved and refined to an R value of 0.019. The arrangement of atoms consists of alternating (011) slabs of orthosilicate groups and carbonate groups, with no sharing of oxygen atoms between anionic complexes in adjacent slabs. Y1 atoms separate adjacent tetrahedra along [100] within the orthosilicate slab, and Y2 atoms separate adjacent carbonate groups along [100] within the carbonate slab. Adjacent orthosilicate and carbonate slabs are linked in (100) by bonding Y atoms from each slab to oxygen atoms of adjacent slabs, in the form of YO8 polyhedra. The Y1 atoms exist in Y12O14 dimers in the orthosilicate slab, and the Y2 atoms exist in continuous [011] ribbons of edge-sharing Y2O8 polyhedra in the carbonate slab.

  10. The caesium oxygen interactions in the crystalline solids

    International Nuclear Information System (INIS)

    Leclaire, Andre

    2008-01-01

    Through the study of the Cs-O bonds registered in the literature one observes that: (i)the bond lengths range from 2.46 to 3.60 A; (ii)the preferential coordination numbers adopted by the caesium ions are 8, 9 and 10 but values from 1 to 12 also exist; (iii)the average bond lengths increase with the coordination (CN) of the caesium ions with the following values: 2.714 A (CN=1), 2.98 A (CN=2), 3.057 A (CN=3), 3.104 A (CN=4), 3.149 A (CN=5), 3.188 A (CN=6), 3.224 A (CN=7), 3.245 A (CN=8), 3.261 A (CN=9), 3.269 A (CN=10), 3.293 A (CN=11) and 3.323 A (CN=12). A new R ij =2.469 constant is determined with all the caesium coordination polyhedra to compute electrostatic bond valence sums. The U eq values of caesium in crystal structure are about 0.03 and generally less than 0.06 similar to those of the oxygen atoms and often bigger. - Graphical abstract: A survey of more than 1000 of oxygen polyhedrons around caesium ions shows bond lengths ranging from 2.46 to 3.60 A with 32% of the shortest bonds in the polyhedrons less than 3.00 A. Coordination numbers from 1 to 12 are observed, in which the average bond lengths increase from 2.714 to 3.323 A with the coordination, and with a preference for 8, 9 and 10-fold surrounding

  11. Self-assembly of alkanethiolates directs sulfur bonding with GaAs(100)

    Energy Technology Data Exchange (ETDEWEB)

    Mancheno-Posso, Pablo; Muscat, Anthony J., E-mail: muscat@email.arizona.edu

    2017-03-01

    Highlights: • Alkanethiolate monolayers were formed on GaAs(100) using a 20 min liquid immersion. • The longest chain containing 20 CH{sub 2} groups protected the surface for 30 min from reoxidation. • A reaction-diffusion model shows that oxygen diffusion through the carbon chains is fast. • Alkanethiolates protect the surface by reducing the reaction rate of oxygen with the surface. • Assembly of the alkane chains directs sulfur atoms to bond to the surface. - Abstract: Molecules that contain linear alkane chains self-assemble on a variety of surfaces changing the degree of wetting, lubricity, and reactivity. We report on the reoxidation of GaAs(100) in air after adsorbing five alkanethiols (C{sub n}H{sub 2n+1}-SH where n = 3, 6, 12, 18, 20) and one alkanedithiol (HS-(CH{sub 2}){sub 8}-SH) deposited from the liquid phase. The alignment of the alkane chains forms a self-assembled layer, however, air diffuses readily through the carbon layer and reaches the surface. The impact of alignment is to improve the bonding of sulfur with the surface atoms which reduces the oxidation rate based on fitting the data to a reaction-diffusion model. The layer thickness and molecular density scale linearly with the number of carbon atoms in the alkane chain. The thickness of the alkanethiolate (RS{sup −}) layer grows by 0.87 ± 0.06 Å for each C atom in the chain and the surface density by 0.13 ± 0.03 molecule per nm{sup 2} per C atom up to a coverage of 5.0 molecules/nm{sup 2} for n = 20 or 0.8 monolayer. The surface coverage increases with length because interactions between methylene (CH{sub 2}) groups in neighboring chains reduce the tilt angle of the molecules with the surface normal. The tight packing yields areas per alkanethiolate as low as 20 Å{sup 2} for n = 20. The amount of C in the layer divided by the chain length is approximately constant up to n = 12 but increases sharply by a factor of 2–4× for n = 18 and 20 based on the C 1s X

  12. Surface activation of cyclo olefin polymer by oxygen plasma discharge: a molecular dynamics study

    International Nuclear Information System (INIS)

    Soberon, Felipe

    2014-01-01

    Thermoplastic substrates made of cyclo olefin polymer (COP) are treated with oxygen plasma discharges to introduce polar groups at the surface. This is the first step in the process of surface functionalization of COP substrates used in biosensor devices. A molecular dynamics model of basic COP structure is implemented using the second-generation reactive empirical bond order (REBO) potentials for hydrocarbon–oxygen interactions. The model includes covalent bond and Van der Waals interactions. The bombardment of a COP surface with mono-energetic atomic oxygen ions, energy in the range 1-35 eV, is simulated and reported here. The dynamics of the substrate modification reveals that the substrate top layer is de-hydrogenated and subsequently builds up an oxygen–carbon matrix layer, ∼10 Å thick. Analysis of the modified substrates indicates that surface yield is predominantly peroxide groups. (paper)

  13. Study of atomic excitations in sputtering with targets partially covered with oxygen

    International Nuclear Information System (INIS)

    Weng, J.; Veje, E.

    1984-01-01

    We have bombarded pure, elemental targets of Be, B, Mg, Al, Si, Ti, and Au with 80 keV Ar + ions and studied excitation of sputtered atoms or ions under UHV conditions as well as with oxygen present at the target surface. The measurements on Mg, Al, Si, and Ti have been done at projectile incidence angles from 0 0 to 85 0 . Excitation probabilities for gold were found to be only very little influenced by oxygen, but for Be, B, Mg, Al, Si, and Ti, the excitation probabilities were in many, but not all, cases found to depend strongly on the oxygen pressure as well as on the beam current density. This indicates that the excitation mechanism is strongly dependent on the initial electronic conditions of the solid. (orig.)

  14. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis.

    Science.gov (United States)

    Twilton, Jack; Christensen, Melodie; DiRocco, Daniel A; Ruck, Rebecca T; Davies, Ian W; MacMillan, David W C

    2018-05-04

    The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C-H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C-H bonds while simultaneously suppressing C-O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C-H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea.

    Science.gov (United States)

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The analysis of molecular electron density matrices in terms of quasi-atomic orbitals, which was developed in previous investigations, is quantitatively exemplified by a detailed application to the urea molecule. The analysis is found to identify strong and weak covalent bonding interactions as well as intramolecular charge transfers. It yields a qualitative as well as quantitative ab initio description of the bonding structure of this molecule, which raises questions regarding some traditional rationalizations.

  16. Quantum mechanics models of the methanol dimer: O-H…O hydrogen bonds of ß-D-glucose moieties from crystallographic data.

    Science.gov (United States)

    In this study, a survey of the Cambridge Crystal Structure Database for all donor-acceptor interactions in ß-D-glucose moieties was performed to examine the similarities and differences among the different hydroxyl groups and ether oxygen atoms that participate in hydrogen bonds. Comparable behavior...

  17. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.

    Science.gov (United States)

    Lee, Christopher M; Kubicki, James D; Fan, Bingxin; Zhong, Linghao; Jarvis, Michael C; Kim, Seong H

    2015-12-10

    Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial. In this study, we performed calculations using density functional theory with dispersion corrections (DFT-D2) for the cellulose Iβ crystal lattices with the experimentally determined carbon and oxygen coordinates. DFT-D2 calculations revealed that the OH stretch vibrations of cellulose are highly coupled and delocalized through intra- and interchain hydrogen bonds involving all OH groups in the crystal. Additionally, molecular dynamics (MD) simulations of a single cellulose microfibril showed that the conformations of OH groups exposed at the microfibril surface are not well-defined. Comparison of the computation results with the experimentally determined IR dichroism of uniaxially aligned cellulose microfibrils and the peak positions of various cellulose crystals allowed unambiguous identification of OH stretch modes observed in the vibrational spectra of cellulose.

  18. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    Science.gov (United States)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  19. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    Science.gov (United States)

    Mozetic, Miran; Cvelbar, Uros

    2009-08-01

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 × 1021 m-3. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O2 molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  20. Processing and Protection of Rare Earth Permanent Magnet Particulate for Bonded Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Peter Kelly [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Rapid solidification of novel mixed rare earth-iron-boron, MRE2Fe14B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 105-106K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH)max for bonded magnets in high performance applications. Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF3). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while 'in flight' may eliminate the

  1. An Extended X-ray Absorption Fine Structure Study of Rhodium-Oxygen Bonds in a Highly Dispersed Rhodium/Aluminum Oxide Catalyst

    NARCIS (Netherlands)

    Koningsberger, D.C.; Zon, J.B.A.D. van; Blik, H.F.J. van 't; Visser, G.J.; Prins, R.; Mansour, A.N.; Sayers, D.E.; Short, D.R.

    1985-01-01

    Analysis of in situ EXAFS measurements on a 2.4 wt % Rh/A120, catalyst, reduced at 473 K after calcination at 623 K, shows the presence of two different rhodium-oxygen bonds (viz. 2.05 and 2.68 A). The oxygen neighbors of rhodium at a distance of 2.05 A disappear after reduction at 673 K. The

  2. Atomic and electronic structure of neutral and charged SinOm clusters

    International Nuclear Information System (INIS)

    Nayak, S.K.; Rao, B.K.; Khanna, S.N.; Jena, P.

    1998-01-01

    Using molecular orbital approach and the generalized gradient approximation in the density functional theory, we have calculated the equilibrium geometries, binding energies, ionization potentials, and vertical and adiabatic electron affinities of Si n O m clusters (n≤6,m≤12). The calculations were carried out using both Gaussian and numerical form for the atomic basis functions. Both procedures yield very similar results. The bonding in Si n O m clusters is characterized by a significant charge transfer between the Si and O atoms and is stronger than in conventional semiconductor clusters. The bond distances are much less sensitive to cluster size than seen for metallic clusters. Similarly, calculated energy gaps between the highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) of (SiO 2 ) n clusters increase with size while the reverse is the norm in most clusters. The HOMO-LUMO gap decreases as the oxygen content of a Si n O m cluster is lowered eventually approaching the visible range. The photoluminescence and strong size dependence of optical properties of small silica clusters could thus be attributed to oxygen defects. copyright 1998 American Institute of Physics

  3. First-principles study of hydrogen-bonded molecular conductor κ -H3(Cat-EDT-TTF/ST)2

    Science.gov (United States)

    Tsumuraya, Takao; Seo, Hitoshi; Kato, Reizo; Miyazaki, Tsuyoshi

    2015-07-01

    We theoretically study hydrogen-bonded molecular conductors synthesized recently, κ -H3(Cat-EDT-TTF) 2 and its diselena analog, κ -H3(Cat-EDT-ST) 2, by first-principles density functional theory calculations. In these crystals, two H(Cat-EDT-TTF/ST) units share a hydrogen atom with a short O-H-O hydrogen bond. The calculated band structure near the Fermi level shows a quasi-two-dimensional character with a rather large interlayer dispersion due to the absence of insulating layers, in contrast with conventional molecular conductors. We discuss effective low-energy models based on H(Cat-EDT-TTF/ST) units and its dimers, respectively, where the microscopic character of the orbitals composing them are analyzed. Furthermore, we find a stable structure which is different from the experimentally determined structure, where the shared hydrogen atom becomes localized to one of the oxygen atoms, in which charge disproportionation between the two types of H(Cat-EDT-TTF) units is associated. The calculated potential energy surface for the H atom is very shallow near the minimum points; therefore the probability of the H atom can be delocalized between the two O atoms.

  4. First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques

    International Nuclear Information System (INIS)

    Fang, H. Z.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Alfonso, D.; Alman, D. E.; Shin, Y. K.; Zou, C. Y.; Duin, A. C. T. van; Lei, Y. K.; Wang, G. F.

    2014-01-01

    This paper is concerned with the prediction of oxygen diffusivities in fcc nickel from first-principles calculations and large-scale atomic simulations. Considering only the interstitial octahedral to tetrahedral to octahedral minimum energy pathway for oxygen diffusion in fcc lattice, greatly underestimates the migration barrier and overestimates the diffusivities by several orders of magnitude. The results indicate that vacancies in the Ni-lattice significantly impact the migration barrier of oxygen in nickel. Incorporation of the effect of vacancies results in predicted diffusivities consistent with available experimental data. First-principles calculations show that at high temperatures the vacancy concentration is comparable to the oxygen solubility, and there is a strong binding energy and a redistribution of charge density between the oxygen atom and vacancy. Consequently, there is a strong attraction between the oxygen and vacancy in the Ni lattice, which impacts diffusion

  5. Global and local approaches to population analysis: Bonding patterns in superheavy element compounds

    Science.gov (United States)

    Oleynichenko, Alexander; Zaitsevskii, Andréi; Romanov, Stepan; Skripnikov, Leonid V.; Titov, Anatoly V.

    2018-03-01

    Relativistic effective atomic configurations of superheavy elements Cn, Nh and Fl and their lighter homologues (Hg, Tl and Pb) in their simple compounds with fluorine and oxygen are determined using the analysis of local properties of molecular Kohn-Sham density matrices in the vicinity of heavy nuclei. The difference in populations of atomic spinors with the same orbital angular momentum and different total angular momenta is demonstrated to be essential for understanding the peculiarities of chemical bonding in superheavy element compounds. The results are fully compatible with those obtained by the relativistic iterative version of conventional projection analysis of global density matrices.

  6. The effect of oxygen impurity on the electronic and optical properties of calcium, strontium and barium chalcogenide compounds

    International Nuclear Information System (INIS)

    Dadsetani, M.; Beiranvand, R.

    2010-01-01

    Electronic and optical properties of calcium, strontium and barium chalcogenide compounds in NaCl structure are studied using the band structure results obtained through the full potential linearized augmented palne wave method. Different linear relationships are observed between theoretical band gap and 1/a 2 (where a is lattice constant) for calcium, strontium and barium chalcogenide compounds with and without oxygen, respectively. An abnormal behavior of electronic and optical properties are found for compounds containing oxygen. These effects are ascribed to the special properties of Ca-O, Sr-O and Ba-O bonds, which are different from chemical bonds between Ca, Sr and Ba and other chalcogen atoms.

  7. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions.

    Science.gov (United States)

    Mitra, Mainak; Nimir, Hassan; Demeshko, Serhiy; Bhat, Satish S; Malinkin, Sergey O; Haukka, Matti; Lloret-Fillol, Julio; Lisensky, George C; Meyer, Franc; Shteinman, Albert A; Browne, Wesley R; Hrovat, David A; Richmond, Michael G; Costas, Miquel; Nordlander, Ebbe

    2015-08-03

    Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.

  8. Bond lengths and bond strengths in compounds of the 5f elements

    International Nuclear Information System (INIS)

    Zachariasen, W.H.

    1975-01-01

    The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j) Ssub(ij)=vsub(i) and Σsub(i) Ssub(ij)=vsub(j), where vsub(i) and vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. The method described above was used to interpret and systematize the experimental results on bond lengths in oxides, halides, and oxyhalides of the 5f elements. (U.S.)

  9. Determination of diffusion coefficients of oxygen atoms in ZrO2 using first-principles calculations

    International Nuclear Information System (INIS)

    Segi, Takashi; Okuda, Takanari

    2014-01-01

    Density functional theory and nudged elastic band calculations were performed in order to determine the diffusion coefficient for oxygen from monoclinic ZrO 2 . The calculated values for monoclinic ZrO 2 at 1000 K and 1500 K were 5.88 × 10 -16 cm 2 s -1 and 2.91 × 10 -11 cm 2 s -1 , respectively, and agreed with previously determined experimental values. In addition, the results of the nudged elastic band calculations suggest that interstitial oxygen sites exist between stable oxygen sites, and if oxygen atoms occupy these sites, stable structures with values for the lattice angle β of greater than 80.53° may be obtained. (author)

  10. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  11. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  12. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao; Feng, Qiong; Cheng, Yingchun; Yao, Yingbang; Wang, Qingxiao; Li, Kun; Schwingenschlö gl, Udo; Zhang, Xixiang; Yang, Wei

    2013-01-01

    and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal

  13. Bonding and doping of simple icosahedral-boride semiconductors

    International Nuclear Information System (INIS)

    Emin, David

    2004-01-01

    A simple model of the bonding and doping of a series of icosahedral-boride insulators is presented. Icosahedral borides contain clusters of boron atoms that occupy the 12 vertices of icosahedra. This particular series of icosahedral borides share both the stoichiometry B 12 X 2 , where X denotes a group V element (P or As), and a common lattice structure. The inter-icosahedral bonding of these icosahedral borides is contrasted with that of B 12 O 2 and with that of α-rhombohedral boron. Knowledge of the various types of inter-icosahedral bonding is used as a basis to address effects of inter-icosahedral atomic substitutions. The inter-icosahedral bonding is maintained when an atom of a group V element is replaced with an atom of a group IV element, thereby producing a p-type dopant. However, changes of inter-icosahedral bonding occur upon replacing an atom of a group V element with an atom of a group VI element or with a vacancy. As a result, these substitutions do not produce effective n-type dopants. Moreover, partial substitution of boron atoms for atoms of group V elements generally renders these materials p-type semiconductors

  14. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  15. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  16. REVIEW ARTICLE: Oxygen diffusion and precipitation in Czochralski silicon

    Science.gov (United States)

    Newman, R. C.

    2000-06-01

    The objective of this article is to review our understanding of the properties of oxygen impurities in Czochralski silicon that is used to manufacture integrated circuits (ICs). These atoms, present at a concentration of ~1018 cm-3, occupy bond-centred sites (Oi) in as-grown Si and the jump rate between adjacent sites defines `normal' diffusion for the temperature range 1325 - 330 °C. Anneals at high temperatures lead to the formation of amorphous SiO2 precipitates that act as traps for fast diffusing metallic contaminants, such as Fe and Cu, that may be inadvertently introduced at levels as low as 1011 cm-3. Without this `gettering', there may be severe degradation of fabricated ICs. To accommodate the local volume increase during oxygen precipitation, there is parallel generation of self-interstitials that diffuse away and form lattice defects. High temperature (T > 700 °C) anneals are now well understood. Details of lower temperature processes are still a matter of debate: measurements of oxygen diffusion into or out of the Si surface and Oi atom aggregation have implied enhanced diffusion that has variously been attributed to interactions of Oi atoms with lattice vacancies, self-interstitials, metallic elements, carbon, hydrogen impurities etc. There is strong evidence for oxygen-hydrogen interactions at T continue to decrease as the size of future device features decreases below the lower end of the sub-micron range, currently close to 0.18 µm.

  17. Structure and weak hydrogen bonds in liquid acetaldehyde

    Directory of Open Access Journals (Sweden)

    Cordeiro Maria A. M.

    2004-01-01

    Full Text Available Monte Carlo simulations have been performed to investigate the structure and hydrogen bonds formation in liquid acetaldehyde. An all atom model for the acetaldehyde have been optimized in the present work. Theoretical values obtained for heat of vaporisation and density of the liquid are in good agreement with experimental data. Graphics of radial distribution function indicate a well structured liquid compared to other similar dipolar organic liquids. Molecular mechanics minimization in gas phase leads to a trimer of very stable structure. The geometry of this complex is in very good agreement with the rdf. The shortest site-site correlation is between oxygen and the carbonyl hydrogen, suggesting that this correlation play a important role in the liquid structure and properties. The OxxxH average distance and the C-HxxxO angle obtained are characteristic of weak hydrogen bonds.

  18. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    (loose contact) the rate constants for a number of catalytic materials outline a volcano curve when plotted against their heats of oxygen chemisorption. However, the optima of the volcanoes correspond to different heats of chemisorption for the two contact situations. In both cases the activation...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  19. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    Science.gov (United States)

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electron population uncertainty and atomic covalency

    International Nuclear Information System (INIS)

    Chesnut, D.B.

    2006-01-01

    The atoms-in-molecules (AIM) index of atomic covalency is directly related to the AIM atomic population uncertainty. The covalent bond order, delocalization index, and, therefore, the atomic covalency are maximal when electron pairs are equally shared by the atoms involved. When polarization effects are present, these measures of covalent bond character decrease. We present atomic covalences for the single- and double-heavy atom hydrides of elements of the first and second low rows of the periodic table to illustrate these effects. Some usual behavior is seen in hydrogen-bridged species due in some cases to stronger than expected multicenter bonds and in other cases to many atoms contributing to the covalency index

  1. Simulation of multi-atomic interactions in H-O-W system with the MD code CADAC

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I.S. [Forschungszentrum Karlsruhe, Institute for Pulsed Power and Microwave Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)]. E-mail: igor.landman@ihm.fzk.de

    2005-11-15

    For future tokamak reactors, chemical erosion of tungsten armour surfaces under impact of hot deuterium-tritium plasma that contains impurities, for instance oxygen, is an important issue. Oxygen can form volatile molecular complexes O {sub x}W {sub y} at the surface, and the retained H-atoms form the volatile complexes H {sub x}O {sub y}, which mitigates the erosion (H states for hydrogen isotopes). The plasma impact can substantially destroy the complexes. To describe this H-O-W system, the molecular dynamics (MD) code CADAC was earlier developed using only pair-atomic interactions. Now CADAC is extended for multi-body forces to simulate molecular organization of atoms near the tungsten surface. The approach uses the Abell's model of empirical bond-order potentials in addition combined, for the first time, with a valence concept. CADAC simulates chemical features using atomic valences and the Morse potentials. The new model is introduced and model parameters are estimated.

  2. Simulation of multi-atomic interactions in H-O-W system with the MD code CADAC

    International Nuclear Information System (INIS)

    Landman, I.S.

    2005-01-01

    For future tokamak reactors, chemical erosion of tungsten armour surfaces under impact of hot deuterium-tritium plasma that contains impurities, for instance oxygen, is an important issue. Oxygen can form volatile molecular complexes O x W y at the surface, and the retained H-atoms form the volatile complexes H x O y , which mitigates the erosion (H states for hydrogen isotopes). The plasma impact can substantially destroy the complexes. To describe this H-O-W system, the molecular dynamics (MD) code CADAC was earlier developed using only pair-atomic interactions. Now CADAC is extended for multi-body forces to simulate molecular organization of atoms near the tungsten surface. The approach uses the Abell's model of empirical bond-order potentials in addition combined, for the first time, with a valence concept. CADAC simulates chemical features using atomic valences and the Morse potentials. The new model is introduced and model parameters are estimated

  3. Study of apical oxygen atoms in a spin-ladder cuprate compound by X-ray absorption spectroscopy near the Cu K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hatterer, C.J.; Eustache, B.; Collin, L.; Beuran, C.F.; Partiot, C.; Germain, P.; Xu, X.Z.; Lagues, M. [CNRS, Paris (France). Surfaces et Supraconducteurs; Michalowicz, A. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France)]|[LURE, Universite Paris Sud, 91405, Orsay Cedex (France); Moscovici, J. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France); Deville Cavellin, C. [CNRS, Paris (France). Surfaces et Supraconducteurs]|[Laboratoire d`Electronique, Universite Paris XII Val-de-Marne, 61 av. du general de Gaulle, 94010, Creteil Cedex (France); Traverse, A. [LURE, Universite Paris Sud, 91405, Orsay Cedex (France)

    1997-04-01

    The structure of high-T{sub c} superconducting cuprate compounds is based on CuO{sub 2} planes alternating with blocks that behave as charge reservoirs. The apical oxygen atoms which belong to these reservoirs are suspected to play a role in the mechanism of superconductivity. It thus seems necessary to measure the amount of apical oxygen atoms in various compounds, as a function of the superconducting properties. Polarisation dependent X-ray absorption spectroscopy (XAS) measurements were performed near the Cu K-edge on three types of phases. We collected information about the neighbourhood of the copper atom in the cuprate planes and in the direction perpendicular to these planes. Two of these phases have well known structures: Bi2212 in which copper atoms are on a pyramidal site and infinite layer phase, a square planar cuprate without apical oxygen. We used the obtained results as reference data to study a new copper-rich phase related to the spin-ladder series. (orig.)

  4. Electronic excitation of Ti atoms sputtered by energetic Ar+ and He+ from clean and monolayer oxygen covered surfaces

    International Nuclear Information System (INIS)

    Pellin, M.J.; Gruen, D.M.; Young, C.E.; Wiggins, M.D.; Argonne National Lab., IL

    1983-01-01

    Electronic excitation of Ti atoms ejected during energetic ion bombardment (Ar + , He + ) of well characterized clean and oxygen covered polycrystalline Ti metal surfaces has been determined. For states with 0 to 2 eV and 3 to 5.5 eV of electronic energy, static mode laser fluorescence spectroscopy (LFS) and static mode spontaneous fluorescence spectroscopy (SFS) were used respectively. These experiments which were carried out in a UHV ( -10 Torr) system equipped with an Auger spectrometer provide measurements of the correlation between oxygen coverage (0 to 3 monolayers) and the excited state distribution of sputtered Ti atoms. The experimentally determined electronic partition function of Ti atoms does not show an exponential dependence on energy (E) above the ground state but rather an E -2 or E -3 power law dependence. (orig.)

  5. Adsorption of atomic oxygen (N2O) on a clean Ge(001) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Keim, Enrico G.; van Silfhout, Arend

    1990-01-01

    We present the results of a study concerning the interaction of atomic oxygen (as released by decomposition of N2O ) with the clean Ge(001)2×1 surface at 300 K. Ellipsometry in the photon energy range of 1.5–4 eV, surface conductance measurements and Auger electron spectroscopy(AES) have been used

  6. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    Directory of Open Access Journals (Sweden)

    Hailiang Zhao

    2016-12-01

    Full Text Available Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  7. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    Science.gov (United States)

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  8. Number series of atoms, interatomic bonds and interface bonds defining zinc-blende nanocrystals as function of size, shape and surface orientation: Analytic tools to interpret solid state spectroscopy data

    Directory of Open Access Journals (Sweden)

    Dirk König

    2016-08-01

    Full Text Available Semiconductor nanocrystals (NCs experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size dNC. I deduce geometrical number series as analytical tools to obtain the number of NC atoms NNC(dNC[i], bonds between NC atoms Nbnd(dNC[i] and interface bonds NIF(dNC[i] for seven high symmetry zinc-blende (zb NCs with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.

  9. O-, N-Atoms-Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts.

    Science.gov (United States)

    Yang, Yang; Mao, Kaitian; Gao, Shiqi; Huang, Hao; Xia, Guoliang; Lin, Zhiyu; Jiang, Peng; Wang, Changlai; Wang, Hui; Chen, Qianwang

    2018-05-28

    Manganese (Mn) is generally regarded as not being sufficiently active for the oxygen reduction reaction (ORR) compared to other transition metals such as Fe and Co. However, in biology, manganese-containing enzymes can catalyze oxygen-evolving reactions efficiently with a relative low onset potential. Here, atomically dispersed O and N atoms coordinated Mn active sites are incorporated within graphene frameworks to emulate both the structure and function of Mn cofactors in heme-copper oxidases superfamily. Unlike previous single-metal catalysts with general M-N-C structures, here, it is proved that a coordinated O atom can also play a significant role in tuning the intrinsic catalytic activities of transition metals. The biomimetic electrocatalyst exhibits superior performance for the ORR and zinc-air batteries under alkaline conditions, which is even better than that of commercial Pt/C. The excellent performance can be ascribed to the abundant atomically dispersed Mn cofactors in the graphene frameworks, confirmed by various characterization methods. Theoretical calculations reveal that the intrinsic catalytic activity of metal Mn can be significantly improved via changing local geometry of nearest coordinated O and N atoms. Especially, graphene frameworks containing the Mn-N 3 O 1 cofactor demonstrate the fastest ORR kinetics due to the tuning of the d electronic states to a reasonable state. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Triple oxygen isotope systematics of structurally bonded water in gypsum

    Science.gov (United States)

    Herwartz, Daniel; Surma, Jakub; Voigt, Claudia; Assonov, Sergey; Staubwasser, Michael

    2017-07-01

    The triple oxygen isotopic composition of gypsum mother water (gmw) is recorded in structurally bonded water in gypsum (gsbw). Respective fractionation factors have been determined experimentally for 18O/16O and 17O/16O. By taking previous experiments into account we suggest using 18αgsbw-gmw = 1.0037; 17αgsbw-gmw = 1.00195 and θgsbw-gmw = 0.5285 as fractionation factors in triple oxygen isotope space. Recent gypsum was sampled from a series of 10 ponds located in the Salar de Llamara in the Atacama Desert, Chile. Total dissolved solids (TDS) in these ponds show a gradual increase from 23 g/l to 182 g/l that is accompanied by an increase in pond water 18O/16O. Gsbw falls on a parallel curve to the ambient water from the saline ponds. The offset is mainly due to the equilibrium fractionation between gsbw and gmw. However, gsbw represents a time integrated signal biased towards times of strong evaporation, hence the estimated gmw comprises elevated 18O/16O compositions when compared to pond water samples taken on site. Gypsum precipitation is associated with algae mats in the ponds with lower salinity. No evidence for respective vital effects on the triple oxygen isotopic composition of gypsum hydration water is observed, nor are such effects expected. In principle, the array of δ18Ogsbw vs. 17Oexcess can be used to: (1) provide information on the degree of evaporation during gypsum formation; (2) estimate pristine meteoric water compositions; and (3) estimate local relative humidity which is the controlling parameter of the slope of the array for simple hydrological situations. In our case study, local mining activities may have decreased deep groundwater recharge, causing a recent change of the local hydrology.

  11. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  12. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    Science.gov (United States)

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  13. Characterizing agosticity using the quantum theory of atoms in molecules: bond critical points and their local properties.

    Science.gov (United States)

    Tognetti, Vincent; Joubert, Laurent; Raucoules, Roman; De Bruin, Theodorus; Adamo, Carlo

    2012-06-07

    In this paper, we extend the work of Popelier and Logothetis [J. Organomet. Chem. 1998, 555, 101] on the characterization of agosticity by considerably enlarging the set of the studied organometallic molecules. To this aim, 23 representative complexes have been considered, including all first line transition metals at various oxidation states and exhibiting four types of agosticity (α, β, γ, and δ). From these examples, the concepts of agostic atom, agostic bond, and agostic interaction are defined and discussed, notably by advocating Bader's analysis of the electron density. The nature and the local properties of the bond critical points are then investigated, and the relationships with the main geometric parameters of the complexes are particularly examined. Moreover, new local descriptors based on kinetic energy densities are developed in order to provide new tools for bond characterization.

  14. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  15. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  16. Effects of atomic oxygen on titanium dioxide thin film

    Science.gov (United States)

    Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi

    2018-05-01

    In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.

  17. The formation of non-oxidic oxygen phases on Ru(0001). From the first stages of the oxygen take-up to oxidation

    International Nuclear Information System (INIS)

    Blume, R.

    2005-01-01

    The aim of the thesis presented here was the investigation of the formation of non oxidic oxygen phases on the Ru(0001) surface. Smooth and defect rich surfaces were exposed to high oxygen pressures (up to 1 bar) at moderate temperatures (550 K). The characterisation was performed under UHV conditions using Thermal Desorption Spectroscopy (TDS), Scanning Photoemission Microscopy (SPEM), Thermal Energy Atomic Scattering (TEAS), Ultraviolett Photoelectron Spectroscopy (UPS) and Low Energy Electron Diff raction (LEED) as well as In situ by the In Situ X-Ray Photoelectron Spectroscopy (In Situ XPS). The application of this Low Temperature preparation procedure (LT) leads to an Oxygen uptake up to 3 MLE of ''subsurface'' oxygen into a smooth Ru(0001) surface without the typical indications of oxidation (MLE: Monolayer Equivalent). The accumulation of oxygen beneath the surface starts immediatly after the completion of a full chemisorbed layer. Here, the local saturation of the adsorbed oxygen is the decisive step. Diff usion of oxygen directly through the chemisorbed layer only slightly contributes to the overall uptake. Oxygen is mostly accomodated in the vicinity of the surface via surface defects which has been shown on defect rich surfaces created by mild Ar+ sputtering. The maximum oxygen capacity is 10 Atoms/Defect. The uptake is thermally activated with an activation energy of 0.15 eV. The oxygen uptake causes a massive structural change of at least the top two ruthenium layers. Whereas the ruthenium atoms of the first layer are coordinated with up to four, those of the second layer are coordinated with up to two oxygen atoms. These binding condition are metastable and can be changed by annealing the surface. With reaching the desorption temperature two distinct desorption peaks are observed with TDS. For an accumulation of about 0.5 MLE of ''subsurface'' oxygen the desorption proceeds exclusively at the characteristic temperature of the chemisorbed layer at 1040

  18. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    Science.gov (United States)

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom.

  19. Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods

    Science.gov (United States)

    Yin, Zhifu; Sun, Lei; Zou, Helin; Cheng, E.

    2015-05-01

    A method for obtaining a low-cost and high-replication precision two-dimensional (2D) nanofluidic device with a polymethyl methacrylate (PMMA) sheet is proposed. To improve the replication precision of the 2D PMMA nanochannels during the hot embossing process, the deformation of the PMMA sheet was analyzed by a numerical simulation method. The constants of the generalized Maxwell model used in the numerical simulation were calculated by experimental compressive creep curves based on previously established fitting formula. With optimized process parameters, 176 nm-wide and 180 nm-deep nanochannels were successfully replicated into the PMMA sheet with a replication precision of 98.2%. To thermal bond the 2D PMMA nanochannels with high bonding strength and low dimensional loss, the parameters of the oxygen plasma treatment and thermal bonding process were optimized. In order to measure the dimensional loss of 2D nanochannels after thermal bonding, a dimension loss evaluating method based on the nanoindentation experiments was proposed. According to the dimension loss evaluating method, the total dimensional loss of 2D nanochannels was 6 nm and 21 nm in width and depth, respectively. The tensile bonding strength of the 2D PMMA nanofluidic device was 0.57 MPa. The fluorescence images demonstrate that there was no blocking or leakage over the entire microchannels and nanochannels.

  20. Vibrational Relaxation of Ground-State Oxygen Molecules With Atomic Oxygen and Carbon Dioxide

    Science.gov (United States)

    Saran, D. V.; Pejakovic, D. A.; Copeland, R. A.

    2008-12-01

    Vertical water vapor profiles are key to understanding the composition and energy budget in the mesosphere and lower thermosphere (MLT). The SABER instrument onboard NASA's TIMED satellite measures such profiles by detecting H2O(ν2) emission in the 6.8 μm region. Collisional deactivation of vibrationally excited O2, O2(X3Σ-g, υ = 1) + H2O ↔ O2(X3Σ-g, υ = 0) + H2O(ν2), is an important source of H2O(ν2). A recent study has identified two other processes involving excited O2 that control H2O(ν2) population in the MLT: (1) the vibrational-translational (V-T) relaxation of O2(X3Σ-g, υ = 1) level by atomic oxygen and (2) the V-V exchange between CO2 and excited O2 molecules [1]. Over the past few years SRI researchers have measured the atomic oxygen removal process mentioned above at room temperature [2] and 240 K [3]. These measurements have been incorporated into the models for H2O(ν2) emission [1]. Here we report laboratory studies of the collisional removal of O2(X3Σ-g, υ = 1) by O(3P) at room temperature and below, reaching temperatures relevant to mesopause and polar summer MLT (~150 K). Instead of directly detecting the O2(X3Σ-g, υ = 1) population, a technically simpler approach is used in which the υ = 1 level of the O2(a1Δg) state is monitored. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δg, υ = 1), and the pulsed output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ-g, υ = 1) and O2(a1Δg, υ = 1) populations via the processes O2(a1Δg, υ = 1) + O2(X3Σ-g, υ = 0) ↔ O2(a1Δg, υ = 0) + O2(X3Σ-g, υ = 1), the information on the O2(X3Σ-g, υ = 1) kinetics is extracted from the O2(a1Δg, υ = 1) temporal evolution. In addition, measurements of the removal of O2(X3Σ-g, υ = 1) by CO2 at room temperature will also

  1. Simulant molecules with trivalent or pentavalent phosphorus atoms: bond dissociation energies and other thermodynamic and structural properties from quantum chemical models.

    Science.gov (United States)

    Hahn, David K; RaghuVeer, Krishans S; Ortiz, J V

    2011-08-04

    The CBS-QB3 and G4 thermochemical models have been used to generate energetic, structural, and spectroscopic data on a set of molecules with trivalent or pentavalent phosphorus atoms that can serve as simulants of chemical warfare agents. Based on structural data, the conformational stabilities of these molecules are explained in terms of the anomeric interaction within the OPOC and OPSC fragments. For those cases where experimental data are available, comparisons have been made between calculated and previously reported vibrational frequencies. All varieties of bond dissociation energies have been examined except those for C-H and P═O bonds. In trivalent phosphorus molecules, the O-C and S-C bonds have the lowest dissociation energies. In the pentavalent phosphorus set, the S-C bonds, followed by P-S bonds, have the lowest dissociation energies. In the fluorinated simulant molecules, the P-F bond is strongest, and the P-C or O-C bonds are weakest. © 2011 American Chemical Society

  2. Insights into thermal diffusion of germanium and oxygen atoms in HfO2/GeO2/Ge gate stacks and their suppressed reaction with atomically thin AlOx interlayers

    International Nuclear Information System (INIS)

    Ogawa, Shingo; Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji; Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi

    2015-01-01

    The thermal diffusion of germanium and oxygen atoms in HfO 2 /GeO 2 /Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that 18 O-tracers composing the GeO 2 underlayers diffuse within the HfO 2 overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO 2 also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO 2 surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO x interlayers between the HfO 2 and GeO 2 layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks

  3. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5

    Science.gov (United States)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.

  4. Stability of V2O5 Supported on Titania in the Presence of Water, Bulk Oxygen Vacancies, and Adsorbed Oxygen Atoms

    DEFF Research Database (Denmark)

    Kristoffersen, Henrik Høgh; Neilson, Hunter L.; Buratto, Steven K.

    2017-01-01

    ). In the case of oxidative dehydrogenation of alkanes and methanol, the reaction produces water, oxygen vacancies, and hydrogen atoms bound to the surface. For this article we use density functional theory to examine how the presence of these species on the surface affects a V2O5 cluster, which we assume......A catalyst consisting of vanadium oxide submonolayers supported on rutile titanium dioxide is used for a variety of reactions. One important question is the difference between the activity of monomeric clusters (having one vanadium atom) and polymeric clusters (having more than one vanadium atom...

  5. Phenylacetylene and H bond

    Indian Academy of Sciences (India)

    ... all resembling H bonds. Non-linear H bonds due to secondary interactions. C-H stretching frequency shows blue shift. Heavy atom distances are longer than the sum of van der Waals radii. Formed a task group through IUPAC to come up with a modern definition of H bond. 15 international experts including Desiraju.

  6. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO2 grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    The effect of post-deposition annealing on chemical bonding states at interface between Al 0.5 Ga 0.5 N and ZrO 2 grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO 2 on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO 2 /AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO 2 /AlGaN interface are easier to get oxidized as compared with Ga atoms

  7. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    1996-07-01

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  8. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO{sub 2} interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jialin; Ma, Tianbao [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Zhang, Weiwei; Psofogiannakis, George; Duin, Adri C.T. van [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Lei; Qian, Linmao [Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031 (China); Hu, Yuanzhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2016-12-30

    Highlights: • New ReaxFF reactive force field was applied to simulate the tribochemical wear process at Si/SiO{sub 2} interface. • Wear of silicon atoms is due to the breaking of Si–O–Si bonds and Si–Si–O–Si bond chains on the Si substrate. • Interfacial bridge bonds play an important role during the tribochemical wear process. • Higher pressures applied to the silica phase can cause more Si atoms to be removed by forming more interfacial bridge bonds. • Water plays an opposing role in the wear process because of its both chemical and mechanical effects. - Abstract: In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO{sub 2} interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si–O–Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si–Si bonds in the stretched Si–Si–O–Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si–O–Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si–O–Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.

  9. Science and technology of plasma activated direct wafer bonding

    Science.gov (United States)

    Roberds, Brian Edward

    This dissertation studied the kinetics of silicon direct wafer bonding with emphasis on low temperature bonding mechanisms. The project goals were to understand the topological requirements for initial bonding, develop a tensile test to measure the bond strength as a function of time and temperature and, using the kinetic information obtained, develop lower temperature methods of bonding. A reproducible surface metrology metric for bonding was best described by power spectral density derived from atomic force microscopy measurements. From the tensile strength kinetics study it was found that low annealing temperatures could be used to obtain strong bonds, but at the expense of longer annealing times. Three models were developed to describe the kinetics. A diffusion controlled model and a reaction rate controlled model were developed for the higher temperature regimes (T > 600sp°C), and an electric field assisted oxidation model was proposed for the low temperature range. An in situ oxygen plasma treatment was used to further enhance the field-controlled mechanism which resulted in dramatic increases in the low temperature bonding kinetics. Multiple internal transmission Fourier transform infrared spectroscopy (MIT-FTIR) was used to monitor species evolution at the bonded interface and a capacitance-voltage (CV) study was undertaken to investigate charge distribution and surface states resulting from plasma activation. A short, less than a minute, plasma exposure prior to contacting the wafers was found to obtain very strong bonds for hydrophobic silicon wafers at very low temperatures (100sp°C). This novel bonding method may enable new technologies involving heterogeneous material systems or bonding partially fabricated devices to become realities.

  10. Number series of atoms, interatomic bonds and interface bonds defining zinc-blende nanocrystals as function of size, shape and surface orientation: Analytic tools to interpret solid state spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    König, Dirk, E-mail: dirk.koenig@unsw.edu.au [Integrated Materials Design Centre (IMDC) and School of Photovoltaic and Renewable Energy Engineering (SPREE), University of New South Wales, Sydney (Australia)

    2016-08-15

    Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size d{sub NC}. I deduce geometrical number series as analytical tools to obtain the number of NC atoms N{sub NC}(d{sub NC}[i]), bonds between NC atoms N{sub bnd}(d{sub NC}[i]) and interface bonds N{sub IF}(d{sub NC}[i]) for seven high symmetry zinc-blende (zb) NCs with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.

  11. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    Science.gov (United States)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.

    1992-11-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  12. Theoretical investigation of compounds with triple bonds

    International Nuclear Information System (INIS)

    Devarajan, Deepa

    2011-01-01

    In this thesis, compounds with potential triple-bonding character involving the heavier main-group elements, Group 4 transition metals, and the actinides uranium and thorium were studied by using molecular quantum mechanics. The triple bonds are described in terms of the individual orbital contributions (σ, π parallel , and π perpendicular to ), involving electron-sharing covalent or donor-acceptor interactions between the orbitals of two atoms or fragments. Energy decomposition, natural bond orbital, and atoms in molecules analyses were used for the bonding analysis of the triple bonds. The results of this thesis suggest that the triple-bonding character between the heavier elements of the periodic table is important and worth further study and exploration.

  13. Intramolecular hydrogen bonding in malonaldehyde and its radical analogues.

    Science.gov (United States)

    Lin, Chen; Kumar, Manoj; Finney, Brian A; Francisco, Joseph S

    2017-09-28

    High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MA RS , and cis-MA RA , both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MA RA , in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MA RS , in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ * orbital of acceptor O-H bond (n → σ * OH ). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MA RS .

  14. Introducing a new bond reactivity index: Philicities for natural bond orbitals.

    Science.gov (United States)

    Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel

    2017-12-22

    In the present work, a new methodology defined for obtaining reactivity indices (philicities) is proposed. This is based on reactivity functions such as the Fukui function or the dual descriptor, and makes it possible to project the information from reactivity functions onto molecular orbitals, instead of onto the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecules' natural bond orbitals (bond reactivity indices) because these orbitals have the advantage of being localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology provides a "philicity" index for every NBO, and a representative set of molecules has been used to test the new definition. A new methodology has also been developed to compare the "finite difference" and the "frontier molecular orbital" approximations. To facilitate their use, the proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, condensation schemes based on atomic populations of the "atoms in molecules" theory, the Hirshfeld population analysis, the approximation of Mulliken (with a minimal basis set) and electrostatic potential-derived charges have also been implemented, including the calculation of "bond reactivity indices" defined in previous studies. Graphical abstract A new methodology defined for obtaining bond reactivity indices (philicities) is proposed and makes it possible to project the information from reactivity functions onto molecular orbitals. The proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, this version can use new atomic condensation schemes and new "utilities" have also been included in this second version.

  15. Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Tinck, S; Bogaerts, A

    2011-01-01

    In this paper, an O 2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al 2 O 3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O 2 , while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.

  16. Oxygen-driving and atomized mucosolvan inhalation combined with holistic nursing in the treatment of children severe bronchial pneumonia.

    Science.gov (United States)

    Yang, Fang

    2015-07-01

    This paper aimed to discuss the method, effect and safety of oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing in the treatment of children severe bronchial pneumonia. Totally 90 children with severe bronchial pneumonia who were treated in our hospital from March 2013 to November 2013 were selected as the research objects. Based on randomized controlled principle, those children were divided into control group, test group I and test group II according to the time to enter the hospital, 30 in each group. Patients in control group was given conventional therapy; test group I was given holistic nursing combined with conventional therapy; test group II was given oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing on the basis of conventional therapy. After test, the difference of main symptoms in control group, test group I and II was of no statistical significance (P>0.05). Test group II was found with the best curative effect, secondary was test group I and control group was the last. It can be concluded that, oxygen-driving and atomized Mucosolvan inhalation combined with holistic nursing has certain effect in the treatment of children severe bronchial pneumonia and is better than holistic nursing only.

  17. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO_{3}.

    Science.gov (United States)

    Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc

    2016-04-15

    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100  meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

  18. Density functional theory study of oxygen and water adsorption on SrTiO3(001)

    International Nuclear Information System (INIS)

    Guhl, Hannes

    2010-01-01

    Strontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded ''quasi-peroxide anion'' in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers. (orig.)

  19. First-Principles Study on the Structural and Electronic Properties of N Atoms Doped-Rutile TiO2 of Oxygen Vacancies

    Directory of Open Access Journals (Sweden)

    Zhong-Liang Zeng

    2015-01-01

    Full Text Available For the propose of considering the actual situation of electronic neutral, a simulation has been down on the basis of choosing the position of dual N and researching the oxygen vacancy. It is found that the reason why crystal material gets smaller is due to the emergence of impurity levels. By introducing the oxygen vacancy to the structure, the results show that while the oxygen vacancy is near the two nitrogen atoms which have a back to back position, its energy gets the lowest level and its structure gets the most stable state. From its energy band structure and density, the author finds that the impurity elements do not affect the migration of Fermi level while the oxygen vacancy has been increased. Instead of that, the conduction band of metal atoms moves to the Fermi level and then forms the N-type semiconductor material, but the photocatalytic activity is not as good as the dual N-doping state.

  20. Functionalized Cobalt Triarylcorrole Covalently Bonded with Graphene Oxide: A Selective Catalyst for the Two- or Four-Electron Reduction of Oxygen.

    Science.gov (United States)

    Tang, Jijun; Ou, Zhongping; Guo, Rui; Fang, Yuanyuan; Huang, Dong; Zhang, Jing; Zhang, Jiaoxia; Guo, Song; McFarland, Frederick M; Kadish, Karl M

    2017-08-07

    A cobalt triphenylcorrole (CorCo) was covalently bonded to graphene oxide (GO), and the resulting product, represented as GO-CorCo, was characterized by UV-vis, FT-IR, and micro-Raman spectroscopy as well as by HRTEM, TGA, XRD, XPS, and AFM. The electrocatalytic activity of GO-CorCo toward the oxygen reduction reaction (ORR) was then examined in air-saturated 0.1 M KOH and 0.5 M H 2 SO 4 solutions by cyclic voltammetry and linear sweep voltammetry using a rotating disk electrode and/or a rotating ring-disk electrode. An overall 4-electron reduction of O 2 is obtained in alkaline media while under acidic conditions a 2-electron process is seen. The ORR results thus indicate that covalently bonded GO-CoCor can be used as a selective catalyst for either the 2- or 4-electron reduction of oxygen, the prevailing reaction depending upon the acidity of the solution.

  1. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermal relaxation of molecular oxygen in collisions with nitrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andrienko, Daniil A., E-mail: daniila@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108 (United States)

    2016-07-07

    Investigation of O{sub 2}–N collisions is performed by means of the quasi-classical trajectory method on the two lowest ab initio potential energy surfaces at temperatures relevant to hypersonic flows. A complete set of bound–bound and bound–free transition rates is obtained for each precollisional rovibrational state. Special attention is paid to the vibrational and rotational relaxations of oxygen as a result of chemically non-reactive interaction with nitrogen atoms. The vibrational relaxation of oxygen partially occurs via the formation of an intermediate NO{sub 2} complex. The efficient energy randomization results in rapid vibrational relaxation at low temperatures, compared to other molecular systems with a purely repulsive potential. The vibrational relaxation time, computed by means of master equation studies, is nearly an order of magnitude lower than the relaxation time in N{sub 2}–O collisions. The rotational nonequilibrium starts to play a significant effect at translational temperatures above 8000 K. The present work provides convenient relations for the vibrational and rotational relaxation times as well as for the quasi-steady dissociation rate coefficient and thus fills a gap in data due to a lack of experimental measurements for this system.

  3. Structural, electronic, and magnetic properties of pristine and oxygen-adsorbed graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, R.H.; Veiga, R.G.A. [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, CEP 38400-902, Uberlandia, MG (Brazil); Srivastava, G.P., E-mail: gps@excc.ex.ac.uk [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2010-07-15

    The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond.

  4. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Science.gov (United States)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  5. Characterization of atomic oxygen in a Hollow Cathode Radio-Frequency Plasma and study its efficiency

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.

    2011-01-01

    The atomic oxygen (AO) generated in the remote oxygen plasma of the HCD-L300 source, has been fully diagnosed by various conventional techniques. The density of AO was found to vary from (1-10)x10 1 9 m - 3 depending on the operating conditions and parameters. The interaction of the oxygen plasma with silver and gold thin films is investigated by gravimetric analysis, scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. The effect of AO on surface wetting and energy of polymeric materials is also investigated by using contact angle measurements and analysis technique. From applied point of view, production of super hydrophobic Teflon surface and the significant enhancement in the surface free energy of polyimide and polyamide are considered the most important obtained results in the present work. (author)

  6. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Gerlits, Oksana O. [UT/ORNL; Coates, Leighton [Biology; Woods, Robert J. [Complex; Kovalevsky, Andrey [Biology

    2017-08-30

    Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 and Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.

  7. Insertion of molecular oxygen into a palladium(II) methyl bond: a radical chain mechanism involving palladium(III) intermediates.

    Science.gov (United States)

    Boisvert, Luc; Denney, Melanie C; Hanson, Susan Kloek; Goldberg, Karen I

    2009-11-04

    The reaction of (bipy)PdMe(2) (1) (bipy = 2,2'-bipyridine) with molecular oxygen results in the formation of the palladium(II) methylperoxide complex (bipy)PdMe(OOMe) (2). The identity of the product 2 has been confirmed by independent synthesis. Results of kinetic studies of this unprecedented oxygen insertion reaction into a palladium alkyl bond support the involvement of a radical chain mechanism. Reproducible rates, attained in the presence of the radical initiator 2,2'-azobis(2-methylpropionitrile) (AIBN), reveal that the reaction is overall first-order (one-half-order in both [1] and [AIBN], and zero-order in [O(2)]). The unusual rate law (half-order in [1]) implies that the reaction proceeds by a mechanism that differs significantly from those for organic autoxidations and for the recently reported examples of insertion of O(2) into Pd(II) hydride bonds. The mechanism for the autoxidation of 1 is more closely related to that found for the autoxidation of main group and early transition metal alkyl complexes. Notably, the chain propagation is proposed to proceed via a stepwise associative homolytic substitution at the Pd center of 1 with formation of a pentacoordinate Pd(III) intermediate.

  8. Mechanism of pulse discharge production of iodine atoms from CF3I molecules for a chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2009-01-01

    The pulsed chemical oxygen-iodine laser (COIL) development is aimed at many new applications. Pulsed electric discharge is most effective in turning COIL operation into the pulse mode by instant production of iodine atoms. A numerical model is developed for simulations of the pulsed COIL initiated by an electric discharge. The model comprises a system of kinetic equations for neutral and charged species, electric circuit equation, gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are found by solving the electron Boltzmann equation, which is re-calculated in a course of computations when plasma parameters changed. The processes accounted for in the Boltzmann equation include excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions, second-kind collisions and stepwise excitation of molecules. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. Results of numerical simulations are compared with experimental laser pulse waveforms. It is concluded that there is satisfactory agreement between theory and the experiment. The prevailing mechanism of iodine atom formation from the CF 3 I donor in a very complex kinetic system of the COIL medium under pulse discharge conditions, based on their detailed numerical modelling and by comparing these results both with experimental results of other authors and their own experiments, is established. The dominant iodine atom production mechanism for conditions under study is the electron-impact dissociation of CF 3 I molecules. It was proved that in the conditions of the experiment the secondary chemical reactions with O atoms play an insignificant role.

  9. MCrAlY bond coat with enhanced yttrium

    Science.gov (United States)

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2016-08-30

    One or more embodiments relates to a method of producing an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. The method comprises depositing an MCrAlY material on a substrate, applying an Y.sub.2O.sub.3 paste, and heating the substrate in a non-oxidizing atmosphere at a temperature between 400-1300.degree. C. for a time sufficient to generate the Y--Al.sub.2O.sub.3 layer. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y.sub.2O.sub.3, YAG, and YAP phases.

  10. Real space in situ bond energies: toward a consistent energetic definition of bond strength.

    Science.gov (United States)

    Menéndez-Crespo, Daniel; Costales, Aurora; Francisco, Evelio; Martin Pendas, Angel

    2018-04-14

    A rigorous definition of intrinsic bond strength based on the partitioning of a molecule into real space fragments is presented. Using the domains provided by the quantum theory of atoms in molecules (QTAIM) together with the interacting quantum atoms (IQA) energetic decomposition, we show how an in situ bond strength, matching all the requirements of an intrinsic bond energy, can be defined between each pair of fragments. Total atomization or fragmentation energies are shown to be equal to the sum of these in situ bond energies (ISBEs) if the energies of the fragments are measured with respect to their in-the-molecule state. These energies usually lie above the ground state of the isolated fragments by quantities identified with the standard fragment relaxation or deformation energies, which are also provided by the protocol. Deformation energies bridge dissociation energies with ISBEs, and can be dissected using well-known tools of real space theories of chemical bonding. Similarly, ISBEs can be partitioned into ionic and covalent contributions, and this feature adds to the chemical appeal of the procedure. All the energetic quantities examined are observable and amenable, in principle, to experimental determination. Several systems, exemplifying the role of each energetic term herein presented are used to show the power of the approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Di-ureasil hybrids doped with LiBF{sub 4}: Spectroscopic study of the ionic interactions and hydrogen bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Mariana [Departamento de Quimica/CQ-VR, Universidade de Tras-os-Montes e Alto Douro, 5001-801 Vila Real (Portugal); Barbosa, Paula C.; Manuela Silva, M.; Smith, Michael J. [Departamento de Quimica/Centro de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Zea Bermudez, Veronica de, E-mail: vbermude@utad.pt [Departamento de Quimica/CQ-VR, Universidade de Tras-os-Montes e Alto Douro, 5001-801 Vila Real (Portugal)

    2011-09-15

    Highlights: {yields} FT-IR and FT-Raman spectroscopy were used to characterize cation interactions in two LiBF{sub 4}-doped di-ureasil networks incorporating POE chains with different length. {yields} Over the range of salt content analyzed the cations bond to amorphous POE chains and form ion contact pairs with BF{sub 4}{sup -}. {yields} A crystalline POE/LiBF{sub 4} complex of unknown stoichiometry emerges at high salt concentration. - Abstract: In the present work Fourier transform infrared and Raman spectroscopy were used to characterize the cation/polymer, cation/cross-link, cation/anion and hydrogen bonding interactions in hybrid electrolytes composed of lithium tetrafluoroborate (LiBF{sub 4}) and di-urea cross-linked poly(oxyethylene) (POE)/siloxane hybrid networks (di-ureasils) designated as d-U(2000) and d-U(600) and incorporating polyether chains with ca. 40.5 and 8.5 oxyethylene repeat units, respectively. Samples with {infinity} > n {>=} 2.5 (where n, composition, is the molar ratio of CH{sub 2}CH{sub 2}O units per Li{sup +} ion) were analyzed. In both di-ureasil systems over the whole range of salt content examined the Li{sup +} ions bond to the ether oxygen atoms of amorphous POE chains and to BF{sub 4}{sup -} ions forming ion contact pairs. Spectroscopic evidences and SEM images confirm the presence of a crystalline POE/LiBF{sub 4} complex of unknown stoichiometry at n < 20 and 25, respectively. Ionic association is particularly important in the case of the d-U(600)-based materials, as a result of the presence of strong hydrogen-bonded aggregates that prevent the establishment of Li{sup +}/urea carbonyl oxygen atom interactions.

  12. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings. Revised

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1999-01-01

    A noncontact technique is described that uses atomic oxygen, generated under low pressure in the presence of nitrogen, to remove soot and charred varnish from the surface of a painting. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of the process was evaluated by reflectance measurements from selected areas made during the removal of soot from acrylic gesso, ink on paper, and varnished oil paint substrates. For the latter substrate, treatment also involved the removal of damaged varnish and paint binder from the surface.

  13. Nuclear quantum effects and hydrogen bond fluctuations in water

    Science.gov (United States)

    Ceriotti, Michele; Cuny, Jérôme; Parrinello, Michele; Manolopoulos, David E.

    2013-01-01

    The hydrogen bond (HB) is central to our understanding of the properties of water. However, despite intense theoretical and experimental study, it continues to hold some surprises. Here, we show from an analysis of ab initio simulations that take proper account of nuclear quantum effects that the hydrogen-bonded protons in liquid water experience significant excursions in the direction of the acceptor oxygen atoms. This generates a small but nonnegligible fraction of transient autoprotolysis events that are not seen in simulations with classical nuclei. These events are associated with major rearrangements of the electronic density, as revealed by an analysis of the computed Wannier centers and 1H chemical shifts. We also show that the quantum fluctuations exhibit significant correlations across neighboring HBs, consistent with an ephemeral shuttling of protons along water wires. We end by suggesting possible implications for our understanding of how perturbations (solvated ions, interfaces, and confinement) might affect the HB network in water. PMID:24014589

  14. A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing.

    Science.gov (United States)

    Holub, Josef; Melichar, Petr; Růžičková, Zdeňka; Vrána, Jan; Wann, Derek A; Fanfrlík, Jindřich; Hnyk, Drahomír; Růžička, Aleš

    2017-10-17

    We have prepared nido-7,8,9,11-Sb 2 C 2 B 7 H 9 , the first cluster with simultaneous Sb-B, Sb-C and Sb-Sb atom pairs with interatomic separations with magnitudes that approach the respective sums of covalent radii. However, the length of the Sb-Sb separation in this cluster is slightly less than the sum of the covalent radii. Quantum chemical analysis has revealed that the crystal packing of nido-7,8,9,11-Sb 2 C 2 B 7 H 9 is predominantly dictated by pnictogen (Pn) bonding, an unconventional σ-hole interaction. Indeed, the interaction energy of a very strong Sb 2 H-B Pn-bond in the nido-7,8,9,11-Sb 2 C 2 B 7 H 9 dimer exceeds -6.0 kcal mol -1 . This is a very large value and is comparable to the strengths of known Pn-bonds in Cl 3 Pnπ complexes (Pn = As, Sb).

  15. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Williams, J.S.; Svensson, B.G.; Conway, M. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  16. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M; Williams, J S; Svensson, B G; Conway, M [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  17. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  18. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  19. The hydrogen and oxygen content of self-supporting carbon foils prepared by dc glow discharge in ethylene

    International Nuclear Information System (INIS)

    Tait, N.R.S.; Tolfree, D.W.L.; John, P.; Odeh, I.M.; Thomas, M.J.K.; Tricker, M.J.; Wilson, J.J.B.; England, J.B.A.; Newton, D.

    1980-01-01

    The hydrogen and oxygen content of self-supporting carbon films produced by dc glow discharge have been determined using a precise method involving the elastic scattering of 25 MeV α-particles. The number of carbon-hydrogen bonds has been determined for similar samples using infrared spectroscopy. The results are compared with those for samples made by the carbon arc process. Assuming that the glow discharge carbon contains graphitic regions surrounded by amorphous tetrahedrally bonded material to which hydrogen can attach, a simple estimate is made of the relative numbers of carbon atoms in the two forms. (orig.)

  20. On I(5577 Å and I (7620 Å auroral emissions and atomic oxygen densities

    Directory of Open Access Journals (Sweden)

    R. L. Gattinger

    Full Text Available A model of auroral electron deposition processes has been developed using Monte Carlo techniques to simulate electron transport and energy loss. The computed differential electron flux and pitch angle were compared with in situ auroral observations to provide a check on the accuracy of the model. As part of the energy loss process, a tally was kept of electronic excitation and ionization of the important atomic and molecular states. The optical emission rates from these excited states were computed and compared with auroral observations of η(3914 Å, η(5577 Å, η(7620 Å and η(N2VK. In particular, the roles played by energy transfer from N2(A3Σ+u and by other processes in the excitation of O(1S and O2(b1Σ+g were investigated in detail. It is concluded that the N2(A3Σ+u mechanism is dominant for the production of OI(5577 Å in the peak emission region of normal aurora, although the production efficiency is much smaller than the measured laboratory value; above 150 km electron impact on atomic oxygen is dominant. Atomic oxygen densities in the range of 0.75±0.25 MSIS-86 [O] were derived from the optical comparisons for auroral latitudes in mid-winter for various levels of solar and magnetic activity.

  1. On the photostability of the disulfide bond

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Larsen, Martin Alex Bjørn; Klein, Liv Bærenholdt

    2014-01-01

    Photostability is an essential property of molecular building blocks of nature. Disulfides are central in the structure determination of proteins, which is in striking contradiction to the result that the S-S bond is a photochemically labile structural entity that cleaves to form free radicals upon...... on a sub 50 fs timescale without further ado. In a cyclic motif resembling the cysteine-disulfide bond in proteins, light can perturb the S-S bond to generate short-lived diradicaloid species, but the sulfur atoms are conformationally restricted by the ring that prevents the sulfur atoms from flying apart...... the photostability of disulfide-bonds must be ascribed a cyclic structural arrangement....

  2. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  3. First principles investigation of interaction between impurity atom (Si, Ge, Sn) and carbon atom in diamond-like carbon system

    International Nuclear Information System (INIS)

    Li, Xiaowei; Wang, Aiying; Lee, Kwang-Ryeol

    2012-01-01

    The interaction between impurity atom (Si, Ge, and Sn) and carbon atom in diamond-like carbon (DLC) system was investigated by the first principles simulation method based on the density functional theory. The tetrahedral configuration was selected as the calculation model for simplicity. When the bond angle varied in a range of 90°–130° from the equivalent state of 109.471°, the distortion energy and the electronic structures including charge density of the highest occupied molecular orbital (HOMO) and partial density of state (PDOS) in the different systems were calculated. The results showed that the addition of Si, Ge and Sn atom into amorphous carbon matrix significantly decreased the distortion energy of the system as the bond angles deviated from the equilibrium one. Further studies of the HOMO and PDOS indicated that the weak covalent bond between Si(Ge, Sn) and C atoms was formed with the decreased strength and directionality, which were influenced by the electronegative difference. These results implied that the electron transfer behavior at the junction of carbon nano-devices could be tailored by the impurity element, and the compressive stress in DLC films could be reduced by the incorporation of Si, Ge and Sn because of the formation of weaker covalent bonds. - Highlights: ►Distortion energy after bond angle distortion was decreased comparing with C-C unit. ►The weak covalent bond was formed between impurity atoms and corner carbon atoms. ►Observed electron transfer behavior affected the strength and directionality of bond. ►Reduction of strength and directionality of bond contributed to small energy change.

  4. Effect of the nitrogen unshared electron pair on the direct /sup 13/C-/sup 13/C spin-spin coupling constant of a neighboring bond in oximes

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, V.V.; Krivdin, L.B.; Kalabin, G.A.; Trofimov, B.A.

    1986-11-20

    The authors have previously established that the direct /sup 13/C-/sup 13/C coupling constants are stereospecific relative to the orientation of unshared electron pairs (UEP) of nitrogen and oxygen atoms. Here they show that the nitrogen UEP produces a positive contribution to the direct /sup 13/C-/sup 13/C coupling constant of an adjacent syn-periplanar carbon-carbon bond and not to a negative contribution of the corresponding constant of the anti-periplanar bond. Thus, the observed effect is not a consequence of the interaction of the heteroatom UEP with the anti-bonding orbital of the adjacent anti-periplanar bond (n/sub o-o/* interaction) as in the case of anomeric and related effects.

  5. Atomic Covalent Functionalization of Graphene

    Science.gov (United States)

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  6. A ReaxFF-based molecular dynamics study of the mechanisms of interactions between reactive oxygen plasma species and the Candida albicans cell wall

    Science.gov (United States)

    Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.

    2017-10-01

    Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.

  7. Hydrogen bonding in (substituted benzene)·(water)n clusters with n≤4

    International Nuclear Information System (INIS)

    Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch, U.; Brutschy, B.

    1998-01-01

    Infrared ion-depletion spectroscopy, a double resonance method combining vibrational predissociation with resonant two-photon ionization (R2PI) spectroscopy, has been applied to study mixed clusters of the type (substituted benzene)·(H 2 O) n with n≤4. The UV chromophores were p-difluorobenzene, fluorobenzene, benzene, toluene, p-xylene and anisole. From the IR depletion spectra in the region of the OH stretching vibrations it could be shown that the water molecules are attached as subclusters to the chromophores. Size and configuration of the subclusters could be deduced from the IR depletion spectra. In the anisole·(H 2 O) 1 a nd 2 complexes the water clusters form an ordinary hydrogen bond to the oxygen atom of the methoxy group. In all other mixed complexes a π-hydrogen bond is formed between one of the free OH groups of a water subcluster and the π-system of the chromophore. According to the strength of this interaction the frequency of the respective absorption band exhibits a characteristic red-shift which could be related to the total atomic charges in the aromatic ring. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  9. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    Science.gov (United States)

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  10. Ab initio atomic thermodynamics investigation on oxygen defects in the anatase TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhijun [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Liu, Tingyu, E-mail: liutyyxj@163.com [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Chenxing; Gan, Haixiu [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Jianyu [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Feiwu [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2013-01-05

    Highlights: Black-Right-Pointing-Pointer Three typical oxygen defects under the different annealing conditions have been studied. Black-Right-Pointing-Pointer The oxygen vacancy is easier to form at the surface than in the bulk. Black-Right-Pointing-Pointer The adsorption of O{sub 2} whose orientation is parallel to the surface should be more favorable. Black-Right-Pointing-Pointer The reduction reaction may firstly undertake at the surface during the annealing treatment. Black-Right-Pointing-Pointer The interstitial oxygen has important contribution to lead to the reduction of the band gap. - Abstract: In the framework of the ab initio atomic thermodynamics, the preliminary analysis of the oxygen defects in anatase TiO{sub 2} has been done by investigating the influence of the annealing treatment under representative conditions on three typical oxygen defects, that is, oxygen vacancy, oxygen adsorption and oxygen interstitial. Our results in this study agree well with the related experimental results. The molecular species of the adsorbed O{sub 2} is subject to the ratio of the number of the O{sub 2} to that of the vacancy, as well as to the initial orientation of O{sub 2} relative to the surface (101). Whatever the annealing condition is, the oxygen vacancy is easier to form at the surface than in the bulk indicating that the reduction reaction may firstly undertake at the surface during the annealing treatment, which is consistent with the phase transformation experiments. The molecular ion, peroxide species, caused by the interstitial oxygen has important contribution to the top of the valence band and lead to the reduction of the band gap.

  11. Proton transfer in a short hydrogen bond caused by solvation shell fluctuations: an ab initio MD and NMR/UV study of an (OHO)(-) bonded system.

    Science.gov (United States)

    Pylaeva, Svetlana; Allolio, Christoph; Koeppe, Benjamin; Denisov, Gleb S; Limbach, Hans-Heinrich; Sebastiani, Daniel; Tolstoy, Peter M

    2015-02-14

    We present a joint experimental and quantum chemical study on the influence of solvent dynamics on the protonation equilibrium in a strongly hydrogen bonded phenol-acetate complex in CD2Cl2. Particular attention is given to the correlation of the proton position distribution with the internal conformation of the complex itself and with fluctuations of the aprotic solvent. Specifically, we have focused on a complex formed by 4-nitrophenol and tetraalkylammonium-acetate in CD2Cl2. Experimentally we have used combined low-temperature (1)H and (13)C NMR and UV-vis spectroscopy and showed that a very strong OHO hydrogen bond is formed with proton tautomerism (PhOH···(-)OAc and PhO(-)···HOAc forms, both strongly hydrogen bonded). Computationally, we have employed ab initio molecular dynamics (70 and 71 solvent molecules, with and without the presence of a counter-cation, respectively). We demonstrate that the relative motion of the counter-cation and the "free" carbonyl group of the acid plays the major role in the OHO bond geometry and causes proton "jumps", i.e. interconversion of PhOH···(-)OAc and PhO(-)···HOAc tautomers. Weak H-bonds between CH(CD) groups of the solvent and the oxygen atom of carbonyl stabilize the PhOH···(-)OAc type of structures. Breaking of CH···O bonds shifts the equilibrium towards PhO(-)···HOAc form.

  12. Density functional theory study of oxygen and water adsorption on SrTiO{sub 3}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Guhl, Hannes

    2010-12-03

    Strontium titanate is an extensively studied material with a wide range of application, for instance in photo-catalysis and most importantly, it is used as a substrate in growth of functional oxides. The surface chemistry is crucial and hence understanding the surface structure on atomic scale is essential for gaining insight into the fundamental processes in the aforementioned applications. Moreover, there exist a lot of evidence that this surface chemistry might be controlled to considerably by extrinsic species, such as residual hydrogen and water. Investigating the properties of water and oxygen on the strontium titanate surface is certainly a natural starting point for a theoretical study based on density functional theory, because these species are practically present on the surface on a wide range of experimental conditions and they are computationally feasible. For the oxygen and water adsorption the binding energy is controlled by long-range surface relaxations leading to an effective repulsion of the adsorbed specimen. The isolated oxygen ad-atom forms a covalently bonded ''quasi-peroxide anion'' in combination with a lattice oxygen atom. Contrariwise, in all investigated configurations containing water molecules and hydroxyl groups, the respective oxygen atoms assumed positions close to the oxygen sites of the continued perovskite lattice of the substrate. Most remarkably, on the strontium oxide termination, the water molecules adsorbs and dissociates effortlessly leading to the formation of a pair of hydroxyl groups. For the titanium dioxide termination, a coverage dependent adsorption mode is observed. Densely packings stabilize water molecules, whereas at lower coverage and finite temperatures the formation of hydroxyl groups is found. The energetics responsible for this behavior is consistent with recent experiments by Iwahori and coworkers. (orig.)

  13. Liquid-solid transition in the bond particle model for elemental semiconductors

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.; Rovere, M.

    1991-07-01

    Freezing of Silicon and Germanium involves a reconstruction of covalent tetrahedral bonds from a metallic liquid having density and coordination then the solid. We first contrast the metallic liquid structure of Germanium with that of its semiconducting amorphous state, in order to emphasize the changes in the atomic structure factor that arise from reconstruction of the interatomic bonds. We then use the density wave theory of freezing to discuss the liquid-solid transition within a pseudoclassical model, which describes the liquid structure by means of partial structure factors giving the pair correlations between atoms and bond particles. The phase transition is viewed as a freezing of the bonds driven by tetrahedrally constrained attractions between ionic cores and valence electrons and accompanied by an opening of the structure to allow long-range connectivity of tetrahedral atomic units. Quantitative calculations on the bond particle model illustrate the relationship between the liquid structure and the microscopic Fourier components of the single-particle densities of atoms and bonds. In further support of this picture, we also present calculations for freezing of a liquid having the density and the atomic structure of compacted amorphous Germanium. (author). 25 refs, 2 figs, 2 tabs

  14. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  15. Ab Initio Study of the Dynamical Si–O Bond Breaking Event in α-Quartz

    International Nuclear Information System (INIS)

    Su Rui; Zhang Hong; Han Wei; Chen Jun

    2015-01-01

    The Si–O bond breaking event in the α-quartz at the first triplet (T_1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and E′ center (NBOHC-E′) is observed in the AIMD which consists of a broken Si–O bond with a Si–O distance of 2.54 Å. By disallowing the re-bonding of the Si and O atoms, another defect configuration (III-Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E′ is found to present on the minimal energy pathway of the initial to III-Si/V-Si transition, showing that the generating of the NBOHC-E′ is an important step of the excitation induced structure defect. The energy barriers to produce the NBOHC-E′ and III-Si/V-Si defects are calculated to be 1.19 and 1.28 eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital. (paper)

  16. Use of an Atmospheric Atomic Oxygen Beam for Restoration of Defaced Paintings

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Karla, Margaret; Norris, Mary Jo; Real, William A.; Haytas, Christy A.

    1999-01-01

    An atmospheric atomic oxygen beam has been found to be effective in removing organic materials through oxidation that are typical of graffiti or other contaminant defacements which may occur to the surfaces of paintings. The technique, developed by the National Aeronautics and Space Administration, is portable and was successfully used at the Carnegie Museum of Art to remove a lipstick smudge from the surface of porous paint on the Andy Warhol painting "Bathtub." This process was also evaluated for suitability to remove felt tip and ball point ink graffiti from paper, gesso on canvas and cotton canvas.

  17. Adsorption of H atoms on cubic Er2O3 (0 0 1) surface: A DFT study

    International Nuclear Information System (INIS)

    Mao, Wei; Chikada, Takumi; Shimura, Kenichiro; Suzuki, Akihiro; Yamaguchi, Kenji; Terai, Takayuki

    2013-01-01

    First-principles plane wave calculations based on spin-polarized density functional theory (DFT) and generalized gradient approximation (GGA) have been used to study the adsorption of H atoms on cubic Er 2 O 3 (0 0 1) surface. We identify stable adsorption positions and find that H preferentially adsorbs on top of fourfold-hollow sites and transfers electrons to the surface, resulting in the formations of covalent bonds to the nearest neighboring four oxygen atoms. In the most energetically favorable adsorption sites, It was found that H bonds with O atoms at the cubic Er 2 O 3 (0 0 1) surface with an adsorption energy of −295.68 kJ mol −1 at coverage 1/8 ML, and the adsorption energy is inclined to decrease with the increase of H coverage (>1/4 ML). In addition, our calculations indicate that the dissociative H atom configurations have adsorption energies that are at least 152.64 kJ mol −1 greater than the H 2 molecule configurations on the surface. These results discussed in the context of erbium oxide slabs are employed to rationalize some processes regarding to the hydrogen isotope permeation behavior of tritium permeation barrier

  18. Theoretical estimation of pnicogen bonds and hydrogen bonds in small heterocyclic complexes: Red-shifts and blue-shifts ruled by polarization effects

    International Nuclear Information System (INIS)

    Oliveira, Boaz G.

    2014-01-01

    Graphical abstract: - Highlights: • This paper definitively discusses the interaction strength. • Analyses of the red-shifts and blue-shift. • Stretch frequencies of the hydrogen bonds and pnicogen bonds in heterocyclic compounds. • Theoretical calculations derived from topological parameters of the Quantum Theory of Atoms in Molecules (QTAIM). • The analysis of the Natural Bond Orbital (NBO) in line with the Bent’s rule of the chemical bonding. - Abstract: The occurrence of pnicogen bonds (N⋯P) and hydrogen bonds (F⋯H or Cl⋯H) in heterocyclic complexes formed by C 2 H 5 N⋯PH 3 , C 2 H 5 N⋯PH 2 F and C 2 H 5 N⋯PH 2 Cl was investigated at the B3LYP/6-311++G(d,p) level of theory. Analysis of the infrared spectra revealed the appearance of both red and blue shifts for the P–H bonds. However, in the case of the P–F and P–Cl bonds only red shifts were observed. The phenomenology of these vibration modes was interpreted on the basis of the QTAIM atomic radii as well as the contributions of the s and p orbitals determined via NBO calculations. The results of this latter investigation are consistent with the rehybridization theory and the Bent rule for chemical bonding. The charge transfer between N and P was determined in order to verify whether these atoms present an acid or base profile upon the formation of the pnicogen bonds

  19. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    International Nuclear Information System (INIS)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    An empirically parameterized intermolecular force field is developed for crystal structure modelling and prediction. The model is optimized for use with an atomic multipole description of electrostatic interactions. We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%

  20. Benefits of oxygen in CuInSe{sub 2} and CuGaSe{sub 2} containing Se-rich grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Chunbao, E-mail: chunbaofeng@126.com [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Luo, Min; Li, Bolin; Li, Dengfeng [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Nie, Jinlan [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, 610054 (China); Dong, Huining [Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China)

    2014-05-01

    Using density functional theory calculation, we show that oxygen (O) exhibits an interesting effect in CuInSe{sub 2} and CuGaSe{sub 2}. The Se atoms with dangling bonds in a Se-rich Σ3 (114) grain boundary (GB) create deep gap states due to strong interaction between Se atoms. However, when such a Se atom is substituted by an O atom, the deep gap states can be shifted into valence band, making the site no longer a harmful non-radiative recombination center. We find that O atoms prefer energetically to substitute these Se atoms and induce significant lattice relaxation due to their smaller atomic size and stronger electronegativity, which effectively reduces the anion–anion interaction. Consequently, the deep gap states are shifted to lower energy regions close or even below the top of the valence band.

  1. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  2. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  3. Adsorption of atomic oxygen on PdAg/Pd(111) surface alloys and coadsorption of CO

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Arnold P. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Reaction Kinetics Research Group, University of Szeged, Chemical Research Center of the Hungarian Academy of Sciences, H-6720 Szeged (Hungary); Bansmann, Joachim; Diemant, Thomas; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2011-07-01

    The interaction of dissociated oxygen with structurally well-defined PdAg/Pd(111) surface alloys and the coadsorption of CO was studied by high resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). After oxygen saturation of the non-modified Pd(111) surface at RT, we observed the formation of a prominent peak in the HREEL spectra at 60 meV corresponding to the perpendicular vibration of oxygen atoms adsorbed in threefold hollow sites. Deposition of small Ag amounts does not change the signal intensity of this peak; it decreases only above 20% Ag. Beyond this Ag content, the peak intensity steeply declines and disappears at around 55-60% Ag. CO coadsorption on the oxygen pre-covered surfaces at 120 K leads to the formation of additional features in HREELS. For a surface alloy with 29% Ag, three loss features due to CO adsorption in on-top, bridge, and threefold-hollow sites can be discriminated already after the lowest CO exposure. Annealing of the co-adsorbed layer to 200 K triggers a decrease of the oxygen concentration due to CO{sub 2} formation. These findings are corroborated by TPD spectra of the CO desorption and CO{sub 2} production.

  4. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    International Nuclear Information System (INIS)

    Finkelstein, Y.; Moreh, R.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Shchur, Ya.

    2016-01-01

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH 2 PO 4 , X = K, Cs, Rb, Tl), the DKDP (XD 2 PO 4 , X = K, Cs, Rb) type, and the X 3 H(SO 4 ) 2 superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M 3 H(SO 4 ) 2 compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance R OO , being a measure of the HB strength

  5. Determination by vibrational spectra of the strength and the bond length of atoms U and O in uranyl complexes

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Martinez Q, E.

    1996-01-01

    The vibrational spectra of different uranyl compounds were studied. The wave number was related to the harmonic oscillator model and to the mathematical expression of Badger as modified by Jones, to determine the strength and the bond length of atoms U and O in UO 2 2+ . A mathematical simplification develop by us is proposed and its results compared with values obtained by other methods. (Author)

  6. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ab initio R1 mechanism of photostimulated oxygen isotope exchange reaction on a defect TiO{sub 2} surface: The case of terminal oxygen atom exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan, E-mail: ruslan.kevorkyants@gmail.com; Sboev, Mikhail N.; Chizhov, Yuri V.

    2017-05-01

    Highlights: • DFT R1 mechanism of photostimulated oxygen isotope exchange between {sup 16}O{sup 18}O and terminal oxygen atom of a defect surface of nanocrystalline TiO{sub 2} is proposed. • The mechanism involves four adsorption intermediates and five transition states. • Activation energy of the reaction is 0.24 eV. • G-tensors of O{sub 3}{sup −} intermediates match EPR data on O{sub 2} adsorbed on UV-irradiated TiO{sub 2} surface. - Abstract: Based on density functional theory we propose R1 mechanism of photostimulated oxygen isotope exchange (POIEx) reaction between {sup 16}O{sup 18}O and terminal oxygen atom of a defect TiO{sub 2} surface, which is modeled by amorphous Ti{sub 8}O{sub 16} nanocluster in excited S{sup 1} electronic state. The proposed mechanism involves four adsorption intermediates and five transition states. The computed activation energy of the POIEx equals 0.24 eV. The computed g-tensors of the predicted ozonide O{sub 3}{sup −} chemisorption species match well EPR data on O{sub 2} adsorption on UV-irradiated nanocrystalline TiO{sub 2}. This match serves a mean of justification of the proposed R1 mechanism of the POIEx reaction. In addition, it is found that the proposed R1 POIEx reaction’s mechanism differs from R1 mechanism of thermo-assisted OIEx reaction on a surface of supported vanadium oxide catalyst VO{sub x}/TiO{sub 2} reported earlier.

  8. Thai students' mental model of chemical bonding

    Science.gov (United States)

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  9. Structure and chemical bond characteristics of LaB6

    International Nuclear Information System (INIS)

    Bai Lina; Ma Ning; Liu Fengli

    2009-01-01

    The structure and chemical bond characteristics of LaB 6 have been achieved by means of the density functional theory using the state-of-the-art full-potential linearized augmented plane wave (FPLAPW) method, which are implemented within the EXCITING code. The results show our optimized lattice constant a (4.158 A), parameter z (0.1981) and bulk modulus B (170.4 GPa) are in good agreement with the corresponding experimental data. Electron localization function (ELF) shows the La-La bond mainly is ionic bond, La-B bond is between ionic and covalent bond while the covalent bond between the nearest neighbor B atoms (B2 and B3) is a little stronger than that between the nearer neighbor B atoms (B1 and B4).

  10. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  11. Fundamental Studies of the Reforming of Oxygenated Compounds over Supported Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A. [Univ. of Wisconsin, Madison, WI (United States)

    2016-01-04

    The main objective of our research has been to elucidate fundamental concepts associated with controlling the activity, selectivity, and stability of bifunctional, metal-based heterogeneous catalysts for tandem reactions, such as liquid-phase conversion of oxygenated hydrocarbons derived from biomass. We have shown that bimetallic catalysts that combine a highly-reducible metal (e.g., platinum) with an oxygen-containing metal promoter (e.g., molybdenum) are promising materials for conversion of oxygenated hydrocarbons because of their high activity for selective cleavage for carbon-oxygen bonds. We have developed methods to stabilize metal nanoparticles against leaching and sintering under liquid-phase reaction conditions by using atomic layer deposition (ALD) to apply oxide overcoat layers. We have used controlled surface reactions to produce bimetallic catalysts with controlled particle size and controlled composition, with an important application being the selective conversion of biomass-derived molecules. The synthesis of catalysts by traditional methods may produce a wide distribution of metal particle sizes and compositions; and thus, results from spectroscopic and reactions kinetics measurements have contributions from a distribution of active sites, making it difficult to assess how the size and composition of the metal particles affect the nature of the surface, the active sites, and the catalytic behavior. Thus, we have developed methods to synthesize bimetallic nanoparticles with controlled particle size and controlled composition to achieve an effective link between characterization and reactivity, and between theory and experiment. We have also used ALD to modify supported metal catalysts by addition of promoters with atomic-level precision, to produce new bifunctional sites for selective catalytic transformations. We have used a variety of techniques to characterize the metal nanoparticles in our catalysts, including scanning transmission electron

  12. Atomistic spectrometrics of local bond-electron-energy pertaining to Na and K clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Wang, Yan, E-mail: YWang8@hnust.edu.cn [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Huang, Yongli; Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-01-15

    Graphical abstract: - Highlights: • Coordination environment resolves electron binding-energy shift of Na and K clusters. • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. - Abstract: Consistency between density functional theory calculations and photoelectron spectroscopy measurements confirmed our predications on the undercoordination-induced local bond relaxation and core level shift of Na and K clusters. It is clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and local potential well depression and shift the electron binding-energy accordingly. Numerical consistency turns out the energy levels for an isolated Na (E{sub 2p} = 31.167 eV) and K (E{sub 3p} = 18.034 eV) atoms and their respective bulk shifts of 2.401 eV and 2.754 eV, which is beyond the scope of conventional approaches. This strategy has also resulted in quantification of the local bond length, bond energy, binding energy density, and atomic cohesive energy associated with the undercoordinated atoms.

  13. Molecular dynamics simulation of diffusion bonding of Al–Cu interface

    International Nuclear Information System (INIS)

    Li, Chang; Li, Dongxu; Tao, Xiaoma; Chen, Hongmei; Ouyang, Yifang

    2014-01-01

    The effects of temperature on diffusion bonding of Al–Cu interface have been investigated by using molecular dynamics (MD) technique with the embedded atomic method (EAM) potentials. The simulated results indicate that the Cu atoms predominantly diffuse into the Al side in the process of diffusion bonding, and the thickness of the interfacial region depends on temperature, with higher temperatures resulting in larger thickness. In the course of diffusion bonding, the interfacial region became disordered. In addition, the Cu atoms diffuse at low ratios but can deeply diffuse into the interior of Al, and the Al atoms diffuse at high ratios but hardly diffuse into the interior of Cu. The results show that the appropriate temperature range for diffusion bonding of Al–Cu interface is 750–800 K, and the diffusion activation energies of Al and Cu are 0.77 eV and 0.50 eV, respectively. Finally, in this work, three diffusion mechanisms of Cu atoms in Al lattice have been found and the main diffusion mechanism is the nearest neighbor hopping mechanism. (paper)

  14. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  15. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  16. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Asahara, Ryohei; Minoura, Yuya; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi; Watanabe, Heiji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sako, Hideki; Kawasaki, Naohiko; Yamada, Ichiko; Miyamoto, Takashi [Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567 (Japan)

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.

  17. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    Science.gov (United States)

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  18. A DFT Study of R-X Bond Dissociation Enthalpies of Relevance to the Initiation Process of Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Gillies, Malcolm Bjørn; Matyjaszewski, Krzysztof; Norrby, Per-Ola

    2003-01-01

    DFT calculations at the B3P86/6-31G** level have been carried out to derive the bond dissociation energies (BDE) and free energies for a number of R-X systems (X ) Cl, Br, I, N3, and S2-CNMe2) that have been or can potentially be used as initiators for atom transfer radical polymerization (ATRP...

  19. Electronic structure and interatomic bonding in Al10V

    International Nuclear Information System (INIS)

    Jahnatek, M; Krajci, M; Hafner, J

    2003-01-01

    On the basis of ab initio calculations we analysed the electron density distribution in the elementary cell of the compound Al 10 V. We found covalent bonding between certain atoms. The Al-V bonds of enhanced covalency are linked into -Al-V-Al-V- chains that extend over the whole crystal. The chains intersect at each V site and together form a Kagome network of corner-sharing tetrahedra. The large voids of this network are filled by Z 16 Friauf polyhedra consisting of Al atoms only. The skeleton of the Friauf polyhedron has the form of a truncated tetrahedron and consists of 12 strongly bonded Al atoms. These Al-Al bonds also have covalent character. The bonding is dominated by sp 2 hybridization. The centre of the Friauf polyhedron may be empty or occupied by an Al atom. The thermodynamic stability of the phase is investigated. The Al 21 V 2 phase with occupied voids is at low temperatures less stable than Al 10 V. The Al 10 V structure can be considered as a special case of the Al 18 Cr 2 Mg 3 structural class. We have found the same picture of bonding as we report here for Al 10 V for several other aluminium-rich alloys belonging to the Al 18 Cr 2 Mg 3 structural class also

  20. Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O′stannate(IV

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2015-05-01

    Full Text Available The tin(IV atom in the complex anion of the title salt, (C4H7N2[Sn(C2O4Cl3(H2O], is in a distorted octahedral coordination environment defined by three chlorido ligands, an oxygen atom from a water molecule and two oxygen atoms from a chelating oxalate anion. The organic cation is linked through a bifurcated N—H...O hydrogen bond to the free oxygen atoms of the oxalate ligand of the complex [Sn(H2OCl3(C2O4]− anion. Neighbouring stannate(IV anions are linked through O—H...O hydrogen bonds involving the water molecule and the two non-coordinating oxalate oxygen atoms. In combination with additional N—H...Cl hydrogen bonds between cations and anions, a three-dimensional network is spanned.

  1. Deep levels in silicon–oxygen superlattices

    International Nuclear Information System (INIS)

    Simoen, E; Jayachandran, S; Delabie, A; Caymax, M; Heyns, M

    2016-01-01

    This work reports on the deep levels observed in Pt/Al 2 O 3 /p-type Si metal-oxide-semiconductor capacitors containing a silicon–oxygen superlattice (SL) by deep-level transient spectroscopy. It is shown that the presence of the SL gives rise to a broad band of hole traps occurring around the silicon mid gap, which is absent in reference samples with a silicon epitaxial layer. In addition, the density of states of the deep layers roughly scales with the number of SL periods for the as-deposited samples. Annealing in a forming gas atmosphere reduces the maximum concentration significantly, while the peak energy position shifts from close-to mid-gap towards the valence band edge. Based on the flat-band voltage shift of the Capacitance–Voltage characteristics it is inferred that positive charge is introduced by the oxygen atomic layers in the SL, indicating the donor nature of the underlying hole traps. In some cases, a minor peak associated with P b dangling bond centers at the Si/SiO 2 interface has been observed as well. (paper)

  2. The adsorption of NO on an oxygen pre-covered Pt(1 1 1) surface: in situ high-resolution XPS combined with molecular beam studies

    Science.gov (United States)

    Zhu, J. F.; Kinne, M.; Fuhrmann, T.; Tränkenschuh, B.; Denecke, R.; Steinrück, H.-P.

    2003-12-01

    Adsorption of NO on a Pt(1 1 1) surface pre-covered with a p(2 × 2) atomic oxygen layer has been studied in situ by high-resolution X-ray photoelectron spectroscopy and temperature-programmed XPS using third-generation synchrotron radiation at BESSY II, Berlin, combined with molecular beam techniques and ex situ by low energy electron diffraction and temperature-programmed desorption. O 1s XP spectra reveal that an ordered p(2 × 2)-O layer dramatically changes the adsorption behavior of NO as compared to the clean surface. The atomic oxygen occupies fcc hollow sites, and therefore blocks NO adsorption on these sites, which are energetically preferred on clean Pt(1 1 1). As a consequence, NO populates on-top sites at low coverage. At 110 K for higher coverages, NO can additionally adsorb on hcp hollow sites, thereby inducing a shift of the O 1s binding energy of atomic oxygen towards lower energies by about 0.25 eV. The bond strength of the hcp hollow NO species to the substrate is weakened by the presence of atomic oxygen. A sharp p(2 × 2) LEED pattern is observed for NO adsorption on the oxygen pre-covered surface, up to saturation coverage. The total saturation coverage of NO on Pt(1 1 1) pre-covered with varying amounts of oxygen (below 0.25 ML) decreases linearly with the coverage of oxygen. The initial sticking coefficient of NO is reduced from 0.96 on clean Pt(1 1 1) to 0.88 on a p(2 × 2) oxygen pre-covered surface.

  3. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    Science.gov (United States)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  4. On the chemistry of the lightest exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.

    1980-01-01

    The chemical aspects of formation of three hydrogen-like exotic atoms, positronium, muonium and pionic hydrogen are discussed. For positronium two formation mechanisms, the Ore model with hot-atom reactions, and the spur reaction model are set against experimental observations in solutions. The use of pionic hydrogen atoms in obtaining information on the bond properties of hydrogen is illustrated by recent experiments performed in JINR. The use of negative pions in chemistry is demonstrated by electronic structure investigations performed in Dubna. The probability W that in a chemical system containing bound hydrogen atoms a stopped negative pion is captured by a proton reflects the bond properties of hydrogen. Recent results haVe shown that the hydrogen bond formation in liquid water and the coordination of water molecules in aquacomplexes lead to significant decreases in probability W for water. A comparison of the chemical uses of the exotic atoms shows that positronium and muonium inform us on intermolecular level probing a small environment of a few molecules while the pionic hydrogen atoms deliver information on the chemical bond of hydrogen, i.e. on intramolecular level

  5. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The basic result of carboxylic group that the oxygen atom of the –OH never seems to be a hydrogen bond acceptor is violated in the cases, namely urea oxalic acid and bis urea oxalic acid complexes, where the hydroxyl oxygen atom is an acceptor of a weak N–H... O hydrogen bond. The parameters of this hydrogen bond, ...

  6. Hydrogen peroxide reduction in the oxygen vacancies of ZnO nanotubes

    International Nuclear Information System (INIS)

    Peyghan, Ali Ahmadi; Laeen, Shima Parizad; Aslanzadeh, Saeed Amir; Moradi, Morteza

    2014-01-01

    The adsorption of a H 2 O 2 molecule on the pristine and O-vacancy defected ZnO nanotubes was investigated by means of density functional calculations. It was found that the molecule prefers to attach to two zinc atoms of the tube from its two oxygen atoms with the adsorption energy of 254.1 kJ/mol. Attachment of the H 2 O 2 to the wall of the tube does not have any significant influence on its highest occupied molecular orbital/lowest unoccupied molecular orbital gap (E g ). The presence of oxygen vacancy defect causes a decrease in the E g of the tube and, as a consequence, may cause an increase in the conductivity of the tube. The zinc atoms of the defect are more reactive toward H 2 O 2 reduction to H 2 O than perfect ones with the adsorption energy of 617.4 kJ/mol. During the adsorption process, the H 2 O 2 was reoriented in such a way that its O atom has diffused into vacancy site, so that O-O and O-H bonds of the molecule were dissociated and an H 2 O is formed. Thus, we think that ZnO-NTs may be a candidate for electrochemical reduction and detection of H 2 O 2 . - Highlights: • H 2 O 2 adsorption on pristine and O-vacancy defected ZnO nanotubes was studied by DFT. • H 2 O 2 does not have any significant influence on the gap of the tube. • Presence of oxygen vacancy defect causes a decrease in the gap of the tube. • ZnO nanotubes may be a candidate for electrochemical reduction and detection of H 2 O 2

  7. Atomic-level computer simulation

    International Nuclear Information System (INIS)

    Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.

    1994-01-01

    This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))

  8. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    International Nuclear Information System (INIS)

    Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Fowler, P. W.

    2015-01-01

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability

  9. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  10. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  11. X-ray-absorption fine structure determination of pressure-induced bond-angle changes in ReO3

    International Nuclear Information System (INIS)

    Houser, B.; Ingalls, R.

    2000-01-01

    We report here on a Marquardt-type method to fit the x-ray absorption fine structure (XAFS) of ReO 3 . We find that, when the ambient-pressure structure of ReO 3 is used as a starting point, the pressure dependence of the angle of the Re-O-Re bond in ReO 3 is fairly straightforwardly and robustly determined using FEFF curved-wave, multiple-scattering programs and is accurate to about ±1.5 degree sign or better. We present an argument that XAFS and scattering experiments fundamentally differ in what they measure in the case of nearly linear atomic bridges. Focussed multiple-scattering paths involving the Re-O-Re bridge make a contribution to the XAFS spectrum that is sensitive to the rms deviation of oxygen from the [100]-type directions. Fits to simulated spectra back up our contention that for XAFS experiments the effective position of the oxygen atom is its rms displacement whether the average displacement is zero or not. (c) 2000 The American Physical Society

  12. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    International Nuclear Information System (INIS)

    Lee, Sangho; Chung, Yong-Chae

    2013-01-01

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metal–graphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: • Nitrogen defects changed the bonding mechanism between metal and graphene. • Bonding character and binding results were investigated using DFT calculations. • Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. • Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene

  13. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  14. Fluxless Sn-Ag bonding in vacuum using electroplated layers

    International Nuclear Information System (INIS)

    Kim, Jongsung; Lee, Chin C.

    2007-01-01

    A fluxless bonding process in vacuum environment using newly developed electroplated Sn-Ag multilayer structure at eutectic composition is presented. The new bonding process is entirely fluxless, or flux-free. It is performed in vacuum (100 mTorr), in which the oxygen content is reduced by a factor of 7600 comparing to air, to inhibit solder oxidation. In the design, Cr/Au dual layer is employed as the UBM as well as the plating seed layer. This UBM design, seldom used in the electronic industry, is explained in some details. To realize the fluxless possibility, a proper layer design of the solder structure is needed. In this connection, we wish to point out that it is hard to achieve fluxless bonding using Sn-rich alloys because these alloys have numerous Sn atoms on the surface that are easily oxidized. To prevent Sn oxidation, a thin Ag layer is plated immediately over Sn layer. XRD results confirm that this thin Ag layer does act as a barrier to prevent oxidation of the inner Sn layer. The resulting solder joints are void free as examined by a scanning acoustic microscope (SAM). SEM and EDX studies on the cross section of the joint indicate a homogeneous Sn-rich phase. The melting temperature is measured to be between 219 and 226 deg. C. This new fluxless bonding process is valuable in many applications where the use of flux is prohibited

  15. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  16. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  17. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Atomic Oxygen Treatment Technique for Removal of Smoke Damage from Paintings

    Science.gov (United States)

    Rutledge, S. K.; Banks, B. A.

    1997-01-01

    Soot deposits that can accumulate on surfaces of a painting during a fire can be difficult to clean from some types of paintings without damaging the underlying paint layers. A non-contact technique has been developed which can remove the soot by allowing a gas containing atomic oxygen to flow over the surface and chemically react with the soot to form carbon monoxide and carbon dioxide. The reaction is limited to the surface, so the underlying paint is not touched. The process can be controlled so that the cleaning can be stopped once the paint surface is reached. This paper describes the smoke exposure and cleaning of untreated canvas, acrylic gesso, and sections of an oil painting using this technique. The samples were characterized by optical microscopy and reflectance spectroscopy.

  19. Reassigning hydrogen-bond centering in dense ice

    International Nuclear Information System (INIS)

    Benoit, Magali; Romero, Aldo H.; Marx, Dominik

    2002-01-01

    Hydrogen bonds in H 2 O ice change dramatically upon compression. Thereby a hydrogen-bonded molecular crystal, ice VII, is transformed to an atomic crystal, ice X. Car-Parrinello simulations reproduce the features of the x-ray diffraction spectra up to about 170 GPa but allow for analysis in real space. Starting from molecular ice VII with static orientational disorder, dynamical translational disordering occurs first via creation of ionic defects, which results in a systematic violation of the ice rules. As a second step, the transformation to an atomic solid and thus hydrogen-bond centering occurs around 110 GPa at 300 K and no novel phase is found up to at least 170 GPa

  20. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  1. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  2. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  3. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2015-01-01

    The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water

  4. Interaction between benzenedithiolate and gold: Classical force field for chemical bonding

    Science.gov (United States)

    Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.

    2005-06-01

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  5. Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations

    International Nuclear Information System (INIS)

    Shein, I.R.; Ivanovskii, A.L.

    2014-01-01

    Highlights: • α and β polymorphs of BaZn 2 As 2 as a parent phase of the new DMSs are examined. • Structural, elastic, electronic properties are evaluated from first principles. • Inter-atomic bonding picture is discussed. -- Abstract: Very recently, on the example of hole- and spin-doped BaZn 2 As 2 , quite an unexpected area of potential applications of 122-like phases was proposed as a promising platform for searching the new diluted magnetic semiconductors (DMSs) (2013; K. Zhao, et al, Nature Commun. 4:1442). Herein, by means of the first-principles calculations, we have examined in detail the basic structural, elastic, electronic properties and the peculiarities of the inter-atomic bonding in α and β polymorphs of 122-like BaZn 2 As 2 – a parent phase of the new DMSs. Our characterization of these materials covers the optimized structural parameters, the main elastic parameters (elastic constants, bulk, shear, and Young’s moduli, Poisson’s ratio, anisotropy indexes, and Pugh’s criterion), as well as electronic bands and densities of electronic states

  6. Covalent versus ionic bonding in alkalimetal fluoride oligomers

    NARCIS (Netherlands)

    Bickelhaupt, F.M.; Sola, M.; Fonseca Guerra, C.

    2007-01-01

    The most polar bond in chemistry is that between a fluorine and an alkalimetal atom. Inspired by our recent finding that other polar bonds (C - M and H - M) have important covalent contributions (i.e., stabilization due to bond overlap), we herein address the question if covalency is also essential

  7. Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry

    Science.gov (United States)

    Green, Malcolm L. H.; Parkin, Gerard

    2014-01-01

    The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…

  8. Kinetics of oxygen species in an electrically driven singlet oxygen generator

    Science.gov (United States)

    Azyazov, V. N.; Torbin, A. P.; Pershin, A. A.; Mikheyev, P. A.; Heaven, M. C.

    2015-12-01

    The kinetics of oxygen species in the gaseous medium of a discharge singlet oxygen generator has been revisited. Vibrationally excited ozone O3(υ) formed in O + O2 recombination is thought to be a significant agent in the deactivation of singlet oxygen O2(a1Δ), oxygen atom removal and ozone formation. It is shown that the process O3(υ ⩾ 2) + O2(a1Δ) → 2O2 + O is the main O2(a1Δ) deactivation channel in the post-discharge zone. If no measures are taken to decrease the oxygen atom concentration, the contribution of this process to the overall O2(a1Δ) removal is significant, even in the discharge zone. A simplified model for the kinetics of vibrationally excited ozone is proposed. Calculations based on this model yield results that are in good agreement with the experimental data.

  9. Hydrogen bonding between hydrides of the upper-right part of the periodic table

    Science.gov (United States)

    Simončič, Matjaž; Urbic, Tomaz

    2018-05-01

    One of the most important electrostatic interactions between molecules is most definitely the hydrogen bond. Understanding the basis of this interaction may offer us the insight needed to understand its effect on the macroscopic scale. Hydrogen bonding is for example the reason for anomalous properties in compounds like water and naturally life as we know it. The strength of the bond depends on numerous factors, among them the electronegativity of participating atoms. In this work we calculated the strength of hydrogen bonds between hydrides of the upper-right part of the periodic table (C, N, O, F, P, S, Cl, As, Se, Br) using quantum-chemical methods. The aim was to determine what influences the strength of strong and weak hydrogen bonds in simple hydrides. Various relationships were checked. A relation between the strength of the bond and the electronegativity of the participating atoms was found. We also observed a correlation between the strength of hydrogen bonds and the inter-atomic distances, along with the dependence on the charge transfer on the atom of the donor. We also report characteristic geometries of different dimers.

  10. Oxygen Dependent Biocatalytic Processes

    DEFF Research Database (Denmark)

    Pedersen, Asbjørn Toftgaard

    Enzyme catalysts have the potential to improve both the process economics and the environ-mental profile of many oxidation reactions especially in the fine- and specialty-chemical industry, due to their exquisite ability to perform stereo-, regio- and chemo-selective oxida-tions at ambient...... to aldehydes and ketones, oxyfunctionalization of C-H bonds, and epoxidation of C-C double bonds. Although oxygen dependent biocatalysis offers many possibilities, there are numerous chal-lenges to be overcome before an enzyme can be implemented in an industrial process. These challenges requires the combined...... far below their potential maximum catalytic rate at industrially relevant oxygen concentrations. Detailed knowledge of the en-zyme kinetics are therefore required in order to determine the best operating conditions and design oxygen supply to minimize processing costs. This is enabled...

  11. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Y. [Nuclear Research Center–Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Shang, S. L.; Wang, Y.; Liu, Z. K. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shchur, Ya. [Institute for Condensed Matter Physics, 1 Svientsitskii str., L’viv 79011 (Ukraine)

    2016-02-07

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH{sub 2}PO{sub 4}, X = K, Cs, Rb, Tl), the DKDP (XD{sub 2}PO{sub 4}, X = K, Cs, Rb) type, and the X{sub 3}H(SO{sub 4}){sub 2} superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M{sub 3}H(SO{sub 4}){sub 2} compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance R{sub OO}, being a measure of the HB strength.

  12. Supra-molecular hydrogen-bonding patterns in the N(9)-H protonated and N(7)-H tautomeric form of an N(6) -benzoyl-adenine salt: N (6)-benzoyl-adeninium nitrate.

    Science.gov (United States)

    Karthikeyan, Ammasai; Jeeva Jasmine, Nithianantham; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-02-01

    In the title molecular salt, C12H10N5O(+)·NO3 (-), the adenine unit has an N (9)-protonated N(7)-H tautomeric form with non-protonated N(1) and N(3) atoms. The dihedral angle between the adenine ring system and the phenyl ring is 51.10 (10)°. The typical intra-molecular N(7)-H⋯O hydrogen bond with an S(7) graph-set motif is also present. The benzoyl-adeninium cations also form base pairs through N-H⋯O and C-H⋯N hydrogen bonds involving the Watson-Crick face of the adenine ring and the C and O atoms of the benzoyl ring of an adjacent cation, forming a supra-molecular ribbon with R 2 (2)(9) rings. Benzoyl-adeninum cations are also bridged by one of the oxygen atoms of the nitrate anion, which acts as a double acceptor, forming a pair of N-H⋯O hydrogen bonds to generate a second ribbon motif. These ribbons together with π-π stacking inter-actions between the phenyl ring and the five- and six-membered adenine rings of adjacent mol-ecules generate a three-dimensional supra-molecular architecture.

  13. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    Science.gov (United States)

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities

    KAUST Repository

    Orozco, Carlos A.

    2017-03-24

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  15. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities.

    Science.gov (United States)

    Orozco, Carlos A; Chun, Byong W; Geng, Guoqing; Emwas, Abdul H; Monteiro, Paulo J M

    2017-04-11

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29 Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  16. Characterization of the Bonds Developed between Calcium Silicate Hydrate and Polycarboxylate-Based Superplasticizers with Silyl Functionalities

    KAUST Repository

    Orozco, Carlos A.; Chun, Byong W.; Geng, Guoqing; Emwas, Abdul-Hamid M.; Monteiro, Paulo J. M.

    2017-01-01

    Major developments in concrete technology have been achieved with the use of polycarboxylate-based superplasticizers (PCEs) to improve the concrete rheology without increasing the mix water content. Currently, it is possible to control the fluidity of the fresh concrete and obtain stronger and more durable structures. Therefore, there is a strong incentive to understand the interactions between PCEs and cement hydrates at the atomic scale to design new customized functional PCEs according to the ever-increasing requirements of the concrete industry. Here, the bonding types generated between a PCE with silyl functionalities (PCE-Sil) and a synthetic calcium silicate hydrate (C-S-H) are analyzed using XRD, 29Si NMR spectroscopy, and synchrotron-based techniques, such as NEXAFS and EXAFS. The results indicated that the carboxylic groups present in PCE-Sil interact by a ligand-type bond with calcium, which modified not only the symmetry and coordination number of the calcium located at the surface of C-S-H but also the neighboring silicon atoms of the C-S-H. In addition, the silyl functionalities of the PCE-Sil generated covalent bonds through siloxane bridges between the silanol groups of PCE-Sil and the nonbonding oxygen located at the dimeric sites in C-S-H, forming new bridging silicon sites and subsequently increasing the silicate polymerization.

  17. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    Energy Technology Data Exchange (ETDEWEB)

    Hu Longfei [China Academy of Aerospace Aerodynamics, Beijing 100074 (China); Li Meishuan, E-mail: mshli@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu Caihong; Luo Yongming [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-11-30

    By using surface sol-gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO{sub 2} without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  18. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    International Nuclear Information System (INIS)

    Hu Longfei; Li Meishuan; Xu Caihong; Luo Yongming

    2011-01-01

    By using surface sol–gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO 2 without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  19. Fascinating Organic Transformations

    Indian Academy of Sciences (India)

    Definition of a Hydrogen Bond. A hydrogen atom bonded to an electronegative atom like oxygen or nitrogen has a small positive charge, due to bond polarization. ... government assistance). "Vidyanantha Education. Centre", to promote education, art and culture. Hydrogen bonds are. Ubiquitous, easily recognisable and.

  20. Hexacoordinate bonding and aromaticity in silicon phthalocyanine.

    Science.gov (United States)

    Yang, Yang

    2010-12-23

    Si-E bondings in hexacoordinate silicon phthalocyanine were analyzed using bond order (BO), energy partition, atoms in molecules (AIM), electron localization function (ELF), and localized orbital locator (LOL). Bond models were proposed to explain differences between hexacoordinate and tetracoordinate Si-E bondings. Aromaticity of silicon phthalocyanine was investigated using nucleus-independent chemical shift (NICS), harmonic oscillator model of aromaticity (HOMA), conceptual density functional theory (DFT), ring critical point (RCP) descriptors, and delocalization index (DI). Structure, energy, bonding, and aromaticity of tetracoordinate silicon phthalocyanine were studied and compared with hexacoordinate one.

  1. Chemical oxygen-iodine laser with atomic iodine generated via fluorine atoms

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila; Picková, Irena; Jakubec, Ivo

    2008-01-01

    Roč. 345, č. 1 (2008), 14-22 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen–iodine laser * COIL Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.961, year: 2008

  2. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  3. Rapid prototyping of versatile atom chips for atom interferometry applications.

    Science.gov (United States)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  4. Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.

    Science.gov (United States)

    Wang, Weizhou; Hobza, Pavel

    2008-05-01

    The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.

  5. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  6. Bonding in Heavier Group 14 Zero-Valent Complexes-A Combined Maximum Probability Domain and Valence Bond Theory Approach.

    Science.gov (United States)

    Turek, Jan; Braïda, Benoît; De Proft, Frank

    2017-10-17

    The bonding in heavier Group 14 zero-valent complexes of a general formula L 2 E (E=Si-Pb; L=phosphine, N-heterocyclic and acyclic carbene, cyclic tetrylene and carbon monoxide) is probed by combining valence bond (VB) theory and maximum probability domain (MPD) approaches. All studied complexes are initially evaluated on the basis of the structural parameters and the shape of frontier orbitals revealing a bent structural motif and the presence of two lone pairs at the central E atom. For the VB calculations three resonance structures are suggested, representing the "ylidone", "ylidene" and "bent allene" structures, respectively. The influence of both ligands and central atoms on the bonding situation is clearly expressed in different weights of the resonance structures for the particular complexes. In general, the bonding in the studied E 0 compounds, the tetrylones, is best described as a resonating combination of "ylidone" and "ylidene" structures with a minor contribution of the "bent allene" structure. Moreover, the VB calculations allow for a straightforward assessment of the π-backbonding (E→L) stabilization energy. The validity of the suggested resonance model is further confirmed by the complementary MPD calculations focusing on the E lone pair region as well as the E-L bonding region. Likewise, the MPD method reveals a strong influence of the σ-donating and π-accepting properties of the ligand. In particular, either one single domain or two symmetrical domains are found in the lone pair region of the central atom, supporting the predominance of either the "ylidene" or "ylidone" structures having one or two lone pairs at the central atom, respectively. Furthermore, the calculated average populations in the lone pair MPDs correlate very well with the natural bond orbital (NBO) populations, and can be related to the average number of electrons that is backdonated to the ligands. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Change in local atomic and chemical bonding structures of Ge2Sb2Te5 alloys by isothermal heat treatment

    International Nuclear Information System (INIS)

    Lim, Woo-Sik; Cho, Sung-June; Lee, Hyun-Yong

    2008-01-01

    In this work, we report evaluation of the atomic-scale phase transformation characteristics in one of the most comprehensively utilized phase change materials today, Ge 2 Sb 2 Te 5 thin film. The phase transformation of Ge 2 Sb 2 Te 5 thin film from amorphous to hexagonal structure via fcc structure was confirmed by XRD measurements. The approximate values of optical energy gap are 0.72 and 0.50 eV, with slopes (B 1/2 ) in the extended absorption region of 5.3 x 10 5 and 10 x 10 5 cm -1 ·eV -1 for the amorphous and fcc-crystalline structures, respectively. In addition, X-ray photoelectron spectroscopy analysis revealed strengthening of the Te-Te bond as well as weakening of the Ge-Te bond during the amorphous-to-crystalline transition. This trend was also observed in extended X-ray absorption fine structure analysis where the Ge metallic bond lengths in the amorphous, fcc, and hexagonal structures were 0.262, 0.280, and 0.290 nm

  8. Adsorption of oxygen on low-index surfaces of the TiAl{sub 3} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Latyshev, A. M.; Bakulin, A. V.; Kulkova, S. E., E-mail: kulkova@ms.tsc.ru [National Research Tomsk State University (Russian Federation); Hu, Q. M.; Yang, R. [Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Institute of Metal Research (China)

    2016-12-15

    Method of the projector augmented waves in the plane-wave basis within the generalized-gradient approximation for the exchange-correlation functional has been used to study oxygen adsorption on (001), (100), and (110) low-index surfaces of the TiAl{sub 3} alloy. It has been established that the sites that are most energetically preferred for the adsorption of oxygen are hollow (H) positions on the (001) surface and bridge (B) positions on the (110) and (100) surfaces. Structural and electronic factors that define their energy preference have been discussed. Changes in the atomic and electronic structure of subsurface layers that occur as the oxygen concentration increases to three monolayers have been analyzed. It has been shown that the formation of chemical bonds of oxygen with both components of the alloy leads to the appearance of states that are split-off from the bottoms of their valence bands, which is accompanied by the formation of a forbidden gap at the Fermi level and by a weakening of the Ti–Al metallic bonds in the alloy. On the Al-terminated (001) and (110) surfaces, the oxidation of aluminum dominates over that of titanium. On the whole, the binding energy of oxygen on the low-index surfaces with a mixed termination is higher than that at the aluminum-terminated surface. The calculation of the diffusion of oxygen in the TiAl{sub 3} alloy has shown that the lowest barriers correspond to the diffusion between tetrahedral positions in the (001) plane; the diffusion of oxygen in the [001] direction occurs through octahedral and tetrahedral positions. An increase in the concentration of aluminum in the alloy favors a reduction in the height of the energy barriers as compared to the corresponding barriers in the γ-TiAl alloy.

  9. Oxygen mobility in alkali feldspars; Etude de la mobilite de l'oxygene dans les feldspaths alcalins

    Energy Technology Data Exchange (ETDEWEB)

    Merigoux, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-03-15

    The oxygen mobility is shown from oxygen atoms exchange between potassic and sodic feldspars and 18 oxygen enriched water. Exchanges are carried out in autoclaves between 400 and 800 deg. C under a water pressure between 300 and 800 bars. The oxygen is extracted from silicate by a ClF{sub 3} attack. Two distinct mechanisms may be found. The first one is auto-diffusion; for adularia we have: D = 9.10{sup -7} exp(-32000/RT) (cm{sup 2}.s{sup -1}), for albite: D 4.5.10{sup -5} exp(-37000/RT) (cm{sup 2}.s{sup -1}). The second one, more rapid, is associated with alkali atoms exchanges. These results are applied to the order-disorder problem in feldspars and to the oxygen geochemistry. (author) [French] La mobilite de l'oxygene est mise en evidence a partir d'echanges d'atomes d'oxygene entre des feldspaths potassiques et sodiques en presence d'une eau enrichie en oxygene 18. Les echanges sont effectues en autoclave entre 400 et 800 deg. C sous des pressions de vapeur d'eau comprises entre 300 et 800 bars. L'oxygene est extrait du silicate par attaque au ClF{sub 3}. Deux mecanismes, bien distincts, peuvent se rencontrer. Le premier correspond a l'autodiffusion de l'oxygene; dans le domaine etudie on trouve pour l'adulaire: D = 9,10{sup -7} exp(-32000/RT) (cm{sup 2}.s{sup -1}), et pour l'albite: D 4,5.10{sup -5} exp(-37000/RT) (cm{sup 2}.s{sup -1}). Le second, beaucoup plus rapide, est associe a l'echange des atomes alcalins avec la solution. Ces resultats sont appliques au probleme du passage ordre-desordre dans les feldspaths et a la geochimie de l'oxygene. (auteur)

  10. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    Science.gov (United States)

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  11. Halonium Ions as Halogen Bond Donors in the Solid State [XL2]Y Complexes.

    Science.gov (United States)

    Rissanen, Kari; Haukka, Matti

    2015-01-01

    The utilization of halogen bonding interactions is one of the most rapidly developing areas of supramolecular chemistry. While the other weak non-covalent interactions and their influence on the structure and chemistry of various molecules, complexes, and materials have been investigated extensively, the understanding, utilizations, and true nature of halogen bonding are still relatively unexplored. Thus its final impact in chemistry in general and in materials science has not yet been fully established. Because of the polarized nature of a Z-X bond (Z=electron-withdrawing atom or moiety and X=halogen atom), such a moiety can act as halogen bond donor when the halogen is polarized enough by the atom/moiety Z. The most studied and utilized halogen bond donor molecules are the perfluorohalocarbons, where Z is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. Complementing the contemporary halogen bonding research, this chapter reviews the solid state structural chemistry of the most extremely polarized halogen atoms, viz. halonium ions, X+, and discussed them as halogen bond donors in the solid state [XL2]Y complexes (X=halonium ion, Y=any anion).

  12. Incorporation of oxygen into abscisic acid and phaseic acid for molecular oxygen

    International Nuclear Information System (INIS)

    Creelman, R.A.; Zeevaart, J.A.D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumariu. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18 O 2 and 80% N 2 indicates that one atom of 18 O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18 O 2 indicates that one atom of 18 O is presented in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-streesed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggest that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. 17 references, 2 figures, 1 tables

  13. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    Science.gov (United States)

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  14. Automatic measuring device for atomic oxygen concentrations (1962); Dispositif de mesure automatique de concentrations d'oxygene atomique (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Deiss, M; Mercier, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Within the framework of the activities of the Autonomous Reactor Electronics Section we have developed a device, which renders automatic one type of measurement carried out in the Physical Chemistry Department at the Saclay Research Centre. We define here: - the physico-chemical principle of the apparatus which is adapted to the measurement of atomic oxygen concentrations; - the physical principle of the automatic measurement; - the properties, performance, constitution, use and maintenance of the automatic measurement device. It is concluded that the principle of the automatic device, whose tests have confirmed the estimation of the theoretical performance, could usefully be adapted to other types of measurement. (authors) [French] Dans le cadre des activites de la Section Autonome d'Electronique des Reacteurs, il a ete realise et mis au point un dispositif permettant de rendre automatique un type de mesures effectuees au Departement de Physico-Chimie du C.E.N. SACLAY. On definit ici: - le principe physico-chimique de l'appareillage, adapte a la mesure de concentrations de l'oxygene atomique; - le principe physique de la mesure automatique; - les qualites, performances, constitution, utilisation, et maintenance du dispositif de mesure automatique. Il est porte en conclusion, que le principe du dispositif automatique realise, dont les essais ont sensiblement confirme l'evaluation des performances theoriques, pourrait etre utilement adapte a d'autres types de mesures courantes. (auteurs)

  15. Density functional study of the bonding in small silicon clusters

    International Nuclear Information System (INIS)

    Fournier, R.; Sinnott, S.B.; DePristo, A.E.

    1992-01-01

    We report the ground electronic state, equilibrium geometry, vibrational frequencies, and binding energy for various isomers of Si n (n = 2--8) obtained with the linear combination of atomic orbitals-density functional method. We used both a local density approximation approach and one with gradient corrections. Our local density approximation results concerning the relative stability of electronic states and isomers are in agreement with Hartree--Fock and Moller--Plesset (MP2) calculations [K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988)]. The binding energies calculated with the gradient corrected functional are in good agreement with experiment (Si 2 and Si 3 ) and with the best theoretical estimates. Our analysis of the bonding reveals two limiting modes of bonding and classes of silicon clusters. One class of clusters is characterized by relatively large s atomic populations and a large number of weak bonds, while the other class of clusters is characterized by relatively small s atomic populations and a small number of strong bonds

  16. Nonperfect synchronization of bond-forming and bond-rupturing processes in the reaction H + H2 → H2 + H

    International Nuclear Information System (INIS)

    Chandra, A.K.; Rao, V.S.

    1996-01-01

    The simplest prototypical hydrogen transfer reaction, i.e., H + H 2 → H 2 + H, is studied by the quantum-mechanical ab initio methods. Results reveal that during this reaction free valence which almost equals the square of the spin density develops on the migrating hydrogen atom. Bond orders are calculated using Mayer's formalism. Both the variations of bond orders and bond lengths along the reaction path are examined. This analysis reveals that the bond formation and bond cleavage processes in this reaction are not perfectly synchronous. The bond clevage process is slightly more advanced on the reaction path. 38 refs., 6 figs., 2 tabs

  17. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  18. Unprecedented Oxidative Addition of Highly Active Manganese into the Oxygen-Sulfur Bond of Coumarin and Pyrone 4-Tosylates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ueon Sang; Joo, Seong-Ryu; Kim, Seung-Hoi [Dankook University , Cheonan (Korea, Republic of)

    2016-06-15

    Novel organomanganese reagents, 2-oxo-2H-chromen-4-yloxy tosylmanganese (A1), and 6-methyl-2-oxo-2H-pyran-4-yloxy tosylmanganese (A2), were obtained by the reaction of highly active Mn with 2-oxo-2H-chromen-4-yl 4-methylbenzenesulfonate (I) and 6-methyl-2-oxo-2H-pyran-4-yl-4-methylbenzenesulfonate (II), respectively. This was accomplished by the insertion of Mn into the oxygen-sulfur bond. Of interest, subsequent cross-coupling reactions of the thus-obtained organomanganese reagents afforded two different products, esters and sulfones, depending on the electrophile used under mild conditions.

  19. Structural and optical properties of amorphous oxygenated iron boron nitride thin films produced by reactive co-sputtering

    International Nuclear Information System (INIS)

    Essafti, A.; Abouelaoualim, A.; Fierro, J.L.G.; Ech-chamikh, E.

    2009-01-01

    Amorphous oxygenated iron boron nitride (a-FeBN:O) thin films were prepared by reactive radio-frequency (RF) sputtering, from hexagonal boron nitride chips placed on iron target, under a total pressure of a gas mixture of argon and oxygen maintained at 1 Pa. The films were deposited onto silicon and glass substrates, at room temperature. The power of the generator RF was varied from 150 to 350 W. The chemical and structural analyses were investigated using X-ray photoelectron spectroscopy (XPS), energy dispersive of X-ray and X-ray reflectometry (XRR). The optical properties of the films were obtained from the optical transmittance and reflectance measurements in the ultraviolet-visible-near infrared wavelengths range. XPS reveals the presence of boron, nitrogen, iron and oxygen atoms and also the formation of different chemical bonds such as Fe-O, B-N, B-O and the ternary BNO phase. This latter phase is predominant in the deposited films as observed in the B 1s and N 1s core level spectra. As the RF power increases, the contribution of N-B bonds in the as-deposited films decreases. The XRR results show that the mass density of a-FeBN:O thin films increases from 2.6 to 4.12 g/cm 3 with increasing the RF power from 150 to 350 W. This behavior is more important for films deposited at RF power higher than 150 W, and has been associated with the enhancement of iron atoms in the film structure. The optical band gap decreases from 3.74 to 3.12 eV with increasing the RF power from 150 to 350 W.

  20. Oxygen mobility in alkali feldspars; Etude de la mobilite de l'oxygene dans les feldspaths alcalins

    Energy Technology Data Exchange (ETDEWEB)

    Merigoux, H. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-03-15

    The oxygen mobility is shown from oxygen atoms exchange between potassic and sodic feldspars and 18 oxygen enriched water. Exchanges are carried out in autoclaves between 400 and 800 deg. C under a water pressure between 300 and 800 bars. The oxygen is extracted from silicate by a ClF{sub 3} attack. Two distinct mechanisms may be found. The first one is auto-diffusion; for adularia we have: D = 9.10{sup -7} exp(-32000/RT) (cm{sup 2}.s{sup -1}), for albite: D 4.5.10{sup -5} exp(-37000/RT) (cm{sup 2}.s{sup -1}). The second one, more rapid, is associated with alkali atoms exchanges. These results are applied to the order-disorder problem in feldspars and to the oxygen geochemistry. (author) [French] La mobilite de l'oxygene est mise en evidence a partir d'echanges d'atomes d'oxygene entre des feldspaths potassiques et sodiques en presence d'une eau enrichie en oxygene 18. Les echanges sont effectues en autoclave entre 400 et 800 deg. C sous des pressions de vapeur d'eau comprises entre 300 et 800 bars. L'oxygene est extrait du silicate par attaque au ClF{sub 3}. Deux mecanismes, bien distincts, peuvent se rencontrer. Le premier correspond a l'autodiffusion de l'oxygene; dans le domaine etudie on trouve pour l'adulaire: D = 9,10{sup -7} exp(-32000/RT) (cm{sup 2}.s{sup -1}), et pour l'albite: D 4,5.10{sup -5} exp(-37000/RT) (cm{sup 2}.s{sup -1}). Le second, beaucoup plus rapide, est associe a l'echange des atomes alcalins avec la solution. Ces resultats sont appliques au probleme du passage ordre-desordre dans les feldspaths et a la geochimie de l'oxygene. (auteur)

  1. Dynamic response of a carbon nanotube-based rotary nano device with different carbon-hydrogen bonding layout

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hang [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Cai, Kun, E-mail: caikun1978@163.com [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Wan, Jing [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Gao, Zhaoliang, E-mail: coopcg@163.com [Institute of Soil and Water Conservation, Northwest A& F University, Yangling, 712100 (China); Chen, Zhen [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The rotational transmission performance of a rotational transmission system (RTS) with different types of C−H bonding layouts on the edge of motor and rotor is investigated using MD simulation method. • The L–J interaction between covalently bonded hydrogen atoms and sp1 carbon atoms is too weak to support a stable rotational transmission when only the motor or rotor has bonded hydrogen atoms. • When both the motor and rotor have the same C−H bonding layout on their adjacent ends, a stable output rotational speed of rotor can be obtained. • A low input rotational speed (e.g., 100 GHz) would lead to a synchronous rotational transmission if the system has (+0.5H) C−H bonding layout. - Abstract: In a nano rotational transmission system (RTS) which consists of a single walled carbon nanotube (SWCNT) as the motor and a coaxially arranged double walled carbon nanotube (DWCNT) as a bearing, the interaction between the motor and the rotor in bearing, which has great effects on the response of the RTS, is determined by their adjacent edges. Using molecular dynamics (MD) simulation, the interaction is analyzed when the adjacent edges have different carbon-hydrogen (C−H) bonding layouts. In the computational models, the rotor in bearing and the motor with a specific input rotational speed are made from the same armchair SWCNT. Simulation results demonstrate that a perfect rotational transmission could happen when the motor and rotor have the same C−H bonding layout on their adjacent ends. If only half or less of the carbon atoms on the adjacent ends are bonded with hydrogen atoms, the strong attraction between the lower speed (100 GHz) motor and rotor leads to a synchronous rotational transmission. If only the motor or the rotor has C−H bonds on their adjacent ends, no rotational transmission happens due to weak interaction between the bonded hydrogen atoms on one end with the sp{sup 1} bonded carbon atoms on the other

  2. The influence of oxygen adsorption on the NEXAFS and core-level XPS spectra of the C60 derivative PCBM

    International Nuclear Information System (INIS)

    Brumboiu, Iulia Emilia; Eriksson, Olle; Brena, Barbara; Ericsson, Leif; Hansson, Rickard; Moons, Ellen

    2015-01-01

    Fullerenes have been a main focus of scientific research since their discovery due to the interesting possible applications in various fields like organic photovoltaics (OPVs). In particular, the derivative [6,6]-phenyl-C 60 -butyric acid methyl ester (PCBM) is currently one of the most popular choices due to its higher solubility in organic solvents compared to unsubstituted C 60 . One of the central issues in the field of OPVs is device stability, since modules undergo deterioration (losses in efficiency, open circuit voltage, and short circuit current) during operation. In the case of fullerenes, several possibilities have been proposed, including dimerization, oxidation, and impurity related deterioration. We have studied by means of density functional theory the possibility of oxygen adsorption on the C 60 molecular moiety of PCBM. The aim is to provide guidelines for near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) measurements which can probe the presence of atomic or molecular oxygen on the fullerene cage. By analysing several configurations of PCBM with one or more adsorbed oxygen atoms, we show that a joint core level XPS and O1s NEXAFS investigation could be effectively used not only to confirm oxygen adsorption but also to pinpoint the bonding configuration and the nature of the adsorbate

  3. Bond index: relation to second-order density matrix and charge fluctuations

    International Nuclear Information System (INIS)

    Giambiagi, M.S. de; Giambiagi, M.; Jorge, F.E.

    1985-01-01

    It is shown that, in the same way as the atomic charge is an invariant built from the first-order density matrix, the closed-shell generalized bond index is an invariant associated with the second-order reduced density matrix. The active charge of an atom (sum of bond indices) is shown to be the sum of all density correlation functions between it and the other atoms in the molecule; similarly, the self-charge is the fluctuation of its total charge. (Author) [pt

  4. Evidence of sub-10 nm aluminum-oxygen precipitates in silicon

    International Nuclear Information System (INIS)

    Moutanabbir, Oussama; Isheim, Dieter; Mao, Zugang; Seidman, David N

    2016-01-01

    In this research, ultraviolet laser-assisted atom-probe tomography (APT) was utilized to investigate precisely the behavior at the atomistic level of aluminum impurities in ultrathin epitaxial silicon layers. Aluminum atoms were incorporated in situ during the growth process. The measured average aluminum concentration in the grown layers exceeds by several orders of magnitude the equilibrium bulk solubility. Three-dimensional atom-by-atom mapping demonstrates that aluminum atoms precipitate in the silicon matrix and form nanoscopic precipitates with lateral dimensions in the 1.3 to 6.2 nm range. These precipitates were found to form only in the presence of oxygen impurity atoms, thus providing clear evidence of the long-hypothesized role of oxygen and aluminum-oxygen complexes in facilitating the precipitation of aluminum in a silicon lattice. The measured average aluminum and oxygen concentrations in the precipitates are ∼10 ± 0.5 at.% and ∼4.4 ± 0.5 at.%, respectively. This synergistic interaction is supported by first-principles calculations of the binding energies of aluminum-oxygen dimers in silicon. The calculations demonstrate that there is a strong binding between aluminum and oxygen atoms, with Al-O-Al and O-Al-Al as the energetically favorable sequences corresponding to precipitates in which the concentration of aluminum is twice as large as the oxygen concentration in agreement with APT data. (paper)

  5. LED Die-Bonded on the Ag/Cu Substrate by a Sn-BiZn-Sn Bonding System

    Science.gov (United States)

    Tang, Y. K.; Hsu, Y. C.; Lin, E. J.; Hu, Y. J.; Liu, C. Y.

    2016-12-01

    In this study, light emitting diode (LED) chips were die-bonded on a Ag/Cu substrate by a Sn-BixZn-Sn bonding system. A high die-bonding strength is successfully achieved by using a Sn-BixZn-Sn ternary system. At the bonding interface, there is observed a Bi-segregation phenomenon. This Bi-segregation phenomenon solves the problems of the brittle layer-type Bi at the joint interface. Our shear test results show that the bonding interface with Bi-segregation enhances the shear strength of the LED die-bonding joints. The Bi-0.3Zn and Bi-0.5Zn die-bonding cases have the best shear strength among all die-bonding systems. In addition, we investigate the atomic depth profile of the deposited Bi-xZn layer by evaporating Bi-xZn E-gun alloy sources. The initial Zn content of the deposited Bi-Zn alloy layers are much higher than the average Zn content in the deposited Bi-Zn layers.

  6. Energetic Analysis of Conjugated Hydrocarbons Using the Interacting Quantum Atoms Method.

    Science.gov (United States)

    Jara-Cortés, Jesús; Hernández-Trujillo, Jesús

    2018-07-05

    A number of aromatic, antiaromatic, and nonaromatic organic molecules was analyzed in terms of the contributions to the electronic energy defined in the quantum theory of atoms in molecules and the interacting quantum atoms method. Regularities were found in the exchange and electrostatic interatomic energies showing trends that are closely related to those of the delocalization indices defined in the theory. In particular, the CC interaction energies between bonded atoms allow to rationalize the energetic stabilization associated with the bond length alternation in conjugated polyenes. This approach also provides support to Clar's sextet rules devised for aromatic systems. In addition, the H⋯H bonding found in some of the aromatic molecules studied was of an attractive nature, according to the stabilizing exchange interaction between the bonded H atoms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur

    DEFF Research Database (Denmark)

    Du, Lin; Tang, Shanshan; Hansen, Anne Schou

    2017-01-01

    complexes are more stable and form stronger hydrogen bonds compared to complexes with MeOH and EtOH, which are comparable, and only for the stronger hydrogen bond donor (TFE) are the small differences in acceptor molecules highlighted. The equilibrium constant for complex formation was determined from......The Osingle bondH⋯O and Osingle bondH⋯S hydrogen bonds were investigated by gas phase FTIR spectroscopy of alcohol–dimethylether and alcohol–dimethylsulfide complexes, with alcohols of increasing hydrogen bond donor strength; methanol (MeOH), ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The TFE...

  8. Incorporation of Oxygen into Abscisic Acid and Phaseic Acid from Molecular Oxygen 1

    Science.gov (United States)

    Creelman, Robert A.; Zeevaart, Jan A. D.

    1984-01-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% 18O2 and 80% N2 indicates that one atom of 18O is incorporated in the 6′-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase. Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing 18O2 indicates that one atom of 18O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1′-, 4′-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1′- and 4′-positions of abscisic acid which is converted to abscisic acid under conditions of water stress. PMID:16663564

  9. Surface interaction of polyimide with oxygen ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P.S.; Bhoraskar, V.N.; Mandle, A.B.; Ganeshan, V.; Bhoraskar, S.V.

    2004-01-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis

  10. Surface interaction of polyimide with oxygen ECR plasma

    Science.gov (United States)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  11. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  12. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jeng-Da; Head-Gordon, Martin

    2008-06-14

    We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical atom-atom dispersion corrections. The resulting functional, {omega}B97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, {omega}B97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our previous functionals, such as {omega}B97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.

  13. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.

    Science.gov (United States)

    Raschka, Sebastian; Wolf, Alex J; Bemister-Buffington, Joseph; Kuhn, Leslie A

    2018-04-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  14. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes

    Science.gov (United States)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.

    2018-02-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  15. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe.

    Science.gov (United States)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valérie

    2012-01-14

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found.

  16. Assessment of density functional theory for bonds formed between rare gases and open-shell atoms: a computational study of small molecules containing He, Ar, Kr and Xe

    International Nuclear Information System (INIS)

    Bertolus, Marjorie; Major, Mohamed; Brenner, Valerie

    2012-01-01

    The validity of the description of the DFT approximations currently implemented in plane wave DFT codes (LDA, GGA, meta-GGA, hybrid, GGA + empirical dispersion correction) for interactions between rare gases and open-shell atoms which form materials is poorly known. We have performed a first assessment of the accuracy of these functionals for the description of the bonds formed by helium, argon, krypton and xenon with various open-shell atoms. This evaluation has been done on model molecular systems for which precise experimental data are available and reference post-Hartree-Fock calculations (CCSD(T) using large basis sets) are feasible. The results show that when the rare gas atom shares density with the neighbouring atoms, the GGA functionals yield good geometries and qualitatively correct binding energies, even if these are quite significantly overestimated. The use of hybrid functionals enables us to obtain good geometries and satisfactory binding energies. For compounds in which the rare gas atom forms weak dispersive-like bonding, the accuracy yielded by the various functionals is not as good. No functional gives satisfactory binding energies for all the compounds investigated. Several GGA and hybrid functionals yield correct geometries, even if some isomers are not obtained. One GGA functional (PBE) yields qualitatively correct results for the compounds of the three rare gases and several hybrid functionals give satisfactory energies for He compounds. The addition of an empirical dispersive correction improves the results on association compounds, but several isomers are not found. (authors)

  17. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    Science.gov (United States)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  18. Quantum mechanical study on hydrogen bonds between 3-aminophenol and CH{sub x}Cl{sub 4-}x (x=1, 2, 3): Effect of the number of halogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Young; Kang, Hyuk [Dept. of Chemistry, Ajou University, Suwon (Korea, Republic of)

    2015-03-15

    Hydrogen bonds between 3-aminophenol and three chlorine-substituted methanes (CHCl{sub 3}, CH{sub 2}Cl{sub 2}, and CH{sub 3}Cl) were quantum mechanically studied at MP2/aug-cc-pVDZ level. Several low-energy structures with a hydrogen bond were identified for all chlorinated methanes, and the properties of their C[BOND]H stretching vibrations were investigated. When it is hydrogen-bonded to 3-aminophenol (3AP), the C[BOND]H stretching frequency of CHCl{sub 3} is blue-shifted by 18–54 cm−1, and its IR absorption intensity is 48–74 times increased, depending on the isomer. The symmetric and antisymmetric C[BOND]H stretches of CH{sub 2}Cl{sub 2} and CH{sub 3}Cl are shifted in either direction by a few cm−1 upon hydrogen-bonding to 3AP, and their IR intensity was increased by a few times. It is concluded that all chlorinated methanes can make a π-hydrogen bond to 3AP but only CHCl{sub 3}, the one with the most chlorine atoms, makes a blue-shifting hydrogen bond, or an “antihydrogen bond”.

  19. Hydrogen bonds in concreto and in computro

    Science.gov (United States)

    Stouten, Pieter F. W.; Kroon, Jan

    1988-07-01

    Molecular dynamics simulations of liquid water and liquid methanol have been carried out. For both liquids an effective pair potential was used. The models were fitted to the heat of vaporization, pressure and various radial distribution functions resulting from diffraction experiments on liquids. In both simulations 216 molecules were put in a cubic periodical ☐. The system was loosely coupled to a temperature bath and to a pressure bath. Following an initial equilibration period relevant data were sampled during 15 ps. The distributions of oxygen—oxygen distances in hydrogen bonds obtained from the two simulations are essentially the same. The distribution obtained from crystal data is somewhat different: the maximum has about the same position, but the curve is much narrower, which can be expected merely from the fact that diffraction experiments only supply average atomic positions and hence average interatomic distances. When thermal motion is taken into account a closer likeness is observed.

  20. Dynamic breaking of a single gold bond

    DEFF Research Database (Denmark)

    Pobelov, Ilya V.; Lauritzen, Kasper Primdal; Yoshida, Koji

    2017-01-01

    While one might assume that the force to break a chemical bond gives a measure of the bond strength, this intuition is misleading. If the force is loaded slowly, thermal fluctuations may break the bond before it is maximally stretched, and the breaking force will be less than the bond can sustain...... of a single Au-Au bond and show that the breaking force is dependent on the loading rate. We probe the temperature and structural dependencies of breaking and suggest that the paradox can be explained by fast breaking of atomic wires and slow breaking of point contacts giving very similar breaking forces....

  1. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  2. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-21

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  3. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    Science.gov (United States)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.

    2016-05-01

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  4. QuBiLS-MAS, open source multi-platform software for atom- and bond-based topological (2D) and chiral (2.5D) algebraic molecular descriptors computations.

    Science.gov (United States)

    Valdés-Martiní, José R; Marrero-Ponce, Yovani; García-Jacas, César R; Martinez-Mayorga, Karina; Barigye, Stephen J; Vaz d'Almeida, Yasser Silveira; Pham-The, Hai; Pérez-Giménez, Facundo; Morell, Carlos A

    2017-06-07

    In previous reports, Marrero-Ponce et al. proposed algebraic formalisms for characterizing topological (2D) and chiral (2.5D) molecular features through atom- and bond-based ToMoCoMD-CARDD (acronym for Topological Molecular Computational Design-Computer Aided Rational Drug Design) molecular descriptors. These MDs codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph-theoretical electronic-density and edge-adjacency matrices in order to consider atom- and bond-based relations, respectively. These MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications ranging from antimalarials, antibacterials, tyrosinase inhibitors and so on. To compute these MDs, a computational program with the same name was initially developed. However, this in house software barely offered the functionalities required in contemporary molecular modeling tasks, in addition to the inherent limitations that made its usability impractical. Therefore, the present manuscript introduces the QuBiLS-MAS (acronym for Quadratic, Bilinear and N-Linear mapS based on graph-theoretic electronic-density Matrices and Atomic weightingS) software designed to compute topological (0-2.5D) molecular descriptors based on bilinear, quadratic and linear algebraic forms for atom- and bond-based relations. The QuBiLS-MAS module was designed as standalone software, in which extensions and generalizations of the former ToMoCoMD-CARDD 2D-algebraic indices are implemented, considering the following aspects: (a) two new matrix normalization approaches based on double-stochastic and mutual probability formalisms; (b) topological constraints (cut-offs) to take into account particular inter-atomic relations; (c) six additional atomic properties to be used as weighting schemes in the calculation of the molecular vectors; (d) four new local-fragments to consider molecular regions of interest; (e) number of lone-pair electrons in

  5. Hydrogen bonds of DsrD protein revealed by neutron crystallography

    International Nuclear Information System (INIS)

    Chatake, Toshiyuki; Higuchi, Yoshiki; Mizuno, Nobuhiro; Tanaka, Ichiro; Niimura, Nobuo; Morimoto, Yukio

    2008-01-01

    Hydrogen bonds of DNA-binding protein DsrD have been determined by neutron diffraction. In terms of proton donors and acceptors, DsrD protein shows striking differences from other proteins. The features of hydrogen bonds in DsrD protein from sulfate-reducing bacteria have been investigated by neutron protein crystallography. The function of DsrD has not yet been elucidated clearly, but its X-ray crystal structure revealed that it comprises a winged-helix motif and shows the highest structural homology to the DNA-binding proteins. Since any neutron structure of a DNA recognition protein has not yet been obtained, here detailed information on the hydrogen bonds in the winged-helix-motif protein is given and the following features found. (i) The number of hydrogen bonds per amino acid of DsrD is relatively fewer than for other proteins for which neutron structures were determined previously. (ii) Hydrogen bonds are localized between main-chain and main-chain atoms; there are few hydrogen bonds between main-chain and side-chain atoms and between side-chain and side-chain atoms. (iii) Hydrogen bonds inducted by protonation of specific amino acid residues (Glu50) seem to play an essential role in the dimerization of DsrD. The former two points are related to the function of the DNA-binding protein; the three-dimensional structure was mainly constructed by hydrogen bonds in main chains, while the side chains appeared to be used for another role. The latter point would be expected to contribute to the crystal growth of DsrD

  6. Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides.

    Science.gov (United States)

    Liu, Zhuqing; Huang, Fei; Wu, Ping; Wang, Quannan; Yu, Zhengkun

    2018-05-18

    Amide bond formation is one of the most important transformations in organic synthesis, drug development, and materials science. Efficient construction of amides has been among the most challenging tasks for organic chemists. Herein, we report a concise methodology for amide bond (-CONH-) formation assisted by vicinal group migration in alkylthio-functionalized enaminones (α-oxo ketene N, S-acetals) under mild conditions. Simple treatment of such enaminones with PhI(OAc) 2 at ambient temperature in air afforded diverse multiply functionalized α,β-unsaturated amides including β-cyclopropylated acrylamides, in which a wide array of functional groups such as aryl, (hetero)aryl, alkenyl, and alkyl can be conveniently introduced to a ketene moiety. The reaction mechanism was investigated by exploring the origins of the amide oxygen and carbon atoms as well as isolation and structural characterization of the reaction intermediates. The amide bond formation reactions could also be efficiently performed under solventless mechanical milling conditions.

  7. First-principle study on bonding mechanism of ZnO by LDA+U method

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Zhong, X.L.; Chen Xiaoshuang; Wei Lu; Wang, J.B.

    2007-01-01

    The electronic structure and the bonding mechanism of ZnO have been studied by using the Full-Potential Linear Augmented Plane Wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation potential. The valence and the bonding charge density are calculated and compared with those derived from LDA and GGA to describe the bonding mechanism. The charge transfer along with the bonding process is analyzed by using the theory of Atoms in Molecules (AIM). The bonding, the topological characteristics and the p-d coupling effects on the bonding mechanism of ZnO are shown quantitatively with the critical points (CPs) along the bonding trajectory and the charge in the atomic basins. Meanwhile, the bonding characteristics for wurtzite, zinc blende and rocksalt phase of ZnO are discussed systematically in the present paper

  8. Radical fragmentation of six-membered oxygen-containing heterocycles

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Kosobutskij, V.S.; Shadyro, O.I.

    1982-01-01

    Using chromatography, the composition and radiation-chemical yields of final products of desctruction of six-member saturated oxygen-containing heterocycles (the effect of #betta#-radiation on aqueous solutions of tetrahydropyran, 1,3-dioxane, 2,2 dimethyl-1,3 dioxane, 1,4-dioxane, paraldehyde) have been determined. It is established that the identified products are formed at the expense of decomposition of primary radicals of the initial compounds and point to the realization of the following fragmentation ways: 1) #betta#-scattering, 2) #betta#-scattering with a subsequent 1,5 migration of an H atom, 3) simultaneous rupture of two vicinal, relative to the radical center, bonds. A formation mechanism of the substances desctruction products is suggested. Material balance of the product yields of 1,3-dioxane radical synchronous decomposition is presented

  9. Quartz-crystal microbalance study for characterizing atomic oxygen in plasma ash tools

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Sakthivel, P.

    2001-01-01

    This article discusses the measurement of atomic oxygen (AO) concentrations in an oxygen discharge using a quartz-crystal microbalance (QCM). This is a device that has been previously used for monitoring thin-film deposition, among several other applications. The sensor consists of a silver-coated quartz crystal that oscillates at its specific resonant frequency (typically, at about 6 MHz), which is dependent on the mass of the crystal. When exposed to AO, the silver oxidizes rapidly, resulting in a change in its mass, and a consequent change in this frequency. The frequency change is measured with a counter, and when plotted versus time, it may be fit to a standard diffusion-limited oxide-growth model. This model is then used to determine the specific AO flux to the crystal, and by inference, to the wafer. Initial results of QCM measurements in the FusionGemini Plasma Asher (GPL TM -standard downstream microwave asher) and FusionGemini Enhanced Strip (GES TM -fluorine compatible enhanced strip asher) are presented in this article. The results indicate AO densities of the order of 10 12 cm -3 on the wafer. There is a marked increase in AO concentration with addition of nitrogen into the plasma, and a decrease in AO concentration with increasing pressure at constant flow. Effects of increasing the total plasma volume in the enhanced strip tool on AO production are discussed

  10. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. UV Observations of Atomic Oxygen in the Cusp Region

    Science.gov (United States)

    Fritz, B.; Lessard, M.; Dymond, K.; Kenward, D. R.; Lynch, K. A.; Clemmons, J. H.; Hecht, J. H.; Hysell, D. L.; Crowley, G.

    2017-12-01

    The Rocket Experiment for Neutral Upwelling (RENU) 2 launched into the dayside cusp on 13 December, 2015. The sounding rocket payload carried a comprehensive suite of particle, field, and remote sensing instruments to characterize the thermosphere in a region where pockets of enhanced neutral density have been detected [Lühr et al, 2004]. An ultraviolet photomultiplier tube (UV PMT) was oriented to look along the magnetic field line and remotely detect neutral atomic oxygen (OI) above the payload. The UV PMT measured a clear enhancement as the payload descended through a poleward moving auroral form, an indicator of structure in both altitude and latitude. Context for the UV PMT measurement is provided by the Special Sensor Ultraviolet Imager (SSULI) instrument on the Defense Meteorological Space Program (DMSP) satellite, which also measured OI as it passed through the cusp. UV tomography of SSULI observations produces a two-dimensional cross-section of volumetric emission rates in the high-latitude thermosphere prior to the RENU 2 flight. The volume emission rate may then be inverted to produce a profile of neutral density in the thermosphere. A similar technique is used to interpret the UV PMT measurement and determine structure in the thermosphere as RENU 2 descended through the cusp.

  12. Peptide bond detection via graphene nanogaps: a proof of principle study.

    Science.gov (United States)

    Rossini, Aldo Eugenio; Gala, Fabrizio; Chinappi, Mauro; Zollo, Giuseppe

    2018-03-29

    Solid-state nanopores and nanogaps are emerging as promising tools for single molecule analysis. 2D materials, such as graphene, can potentially reach the spatial resolution needed for nucleic acid and protein sequencing. In the context of the density functional theory, atomistic modeling and non-equilibrium Green's function calculation, we show that glycine based polypeptide chains translocating across a nano-gap between two semi-infinite graphene nano-ribbons leave a specific transverse current signature for each peptide bond. The projected density of states and bond current analyses reveal a complex scenario with a role played by the adjacent α-carbons and side chains and by the orbitals of the partially resonant double bond involving C, N and O atoms of the peptide bond. In this context, specific fingerprints of the atoms involved in the peptide bonds are found. The same scenario is evidenced also for peptides involving alanine residues. The signal measured can be considered as a specific fingerprint of peptide bonds between small and neutral amino acids with no polar/charge effects. On this basis, a newly conceived nano-device made of a graphene based array of nano-gap is proposed as a possible route to approach peptide sequencing with atomic resolution.

  13. Facilitation of Nanoscale Thermal Transport by Hydrogen Bonds

    OpenAIRE

    Zhang, Lin

    2017-01-01

    Thermal transport performance at the nanoscale and/or of biomaterials is essential to the success of many new technologies including nanoelectronics, biomedical devices, and various nanocomposites. Due to complicated microstructures and chemical bonding, thermal transport process in these materials has not been well understood yet. In terms of chemical bonding, it is well known that the strength of atomic bonding can significantly affect thermal transport across materials or across interfaces...

  14. Bond lengths in Cd1-xZnxTe beyond linear laws revisited

    International Nuclear Information System (INIS)

    Koteski, V.; Haas, H.; Holub-Krappe, E.; Ivanovic, N.; Mahnke, H.-E.

    2004-01-01

    We have investigated the development of local bond lengths with composition in the Cd 1-x Zn x Te mixed system by measuring the fine structure in X-ray absorption (EXAFS) at all three constituent atoms. The bond strength is found to dominate over the averaging of the bulk so that the local bond length deviates only slightly from its natural value determined for the pure binary components ZnTe and CdTe, respectively. The deviations are significantly less than predicted by a simple radial force constant model for tetrahedrally co-ordinated binary systems, and the bond-length variation with concentration is significantly non-linear. For the second shell, bimodal anion-anion distances are found while the cation-cation distances can already be described by the virtual crystal approximation. In the diluted regime close to the end-point compounds, we have complemented our experimental work by ab initio calculations based on density functional theory with the WIEN97 program using the linearised augmented plane wave method. Equilibrium atomic lattice positions have been calculated for the substitutional isovalent metal atom in a 32-atom super cell, Zn in the CdTe lattice or Cd in the ZnTe lattice, respectively, yielding good agreement with the atomic distances as determined in our EXAFS experiments

  15. "Vibrational bonding": a new type of chemical bond is discovered.

    Science.gov (United States)

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  16. [Two-dimensional model of a double-well potential: proton transfer when a hydrogen bond is deformed].

    Science.gov (United States)

    Krasilnikov, P M

    2014-01-01

    The potential energy cross-section profile along a hydrogen bond may contain two minima in certain conditions; it is so-called a double well potential. The H-bond double well potential is essential for proton transfer along this hydrogen bond. We have considered the two-dimensional model of such double well potential in harmonic approximation, and we have also investigated the proton tunneling in it. In real environments thermal motion of atoms or conformational changes may cause reorientation and relative shift of molecule fragment forming the hydrogen bond and, as a result, the hydrogen bond isdeformed. This deformation is liable to change the double well potential form and, hence, the probability of the proton tunneling is changed too. As it is shown the characteristic time of proton tunneling is essentially increased by even small relative shift of heavy atoms forming the H-bond and also rotational displacement of covalent bond generated by one of heavy atoms and the proton (hydrogen atom). However, it is also shown, at the certain geometry of the H-bond deformation the opposite effect occurred, i.e., the characteristic time is not increased and even decreased. Notice that such its behavior arises from two-dimensionality of potential wells; this and other properties of our model are discussed in detail.

  17. Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Tram, Camilla Mia; Kjærgaard, Henrik Grum

    2017-01-01

    tert-butanol (t-BuOH), with dimethyl ether (DME) as the hydrogen-bond acceptor. Using a combination of Fourier-transform infrared spectroscopy and quantum chemical calculations, we compare the strength of the OH-O hydrogen bond and the total strength of complexation. We find that, both in terms...... results, we find that the hydroperoxide complex is stabilized by ∼4 kJ/mol (Gibbs free energy) more than the alcohol complex. Measured red shifts show the same trend in hydrogen-bond strength with trimethylamine (N acceptor atom) and dimethyl sulfide (S acceptor atom) as the hydrogen-bond acceptors....

  18. Role of Au-C Interactions on the Catalytic Activity of Au Nanoparticles Supported on TiC(001) toward Molecular Oxygen Dissociation

    International Nuclear Information System (INIS)

    Rodriguez, J.; Feria, L.; Jirsak, T.; Takahashi, Y.; Nakamura, K.; Illas, F.

    2010-01-01

    High-resolution photoemission and density functional calculations on realistic slab surface models were used to study the interaction and subsequent dissociation of O 2 with Au nanoparticles supported on TiC(001). The photoemission results indicate that at 150 K O 2 adsorbs molecularly on the supported gold nanoparticles, and upon heating to temperatures above 200 K the O 2 → 2O reaction takes place with migration of atomic oxygen to the TiC(001) substrate. The addition of Au to TiC(001) substantially enhances the rate of O 2 dissociation at room temperature. The reactivity of Au nanoparticles supported on TiC(001) toward O 2 dissociation is much larger than that of similar nanoparticles supported either on TiO 2 (110) or MgO(001) surfaces, where the cleavage of O-O bonds is very difficult. Density functional calculations carried out on large supercells show that the contact of Au with TiC(001) is essential for charge polarization and an enhancement in the chemical activity of Au. Small two-dimensional particles which expose Au atoms in contact with TiC(001) are the most reactive. While O 2 prefers binding to Au sites, the O atoms interact more strongly with the TiC(001) surface. The oxygen species active during the low-temperature ( 2 . Once atomic O binds to TiC(001), the chemisorption bond is so strong that temperatures well above 400 K are necessary to remove the O adatoms from the TiC(001) substrate by direct reaction with CO. The high reactivity of Au/TiC(001) toward O 2 at low-temperature opens the route for the transformation of alcohols and amines on the supported Au nanoparticles.

  19. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence

    International Nuclear Information System (INIS)

    Falicov, L.M.; Somorjai, G.A.

    1985-01-01

    Correlation between catalytic activity and low-energy local electronic fluctuation in transition metals is proposed. A theory and calculations are presented which indicate that maximum electronic fluctuants take place at high-coordination metal sites. Either (i) atomically rough surfaces that expose to the reactant molecules atoms with large numbers of nonmagnetic or weakly magnetic neighbors in the first or second layer at the surface or (ii) stepped and kinked surfaces are the most active in carrying out structure-sensitive catalytic reactions. The synthesis of ammonia from N 2 and H 2 over iron and rhenium surfaces, 1 H 2 / 2 H 2 exchange over stepped platinum crystal surfaces at low pressures, and the hydrogenolysis (C - C bond breaking) of isobutane at kinked platinum crystal surfaces are presented as experimental evidence in support of the theory

  20. The adsorption geometry of PTCDA on Ag(111). An NIXSW study

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, Annegret

    2007-12-14

    The bonding lengths of a large pi-conjugated molecule which was adsorbed on a metal surface were determined for the first molecular layer. The system consisting of the organic molecules 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) grown on a silver(111) surface was investigated. PTCDA on Ag(111) appears in two phases in the first layer: The commensurate long range ordered monolayer at room temperature (RT phase) is a stable phase, whereas the disordered phase which is grown at temperatures below 160 K (LT phase) is a metastable phase. The bonding distance of the molecules from the surface is an indication for the bonding strength. Distortions of the molecules from the planar geometry give additional information on the bonding mechanism. Using NIXSW, the vertical distance of the molecules was investigated by the core-level C1s transition. Since carbon is the main element of the molecules, its vertical distance corresponds to the averaged molecular distance. Furthermore, the distances of the oxygen atoms of the molecules were determined by using the O1s transition. In the molecule, two types of chemically different oxygen atoms exist: the four outer carboxylic oxygen atoms and the two inner anhydride oxygen atoms. For the first time, this chemical shift of one atom sort within a molecule was utilized for a separation of the photoemission spectra which were taken in a standing wave experiment. Within this work, different vertical positions for atoms of the same element could be identified. For the RT phase an average molecular bonding distance of 2.86 A was measured. For the LT phase the corresponding value is 2.80 A. Thus, the molecules in the LT phase are 0.06 A closer to the Ag surface than the molecules in the RT phase, this result clearly is significant. In the LT phase, a stronger intramolecular distortion was observed, the oxygen atoms lie 0.14 A below the carbon core, whereas the molecules in the RT phase do not exhibit such a strong distortion, the

  1. Mechanism of formation and spatial distribution of lead atoms in quartz tube atomizers

    Science.gov (United States)

    Johansson, M.; Baxter, D. C.; Ohlsson, K. E. A.; Frech, W.

    1997-05-01

    The cross-sectional and longitudinal spatial distributions of lead atoms in a quartz tube (QT) atomizers coupled to a gas chromatograph have been investigated. A uniform analyte atom distribution over the cross-section was found in a QT having an inner diameter (i.d.) of 7 mm, whereas a 10 mm i.d. QT showed an inhomogeneous distribution. These results accentuate the importance of using QTs with i.d.s below 10 mm to fulfil the prerequirement of the Beer—Lambert law to avoid bent calibration curves. The influence of the make up gas on the formation of lead atoms from alkyllead compounds has been studied, and carbon monoxide was found equally efficient in promoting free atom formation as hydrogen. This suggests that hydrogen radicals are not essential for mediating the atomization of alkyllead in QT atomizers at ˜ 1200 K. Furthermore, thermodynamic equilibrium calculations describing the investigated system were performed supporting the experimental results. Based on the presented data, a mechanism for free lead atom formation in continuously heated QT atomizers is proposed; thermal atomization occurs under thermodynamic equilibrium conditions in a reducing gas. The longitudinal atom distribution has been further investigated applying other make up gases, N 2 and He. These results show the effect of the influx of atmospheric oxygen on the free lead atom formation. Calculations of the partial pressure of oxygen in the atomizer gas phase assuming thermodynamic equilibrium have been undertaken using a convective-diffusional model.

  2. Propensity of bond exchange as a window into the mechanical properties of metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, W.; Wang, X. L., E-mail: xlwang@um.cityu.edu.hk; Lan, S. [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Pan, S. P. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Lu, Z. P. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-02-09

    We investigated the mechanical properties of Zr-Cu-Al bulk metallic glasses, by compression experiment and molecular dynamics simulations. From the simulation, we found that the large, solvent atom, Zr, has high propensity of bond exchange compared to those of the smaller solute atoms. The difference in bond exchange is consistent with the observed disparity in mechanical behaviors: Zr-rich metallic glass exhibits low elastic modulus and large plastic strain. X-ray photoelectron spectroscopy measurements suggest that the increased propensity in bond exchange is related to the softening of Zr bonds with increasing Zr content.

  3. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products

    Science.gov (United States)

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech

    2018-01-01

    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.

  4. Oxygen defects in Fe-substituted Tl-system superconductors

    Institute of Scientific and Technical Information of China (English)

    李阳; 曹国辉; 王耘波; 马庆珠; 熊小涛; 陈宁; 马如璋; 郭应焕; 许祝安; 王劲松; 张小俊; 焦正宽; 彭获田; 周思海

    1996-01-01

    For Fe-doped T1-1223 phase,the excess oxygen defects induced by Fe dopants are studied by means of Hall coefficient,thermogravimetric measurements,Mossbauer spectroscopy,and the model calculation of the effective bond valence.The extra oxygen defects have effects on carrier density and microstructure of the superconductors.In the light doping level of Fe (x=0-0.05),the superconducting transition and carrier density have significant corresponding relation--the zero resistance temperature Tco and carrier densities decrease linearly with Fe dopants increasing.The thermogravimetric measurements show that the Fe3+ ions’ substituting for Cu2+ ions can bring the extra oxygen into the lattice to form extra oxygen defects.The calculation of the effective bond valence shows that the decrease of carrier density originates the strongly localized binding of the extra oxygen defects.The distortion of Cu-O layer induced by the extra oxygen defects decreases the superconductive transition temperature.The microstructure

  5. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  6. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    Science.gov (United States)

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  7. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides

    Directory of Open Access Journals (Sweden)

    Malose Jack Mphahlele

    2017-01-01

    Full Text Available The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (1H-NMR, UV-Vis, FT-IR, and FT-Raman and X-ray crystallographic techniques complemented with a density functional theory (DFT method. The hindered rotation of the C(O–NH2 single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the 1H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide (ABB as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar–NH2 single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p basis set revealed that the conformer (A with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  8. Isomorphous Crystals from Diynes and Bromodiynes Involved in Hydrogen and Halogen Bonds

    Directory of Open Access Journals (Sweden)

    Pierre Baillargeon

    2016-04-01

    Full Text Available Isomorphous crystals of two diacetylene derivatives with carbamate functionality (BocNH-CH2-diyne-X, where X = H or Br have been obtained. The main feature of these structures is the original 2D arrangement (as supramolecular sheets or walls in which the H bond and halogen bond have a prominent effect on the whole architecture. The two diacetylene compounds harbor neighboring carbamate (Boc protected amine and conjugated alkyne functionalities. They differ only by the nature of the atom located at the penultimate position of the diyne moiety, either a hydrogen atom or a bromine atom. Both of them adopt very similar 2D wall organizations with antiparallel carbamates (as in antiparallel beta pleated sheets. Additional weak interactions inside the same walls between molecular bricks are H bond interactions (diyne-H···O=C or halogen bond interactions (diyne-Br···O=C, respectively. Based on crystallographic atom coordinates, DFT (B3LYP/6-31++G(d,p and DFT (M06-2X/6-31++G(d,p calculations were performed on these isostructural crystals to gain insight into the intermolecular interactions.

  9. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  10. Atomic-Oxygen-Durable and Electrically-Conductive CNT-POSS-Polyimide Flexible Films for Space Applications.

    Science.gov (United States)

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Murray, Vanessa J; Marshall, Brooks C; Qian, Min; Minton, Timothy K; Hanein, Yael

    2015-06-10

    In low Earth orbit (LEO), hazards such as atomic oxygen (AO) or electrostatic discharge (ESD) degrade polymeric materials, specifically, the extensively used polyimide (PI) Kapton. We prepared PI-based nanocomposite films that show both AO durability and ESD protection by incorporating polyhedral oligomeric silsesquioxane (POSS) and carbon nanotube (CNT) additives. The unique methods that are reported prevent CNT agglomeration and degradation of the CNT properties that are common in dispersion-based processes. The influence of the POSS content on the electrical, mechanical, and thermo-optical properties of the CNT-POSS-PI films was investigated and compared to those of control PI and CNT-PI films. CNT-POSS-PI films with 5 and 15 wt % POSS content exhibited sheet resistivities as low as 200 Ω/□, and these resistivities remained essentially unchanged after exposure to AO with a fluence of ∼2.3 × 10(20) O atoms cm(-2). CNT-POSS-PI films with 15 wt % POSS content exhibited an erosion yield of 4.8 × 10(-25) cm(3) O atom(-1) under 2.3 × 10(20) O atoms cm(-2) AO fluence, roughly one order of magnitude lower than that of pure PI films. The durability of the conductivity of the composite films was demonstrated by rolling film samples with a tight radius up to 300 times. The stability of the films to thermal cycling and ionizing radiation was also demonstrated. These properties make the prepared CNT-POSS-PI films with 15 wt % POSS content excellent candidates for applications where AO durability and electrical conductivity are required for flexible and thermally stable materials. Hence, they are suggested here for LEO applications such as the outer layers of spacecraft thermal blankets.

  11. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation

  12. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  13. A first-principles study of oxygen adsorption on Ir(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hengjiao, E-mail: gaohengjiao@163.com; Xiong, Yuqing, E-mail: xiongyq@hotmail.com; Liu, Xiaoli, E-mail: shantianzi@126.com; Zhao, Dongcai, E-mail: zhaodongc@163.com; Feng, Yudong, E-mail: yudong_feng@sina.com; Wang, Lanxi, E-mail: wanglanxi@live.com; Wang, Jinxiao, E-mail: coldwind716@gmail.com

    2016-12-15

    Highlights: • Adsorption of oxygen on Ir(111) surface was studied by density functional theory. • The most stable adsorption site was determined by adsorption energy calculation. • Adsorption of oxygen at bridge and top site on Ir surface was the most stable ones. • Interaction of O 2p and Ir 5d orbits is relatively strong and formed hybridization. - Abstract: In order to understand deposition mechanism of iridium thin film by atomic layer deposition, the adsorption of oxygen on Ir(111) surface was studied by use of density functional theory and a periodical slab model. By calculating the adsorption energy and structure of oxygen at four adsorption sites (top, bridge, fcc-hollow and hcp-hollow) on Ir(111) surface, the most stable adsorption site was determined. On this basis, the banding mechanism of O and Ir atoms was studied by density of states of oxygen and iridium atoms. Oxygen adsorbed at hcp(parallel) site on Ir(111) surface was the most stable one according to the adsorption energy calculation results. Orbital charge analysis indicate that charge transferred from 5p and 5d orbit to 2p orbit of adsorbed O atoms, and 6s orbit of iridium atoms. Meanwhile, density of state study indicated that adsorption of oxygen on Ir(111) surface is mainly due to the interaction between 2p orbit of O atoms and 5d orbit of iridium atoms.

  14. Adsorption configurations of two nitrogen atoms on graphene

    International Nuclear Information System (INIS)

    Rani, Babita; Jindal, V. K.; Dharamvir, Keya

    2014-01-01

    We present calculations for different possible configurations of two nitrogen adatoms on graphene using the code VASP, based on Density Functional Theory (DFT). Two N atoms adsorbed on the graphene sheet can share a bond in two ways. They take positions either just above two adjacent carbon atoms or they form a bridge across opposite bonds of a hexagon in the graphene sheet. Both these configurations result into structural distortion of the sheet. Another stable configuration involving two N atoms consists of an N 2 molecule which is physisorbed at a distance 3.69 Å on the graphene sheet. Two N atoms can also be adsorbed on alternate bridge sites of neighbouring hexagons of graphene. This configuration again leads to distortion of the sheet in perpendicular direction

  15. Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions.

    Science.gov (United States)

    Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W

    2009-07-02

    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or

  16. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    Science.gov (United States)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  17. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules

    Directory of Open Access Journals (Sweden)

    Esko Oksanen

    2017-04-01

    Full Text Available Abstract: The hydrogen bond (H bond is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.

  18. Infrared matrix isolation study of hydrogen bonds involving C-H bonds: Substituent effects

    International Nuclear Information System (INIS)

    Jeng, M.L.H.; Ault, B.S.

    1989-01-01

    The matrix isolation technique combined with infrared spectroscopy has been employed to isolate and characterize hydrogen-bonded complexes between a series of substituted alkynes and several oxygen and nitrogen bases. Distinct evidence for hydrogen bond formation was observed in each case, with a characteristic red shift of the hydrogen stretching motion ν r . Shifts between 100 and 300 cm -1 were observed, the largest being for the complex of CF 3 CCH with (CH 3 ) 3 N. The perturbed carbon-carbon triple bond stretching vibration was observed for most complexes, as was the alkynic hydrogen bending motion. Attempts were made to correlate the magnitude of the red shift of ν s with substituent constants for the different substituted alkynes; a roughly linear correlation was found with the Hammett σ parameter. Lack of correlation Δν s with either σ 1 or σ R alone suggests that both inductive and resonance contributions to the strength of the hydrogen-bonding interaction are important

  19. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  20. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %