WorldWideScience

Sample records for oxy sulfur radicals

  1. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  2. α-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    International Nuclear Information System (INIS)

    Jerzykiewicz, Maria; Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam

    2011-01-01

    Graphical abstract: α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . Display Omitted Highlights: → α-Tocopherol does not inhibit the oxidation of DMSO to ·CH 3 . → α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . → α-Tocopherol does not inhibit the oxidation of PBN. → The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of α-tocopherol. Additionally, the mixtures of α-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. α-Tocopherol inhibited oxidation of the main decomposition product of DMSO, ·CH 3 to ·OCH 3 but did not prevent the transformation process of N-t-butyl-α-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  3. {alpha}-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Jerzykiewicz, Maria, E-mail: Mariaj@wchuwr.pl [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland); Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland)

    2011-05-26

    Graphical abstract: {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. Display Omitted Highlights: {yields} {alpha}-Tocopherol does not inhibit the oxidation of DMSO to {center_dot}CH{sub 3}. {yields} {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. {yields} {alpha}-Tocopherol does not inhibit the oxidation of PBN. {yields} The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of {alpha}-tocopherol. Additionally, the mixtures of {alpha}-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. {alpha}-Tocopherol inhibited oxidation of the main decomposition product of DMSO, {center_dot}CH{sub 3} to {center_dot}OCH{sub 3} but did not prevent the transformation process of N-t-butyl-{alpha}-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  4. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  5. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  7. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin; Li, Zhikao; Nourdine, Mohamed; Shahid, Salman; Takanabe, Kazuhiro

    2014-01-01

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH

  8. Transients observed in the low temperature photolysis of alkyl radicals and divalent sulfur substrates

    International Nuclear Information System (INIS)

    Adam, F.C.

    1976-01-01

    The 253.7 nm photolysis of the isometric butyl radicals is described. These radicals are produced by electron capture during the γ-radiolysis of the corresponding butyl chlorides diluted in a rigid glass of 3-methylpentane-d14 at 77K. Thus t-butyl gives an equilibrium mixture of i-butyl and methyl radicals. Solvent radicals, M, are also produced and these obscure the former species in 3-MP-h14. Likewise sec-butyl radicals give rise to the ethyl, n-butyl, methyl and small amounts of the i-butyl radicals. Solvent radicals also rearrange and degrade in the photolytic beam, and the mechanism by which these processes occur is discussed. The procedure has also been used to study the formation and photolability of the alkyl thinyl and perthyl radicals occuring in the photolysis of RSH, RSR and RSSR. The thinyl radical is found to be unstable and gives the alkyl radical and atomic sulfur while the perthiyl radical is stable to radiation > 240 nm. (author)

  9. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  10. Tropospheric chemistry of natural hydrocarbons, aldehydes, and peroxy radicals: Their connections to sulfuric acid production and climate effects

    International Nuclear Information System (INIS)

    Gaffney, J.S.; Marley, N.A.

    1993-05-01

    Recent work has shown that natural hydrocarbon emissions can significantly affect the levels of urban and regional tropospheric ozone. We report on the reactivities of these biogenic trace gases, particularly isoprene, focusing on their importance in the production of aldehydes and peroxy radicals, leading to increased levels of hydrogen over regional forests. Hydrogen peroxide can lead to the wet oxidation of sulfur dioxide to acidic sulfate in aerosols, fogs, and clouds. In turn, acidic sulfate can act to as a light scattering aerosol and a source of cloud condensation nuclei (CCN), potentially leading to global cooling. Aerosol sulfate and other dissolved organic and inorganic compounds can also play important roles as a greenhouse species in the lower troposphere

  11. Reactions of the nitrate radical with a series og reduced organic sulfur-compounds in air

    DEFF Research Database (Denmark)

    JENSEN, NR; HJORTH, J; LOHSE, C

    1992-01-01

    A 480 L evacuable reaction chamber, equipped with FT-IR spectroscopy on-line and ion chromatography off-line, has been used to study the gas phase reaction between the nitrate radical, NO3, and the reduced organic sulphur compounds CH3CH2SH, (CH3CH2)2S, (CH3CH2)2S2, and CH3CH2SCH3 in air. The pro......A 480 L evacuable reaction chamber, equipped with FT-IR spectroscopy on-line and ion chromatography off-line, has been used to study the gas phase reaction between the nitrate radical, NO3, and the reduced organic sulphur compounds CH3CH2SH, (CH3CH2)2S, (CH3CH2)2S2, and CH3CH2SCH3 in air......, and CH3SSCH3 lead to the conclusion that all these species, in the reaction with the NO3 radical, follow a similar degradation mechanism producing SO2, H2SO4, R-SO3H, R-CHO, and R-CH2ONO2, as the main reaction products. The inital step of the reaction of NO3 with R-S-R and R-S- H type (R = CH3, CH2CH3...

  12. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  13. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  14. The structure and properties of free radicals: An electron spin resonance study of radiation damage to nucleic acid and protein components and to some sulfur-substituted derivitives

    International Nuclear Information System (INIS)

    Sagstuen, E.

    1979-01-01

    When cellular systems are exposed to ionizing radiation the long-term effects may range from minor disturbances to such dramatic changes as mutations and cell death. The processes leading to these macroscopical injuries are primarily confined at the molecular level. In all models aimed at a description of the action of radiation at the molecular level the formation of free radicals (which are species containing unpaired electrons) is a central concept. The technique of ESR spectroscopy is uniquely suited to study free radicals, as it is based on resonance absorption of energy by unpaired electrons in a magnetic field. ESR spectroscopy makes it possible to detect free radicals and, in some cases, to identify them. In order to study free radicals by ESR it is necessary to build up a sufficient number of unpaired spins in the sample (approximately 10 11 or more, depending on the shape of the resonance). This may be different techniques have been used to trap the induced radicals or to attain a sufficient steady state concentration level. A procedure which seems to contain a large amount of information is to irradiate at low temperatures, and, by subsequent heat-treatment of the sample to study the reactions and fate of the induced radicals. In this thesis single crystal studies of aromatic amino acids and pyrimidine derivitives together with some substituted purine derivitives are presented, and the results are discussed in relation to the present knowledge about radical formation in these classes of compounds. Single crystal studies of some sulfur-containing aromatic compounds have been presented with the purpose of shedding light on the electronic structure of sulfur-centred radicals. (JIW)

  15. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    Science.gov (United States)

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  16. Structure and Reactivity of the Glutathione Radical Cation: Radical Rearrangement from the Cysteine Sulfur to the Glutamic Acid alpha-Carbon Atom

    NARCIS (Netherlands)

    Osburn, S.; Berden, G.; Oomens, J.; Gulyuz, K.; Polfer, N.C.; O'Hair, R.A.J.; Ryzhov, V.

    2013-01-01

    A gas-phase radical rearrangement through intramolecular hydrogen-atom transfer (HAT) was studied in the glutathione radical cation, [-ECG](+.), which was generated by a homolytic cleavage of the protonated S-nitrosoglutathione. Ion-molecule reactions suggested that the radical migrates from the

  17. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    Directory of Open Access Journals (Sweden)

    Elena Favaro

    2010-04-01

    Full Text Available Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1 and a microRNA, hsa-miR-210 (miR-210 which is associated with a poor prognosis.In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis.Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  18. Participation of oxidized sulfur center in intramolecular free radical processes in the model organic compounds of biological importance

    International Nuclear Information System (INIS)

    Pogocki, D.M.

    2004-01-01

    The pathogenesis of neurodegenerative diseases such as prion diseases (Creutzfeldt-Jacob disease) and Alzheimer's disease is strongly associated with the presence of β-amyloid peptide (βA) and prion protein (hPrP) in the brain tissue. Both macromolecules contain methionine (Met) residues. Their presence seems to be responsible for unique redox properties of βA and hPrP. These residues may undergo relatively easy autooxidation and/or metal-catalysed oxidation. The presented studies were focused on the potential function of Met residues as antioxidants or pro-oxidants and on their role in radical-mediated oxidation of peptides and proteins. The role of S-, O-, N- and C-centered radicals generated in various oligopeptides containing Met and relevant model compounds has been examined in detail with respect to formation of 2c-3e bonds, redox processes, fragmentation and their mutual interconversion. In order to achieve these goals several experimental radiation, photochemical, and molecular modelling methods were applied. The experimental and molecular modelling results show significant influence of functional neighbouring groups and conformational flexibility of a peptide backbone on the oxidative reduction pathway in oligopeptides containing single and multiple Met residues. The results presented here allow for better understanding of the known propensities of βA and hPrP to reduce transition metals and to form reactive oxygen species and free radicals. (author)

  19. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  20. The Reaction of Oxy Hemoglobin with Nitrite

    DEFF Research Database (Denmark)

    Hathazi, Denisa; Scurtu, Florina; Bischin, Cristina

    2018-01-01

    The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high...... to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations......-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp...

  1. CRC handbook of methods for oxygen radical research

    National Research Council Canada - National Science Library

    Greenwald, Robert A

    1985-01-01

    .... This volume is divided into five sections. Section I deals with preparative methodology for isolation and purification of the components of the oxy radical experimental systems used most frequently, including all the three forms of SOD...

  2. Gamma radiolysis of aliphatic sulfur compounds in aqueous solutions. A study to contribute to the analysis of the end products of the OH radical-induced oxidation of aliphatic mercaptanes, sulfides, and disulfides

    International Nuclear Information System (INIS)

    Weiss, J.

    1982-01-01

    By identifying and determining numerous hitherto unknown end products, the study in hand contributes to a better insight into the radiation chemical processes occurring in OH radical-induced oxidation of aliphatic sulfur compounds. An extraction method has been developed for the qualitative and quantitative analysis of end products in aqueous solution in order to determine these compounds down to the level of trace amounts. Separation of endproducts is achieved by means of gas chromatography and high-pressure liquid chromatography, subsequent identification by GC-MS analysis. Aliphatic mercaptanes are oxidized by OH radicals to thiyl radicals which after combination can be detected as disulfide. At high radiation doses, secondary reactions will lead to polysulfides of which the homologues could first be prepared as the pure substance. The end products of the γ-radiolysis of aliphatic thioethers are determined to be dithia compounds, symmetrical or asymmetrical disulfides, or polysulfides, depending on the thioethers. With some end products, the radiation chemical yield is found to be a function of the absorbed dose so that material balances are impossible. Intermediate thiyl, α-alkyl mercaptoalkyl or alkyl radicals can be captured by tetramethyl ethylene, cyclohexene or p-benzoquinone, and can then be identified as the relevant adducts. (orig./RB) [de

  3. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Z. [Lab. de Chimie Physique, UMR, Univ. Rene Descartes, Paris (France)

    2001-02-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS{sup .}, RSS{sup .}, RS{sup .+}, (RSSR){sup .+}] and their implications for biological systems. (author)

  4. Sulfur-centered reactive intermediates derived from the oxidation of sulfur compounds of biological interest

    International Nuclear Information System (INIS)

    Abedinzadeh, Z.

    2001-01-01

    Sulphur compounds play a central role in the structure and activity of many vital systems. In the living cell, sulfur constitutes an essential part of the defense against oxidative damage and is transformed into a variety of sulfur free radical species. Many studies of the chemistry of sulfur-centered radicals using pulse radiolysis and photolysis techniques to detect and measure the kinetics of these radicals have been published and reviewed. This paper discusses the present state of research on the formation and reactivity of certain sulfur-centered radicals [RS . , RSS . , RS .+ , (RSSR) .+ ] and their implications for biological systems. (author)

  5. Oxidation of SO2 by stabilized Criegee intermediate (sCI radicals as a crucial source for atmospheric sulfuric acid concentrations

    Directory of Open Access Journals (Sweden)

    M. Boy

    2013-04-01

    Full Text Available The effect of increased reaction rates of stabilized Criegee intermediates (sCIs with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calculated by Mauldin et al. (2012 increases sulfuric acid by 30–40%. Increasing the rate coefficient for formaldehyde oxide (CH2OO with SO2 according to the values recommended by Welz et al. (2012 increases the H2SO4 yield by 3–6%. Taken together, these increases lead to the conclusion that, depending on their concentrations, the reaction of stabilized Criegee intermediates with SO2 could contribute as much as 33–46% to atmospheric sulfuric acid gas phase concentrations at ground level. Using the SMEAR II data, results from SOSA, a one-dimensional model, show that the contribution from sCI reactions to sulfuric acid production is most important in the canopy, where the concentrations of organic compounds are the highest, but can have significant effects on sulfuric acid concentrations up to 100 m. The recent findings that the reaction of sCI + SO2 is much faster than previously thought together with these results show that the inclusion of this new oxidation mechanism could be crucial in regional as well as global models.

  6. Carbon behavior in the cyclic operation of dry desulfurization process for oxy-fuel integrated gasification combined cycle power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2016-01-01

    Highlights: • Power plant with semi-closed gas turbine and O_2–CO_2 coal gasifier was studied. • Dry gas sulfur removal sorbent was improved for durability to carbon deposition. • The improved sorbent showed very low amount of deposited carbon during operation. • The sorbent is regenerable to be used repeatedly in the cyclic operation. • The sorbent exhibited high sulfur-removal performance in the cyclic operation. - Abstract: The dry sulfur-removal process is essential to provide suitable syngas treatment for the oxy-fuel integrated gasification combined cycle power generation plant. It is required that the dry sulfur-removal process to be durable to the carbon deposition due to syngas containing high concentration of carbon monoxide in addition to achieve sufficient performance for sulfur removal. Zinc ferrite sorbent is the most promising candidate for the dry sulfur-removal process. The sorbent was improved to enhance durability to the carbon deposition by modifying preparation. The improved sorbent was prepared from sulfates as the raw materials of zinc ferrite, while the former sorbent was using nitrates as the raw materials. The improved sorbent as well as the former sorbent were evaluated on the performance and carbon deposition tendency in oxy-fuel syngas condition in a fixed bed reactor at elevated pressure and temperature. The results expressed that the improved sorbent has higher desulfurization performance and durability to carbon deposition in the condition expected for cyclic operation of the sulfur-removal process in comparison with the former sorbent. The improved sorbent possessed the superior desulfurization performance as well as the capability for inhibit carbon deposition in the oxy-fuel syngas conditions. The results confirmed the enhanced feasibility of the dry sulfur-removal process by utilizing the improved sorbent.

  7. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  8. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley [Univ. of Utah, Salt Lake City, UT (United States); Davis, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shim [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Eddings, Eric [Univ. of Utah, Salt Lake City, UT (United States); Paschedag, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, William [Brigham Young Univ., Provo, UT (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2013-09-30

    ) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  9. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    Science.gov (United States)

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions. © 2011 American Chemical Society

  10. Basic study on the generation of RF plasmas in premixed oxy-combustion with methane

    International Nuclear Information System (INIS)

    Osaka, Yugo; Razzak, M.A.; Kobayashi, Noriyuki; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko

    2010-01-01

    Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N 2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility. (author)

  11. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  12. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  13. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    Energy Technology Data Exchange (ETDEWEB)

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by

  14. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  15. Sulfur Mustard

    Science.gov (United States)

    ... in of the vapors can cause chronic respiratory disease, repeated respiratory infections, or death. Extensive eye exposure can cause permanent blindness. Exposure to sulfur mustard may increase a person’s risk for lung and respiratory cancer. ...

  16. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing......, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a 609MW utility boiler is numerically studied, in which...... calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations of the same...

  18. Chemistry and radiation in oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2011-01-01

    In order to investigate the role of combustion chemistry and radiation heat transfer in oxy-fuel combustion modeling, a computational fluid dynamics (CFD) modeling study has been performed for two different oxy-fuel furnaces. One is a lab-scale 0.8MW oxy-natural gas flame furnace whose detailed in....... Among the key issues in combustion modeling, e.g., mixing, radiation and chemistry, this paper derives useful guidelines on radiation and chemistry implementation for reliable CFD analyses of oxy-fuel combustion, particularly for industrial applications....

  19. Free radicals of an aromatic nature in air samples from iron foundries

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, L M

    1982-01-01

    Free radicals of relatively long life were identified as spin adducts of phenyl-N-tert-butylnitrone. Pyrolysis studies showed the radicals were oxy-radicals. The hyperfine splitting constants of spin adducts of radicals from the pyrolysis in air of benzo(a)pyrene, coal tar pitch, and moulding sand containing hard coal dust were the same as those of the radicals found in foundry air. Since these radicals can bind to DNA, they must be considered when estimating the hazardous effects of polluted air.

  20. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  1. dermaOXY skin assay: effect and evidence

    DEFF Research Database (Denmark)

    Menov, Lasse; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    of the instrument set DermaLab®Combo, which is used for the physical characterization of skin status after treatment. The report consists of four main parts, dedicated to 1. the properties of human skin 2. the anti-aging methods applied by the dermaOXY treatment 3. the analytical methods applied by derma......This text is a videnkupon report supported by the Danish Innovation Fonds and conducted by L.M. and B.K. for dermaOXY (by MedicTinedic ApS, Varde, Denmark). It involves two dermaOXY products: dermaOXY HYALURON SERUM and dermaOXY SYN SERUM. These are applied to the facial skin in combination....... This knowledge is important for assessing the dermaOXY approach to slow down (or better yet inhibit) the phenotypical signs of aging. Professor Beate Klösgen and B.Sc. Lasse Menov performed the study and wrote this report. Lars Melgaard, COO of dermaOXY, provided the information on the dermaOXY approach. Doris...

  2. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  3. Control issues in oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Snarheim, Dagfinn

    2009-08-15

    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate

  4. Oxy-fuel combustion on circulating fluidized bed. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, E.J. [Canmet, Natural Resources Canada (Canada); Hack, H. [Foster Wheeler North America Corporation (United States)

    2011-07-01

    This paper explores the developments and field tests carried out with oxy-fuel fluidized bed combustion. This method has the advantage over the other options of emitting a pure stream of CO2 which thus does not need to be concentrated to be liquefied, transported and stored. In addition, pilot scale tests have shown that oxy-fired circulating fluidized bed combustion (CFBC) results in low emission and fuel flexibility. This paper highlighted that oxy-fired CFBC might be a good option for CCS but tests performed so far have been on a small scale. To confirm the promising results of pilot tests, demonstration projects are underway and are presented herein.

  5. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are

  6. Mechanism of the toxic action of sulfur dioxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaevskii, V S; Miroshnikova, A T; Firger, V V; Belokrylova, L M

    1975-01-01

    Experiments were performed to determine the effects of sulfur dioxide on U CO2 metabolism and photosynthesis in fescue and timothy grass and in maple and barberry branches. The free radical inhibitors, ascorbic acid and thiourea, were found to decrease the damaging effects of the sulfur dioxide. These results indicated that the processes involved are of the free-radical chain type. Even at low sulfur dioxide concentrations, photosphosphorylation and carbon dioxide assimilation were inhibited. In addition, starch and protein as well as the formation of polymeric substances were also inhibited.

  7. Numerical simulations of a large scale oxy-coal burner

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Taeyoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Park, Sanghyun; Ryu, Changkook [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Yang, Won [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group

    2013-07-01

    Oxy-coal combustion is one of promising carbon dioxide capture and storage (CCS) technologies that uses oxygen and recirculated CO{sub 2} as an oxidizer instead of air. Due to difference in physical properties between CO{sub 2} and N{sub 2}, the oxy-coal combustion requires development of burner and boiler based on fundamental understanding of the flame shape, temperature, radiation and heat flux. For design of a new oxy-coal combustion system, computational fluid dynamics (CFD) is an essential tool to evaluate detailed combustion characteristics and supplement experimental results. In this study, CFD analysis was performed to understand the combustion characteristics inside a tangential vane swirl type 30 MW coal burner for air-mode and oxy-mode operations. In oxy-mode operations, various compositions of primary and secondary oxidizers were assessed which depended on the recirculation ratio of flue gas. For the simulations, devolatilization of coal and char burnout by O{sub 2}, CO{sub 2} and H{sub 2}O were predicted with a Lagrangian particle tracking method considering size distribution of pulverized coal and turbulent dispersion. The radiative heat transfer was solved by employing the discrete ordinate method with the weighted sum of gray gases model (WSGGM) optimized for oxy-coal combustion. In the simulation results for oxy-model operation, the reduced swirl strength of secondary oxidizer increased the flame length due to lower specific volume of CO{sub 2} than N{sub 2}. The flame length was also sensitive to the flow rate of primary oxidizer. The oxidizer without N{sub 2} that reduces thermal NO{sub x} formation makes the NO{sub x} lower in oxy-mode than air-mode. The predicted results showed similar trends with measured temperature profiles for various oxidizer compositions. Further numerical investigations are required to improve the burner design combined with more detailed experimental results.

  8. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  9. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    International Nuclear Information System (INIS)

    Svintradze, David V.; Peterson, Darrell L.; Collazo-Santiago, Evys A.; Lewis, Janina P.; Wright, H. Tonie

    2013-01-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each

  10. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Svintradze, David V. [Virginia Commonwealth University, Richmond, VA 23298-0566 (United States); Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Peterson, Darrell L. [Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Virginia Commonwealth University, Richmond, VA 23298-0614 (United States); Collazo-Santiago, Evys A.; Lewis, Janina P. [Virginia Commonwealth University, Richmond, VA 23298-0566 (United States); Wright, H. Tonie, E-mail: xrdproc@vcu.edu [Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Virginia Commonwealth University, Richmond, VA 23298-0614 (United States); Virginia Commonwealth University, Richmond, VA 23298-0566 (United States)

    2013-10-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.

  11. Sulfur metabolism in phototrophic sulfur bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Dahl, Christiane

    2008-01-01

    Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB......). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms...... in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative...

  12. Radiation induced sulfur dioxide removal

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  13. Steam-moderated oxy-fuel combustion

    International Nuclear Information System (INIS)

    Seepana, Sivaji; Jayanti, Sreenivas

    2010-01-01

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO 2 ) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO 2 and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO 2 sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of ∼8% for CO 2 sequestration when compared to air-fired power plant.

  14. Steam-moderated oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seepana, Sivaji; Jayanti, Sreenivas [Department of Chemical Engineering, IIT Madras, Adyar, Chennai 600 036 (India)

    2010-10-15

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO{sub 2}) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO{sub 2} and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO{sub 2} sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of {proportional_to}8% for CO{sub 2} sequestration when compared to air-fired power plant. (author)

  15. Oxy-Fuel Combustion of Coal

    DEFF Research Database (Denmark)

    Brix, Jacob

    This Ph.D. thesis describes an experimental and modeling investigation of the thermal conversion of coal and an experimental investigation of the emission of NO from char combustion in O2/N2 and O2/CO2 atmospheres. The motivation for the work has been the prospective use of the technology “Oxy......-Fuel Combustion” as a mean of CO2 abatement in large scale energy conversion. Entrained Flow Reactor (EFR) experiments have been conducted in O2/N2 and O2/CO2 mixtures in the temperature interval 1173 K – 1673 K using inlet O2 concentrations between 5 – 28 vol. %. Bituminous coal has been used as fuel in all....... % it was found that char conversion rate was lowered in O2/CO2 compared to O2/N2. This is caused by the lower diffusion coefficient of O2 in CO2 (~ 22 %) that limits the reaction rate in zone III compared to combustion in O2/N2. Using char sampled in the EFR experiments ThermoGravimetric Analyzer (TGA...

  16. Flame structure and NO generation in oxy-fuel combustion at high pressures

    International Nuclear Information System (INIS)

    Seepana, Sivaji; Jayanti, Sreenivas

    2009-01-01

    A numerical study of oxy-fuel combustion has been carried out in the pressure range of 0.1-3 MPa with methane as the fuel and carbondioxide-diluted oxygen with trace amount of nitrogen (termed here as c a ir) as the oxidant. The flame structure and NO generation rate have been calculated using the flamelet model with the detailed GRI 3.0 mechanism for two oxygen concentrations of 23.3% and 20% by weight in the oxidant at a strain rate of 40 s -1 (corresponding to a scalar dissipation rate of 1 s -1 ). It is observed that, for the reference case of 23.3 wt.% of oxygen, as the pressure increases, the peak temperature of the flame increases rapidly up to a pressure of 0.5 MPa, and more gradually at higher pressures. The concentrations of important intermediate radicals such as CH 3 , H and OH decrease considerably with increasing pressure while NO concentration follows the same trend as the temperature. Reducing the oxygen concentration to 20% by weight leads to an order of magnitude reduction in NO concentration. Also, for pressures greater than 0.3 MPa, the NO concentration decreases with increasing pressure in spite of the increasing peak flame temperatures. This can be attributed to the increasing domination of recombination reactions leading to less availability of the intermediate radicals H and OH which are necessary for the formation of NO by the thermal route. It is concluded that a stable, low NO x oxy-fuel flame can be obtained at high pressures at slightly increased dilution of oxygen

  17. Flame structure and NO generation in oxy-fuel combustion at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Seepana, Sivaji; Jayanti, Sreenivas [Department of Chemical Engineering, IIT Madras, Chennai 600 036 (India)

    2009-04-15

    A numerical study of oxy-fuel combustion has been carried out in the pressure range of 0.1-3 MPa with methane as the fuel and carbondioxide-diluted oxygen with trace amount of nitrogen (termed here as c{sub a}ir) as the oxidant. The flame structure and NO generation rate have been calculated using the flamelet model with the detailed GRI 3.0 mechanism for two oxygen concentrations of 23.3% and 20% by weight in the oxidant at a strain rate of 40 s{sup -1} (corresponding to a scalar dissipation rate of 1 s{sup -1}). It is observed that, for the reference case of 23.3 wt.% of oxygen, as the pressure increases, the peak temperature of the flame increases rapidly up to a pressure of 0.5 MPa, and more gradually at higher pressures. The concentrations of important intermediate radicals such as CH{sub 3}, H and OH decrease considerably with increasing pressure while NO concentration follows the same trend as the temperature. Reducing the oxygen concentration to 20% by weight leads to an order of magnitude reduction in NO concentration. Also, for pressures greater than 0.3 MPa, the NO concentration decreases with increasing pressure in spite of the increasing peak flame temperatures. This can be attributed to the increasing domination of recombination reactions leading to less availability of the intermediate radicals H and OH which are necessary for the formation of NO by the thermal route. It is concluded that a stable, low NO{sub x} oxy-fuel flame can be obtained at high pressures at slightly increased dilution of oxygen. (author)

  18. Some information needs for air quality modeling. [Environmental effects of sulfur compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B

    1975-09-01

    The following topics were considered at the workshop: perturbation of the natural sulfur cycle by human activity; ecosystem responses to a given environmental dose of sulfur compounds; movement of sulfur compounds within the atmosphere; air quality models; contribution of biogenic sulfur compounds to atmospheric burden of sulfur; production of acid rain from sulfur dioxide; meteorological processes; and rates of oxidation of SO/sub 2/ via direct photo-oxidation, oxidation resulting from photo-induced free radical chemistry, and catalytic oxidation in cloud droplets and on dry particles. (HLW)

  19. Radical Evil

    Directory of Open Access Journals (Sweden)

    Carlos Manrique

    2007-12-01

    Full Text Available There is an aporia in Kant’s analysis of evil: he defines radical evilas an invisible disposition of the will, but he also demands an inferential connection between visible evil actions and this invisible disposition. This inference,however, undermines the radical invisibility of radical evil according to Kant’s own definition of the latter. Noting how this invisibility of moral worth is a distinctive feature of Kant’s approach to the moral problem, the paper then asks why, in the Groundwork, he nonetheless forecloses a question about evil that seems to be consistent with this approach. It is argued that to account for this aporia and this foreclosure, one has to interrogate the way in which the category of religion orients Kant’s incipient philosophy of history in Die Religion.

  20. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  1. Behaviour of organic sulfur compounds in HPLC

    International Nuclear Information System (INIS)

    Freyholdt, T.

    1982-01-01

    The retention behaviour of organic sulfur compounds in the reverse-bonded-phase chromatography is characterized by determining the retention indices according to Kovats. The results of these studies show that the solubility of organic compounds in the eluting agent and the molar sorption surfaces of the solutes are the main factors determining the retention behaviour. Knowledge of the retention indices of above-mentioned compounds allows a quick interpretation of chromatograms obtained through a product analysis of γ-irradiated aqueous solutions of organic sulfur compounds. Dithia compounds of the type CH 3 -S-(CH 2 )sub(n)-S-Ch 3 (1 1. 2,4-Dithiapentane (n = 1) however will yield primarily monothio-S-methyl formate as a stable end product. The formation of oxygenic reaction products proceeds via sulfur-centred radical kations. Spin trapping experiments with nitroxyl radicals show that it is possible to trap radiation-chemically produced radicals of sulfurous substrates, but the thus obtained adducts with half-life periods of 4-5 min. cannot be identified by means of NMR, IR or mass spectroscopy. (orig.) [de

  2. A review of oxy-fuel combustion in fluidized bed reactors

    CSIR Research Space (South Africa)

    Mathekga, HI

    2016-06-01

    Full Text Available Presently, there is no detailed review that summarizes the current knowledge status on oxy-fuel combustion in fluidized bed combustors. This paper reviewed the existing literature in heat transfer, char combustion and pollutant emissions oxy...

  3. Biomass co-firing under oxy-fuel conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2014-01-01

    This paper presents an experimental and numerical study on co-firing olive waste (0, 10%, 20% on mass basis) with two coals in an entrained flow reactor under three oxy-fuel conditions (21%O2/79%CO2, 30%O2/70%CO2 and 35%O2/65%CO2) and air–fuel condition. Co-firing biomass with coal was found...... to have favourable synergy effects in all the cases: it significantly improves the burnout and remarkably lowers NOx emissions. The reduced peak temperatures during co-firing can also help to mitigate deposition formation in real furnaces. Co-firing CO2-neutral biomass with coals under oxy-fuel conditions...... the model can be used to aid in design and optimization of large-scale biomass co-firing under oxy-fuel conditions....

  4. Aminoxyl (nitroxyl) radicals in the early decomposition of the nitramine RDX.

    Science.gov (United States)

    Irikura, Karl K

    2013-03-14

    The explosive nitramine RDX (1,3,5-trinitrohexahydro-s-triazine) is thought to decompose largely by homolytic N-N bond cleavage, among other possible initiation reactions. Density-functional theory (DFT) calculations indicate that the resulting secondary aminyl (R2N·) radical can abstract an oxygen atom from NO2 or from a neighboring nitramine molecule, producing an aminoxyl (R2NO·) radical. Persistent aminoxyl radicals have been detected in electron-spin resonance (ESR) experiments and are consistent with autocatalytic "red oils" reported in the experimental literature. When the O-atom donor is a nitramine, a nitrosamine is formed along with the aminoxyl radical. Reactions of aminoxyl radicals can lead readily to the "oxy-s-triazine" product (as the s-triazine N-oxide) observed mass-spectrometrically by Behrens and co-workers. In addition to forming aminoxyl radicals, the initial aminyl radical can catalyze loss of HONO from RDX.

  5. Amination of oxy acids in aqueous solution by gamma-irradiation

    International Nuclear Information System (INIS)

    Ema, Kimiko; Kato, Taizo; Shinagawa, Mutsuaki

    1978-01-01

    Alanin, β-alanine, glicine, and aspartic, α-amino-n-butyric, and γ-amino-n-butyric acids were obtained by γ-irradiation of aqueous ammonia solutions of lactic, β-oxypropionic, glycolic, malic, α-oxybutyric, and γ-oxybutyric acids, respectively. The yields of amino acids were examined for functions of radiation dose (0.75 - 3.55Mrad), concentrations of oxy acid (0.01 - 0.1M) and ammonia (0.1 - 15M), and substances added as radical (potassium iodide), and hydrated electron (nitrous oxide) scavengers. The maximum G-values were 0.6 for alanine in a solution of 0.1M lactic acid-4M ammonia and some nitrous oxide and 1.14 for β-alanine in a solution of 0.1M β-oxypropionic acid and 0.7M ammonia. The yield of alanine increased with increased concentrations of lactic acid and ammonia due to saturation of nitrous oxide but decreased when potassium iodide (0.03M) was added. The yield of β-alanine showed a maximum increase at ca. 0.7M ammonia and decreased when potassium iodide and nitrous oxide were added. Serine was obtained from G = 0.002 in a solution of β-oxypropionic acid and increased to G = 0.058 due to saturation of nitrous oxide. The manner of chemical amination due to radiation was studied from the above results. In general, oxy acids from which hydrogen has been abstracted by an H or OH radical react with ammonia to form amino acids. The effect of ammonia concentration on the yield of amino acids demonstrates that the NH 2 radical abstracts the α-hydrogen of lactic acid but does not react with the β-hydrogen of β-oxypropionic acid. The effect of nitrous oxide indicates that hydrated electrons interfere with alanine formation, contribute to β-alanine formation, react with the carboxyl group of lactic acids to form lactamide, and abstract the β-hydroxyl group of β-oxypropionic acids to form β-alanine. (Bell, E.)

  6. Performance evaluation of South African coals under oxy-fuel

    CSIR Research Space (South Africa)

    Mathekga, I

    2016-07-01

    Full Text Available (sub2)), and oxy (30% O(sub2)/70% CO(sub2))—were studied. A total of 18 tests were conducted in a bubbling fluidized bed reactor at 850 and 925 °C. The results obtained showed that the highest carbon burnout was obtained at 30% O2/CO(sub2), followed...

  7. Biphasic oxidation of oxy-hemoglobin in bloodstains

    NARCIS (Netherlands)

    Bremmer, Rolf H.; de Bruin, Daniel M.; de Joode, Maarten; Buma, Wybren Jan; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-01-01

    In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2)) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions of

  8. Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains

    NARCIS (Netherlands)

    Bremmer, R.H.; de Bruin, D.M.; de Joode, M.; Buma, W.J.; van Leeuwen, T.G.; Aalders, M.C.G.

    2011-01-01

    Background In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions

  9. Europe Says OXI : "Online Camaraderie" and the European Crisis

    NARCIS (Netherlands)

    Alinejad, D.

    2016-01-01

    This paper presents a small-scale case study of the Facebook page, Europe Says OXI, and a group of political activists spread across European cities who are affiliated with the page. It focuses on how digital communications practices play a role in social movement participation, and follows these

  10. Optimization of Pressurized Oxy-Combustion with Flameless Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malavasi, Massimo [Itea SpA, Gallarate, VA (Italy); Landegger, Gregory [ThermoEnergy Corporation, Worcester, MA (United States)

    2014-06-30

    Pressurized OxyECombustion is one of the most promising technologies for utility-scale power generation plants. Benefits include the ability to burn low rank coal and capture CO2. By increasing the flue gas pressure during this process, greater efficiencies are derived from increased quantity and quality of thermal energy recovery. UPA with modeling support from MIT and testing and data verification by Georgia Tech’s Research Center designed and built a 100 kW system capable of demonstrating pressurized oxyEcombustion using a flameless combustor. Wyoming PRB coal was run at 15 and 32 bar. Additional tests were not completed but sampled data demonstrated the viability of the technology over a broader range of operating pressures, Modeling results illustrated a flat efficiency curve over 20 bar, with optimum efficiency achieved at 29 bar. This resulted in a 33% (HHV) efficiency, a 5 points increase in efficiency versus atmospheric oxy-combustion, and a competitive cost of electricity plus greater CO2 avoidance costs then prior study’s presented. UPA’s operation of the bench-scale system provided evidence that key performance targets were achieved: flue gas sampled at the combustor outlet had non-detectable residual fly ashes, and low levels of SO3 and heavy-metal. These results correspond to prior pressurized oxy-combustion testing completed by IteaEEnel.

  11. Ammonia chemistry in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Glarborg, Peter

    2009-01-01

    The oxidation of NH3 during oxy-fuel combustion of methane, i.e., at high [CO2], has been studied in a flow reactor. The experiments covered stoichiometries ranging from fuel rich to very fuel lean and temperatures from 973 to 1773 K. The results have been interpreted in terms of an updated detai...

  12. Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2018-03-01

    Full Text Available Oxy-fuel combustion is one of the most promising methods for CO2 capture and storage (CCS but the operating costs—mainly due to the need for oxygen production—usually lead to an obvious decrease in power generation efficiency. An “oxy-enrich combustion” process was proposed in this study to improve the efficiency of the oxy-fuel combustion process. The oxidizer for oxy-enrich combustion was composed of pure oxygen, air and recycled flue gas. Thus, the CO2 concentration in the flue gas decreased to 30–40%. The PSA (pressure swing adsorption, which has been widely used for CO2 removal from the shifting gases of ammonia synthesis in China, was applied to capture CO2 during oxy-enrich combustion. The technological economics of oxy-enrich combustion with PSA was calculated and compared to that of oxy-fuel combustion. The results indicated that, compared with oxy-fuel combustion: (1 the oxy-enrich combustion has fewer capital and operating costs for the ASU (air separation unit and the recycle fan; (2 there were fewer changes in the components of the flue gas in a furnace for oxy-enrich combustion between dry and wet flue gas circulation; and (3 as the volume ratio of air and oxygen was 2 or 3, the economics of oxy-enrich combustion with PSA were more advantageous.

  13. Sulfur poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Julian, R J; Harrison, K B

    1975-01-01

    A case of sulfur poisoning is described in which 12 of 20 cattle died following the feeding of sulfur. Respiratory distress and abdominal pain were the prominent signs. Examination of one animal revealed vasculitis and necrosis of the rumen and abomasal wall. The possible toxic effects of sulfur are discussed.

  14. Oxy-gasoline torch. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Under the deactivation and decommissioning (D and D) Implementation Plan of the US Department of Energy's (DOE) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP's OSDF are provisions to protect against subsidence of the OSDF's cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create significant depressions in the OSDF's cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP's OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene cutting torch was the baseline approach used by the FEMP's D and D contractor on Plant 1, Babcock and Wilcox (B and W) Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, improvements are sought in the areas of productivity, airborne contamination, safety, and cost. This demonstration investigated the feasibility of using an oxy-gasoline torch as an alternative to the baseline oxy-acetylene torch for segmenting D and D components. This report provides a comparative analysis of the cost and performance of the baseline oxy-acetylene torch currently used by B and W Services, Inc., and the innovative oxy-gasoline torch

  15. Radical fashion and radical fashion innovation

    NARCIS (Netherlands)

    Zhang, D.; Benedetto, Di A.C.

    2010-01-01

    This is a study of the related concepts of radical fashion and radical fashion innovation. Radical fashions are defined here as those that may never enter the market at all, and exist primarily on runway shows, in exhibitions and in publicity; by contrast, radical fashion innovations may be very

  16. Sulfur-Containing Agrochemicals.

    Science.gov (United States)

    Devendar, Ponnam; Yang, Guang-Fu

    2017-10-09

    Modern agricultural chemistry has to support farmers by providing innovative agrochemicals. In this context, the introduction of sulfur atoms into an active ingredient is still an important tool in modulating the properties of new crop-protection compounds. More than 30% of today's agrochemicals contain at least one sulfur atom, mainly in fungicides, herbicides and insecticides. A number of recently developed sulfur-containing agrochemical candidates represent a novel class of chemical compounds with new modes of action, so we intend to highlight the emerging interest in commercially active sulfur-containing compounds. This chapter gives a comprehensive overview of selected leading sulfur-containing pesticidal chemical families namely: sulfonylureas, sulfonamides, sulfur-containing heterocyclics, thioureas, sulfides, sulfones, sulfoxides and sulfoximines. Also, the most suitable large-scale synthetic methods of the recently launched or provisionally approved sulfur-containing agrochemicals from respective chemical families have been highlighted.

  17. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    Energy Technology Data Exchange (ETDEWEB)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  18. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik

    This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...... technique was an invaluable tool in the discussion of data obtained by gas analysis, and it allowed for estimation of combustion times in O2/CO2 where the high CO2 concentration prevents the use of the carbon mass balance for that purpose. During the project the data have been presented at a conference......, formed the basis of a publication and it is part of two PhD dissertations. The name of the conference the journal and the dissertations are listed below. - Joint Meeting of the Scandinavian-Nordic and French Sections of the Combustion Institute, Combustion of Char Particles under Oxy-Fuel Conditions...

  19. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  20. Investigation of a high pressure oxy-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Renz, U. [RWTH Aachen Univ. (Germany). Inst. of Heat and Mass Transfer

    2013-07-01

    A study was conducted to investigate the feasibility of an oxy-coal process, which is pressurized to a combustion pressure of 80 bar. At that pressure the water-vapor can be separated economically from the CO{sub 2}/H{sub 2}O flue gases, either by nucleate condensation or by condensation on cooled surfaces in condenser heat exchangers at a temperature of about 300 C. The heat of condensation can be recaptured to preheat the boiler feed water. So the number of economizers is drastically reduced compared to a conventional steam cycle. Another interesting feature of the high pressure oxy-coal process is the fact, that low rank coal with high moisture content can be fired. Such a process at a pressure of about 80 bar is currently investigated by Babcock, USA, as the ThermoEnergy Integrated Power System (TIPS) and will be analyzed in the present paper. A known disadvantage of the oxy-coal processes is the large recirculating flue gas stream to control the combustion temperature, and which need large pipes and heavy recirculation fans. This disadvantage could be avoided if instead of flue gas a part of the condensed water from the condenser heat exchangers is recirculated. Within the present study both types of processes have been simulated and for an electric power output of about 220 MW. Furthermore, results of CFD simulations of a pressurized 250 MW combustor with a single swirl burner and flue gas recirculation will be presented.

  1. The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation

    Directory of Open Access Journals (Sweden)

    Denisa Hathazi

    2018-02-01

    Full Text Available The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb, an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high-valent ferryl form, was demonstrated in stopped-flow experiments. Reported here are the stopped flow spectra recorded upon mixing oxy Hb (native, as well as chemically-derivatized in the form of several candidates of blood substitutes with a supraphysiological concentration of nitrite. The data may be fitted to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations of nitrite (Grubina, R. et al. J. Biol. Chem. 2007, 282, 12916. The simple model for fitting the stopped-flow data leaves a small part of the absorbance changes unaccounted for, unless a fourth species is invoked displaying features similar to the oxy and tentatively assigned as ferrous-peroxynitrate. Density functional theory (DFT calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp contrast to oxidative-stress type reactions which are generally accelerated, not inhibited. Sheep hemoglobin is found to be distinctly more resistant to reaction with nitrite compared to bovine Hb, at large nitrite concentrations (stopped-flow experiments directly observing the oxy + nitrite reaction as well as under auto-catalytic conditions. Copolymerization of Hb with bovine serum albumin (BSA using glutaraldehyde leads to a distinct increase of the lag time

  2. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  3. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  4. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zou, Chun; Zheng, Chuguang

    2015-01-01

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO 2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO 2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO 2 capture technology for restraining CO 2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO 2 /O 2 recycled combustion (oxy-CO 2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO 2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  5. Radical Change by Entrepreneurial Design

    National Research Council Canada - National Science Library

    Roberts, Nancy C

    1998-01-01

    .... How radical change in public policy has occurred in the past is then documented. We find examples of radical change by chance, radical change by consensus, radical change by learning, and radical change by entrepreneurial design...

  6. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  7. Combustion instabilities in sudden expansion oxy-fuel flames

    Energy Technology Data Exchange (ETDEWEB)

    Ditaranto, Mario; Hals, Joergen [Department of Energy Processes, SINTEF Energy Research, 7465 Trondheim (Norway)

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  8. The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation.

    Science.gov (United States)

    Mollace, Vincenzo; Ragusa, Salvatore; Sacco, Iolanda; Muscoli, Carolina; Sculco, Francesca; Visalli, Valeria; Palma, Ernesto; Muscoli, Saverio; Mondello, Luigi; Dugo, Paola; Rotiroti, Domenicantonio; Romeo, Francesco

    2008-06-01

    Lectin-like oxyLDL receptor-1 (LOX-1) has recently been suggested to be involved in smooth muscle cell (SMC) proliferation and neointima formation in injured blood vessels. This study evaluates the effect of the nonvolatile fraction (NVF), the antioxidant component of bergamot essential oil (BEO), on LOX-1 expression and free radical generation in a model of rat angioplasty. Common carotid arteries injured by balloon angioplasty were removed after 14 days for histopathological, biochemical, and immunohistochemical studies. Balloon injury led to a significant restenosis with SMC proliferation and neointima formation, accompanied by increased expression of LOX-1 receptor, malondialdehyde and superoxide formation, and nitrotyrosine staining. Pretreatment of rats with BEO-NVF reduced the neointima proliferation together with free radical formation and LOX-1 expression in a dose-dependent manner. These results suggest that natural antioxidants may be relevant in the treatment of vascular disorders in which proliferation of SMCs and oxyLDL-related endothelial cell dysfunction are involved.

  9. Structural aspects of coaxial oxy-fuel flames

    Science.gov (United States)

    Ditaranto, M.; Sautet, J. C.; Samaniego, J. M.

    Oxy-fuel combustion has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. The study of 25-kW turbulent diffusion flames of natural gas with pure oxygen is undertaken on a coaxial burner with quarl. The structural properties are analysed by imaging the instantaneous reaction zone by OH* chemiluminescence and measuring scalar and velocity profiles. The interaction between the flame front and the shear layers present in the coaxial jets depends on the momentum ratio which dictates the turbulent structure development. Flame length and NOx emission sensitivity to air leaks in the combustion chamber are also investigated.

  10. Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2013-01-01

    The deployment of oxy-fuel combustion in utility boilers is one of the major options for CO2 capture. However, combustion under oxy-firing conditions differs from conventional air-firing combustion, e.g., in the aspect of radiative heat transfer, coal conversion and pollutants formation....... In this work, a numerical study on pulverised coal combustion was conducted to verify the applicability and accuracy of several sub-models refined for oxy-fuel conditions, e.g., gaseous radiative property model, gas-phase combustion mechanism and heterogeneous char reaction model. The sub-models were...... implemented in CFD (Computational Fluid Dynamics) simulations of combustion of three coals under air-firing and various oxy-firing (21-35% vol O2 in O2/CO2 mixture) conditions in an EFR (entrained flow reactor). The predicted coal burnouts and gaseous emissions were compared against experimental results...

  11. FutureGen 2.0 Oxy-Coal Combustion Carbon Capture Plant Pre-FEED Design and Cost

    Energy Technology Data Exchange (ETDEWEB)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya; Lockwood, Frederick; McDonald, Denny; Maclnnis, Jim

    2011-09-30

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (instead of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit

  12. Representations of OxyContin in North American Newspapers and Medical Journals

    Directory of Open Access Journals (Sweden)

    Emma Whelan

    2011-01-01

    Full Text Available Following the approval of OxyContin (Purdue Pharma, Canada for medical use, the media began to report the use of OxyContin as a street drug, representing the phenomenon as a social problem. Meanwhile, the pain medicine community has criticized the inaccurate and one-sided media coverage of the OxyContin problem. The authors of this study aimed to contribute to an understanding of both sides of this controversy by analyzing the coverage of OxyContin in newspapers and medical journals. The analyses revealed inconsistent messages about the drug from physicians in the news media and in medical journals, which has likely contributed to the drug’s perception as a social problem. The authors suggest ways to address the lack of medical consensus surrounding OxyContin. The results of this study may help resolve the concerns and conflicts surrounding this drug and other opioids.

  13. The reaction kinetics of amino radicals with sulfur dioxide

    DEFF Research Database (Denmark)

    Gao, Yide; Glarborg, Peter; Marshall, Paul

    2015-01-01

    Application of the laser photolysis-laser-induced fluorescence method to the reaction NH2+SO2 in argon bath gas yields pressure-dependent, third-order kinetics which may be summarized as k = (1.49 ± 0.15) × 10-31 (T/298 K)-0.83cm6 molecule-2 s-1 over 292-555K, where the uncertainty is the 95......% confidence interval and includes possible systematic errors. The quenching of vibrationally excited NH2 is consistent with a high-pressure limit for NH2+SO2 of (1.62 ± 0.25) × 10-11cm3 molecule-1 s-1 over the temperature range 295-505K, where again the 95% confidence interval is shown. Ab initio analysis...... yields a H2N-SO2 dissociation enthalpy of 73.5 kJ mol-1, and comparison with RRKM theory and the exponential down model for energy transfer yields down = 350 cm-1 for Ar at room temperature....

  14. Investigations on oxy-fuel combustion in glass melting furnaces; Untersuchungen zur Oxy-Fuel-Feuerung in Glasschmelzwannen

    Energy Technology Data Exchange (ETDEWEB)

    Leicher, Joerg; Giese, Anne [Gaswaerme-Institut e.V., Essen (Germany)

    2011-12-15

    Glass melting requires process temperatures of more than 1600 C which are usually achieved using intensive air preheating and near-stoichiometric combustion. This often leads to high nitrous oxide emissions (NO{sub x}). Oxy-fuel technology offers an interesting alternative since high combustion temperatures can be achieved using pure oxygen as oxidizer while obtaining low NO{sub x} emissions. In the course of the AiF research project ''O2-Glaswanne'' (IGF-Nr.: 15987 N), Gaswaerme- Institut e.V. Essen investigates this combustion process by experimental and numerical means in order to determine potential optimization approaches for glass melting furnaces.

  15. Pressurized oxy-coal combustion: Ideally flexible to uncertainties

    International Nuclear Information System (INIS)

    Zebian, Hussam; Mitsos, Alexander

    2013-01-01

    Simultaneous multi-variable gradient-based optimization with multi-start is performed on a 300 MWe wet-recycling pressurized oxy-coal combustion process with carbon capture and sequestration, subject to uncertainty in fuel, ambient conditions, and other input specifications. Two forms of flue gas thermal recovery are studied, a surface heat exchanger and a direct contact separation column. Optimization enables ideal flexibility in the processes: when changing the coal utilized, the performance is not compromised compared to the optimum performance of a process specifically designed for that coal. Similarly, the processes are immune to other uncertainties like ambient conditions, air flow, slurry water flow, atomizer stream flow and the oxidizer stream oxygen purity. Consequently, stochastic programming is shown to be unnecessary. Close to optimum design, the processes are also shown to be insensitive towards design variables such as the areas of the feedwater heaters. Recently proposed thermodynamic criteria are used as embedded design specifications in the optimization process, rendering it faster and more robust. - Highlights: • Proposed formulation to assess the flexibility of power generation processes facing uncertainties. • Obtained ideal flexibility of pressurized oxy-coal combustion with respect to coal type. • Performance of processes under uncertainty match performance of optimal processes for specific set of inputs. • Stochastic programming is not required and instead hierarchic optimization is utilized

  16. A radical approach to radical innovation

    NARCIS (Netherlands)

    D. Deichmann (Dirk); J.C.M. van den Ende (Jan)

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  17. The Redox-Sensitive Transcriptional Activator OxyR Regulates the Peroxide Response Regulon in the Obligate Anaerobe Bacteroides fragilis

    Science.gov (United States)

    Rocha, Edson R.; Owens, Gary; Smith, C. Jeffrey

    2000-01-01

    The peroxide response-inducible genes ahpCF, dps, and katB in the obligate anaerobe Bacteroides fragilis are controlled by the redox-sensitive transcriptional activator OxyR. This is the first functional oxidative stress regulator identified and characterized in anaerobic bacteria. oxyR and dps were found to be divergently transcribed, with an overlap in their respective promoter regulatory regions. B. fragilis OxyR and Dps proteins showed high identity to homologues from a closely related anaerobe, Porphyromonas gingivalis. Northern blot analysis revealed that oxyR was expressed as a monocistronic 1-kb mRNA and that dps mRNA was approximately 500 bases in length. dps mRNA was induced over 500-fold by oxidative stress in the parent strain and was constitutively induced in the peroxide-resistant mutant IB263. The constitutive peroxide response in strain IB263 was shown to have resulted from a missense mutation at codon 202 (GAT to GGT) of the oxyR gene [oxyR(Con)] with a predicted D202G substitution in the OxyR protein. Transcriptional fusion analysis revealed that deletion of oxyR abolished the induction of ahpC and katB following treatment with hydrogen peroxide or oxygen exposure. However, dps expression was induced approximately fourfold by oxygen exposure in ΔoxyR strains but not by hydrogen peroxide. This indicates that dps expression is also under the control of an oxygen-dependent OxyR-independent mechanism. Complementation of ΔoxyR mutant strains with wild-type oxyR and oxyR(Con) restored the inducible peroxide response and the constitutive response of the ahpCF, katB, and dps genes, respectively. However, overexpression of OxyR abolished the catalase activity but not katB expression, suggesting that higher levels of intracellular OxyR may be involved in other physiological processes. Analysis of oxyR expression in the parents and in ΔoxyR and overexpressing oxyR strains by Northern blotting and oxyR′::xylB fusions revealed that B. fragilis OxyR does

  18. Computational studies of experimentally observed structures of sulfur on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, Dominic

    2011-09-01

    First-principles electronic structure calculations were carried out to examine the experimentally observed structures of sulfur on close packed surfaces of a number of important metals - Ag(111), Cu(111), Ni(111), Pt(111), Rh(111), Re(0001) and Ru(0001). At low coverages ({le} 1/3 ML), the prediction is consistent with the typical pattern of preferred sulfur occupancy of threefold hollow sites, notably the fcc site on the (111) surfaces and the hcp site on the (0001) surfaces. Theoretical confirmation for the existence of pure sulfur overlayer phases on Pt(111), Rh(111), Re(0001) and Ru(0001) at higher coverages (> 1/3 ML) was provided. For the ({radical}7 x {radical}7) phase seen on Ag(111), the most preferred structure identified for adsorbed S trimer consists of an S atom on the top site bonded to two S atoms situated on the nearest neighbor off-bridge site positions. Among the different densely packed mixed sulfur-metal overlayer models suggested for the ({radical}7 x {radical}7) phase on Cu(111), the structure which consists of metal and S atoms in a hexagonal-like arrangement on the top substrate was found to be the most energetically favorable. For the (5{radical}3 x 2) phase on Ni(111), the calculations confirm the existence of clock-reconstructed top layer metal atoms onto which sulfur atoms are adsorbed.

  19. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  20. Demonstration project: Oxy-fuel combustion at Callide-A plant

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji; Misawa, Nobuhiro; Kiga, Takashi; Spero, Chris

    2007-07-01

    Oxy-fuel combustion is expected to be one of the promising systems on CO2 recovery from pulverized-coal power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 recover process. An Australia-Japan consortium was established in 2004 specifically for the purpose of conducting a feasibility study on the application of oxy-fuel combustion to an existing pulverized-coal power plant that is Callide-A power plant No.4 unit at 30MWe owned by CS Energy in Australia. One of the important components in this study has been the recent comparative testing of three Australian coals under both oxy-fuel and air combustion conditions using the IHI combustion test facilities. The tests have yielded a number of important outcomes including a good comparison of normal air with oxy-fuel combustion, significant reduction in NOx mass emission rates under oxy-fuel combustion. On the basis of the feasibility study, the project under Australia-Japan consortium is now under way for applying oxy-fuel combustion to an existing plant by way of demonstration. In this project, a demonstration plant of oxy-fuel combustion will be completed by the end of 2008. This project aims at recovering CO2 from an actual power plant for storage. (auth)

  1. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  2. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  3. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Science.gov (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  4. Sulfur activation in Hiroshima

    International Nuclear Information System (INIS)

    Kerr, G.D.; Pace, J.V. III.

    1987-01-01

    In 1979, we attempted to establish the validity of source terms for the Hiroshima and Nagasaki bombs using experimental data on sulfur activation. Close agreement was observed between measured and calculated values for test firings of Nagasaki-type bombs. The calculated values were based on source terms developed by W.E. Preeg at the Los Alamos National Laboratory (LANL). A discrepancy was found, however, when we compared calculated values for the two bombs because a 1956 report by R.R. Wilson stated that sulfur acitvation by fast neutrons in Hiroshima was approximately three times greater than in Nagasaki. Our calculations based on Preeg's source-term data predicted about equal sulfur activation in the two cities

  5. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  6. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found......-product. A model, that combine the chemical net reaction and the stoichiometric rules, is found to agree with measured deposition rates for given material compositions. Effects of annealing in a nitrogen atmosphere has been investigated for the 400 °C– 1100 °C temperature range. It is observed that PECVD oxy...

  7. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pulverized bituminous coal was burned in a 10W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28,...

  8. White light-emitting diodes (LEDs) using (oxy)nitride phosphors

    International Nuclear Information System (INIS)

    Xie, R-J; Hirosaki, N; Sakuma, K; Kimura, N

    2008-01-01

    (Oxy)nitride phosphors have attracted great attention recently because they are promising luminescent materials for phosphor-converted white light-emitting diodes (LEDs). This paper reports the luminescent properties of (oxy)nitride phosphors in the system of M-Si-Al-O-N (M = Li, Ca or Sr), and optical properties of white LEDs using a GaN-based blue LED and (oxy)nitride phosphors. The phosphors show high conversion efficiency of blue light, suitable emission colours and small thermal quenching. The bichromatic white LEDs exhibit high luminous efficacy (∼55 lm W -1 ) and the multi-phosphor converted white LEDs show high colour rendering index (Ra 82-95). The results indicate that (oxy)nitride phosphors demonstrate their superior suitability to use as down-conversion luminescent materials in white LEDs

  9. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  10. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  11. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  12. The mathematical description of the electrosynthesis of composites of oxy-hydroxycompounds cobalt with polypyrrole overooxidazed

    Directory of Open Access Journals (Sweden)

    V. V. Tkach

    2016-03-01

    Full Text Available The electrosynthesis of pereoxidized polypyrrole composite with oxy-hydroxy compounds cobalt in a strongly acidic environment has been described mathematically, using linear stability theory and bifurcation analysis. The conditions of stability of stationary states and self-oscillatory and monotonic instability have been described also. The system behavior was compared with behavior of other systems with pereoxidation, electropolymerization of heterocyclic compounds and electrosynthesis of the oxy-hydroxy compounds cobalt.

  13. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  14. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  15. SULFUR POLYMER ENCAPSULATION

    International Nuclear Information System (INIS)

    KALB, P.

    2001-01-01

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ((approx)$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  16. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    Science.gov (United States)

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  17. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    Science.gov (United States)

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  18. Formation and scavenging of superoxide in chloroplasts, with relation to injury by sulfur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Asada, K

    1980-01-01

    Injury of plant leaf cells by sulfur dioxide-exposure is greater in day time than in night. A hypothesis is proposed that the free radical chain oxidation of sulfite is initiated by the superoxide radicals (O/sub 2//sup -/) produced in illuminated chloroplasts, and that the resulting amplified production of O/sub 2//sup -/, the hydroxyl radicals and the bisulfite radicals causes the injury of leaf tissues. In this review, the production of O/sub 2//sup -/ in illuminated chloroplasts and scavenging of O/sub 2//sup -/ by superoxide dismutase and their relation to oxidation of sulfite in chloroplasts are discussed. Superoxide dismutase in chloroplasts plays an important role in protecting leaf cells from injury by sulfur dioxide.

  19. 40 CFR 721.7780 - Poly[oxy(methyl-1,2-ethane-diyl)], α,α′-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[ω-(oxi-rany-me-thoxy)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Poly[oxy(methyl-1,2-ethane-diyl)], α,αâ²-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[Ï-(oxi-rany-me-thoxy)-. 721.7780 Section 721.7780... Poly[oxy(methyl-1,2-ethane-diyl)], α,α′-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[ω-(oxi-rany-me-thoxy)-. (a...

  20. Getting sulfur on target

    Energy Technology Data Exchange (ETDEWEB)

    Halbert, T.R.; Brignac, G.B. [ExxonMobil Process Research Labs. (United States); Greeley, J.P.; Demmin, R.A.; Roundtree, E.M. [ExxonMobil Research and Engineering Co. (United States)

    2000-06-01

    The paper focuses on how the required reductions in sulfur levels in motor vehicle fuel may be achieved over about the next five years. It is said that broadly there are two possible approaches, they are: (a) to hydrotreat the feed to the FCC unit and (b) to treat the naphtha produced by the FCC unit. The difficulties associated with these processes are mentioned. The article is presented under the sub-headings of (i) technology options for cat naphtha desulfurisation; (ii) optimising fractionator design via improved VLE models; (iii) commercial experience with ICN SCANfining; (iv) mercaptan predictive models and (v) process improvements. It was concluded that the individual needs of the refiner can be addressed by ExxonMobil Research and Engineering (EMRE) and the necessary reductions in sulfur levels can be achieved.

  1. Orgasm after radical prostatectomy

    NARCIS (Netherlands)

    Koeman, M; VanDriel, MF; Schultz, WCMW; Mensink, HJA

    Objective To evaluate the ability to obtain and the quality of orgasm after radical prostatectomy, Patients and methods The orgasms experienced after undergoing radical prostatectomy were evaluated in 20 men (median age 65 years, range 56-76) using a semi-structured interview and a self-administered

  2. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  3. Radicals in arithmetic

    NARCIS (Netherlands)

    W.J. Palenstijn (Willem Jan)

    2014-01-01

    htmlabstractLet K be a field. A radical is an element of the algebraic closure of K of which a power is contained in K. In this thesis we develop a method for determining what we call entanglement. This describes unexpected additive relations between radicals, and is encoded in an entanglement

  4. Radicals in arithmetic

    NARCIS (Netherlands)

    Palenstijn, Willem Jan

    2014-01-01

    Let K be a field. A radical is an element of the algebraic closure of K of which a power is contained in K. In this thesis we develop a method for determining what we call entanglement. This describes unexpected additive relations between radicals, and is encoded in an entanglement group. We give

  5. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  6. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  7. Radium behaviour during ferric oxi-hydroxides crystallization

    International Nuclear Information System (INIS)

    Bassot, S.; Stammose, D.; Benitah, S.

    2004-01-01

    In uranium mill tailings, oxides and oxi-hydroxides are responsible of about 70% of the radium immobilization, half being associated to amorphous forms (mainly hydrous ferric oxides and hydrous manganese oxides). With time, crystallization of these amorphous forms can occur, inducing a redistribution of radium between solid and solution. If the amount of mobile radium increases, the impact of these tailings on the environment may become significant. The aim of this study is to determine the amount of radium released in solution during the crystallization process of hydrous ferric oxide (HFO). The transformation of Ra-HFO co-precipitate in crystallized forms (goethite, hematite, is studied by ageing at 40 deg C for different solution compositions. Both solids and solutions are sampled for different times and analysed. The solid evolution is followed by specific area measurements (about 250 m2/g for HFO and about 10-20 m 2 /g for crystallized form) and by determination of the amorphous fraction according to a selective extraction procedure. The solutions were analysed for 226 radium activity, iron concentration and pH. In order to discriminate the part of radium included in the solid and the part of radium fixed on the solid surface, radium sorption onto HFO and crystallized forms is studied as a function of pH. The modelling of the sorption curves with JCHESS 2.0 code allow to point out the mechanisms responsible of the 226-radium distribution between solid and solution during the crystallization process of HFO. (author)

  8. Biphasic oxidation of oxy-hemoglobin in bloodstains.

    Directory of Open Access Journals (Sweden)

    Rolf H Bremmer

    Full Text Available BACKGROUND: In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2 to met-hemoglobin (met-Hb and hemichrome (HC. The fractions of HbO(2, met-Hb and HC in a bloodstain can be used for age determination of bloodstains. In this study, we further analyze the conversion of HbO(2 to met-Hb and HC, and determine the effect of temperature and humidity on the conversion rates. METHODOLOGY: The fractions of HbO(2, met-Hb and HC in a bloodstain, as determined by quantitative analysis of optical reflectance spectra (450-800 nm, were measured as function of age, temperature and humidity. Additionally, Optical Coherence Tomography around 1300 nm was used to confirm quantitative spectral analysis approach. CONCLUSIONS: The oxidation rate of HbO(2 in bloodstains is biphasic. At first, the oxidation of HbO(2 is rapid, but slows down after a few hours. These oxidation rates are strongly temperature dependent. However, the oxidation of HbO(2 seems to be independent of humidity, whereas the transition of met-Hb into HC strongly depends on humidity. Knowledge of these decay rates is indispensable for translating laboratory results into forensic practice, and to enable bloodstain age determination on the crime scene.

  9. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (T ad). For the highest T ad\\'s, the combustor is unstable at the first harmonic of the combustor\\'s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor\\'s natural frequency, before eventually reaching blowoff. Similar to the case of CH 4/air mixtures, the transition from one mode to another is predominantly a function of the T ad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given T ad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature. Copyright © 2012 American Society of Mechanical Engineers.

  10. Muonium and muonic radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Geeson, D.; Symons, M.C.R.

    1985-01-01

    An energetic positive muon which is injected in a liquid sample of substrate molecules (S) creates an ionization track consisting of substrate cations (S + ) and electrons. Near the end of this track the muon may combine with an electron to form muonium (Mu) which is observable in inert liquids, but which reacts by addition to form a radical. Alternatively, the electron can add to S to form S - , which then combines with the muon to form the radical. Furthermore, instead of ending up in Mu or in a radical the muon may stay in a diamagnetic environment as a solvated muon, or as a muon substituting a proton in a molecule. Of interest in these schemes are the mechanisms and rates of formation of muonated radicals and in particular the rate constants for their reactions to products. Investigations are based on the observation of Mu and the radical by means of the μSR technique in transverse magnetic fields. (Auth.)

  11. Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion

    International Nuclear Information System (INIS)

    Hu, Yukun; Li, Hailong; Yan, Jinyue

    2014-01-01

    Highlights: • Air-coal and oxy-coal combustion in an industrial scale PF boiler were simulated in ANSYS FLUENT. • The O 2 concentration of 33 vol% in the oxy-coal combustion case matches the air-coal combustion case most closely. • The moisture in the flue gas has little impact on flame temperature, but positive impact on surface incident radiation. - Abstract: Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33 vol% of effective O 2 concentration ([O 2 ] effective ) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33 vol% of [O 2 ] effective could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O 2 ] effective , to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators

  12. Representations of OxyContin in North American newspapers and medical journals

    Science.gov (United States)

    Whelan, Emma; Asbridge, Mark; Haydt, Susan

    2011-01-01

    BACKGROUND: There are public concerns regarding OxyContin (Purdue Pharma, Canada) and charges within the pain medicine community that media coverage of the drug has been biased. OBJECTIVE: To analyze and compare representations of OxyContin in medical journals and North American newspapers in an attempt to shed light on how each contributes to the ‘social problem’ associated with OxyContin. METHODS: Using searches of newspaper and medical literature databases, two samples were drawn: 924 stories published between 1995 and 2005 in 27 North American newspapers, and 197 articles published between 1995 and 2007 in 33 medical journals in the fields of addiction/substance abuse, pain/anesthesiology and general/internal medicine. The foci, themes, perspectives represented and evaluations of OxyContin presented in these texts were analyzed statistically. RESULTS: Newspaper coverage of OxyContin emphasized negative evaluations of the drug, focusing on abuse, addiction, crime and death rather than the use of OxyContin for the legitimate treatment of pain. Newspaper stories most often conveyed the perspectives of law enforcement and courts, and much less often represented the perspectives of physicians. However, analysis of physician perspectives represented in newspaper stories and in medical journals revealed a high degree of inconsistency, especially across the fields of pain medicine and addiction medicine. CONCLUSION: The prevalence of negative representations of OxyContin is often blamed on biased media coverage and an ignorant public. However, the proliferation of inconsistent messages regarding the drug from physicians plays a role in the drug’s persistent status as a social problem. PMID:22059195

  13. Preclinical Activity of the Vascular Disrupting Agent OXi4503 against Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Katelyn D. Bothwell

    2016-01-01

    Full Text Available Vascular disrupting agents (VDAs represent a relatively distinct class of agents that target established blood vessels in tumors. In this study, we examined the preclinical activity of the second-generation VDA OXi4503 against human head and neck squamous cell carcinoma (HNSCC. Studies were performed in subcutaneous and orthotopic FaDu-luc HNSCC xenografts established in immunodeficient mice. In the subcutaneous model, bioluminescence imaging (BLI along with tumor growth measurements was performed to assess tumor response to therapy. In mice bearing orthotopic tumors, a dual modality imaging approach based on BLI and magnetic resonance imaging (MRI was utilized. Correlative histologic assessment of tumors was performed to validate imaging data. Dynamic BLI revealed a marked reduction in radiance within a few hours of OXi4503 administration compared to baseline levels. However, this reduction was transient with vascular recovery observed at 24 h post treatment. A single injection of OXi4503 (40 mg/kg resulted in a significant (p < 0.01 tumor growth inhibition of subcutaneous FaDu-luc xenografts. MRI revealed a significant reduction (p < 0.05 in volume of orthotopic tumors at 10 days post two doses of OXi4503 treatment. Corresponding histologic (H&E sections of Oxi4503 treated tumors showed extensive areas of necrosis and hemorrhaging compared to untreated controls. To the best of our knowledge, this is the first report, on the activity of Oxi4503 against HNSCC. These results demonstrate the potential of tumor-VDAs in head and neck cancer. Further examination of the antivascular and antitumor activity of Oxi4503 against HNSCC alone and in combination with chemotherapy and radiation is warranted.

  14. Comparison of in vitro behavior of as-sprayed, alkaline-treated and collagen-treated bioceramic coatings obtained by high velocity oxy-fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H., E-mail: hortensia.melero.correas@gmail.com [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Garcia-Giralt, N. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Fernández, J. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Díez-Pérez, A. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Servei de Medicina Interna, Hospital del Mar, Barcelona (Spain); Guilemany, J.M. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain)

    2014-07-01

    Hydroxyapatite (HAp)–TiO{sub 2} samples obtained using high velocity oxy-fuel spray (HVOF), that had previously shown excellent mechanical behaviour, were innovatively surface treated in order to improve their biological performance. The chosen treatments were an alkaline treatment to increase –OH radicals density on the surface (especially on TiO{sub 2} zones), and a collagen treatment to bond collagen fibrils to the –OH radicals present in hydroxyapatite. These coatings were analysed using scanning electron microscopy, energy-dispersive X-ray spectroscopy and infrared spectroscopy, and tested for human osteoblast biocompatibility and functionality. In the case of the alkaline treatment, although the –OH radicals density did not increase compared to the as-sprayed coatings, a nanostructured layer of sodium hydroxycarbonate precipitated on the surface, thus improving biological behaviour due to the nanoroughness effect. For the collagen-treated samples, collagen fibrils appeared well-adhered to the surface, and in vitro cell culture tests showed that these surfaces were much more conducive to cell adhesion and differentiation than the as-sprayed and alkaline-treated samples. These results pointed to collagen treatment as a very promising method to improve bioactivity of HAp–TiO{sub 2} thermal-sprayed coatings.

  15. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    Science.gov (United States)

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  16. Salvage robotic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Samuel D Kaffenberger

    2014-01-01

    Full Text Available Failure of non-surgical primary treatment for localized prostate cancer is a common occurrence, with rates of disease recurrence ranging from 20% to 60%. In a large proportion of patients, disease recurrence is clinically localized and therefore potentially curable. Unfortunately, due to the complex and potentially morbid nature of salvage treatment, radical salvage surgery is uncommonly performed. In an attempt to decrease the morbidity of salvage therapy without sacrificing oncologic efficacy, a number of experienced centers have utilized robotic assistance to perform minimally invasive salvage radical prostatectomy. Herein, we critically evaluate the existing literature on salvage robotic radical prostatectomy with a focus on patient selection, perioperative complications and functional and early oncologic outcomes. These results are compared with contemporary and historical open salvage radical prostatectomy series and supplemented with insights we have gained from our experience with salvage robotic radical prostatectomy. The body of evidence by which conclusions regarding the efficacy and safety of robotic salvage radical prostatectomy can be drawn comprises fewer than 200 patients with limited follow-up. Preliminary results are promising and some outcomes have been favorable when compared with contemporary open salvage prostatectomy series. Advantages of the robotic platform in the performance of salvage radical prostatectomy include decreased blood loss, short length of stay and improved visualization. Greater experience is required to confirm the long-term oncologic efficacy and functional outcomes as well as the generalizability of results achieved at experienced centers.

  17. Comparison of char structural characteristics and reactivity during conventional air and oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowei; Xu, Minghou; Yao, Hong; Gu, Ying; Si, Junping; Xiong, Chao [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    The capture and sequestration of CO{sub 2} generated from large- scale stationary power plants is considered to be one of the leading technologies that could potentially have a significant impact on reducing greenhouse emissions. Among these emerging technologies, the oxy-fuel combustion is a near-zero emission technology that can be adapted to both new and existing pulverized coal-fired power stations. The goal of this work is to make a comparative study on char structural characteristics (including char yield, swelling ratio, BET surface area, pore distribution, morphology) and reactivity during conventional air and oxy-fuel combustion. Specific experimental designs include two series. One is carried out in pure N{sub 2} and CO{sub 2} (pyrolysis experiments), and another is prepared in N{sub 2} + 5%O{sub 2} and CO{sub 2} + 5%O{sub 2}. Coal samples included raw coal, low density fraction coal and medium density fraction coal in all experiments. The present study is a further effort to extend our knowledge about physical and chemical structural characteristics and reactivity of char in the presence of high concentration CO{sub 2}. Combustion and pyrolysis of a density fractionated China coal at drop tube furnace yielded the following conclusions. Compared to oxy-chars obtained under pure CO{sub 2} atmosphere, the swelling ratios of char obtained in pure N{sub 2} atmosphere are higher. When adding 5%O{sub 2}, experimental results are completely different with those of the pyrolysis experiment. In comparison with the oxy-chars obtained under CO{sub 2} + 5%O{sub 2} atmosphere, the swelling ratios of the char obtained in N{sub 2} + 5%O{sub 2} atmosphere are lower. In the pyrolysis experiment, the BET surfaces Area of the oxy-chars are about 10-20 times as much as chars. When adding 5%O{sub 2}, the BET surfaces Area of the oxy-chars are about two to four times as much as chars. During pyrolysis experiment, the total pore volumes of the oxy-chars obtained under pure CO

  18. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating

  19. The OxyContin crisis: problematisation and responsibilisation strategies in addiction, pain, and general medicine journals.

    Science.gov (United States)

    Whelan, Emma; Asbridge, Mark

    2013-09-01

    OxyContin(®) (Purdue Pharma, L.P., Stamford, CT) is now widely regarded as a drug of abuse fueling a larger opioid health crisis. While coverage in the North American press about OxyContin overwhelmingly focused upon the problems of related crime and addiction/misuse and the perspectives of law enforcement officials and police, coverage in those fields of medicine most intimately concerned with OxyContin-pain medicine and addiction medicine-was more nuanced. In this article, we draw upon the constructivist social problems tradition and Hunt's theory of moral regulation in a qualitative analysis of 24 medical journal articles. We compare and contrast pain medicine and addiction medicine representations of the OxyContin problem, the agents responsible for it, and proposed solutions. While there are some significant differences, particularly concerning the nature of the problem and the agents responsible for it, both pain medicine and addiction medicine authors 'take responsibility' in ways that attempt to mitigate the potential appropriation of the issue by law enforcement and regulatory agencies. The responses of pain medicine and addiction medicine journal articles represent strategic moves to recapture lost credibility, to retain client populations and tools necessary to their jobs, and to claim a seat at the table in responding to the OxyContin crisis. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  1. Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China

    International Nuclear Information System (INIS)

    Tang, YuTing; Ma, XiaoQian; Lai, ZhiYi; Chen, Yong

    2013-01-01

    The entire life cycle of a municipal solid waste (MSW) oxy-fuel incineration power plant was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impacts. The functional unit was 1000 kg (1 t) MSW. During the life cycle, the saving standard coal by electricity generation was more than diesel consumption, and the effect of soot and ashes was the greatest among all calculated categorization impacts. The total weighted resource consumption and total weighted environment potential of MSW oxy-fuel incineration were −0.37 mPR 90 (milli person equivalent) and −0.27 PET 2010 (person equivalent), better than MSW incineration with CO 2 capture via monoethanolamine (MEA) absorption. The sensitivity analysis showed that the electric power consumption of air separation unit (ASU) was the primary influencing parameter, and the influence of electric power consumption of CO 2 compressor was secondary, while transport distance had small influence. Overall, MSW oxy-fuel incineration technology has certain development potential with the increment of MSW power supply efficiency and development of ASU in the future. - Highlights: • Life cycle assessment of a MSW oxy-fuel incineration power plant is novel. • The MSW oxy-fuel incineration was better than the MSW incineration with MEA. • Among calculated impacts, the effect of soot and ashes was the greatest. • The electric power consumption of ASU was the primary influencing parameter

  2. A Reduced Order Model for the Design of Oxy-Coal Combustion Systems

    Directory of Open Access Journals (Sweden)

    Steven L. Rowan

    2015-01-01

    Full Text Available Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG consisting of mainly carbon dioxide (CO2. As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.

  3. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  4. Gnosticism and Radical Feminism

    DEFF Research Database (Denmark)

    Cahana, Jonathan

    2016-01-01

    and radical feminism would easily fall under this definition. There is, however, one major difference: since radical feminism is a relatively recent phenomenon which also benefited from modern modes of text production and preservation, almost all of the sources are still with us. This, in turn, may allow us...... to use radical feminism to make certain aspects of ancient Gnosticism re-emerge from their long submersion, provided that enough similarities can be independently drawn between the two phenomena to merit such a comparison. This paper therefore presents a comparison between concepts and positions...

  5. Homegrown religious radicalization

    DEFF Research Database (Denmark)

    Khawaja, Iram

    It has been reported that a growing number of youngsters from Western Europe are engaging in conflicts motivated by religious and political conflicts in the Middle East. This paper explores the reasons behind this seemingly religious radicalization from the point of view of the youngsters...... youngsters and parents of youngsters who have chosen a radicalized path in life. The paper will shed light on how the sense of and yearning for belonging and recognition have to be taken into account in our understanding of homegrown religious radicalization...

  6. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2011-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  7. Radical chemistry of artemisinin

    Science.gov (United States)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  8. Radical chemistry of artemisinin

    International Nuclear Information System (INIS)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G

    2010-01-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  9. Radical's view of sciences

    International Nuclear Information System (INIS)

    Mittal, J.P.

    2004-01-01

    Full text: General concept in radiation biology is that free radicals are highly reactive and they can damage vital cellular molecules leading to injurious effects. However, in this talk, evidence will be presented through the techniques of electron paramagnetic resonance ( EPR ) and pulse radiolysis that free radicals can be highly selective in their reaction with the target molecules. In addition, attempts will be made to present a brief account of emerging scenario of free radical generation, identification and their involvement in radiation damage mechanisms in chemical and biological systems

  10. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  11. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C.; Nair, P.K.; Nair, M.T.S., E-mail: mtsn@ier.unam.mx

    2017-02-28

    Highlights: • Zinc oxy-sulfide thin films, 175–240 nm, deposited by rf-sputtering from targets of ZnO + ZnS. • Oxygen content in thin films is enhanced 3–4 times compared with that in ZnO:ZnS targets. • Thin film ZnO{sub x}S{sub 1−x} with x = 0.88–0.27 and optical band gap 2.8–3.2 eV is suitable for solar cells. • The conduction band offset with SnS of cubic structure studied by XPS are +0.41 to −0.28 eV. - Abstract: Zinc oxy-sulfide, ZnO{sub x}S{sub 1−x}, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnO{sub x}S{sub 1−x}/SnS-CUB interface, in which the ZnO{sub x}S{sub 1−x} thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (E{sub g}) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO{sub 0.27}S{sub 0.73} and −0.28 eV for SnS-CUB/ZnO{sub 0.88}S{sub 0.12} interfaces. Thin films of ZnO{sub x}S{sub 1−x} with 175–240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO{sub 0.27}S{sub 0.73} with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO{sub 0.88}S{sub 0.12}. The optical band gap of the ZnO{sub x}S{sub 1−x} thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  12. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  13. Phosphorus, sulfur and pyridine

    OpenAIRE

    Schönberger, Stefanie

    2013-01-01

    The synthesis of distinct neutral or anionic P,S compounds in solution provides a great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and S–S bonds nearly solely a mixture of compounds with different composition and charge is obtained. Our interest focuses on the system consisting of phosphorus, sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. The combination of these three components offers the opportunity...

  14. Moderate and Radical Islam

    National Research Council Canada - National Science Library

    Rabasa, Angel

    2005-01-01

    This report presents the statement of Angel Rabasa, PhD, Senior Policy Analyst, The RAND Corporation, to the Committee on Armed Services, Defense Review Terrorism and Radical Islam Gap Panel, United...

  15. NOx removal characteristics of corona radical shower with ammonia and methylamine radical injections

    Energy Technology Data Exchange (ETDEWEB)

    Urashima, K.; Ara, M.; Chang, J.S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Uchida, Y. [Aichi Inst. of Technology, (Japan). Dept. of Engineering

    2010-07-01

    Air pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) are the major cause of acid rain. There are different types of NOx and SOx conversion techniques such as wet scrubber, selective catalytic reactor, sorbent injection, and low NOx burner. Non-thermal plasma techniques have also been utilized in commercial plants, but the energy efficiency of the non-thermal plasma reactors have not yet been optimized. The direct plasma treatments of flue gases including, the electron beam, barrier discharge and pulsed corona reactors, may lose input energy to activate unwanted components of flue gases such as carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}). The corona discharge ammonia radical shower system has demonstrated significant NOx removal with higher energy efficiency for large bench scale and pilot plant tests for combustion exhausts. An experiment has also demonstrated that methane can replace ammonia as an injection gas with less NOx removal efficiency. This paper presented an experimental investigation that compared methylamine radical injection with traditional ammonia and methane radical injections. The paper discussed the bench scale test facilities and corona radical shower plasma reactor. It was concluded that the processes to form ammonium nitrate could be observed from trace white solid particles deposited on the reactor wall as observed by scanning electron microscopy pictures. 10 refs., 5 figs., 2 appendices.

  16. Violent Radicalization in Europe

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2010-01-01

    When, why, and how do people living in a democracy become radicalized to the point of being willing to use or directly support the use of terrorist violence against fellow citizens? This question has been at the center of academic and public debate over the past years as terrorist attacks...... within this field and to answer the question: From an empirical point of view, what is known and what is not known about radicalization connected to militant Islamism in Europe?...

  17. Dynamic simulation in the process of pressurized denitration based on oxy-fuel combustion

    Science.gov (United States)

    Huang, Qiang; Zhou, Dong

    2018-02-01

    Oxy-fuel combustion is considered as one of the most promising technologies for capturing CO2 from coal-fired power plants. It will greatly reduce the cost of gas purification if we remove NOx in the process of compression, which is the characteristic of oxy-combustion. In this paper, simulation of denitration process of oxy-fuel combustion flue gas was realized by the Aspen Plus software, systematically analyzed the effect of temperature, pressure, initial concentration of O2 and NO in the denitration process. Results show that the increasing of pressure, initial concentration of O2, initial concentration of NO and the decrease of temperature are all beneficial to the denitration process.

  18. Global Combustion Mechanisms for Use in CFD Modeling under Oxy-Fuel Conditions

    DEFF Research Database (Denmark)

    Andersen, Jimmy; Rasmussen, Christian Lund; Giselsson, Trine

    2009-01-01

    Two global multistep schemes, the two-step mechanism of Westbrook and Dryer (WD) and the four-step mechanism of Jones and Lindstedt (JL), have been refined for oxy-fuel conditions. Reference calculations were conducted with a detailed chemical kinetic mechanism, validated for oxy-fuel combustion...... conditions. In the modification approach, the initiating reactions involving hydrocarbon and oxygen were retained, while modifying the H-2-CO-CO2 reactions in order to improve prediction of major species concentrations. The main attention has been to capture the trend and level of CO predicted...... by the detailed mechanism as well as the correct equilibrium concentration. A CFD analysis of a propane oxy-fuel flame has been performed using both the original and modified mechanisms. Compared to the original schemes, the modified WD mechanism improved the prediction of the temperature field and of CO...

  19. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Simon, A.J.

    2007-01-01

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO 2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO 2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO 2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  20. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg

    2011-01-01

    , heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulverized coal combustion in O2/CO2 and air, covering the effects of fuel, mixing conditions, temperature......In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows......, stoichiometry, and inlet NO level. In general, the model provides a satisfactory description of NO formation in air and oxy-fuel combustion of coal, but under some conditions, it underestimates the impact on NO of replacing N2 with CO2. According to the model, differences in the NO yield between the oxy...

  1. Sulfur problems in Swedish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, O

    1959-01-01

    The present paper deals with some aspects of the sulfur situation in Swedish agriculture with special emphasis on the importance of and relationships among various sources of sulfur supply. An inventory of the sulfur content of Swedish soils and hay crops includes 649 soil samples and a corresponding number of hay samples from 59 locations. In a special investigation the samples were found to be representative of normal Swedish farm land. It is concluded that the amount of sulfur compounds in the air is the primary factor which determines the amount of sulfur added to the soil from the atmosphere. Compared with values obtained in other countries, the amount of sulfur added by the precipitation in Sweden is very low. The distribution in air and precipitation of sulfur from an industrial source was studied in a special investigation. An initial reason for the present study was the damage to vegetation caused by smoke from an industrial source. It was concluded that the average conditions in the vicinity of the industrial source with respect to smoke constituents in the air and precipitation were unfavorable only to the plants directly within a very narrow region. Relationships among the sulfur contents of air, of precipitation, of soils and of plants have been subject to special investigations. In the final general discussion and conclusions it is pointed out that the results from these investigations indicate evident differences in the sulfur status of Swedish soils. The present trend toward the use of more highly concentrated fertilizers poor in sulfur may be expected to cause a considerable change in the sulfur situation in Swedish agriculture. 167 references, 40 figures, 44 tables.

  2. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  3. 40 CFR 721.9900 - Urea, condensate with poly[oxy(methyl-1,2-ethanediyl)]-α- (2-aminomethylethyl)-μ-(2-amino...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Urea, condensate with poly[oxy(methyl... Substances § 721.9900 Urea, condensate with poly[oxy(methyl-1,2-ethanediyl)]-α- (2-aminomethylethyl)-μ-(2.... (1) The chemical substance urea, condensate with poly[oxy(methyl-1,2-ethanediyl)]-α-(2...

  4. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  5. Application of a modified OxiTop® respirometer for laboratory composting studies

    OpenAIRE

    Malińska Krystyna

    2016-01-01

    This study applied a modified OxiTop® system to determine the oxygen uptake rate during a 2-day respiration test of selected composting materials at different moisture contents, air-filled porosities and composition of composting mixtures. The modification of the OxiTop® respirometer included replacement and adjustment of a glass vessel (i.e. a 1.9-L glass vessel with wide mouth was used instead of a standard 1-L glass bottle, additionally the twist-off vessel lid was adjusted to attach the m...

  6. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  7. Lagrangian measurements of sulfur dioxide to sulfate conversion rates

    Energy Technology Data Exchange (ETDEWEB)

    Zak, B D

    1981-12-01

    On the basis of Project MISTT data and proposed homogenous gas phase oxidation mechanisms for sulfur dioxide, it has been suggested that the degree of mixing with background air, the chemical composition of the background air, and the intensity of the sunlight available are key factors determining the rate of sulfur dioxide to sulfate conversion. These hypotheses are examined in light of Lagrangian measrements of conversion rates in power plant plumes made during the Tennessee Plume Study and Project Da Vinci. It is found that the Lagrangian conversion rate measurements are consistent with these hypotheses. It has also been suggested that the concentration of ozone may serve as a workable surrogate for the concentrations of the free radicals involved in the homogeneous gas phase mechanism. The night-time Lagrangian data remind one that the gross difference in mean lifetime of ozone and free radicals can lead to situations in which the ozone concentration is not a good surrogate for the free radical concentrations.

  8. Laparoscopic radical trachelectomy.

    Science.gov (United States)

    Rendón, Gabriel J; Ramirez, Pedro T; Frumovitz, Michael; Schmeler, Kathleen M; Pareja, Rene

    2012-01-01

    The standard treatment for patients with early-stage cervical cancer has been radical hysterectomy. However, for women interested in future fertility, radical trachelectomy is now considered a safe and feasible option. The use of minimally invasive surgical techniques to perform this procedure has recently been reported. We report the first case of a laparoscopic radical trachelectomy performed in a developing country. The patient is a nulligravid, 30-y-old female with stage IB1 adenocarcinoma of the cervix who desired future fertility. She underwent a laparoscopic radical trachelectomy and bilateral pelvic lymph node dissection. The operative time was 340 min, and the estimated blood loss was 100mL. There were no intraoperative or postoperative complications. The final pathology showed no evidence of residual disease, and all pelvic lymph nodes were negative. At 20 mo of follow-up, the patient is having regular menses but has not yet attempted to become pregnant. There is no evidence of recurrence. Laparoscopic radical trachelectomy with pelvic lymphadenectomy in a young woman who desires future fertility may also be an alternative technique in the treatment of early cervical cancer in developing countries.

  9. Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Abbasian

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide nanoparticles through our novel method. For this purpose, the surface of TiO2 nanoparticle was treated with 3-aminopropyl triethoxy silane, a silane coupling agent, and then these functionalized nanoparticles was reacted with ±-chloro phenyl acetyl chloride. The chlorine groups were converted to nitroxide mediated groups by coupling with 1-hydroxy-2, 2, 6, 6-tetramethyl piperidine. These modified TiO2 nanoparticles were then dispersed in styrene (St monomers to carry out the in situ free radical polymerization.

  10. Radical dematerialization and degrowth

    Science.gov (United States)

    Kallis, Giorgos

    2017-05-01

    The emission targets agreed in Paris require a radical reduction of material extraction, use and disposal. The core claim of this article is that a radical dematerialization can only be part and parcel of degrowth. Given that capitalist economies are designed to grow, this raises the question of whether, and under what circumstances, the inevitable `degrowth' can become socially sustainable. Three economic policies are discussed in this direction: work-sharing, green taxes and public money. This article is part of the themed issue 'Material demand reduction'.

  11. Muon substituted free radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Gygax, F.N.; Brinkman, G.A.; Louwrier, P.W.F.; McKenna, D.; Ramos, M.; Webster, B.C.

    1984-01-01

    Spin polarized energetic positive muons are injected as magnetic probes into unsaturated organic liquids. They are implemented via fast chemical processes ( -10 s) in various molecules. Of particular interest among these are muonium substituted free radicals. The technique allows determination of accurate rate coefficients for fast chemical reactions of radicals. Furthermore, radiochemical processes occuring in picoseconds after injection of the muon are studied. Of fundamental interest are also the structural and dynamical implications of substituting a proton by a muon, or in other terms, a hydrogen atom by a muonium atom. Selected examples for each of these three types of experiments are given. (Auth.)

  12. Demystifying "oxi" cocaine: Chemical profiling analysis of a "new Brazilian drug" from Acre State.

    Science.gov (United States)

    da Silva Junior, Ronaldo C; Gomes, Cezar S; Goulart Júnior, Saulo S; Almeida, Fernanda V; Grobério, Tatiane S; Braga, Jez W B; Zacca, Jorge J; Vieira, Maurício L; Botelho, Elvio D; Maldaner, Adriano O

    2012-09-10

    Recent information from various sources suggests that a new illicit drug, called "oxi", is being spread across Brazil. It would be used in the smoked form and it would look like to crack cocaine: usually small yellowish or light brown stones. As fully released in the media, "oxi" would differ from crack cocaine in the sense that crack would contain carbonate or bicarbonate salts whereas "oxi" would include the addition of calcium oxide and kerosene (or gasoline). In this context, this work presents a chemical profiling comparative study between "oxi" street samples seized by the Civil Police of the State of Acre (CP/AC) and samples associated with both international and interstate drug trafficking seized by the Brazilian Federal Police in Acre (FP/AC). The outcome of this work assisted Brazilian authorities to stop inaccurate and alarmist releases on this issue. It may be of good use by the forensic community in order to better understand matters in their efforts to guide local law enforcement agencies in case such claims reach the international illicit market. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Prediction of oxy-coal combustion through an optimized weighted sum of gray gases model

    International Nuclear Information System (INIS)

    Kangwanpongpan, Tanin; Corrêa da Silva, Rodrigo; Krautz, Hans Joachim

    2012-01-01

    Oxy-fuel combustion is considered as one of promising options for carbon dioxide capture in future coal power plants. Currently models available in CFD codes fail to predict accurately the radiative heat transfer in oxy-fuel cases due to higher pressure of carbon dioxide and water vapor. This paper concerns numerical investigation applying three band formulations aiming an accurate prediction of radiative properties. The radiative heat transfer is calculated by discrete ordinate method coupled with a weighted sum of gray gases model. The first case relates to the domain-based approach using air-fired parameters. In the last two cases, the optimized parameters of 3 and 4 gray gases fitted to oxy-fired conditions are implemented through a non-gray gases approach. Results applying these set of parameters are evaluated through a comparison with experimental data. Discrepancies between the predicted and measured velocity and O 2 concentration are found mainly close to the burner due to shortcomings of the turbulence model and inaccurate thermochemical closure. The gas flame temperatures are better predicted by the optimized parameters for oxy-fuel conditions, which are considerably lower than the values calculated by the air-fired parameters. Similar trends are observed when the radiative heat fluxes at the lateral wall are compared.

  14. Development of Cost Effective Oxy-Combustion Retrofitting for Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan

    2010-12-31

    The overall objective of this project is to further develop the oxy-combustion technology for commercial retrofit in existing wall-fired and Cyclone boilers by 2012. To meet this goal, a research project was conducted that included pilot-scale testing and a full-scale engineering and economic analysis.

  15. Nongray-gas Effects in Modeling of Large-scale Oxy-fuel Combustion Processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    , in which a recently refined weighted-sum-of-gray-gases model (WSGGM) applicable to oxy-fuel conditions is used to perform non-gray and gray calculations, respectively, and a widely used air-fuel WSGGM is also employed for gray calculation. This makes the only difference among the different computational...

  16. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  17. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Iris Camehl

    2011-05-01

    Full Text Available Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1 gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H₂O₂ and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1. A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H₂O₂ formation is even reduced by the fungus. Importantly, phospholipase D (PLDα1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.

  18. Evidence for dynamic behavior of O2 in oxy-heme model compounds

    International Nuclear Information System (INIS)

    Montiel-Montoya, R.; Bill, E.; Trautwein, A.X.; Winkler, H.

    1986-01-01

    The authors have performed Moessbauer studies on several oxy-heme model compounds, and for two of them they have also derived the three dimensional structure from X-ray studies. The X-ray structure analysis of these model compounds provides the information that O 2 occupies three different sites in one and only two sites in the other. (Auth.)

  19. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  20. Major and trace elements in coal bottom ash at different oxy coal combustion conditions

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-09-01

    Full Text Available This paper presents a detailed study on the effect of temperature on the concentration of 27 major and trace elements in bottom ash generated from oxy fuel-combustion. The major elements are Na, Mg, Al, K, Ca and Fe and the minor and trace elements...

  1. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  2. Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types

    CSIR Research Space (South Africa)

    Oboirien, BO

    2016-09-01

    Full Text Available In this study, the enrichment of trace elements in two coals under air and oxy-combustion conditions was studied. Twenty-one trace elements were evaluated. The two coal samples had a different concentration for the 21 trace elements, which was due...

  3. A Mechanistic Investigation of Nitrogen Evolution and Corrosion with Oxy-Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dale Tree; Andrew Mackrory; Thomas Fletcher

    2008-12-31

    A premixed, staged, down-fired, pulverized coal reactor and a flat flame burner were used to study the evolution of nitrogen in coal contrasting differences in air and oxy-combustion. In the premixed reactor, the oxidizer was staged to produce a fuel rich zone followed by a burnout zone. The initial nominal fuel rich zone stoichiometric ratio (S.R.) of 0.85 selected produced higher NO reductions in the fuel rich region under oxy-combustion conditions. Air was found to be capable of similar NO reductions when the fuel rich zone was at a much lower S.R. of 0.65. At a S.R. of 0.85, oxy-combustion was measured to have higher CO, unburned hydrocarbons, HCN and NH{sub 3} in the fuel rich region than air at the same S.R. There was no measured difference in the initial formation of NO. The data suggest devolatilization and initial NO formation is similar for the two oxidizers when flame temperatures are the same, but the higher CO{sub 2} leads to higher concentrations of CO and nitrogen reducing intermediates at a given equivalence ratio which increases the ability of the gas phase to reduce NO. These results are supported by flat flame burner experiments which show devolatilization of nitrogen from the coal and char to be similar for air and oxy-flame conditions at a given temperature. A model of premixed combustion containing devolatilization, char oxidation and detailed kinetics captures most of the trends seen in the data. The model suggests CO is high in oxy-combustion because of dissociation of CO{sub 2}. The model also predicts a fraction (up to 20%, dependent on S.R.) of NO in air combustion can be formed via thermal processes with the source being nitrogen from the air while in oxy-combustion equilibrium drives a reduction in NO of similar magnitude. The data confirm oxy-combustion is a superior oxidizer to air for NO control because NO reduction can be achieved at higher S.R. producing better char burnout in addition to NO from recirculated flue gas being reduced

  4. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  5. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  6. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  7. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Pre-clinical evaluation of OxyChip for long-term EPR oximetry.

    Science.gov (United States)

    Hou, Huagang; Khan, Nadeem; Gohain, Sangeeta; Kuppusamy, M Lakshmi; Kuppusamy, Periannan

    2018-03-16

    Tissue oxygenation is a critical parameter in various pathophysiological situations including cardiovascular disease and cancer. Hypoxia can significantly influence the prognosis of solid malignancies and the efficacy of their treatment by radiation or chemotherapy. Electron paramagnetic resonance (EPR) oximetry is a reliable method for repeatedly assessing and monitoring oxygen levels in tissues. Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) has been developed as a probe for biological EPR oximetry, especially for clinical use. However, clinical applicability of LiNc-BuO crystals is hampered by potential limitations associated with biocompatibility, biodegradation, or migration of individual bare crystals in tissue. To overcome these limitations, we have embedded LiNc-BuO crystals in polydimethylsiloxane (PDMS), an oxygen-permeable biocompatible polymer and developed an implantable/retrievable form of chip, called OxyChip. The chip was optimized for maximum spin density (40% w/w of LiNc-BuO in PDMS) and fabricated in a form suitable for implantation using an 18-G syringe needle. In vitro evaluation of the OxyChip showed that it is robust and highly oxygen sensitive. The dependence of its EPR linewidth to oxygen was linear and highly reproducible. In vivo efficacy of the OxyChip was evaluated by implanting it in rat femoris muscle and following its response to tissue oxygenation for up to 12 months. The results revealed preservation of the integrity (size and shape) and calibration (oxygen sensitivity) of the OxyChip throughout the implantation period. Further, no inflammatory or adverse reaction around the implantation area was observed thereby establishing its biocompatibility and safety. Overall, the results demonstrated that the newly-fabricated high-sensitive OxyChip is capable of providing long-term measurements of oxygen concentration in a reliable and repeated manner under clinical conditions.

  9. Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns

    International Nuclear Information System (INIS)

    Granados, D.A.; Chejne, F.; Mejía, J.M.

    2015-01-01

    Highlights: • A one-dimensional model for oxy-fuel combustion in a rotary kiln was developed. • Flue gas recirculation becomes an important parameter for controlling the process. • Combustion process decreases the flame length making it more dense. • Increases of 12% in raw material with 40% of FGR and conversion of 98% was obtained. - Abstract: The effect of Flue Gas Recirculation (FGR) on the decarbonation process during oxy-fuel combustion in a lime (and cement) rotary kiln is analyzed using an unsteady one-dimensional Eulerian–Lagrangian mathematical model. The model considers gas and limestone as continuous phases and the coal particles as the discrete phase. The model predicts limestone decarbonation, temperature and species distribution of gas and solid phases along the kiln. Simulation results of an air-combustion case are successfully validated with reported experimental data. This model is used to study and to compare the conventional air combustion process with oxy-fuel combustion with FGR ratios between 30% and 80% as controller parameter in this process. Changes in decarbonation process due to energy fluxes by convection and radiation with different FGRs were simulated and analyzed. Simulation results indicate a temperature increase of 20% in the gas and solid phases and a higher decarbonation rate of 40% in relation to the air-combustion case, for a given constant fuel consumption rate. However, for a given temperature, the increase of the CO_2 partial pressure in the oxy-fuel case promotes a reduction of the decarbonation rate. Therefore, there is a compromise between FGR and decarbonation rate, which is analyzed in the present study. Simulation results of the decarbonation step in low FGR cases, compared to air-combustion case, shows that conversion takes place in shorter distances in the kiln, suggesting that the production rate can be increased for existing kilns in oxy-fuel kilns or, equivalently, shorter kilns can be designed for an

  10. Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions

    International Nuclear Information System (INIS)

    Córdoba, Patricia; Maroto-Valer, M.; Delgado, Miguel Angel; Diego, Ruth; Font, Oriol; Querol, Xavier

    2016-01-01

    The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO 2 -rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO 2 -rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form as Hg 2+ (68%) and it is the prevalent form in the CO 2 -rich exhaust flue gas (99%) with lower proportions of Hg 0 (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg 0 is more prone to be retained (95%) while Hg 2+ shows a negative efficiency capture for the whole installation. The negative Hg 2+ capture efficiencies are due to the continuous CO 2 -rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44 mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO 2 -rich flue gas. Especial attention must be paid to the role of the CO 2 -rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs). - Highlights: • The fate of gaseous Hg has been evaluated under oxy-fuel combustion. • The Hg oxidation process is enhanced in CO 2 -rich flue gas recirculation. • Hg 2+ is the prevalent gas species in the CO 2 -rich exhaust flue gas. • Hg 2+ (g) shows a negative efficiency capture for the whole installation. • Especial attention must be paid to the Hg enrichment in Fly Ashes.

  11. OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Barloy-Hubler Frédérique

    2008-12-01

    Full Text Available Abstract Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software

  12. Advanced diagnostics in oxy-fuel combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Brix, J.; Clausen, Soennik; Degn Jensen, A. (Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark)); Boeg Toftegaard, M. (DONG Energy Power, Hvidovre (Denmark))

    2012-07-01

    This report sums up the findings in PSO-project 010069, ''Advanced Diagnostics in Oxy-Fuel Combustion Processes''. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory scale fixed bed reactor. The results obtained in the swirl burner have proved the FTIR method as a valuable technique for gas phase temperature measurements. When its efficacy is evaluated against traditional thermocouple measurements, two cases, with and without probe beam stop, must however be treated separately. When the FTIR probe is operated with the purpose of gas phase concentration measurements the probe needs to operate with a beam stop mounted in front of it. With this beam stop in place it was shown that the measured gas phase temperature was affected by cooling, induced by the cooled beam stop. Hence, for a more accurate determination of gas phase temperatures the probe needed to operate without the beam stop. When this was the case, the FTIR probe showed superior to traditional temperature measurements using a thermocouple as it could measure the fast temperature fluctuations. With the beam stop in place the efficacy of the FTIR probe for gas temperature determination was comparable to the use of a traditional thermocouple. The evaluation of the FTIR technique regarding estimation of gas phase concentrations of H{sub 2}O, CO{sub 2} and CO showed that the method is reliable though it cannot be stated as particularly accurate. The accuracy of the method is dependent on the similarity of the reference emission spectra of the gases with those obtained in the experiments, as the transmittance intensity is not a linear function of concentration. The length of the optical path also affects the steadiness of the measurements. The length of the optical path is difficult to adjust on the small scales that are the focus of this work. However

  13. Counter radicalization development assistance

    OpenAIRE

    van Hippel, Karin

    2006-01-01

    The paper reviews current research and practice and recommends strategies for development agencies working in the Arab and Muslim world. It builds on the basic assumption that the realization of the Millennium Development Goals will be vital to reduce support for terrorism in the long term. Within this overall framework, emphasis is placed on particular programs that could be specifically applied to counter radicalization.

  14. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali; Khashab, Niveen M.; Fahrenbach, Albert C.; Friedman, Douglas C.; Colvin, Michael T.; Coti, Karla K.; Bení tez, Diego S.; Tkatchouk, Ekaterina; Olsen, John Carl; Belowich, Matthew E.; Carmieli, Raanan; Khatib, Hussam A.; Goddard, William Andrew III; Wasielewski, Michael R.; Stoddart, Fraser Fraser Raser

    2009-01-01

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  15. Sexuality Following Radical Prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Serefoglu, Ege C; Albersen, Maarten

    2017-01-01

    incontinence in relation to sexual activity after surgery. This can present at the time of orgasm (ie, climacturia) or arise during arousal. In general, the problem subsides with time and pelvic floor training and tension penile loops can be used as treatments. Orgasmic disturbances after radical prostatectomy...

  16. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  17. Online Radicalization: Bangladesh Perspective

    Science.gov (United States)

    2017-06-09

    radicalization through cyberspace, Bangladesh mostly implements hard powers such as removing contents and restricting access to the internet. However, freedom...cyberspace, Bangladesh mostly implements hard powers such as removing contents and restricting access to the internet. However, freedom of speech...67 An Organizational Approach to Implement the Measures........................................ 69 Formation of

  18. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  19. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  20. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  1. Free radical transfer in polymers

    International Nuclear Information System (INIS)

    Sonntag, C. von; Bothe, E.; Ulanski, P.

    1998-01-01

    For the present study of free-radical transfer in polymers pulse radiolysis and product studies have been carried out in aqueous solutions using thus far only the water-soluble polymers polyacrylic acid, polymethacrylic acid and polyvinyl alcohol. When OH radicals, generated in the radiolysis of N 2 O-saturated aqueous solutions, react with polymers the lifetime of the polymer radical thus created very much depends on the number of radicals per polymer chain. When there are a large number of radicals per chain their bimolecular decay may be faster than the corresponding (diffusion controlled) decay of monomeric radicals, but when the macromolecule contains only few or even just one radical their lifetime is considerably prolonged. Highly charged polymers such as polyacrylic acid at high pH attain a rod-like conformation which again favors a long lifetime of the radicals. Under such conditions, radical transfer reactions can occur. For example, in polyacrylic acid OH radicals generate two kinds of radicals side by side. The radical in β-position to the carboxylate group converts into the thermodynamically more stable α-radicals by an H-transfer reaction as can be followed by spectrophotometry. Besides radical transfer reactions β-fragmentation reactions occur causing chain scission. Such reactions can be followed in a pulse radiolysis experiment by conductometry, because counter ions are released upon chain scission. Such a process is especially effective in the case of polymethacrylic acid, where it results in a chain depolymerization. An intramolecular H-abstraction is also observed in the γ-radiolysis of polyacrylic acid with the corresponding peroxyl radicals. This causes a chain reaction to occur. The resulting hydroperoxides are unstable and decarboxylate given rise to acetylacetone-like products. In polyvinyl alcohol the peroxyl radicals in α-position to the alcohol function undergo HO 2 -elimination. This prevents a scission of the polymer chain in the

  2. Sulfur, selenium, tellurium and polonium

    International Nuclear Information System (INIS)

    Berry, F.J.

    1987-01-01

    This chapter on the coordination compounds of sulfur, selenium, tellurium and polonium starts with an introduction to the bonding, valence and geometry of the elements. Complexes of the group VIB elements are discussed with particular reference to the halo and pseudohalide complexes, oxo acid complexes, oxygen and nitrogen donor complexes and sulfur and selenium donor complexes. There is a section on the biological properties of the complexes discussed. (UK)

  3. New uses of sulfur - update

    Energy Technology Data Exchange (ETDEWEB)

    Almond, K.P.

    1995-07-01

    An update to an extensive bibliography on alternate uses of sulfur was presented. Alberta Sulphur Research Ltd., previously compiled a bibliography in volume 24 of this quarterly bulletin. This update provides an additional 44 new publications. The information regarding current research focusses on topics regarding the use of sulfur in oil and gas applications, mining and metallurgy, concretes and other structural materials, waste management, rubber and textile products, asphalts and other paving and highway applications.

  4. For sale: Sulfur emissions

    International Nuclear Information System (INIS)

    Heiderscheit, J.

    1992-01-01

    The allowance trading market has started a slow march to maturity. Competitive developers should understand the risks and opportunities now presented. The marketplace for sulfur dioxide (SO 2 ) emissions allowances - the centerpiece of Title 4's acid rain reduction program - remains enigmatic 19 months after the Clean Air Act amendments of 1990 were passed. Yet it is increasingly clear that the emission allowance market will likely confound the gloom and doom of its doubters. The recently-announced $10 million dollar Wisconsin Power and Light allowance sales to Duquesne Light and the Tennessee Valley Authority are among the latest indications of momentum toward a stabilizing market. This trend puts additional pressure on independent developers to finalize their allowance strategies. Developers who understand what the allowance trading program is and what it is not, know the key players, and grasp the unresolved regulatory issues will have a new competitive advantage. The topics addressed in this article include the allowance marketplace, marketplace characteristics, the regulatory front, forward-looking strategies, and increasing marketplace activity

  5. Muonium-containing vinyl radicals

    International Nuclear Information System (INIS)

    Rhodes, C.J.; Symons, M.C.R.; Roduner, E.; Heming, M.

    1987-01-01

    Exposure of trimethylsilylacetylene and bis(trimethylsilyl)acetylene to positive muons gave radicals whose muon-electron hyperfine coupling constants establish that the corresponding vinyl radicals were formed. (author)

  6. Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes

    Science.gov (United States)

    Falkenstein-Smith, Ryan L.

    This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this

  7. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant

    International Nuclear Information System (INIS)

    Liu, Hao; Shao, Yingjuan

    2010-01-01

    Whilst all three main carbon capture technologies (post-combustion, pre-combustion and oxy-fuel combustion) can produce a CO 2 dominant stream, other impurities are expected to be present in the CO 2 stream. The impurities in the CO 2 stream can adversely affect other processes of the carbon capture and storage (CCS) chain including the purification, compression, transportation and storage of the CO 2 stream. Both the nature and the concentrations of potential impurities expected to be present in the CO 2 stream of a CCS-integrated power plant depend on not only the type of the power plant but also the carbon capture method used. The present paper focuses on the predictions of impurities expected to be present in the CO 2 stream of an oxy-coal combustion plant. The main gaseous impurities of the CO 2 stream of oxy-coal combustion are N 2 /Ar, O 2 and H 2 O. Even the air ingress to the boiler and its auxiliaries is small enough to be neglected, the N 2 /Ar concentration of the CO 2 stream can vary between ca. 1% and 6%, mainly depending on the O 2 purity of the air separation unit, and the O 2 concentration can vary between ca. 3% and 5%, mainly depending on the combustion stoichiometry of the boiler. The H 2 O concentration of the CO 2 stream can vary from ca. 10% to over 40%, mainly depending on the fuel moisture and the partitioning of recycling flue gas (RFG) between wet-RFG and dry-RFG. NO x and SO 2 are the two main polluting impurities of the CO 2 stream of an oxy-coal combustion plant and their concentrations are expected to be well above those found in the flue gas of an air-coal combustion plant. The concentration of NO x in the flue gas of an oxy-coal combustion plant can be up to ca. two times to that of an equivalent air-coal combustion plant. The amount of NO x emitted by the oxy-coal combustion plant, however, is expected to be much smaller than that of the air-coal combustion plant. The reductions of the recirculated NO x within the combustion

  8. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and

  9. Pentacene appended to a TEMPO stable free radical: the effect of magnetic exchange coupling on photoexcited pentacene.

    Science.gov (United States)

    Chernick, Erin T; Casillas, Rubén; Zirzlmeier, Johannes; Gardner, Daniel M; Gruber, Marco; Kropp, Henning; Meyer, Karsten; Wasielewski, Michael R; Guldi, Dirk M; Tykwinski, Rik R

    2015-01-21

    Understanding the fundamental spin dynamics of photoexcited pentacene derivatives is important in order to maximize their potential for optoelectronic applications. Herein, we report on the synthesis of two pentacene derivatives that are functionalized with the [(2,2,6,6-tetramethylpiperidin-1-yl)oxy] (TEMPO) stable free radical. The presence of TEMPO does not quench the pentacene singlet excited state, but does quench the photoexcited triplet excited state as a function of TEMPO-to-pentacene distance. Time-resolved electron paramagnetic resonance experiments confirm that triplet quenching is accompanied by electron spin polarization transfer from the pentacene excited state to the TEMPO doublet state in the weak coupling regime.

  10. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Energy Technology Data Exchange (ETDEWEB)

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  11. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  12. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick; Apo, Daniel J.; Hunt, Anton; Ghoniem, Ahmed F.

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating

  13. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei; Zhang, Huoming; Wang, Hai; Xia, Yiji

    2014-01-01

    -throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential

  14. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins.

    Science.gov (United States)

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea

    2011-10-19

    The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  16. Trends in radical prostatectomy.

    Science.gov (United States)

    Eastham, James; Tokuda, Yuji; Scardino, Peter

    2009-02-01

    The surgical treatment of prostate cancer ideally removes the entire cancer, avoids excessive blood loss or serious perioperative complications, and results in complete recovery of continence and potency. To achieve this, the surgeon must excise sufficient periprostatic tissue to cure the cancer while preserving the cavernosal nerves required for erectile function and the neuromusculature required for normal urinary and bowel function. Here we will examine recent trends in radical prostatectomy, focusing on surgical technique.

  17. Reactions of Hydroxyalkyl Radicals with Cysteinyl Peptides in a NanoESI Plume

    Science.gov (United States)

    Stinson, Craig A.; Xia, Yu

    2014-07-01

    In biological systems, carbon-centered small molecule radicals are primarily formed via external radiation or internal radical reactions. These radical species can react with a variety of biomolecules, most notably nucleic acids, the consequence of which has possible links to gene mutation and cancer. Sulfur-containing peptides and proteins are reactive toward a variety of radical species and many of them behave as radical scavengers. In this study, the reactions between alkyl alcohol carbon-centered radicals (e.g., •CH2OH for methanol) and cysteinyl peptides within a nanoelectrospray ionization (nanoESI) plume were explored. The reaction system involved ultraviolet (UV) irradiation of a nanoESI plume using a low pressure mercury lamp consisting of 185 and 254 nm emission bands. The alkyl alcohol was added as solvent into the nanoESI solution and served as the precursor of hydroxyalkyl radicals upon UV irradiation. The hydroxyalkyl radicals subsequently reacted with cysteinyl peptides either containing a disulfide linkage or free thiol, which led to the formation of peptide- S-hydroxyalkyl product. This radical reaction coupled with subsequent MS/MS was shown to have analytical potential by cleaving intrachain disulfide linked peptides prior to CID to enhance sequence information. Tandem mass spectrometry via collision-induced dissociation (CID), stable isotope labeling, and accurate mass measurement were employed to verify the identities of the reaction products.

  18. Monitoring of internet forums to evaluate reactions to the introduction of reformulated OxyContin to deter abuse.

    Science.gov (United States)

    McNaughton, Emily C; Coplan, Paul M; Black, Ryan A; Weber, Sarah E; Chilcoat, Howard D; Butler, Stephen F

    2014-05-02

    Reformulating opioid analgesics to deter abuse is one approach toward improving their benefit-risk balance. To assess sentiment and attempts to defeat these products among difficult-to-reach populations of prescription drug abusers, evaluation of posts on Internet forums regarding reformulated products may be useful. A reformulated version of OxyContin (extended-release oxycodone) with physicochemical properties to deter abuse presented an opportunity to evaluate posts about the reformulation in online discussions. The objective of this study was to use messages on Internet forums to evaluate reactions to the introduction of reformulated OxyContin and to identify methods aimed to defeat the abuse-deterrent properties of the product. Posts collected from 7 forums between January 1, 2008 and September 30, 2013 were evaluated before and after the introduction of reformulated OxyContin on August 9, 2010. A quantitative evaluation of discussion levels across the study period and a qualitative coding of post content for OxyContin and 2 comparators for the 26 month period before and after OxyContin reformulation were conducted. Product endorsement was estimated for each product before and after reformulation as the ratio of endorsing-to-discouraging posts (ERo). Post-to-preintroduction period changes in ERos (ie, ratio of ERos) for each product were also calculated. Additionally, post content related to recipes for defeating reformulated OxyContin were evaluated from August 9, 2010 through September 2013. Over the study period, 45,936 posts related to OxyContin, 18,685 to Vicodin (hydrocodone), and 23,863 to Dilaudid (hydromorphone) were identified. The proportion of OxyContin-related posts fluctuated between 6.35 and 8.25 posts per 1000 posts before the reformulation, increased to 10.76 in Q3 2010 when reformulated OxyContin was introduced, and decreased from 9.14 in Q4 2010 to 3.46 in Q3 2013 in the period following the reformulation. The sentiment profile for Oxy

  19. The desorption of Phosphorous (32 P) fixed on iron and aluminum oxy-hydroxide surfaces by the soil microbial biomass

    International Nuclear Information System (INIS)

    Araujo, Lilian Maria Cesar de.

    1995-02-01

    This work determines whether the soil microbial biomass, with an ample supply of available C, can utilize P adsorber in the surfaces of oxy-hydroxides of Fe or Al of soil-P deficient soils. To simulate the surfaces of the natural Fe and Al compounds, synthetic oxy-hydroxides of Fe and Al, impregnated in strips of filter paper, and containing P tagged with 32 P, were used. (author). 60 refs., 7 figs., 7 tabs

  20. OxyR of Haemophilus parasuis is a global transcriptional regulator important in oxidative stress resistance and growth.

    Science.gov (United States)

    Wen, Yongping; Wen, Yiping; Wen, Xintian; Cao, Sanjie; Huang, Xiaobo; Wu, Rui; Zhao, Qin; Liu, Mafeng; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Dai, Ke; Ding, Lingqiang; Liu, Sitong; Yang, Jian

    2018-02-15

    Haemophilus parasuis is an opportunistic pathogen and the causative agent of Glässer's disease in swine. This disease has high morbidity and mortality rates in swine populations, and is responsible for major economic losses worldwide. Survival of H. parasuis within the host requires mechanisms for coping with oxidative stress conditions. In many bacteria, OxyR is known to mediate protection against oxidative stress; however, little is known about the role of OxyR in H. parasuis. In the current study, an oxyR mutant strain was constructed in H. parasuis strain SC1401 and designated H. parasuis SC1401∆oxyR. The oxyR mutant strain had a slower growth rate and impaired biofilm formation compared to the wild type strain. Complementation restored the growth-associated phenotypes to wild type levels. Oxidative stress susceptibility testing, using a range of concentrations of H 2 O 2 , indicated that H. parasuis SC1401∆oxyR was more sensitive to oxidative stress than the wild type strain. RNA sequencing transcriptome analysis comparing H. parasuis SC1401 with H. parasuis SC1401∆oxyR identified 466 differentially expressed genes. These genes were involved in a wide range of biological processes, including: oxidative stress, transcriptional regulation, and DNA replication, recombination, and repair. These findings provide a foundation for future research to examine the role of OxyR as a global transcriptional regulator and to better define its role in oxidative stress resistance in H. parasuis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    Science.gov (United States)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the

  2. Biogenic sulfur compounds and the global sulfur cycle

    International Nuclear Information System (INIS)

    Aneja, V.P.; Aneja, A.P.; Adams, D.F.

    1982-01-01

    Field measurements of biogenic sulfur compounds shows a great variation in concentrations and emission rates for H 2 S, DMS, CS 2 and COS. Measurements by the chamber method and estimates from micrometeorological sampling are employed to determine the earth-atmosphere flux of these gases. Much of the variation can be attributed to differences of climate and surface conditions, with marshes being a large source of biogenic sulfur (mean contribution 4 x 10 to the 6th ton/year maximum contribution 142 x 10 to the 6th ton/year). Considering that the estimated biogenic contribution needed to balance the global sulfur cycle ranges from 40- 230 x 10 to the 6th tons/year, the mean values are not sufficient to balance this cycle. Further experimental investigations are suggested in order to characterize the biogenic processes adequately

  3. Laboratory measurements and astronomical search for the HSO radical.

    Science.gov (United States)

    Cazzoli, Gabriele; Lattanzi, Valerio; Kirsch, Till; Gauss, Jürgen; Tercero, Belén; Cernicharo, José; Puzzarini, Cristina

    2016-07-01

    Despite the fact that many sulfur-bearing molecules, ranging from simple diatomic species up to astronomical complex molecules, have been detected in the interstellar medium, the sulfur chemistry in space is largely unknown and a depletion in the abundance of S-containing species has been observed in the cold, dense interstellar medium (ISM). The chemical form of the missing sulfur has yet to be identified. For these reasons, in view of the fact that there is a large abundance of triatomic species harbouring sulfur, oxygen, and hydrogen, we decided to investigate the HSO radical in the laboratory to try its astronomical detection. High-resolution measurements of the rotational spectrum of the HSO radical were carried out within a frequency range well up into the THz region. Subsequently, a rigorous search for HSO in the two most studied high-mass star-forming regions, Orion KL and Sagittarius (Sgr) B2, and in the cold dark cloud Barnard 1 (B1-b) was performed. The frequency coverage and the spectral resolution of our measurements allowed us to improve and extend the existing dataset of spectroscopic parameters, thus enabling accurate frequency predictions up to the THz range. These were used to derive the synthetic spectrum of HSO, by means of the MADEX code, according to the physical parameters of the astronomical source under consideration. For all sources investigated, the lack of HSO lines above the confusion limit of the data is evident. The derived upper limit to the abundance of HSO clearly indicates that this molecule does not achieve significant abundances in either the gas phase or in the ice mantles of dust grains.

  4. Effect of gamma irradiation on sulfur-cured chlorobutyl rubber

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Ono, Lilian S.; Lugao, Ademar B.

    2011-01-01

    Chlorobutyl rubber (CIIR) is similarly manufactured to butyl rubber (IIR). The insertion of chlorine atom in isoprene group represents an improvement in its properties, such as: high vulcanizing speed, low permanent stress and compatibility with other types of rubber. The presence of reactive chlorine in butyl chlorate allows a variety of vulcanizing techniques, being the cure via sulfur, the most conventional. In these compounds carbon-halogen bonds are weaker than carbon-carbon and carbon-hydrogen bonds, and the main effect of radiation is to break the carbon-halogen bond to give an organic free radical. Irradiations of certain alkyl chlorides can bring about isomerism in which the location of the halogen atom is changed, the carbon skeleton of molecule remaining unaltered. Irradiation of n-butyl chlorides gives high yields of tertiary carbon. The major effect of high energy photon, such as gamma rays, in organic polymers is the generation of free radicals, along changes in mechanical properties. This work aims to the study of irradiation effect on mechanical properties of a sulfur cured chlorobutyl rubber compound, gamma irradiated within 25, 50, 100, 150 e 200 kGy doses range. The techniques used in their characterization were: strength - stress analysis and elasticity modulus. Results obtained were investigated, demonstrated and discussed. (author)

  5. Effect of gamma irradiation on sulfur-cured chlorobutyl rubber

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Ono, Lilian S.; Lugao, Ademar B., E-mail: srscagliusi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Chlorobutyl rubber (CIIR) is similarly manufactured to butyl rubber (IIR). The insertion of chlorine atom in isoprene group represents an improvement in its properties, such as: high vulcanizing speed, low permanent stress and compatibility with other types of rubber. The presence of reactive chlorine in butyl chlorate allows a variety of vulcanizing techniques, being the cure via sulfur, the most conventional. In these compounds carbon-halogen bonds are weaker than carbon-carbon and carbon-hydrogen bonds, and the main effect of radiation is to break the carbon-halogen bond to give an organic free radical. Irradiations of certain alkyl chlorides can bring about isomerism in which the location of the halogen atom is changed, the carbon skeleton of molecule remaining unaltered. Irradiation of n-butyl chlorides gives high yields of tertiary carbon. The major effect of high energy photon, such as gamma rays, in organic polymers is the generation of free radicals, along changes in mechanical properties. This work aims to the study of irradiation effect on mechanical properties of a sulfur cured chlorobutyl rubber compound, gamma irradiated within 25, 50, 100, 150 e 200 kGy doses range. The techniques used in their characterization were: strength - stress analysis and elasticity modulus. Results obtained were investigated, demonstrated and discussed. (author)

  6. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  7. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor

    International Nuclear Information System (INIS)

    Riaza, J.; Alvarez, L.; Gil, M.V.; Pevida, C.; Pis, J.J.; Rubiera, F.

    2011-01-01

    The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O 2 -79%CO 2 , 30%O 2 -70% O 2 and 35%O 2 -65%CO 2 ) were compared with those attained in air. The replacement of CO 2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O 2 -79%CO 2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O 2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. -- Highlights: → The ignition temperature and the burnout of two thermal coals under oxy-fuel combustion conditions were determined. → The effect of the wet recirculation of flue gas on combustion behaviour was evaluated. → Addition of steam caused a worsening of the ignition temperature and coal burnout.

  8. Simultaneous carbonation and sulfation of CaO in Oxy-Fuel CFB combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [School of Energy and Power Engineering, North China Electric Power University, Baoding City, Hebei Province (China); Jia, L.; Tan, Y. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A 1M1 (Canada)

    2011-10-15

    For anthracites and petroleum cokes, the typical combustion temperature in a circulating fluidized bed (CFB) is > 900 C. At CO{sub 2} concentrations of 80-85 % (typical of oxy-fuel CFBC conditions), limestone still calcines. When the ash which includes unreacted CaO cools to the calcination temperature, carbonation of fly ash deposited on cool surfaces may occur. At the same time, indirect and direct sulfation of limestone also will occur, possibly leading to more deposition. In this study, CaO was carbonated and sulfated simultaneously in a thermogravimetric analyzer (TGA) under conditions expected in an oxy-fuel CFBC. It was found that temperature, and concentrations of CO{sub 2}, SO{sub 2}, and especially H{sub 2}O are important factors in determining the carbonation/sulfation reactions of CaO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2015-01-01

    period (simultaneous treatment) or at 1 or 4 h prior to starting the heating (sequential treatments). Response was the percentage of mice showing local tumour control at 90 days or skin moist desquamation between days 11-23. From the radiation dose response curves the dose producing tumour control (TCD......(50)) or moist desquamation (MDD50) in 50% of mice was calculated. RESULTS: The TCD(50) and MDD50 values for radiation alone were 54 Gy and 29 Gy, respectively. Simultaneously heating the tissues enhanced radiation response, the respective TCD(50) and MDD50 values being significantly (chi-square test......, p sequential treatment in both tissues. OXi4503 enhanced the radiation response of tumour and skin. Combined with radiation and heat, the only effect was in tumours where OXi4503 prevented the decrease in sensitisation...

  10. Study of Reaction of Curium Oxy-Compound Formation in Molten Chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, A.G.; Mayorshin, A.A.; Bychkov, A.V. [Dimitrovgrad-10, Ulyanovsk region, 433510 (Russian Federation)

    2008-07-01

    The method of potentiometric titration using oxygen sensors with solid electrolyte membrane was applied for the study of the interaction of curium cations with oxygen anions in the molten alkali metal chlorides in the temperature range of 450-850 C degrees depending on oxy-acidity of the environment. Assumptions were made concerning ion and phase composition of the obtained high-temperature compounds and chemical reactions taking place in the melts. This scheme assumes that as the basicity of the melt increases, initially the formation of soluble curium oxychlorides takes place in the melt (presumably CmO{sup -}) that is followed by formation of solid CmOCl and finally sesquioxide Cm{sub 2}O{sub 3}. Basic thermodynamic values were calculated for the resultant curium oxy-compounds.

  11. Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions.

    Science.gov (United States)

    Córdoba, Patricia; Maroto-Valer, M; Delgado, Miguel Angel; Diego, Ruth; Font, Oriol; Querol, Xavier

    2016-02-01

    The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO2-rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO2-rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form as Hg(2+) (68%) and it is the prevalent form in the CO2-rich exhaust flue gas (99%) with lower proportions of Hg(0) (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg(0) is more prone to be retained (95%) while Hg(2+) shows a negative efficiency capture for the whole installation. The negative Hg(2+) capture efficiencies are due to the continuous CO2-rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO2-rich flue gas. Especial attention must be paid to the role of the CO2-rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs). Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Crystallization and diffraction patterns of the oxy and cyano forms of the Lucina pectinata haemoglobins complex

    International Nuclear Information System (INIS)

    Ruiz-Martínez, Carlos R.; Nieves-Marrero, Carlos A.; Estremera-Andújar, Rafael A.; Gavira, José A.; González-Ramírez, Luis A.; López-Garriga, Juan; García-Ruiz, Juan M.

    2008-01-01

    The native oxygen-carrier haemoglobins complex (HbII–III) is composed of haemoglobin II (HbII) and haemoglobin III (HbIII), which are found in the ctenidia tissue of the bivalve mollusc Lucina pectinata. This protein complex was isolated and purified from its natural source and crystallized using the vapour-diffusion and capillary counter-diffusion methods. The native oxygen-carrier haemoglobins complex (HbII–III) is composed of haemoglobin II (HbII) and haemoglobin III (HbIII), which are found in the ctenidia tissue of the bivalve mollusc Lucina pectinata. This protein complex was isolated and purified from its natural source and crystallized using the vapour-diffusion and capillary counter-diffusion methods. Oxy and cyano derivatives of the complex crystallized using several conditions, but the best crystals in terms of quality and size were obtained from sodium formate pH 5 using the counter-diffusion method in a single capillary. Crystals of the oxy and cyano complexes, which showed a ruby-red colour and nonsingular prismatic shapes, scattered X-rays to resolution limits of 2.15 and 2.20 Å, respectively, using a 0.886 Å synchrotron-radiation source. The crystals belonged to the tetragonal system, space group P4 2 2 1 2, with unit-cell parameters a = b = 74.07, c = 152.07 and a = b = 73.83, c = 152.49 Å for the oxy and cyano complexes, respectively. The asymmetric unit of both crystals is composed of a single copy of the heterodimer, with Matthew coefficients (V M ) of 3.08 and 3.06 Å 3 Da −1 for the oxy and cyano complexes, respectively, which correspond to a solvent content of approximately 60.0% by volume

  13. Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products

    International Nuclear Information System (INIS)

    Cochran, R.E.; Dongari, N.; Jeong, H.; Beránek, J.; Haddadi, S.; Shipp, J.; Kubátová, A.

    2012-01-01

    Highlights: ► We describe a method for determining PAHs and their oxidation products. ► Solid-phase extraction was used to fractionate PAHs and their oxidation products. ► Gas chromatography–mass spectrometry methods were optimized. ► The developed method was applied to two particulate matter (PM) samples. - Abstract: A sensitive method has been developed for the trace analysis of PAHs and their oxidation products (i.e., nitro-, oxy-, and hydroxy-PAHs) in air particulate matter (PM). Following PM extraction, PAHs, nitro-, oxy-, and hydroxy-PAHs were fractionated using solid phase extraction (SPE) based on their polarities. Gas chromatography–mass spectrometry (GC–MS) conditions were optimized, addressing injection (i.e., splitless time), negative-ion chemical ionization (NICI) parameters, i.e., source temperature and methane flow rate, and MS scanning conditions. Each class of PAH oxidation products was then analyzed using the sample preparation and appropriate ionization conditions (e.g., nitro-PAHs exhibited the greatest sensitivity when analyzed with NICI–MS while hydroxy-PAHs required chemical derivatization prior to GC–MS analysis). The analyses were performed in selected-ion-total-ion (SITI) mode, combining the increased sensitivity of selected-ion monitoring (SIM) with the identification advantages of total-ion current (TIC). The instrumental LODs determined were 6–34 pg for PAHs, 5–36 pg for oxy-PAHs, and 1–21 pg for derivatized hydroxy-PAHs using electron ionization (GC-EI-MS). NICI–MS was found to be a useful tool for confirming the tentative identification of oxy-PAHs. For nitro-PAHs, LODs were 1–10 pg using negative-ion chemical ionization (GC-NICI-MS). The developed method was successfully applied to two types of real-world PM samples, diesel exhaust standard reference material (SRM 2975) and wood smoke PM.

  14. Crystal structures of 4-meth-oxy-N-(4-methyl-phenyl)benzene-sulfonamide and N-(4-fluoro-phenyl)-4-meth-oxy-benzene-sulfonamide.

    Science.gov (United States)

    Rodrigues, Vinola Z; Preema, C P; Naveen, S; Lokanath, N K; Suchetan, P A

    2015-11-01

    Crystal structures of two N-(ar-yl)aryl-sulfonamides, namely, 4-meth-oxy-N-(4-methyl-phen-yl)benzene-sulfonamide, C14H15NO3S, (I), and N-(4-fluoro-phen-yl)-4-meth-oxy-benzene-sulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzene-sulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N-H⋯O hydrogen bonds form infinite C(4) chains extended in [010], and inter-molecular C-H⋯πar-yl inter-actions link these chains into layers parallel to the ab plane. The crystal structure of (II) features N-H⋯O hydrogen bonds forming infinite one dimensional C(4) chains along [001]. Further, a pair of C-H⋯O inter-molecular inter-actions consolidate the crystal packing of (II) into a three-dimensional supra-molecular architecture.

  15. Crystal structure of 5-{4'-[(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl]-4-meth-oxy-[1,1'-biphen-yl]-3-yl}-3-oxo-1,2,5-thia-diazo-lidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Ruddraraju, Kasi Viswanatharaju; Hillebrand, Roman; Barnes, Charles L; Gates, Kent S

    2015-04-01

    The title compound, C24H32N4O8S, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl] side chain is protonated, while the 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intra-molecular N-H⋯O hydrogen bond. The 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, mol-ecules are linked by N-H⋯O and N-H⋯N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π inter-actions present.

  16. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    Science.gov (United States)

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of blanching treatments on antioxidant activity of frozen green capsicum (Capsicum annuum L. var bell pepper) using radical scavenging activity (DPPH) assay

    Science.gov (United States)

    Azizzuddin, Norafida; Abdullah, Aminah

    2016-11-01

    Blanching treatments are needed to deactivate enzymes in frozen vegetables. Antioxidant activity using DPPH radical scavenging activity assay were evaluated in steaming, boiling water, and microwave blanching at different temperature, time and microwave power level on frozen green capsicum. Green capsicum was chosen for frozen treatment compared to other capsicum with different maturity index because of the firm texture. The objective of this study was to compare the antioxidant activity of frozen green capsicum between conventional and Oxi Count Kit® assay for DPPH radical scavenging activity. Results showed frozen green capsicum blanched using microwave at high level/90 seconds (sample J) contained higher level of DPPH in both conventional method and Oxi Count Kit® compared to other treatments. However, there were no significant differences between sample J and fresh sample (sample A). Overall, the sequences from highest to lowest in blanching treatments for both DPPH conventional method, and DPPH Oxi Count Kit® were J (microwave high level/90 seconds) > A (Fresh) > H (Microwave Medium Level/120 seconds) > D (Boiling Water 80°C/150 seconds) > K (Microwave High Level/120 seconds) > I (Microwave Medium Level/150 seconds) > F (Microwave Low Level/150 seconds)> B (Steam 100°C/150 seconds) > E (Boiling Water 100°C /120 seconds) > G (Microwave Low Level /180 seconds)> C (Steam 100°C/180 seconds). Almost all frozen green capsicum samples showed no significant differences for comparison between test using DPPH conventional method and Oxi Count Kit®. Frozen storage for 0, and 3rd months showed no significant differences which indicate no changes on antioxidant activity during frozen storage at -18°C.

  18. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  19. Sulfur isotope signatures in New Zealand

    International Nuclear Information System (INIS)

    Cainey, J.

    2001-01-01

    The role of sulfur in cloud formation makes it a crucial ingredient in the global climate change debate. So it is important to be able to measure sulfur in the atmosphere and identify where it came from. (author)

  20. Model Prebiotic Iron-Sulfur Peptides

    Science.gov (United States)

    Bonfio, C.; Scintilla, S.; Shah, S.; Evans, D. J.; Jin, L.; Szostak, J. W.; Sasselov, D. D.; Sutherland, J. D.; Mansy, S. S.

    2017-07-01

    Iron-sulfur clusters form easily in aqueous solution in the presence of thiolates and iron ions. Polymerization of short, iron-sulfur binding tripeptide sequences leads to ferredoxin-like ligand spacing and activity.

  1. Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Córdoba, Patricia, E-mail: pc247@hw.ac.uk [Centre for Innovation on Carbon Capture and Storage (CICCS), Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, EH14 4AS (United Kingdom); Maroto-Valer, M. [Centre for Innovation on Carbon Capture and Storage (CICCS), Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, EH14 4AS (United Kingdom); Delgado, Miguel Angel; Diego, Ruth [Fundacion Ciudad de la Energia (CIUDEN), Avenida Segunda, No 2 (Compostilla), 24004 Ponferrada, León (Spain); Font, Oriol; Querol, Xavier [Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain)

    2016-02-15

    The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO{sub 2}-rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO{sub 2}-rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form as Hg{sup 2+} (68%) and it is the prevalent form in the CO{sub 2}-rich exhaust flue gas (99%) with lower proportions of Hg{sup 0} (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg{sup 0} is more prone to be retained (95%) while Hg{sup 2+} shows a negative efficiency capture for the whole installation. The negative Hg{sup 2+} capture efficiencies are due to the continuous CO{sub 2}-rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44 mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO{sub 2}-rich flue gas. Especial attention must be paid to the role of the CO{sub 2}-rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs). - Highlights: • The fate of gaseous Hg has been evaluated under oxy-fuel combustion. • The Hg oxidation process is enhanced in CO{sub 2}-rich flue gas recirculation. • Hg{sup 2+} is the prevalent gas species in the CO{sub 2}-rich exhaust flue gas. • Hg{sup 2+}{sub (g)} shows a negative efficiency capture for the whole installation. • Especial attention must be paid to the Hg enrichment in Fly Ashes.

  2. Soot, unburned carbon and ultrafine particle emissions from air- and oxy-coal flames

    International Nuclear Information System (INIS)

    Morris, W.J.; Yu, Dunxi; Wendt, J.O.L.

    2010-01-01

    Oxy-coal combustion is one possible solution for the mitigation of greenhouse gases. In this process coal is burned in oxygen, rather than air, and the temperatures in the boiler are mitigated by recycling flue gases, so that the inlet mixture may contain either 27 % O 2 to match adiabatic flame temperatures, or 32 % O 2 to match gaseous radiation heat fluxes in the combustion chamber. However, a major issue for heat transfer from coal combustion is the radiative heat transmission from soot. For this research, air and oxy coal firing were compared regarding the emission of soot. A 100 kW down-fired laboratory combustor was used to determine effects of switching from air to oxy-firing on soot, unburned carbon and ultrafine particle emissions from practical pulverized coal flames. Of interest here were potential chemical effects of substitution of the N 2 in air by CO 2 in practical pulverized coal flames. The oxy-coal configuration investigated used once-through CO 2 , simulating cleaned flue gas recycle with all contaminants and water removed. Three coals were each burned in: a) air, b) 27 % O 2 / 73 % CO 2 , c) 32 % O 2 / 68 % CO 2 . Tests were conducted at (nominally) 3 %, 2 %, 1 % and 0 % O 2 in the exhaust (dry basis). For each condition, particulate samples were iso kinetically withdrawn far from the radiant zone, and analyzed using a photoacoustic analyzer (PA) for black carbon, a scanning mobility particle sizer (SMPS) for ultrafine particles, and a total sample loss on ignition (LOI) method for unburned carbon in ash. Data suggest that at low stoichiometric ratios, ultrafine particles consist primarily of black carbon, which, for the bituminous coal, is produced in lesser amounts under oxy-fired conditions than under the air-fired condition, even when adiabatic flame temperatures are matched. However, significant changes in mineral matter vaporization were not observed unless the flames were hotter. These and other results are interpreted in the light of

  3. High specific energy Lithium Sulfur cell for space application

    Directory of Open Access Journals (Sweden)

    Samaniego Bruno

    2017-01-01

    Airbus DS has been testing and characterizing prototype Li-S cells manufactured by OXIS Energy Ltd. since 2014, demonstrating the potential and fast evolution of the cells performance. This paper presents the last test results on a set of different batches provided by OXIS and performed at Airbus DS premises in the frame of an ESA Innovation Triangle Initiative (ITI.

  4. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  5. Reactions of carbon radicals generated by 1,5-transposition of reactive centers

    Directory of Open Access Journals (Sweden)

    ZIVORAD CEKOVIC

    2005-03-01

    Full Text Available Radical intermediates can undergo specific reactions, such as intramolecular rearrangements, i.e., the transpositions of radical centers, which are not known in classical ionic organic reactions. 1,5-Transposition of a radical center to a non-activated carbon atom are of great synthetic importance. It can be successfully applied for the introduction of different functional groups (oxygen, nitrogen, sulfur, halogens onto a carbon atom remote from the present functional group. In addition to functionalization of a remote non-activated carbon atom, the formation of new C-C bonds on the d-carbon atom have also been achieved. 1,5-Transposition of the radical centers takes place from alkoxyl, aminyl and carbon radicals to a remote carbon atom. Relocation of the radical centers preferentially involves 1,5-transfer of a hydrogen atom, although migrations of some other groups are known. The reactions of the carbon radical generated by 1,5-relocation of the radical center are presented and their synthetic applications are reviewed.

  6. A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation.

    Science.gov (United States)

    Vinckx, Tiffany; Wei, Qing; Matthijs, Sandra; Noben, Jean-Paul; Daniels, Ruth; Cornelis, Pierre

    2011-06-01

    In Pseudomonas aeruginosa the response to oxidative stress is orchestrated by the LysR regulator OxyR by activation of the transcription of two catalase genes (katA and katB), of the alkyl-hydroxyperoxidases ahpCF and ahpB. Next to the expected high sensitivity to oxidative stress generated by reactive oxygen species (ROS: H(2)O(2), O(2)(-)), the oxyR mutant shows a defective growth under conditions of iron limitation (Vinckx et al. 2008). Although production and uptake of the siderophore pyoverdine is not affected by the absence of oxyR, the mutant is unable to satisfy its need for iron when grown under iron limiting conditions. In order to get a better insight into the effects caused by iron limitation on the physiological response of the oxyR mutant we decided to compare the proteomes of the wild type and the mutant grown in the iron-poor casamino acids medium (CAA), in CAA plus H(2)O(2), and in CAA plus the strong iron chelator ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA). Especially in the presence of hydrogen peroxide the oxyR cells increase the production of stress proteins (Dps and IbpA). The superoxide dismutase SodM is produced in higher amounts in the oxyR mutant grown in CAA plus H(2)O(2). The PchB protein, a isochorismate-pyruvate lyase involved in the siderophore pyochelin biosynthesis is not detectable in the extracts from the oxyR mutant grown in the presence of hydrogen peroxide. When cells were grown in the presence of EDDHA, we observed a reduction of the ferric uptake regulator (Fur), and an increase in the two subunits of the succinyl-CoA synthetase and the fumarase FumC1.

  7. Air Quality Criteria for Sulfur Oxides.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  8. Biologically removing sulfur from dilute gas flows

    Science.gov (United States)

    Ruitenberg, R.; Dijkman, H.; Buisman, C. J. N.

    1999-05-01

    A biological process has been developed to clean off-gases containing sulfur dioxide from industrial installations. The sulfur dioxide is converted into hydrogen sulfide, which can then be oxidized to elemental sulfur if not used on-site. The process produces no waste products that require disposal and has a low reagent consumption.

  9. Method of distillation of sulfurous bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Hallback, A J.S.; Bergh, S V

    1918-04-22

    A method of distillation of sulfur-containing bituminous shales is characterized by passing the hot sulfur-containing and oil-containing gases and vapors formed during the distillation through burned shale containing iron oxide, so that when these gases and vapors are thereafter cooled they will be, as far as possible, free from sulfur compounds. The patent contains six more claims.

  10. 46 CFR 153.1046 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external tank...

  11. 21 CFR 582.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is generally...

  12. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    Science.gov (United States)

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-04

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

  13. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments

    KAUST Repository

    Couture, Raoul-Marie; Van Cappellen, Philippe

    2011-01-01

    Recent evidence suggests that the oxidation of arsenite by zero-valent sulfur (S(0)) may produce stable aqueous arsenate species under highly reducing conditions. The speciation of arsenic (As) in reducing soils, sediments and aquifers may therefore be far more complex than previously thought. We illustrate this by presenting updated Eh-pH diagrams of As speciation in sulfidic waters that include the most recently reported formation constants for sulfide complexes of As(III) and As(V). The results show that the stability fields of As(III) and As(V) (oxy)thioanions cover a large pH range, from pH 5 to 10. In particular, As(V)-S(-II) complexes significantly enhance the predicted solubility of As under reducing conditions. Equilibrium calculations further show that, under conditions representative of sulfidic pore waters and in the presence of solid-phase elemental sulfur, the S0 (aq)/HS- couple yields a redox potential (Eh)~0.1V higher than the SO4 2-/HS- couple. S(0) may thus help stabilize aqueous As(V) not only by providing an electron acceptor for As(III) but also by contributing to a more oxidizing redox state. © 2011 Elsevier B.V.

  14. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments

    KAUST Repository

    Couture, Raoul-Marie

    2011-05-01

    Recent evidence suggests that the oxidation of arsenite by zero-valent sulfur (S(0)) may produce stable aqueous arsenate species under highly reducing conditions. The speciation of arsenic (As) in reducing soils, sediments and aquifers may therefore be far more complex than previously thought. We illustrate this by presenting updated Eh-pH diagrams of As speciation in sulfidic waters that include the most recently reported formation constants for sulfide complexes of As(III) and As(V). The results show that the stability fields of As(III) and As(V) (oxy)thioanions cover a large pH range, from pH 5 to 10. In particular, As(V)-S(-II) complexes significantly enhance the predicted solubility of As under reducing conditions. Equilibrium calculations further show that, under conditions representative of sulfidic pore waters and in the presence of solid-phase elemental sulfur, the S0 (aq)/HS- couple yields a redox potential (Eh)~0.1V higher than the SO4 2-/HS- couple. S(0) may thus help stabilize aqueous As(V) not only by providing an electron acceptor for As(III) but also by contributing to a more oxidizing redox state. © 2011 Elsevier B.V.

  15. Antibotulinal efficacy of sulfur dioxide in meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1980-01-01

    The addition of sodium metabisulfite as a source of sulfur dioxide delayed botulinal outgrowth in perishable canned comminuted pork when it was temperature abused at 27 degree C. The degree of inhibition was directly related to the level of sulfur dioxide. Levels greater than 100 microgram of sulfur dioxide per g were necessary to achieve significant inhibition when a target level of 100 botulinal spores per g was used. Sodium nitrite partially reduced the efficacy of the sulfur dioxide. Sulfur dioxide offers a new option for the control of botulinal outgrowth in cured or noncured meat and poultry products. PMID:6996613

  16. Process analysis of an oxygen lean oxy-fuel power plant with co-production of synthesis gas

    International Nuclear Information System (INIS)

    Normann, Fredrik; Thunman, Henrik; Johnsson, Filip

    2009-01-01

    This paper investigates new possibilities and synergy effects for an oxy-fuel fired polygeneration scheme (transportation fuel and electricity) with carbon capture and co-firing of biomass. The proposed process has the potential to make the oxy-fuel process more effective through a sub-stoichiometric combustion in-between normal combustion and gasification, which lowers the need for oxygen within the process. The sub-stoichiometric combustion yields production of synthesis gas, which is utilised in an integrated synthesis to dimethyl ether (DME). The process is kept CO 2 neutral through co-combustion of biomass in the process. The proposed scheme is simulated with a computer model with a previous study of an oxy-fuel power plant as a reference process. The degree of sub-stoichiometric combustion, or amount of synthesis gas produced, is optimised with respect to the overall efficiency. The maximal efficiency was found at a stoichiometric ratio just below 0.6 with the efficiency for the electricity producing oxy-fuel process of 0.35 and a DME process efficiency of 0.63. It can be concluded that the proposed oxygen lean combustion process constitutes a way to improve the oxy-fuel carbon capture processes with an efficient production of DME in a polygeneration process

  17. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  18. Hydroxyl radical reactivity with diethylhydroxylamine

    International Nuclear Information System (INIS)

    Gorse, R.A. Jr.; Lii, R.R.; Saunders, B.B.

    1977-01-01

    Diethylhydroxylamine (DEHA) reacts with gas-phase hydroxyl radicals on every third collision, whereas the corresponding reaction in aqueous solution is considerably slower. The high gas-phase reactivity explains the predicted inhibitory effect of DEHA in atmospheric smog processes. Results from the studies in the aqueous phase are helpful in predicting the mechanism of the reaction of DEHA with hydroxyl radicals

  19. Muoniated acyl and thioacyl radicals

    International Nuclear Information System (INIS)

    McKenzie, Iain; Brodovitch, Jean-Claude; Ghandi, Khashayar; Percival, Paul W.

    2006-01-01

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and 14 N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and 14 N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy

  20. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  1. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  2. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kenison, LaVesta [URS, Pittsburgh, PA (United States); Flanigan, Thomas [URS, Pittsburgh, PA (United States); Hagerty, Gregg [URS, Pittsburgh, PA (United States); Gorrie, James [Air Liquide, Kennesaw, GA (United States); Leclerc, Mathieu [Air Liquide, Kennesaw, GA (United States); Lockwood, Frederick [Air Liquide, Kennesaw, GA (United States); Falla, Lyle [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Macinnis, Jim [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Fedak, Mathew [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Yakle, Jeff [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Williford, Mark [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States); Wood, Paul [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States)

    2016-04-01

    The primary objectives of the FutureGen 2.0 CO2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO2 capture in steady-state operations. The project was to be fully integrated in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will

  3. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  4. Sulphation of calcium-based sorbents in circulating fluidised beds under oxy-fuel combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Garcia-Labiano; Luis F. de Diego; Alberto Abad; Pilar Gayan; Margarita de las Obras-Loscertales; Aranzazu Rufas; Juan Adanez [Instituto de Carboquimica (CSIC), Zaragoza (Spain). Dept. Energy and Environment

    2009-07-01

    Sulphur Retention (SR) by calcium-based sorbents is a process highly dependent on the temperature and CO{sub 2} concentration. In circulating fluidised beds combustors (CFBC's) operating under oxy-fuel conditions, the sulphation process takes place in atmospheres enriched in CO{sub 2} with bed concentrations that can vary from 40 to 95%. Under so high CO{sub 2} concentrations, very different from that in conventional coal combustion atmosphere with air, the calcination and sulphation behaviour of the sorbent must be defined to optimise the SR process in the combustor. The objective of this work was to determine the SO{sub 2} retention capacity of a Spanish limestone at typical oxy-fuel conditions in CFBC's. Long term duration tests of sulphation (up to 24 h), to simulate the residence time of sorbents in CFBC's, were carried out by thermogravimetric analysis (TGA). Clear behaviour differences were found under calcining and non-calcining conditions. Especially relevant was the result obtained at calcining conditions but close to the thermodynamic temperature given for sorbent calcination. This situation must be avoided in CFBC's because the CO{sub 2} produced inside the particle during calcination can destroy the particles if a non-porous sulphate product layer has been formed around the particle. The effect of the main variables on the sorbent sulphation such as SO{sub 2} concentration, temperature, and particle size were analysed in the long term TGA tests. These data were also used to determine the kinetic parameters for the sulphation under oxy-fuel combustion conditions, which were able to adequately predict the sulphation conversion values in a wide range of operating conditions. 20 refs., 5 figs., 2 tabs.

  5. Mercury speciation in air-coal and oxy-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Duan, Yufeng; Mao, Yongqiu [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    To study the effect of air-coal and oxy-coal combustion on mercury emission, Xuzhou bituminous coal was burnt in a 6 kWth fluidized bed at 800 and 850 C in four atmospheres: air, 21%O{sub 2}/79%CO{sub 2}, 30%O{sub 2}/70%CO{sub 2}, 40%O{sub 2}/60%CO{sub 2} analysed with an online flue gas analyzer. Ontario Hydro method (OHM) was employed to measure mercury speciation in flue gas. The result indicated that more elemental mercury and oxidized mercury are released when burned in O{sub 2}/CO{sub 2} atmosphere than in air at 800 C, while the situation is just opposite, when coal was burnt at 850 C, less Hg{sup 0} and Hg{sup 2+} in O{sub 2}/CO{sub 2} atmosphere than in air. The concentration of Hg{sup 0} rises as temperature increases both in the conditions of the air combustion and oxy-coal combustion, but the concentration of Hg{sup 2+} increases with the increase of temperature only in the condition of air combustion and decreases in the oxy-coal combustion. With the increase of the oxygen concentration which is in the range of 21-40%, the concentrations of Hg{sup 0} and Hg{sup 2+} decrease first and then increase. When excess air coefficient increases, the oxygen content is higher and the vaporization rate of Hg{sup 0} and Hg{sup 2+} decrease.

  6. The effects of copper oxy chloride waste contamination on selected soil biochemical properties at disposal site

    International Nuclear Information System (INIS)

    Masaka, J.; Muunganirwa, M.

    2007-01-01

    A study was carried out at a sanitary waste disposal site for Kutsaga Tobacco Research Station, Zimbabwe, which uses large amounts of copper oxy chloride for sterilization of recycled float trays in flooded bench tobacco seedling production systems. Soil samples randomly collected from six stream bank zones (bands up the valley slope) varying in their distance ranges from the centre of both the wastewater-free and wastewater-affected paths [0-5 m (B1); 6-10 m (B2); 11-15 m (B3); 16-20 m (B4); 21-25 m (B5) and 26-30 m (B6)] in two sample depths (0-15; 15-30 cm) were analysed for metal copper, organic matter contents, and soil pH and subjected to agarized incubation for microbial counts. Results suggest that the repeated disposals of copper oxy chloride waste from tobacco float tray sanitation sinks into a creek amplify metal copper loads in the soil by 500 fold. The greatest concentrations of copper in both the topsoil and upper subsoil were recorded in the B3, B4 and B5 stream bank zones of the wastewater path. The concentration of copper was significantly lower in the middle of the waste-affected creek than that in the stream bank zones. This trend in the copper concentration coincided with the lowest acidity of the soil. Overloading the soil with copper, surprisingly, enhances the content of soil organic matter. The repeated release of copper oxy chloride waste into a stream causes an accelerated build-up of metal copper and soil acidity in the stream bank on-site while contamination is translocated to either underground water reserve or surface stream water flow in the middle of the wastewater path

  7. Volatile earliest Triassic sulfur cycle

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Algeo, Thomas J.

    2017-01-01

    model experiment. Exposure of evaporite deposits having a high δ 34S may account for the source change, with a possible role for the Siberian Traps volcanism by magmatic remobilization of Cambrian rock salt. A high sulfur cycle turnover rate would have left the ocean system vulnerable to development......Marine biodiversity decreases and ecosystem destruction during the end-Permian mass extinction (EPME) have been linked to widespread marine euxinic conditions. Changes in the biogeochemical sulfur cycle, microbial sulfate reduction (MSR), and marine dissolved sulfate concentrations during...... fractionation and point to a more universal control, i.e., contemporaneous seawater sulfate concentration.The MSR-trend transfer function yielded estimates of seawater sulfate of 0.6-2.8mM for the latest Permian to earliest Triassic, suggesting a balanced oceanic S-cycle with equal S inputs and outputs...

  8. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  9. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley R. [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew R. [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance L. [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shig [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2010-06-01

    This report summarizes Year 2 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Year 2 focused extensively on obtaining experimental data from the bench-scale, lab-scale and pilot-scale reactors. These data will be used to refine and validate submodels to be implemented in CFD simulations of full-scale boiler retrofits. Program tasks are on schedule for Year 3 completion. Both Year 2 milestones were completed on schedule and within budget.

  10. (R,S)-3-Carb­oxy-2-(isoquinolinium-2-yl)propanoate monohydrate

    Science.gov (United States)

    Stilinović, Vladimir; Frkanec, Leo; Kaitner, Branko

    2010-01-01

    The title compound, C13H11NO4·H2O, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquino­line group and a deprotonated carboxyl group. In the crystal, mol­ecules are connected via short O—H⋯O hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enanti­omers along [001]. These chains are additionally connected by hydrogen bonding between water mol­ecules and the deprotonated carb­oxy groups of neighbouring mol­ecules. PMID:21579503

  11. (R,S)-3-Carb-oxy-2-(isoquinolinium-2-yl)propanoate monohydrate.

    Science.gov (United States)

    Stilinović, Vladimir; Frkanec, Leo; Kaitner, Branko

    2010-05-22

    The title compound, C(13)H(11)NO(4)·H(2)O, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquino-line group and a deprotonated carboxyl group. In the crystal, mol-ecules are connected via short O-H⋯O hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enanti-omers along [001]. These chains are additionally connected by hydrogen bonding between water mol-ecules and the deprotonated carb-oxy groups of neighbouring mol-ecules.

  12. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... CO2. The high local CO levels may have implications for near-burner corrosion and stagging, but increased problems with CO emission in oxy-fuel combustion are not anticipated....

  13. Structural and electrical characterisation of SrCe1-xYxOxi

    DEFF Research Database (Denmark)

    Phillips, R.J.; Bonanos, N.; Poulsen, F.W.

    1999-01-01

    The acceptor-doped perovskite proton conductor SrCe1-xYxOxi (x = 0.025 to 0.20, xi = 3 - x/2) has been prepared and characterised using X-ray diffraction and AC impedance spectroscopy, and the effect of the yttrium dopant concentration on structure and electrical properties has been investigated. X......-ray diffraction studies show a decrease in lattice volume with increasing yttrium content. Electrical conductivity studies have been made as a function of oxygen partial pressure, and at a partial pressure of water vapour of 0.007 atm. The total conductivity has been separated into different components by fitting...

  14. Synthesis of micro- and nanodiamonds by the method of oxy- acetylene combustion flame

    International Nuclear Information System (INIS)

    Sabitov, S; Medyanova, B; Partizan, G; Koshanova, A; Mansurova, M; Lesbayev, B; Mansurov, B; Merkibayev, Ye

    2016-01-01

    This work presents the results of experiments on synthesis of micro- and nanodiamonds by the method of oxy-acetylene torch on the surface of pre-deposited copper thin films. The influence of the thickness of the buffer copper film and the concentration ratio of oxygen and acetylene on the structure formation of the deposited samples was investigated during performed experiments. Studies by Raman scattering and scanning electron microscopy showed that the synthesis of micro- and nano-diamonds occurs under certain experimental conditions. (paper)

  15. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    International Nuclear Information System (INIS)

    Cadet, J.; Ravanat, J.L.; Carell, T.; Cellai, L.; Chatgilialoglu, Ch.; Gimisis, Th.; Miranda, M.; O'Neill, P.; Robert, M.

    2008-01-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH) · radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  16. Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2014-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: •Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  17. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash.

    Science.gov (United States)

    Ni, Peng; Xiong, Zhuo; Tian, Chong; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the high cost of pure CO 2 , carbonation of MSWI fly ash has not been fully developed. It is essential to select a kind of reaction gas with rich CO 2 instead of pure CO 2 . The CO 2 uptake and leaching toxicity of heavy metals in three typical types of municipal solid waste incinerator (MSWI) fly ash were investigated with simulated oxy-fuel combustion flue gas under different reaction temperatures, which was compared with both pure CO 2 and simulated air combustion flue gas. The CO 2 uptake under simulated oxy-fuel combustion flue gas were similar to that of pure CO 2 . The leaching concentration of heavy metals in all MSWI fly ash samples, especially in ash from Changzhou, China (CZ), decreased after carbonation. Specifically, the leached Pb concentration of the CZ MSWI fly ash decreased 92% under oxy-fuel combustion flue gas, 95% under pure CO 2 atmosphere and 84% under the air combustion flue gas. After carbonation, the leaching concentration of Pb was below the Chinese legal limit. The leaching concentration of Zn from CZ sample decreased 69% under oxy-fuel combustion flue gas, which of Cu, As, Cr and Hg decreased 25%, 33%, 11% and 21%, respectively. In the other two samples of Xuzhou, China (XZ) and Wuhan, China (WH), the leaching characteristics of heavy metals were similar to the CZ sample. The speciation of heavy metals was largely changed from the exchangeable to carbonated fraction because of the carbonation reaction under simulated oxy-fuel combustion flue gas. After carbonation reaction, most of heavy metals bound in carbonates became more stable and leached less. Therefore, oxy-fuel combustion flue gas could be a low-cost source for carbonation of MSWI fly ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  19. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  20. Guest Editorial: Processes of Radicalization and De-Radicalization

    Directory of Open Access Journals (Sweden)

    Donatella Della Porta

    2012-05-01

    Full Text Available The study of radicalization and de-radicalization, understood as processes leading towards the increased or decreased use of political violence, is central to the question of how political violence emerges, how it can be prevented, and how it can be contained. The focus section of this issue of the International Journal of Conflict and Violence addresses radicalization and de-radicalization, seeking to develop a more comprehensive understanding of the processes, dynamics, and mechanisms involved and taking an interdisciplinary approach to overcome the fragmentation into separate disciplines and focus areas. Contributions by Pénélope Larzillière, Felix Heiduk, Bill Kissane, Hank Johnston, Christian Davenport and Cyanne Loyle, Veronique Dudouet, and Lasse Lindekilde address repressive settings, legitimacy, institutional aspects, organizational outcomes, and dynamics in Europe, Asia, Africa, and North and South America.

  1. Redox properties of free radicals

    International Nuclear Information System (INIS)

    Neta, P.

    1981-01-01

    Results of electron transfer reactions observed and monitored by pulse radiolysis are reported. This technique allows determination of the first one-electron reduction or oxidation of a compound rather than the overall two-electron transfer usually reported. Pulse radiolysis allows the determination of absolute rate constants for reactions of free radicals and helps elucidate the mechanisms involved. Studies using this technique to study radicals derived from quinones, nitro compounds, pyridines, phenols, and anilines are reported. Radicals of biochemical interest arising from riboflavin, ascorbic acid, vitamin K 3 , vitamin E, MAD + , porphyrins, etc. have also been studied

  2. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  3. Effect of different sulfur levels from various sources on brassica napus growth and soil sulfur fractions

    International Nuclear Information System (INIS)

    Khalid, R.; Khan, K.S.; Islam, M.; Yousaf, M.; Shabbir, G.

    2012-01-01

    A two year field study was conducted at two different locations in northern rain fed Punjab, Pakistan to assess the effect of different rates of sulfur application from various sources on soil sulfur fractions and growth of Brassica napus. The treatments included three sulfur sources i. e., single super phosphate, ammonium sulfate and gypsum each applied at five different rates (0, 10, 20, 30 and 40 kg S ha/sup -1/ ). Sulfur application had a significant positive effect on the growth and yield parameters of Brassica napus. Among the sulfur sources ammonium sulfate resulted in maximum increase in plant growth and yield parameters, followed by single super phosphate. Sulfur content and uptake by crop plants was significantly higher with ammonium sulfate application as compared to other two sulfur sources. Sulfur application also exerted a significant positive effect on different S fractions in the soils. On an average, 18.0% of the applied sulfur got incorporated into CaCl/sub 2/ extractable sulfur fraction, while 15.6% and 35.5% entered into adsorbed and organic sulfur fractions in the soils, respectively. The value cost ratio increased significantly by sulfur application up to 30 kg ha/sup -1/. Among sulfur sources, ammonium sulfate performed best giving the highest net return. (author)

  4. Expression of alkyl hydroperoxide reductase is regulated negatively by OxyR1 and positively by RpoE2 sigma factor in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Dwivedi, Susheel Kumar; Singh, Vijay Shankar; Tripathi, Anil Kumar

    2016-10-01

    OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.

  5. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2013-01-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  6. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2014-07-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  7. Thermal analysis and kinetics of coal during oxy-fuel combustion

    Science.gov (United States)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  8. Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln

    International Nuclear Information System (INIS)

    Granados, David A.; Chejne, Farid; Mejía, Juan M.; Gómez, Carlos A.; Berrío, Ariel; Jurado, William J.

    2014-01-01

    The effect of Flue Gas Recirculation (FGR) during Oxy-Fuel Combustion in a Rotary Cement Kiln was analyzed by using a CFD model applied to coal combustion process. The CFD model is based on 3D-balance equations for mass, species, energy and momentum. Turbulence and radiation model coupled to a chemical kinetic mechanism for pyrolysis processes, gas–solid and gas–gas reactions was included to predicts species and flame temperature distribution, as well as convective and radiation energy fluxes. The model was used to study coal combustion with air and with oxygen for FGR between 30 and 85% as controller parameter for temperature in the process. Flame length effect and heat transfer by convection and radiation to the clinkering process for several recirculation ratios was studied. Theoretical studies predicted a located increase of energy flux and a reduction in flame length with respect to the traditional system which is based on air combustion. The impact of FGR on the oxy-fuel combustion process and different energy scenarios in cement kilns to increase energy efficiency and clinker production were studied and evaluated. Simulation results were in close agreement with experimental data, where the maximum deviation was 7%

  9. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  10. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  11. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard [Washington Univ., St. Louis, MO (United States); Kumfer, Benjamin [Washington Univ., St. Louis, MO (United States); Gopan, Akshay [Washington Univ., St. Louis, MO (United States); Yang, Zhiwei [Washington Univ., St. Louis, MO (United States); Phillips, Jeff [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pint, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-29

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702) include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.

  12. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  13. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    Science.gov (United States)

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    Energy Technology Data Exchange (ETDEWEB)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze 41400, Kocaeli (Turkey); Bulut, Mustafa, E-mail: mbulut@marmara.edu.tr [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey)

    2015-12-15

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, {sup 1}H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn{sup 2+}, Mg{sup 2+}, In{sup +3}) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  15. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    International Nuclear Information System (INIS)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz; Durmuş, Mahmut; Bulut, Mustafa

    2015-01-01

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, 1 H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn 2+ , Mg 2+ , In +3 ) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  16. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; C. Pevida; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2008-09-15

    Oxy-fuel combustion is a GHG abatement technology in which coal is burned using a mixture of oxygen and recycled flue gas, to obtain a rich stream of CO{sub 2} ready for sequestration. An entrained flow reactor was used in this work to study the ignition and burnout of coals and blends with biomass under oxy-fuel conditions. Mixtures of CO{sub 2}/O{sub 2} of different concentrations were used and compared with air as reference. A worsening of the ignition temperature was detected in CO{sub 2}/O{sub 2} mixtures when the oxygen concentration was the same as that of the air. However, at an oxygen concentration of 30% or higher, an improvement in ignition was observed. The blending of biomass clearly improves the ignition properties of coal in air. The burnout of coals and blends with a mixture of 79%CO{sub 2}-21%O{sub 2} is lower than in air, but an improvement is achieved when the oxygen concentration is 30 or 35%. The results of this work indicate that coal burnout can be improved by blending biomass in CO{sub 2}/O{sub 2} mixtures. 26 refs., 7 figs., 1 tab.

  17. 21 CFR 184.1095 - Sulfuric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9), also...

  18. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2017-09-29

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent

  19. Radical Change by Entrepreneurial Design

    National Research Council Canada - National Science Library

    Roberts, Nancy C

    1998-01-01

    .... Radical change by entrepreneurial design then becomes the focal point, in order to acquaint the reader with the strategies and tactics of well-known entrepreneurs who have been successful in molding...

  20. Penile rehabilitation after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Ohl, Dana A; Ralph, David

    2013-01-01

    The pathophysiology of erectile dysfunction after radical prostatectomy (RP) is believed to include neuropraxia, which leads to temporarily reduced oxygenation and subsequent structural changes in penile tissue. This results in veno-occlusive dysfunction, therefore, penile rehabilitation programmes...

  1. Radical prostatectomy. Results and indications

    International Nuclear Information System (INIS)

    Jacqmin, D.

    1997-01-01

    Radical prostatectomy is the surgical curative treatment of localized prostate cancer. The survival is good in young patients (<70) with T2 N0M0 tumors and more than 10 year's life expectancy. Side-effects are urinary incontinence, impotence and anastomosis stricture. Quality of life should be considered as an important factor for the choice of the patient between radical prostatectomy, radiotherapy and follow-up. (author)

  2. Radical Islamism and Failed Developmentalism

    OpenAIRE

    Rahnema, Saeed

    2008-01-01

    The rise of radical Islamism in recent years does not limit the applicability of the concept of cultural nationalism. Rather the two are intertwined in ways which this article will attempt to highlight. Islam took specific national forms as modern nation-states arose and the contemporary resurgence of radical Islamism also follows that modern pattern. I examine the emergence of the three most important movements in the Islamic world, namely, the Muslim Brotherhood in Egypt, Jama'at-e Islami i...

  3. Determination of sulfur content in fuels

    International Nuclear Information System (INIS)

    Daucik, P.; Zidek, Z.; Kalab, P.

    1998-01-01

    The sulfur content in fuels, Diesel fuels, and in the solutions of dibutylsulfide in a white oil was determined by various methods. The results obtained by elemental analysis have shown that the method is not advisable for the determination of sulfur in fuels. A good agreement was found by comparing the results in the determination of the sulfur by Grote-Krekeler's and Hermann-Moritz's methods and by the energy-dispersive X-ray fluorescence analysis. The last method is the modern, comfortable, and timesaving method enabling the fast and precise determination of sulfur contents in the various types of samples. (authors)

  4. Laparoscopic radical cystectomy: key points

    Directory of Open Access Journals (Sweden)

    D. V. Perlin

    2018-01-01

    Full Text Available Background. Radical cystectomy remains the golden standard for treatment of muscle invasive bladder cancer. Objective: to duplicate with highest accuracy the open radical cystectomy procedure, which we successfully utilized earlier in our clinic, in the of laparoscopic conditions in order to preserve the advantages of minimally invasive procedures and retain the reliability of the tried and tested open surgery.Materials and methods. In the report were included 35 patients (27 men and 8 women with bladder cancer, who underwent laparoscopic radical cystectomy in Volgograd Regional Center of Urology and Nephrology between April 2013 and March 2016. Only the patients who had been submitted to full intracorporal ileal conduits were included.Results. The mean operative time was 378 minutes, the mean blood loss was 285 millilitres, the mean length of hospital stay was 12.4 days, only 20 % of patients required the narcotic anesthetics. The postoperative complication rate was 11.4 %. However, the majority of the patients were successfully treated with minimally invasive procedures. Generally, our results were similar to other reported studies.Conclusion. Laparoscopic radical cystectomy is a safe and efficient modality of treatment of bladder cancer. However, it needs more procedures and longer observation period to establish laparoscopic radical cystectomy as an alternative to open radical cystectomy.

  5. The significance of elemental sulfur dissolution in liquid electrolyte lithium sulfur batteries

    NARCIS (Netherlands)

    Harks, Peter Paul R.M.L.; Robledo, Carla B.; Verhallen, Tomas W.; Notten, Peter H.L.; Mulder, Fokko M.

    2017-01-01

    It is shown that the dissolution of elemental sulfur into, and its diffusion through, the electrolyte allows cycling of lithium–sulfur batteries in which the sulfur is initially far removed and electrically insulated from the current collector. These findings help to understand why liquid

  6. Adsorption of Oxy-Anions in the Teaching Laboratory: An Experiment to Study a Fundamental Environmental Engineering Problem

    Science.gov (United States)

    D'Arcy, Mitch; Bullough, Florence; Moffat, Chris; Borgomeo, Edoardo; Teh, Micheal; Vilar, Ramon; Weiss, Dominik J.

    2014-01-01

    Synthesizing and testing bicomposite adsorbents for the removal of environmentally problematic oxy-anions is high on the agenda of research-led universities. Here we present a laboratory module successfully developed at Imperial College London that introduces the advanced undergraduate student in engineering (chemical, civil, earth) and science…

  7. Formation of mono- and multilayers of metal complexes of 4-(((10,12-pentacosadiynoyl)oxy)methyl)pyridine

    NARCIS (Netherlands)

    Werkman, P J; Wilms, H; Wieringa, R H; Schouten, A J

    1998-01-01

    The monolayer properties of the amphiphile, 4-(((10,12-pentacosadiynoyl)oxy)methyl)pyridine have been studied by measuring the surface pressure-area isotherms. The amphiphile forms stable monolayers at the air-water interface and protonation of the monolayers occurs at pH values of 3.00 or lower.

  8. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-03-01

    Full Text Available at the technical and economic viability of oxy-fuel technology for CO(sub2) capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a...

  9. New weighted sum of gray gases model applicable to Computational Fluid Dynamics (CFD) modeling of oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse

    2010-01-01

    gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...

  10. SO3 Formation and the Effect of Fly Ash in a Bubbling Fluidised Bed under Oxy-Fuel Combustion Conditions.

    Czech Academy of Sciences Publication Activity Database

    Sarbassov, Y.; Duan, L.; Jeremiáš, Michal; Manovic, V.; Anthony, E.J.

    2017-01-01

    Roč. 167, DEC 1 (2017), s. 314-321 ISSN 0378-3820 Institutional support: RVO:67985858 Keywords : SO3 formation * oxy-fuel combustion * fluidised bed Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuels Impact factor: 3.752, year: 2016

  11. Comparative electron microscopy and image analysis of oxy- and deoxy-hemocyanin from the spiny lobster Panulirus interruptus

    NARCIS (Netherlands)

    Haas, Felix de; Breemen, Jan F.L. van; Boekema, Egbert J.; Keegstra, Wilko; Bruggen, Ernst F.J. van

    1993-01-01

    Structural differences between oxy-hemocyanin and deoxy-hemocyanin from the spiny lobster P. interruptus were studied by electron microscopy and image analysis of negatively stained preparations. Projections of the hexameric P. interruptus hemocyanin from electron microscopy were compared with

  12. SO3 Formation and the Effect of Fly Ash in a Bubbling Fluidised Bed under Oxy-Fuel Combustion Conditions.

    Czech Academy of Sciences Publication Activity Database

    Sarbassov, Y.; Duan, L.; Jeremiáš, Michal; Manovic, V.; Anthony, E.J.

    2017-01-01

    Roč. 167, DEC 1 (2017), s. 314-321 ISSN 0378-3820 Institutional support: RVO:67985858 Keywords : SO3 formation * oxy- fuel combustion * fluidised bed Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuel s Impact factor: 3.752, year: 2016

  13. Near-field local flame extinction of Oxy-Syngas non-premixed jet flames : a DNS study

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Oijen, van J.A.; Luo, Kai; Jiang, X.

    2014-01-01

    An investigation of the local flame extinction of H2/CO oxy-syngas and syngas-air nonpremixed jet flames was carried out using three-dimensional direct numerical simulations (DNS) with detailed chemistry by using flamelet generated manifold chemistry (FGM). The work has two main objectives: identify

  14. Agricultural Construction Volume II. Oxy-Gas and Other Cutting/Welding Processes. Woodworking, Metals, Finishing. Instructor's Guide.

    Science.gov (United States)

    Admire, Myron; Maricle, Gary

    This guide contains instructor's materials for teaching a secondary agricultural construction course consisting of instructional units on oxy-gas and other cutting and welding processes (10 lessons), woodworking (6 lessons), metals (10 lessons), and finishing (4 lessons). The materials for each unit include student objectives, a list of…

  15. The games radicals play : special issue on free radicals and radical ions

    OpenAIRE

    Walton, J.C.; Williams, F.

    2015-01-01

    Chemistry and Physics have aptly been described as “most excellent children of Intellect and Art” [1]. Both these “children” engage with many playthings, and molecules rank as one of their first favorites, especially radicals, which are amongst the most lively and exciting. Checking out radicals dancing to the music of entropy round their potential energy ballrooms is surely both entertaining and enlightening. Radicals’ old favorite convolutions are noteworthy, but the new styles, modes and a...

  16. Sulfurized limonite as material for fast decomposition of organic compounds by heterogeneous Fenton reaction

    International Nuclear Information System (INIS)

    Toda, Kei; Tanaka, Toshinori; Tsuda, Yutaka; Ban, Masahiro; Koveke, Edwin P.; Koinuma, Michio; Ohira, Shin-Ichi

    2014-01-01

    Graphical abstract: - Highlights: • Used limonite degrades organic compounds by heterogeneous Fenton reaction. • Sulfurized limonite removes methylene blue color in seconds. • Recycled limonite can be used for biogas purification and wastewater treatment. - Abstract: Rapid decomposition of wastewater contaminants using sulfurized limonite (S-limonite) was investigated. Limonite is used for desulfurization of biogases, and S-limonite is obtained from desulfurization plants as solid waste. In this work, the profitable use of S-limonite in water treatment was examined. The divalent Fe in S-limonite was expected to produce OH radicals, as Fe 2+ ions and limonite thermally treated with H 2 do. Methylene blue was used for batch-wise monitoring of the decomposition performance. The decomposition rate was fast and the methylene blue solution color disappeared in only 10 s when a small amount of H 2 O 2 was added (1 mM in the sample solution) in the presence of S-limonite. The OH radicals were formed by a heterogeneous reaction on the S-limonite surface and Fenton reaction with dissolved Fe 2+ . The decomposition of pentachlorophenol was also examined; it was successfully decomposed in batch-wise tests. The surfaces of limonite before sulfurization, S-limonite, and S-limonite after use for water treatment were performed using scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that S-limonite reverted to limonite after being used for water treatment

  17. Sulfurized limonite as material for fast decomposition of organic compounds by heterogeneous Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Kei, E-mail: todakei@sci.kumamoto-u.ac.jp [Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Tanaka, Toshinori; Tsuda, Yutaka; Ban, Masahiro; Koveke, Edwin P. [Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Koinuma, Michio [Department of Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Ohira, Shin-Ichi [Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-08-15

    Graphical abstract: - Highlights: • Used limonite degrades organic compounds by heterogeneous Fenton reaction. • Sulfurized limonite removes methylene blue color in seconds. • Recycled limonite can be used for biogas purification and wastewater treatment. - Abstract: Rapid decomposition of wastewater contaminants using sulfurized limonite (S-limonite) was investigated. Limonite is used for desulfurization of biogases, and S-limonite is obtained from desulfurization plants as solid waste. In this work, the profitable use of S-limonite in water treatment was examined. The divalent Fe in S-limonite was expected to produce OH radicals, as Fe{sup 2+} ions and limonite thermally treated with H{sub 2} do. Methylene blue was used for batch-wise monitoring of the decomposition performance. The decomposition rate was fast and the methylene blue solution color disappeared in only 10 s when a small amount of H{sub 2}O{sub 2} was added (1 mM in the sample solution) in the presence of S-limonite. The OH radicals were formed by a heterogeneous reaction on the S-limonite surface and Fenton reaction with dissolved Fe{sup 2+}. The decomposition of pentachlorophenol was also examined; it was successfully decomposed in batch-wise tests. The surfaces of limonite before sulfurization, S-limonite, and S-limonite after use for water treatment were performed using scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that S-limonite reverted to limonite after being used for water treatment.

  18. Atmospherically Relevant Radicals Derived from the Oxidation of Dimethyl Sulfide.

    Science.gov (United States)

    Mardyukov, Artur; Schreiner, Peter R

    2018-02-20

    The large number and amounts of volatile organosulfur compounds emitted to the atmosphere and the enormous variety of their reactions in various oxidation states make experimental measurements of even a small fraction of them a daunting task. Dimethyl sulfide (DMS) is a product of biological processes involving marine phytoplankton, and it is estimated to account for approximately 60% of the total natural sulfur gases released to the atmosphere. Ocean-emitted DMS has been suggested to play a role in atmospheric aerosol formation and thereby cloud formation. The reaction of ·OH with DMS is known to proceed by two independent channels: abstraction and addition. The oxidation of DMS is believed to be initiated by the reaction with ·OH and NO 3 · radicals, which eventually leads to the formation of sulfuric acid (H 2 SO 4 ) and methanesulfonic acid (CH 3 SO 3 H). The reaction of DMS with NO 3 · appears to proceed exclusively by hydrogen abstraction. The oxidation of DMS consists of a complex sequence of reactions. Depending on the time of the day or altitude, it may take a variety of pathways. In general, however, the oxidation proceeds via chains of radical reactions. Dimethyl sulfoxide (DMSO) has been reported to be a major product of the addition channel. Dimethyl sulfone (DMSO 2 ), SO 2 , CH 3 SO 3 H, and methanesulfinic acid (CH 3 S(O)OH) have been observed as products of further oxidation of DMSO. Understanding the details of DMS oxidation requires in-depth knowledge of the elementary steps of this seemingly simple transformation, which in turn requires a combination of experimental and theoretical methods. The methylthiyl (CH 3 S·), methylsulfinyl (CH 3 SO·), methylsulfonyl (CH 3 SO 2 ·), and methylsulfonyloxyl (CH 3 SO 3 ·) radicals have been postulated as intermediates in the oxidation of DMS. Therefore, studying the chemistry of sulfur-containing free radicals in the laboratory also is the basis for understanding the mechanism of DMS oxidation in the

  19. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  20. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ya; Guo, Jinxin; Zhang, Jun, E-mail: zhangjun@zjnu.cn; Su, Qingmei; Du, Gaohui, E-mail: gaohuidu@zjnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • A graphene-wrapped sulfur nanospheres composite with 91 wt% S is prepared. • It shows highly improved electrochemical performance as cathode for Li–S cell. • The PVP coating and conductive graphene minimize polysulfides dissolution. • The flexible coatings with void space accommodate the volume expansion of sulfur. - Abstract: Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g{sup −1} and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

  1. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.

    2017-08-01

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  2. OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Yu, Chao; Wang, Nu; Wu, Maosen; Tian, Fang; Chen, Huamin; Yang, Fenghuan; Yuan, Xiaochen; Yang, Ching-Hong; He, Chenyang

    2016-11-08

    To facilitate infection, Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, needs to degrade hydrogen peroxide (H 2 O 2 ) generated by the host defense response via a mechanism that is mediated by the transcriptional regulator OxyR. The catalase (CAT) gene catB has previously been shown to belong to the OxyR regulon in Xoo. However, its expression patterns and function in H 2 O 2 detoxification and bacterial pathogenicity on rice remain to be elucidated. The catB gene encodes a putative catalase and is highly conserved in the sequenced strains of Xanthomonas spp. β-galactosidase analysis and electrophoretic mobility shift assays (EMSA) showed that OxyR positively regulated the transcription of catB by directly binding to its promoter region. The quantitative real-time PCR (qRT-PCR) assays revealed that the expression levels of catB and oxyR were significantly induced by H 2 O 2 . Deletion of catB or oxyR drastically impaired bacterial viability in the presence of extracellular H 2 O 2 and reduced CAT activity, demonstrating that CatB and OxyR contribute to H 2 O 2 detoxification in Xoo. In addition, ΔcatB and ΔoxyR displayed shorter bacterial blight lesions and reduced bacterial growth in rice compared to the wild-type stain, indicating that CatB and OxyR play essential roles in the virulence of Xoo. Transcription of catB is enhanced by OxyR in response to exogenous H 2 O 2 . CatB functions as an active catalase that is required for the full virulence of Xoo in rice.

  3. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    Science.gov (United States)

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of combustion characteristics on wall radiative heat flux in a 100 MWe oxy-coal combustion plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.; Ryu, C. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Chae, T.Y. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Yang, W. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Kim, Y.; Lee, S.; Seo, S. [Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of). Power Generation Lab.

    2013-07-01

    Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O{sub 2} in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace. In the hexahedral furnace, the oxy-coal case with 28% of O{sub 2} and wet FGR had a similar value of T{sub af} with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O{sub 2} in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O{sub 2} in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (T{sub af}) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.

  5. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    Science.gov (United States)

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  6. Comparative Genomics of Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Ussery, David; Davenport, C; Tümmler, B

    2010-01-01

    Eleven completely sequenced Chlorobi genomes were compared in oligonucleotide usage, gene contents, and synteny. The green sulfur bacteria (GSB) are equipped with a core genome that sustains their anoxygenic phototrophic lifestyle by photosynthesis, sulfur oxidation, and CO(2) fixation. Whole...... weight of 10(6), and are probably instrumental for the bacteria to generate their own intimate (micro)environment....

  7. Halophilic and haloalkaliphilic sulfur-oxidizing bacteria

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.; Robertson, L.A.; Kuenen, J.G.; Muntyan, M.S.; Muyzer, G.; Rosenberg, E.; DeLong, F.; Delong, E.; Lory, S.; Stackebrandt, E.; Thompson, F.

    2013-01-01

    Chemotrophic sulfur-oxidizing bacteria (SOB) represent an important functional group of microorganisms responsible for the dark oxidation of reduced sulfur compounds generated by sulfidogens. Until recently, only a single genus of halophilic SOB (Halothiobacillus) has been described, and nothing was

  8. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  9. Microbiological disproportionation of inorganic sulfur compounds

    DEFF Research Database (Denmark)

    Finster, Kai

    2008-01-01

    The disproportionation of inorganic sulfur intermediates at moderate temperatures (0-80 °C) is a microbiologically catalyzed chemolithotrophic process in which compounds like elemental sulfur, thiosulfate, and sulfite serve as both electron donor and acceptor, and generate hydrogen sulfide and su...

  10. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  11. 17.9.3 Radical cations of diazo compounds

    Science.gov (United States)

    Davies, A. G.

    This document is part of Subvolume E2 `Phosphorus-Centered Radicals, Radicals Centered on Other Heteroatoms, Organic Radical Ions' of Volume 26 `Magnetic Properties of Free Radicals' of Landolt-Börnstein Group II `Molecules and Radicals'.

  12. Study on ionizing radiation effects in diesel and crude oil: organic compounds, hydrocarbon, sulfur and nitrogen

    International Nuclear Information System (INIS)

    Andrade, Luana dos Santos

    2014-01-01

    Petroleum is the most important energy and pollution source in the world, nowadays. New technologies in petrochemical industry aim to minimize energy spending at the process and to reduce pollution products. Sulfur and nitrogen compounds generate environmental problems; the most relevant is air pollution that affects the population health directly. The nuclear technology has been used in environmental protection through pollutants removal by free radicals produced at action of the radiation in water molecule. The objective of this study is to evaluate the radiation effects on oil and diesel, mainly in the hydrocarbons, organic sulfur, and nitrogen compounds. It was studied a molecule model of sulfur, named benzothiophene, diesel and crude oil samples. The samples were irradiated using a Co-60 source, Gammacell type. The total sulfur concentration in the samples was determined by X-ray fluorescence spectrometry, and organic compounds were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The study of molecular model showed that 95% was degraded at 20 kGy dose rate. Irradiation at 15 kGy of absorbed dose showed some cracking in petrol hydrocarbons, however with higher doses it was observed polymerization and low efficiency of cracking. It was observed that the sulfur compounds from diesel and petroleum was efficiently reduced. The applied doses of 15 kGy and 30 kGy were the most efficient on desulfurization of petroleum, and for diesel the highest variation was observed with 30 kGy and 50 kGy of absorbed dose. The distillation and chromatographic separation using an open column with palladium chloride as stationary phase showed a preferential separation of organic sulfur compounds in petroleum. (author)

  13. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  14. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  15. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet Dhayal; Alshoaibi, Ahmed S.; Alhassan, Saeed M.; Chung, Suk-Ho

    2014-01-01

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  16. Toluene destruction in the Claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-10-22

    The presence of aromatics such as benzene, toluene, and xylene (BTX) as contaminants in the H2S gas stream entering Claus sulfur recovery units has a detrimental effect on catalytic reactors, where BTX forms soot particles and clogs and deactivates the catalysts. BTX oxidation, before they enter catalyst beds, can solve this problem. A theoretical investigation is presented on toluene oxidation by SO2. Density functional theory is used to study toluene radical (benzyl, o-methylphenyl, m-methylphenyl, and p-methylphenyl)-SO2 interactions. The mechanism begins with SO2 addition on the radical through one of the O atoms rather than the S atom. This exothermic reaction involves energy barriers of 4.8-6.1 kJ/mol for different toluene radicals. Thereafter, O-S bond scission takes place to release SO. The reaction rate constants are evaluated to facilitate process simulations. Among four toluene radicals, the resonantly stabilized benzyl radical exhibited lowest SO2 addition rate. A remarkable similarity between toluene oxidation by O2 and by SO2 is observed.

  17. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    OpenAIRE

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia.METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a ra...

  18. Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds with Hypervalent Iodine Reagents.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2016-02-24

    Alkynes have found widespread applications in synthetic chemistry, biology, and materials sciences. In recent years, methods based on electrophilic alkynylation with hypervalent iodine reagents have made acetylene synthesis more flexible and efficient, but they lead to the formation of one equivalent of an iodoarene as side-product. Herein, a more efficient strategy involving a copper-catalyzed oxy-alkynylation of diazo compounds with ethynylbenziodoxol(on)e (EBX) reagents is described, which proceeds with generation of nitrogen gas as the only waste. This reaction is remarkable for its broad scope in both EBX reagents and diazo compounds. In addition, vinyl diazo compounds gave enynes selectively as single geometric isomers. The functional groups introduced during the transformation served as easy handles to access useful building blocks for synthetic and medicinal chemistry.

  19. Oxy-fired boiler unit and method of operating the same

    Science.gov (United States)

    Lou, Xinsheng; Zhang, Jundong; Joshi, Abhinaya; McCombe, James A.; Levasseur, Armand A.

    2016-12-06

    An oxy-combustion boiler unit is disclosed which includes a furnace for combusting fuel and for emitting flue gas resulting from combustion. The furnace has first, second and third combustion zones, and an air separation unit for separating oxygen gas from air and providing a first portion of the separated oxygen to a first oxidant flow, a second portion to a second oxidant flow, and a third portion of the separated oxygen gas to the first, second, and third zones of the furnace. A controller can cause the separated oxygen gas to be distributed so that the first and second oxygen flows have a desired oxygen content, and so that the first, second, and third zones of the furnace receive a desired amount of oxygen based on a combustion zone stoichiometry control.

  20. 2,3-Diamino-pyridinium 6-carb-oxy-pyridine-2-carboxyl-ate.

    Science.gov (United States)

    Foroughian, Mahsa; Foroumadi, Alireza; Notash, Behrouz; Bruno, Giuseppe; Amiri Rudbari, Hadi; Aghabozorg, Hossein

    2011-12-01

    The asymmetric unit of the title proton-transfer compound, C(5)H(8)N(3) (+)·C(7)H(4)NO(4) (-), consists of one mono-deprotonated pyridine-2,6-dicarb-oxy-lic acid as anion and one protonated 2,3-diamino-pyridine as cation. The crystal packing shows extensive O-H⋯O, N-H⋯O and N-H⋯N hydrogen bonds. Thre are also several π-π inter-actions between the anions and also between the cations [centriod-centroid distances = 3.6634 (7), 3.7269 (7), 3.6705 (7) and 3.4164 (7) Å].

  1. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  2. Technical and economic aspects of oxygen separation for oxy-fuel purposes

    Directory of Open Access Journals (Sweden)

    Chorowski Maciej

    2015-03-01

    Full Text Available Oxy combustion is the most promising technology for carbon dioxide, originated from thermal power plants, capture and storage. The oxygen in sufficient quantities can be separated from air in cryogenic installations. Even the state-of-art air separation units are characterized by high energy demands decreasing net efficiency of thermal power plant by at least 7%. This efficiency decrease can be mitigated by the use of waste nitrogen, e.g., as the medium for lignite drying. It is also possible to store energy in liquefied gases and recover it by liquid pressurization, warm-up to ambient temperature and expansion. Exergetic efficiency of the proposed energy accumulator may reach 85%.

  3. Crystal structure of 4-meth-oxy-N-(piperidine-1-carbono-thio-yl)benzamide.

    Science.gov (United States)

    Suhud, Khairi; Hasbullah, Siti Aishah; Ahmad, Musa; Heng, Lee Yook; Kassim, Mohammad B

    2017-10-01

    In the title compound, C 14 H 18 N 2 O 2 S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth-oxy-benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N-C(=S)-N(H)-C(=O) bridge is twisted with an N-C-N-C torsion angle of 74.8 (6)°. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds, forming chains along the c -axis direction. Adjacent chains are linked by C-H⋯π inter-actions, forming layers parallel to the ac plane. The layers are linked by offset π-π inter-actions [inter-centroid distance = 3.927 (3) Å], forming a supra-molecular three-dimensional structure.

  4. Muoniated radical states in the group 16 elements: Computational studies

    International Nuclear Information System (INIS)

    Macrae, Roderick M.

    2009-01-01

    Recent experimental studies on positive muon implantation in silicon, selenium, and tellurium have been interpreted on the basis that the primary paramagnetic species observed is XMu (X=S, Se, or Te), the muonium-substituted analog of the appropriate diatomic chalcogen monohydride radical. However, temperature-dependent signal visibility, broadening, and hyperfine shift effects remain puzzling. The interplay of degeneracy, spin-orbit coupling, and vibrational averaging in these species makes them computationally challenging despite their small size. In this work computational studies are carried out on all hydrogen isotopomers of the series OH, SH, SeH, and TeH. Several different methodological approaches are compared, and the effects of wavefunction symmetry, spin-orbit coupling, and zero-point vibrational corrections on the isotropic and anisotropic components of the hyperfine interaction are examined. Additionally, some models of the Mu site in rhombic sulfur are briefly considered.

  5. Photoionization of the OH radical

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1985-01-01

    The hydroxyl radical (OH) is one of the most thoroughly studied free radicals because of its importance in atmospheric chemistry, combustion processes, and the interstellar medium. Detailed experimental and theoretical studies have been performed on the ground electronic state (X 2 PI/sub i/) and on the four lowest bound excited electronic states (A 2 Σ + , B 2 Σ + , D 2 Σ - , and C 2 Σ + ). However, because it is difficult to distinguish the spectrum of OH from the spectra of the various radical precursors, the absorption spectrum in the wavelength region below 1200 A has not been well characterized. In the present work, the spectrum of OH has been determined in the wavelength region from 750 to 950 A using the technique of photoionization mass spectrometry. This technique allows complete separation of the spectrum of OH from that of the other components of the discharge and permits the unambiguous determination of the spectrum of OH

  6. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  7. Application of a modified OxiTop® respirometer for laboratory composting studies

    Directory of Open Access Journals (Sweden)

    Malińska Krystyna

    2016-03-01

    Full Text Available This study applied a modified OxiTop® system to determine the oxygen uptake rate during a 2-day respiration test of selected composting materials at different moisture contents, air-filled porosities and composition of composting mixtures. The modification of the OxiTop® respirometer included replacement and adjustment of a glass vessel (i.e. a 1.9-L glass vessel with wide mouth was used instead of a standard 1-L glass bottle, additionally the twist-off vessel lid was adjusted to attach the measuring head and application of a closed steel mesh cylinder of 5 cm in diameter and 10 cm in height with the open surface area of the mesh of approximately 56.2%. This modification allowed obtaining different bulk densities (and thus air-porosities of the investigated composting materials in laboratory composting studies. The test was performed for apple pomace and composting mixtures of apple pomace with wood chips at ratios of 1:0.5, 1:1, 1:1.5 (d.w, moisture contents of 60%, 65% and 75% and air-filled porosities ranging from 46% to 1%. Due to diverse biodegradability of the investigated apple pomace and composting mixtures this test allows for the determination of the effects of different air-porosities (due to compaction in a pile on the oxygen uptake rate for mixtures with a fixed ratio of a bulking agent. The described method allows for laboratory determination of the effects of moisture content and compaction on biodegradation dynamics during composting.

  8. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  9. Donor free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  10. Radical feminists & trans activists truce

    OpenAIRE

    Mackay, F.

    2014-01-01

    #GenderWeek: Truce! When radical feminists and trans feminists empathise\\ud Feminist Times\\ud By Finn Mackay \\ud read all #GenderWeek articles.\\ud We wanted to explore the ground between the polarised, entrenched positions in the so-called “TERF-war”. Radical feminists on one pole, trans-inclusionary feminists and trans activists on the other. The disputed territory being women-only space, language and the ever changing legal framework surrounding gender.\\ud Entrenchment leads to stalemate. S...

  11. Sulfur isotope studies of biogenic sulfur emissions at Wallops Island, Virginia

    International Nuclear Information System (INIS)

    Hitchcock, D.R.; Black, M.S.; Herbst, R.P.

    1978-03-01

    This research attempted to determine whether it is possible to measure the stable sulfur isotope distributions of atmospheric particulate and gaseous sulphur, and to use this information together with measurements of the ambient levels of sulfur gases and particulate sulfate and sodium in testing certain hypotheses. Sulfur dioxide and particulate sulfur samples were collected at a coastal marine location and their delta (34)S values were determined. These data were used together with sodium concentrations to determine the presence of biogenic sulfur and the identity of the biological processes producing it. Excess (non-seasalt) sulfate levels ranged from 2 to 26 micrograms/cu m and SO2 from 1 to 9 ppb. Analyses of air mass origins and lead concentrations indicated that some anthropogenic contaminants were present on all days, but the isotope data revealed that most of the atmospheric sulfur originated locally from the metabolism of bacterial sulfate reducers on all days, and that the atmospheric reactions leading to the production of sulfate from this biogenic sulfur source are extremely rapid. Delta 34 S values of atmospheric sulfur dioxide correlated well with those of excess sulfate, and implied little or no sulfur isotope fractionation during the oxidation of sulfur gases to sulfate

  12. Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries

    Science.gov (United States)

    Zhang, Jun; Dong, Zimin; Wang, Xiuli; Zhao, Xuyang; Tu, Jiangping; Su, Qingmei; Du, Gaohui

    2014-12-01

    Two kinds of graphene-sulfur composites with 50 wt% of sulfur are prepared using hydrothermal method and thermal mixing, respectively. Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectra mapping show that sulfur nanocrystals with size of ∼5 nm dispersed on graphene sheets homogeneously for the sample prepared by hydrothermal method (NanoS@G). While for the thermal mixed graphene-sulfur composite (S-G mixture), sulfur shows larger and uneven size (50-200 nm). X-ray Photoelectron Spectra (XPS) reveals the strong chemical bonding between the sulfur nanocrystals and graphene. Comparing with the S-G mixture, the NanoS@G composite shows highly improved electrochemical performance as cathode for lithium-sulfur (Li-S) battery. The NanoS@G composite delivers an initial capacity of 1400 mAh g-1 with the sulfur utilization of 83.7% at a current density of 335 mA g-1. The capacity keeps above 720 mAh g-1 over 100 cycles. The strong adherence of the sulfur nanocrystals on graphene immobilizes sulfur and polysulfides species and suppressed the "shuttle effect", resulting higher coulombic efficiency and better capacity retention. Electrochemical impedance also suggests that the strong bonding enabled rapid electronic/ionic transport and improved electrochemical kinetics, therefore good rate capability is obtained. These results demonstrate that the NanoS@G composite is a very promising candidate for high-performance Li-S batteries.

  13. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Influence of sulfurous oxide on plants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J

    1872-01-01

    It has been determined that of the trees living in an atmosphere containing sulfurous oxide, the conifers suffer more injuries than ordinary foliaged trees. Experiments were conducted to find the causes of injuries and their relation in these two kinds of plants. Pine and alder were chosen as test plants. It was found that 1000 square centimeters of pine leaves had absorbed 1.6 c.c. of sulfurous oxide and the same surface area of alder leaves had accumulated 7.9 c.c. of sulfurous oxide. Experiments were also conducted to determine the effects of sulfurous oxide on transpiration in plants. Two similar twigs of a sycamore were arranged so that the water transpired could be weighed. Results indicate that the ratio between the total amount of water transpired by the leaves not acted on by the sulfurous oxide and those under its influence was 3.8:1. The author concludes that the amount of sulfurous oxide absorbed by pine leaves is smaller than that absorbed by trees with ordinary foliage for equal surfaces. Since its effect on transpiration is less in the case of pine, the cause of the greater injury to pine trees in nature must be due to the accumulation of sulfur. In trees annual leaves the damage to one year's foliage would have only an indirect influence on that of the following year.

  15. Effects of sulfur dioxide on vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, G S

    1939-11-11

    A discussion is presented on the effects of sulfur dioxide on vegetation as observed at Trail, British Columbia. The investigation was carried out over a period of eight years, 1929 to 1937. The concentration of sulfur dioxide at the United States border was carefully determined throughout the crop season at a point 16 miles from the source of sulfur dioxide. Maximum and average concentrations in part per million are given. The sulfur content of vegetation was determined and was found to diminish as the distance from the smelter increased. It was determined that the sulfur content may rise to four times the normal amount without injurious effect. This is particularly so with prolonged low concentration. The effect on the soil was determined by measuring soluble sulfate, pH and exchangeable bases. The soil near the plant was affected, but this fell off rapidly with increase in distance so that eight miles from the smelter the soil was substantially normal. No effect on water supplies was found. An appreciable retardation in growth, as determined by annular rings, was noted for trees exposed to the sulfur dioxide. This effect was lost following installation of sulfur dioxide control at Trail. Conifers were found more susceptible during periods of active growth than when dormant. Also, transplanted conifers were more severly affected than native trees. Seedlings were less resistant that older trees.

  16. 2010 IRON-SULFUR ENZYMES GORDON RESEARCH CONFERENCE, JUNE 6-11, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Ryan Gray

    2010-06-11

    Iron-sulfur (FeS) centers are essential for biology and inspirational in chemistry. These protein cofactors are broadly defined as active sites in which Fe is coordinated by S-donor ligands, often in combination with extra non-protein components, for example, additional metal atoms such as Mo and Ni, and soft ligands such as CN{sup -} and CO. Iron-sulfur centers are inherently air sensitive: they are found in essentially all organisms and it is possible that they were integral components of the earliest forms of life, well before oxygen (O{sub 2}) appeared. Proteins containing FeS cofactors perform a variety of biological functions ranging across electron transfer, acid-base catalysis, and sensing where they are agents for cell regulation through transcription (DNA) or translation (RNA). They are redox catalysts for radical-based reactions and the activation of H{sub 2}, N{sub 2} and CO{sub 2}, processes that offer scientific and economic challenges for industry. Iron-sulfur centers provide the focus for fundamental investigations of chemical bonding, spectroscopy and paramagnetism, and their functions have numerous implications for health and medicine and applications for technology, including renewable energy. The 2010 Iron-Sulfur Enzymes GRC will bring together researchers from different disciplines for in-depth discussions and presentations of the latest developments. There will be sessions on structural and functional analogues of FeS centers, advances in physical methods, roles of FeS centers in energy and technology, catalysis (including radical-based rearrangements and the activation of nitrogen, hydrogen and carbon), long-range electron transfer, FeS centers in health and disease, cellular regulation, cofactor assembly, their relevance in industry, and experiments and hypotheses relating to the origins of life.

  17. A method for nitric oxide radical scavenging properties of sulfur containing compounds.

    NARCIS (Netherlands)

    Vriesman, M.F.; Haenen, G.R.M.M.; Westerveld, G.J.; Paquay, J.B.G.; Voss, H.P.; Bast, A.

    1997-01-01

    A new method for the quantification of the nitric oxide (NO) scavenging activity of compounds in aqueous solutions is described using an amperometric NO sensor. After correction for the spontaneous degradation of NO, second-order rate kinetics of the scavenging reaction are observed.

  18. Reaction between protein radicals and other biomolecules

    DEFF Research Database (Denmark)

    Østdal, H.; Davies, M.J.; Andersen, Henrik Jørgen

    2002-01-01

    The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2....... Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid...

  19. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    Science.gov (United States)

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  20. Laparoscopically assisted vaginal radical trachelectomy

    International Nuclear Information System (INIS)

    Bielik, T.; Karovic, M.; Trska, R.

    2013-01-01

    Purpose: Radical trachelectomy is a fertility-sparing procedure with the aim to provide adequate oncological safety to patients with cervical cancer while preserving their fertility. The purpose of this study was to retrospectively evaluate, in a series of 3 patients, the feasibility, morbidity, and safety of laparoscopically assisted vaginal radical trachelectomy for early cervical cancer. Patients and Methods: Three non consecutive patients with FIGO stage IA1 and IB1 cervical cancer was evaluated in a period of years 2008 - 2011. The patients underwent a laparoscopic pelvic lymphadenectomy and radical parametrectomy class II procedure according to the Piver classification. The section of vaginal cuff, trachelectomy, permanent cerclage and isthmo-vaginal anastomosis ware realised by vaginal approach. Results: The median operative time, the median blood loss and the mean number of resected pelvic nodes was comparable with published data. Major intraoperative complications did not occur and no patient required a blood transfusion. The median follow-up time was 33 (38-59) months. One vaginal recurrence occurred in 7 months after primary surgery. The patient was underwent a radicalisation procedure and adjuvant oncologic therapy and now is free of disease. Conclusions: Laparoscopically assisted vaginal radical trachelectomy (LAVRT)may be an alternative in fertility-preserving surgery for early cervical cancer. The procedure offers patients potential benefits of minimally invasive surgery with adequate oncological safety, but it should be reserved for oncologic surgeons trained in advanced laparoscopic procedures. (author)

  1. Is Radical Innovation Management Misunderstood?

    DEFF Research Database (Denmark)

    Kristiansen, Jimmi Normann; Gertsen, Frank

    2015-01-01

    This paper poses a critical view on radical innovation (RI) management research and practice. The study investigates how expected RI performance influences firms’ under- standing of their RI capability. RI performance is often based on output measures such as market shares or fiscal return...

  2. Exploring the Theories of Radicalization

    Directory of Open Access Journals (Sweden)

    Maskaliūnaitė Asta

    2015-12-01

    Full Text Available After the London bombings in July 2005, the concern of terrorism scholars and policy makers has turned to “home-grown” terrorism and potential for political violence from within the states. “Radicalization” became a new buzz word. This article follows a number of reviews of the literature on radicalization and offers another angle for looking at this research. First, it discusses the term “radicalization” and suggests the use of the following definition of radicalization as a process by which a person adopts belief systems which justify the use of violence to effect social change and comes to actively support as well as employ violent means for political purposes. Next, it proposes to see the theories of radicalization focusing on the individual and the two dimensions of his/her motivation: whether that motivation is internal or external and whether it is due to personal choice or either internal (due to some psychological traits or external compulsion. Though not all theories fall neatly within these categories, they make it possible to make comparisons of contributions from a variety of different areas thus reflecting on the interdisciplinary nature of the study of terrorism in general and radicalization as a part of it.

  3. Ultrasound-induced radical polymerization

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Kemmere, M.F.; Keurentjes, J.T.F.

    2004-01-01

    Sonochemistry comprises all chemical effects that are induced by ultrasound. Most of these effects are caused by cavitations, ie, the collapse of microscopic bubbles in a liquid. The chemical effects of ultrasound include the formation of radicals and the enhancement of reaction rates at ambient

  4. Erectile function after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Frey, Anders; Jakobsen, Henrik

    2016-01-01

    collected database and a cross-sectional, questionnaire-based study in patients following radical prostatectomy. Erectile function was assessed with the IIEF-5 and the question "Is your erectile function as good as before the surgery (yes/no)". Patients were included if they were sexually active before...

  5. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  6. 40 CFR 721.2275 - N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false N,N,Nâ²,Nâ²-Tetrakis(oxi-ranyl- methyl... Significant New Uses for Specific Chemical Substances § 721.2275 N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3... chemical substance identified as N,N,N′,N′-tetrakis(oxiranylmethyl)-1,3-cyclohexanedimethanamine (P-84-7...

  7. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    Directory of Open Access Journals (Sweden)

    Jaime M Beecroft

    2006-01-01

    Full Text Available BACKGROUND: The OxyMask (Southmedic Inc, Canada is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA in patients with chronic hypoxemia.

  8. The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    Directory of Open Access Journals (Sweden)

    M. L. Perepechaeva

    2014-01-01

    Full Text Available The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD. The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor and Nrf2 (nuclear factor erythroid 2-related factor 2, which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.

  9. Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Ye, Huan; Yin, Ya-Xia; Guo, Yu-Guo

    2015-01-01

    Highlights: • A cost-effective chemical activation method to prepare porous carbon nanospheres. • Carbon nanospheres with bimodal microporous structure show high specific area and large micropore volume. • The S/C composite cathodes with in-situformed S−C bond exhibit high sulfur activity with a reversible capacity of 1000 mA h g −1 . • S−C bond enables well confinement on sulfur and polysulfides. - Abstract: Lithium–sulfur batteries are highly desired because of their characteristics such as high energy density. However, the applications of Li-S batteries are limited because they exist dissolution of polysulfides into electrolytes. This study reports the preparation of sulfur cathodes by using bimodal microporous (0.5 nm and 0.8 nm to 2.0 nm) carbon spheres with high specific area (1992 m 2 g −1 ) and large micropore volume (1.2 g cm −1 ), as well as the encapsulation of polysulfides via formation of carbon–sulfur bonds in a sealed vacuum glass tube at high temperature. Given that sulfur and polysulfides are well confined by the S−C bond, the shuttle effect is effectively suppressed. The prepared S/C cathodes with a sulfur loading of up to 75% demonstrate high sulfur activity with reversible capacity of 1000 mA h g −1 at the current density of 0.1 A g −1 and good cycling stability (667 mA h g −1 after 100 cycles).

  10. X-ray absorption spectroscopy of ultramarine pigments: A new analytical method for the polysulfide radical anion S3- chromophore

    International Nuclear Information System (INIS)

    Fleet, Michael E.; Liu, Xi

    2010-01-01

    Blue and mauve ultramarine artists' pigments and their heat-treated products have been investigated by sulfur K-edge X-ray absorption. X-ray absorption near-edge structure spectra are dominated by features of reduced sulfur and sulfate species. There is also a pre-peak at about 2468.0 eV which reflects the presence of the unpaired electron on the polysulfide radical anion (S 3 - ). Pre-peak intensity is directly proportional to the depth of blue coloration, and provides a new, independent method for estimating the proportion of ultramarine cage sites occupied by the blue chromophore. The occupancy of the polysulfide radical anion S 3 - is estimated to be 33% in an intense ultramarine blue pigment, 22% in a dark blue ultramarine pigment, and 1% in deep royal blue lazurite from Afghanistan. The more efficient development of color in lazurite is attributed to extensive annealing of the mineral structure in the natural environment.

  11. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  12. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  13. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  14. Sulfur-Kβ /sub emission studies on sulfur-bearing heterocycles

    International Nuclear Information System (INIS)

    Phillips, D.R.; Andermann, G.G.; Fujiwara, F.

    1986-01-01

    Sulfur-K/β /sub x-ray fluorescence spectroscopy (XFS) has been used to study the electronic structure and bonding in sulfur-bearing heterocycles. XFS not only has the capability of experimentally measuring valence electron energies in molecular species, but can also provide intensity data which can help define the nature of the molecular orbitals defined by the electrons. This report discusses the feasibility of using XFS as an analytical tool for the determination of total and specific sulfur heterocycle content in samples. A variety of compounds were studied. These include thiophene, thiophene derivatives, tetranydrothiophene, several more complex saturated and unsaturated sulfur heterocycles, and heterocycles containing both sulfur and nitrogen. The sulfur-K/β /sub spectra were obtained using a double crystal spectrometer which provided an instrumental resolution of about 0.7 eV

  15. Effects of the Oxygen-Carrying Solution OxyVita C on the Cerebral Microcirculation and Systemic Blood Pressures in Healthy Rats

    Directory of Open Access Journals (Sweden)

    Rania Abutarboush

    2014-11-01

    Full Text Available The use of hemoglobin-based oxygen carriers (HBOC as oxygen delivering therapies during hypoxic states has been hindered by vasoconstrictive side effects caused by depletion of nitric oxide (NO. OxyVita C is a promising oxygen-carrying solution that consists of a zero-linked hemoglobin polymer with a high molecular weight (~17 MDa. The large molecular weight is believed to prevent extravasation and limit NO scavenging and vasoconstriction. The aim of this study was to assess vasoactive effects of OxyVita C on systemic blood pressures and cerebral pial arteriole diameters. Anesthetized healthy rats received four intravenous (IV infusions of an increasing dose of OxyVita C (2, 25, 50, 100 mg/kg and hemodynamic parameters and pial arteriolar diameters were measured pre- and post-infusion. Normal saline was used as a volume-matched control. Systemic blood pressures increased (P ≤ 0.05 with increasing doses of OxyVita C, but not with saline. There was no vasoconstriction in small (<50 µm and medium-sized (50–100 µm pial arterioles in the OxyVita C group. In contrast, small and medium-sized pial arterioles vasoconstricted in the control group. Compared to saline, OxyVita C showed no cerebral vasoconstriction after any of the four doses evaluated in this rat model despite increases in blood pressure.

  16. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination...

  17. Study on the Influence of Sulfur Fumigation on Chemical ...

    African Journals Online (AJOL)

    Purpose: To study the influence of different sulfur fumigation time and ... after sulfur fumigation though sulfur fumigation time and dosage were at low levels – 2 h ... Conclusion: Sulfur fumigation is not a desirable method for field processing of ...

  18. 46 CFR 151.50-21 - Sulfuric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity) (59.8...

  19. Chemical protection of bacteria and cultured mammalian cells by sulfur--containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Antoku, S [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1975-03-01

    Protection by sulfur-containing compounds was studied using bacteria E. coli Bsub(H) and cultured mouse leukemic cells, L 5178 Y. The protective mechanisms are discussed. The dose reduction factors of non-sulfhydryl compounds observed in the bacteria were the same as those observed in mammalian cells, and the protective activity of these compounds was proportional to their reaction rates with hydroxyl radicals. On the other hand, sulfhydryl compounds, with the exception of glutathione, offered a much greater protection than was anticipated from their radical scavenging activity. From studies under anoxia, the protection of cysteine was explained by its OH scavenging and competition with oxygen. In addition, for MEA, protection against the direct action of radiation was suggested. This was supported by the significant protection in the frozen state.

  20. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  1. Use of sulfur concrete for radioecological problems solution in Kazakhstan

    International Nuclear Information System (INIS)

    Takibaev, Zh.; Belyashov, D.; Vagin, S.

    2001-01-01

    At present during intensive development of oil and gas fields in Kazakhstan a lot amount of sulfur is extracting. The problem of sulfur utilization demands its immediate solution. One of the perspective trends of sulfur utilization is use it in production of sulfur polymer concrete. It is well known, that encapsulation of low level radioactive and toxic wastes in sulfur polymer concrete and design from it radiation protection facilities have good perspectives for solution of radioecological problems. Sulfur concrete has high corrosion and radiation stability, improved mechanical and chemical properties. Unique properties of sulfur concrete allow to use it in materials ensuring protection from external irradiation

  2. Electrochemical reduction of sulfur dioxide in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' ev, A.S.; Gavrilova, A.A.; Kolosnitsyn, V.S.; Nikitin, Yu.E.

    1985-09-01

    Solutions of sulfur dioxide in aproptic media are promising electrolyte oxidizing agents for chemical current sources with anodes of active metals. This work describes the electrochemical reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte which was investigated by the methods of voltamperometry and chronopotentiometry. The dependence of the current of the cathodic peak on the concentration of the supporting electrolyte salts, sulfur dioxide and water, was studied. On the basis of the data obtained, a hypothesis was advanced on the nature of the limiting step. The investigation showed that at low polarizing current densities, a substantial influence on the reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte is exerted by blockage of the electrode surface by sparingly soluble reaction products.

  3. Efficient Electrolytes for Lithium–Sulfur Batteries

    International Nuclear Information System (INIS)

    Angulakshmi, Natarajan; Stephan, Arul Manuel

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  4. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  5. Efficient Electrolytes for Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Angulakshmi, Natarajan [Department of Materials Science and Engineering, Politecnico di Torino, Turin (Italy); Stephan, Arul Manuel, E-mail: arulmanuel@gmail.com [Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi (India)

    2015-05-21

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polymer, and (iv) glass-ceramic electrolytes. This article presents the properties, advantages, and limitations of each type of electrolytes. Also, the importance of electrolyte additives on the electrochemical performance of Li–S cells is discussed.

  6. Environmental behavior and analysis of agricultural sulfur.

    Science.gov (United States)

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted. © 2015 Society of Chemical Industry.

  7. Properties of sulfur-extended asphalt concrete

    Directory of Open Access Journals (Sweden)

    Gladkikh Vitaliy

    2016-01-01

    Full Text Available Currently, increased functional reliability of asphalt concrete coatings associated with various modifying additives that improve the durability of pavements. Promising builder is a technical sulfur. Asphalt concrete, made using a complex binder consisting of petroleum bitumen and technical sulfur, were calledsSulfur-Extended Asphalt Concrete. Such asphalt concrete, due to changes in the chemical composition of particulate and bitumen, changes the intensity of the interaction at the interface have increased rates of physical and mechanical properties. There was a lack of essential knowledge concerning mechanical properties of the sulfur-bituminous concrete with such an admixture; therefore, we had carried out the necessary examination. It is revealed that a new material satisfies local regulations in terms of compressive and tensile strength, shear resistance, and internal friction.

  8. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  9. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    Science.gov (United States)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  10. Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water

    International Nuclear Information System (INIS)

    Nakajima, Hayato; Imai, Yoshiyuki; Kasahara, Seiji; Kubo, Shinji; Onuki, Kaoru

    2007-01-01

    Effect of sulfur dioxide partial pressure on the reaction of iodine, sulfur dioxide and water, which is a unit reaction in the IS process for thermochemical hydrogen production, was studied experimentally at 323 K under iodine saturation. Quasi-equilibrium state was observed in the presence of sulfur dioxide gas at constant pressure. The composition of the poly-hydriodic acid solution formed was discussed assuming an ideal desulfurization by the reverse reaction of the Bunsen reaction. The value of HI/(HI+H 2 O) of the desulfurized solution was large at high sulfur dioxide pressure and reached the maximum of 15.7 ± 0.3 mol%. (author)

  11. Sensing sulfur oxides and other sulfur bearing pollutants with solid electrolyte pellets. I. Gas concentration cells

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, A M; Gauthier, J M

    1977-01-01

    A new sensing technique using a solid electrolyte has been demonstrated for sulfur-bearing pollutants. Based on potentiometric measurements across a pellet of potassium sulfate, this sensor allows concentrations of sulfur dioxides, sulfur trioxide, hydrogen sulfide, methyl mercaptan and carbonyl sulfide in air to be measured with accuracy. Its operational concentration range at the present time is 0.1 ppM up to at least 10,000 ppM. The presence of other common pollutants such as carbon dioxide, methane, nitric oxide and nitrogen dioxide does not interfere with the measurement of air samples containing sulfur-bearing pollutants.

  12. O conceito de mal radical The concept of radical evil

    Directory of Open Access Journals (Sweden)

    Adriano Correia

    2005-01-01

    Full Text Available A noção de mal radical aparece em Kant no contexto da discussão da religião nos limites da simples razão e busca dar conta da complexa relação entre o respeito pela lei moral e o amor-próprio na definição do móbil para a ação. Na busca por identificar o fundamento da propensão para o mal no homem, Kant se vê diante da dificuldade de ter de articular natureza e liberdade, e ainda que a noção de mal radical possa conservar algumas ambigüidades, permite conceber uma noção de responsabilidade compatível com uma inata propensão para o mal. Neste texto busco explicitar alguns passos fundamentais na construção do conceito por Kant.The concept of radical evil appears in Kant's theory when he discusses the religion in the limits of the mere reason and aims explain the complex relationship between respect for the moral law and the self-love, for establish the motive of the action. By aiming identify the basis of human inclination to evil, Kant is faced with the trouble of have to put nature and freedom in connection. Despite of the concept of radical evil retain some ambiguity, it allows conceive a notion of responsibility suitable to an inherent inclination to evil. In this paper is my purpose to explain some basic moments of Kantian formulation of that notion.

  13. Detection of free radicals in gamma-irradiated soybean paste and model system by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Lee, E.-J.; Volkov, Vitaly I.; Byun, M.-W.; Lee, C.-H.

    2002-01-01

    We have investigated ESR spectra of fermented soybean paste irradiated at 77 K and compared with those of soybean protein isolate and soybean oil. The influences of irradiation dose, moisture content and heating after irradiation on the free radical concentration and species were examined. Four different carbon type free radicals, FR1-FR4, were identified as the product of amino acid decomposition. In the case of FR1, the doublet line arises from the hydrogen atom on the β-carbon adjacent to the carbonyl free radical. It disappeared at 150 K. FR2 was most abundant and disappeared at 190 K in wet soybean paste (WSP) and at 210 K in dry soybean paste (DSP), respectively. The radical FR4 originated from decarboxylation and deamination of amino acids, which disappeared at 210 K in both WSP and DSP. FR3 was assumed to be formed by the damage of amino acid side chains. The radical · OH was originated from water molecules, and was not observed in dry system. Sulfur radical was stable even at room temperature observed in both wet and dry systems. Aldehyde radical must be originated from the chemical reactions of enzymatic hydrolysates of soybean

  14. Reaction of hypochlorite with amino acids and peptides : EPR evidence for rapid rearrangement and fragmentation of nitrogen-centred radicals

    International Nuclear Information System (INIS)

    Hawkins, C.L.; Davies, M.J.

    1998-01-01

    Various amino acid side chains have been shown to be particularly susceptible to attack and modification by hypochlorite (HOCl). It is known that tyrosine is readily chlorinated by HOCl to give 3-chlorotyrosine and this product has been employed as a marker of HOCl-mediated damage to proteins. Cysteine and methionine react rapidly with HOCl to give oxy acids and cystine (from cysteine) and sulphoxides (from methionine). Lysine and amino acids which lack the above functional groups also react with HOCl via the free amino group which results in the generation of unstable chloramine intermediates; subsequent decomposition of these species gives NH 3 , CO 2 and aldehydes. While the products of reaction of HOCl with amino acids and peptides are reasonably well characterised, the mechanism(s) by which these products arise is less well understood. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping and UV/visible spectroscopy has been employed to examine the reaction of HOCl with amino acids and some small peptides. Reaction of HOCl with N-acetyl amino acids or small peptides gives radicals predominantly at α-carbon sites via reaction at N-terminal free amino groups or amide (peptide) bonds. It is proposed that these carbon-centred radicals are produced as a result of the rearrangement of initial nitrogen-centred radicals formed on cleavage of the N-CI bond of the chloramine/chloramide species by a 1,2-shift reaction

  15. The role of SO{sub 4}{sup 2−} surface distribution in arsenic removal by iron oxy-hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Tresintsi, S. [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Simeonidis, K., E-mail: ksime@physics.auth.gr [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece); Pliatsikas, N.; Vourlias, G.; Patsalas, P. [Laboratory of Applied Physics, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Mitrakas, M. [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    This study investigates the contribution of chemisorbed SO{sub 4}{sup 2−} in improving arsenic removal properties of iron oxy-hydroxides through an ion-exchange mechanism. An analytical methodology was developed for the accurate quantification of sulfate ion (SO{sub 4}{sup 2−}) distribution onto the surface and structural compartments of iron oxy-hydroxides synthesized by FeSO{sub 4} precipitation. The procedure is based on the sequential determination of SO{sub 4}{sup 2−} presence in the diffuse and Stern layers, and the structure of these materials as defined by the sulfate-rich environments during the reaction and the variation in acidity (pH 3–12). Physically sorbed SO{sub 4}{sup 2−}, extracted in distilled water, and physically/chemically adsorbed ions on the oxy-hydroxide's surface leached by a 5 mM NaOH solution, were determined using ion chromatography. Total sulfate content was gravimetrically measured by precipitation as BaSO{sub 4}. To validate the suggested method, results were verified by X-ray photoelectron and Fourier-transformed infrared spectroscopy. Results showed that low precipitation pH-values favor the incorporation of sulfate ions into the structure and the inner double layer, while under alkaline conditions ions shift to the diffuse layer. - Graphical abstract: An analytical methodology for the accurate quantification of sulfate ions (SO{sub 4}{sup 2−}) distribution onto the diffuse layer, the Stern layer and the structure of iron oxy-hydroxides used as arsenic removal agents. - Highlights: • Quantification of sulfate ions presence in FeOOH surface compartments. • Preparation pH defines the distribution of sulfates. • XPS and FTIR verify the presence of SO{sub 4}{sup 2−} in the structure, the Stern layer the diffuse layer of FeOOH. • Chemically adsorbed sulfates control the arsenic removal efficiency of iron oxyhydroxides.

  16. Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage

    OpenAIRE

    Hanak, Dawid Piotr; Manovic, Vasilije

    2017-01-01

    Around 43% of the cumulative CO2 emissions from the power sector between 2012 and 2050 could be mitigated through implementation of carbon capture and storage, and utilisation of renewable energy sources. Energy storage technologies can increase the efficiency of energy utilisation and thus should be widely deployed along with low-emission technologies. This study evaluates the techno-economic performance of cryogenic O2 storage implemented in an oxy-combustion coal-fired power plant as a mea...

  17. Analysis of cumulative energy consumption in an oxy-fuel combustion power plant integrated with a CO2 processing unit

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Gładysz, Paweł

    2014-01-01

    Highlights: • Oxy-fuel combustion is promising CCS technology. • Sum of direct and indirect energy consumption ought to be consider. • This sum is expressed by cumulative energy consumption. • Input–output analysis is adequate method of CCS modeling. - Abstract: A balance of direct energy consumption is not a sufficient tool for an energy analysis of an oxy-fuel combustion power plant because of the indirect consumption of energy in preceding processes in the energy-technological set of interconnections. The sum of direct and indirect consumption expresses cumulative energy consumption. Based on the “input–output” model of direct energy consumption the mathematical model of cumulative energy consumption concerning an integrated oxy-fuel combustion power plant has been developed. Three groups of energy carriers or materials are to be distinguished, viz. main products, by-products and external supplies not supplementing the main production. The mathematical model of the balance of cumulative energy consumption based on the assumption that the indices of cumulative energy consumption of external supplies (mainly fuels and raw materials) are known a’priori. It results from weak connections between domestic economy and an integrated oxy-fuel combustion power plant. The paper presents both examples of the balances of direct and cumulative energy consumption. The results of calculations of indices of cumulative energy consumption concerning main products are presented. A comparison of direct and cumulative energy effects between three variants has been worked out. Calculations of the indices of cumulative energy consumption were also subjected to sensitive analysis. The influence of the indices of cumulative energy consumption of external supplies (input data), as well as the assumption concerning the utilization of solid by-products of the combustion process have been investigated

  18. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  19. High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

    OpenAIRE

    Chakroun, Nadim Walid; Ghoniem, Ahmed F

    2015-01-01

    The growing concerns over global warming and carbon dioxide emissions have driven extensive research into novel ways of capturing carbon dioxide in power generation plants. In this regard, oxy-fuel combustion has been considered as a promising technology. One unconventional fuel that is considered is sour gas, which is a mixture of methane, hydrogen sulfide and carbon dioxide. In this paper, carbon dioxide is used as the dilution medium in the combustor and different combined cycle configurat...

  20. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  2. Plutonium oxides analysis. Sulfur potentiometric analysis

    International Nuclear Information System (INIS)

    Anon.

    Total sulfur determination (sulfur, sulfates, sulfides ...) in plutonium oxides, suitable for sulfate ion content between 0.003 percent to 0.2 percent, by dissolution in nitric hydrofluoric acid, nitrates elimination, addition of hydrochloric acid and reduction in hydrogen sulfide which is carried by an inert gas and neutralized by sodium hydroxide. Sodium sulfide is titrated with mercuric acetate by constant intensity potentiometry [fr

  3. Free radicals in chemical carcinogenesis.

    Science.gov (United States)

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  4. Muonium radicals in benzene-styrene mixtures

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.W.; Walker, D.C.

    1984-01-01

    Muonium radicals were observed through their μ + SR precession frequencies in high transverse magnetic fields in pure benzene, pure styrene and their mixtures, all as liquids at room temperature. In benzene-styrene mixtures, the radicals obtained in each pure liquid are both present, so no slow (10 -9 -10 -5 s) intermolecular exchange occurs; but strong selectivity was found with the formation of the radical from styrene being about eight-times more probable than the radical from benzene. (Auth.)

  5. Ocular Effects of Sulfur Mustard

    Directory of Open Access Journals (Sweden)

    Yunes Panahi

    2013-06-01

    Full Text Available Purpose: To review current knowledge about ocular effects of sulfur mustard (SM and the associated histopathologic findings and clinical manifestationsMethods: Literature review of medical articles (human and animal studies was accomplished using PubMed, Scopus and ISI databases. A total of 274 relevant articles in English were retrieved and reviewed thoroughly.Results: Eyes are the most sensitive organs to local toxic effects of mustard gas. Ocular injuries are mediated through different toxic mechanisms including: biochemical damages, biomolecular and gene expression modification, induction of immunologic and inflammatory reactions, disturbing ultrastructural architecture of the cornea, and long-lasting corneal denervation. The resulting ocular injuries can roughly be categorized into acute or chronic complications. Most of the patients recover from acute injuries, but a minority of victims will suffer from chronic ocular complications. Mustard gas keratopathy (MGK is a devastating late complication of SM intoxication that proceeds from limbal stem cell deficiency (LSCD.Conclusion: SM induces several different damaging changes in case of ocular exposure; hence leading to a broad spectrum of ocular manifestations in terms of severity, timing and form. Unfortunately, no effective strategy has been introduced yet to inhibit or restore these damaging changes.

  6. Sulfur mustard and respiratory diseases.

    Science.gov (United States)

    Tang, Feng Ru; Loke, Weng Keong

    2012-09-01

    Victims exposed to sulfur mustard (HD) in World War I and Iran-Iraq war, and those suffered occupational or accidental exposure have endured discomfort in the respiratory system at early stages after exposure, and marked general physical deterioration at late stages due to pulmonary fibrosis, bronchiolitis obliterans or lung cancer. At molecule levels, significant changes of cytokines and chemokines in bronchoalveolar lavage and serum, and of selectins (in particular sE-selectin) and soluble Fas ligand in the serum have been reported in recent studies of patients exposed to HD in Iran-Iraq war, suggesting that these molecules may be associated with the pathophysiological development of pulmonary diseases. Experimental studies in rodents have revealed that reactive oxygen and nitrogen species, their product peroxynitrite (ONOO(-)), nitric oxide synthase, glutathione, poly (adenosine diphosphate-ribose) polymerase, activating protein-1 signaling pathway are promising drug targets for preventing HD-induced toxicity, whereas N-acetyl cysteine, tocopherols, melatonin, aprotinin and many other molecules have been proved to be effective in prevention of HD-induced damage to the respiratory system in different animal models. In this paper, we will systemically review clinical and pathophysiological changes of respiratory system in victims exposed to HD in the last century, update clinicians and researchers on the mechanism of HD-induced acute and chronic lung damages, and on the relevant drug targets for future development of antidotes for HD. Further research directions will also be proposed.

  7. Effect of sulfur dioxide on proteins of the vegetable organism

    Energy Technology Data Exchange (ETDEWEB)

    Reckendorfer, P; Beran, F

    1931-01-01

    Experiments were performed to determine the effects of sulfur dioxide on red clover in a controlled environment. An increase in the concentration of sulfur dioxide caused a significant decrease in the digestible protein. However, after the sulfur dioxide was discontinued, there was a decrease in the indigestible protein. The leaves showed an increase in spotting with an increase in sulfur dioxide concentration. Chemical analysis of the soil revealed a higher sulfur content in these experiments.

  8. Sulfur sources in protein supplements for ruminants

    Directory of Open Access Journals (Sweden)

    Cássio José da Silva

    2014-10-01

    Full Text Available The present study evaluates the efficiency of different sulfur sources for ruminant nutrition. The fiber digestibility and the amino acid profile were analyzed in the duodenal digesta of crossbred steers fed Brachiaria dictyoneurahay. The sources utilized were elemental sulfur (ES70S, elemental sulfur (ES98S; calcium sulfate in hydrated (HCS, CaSO4.2H2O, and anhydrous (ACS, CaSO4, forms; and ammonium sulfate (AS, (NH42SO4, keeping a nitrogen:sulfur ratio of 11:1. The iso-protein supplements had 50% of protein in the total dry matter (DM. Five Holstein × Zebu steers, which were fistulated in the rumen and abomasum, were distributed in a 5 × 5 Latin square. The different sulfur sources in the supplement did not affect any of the evaluated nutritional factors, such as intake of hay dry matter and protein supplement, crude protein (CP, neutral detergent fiber corrected for ash and protein (NDFap, organic matter (OM, non-fibrous carbohydrate (NFC, ether extract (EE, total digestible nutrients (TDN, NDFap and CP digestibility coefficients, ruminal pH, and ruminal ammonia concentration. The concentrations of amino acids available in the abomasal digesta did not differ significantly in the tested diets. The sulfur sources evaluated in the present study are suitable as supplement for cattle, and their employment may be important to avoid environmental contaminations.

  9. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    International Nuclear Information System (INIS)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E. Jr.

    2007-01-01

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite

  10. The effects of de-humidification and O{sub 2} direct injection in oxy-PC combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.G.; Na, I.H.; Lee, J.W.; Chae, T.Y.; Yang, W. [Korea Insitute of Industrial Technology, Seoul (Korea, Republic of). Energy System R and D Dept.

    2013-07-01

    This study is aimed to derive effects of de-humidification and O{sub 2} direct injection in oxy-PC combustion system. Temperature distribution and flue gas composition were observed for various air and oxy-fuel conditions such as effect of various O{sub 2} concentration of total oxidant, O{sub 2} concentration of primary stream and O{sub 2} direct injection through 0-D heat and mass balance calculation and experiments in the oxy-PC combustion system of 0.3 MW scale in KITECH (Korea Institute of Industrial Technology). Flame attachment characteristic related to O{sub 2} direct injection was also observed experimentally. We found that FEGT (furnace exit gas temperature) of 100% de-humidification to oxidizer is lower than humidification condition; difference between two conditions is lower than 20 C in all cases. The efficiency changing of combustion was negligible in O{sub 2} direct injection. But O{sub 2} direct injection should be carefully designed to produce a stable flame.

  11. Free radicals in health and disease

    International Nuclear Information System (INIS)

    Gonet, B.

    1993-01-01

    Free radicals appear in the cells as the result of exogenic factors (ionizing radiation, UV) or reactions naturally occurring in the cell. Free radical reactions may cause destruction of macromolecules (DNA, lipids, proteins). Free radical pathology is important in many diseases and aging processes in organisms

  12. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)

    1986-01-01

    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  13. Radical carbonylations using a continuous microflow system

    Directory of Open Access Journals (Sweden)

    Takahide Fukuyama

    2009-07-01

    Full Text Available Radical-based carbonylation reactions of alkyl halides were conducted in a microflow reactor under pressurized carbon monoxide gas. Good to excellent yields of carbonylated products were obtained via radical formylation, carbonylative cyclization and three-component coupling reactions, using tributyltin hydride or TTMSS as a radical mediator.

  14. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  15. Radiation and convective heat transfer, and burnout in oxy-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Smart; P. O' Nions; G.S. Riley [RWE npower, Swindon (United Kingdom)

    2010-09-15

    Measurements of radiative and convective heat transfer, and carbon-in-ash have been taken on the RWEn 0.5 MWth combustion test facility (CTF) firing two different coals under oxy-fuel firing conditions. The two coals fired were a Russian Coal and a South African Coal. Recycle ratios were varied within the range of 65-75% dependent on coal. Furnace exit O{sub 2} values were maintained at 3% and 6% for the majority of tests. Air firing tests were also performed to generate baseline data. The work gives a comprehensive insight into the effect of oxy-fuel combustion on both radiative and convective heat transfer, and carbon-in-ash compared to air under dry simulated recycle conditions. Results have shown peak radiative heat flux values are inversely related to the recycle ratio for the two coals studied. Conversely, the convective heat flux values increase with increasing recycle ratio. It was also observed that the axial position of the peak in radiative heat flux moves downstream away from the burner as recycle ratio is increased. A 'working range' of recycle ratios exists where both the radiative and convective heat fluxes are comparable with air. Carbon-in-ash (CIA) was measured for selected conditions. For air firing of Russian Coal, the CIA for follows and expected trend with CIA decreasing with increasing furnace exit O{sub 2}. The CIA data for the two recycle ratios of 72% and 68% for the same coal show that the CIA values are lower than for air firing for corresponding furnace exit O{sub 2} levels and vary little with the value of furnace exit O{sub 2}. CIA measurements were taken for the South African Coal for a range of recycle ratios at 3% and 6% furnace exit O{sub 2} levels. Results indicate that the CIA values are lower for higher furnace exit O{sub 2}. 32 refs., 11 figs., 1 tab.

  16. A muoniated radical in selenium

    International Nuclear Information System (INIS)

    Reid, I.D.; Cox, S.F.J.; Jayasooriya, U.A.; Zimmermann, U.

    2003-01-01

    We report new 0.3 T transverse-field μSR experiments in crystalline Se which show only a small, slowly relaxing muon signal at 300 K, accounting for about 30% of the incoming muon polarization. However, at 90 K signals are observed around 74 and 157 MHz, characteristic of a radical with a hyperfine coupling of 231 MHz. Very fast relaxation which increases with temperature makes these signals impossible to follow beyond 200 K. Above 400 K a quickly relaxing diamagnetic signal becomes visible, its relaxation falling with increasing temperature. In the melt (>490 K) just a single non-relaxing diamagnetic signal is seen. These observations may be explained by electron spin-exchange with a muoniated radical

  17. DNA Binding Hydroxyl Radical Probes

    OpenAIRE

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different c...

  18. Anatomical landmarks of radical prostatecomy.

    Science.gov (United States)

    Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Horn, Lars-Christian; Neuhaus, Jochen; Constantinides, Costantinos; Liatsikos, Evangelos N

    2007-03-01

    In the present study, we review current literature and based on our experience, we present the anatomical landmarks of open and laparoscopic/endoscopic radical prostatectomy. A thorough literature search was performed with the Medline database on the anatomy and the nomenclature of the structures surrounding the prostate gland. The correct handling of puboprostatic ligaments, external urethral sphincter, prostatic fascias and neurovascular bundle is necessary for avoiding malfunction of the urogenital system after radical prostatectomy. When evaluating new prostatectomy techniques, we should always take into account both clinical and final oncological outcomes. The present review adds further knowledge to the existing "postprostatectomy anatomical hazard" debate. It emphasizes upon the role of the puboprostatic ligaments and the course of the external urethral sphincter for urinary continence. When performing an intrafascial nerve sparing prostatectomy most urologists tend to approach as close to the prostatic capsula as possible, even though there is no concurrence regarding the nomenclature of the surrounding fascias and the course of the actual neurovascular bundles. After completion of an intrafascial technique the specimen does not contain any periprostatic tissue and thus the detection of pT3a disease is not feasible. This especially becomes problematic if the tumour reaches the resection margin. Nerve sparing open and laparoscopic radical prostatectomy should aim in maintaining sexual function, recuperating early continence after surgery, without hindering the final oncological outcome to the procedure. Despite the different approaches for radical prostatectomy the key for better results is the understanding of the anatomy of the bladder neck and the urethra.

  19. Radical Smiles Rearrangement: An Update

    Directory of Open Access Journals (Sweden)

    Ingrid Allart-Simon

    2016-07-01

    Full Text Available Over the decades the Smiles rearrangement and its variants have become essential synthetic tools in modern synthetic organic chemistry. In this mini-review we summarized some very recent results of the radical version of these rearrangements. The selected examples illustrate the synthetic power of this approach, especially if it is incorporated into a domino process, for the preparation of polyfunctionalized complex molecules.

  20. Free radical reactions of daunorubicin

    International Nuclear Information System (INIS)

    Houee-Levin, C.

    1991-01-01

    Daunorubicin is an antitumor antibiotic activated in vivo by reduction. Its mechanism of action involves DNA and topoisomerase attack, but side effects are cytotoxicity related to free radical formation. Therefore the mechanism of the one-electron reduction of the drug and the reactions of the daunorubicin transients towards compounds of biological interest have been studied by the methods of radiolysis, in order to provide possible explanations of the drug mechanism of action. Their relative importance in cellular conditions is discussed [fr

  1. Geoscientists and the Radical Middle

    Science.gov (United States)

    Tinker, S. W.

    2015-12-01

    Addressing the great challenges facing society requires industry, government, and academia to work together. I call this overlap space, where compromises are made and real solutions determined, the Radical Middle. Radical because it can appear at times as if the loudest and most publicly influential voices lie outside of the actual solution space, content to provoke but not problem-solve. One key area where geoscientists can play a lead role in the Radical Middle is in the overlap between energy, the environment, and the economy. Globally, fossil fuels still represent 85% of the aggregate energy mix. As existing conventional oil and natural-gas reservoir production continues to slowly decline, unconventional reservoirs, led today by shale and other more expensive resources, will represent a growing part of the oil and gas production mix. Many of these unconventional reservoirs require hydraulic fracturing. The positive economic impact of hydraulic fracturing and associated natural gas and oil production on the United States economy is well documented and undeniable. Yet there are environmental concerns about fracking, and some states and nations have imposed moratoria. This energy-environment-economy space is ideal for leadership from the geosciences. Another such overlap space is the potential for geoscience leadership in relations with China, whose economy and global presence continue to expand. Although China is building major hydropower and natural-gas power plants, as well as nuclear reactors, coal is still king—with the associated environmental impacts. Carbon sequestration—onshore in brine and to enhance oil recovery, as well as offshore—could prove viable. It is vital that educated and objective geoscientists from industry, government, and academia leave their corners and work together in the Radical Middle to educate the public and develop and deliver balanced, economically sensible energy and environmental strategies.

  2. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available Acidithiobacillus caldus (A. caldus is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox system (omitting SoxCD, non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR. The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system.An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor was created and its growth abilities were measured in media using elemental sulfur (S(0 and tetrathionate (K(2S(4O(6 as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR of the wild type and the Δsor mutant in S(0 and K(2S(4O(6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO and heterodisulfide reductase (HDR, the truncated Sox pathway, and the S(4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media.An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.

  3. EPR spin trapping of protein radicals

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, Clare Louise

    2004-01-01

    Electron paramagnetic resonance (EPR) spin trapping was originally developed to aid the detection of low-molecular-mass radicals formed in chemical systems. It has subsequently found widespread use in biology and medicine for the direct detection of radical species formed during oxidative stress...... tumbling radicals are often broad and relatively poor in distinctive features, a number of techniques have been developed that allow a wealth of information to be obtained about the nature, site, and reactions of such radicals. This article summarizes recent developments in this area and reviews selected...... examples of radical formation on proteins....

  4. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  5. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    Science.gov (United States)

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Quantification of Discrete Oxide and Sulfur Layers on Sulfur-Passivated InAs by XPS

    National Research Council Canada - National Science Library

    Petrovykh, D. Y; Sullivan, J. M; Whitman, L. J

    2005-01-01

    .... The S-passivated InAs(001) surface can be modeled as a sulfur-indium-arsenic layer-cake structure, such that characterization requires quantification of both arsenic oxide and sulfur layers that are at most a few monolayers thick...

  7. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    of isotope exchange, specific radioactivities of the reduced sulfur pools were poorly defined and could not be used to calculate their rates of formation. Such isotope exchange reactions between the reduced inorganic sulfur compounds will affect the stable isotope distribution and are expected to decrease...

  8. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ....0 pounds of sulfur dioxide per million BTU actual heat input for the coal-fired boiler and 0.4... BTU actual heat input for coal-fired boiler C exiting through stack 5. (3) 2.24 pounds of sulfur dioxide per million BTU acutal heat input for coal-fired boiler D exiting through stack 6. (E) In lieu of...

  9. Sulfur and Oxygen Isotope Fractionation During Bacterial Sulfur Disproportionation Under Anaerobic Haloalkaline Conditions

    NARCIS (Netherlands)

    Poser, Alexander; Vogt, Carsten; Knöller, Kay; Sorokin, Dimitry Y.; Finster, Kai W.; Richnow, Hans H.

    2016-01-01

    Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic haloalkaline conditions was evaluated for the first time. Isotope enrichment factors of the strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 or 10 were −0.9‰ to −1‰ for

  10. Generation of oxy-hydrogen gas and its effect on performance of spark ignition engine

    Science.gov (United States)

    Patil, N. N.; Chavan, C. B.; More, A. S.; Baskar, P.

    2017-11-01

    Considering the current scenario of petroleum fuels, it has been observed that, they will last for few years from now. On the other hand, the ever increasing cost of a gasoline fuels and their related adverse effects on environment caught the attention of researchers to find a supplementary source. For commercial fuels, supplementary source is not about replacing the entire fuel, instead enhancing efficiency by simply making use of it in lesser amount. From the recent research that has been carried out, focus on the use of Hydrogen rich gas as a supplementary source of fuel has increased. But the problem related to the storage of hydrogen gas confines the application of pure hydrogen in petrol engine. Using oxy-hydrogen gas (HHO) generator the difficulties of storing the hydrogen have overcome up to a certain limit. The present study highlights on performance evaluation of conventional petrol engine by using HHO gas as a supplementary fuel. HHO gas was generated from the electrolysis of water. KOH solution of 3 Molar concentration was used which act as a catalyst and accelerates the rate of generation of HHO gas. Quantity of gas to be supplied to the engine was controlled by varying amount of current. It was observed that, engine performance was improved on the introduction of HHO gas.

  11. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.

    Science.gov (United States)

    Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M

    2014-01-01

    Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.

  12. 4′,5-Dihy­droxy-7-meth­oxy­flavanone dihydrate

    Science.gov (United States)

    Brito, Iván; Bórquez, Jorge; Simirgiotis, Mario; Cárdenas, Alejandro; López-Rodríguez, Matías

    2012-01-01

    The title compound, C16H14O5·2H2O [systematic name: 5-hy­droxy-2-(4-hy­droxy­phen­yl)-7-meth­oxy­chroman-4-one dihydrate], is a natural phytoalexin flavone isolated from the native chilean species Heliotropium taltalense and crystallizes with an organic mol­ecule and two water mol­ecules in the asymmetric unit. The 5-hy­droxy group forms a strong intra­molecular hydrogen bond with the carbonyl group, resulting in a six-membered ring. In the crystal, the components are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. The 4-hy­droxy­phenyl benzene ring is bonded equatorially to the pyrone ring, which adopts a slightly distorted sofa conformation. The title compound is the hydrated form of a previously reported structure [Shoja (1990 ▶). Acta Cryst. C46, 1969–1971]. There are only slight variations in the mol­ecular geometry between the two compounds. PMID:22259537

  13. Nitrogen concentration profiles in oxy-nitrited high-speed steel

    International Nuclear Information System (INIS)

    Barcz, A.; Turos, A.; Wielunski, L.

    1976-01-01

    Nuclear microanalysis has been applied for the determination of in-depth concentration profiles of nitrogen in oxy-nitrided high-speed steel. The concentration profiles were deduced from measurements of the nitrogen content, determined by means of the 14 N(d,α) 12 C reaction for the set of initially identical samples after the removal of surface layers of sequentially increasing thicknesses. The 1.2 MeV deuterons were obtained from the Institute of Nuclear Research Van de Graaf accelerator LECH. The α-particles produced in the 14 N(d,α) 12 C reaction were detected by means of silicon surface barrier detector mounted at 150 deg C. Strong blocking of the nitrogen diffusion due to the presence of oxygen has been observed. The accuracy of nitrogen detection is of the order of 5% for nitrogen-rich regions and 10% for the matrix. However, the local non-uniformity of the steel may cause a spread of about 20% of the measured values. (T.G.)

  14. Coal-based oxy-fuel system evaluation and combustor development

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Biebuyck, C.; Anderson, R.; Pronske, K. [Clean Energy Systems Inc., Rancho Cordova, CA (United States)

    2007-07-01

    The core of the Clean Energy Systems, Inc. (CES) process is an oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include syngas from coal, refinery residues, or biomass; natural gas; landfill gas; glycoal solutions and oil/water emulsions. The combustion is performed at near-stoichiometric conditions in the presence of recycled water to produce a steam/CO{sub 2} mixture at high temperature and pressure. These combustion products power conventional or advanced steam turbines and may use modified gas turbines operating at high-temperatures for expansion at intermediate pressures. The gas exiting the turbines enter a condenser/separator where it is cooled, separating into its components, water and CO{sub 2}. The recovered CO{sub 2} is conditioned and purified as appropriate and sold or sequestered. Most of the water is recycled to the gas generator but excess high-purity water is produced and available for export. The development, evaluation and demonstration of the CES combustor are described. 8 refs., 4 figs., 1 tab.

  15. Comparison of Fuel-Nox Formation Characteristics in Conventional Air and Oxy fuel Combustion Conditions

    International Nuclear Information System (INIS)

    Woo, Mino; Park, Kweon Ha; Choi, Byung Chul

    2013-01-01

    Nitric oxide (NO x ) formation characteristics in non-premixed diffusion flames of methane fuels have been investigated experimentally and numerically by adding 10% ammonia to the fuel stream, according to the variation of the oxygen ratio in the oxidizer with oxygen/carbon dioxide and oxygen/nitrogen mixtures. In an experiment of co flow jet flames, in the case of an oxidizer with oxygen/carbon dioxide, the NO x emission increased slightly as the oxygen ratio increased. On the other hand, in case of an oxygen/nitrogen oxidizer, the NO x emission was the maximum at an oxygen ratio of 0.7, and it exhibited non-monotonic behavior according to the oxygen ratio. Consequently, the NO x emission in the condition of oxy fuel combustion was overestimated as compared to that in the condition of conventional air combustion. To elucidate the characteristics of NO x formation for various oxidizer compositions, 1a and 2a numerical simulations have been conducted by adopting one kinetic mechanism. The result of 2 simulation for an oxidizer with oxygen/nitrogen well predicted the trend of experimentally measured NO x emissions

  16. Youth De-Radicalization: A Canadian Framework

    Directory of Open Access Journals (Sweden)

    Hafal (Haval Ahmad

    2017-09-01

    Full Text Available Youth radicalization leading to violence has become a growing fear among Canadians, as terrorist attacks are carried out in Western states. Although Canada has suffered relatively fewer acts of violence, this fear has intensified and a de-radicalization strategy is needed in the Canadian context. In a qualitative case study methodology, interviews were conducted with school counsellors, religious leaders, and academics to explore solutions to youth radicalization. Youth de-radicalization approaches from the United Kingdom were analyzed and found that community-based initiatives were missing from programming. Social identity theory is used to explain that youth join radicalized groups to feel a sense of belonging and have to be provided an alternative and moderate group identity to de-radicalize. This study found youth de-radicalization in Canada is best served through a community collaboration approach.

  17. Chemical repair of trypsin-histidinyl radical

    International Nuclear Information System (INIS)

    Jovanovic, S.V.; Ruvarac, I.; Jankovic, I.; Josimovic, L.

    1991-01-01

    Oxyl radicals, such as hydroxyl, alkoxyl and peroxyl, react with biomolecules to produce bioradicals. Unless chemically repaired by suitable antioxidants, these bioradicals form stable products. This leads to loss of biological function of parent biomolecules with deleterious biological results, such as mutagenesis and cancer. Consequently, the understanding of the mechanisms of oxyl radical damage to biomolecules and chemical repair of such damage is crucial for the development of strategies for anticarcinogenesis and radioprotection. In this study the chemical repair of the histidinyl radical generated upon the trichloromethylperoxyl radical reaction with trypsin vas investigated by gamma radiolysis. The trypsin histidinyl radical is a resonance-stabilized heterocyclic free radical which was found to be unreactive with oxygen. The efficacy of the chemical repair of the trypsin-histidinyl radical by endogenous antioxidants which are electron donors (e.g. 5-hydroxytryptophan, uric acid) is compared to that of antioxidants which are H-atom donors (e. g. glutathione). 9 refs., 2 figs., 1 tab

  18. Terahertz Rotational Spectroscopy of the so Radical

    Science.gov (United States)

    Martin-Drumel, M. A.; Cuisset, A.; Eliet, S.; Mouret, G.; Hindle, F.; Pirali, O.

    2013-06-01

    Sulfur monoxide SO (X^3Σ^-) is a well-known interstellar radical identified in a wide variety of astrophysical environments. Due to its high reactivity and its role in chemical reactions involving O and S atoms, SO is also a reaction intermediate in combustion processes and chemistry of the Earth atmosphere. We have recorded pure rotational transitions of SO in the THz spectral range using synchrotron-based Fourier-Transform (FT) FIR and continous wave (CW) THz techniques. A FT-FIR spectrum of SO has been recorded at the AILES beamline of SOLEIL synchrotron in the spectral range 44-93 wn using a resolution of 0.001 wn allowing an accuracy on line position of 0.00007 wn (≃ 2 MHz). A multipass absorption discharge cell aligned to an absorption path length of 24 m has been used. A continuous electrical discharge (1 A / 980 V) in a flowing mixture of H_2S, He, H_2 and air (respectively at pressure of 0.01, 1.15, 0.14 and 0.06 mbar) was used to produce SO. On this spectrum, 102 transitions of SO have been identified with N=31 to 65. Among the observed lines, 99 are detected for the first time (22 new transitions belong to the HIFI spectral windows). Due to our limited instrumental resolution, transitions involving N ranging from 31 to 43 show unresolved fine structure triplets. Recently, in order to observe all fine structure components in the HIFI spectral windows, we have recorded a high resolution CW-THz spectrum of SO. At the time of the writing, this spectrum was under analysis. C. A. Gottlieb and J. A. Ball, Astrophys. J. 184, L59 (1973) G.A. Blake et al., Astrophys. J. 315, 621 (1987) J. B. Burkholder et al., J. Mol. Spectrosc. 124, 379 (1987) M. A. Martin-Drumel et al., Rev. Sci. Instrum. 82, 113106 (2011) S. Eliet et al., J. Mol. Struct. 1006, 13 (2011)

  19. Genomic Insights into the Sulfur Metabolism of Phototrophic Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) utilize various combinations of sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for anaerobic photoautotrophic growth. Genome sequence data is currently available for 12 strains of GSB. We present here a genome-based survey of the distribution...... and phylogenies of genes involved in oxidation of sulfur compounds in these strains. Sulfide:quinone reductase, encoded by sqr, is the only known sulfur-oxidizing enzyme found in all strains. All sulfide-utilizing strains contain the dissimilatory sulfite reductase dsrABCEFHLNMKJOPT genes, which appear...... to be involved in elemental sulfur utilization. All thiosulfate-utilizing strains have an identical sox gene cluster (soxJXYZAKBW). The soxCD genes found in certain other thiosulfate-utilizing organisms like Paracoccus pantotrophus are absent from GSB. Genes encoding flavocytochrome c (fccAB), adenosine-5...

  20. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  1. FAR RIGHT RADICALIZATION AND SOCIALIST RADICALIZATION IN INTERWAR ROMANIA

    Directory of Open Access Journals (Sweden)

    IONUŢ BUTOI

    2017-03-01

    Full Text Available In his comments on Mircea Vulcănescu. O microistorie a interbelicului românesc (Eikon, 2015, Emanuel Copilaş states that, regarding the cause of the far right radicalization manifested in the interwar Romania, I share the same historical explanation about fascism as Ernst Nolte. In this concise answer, I explain why this is an unsuitable comparison by summarizing the historiographical perspective I use in the cited volume. Nevertheless, Copilaş’s comments are reopening a debate about how to explain the Romanian fascism

  2. Dew point of gases with low sulfuric acid content

    Energy Technology Data Exchange (ETDEWEB)

    Fieg, J.

    1981-07-01

    Discusses control of air pollution caused by sulfur compounds in solid fuels during combustion. Excessive amount of oxygen during combustion leads to formation of sulfur trioxide. Sulfur trioxide reacts with water vapor and forms sulfuric acid. Chemical reactions which lead to formation of sulfuric acid are described. Conditions for sulfuric acid condensation are analyzed. Several methods for determining dew point of flue gases with low sulfuric acid content are reviewed: methods based on determination of electric conductivity of condensed sulfuric acid (Francis, Cheney, Kiyoure), method based on determination of sulfuric acid concentration in the gaseous phase and in the liquid phase after cooling (Lee, Lisle and Sensenbaugh, Ross and Goksoyr). (26 refs.) (In Polish)

  3. The effective synthesis of Insoluble sulfur using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejin; Yu, Kookhyun [Dongguk Univ., Seoul (Korea, Republic of)

    2013-07-01

    Vulcanization is process that formed crosslinking by Insoluble sulfur between linear structure of rubber polymer. Recently, Synthesis of Insoluble sulfur is used Thermal polymerization using about 250 {approx} 300 .deg. C and extraction process is used carbon disulfide(CS2) for separation between soluble sulfur and insoluble sulfur. But this process isn't environmental, economical and safety. This research was focus on developing of insoluble sulfur synthesis process using electron beam. This new process is using under the 140 .deg. C. Because of that, explosion risk is decrease, environmental and economical factor is increased. The sulfur can be melt by increase temperature or made solution using carbon disulfide. And electron beam is irradiated melting sulfur or sulfur solution. After irradiation, The high purity insoluble sulfur can be obtained by separation with carbon disulfide.

  4. A primer on sulfur for the planetary geologist

    Science.gov (United States)

    Theilig, E.

    1982-01-01

    Sulfur has been proposed as the dominant composition for the volcanic material on Io. Sulfur is a complex element which forms many intramolecular and intermolecular allotropes exhibiting a variety of physical properties. Cyclo-S8 sulfur is the most abundant and stable molecular form. The important molecular species within liquid sulfur change in concentration with temperature. Concentrations of the allotropes control the physical properties of the melt. Discontinuities in density, viscosity, and thermal properties reflect the polymerization process within liquid sulfur. Variations in the melting point are related to autodissociation of the liquid. Many solids forms of sulfur have been identified but only orthorhombic alpha and monoclinic beta sulfur, both composed of cyclo-S8 sulfur, are stable under terrestrial conditions. Physical properties of solid sulfur are dependent on the allotrope and, in some cases, the thermal history. Three natural terrestrial sulfur flows are described: (1) Siretoko-Iosan, Japan; (2) Volcan Azufre, Galapagos Islands; and (3) Mauna Loa, Hawaii. All of the flows are associated with fumarolic areas and are considered to have formed by the melting and mobilization of sulfur deposits. Surface textures of the flows indicate a behavior of molten sulfur similar to that of silicate lava. Channels, rivulets, and lobate edges were described for the flows. The solidification of man-made sulfur flows formed as part of the Frasch mining process by which sulfur is removed from the subsurface in a liquid state is described.

  5. Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules

    Science.gov (United States)

    Adam, P.; Schneckenburger, P.; Schaeffer, P.; Albrecht, P.

    2000-10-01

    Macromolecular fractions, isolated from the solvent extract of sulfur-rich Recent (Siders Pond, USA; Lake Cadagno, Switzerland; Walvis Bay, Namibia) and immature sediments (Gibellina, Messinian of Sicily; Vena del Gesso, Messinian of Italy), were investigated by chemical degradation using sodium ethanethiolate/methyliodide. This mild reagent which cleaves polysulfide bonds to yield methylsulfides has the advantage over other methods of leaving intact other functionalities (like double bonds) and preserving sulfur atoms at their incorporation site. The method is, therefore, well-suited to the molecular level investigation of sulfur-rich macromolecules from Recent sediments containing highly functionalized polysulfide-bound subunits. In Recent anoxic sulfur-rich sediments, the release of various methylthioethers clearly demonstrates that intermolecular sulfurization of organic matter does occur at the earliest stages of diagenesis. Steroids and phytane derivatives are the major sulfurized lipids, a feature also observed in more mature sulfur-rich sediments. Several phytene derivatives, such as cis and trans 1-methylthiophyt-2-enes, as well as methylthiosteroids, including 5α- and 5β-3-(methylthio)-cholest-2-enes, were identified by comparison with synthesized standards. Steroid methylthioenolethers are released from polysulfide-bound steroid enethiols present in the macromolecular fractions. The latter, which correspond to thioketones, can be considered as intermediates in the reductive sulfurization pathway leading from steroid ketones to polysulfide-bound saturated steroid skeletons and are characterized for the first time in the present study. Thus, it could be shown that the major part of the polysulfide-bound lipids occurring in Recent sediments is apparently the result of sulfurization processes affecting carbonyls (aldehydes and ketones). The unsaturated methylthioethers obtained from Recent sediments were not present in more mature evaporitic samples, which

  6. Self-assembled peptides for coating of active sulfur nanoparticles in lithium–sulfur battery

    International Nuclear Information System (INIS)

    Jewel, Yead; Yoo, Kisoo; Liu, Jin; Dutta, Prashanta

    2016-01-01

    Development of lithium–sulfur (Li–S) battery is hindered by poor cyclability due to the loss of sulfur, although Li–S battery can provide high energy density. Coating of sulfur nanoparticles can help maintain active sulfur in the cathode of Li–S battery, and hence increase the cyclability. Among myriad of coating materials, synthetic peptides are very attractive because of their spontaneous self-assembly as well as electrical conductive characteristics. In this study, we explored the use of various synthetic peptides as a coating material for sulfur nanoparticles. Atomistic simulations were carried out to identify optimal peptide structure and density for coating sulfur nanoparticles. Three different peptide models, poly-proline, poly(leucine–lysine) and poly-histidine, are selected for this study based on their peptide–peptide and peptide-sulfur interactions. Simulation results show that both poly-proline and poly(leucine–lysine) can form self-assembled coating on sulfur nanoparticles (2–20 nm) in pyrrolidinone, a commonly used solvent for cathode slurry. We also studied the structural integrity of these synthetic peptides in organic [dioxolane (DOL) and dimethoxyethane (DME)] electrolyte used in Li–S battery. Both peptides show stable structures in organic electrolyte (DOL/DME) used in Li–S battery. Furthermore, the dissolution of sulfur molecules in organic electrolyte is investigated in the absence and presence of these peptide coatings. It was found that only poly(leucine–lysine)-based peptide can most effectively suppress the sulfur loss in electrolyte, suggesting its potential applications in Li–S battery as a coating material.Graphical abstract

  7. Sulfur deactivation of fatty ester hydrogenolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Brands, D.S.; U-A-Sai, G.; Poels, E.K.; Bliek, A. [Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering

    1999-08-15

    Trace organosulfur compounds present as natural impurities in oleochemical feedstocks may lead to activation of copper-containing catalysts applied for hydrogenolysis of esters toward fatty alcohols. In this paper, the sulfur deactivation of Cu/SiO{sub 2} and Cu/ZnO/SiO{sub 2} catalysts was studied in the liquid-phase hydrogenolysis of methyl palmitate. The rate of deactivation is fast and increases as a function of the sulfur-containing compound present: octadecanethiol {approx} dihexadecyl disulfide < benzyl isothiocyanate < methyl p-toluene sulfonate < dihexadecyl sulfide < dibenzothiophene. The rapid deactivation is caused by the fact that sulfur is quantitatively removed from the reaction mixture and because mainly surface sulfides are formed under hydrogenolysis conditions. The life time of a zinc-promoted catalyst is up to two times higher than that of the Cu/SiO{sub 2} catalyst, most likely due to zinc surface sulfide formation. The maximum sulfur coverage obtained after full catalyst deactivation with dibenzothiophene and dihexadecyl sulfide--the sulfur compounds that cause the fastest deactivation--may be as low as 0.07. This is due to the fact that decomposition of these compounds as well as the hydrogenolysis reaction itself proceeds on ensembles of copper atoms. Catalyst regeneration studies reveal that activity cannot be regained by reduction or combined oxidation/reduction treatments. XRD, TPR, and TPO results confirm that no distinct bulk copper or zinc sulfide or sulfate phases are present.

  8. Digestion of Bangka monazite with sulfuric acid

    International Nuclear Information System (INIS)

    Riesna Prassanti

    2012-01-01

    Technology of Bangka monazite processing with alkaline method has been mastered by PPGN BATAN with the product in the form of RE (Rare Earth) which is contain U < 2 ppm and Th 12 - 16 ppm. Hence, as comparator, the research of Bangka monazite processing with acid method using sulfuric acid has been done. The aim of this research is to obtain the optimal condition of Bangka monazite's digestion using sulfuric acid so that all elements contained in the monazite that are U, Th, RE, PO 4 dissolved as much as possible. The research parameter's arc monazite particle's size, sulfuric acid consumption (weight ratio of monazite ore : sulfuric acid), digestion temperature, digestion time and consumption of wash water. The results showed that the optimal conditions of digestion are 250+ 325 mesh of monazite particle's size, 1 : 2.5 of weight ratio of monazite ore: sulfuric acid, 190°C of digestion temperature, 3 hours of digestion time and 8 times of weight monazite's feed of wash water with the recovery of digested U = 99.90 %, Th = 99.44 %, RE = 98.64 % and PO 4 = 99.88 %. (author)

  9. Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo

    Science.gov (United States)

    Miyakawa, T.; Takegawa, N.; Kondo, Y.

    2007-07-01

    Ground-based in situ measurements of sulfur dioxide (SO2) and submicron sulfate aerosol (SO42-) together with carbon monoxide (CO) were conducted at an urban site in Tokyo, Japan from spring 2003 to winter 2004. The observed concentrations of SO2 were affected dominantly by anthropogenic emissions (for example, manufacturing industries) in source areas, while small fraction of the data (sulfur compounds (SOx = SO2 + SO42-) and the remaining fraction of SOx, which is derived as the ratio of the linear regression slope of the SOx-CO correlation, is used as measures for the formation of SO42- and removal of SOx, respectively. Using these parameters, the average formation efficiency of SO42- (i.e., amount of SO42- produced per SO2 emitted from emission sources) are estimated to be 0.18 and 0.03 in the summer and winter periods, respectively. A simple box model was developed to estimate the lifetime of SOx. The lifetime of SOx for the summer period (26 h) is estimated to be about two times longer than that for the winter period (14 h). The seasonal variations of the remaining fraction of SOx, estimated formation efficiency of SO42-, and lifetime of SOx are likely due to those of the boundary layer height and photochemical activity (i.e., hydroxyl radical). These results provide useful insights into the formation and removal processes of sulfur compounds exported from an urban area.

  10. Electrochemistry of sulfur and polysulfides in ionic liquids.

    Science.gov (United States)

    Manan, Ninie S A; Aldous, Leigh; Alias, Yatimah; Murray, Paul; Yellowlees, Lesley J; Lagunas, M Cristina; Hardacre, Christopher

    2011-12-01

    The electrochemistry of elemental sulfur (S(8)) and the polysulfides Na(2)S(4) and Na(2)S(6) has been studied for the first time in nonchloroaluminate ionic liquids. The cyclic voltammetry of S(8) in the ionic liquids is different to the behavior reported in some organic solvents, with two reductions and one oxidation peak observed. Supported by in situ UV-vis spectro-electrochemical experiments, the main reduction products of S(8) in [C(4)mim][DCA] ([C(4)mim] = 1-butyl-3-methylimidazolium; DCA = dicyanamide) have been identified as S(6)(2-) and S(4)(2-), and plausible pathways for the formation of these species are proposed. Dissociation and/or disproportionation of the polyanions S(6)(2-) and S(4)(2-) appears to be slow in the ionic liquid, with only small amounts of the blue radical species S(3)(•-) formed in the solutions at r.t., in contrast with that observed in most molecular solvents. © 2011 American Chemical Society

  11. Photoresist removal using gaseous sulfur trioxide cleaning technology

    Science.gov (United States)

    Del Puppo, Helene; Bocian, Paul B.; Waleh, Ahmad

    1999-06-01

    A novel cleaning method for removing photoresists and organic polymers from semiconductor wafers is described. This non-plasma method uses anhydrous sulfur trioxide gas in a two-step process, during which, the substrate is first exposed to SO3 vapor at relatively low temperatures and then is rinsed with de-ionized water. The process is radically different from conventional plasma-ashing methods in that the photoresist is not etched or removed during the exposure to SO3. Rather, the removal of the modified photoresist takes place during the subsequent DI-water rinse step. The SO3 process completely removes photoresist and polymer residues in many post-etch applications. Additional advantages of the process are absence of halogen gases and elimination of the need for other solvents and wet chemicals. The process also enjoys a very low cost of ownership and has minimal environmental impact. The SEM and SIMS surface analysis results are presented to show the effectiveness of gaseous SO3 process after polysilicon, metal an oxide etch applications. The effects of both chlorine- and fluorine-based plasma chemistries on resist removal are described.

  12. Radical probing of spliceosome assembly.

    Science.gov (United States)

    Grewal, Charnpal S; Kent, Oliver A; MacMillan, Andrew M

    2017-08-01

    Here we describe the synthesis and use of a directed hydroxyl radical probe, tethered to a pre-mRNA substrate, to map the structure of this substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly. This methodology may be adapted to the synthesis of a wide variety of modified RNAs for use as probes of RNA structure and RNA-protein interaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  14. Remembering Dutch-Moluccan radicalism

    DEFF Research Database (Denmark)

    Marselis, Randi Lorenz

    2016-01-01

    This article examines memory politics in relation to radical actions of young Dutch-Moluccans, more specifically a train hijacking in 1977 at the village of De Punt in the Netherlands. The article examines how these historical events were remembered in the drama-documentary television film, De Punt...... of the web debate examines how viewers reacted to this interpretation. The web debate functioned as a participatory forum, where collective and national memories and postcolonial history were intensely discussed, and the debate made room for some degree of reconciliation between viewers of Dutch......-Moluccan and of Dutch majority background...

  15. Laser spectroscopy of hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    The author reports the application of supersonic jet flash pyrolysis to the specific preparation of a range of organic radicals, biradicals, and carbenes in a skimmed molecular beam. Each species was produced cleanly and specifically, with little or no secondary reactions by the thermal dissociation of appropriately designed and synthesized organic precursors. Photoelectron spectra of the three isomeric C{sub 3}H{sub 2} carbenes, ortho-benzyne, and the {alpha},3-dehydrotoluene biradical, were used to establish adiabatic ionization potentials for use in thermochemical determinations.

  16. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

    1993-12-01

    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  17. Radical constructivism: Between realism and solipsism

    Science.gov (United States)

    Martínez-Delgado, Alberto

    2002-11-01

    This paper criticizes radical constructivism of the Glasersfeld type, pointing out some contradictions between the declared radical principles and their theoretical and practical development. These contradictions manifest themselves in a frequent oscillation between solipsism and realism, despite constructivist claims to be an anti-realist theory. The paper also points out the contradiction between the relativism of the radical constructivist principles and the constructivist exclusion of other epistemological or educational paradigms. It also disputes the originality and importance of the radical constructivist paradigm, suggesting the idea of an isomorphism between radical constructivist theory and contemplative realism. In addition, some pedagogical and scientific methodological aspects of the radical constructivist model are examined. Although radical constructivism claims to be a rational theory and advocates deductive thinking, it is argued that there is no logical deductive connection between the radical principles of constructivism and the radical constructivist ideas about scientific research and learning. The paper suggests the possibility of an ideological substratum in the construction and hegemonic success of subjective constructivism and, finally, briefly advances an alternative realist model to epistemological and educational radical constructivism.

  18. Crystal structure of [1,1':3',1''-ter-phenyl]-2',3,3''-tri-carb-oxy-lic acid.

    Science.gov (United States)

    Decato, Daniel A; Berryman, Orion B

    2015-09-01

    The asymmetric unit of the title compound, C21H14O6, com-prises two symmetrically independent mol-ecules that form a locally centrosymmetric hydrogen-bonded dimer, with the planes of the corresponding carb-oxy-lic acid groups rotated by 15.8 (1) and 17.5 (1)° relative to those of the adjacent benzene rings. The crystal as a whole, however, exhibits a noncentrosymmetric packing, described by the polar space group Pca21. The dimers form layers along the ab plane, being inter-connected by hydrogen bonds involving the remaining carb-oxy-lic acid groups. The plane of the central carb-oxy-lic acid group forms dihedral angles of 62.5 (1) and 63.0 (1)° with those of the adjacent benzene rings and functions as a hydrogen-bond donor and acceptor. As a donor, it inter-connects adjacent layers, while as an acceptor it stabilizes the packing within the layers. The 'distal' carb-oxy-lic acid groups are nearly coplanar with the planes of the adjacent benzene rings, forming dihedral angles of 1.8 (1) and 7.1 (1)°. These groups also form intra- and inter-layer hydrogen bonds, but with 'reversed' functionality, as compared with the central carb-oxy-lic acid groups.

  19. Identification of Mycobacterium tuberculosis complex based on amplification and sequencing of the oxyR pseudogene from stored Ziehl-Neelsen-stained sputum smears in Brazil

    Directory of Open Access Journals (Sweden)

    Marcio Roberto Silva

    2011-02-01

    Full Text Available A cross-sectional analysis of stored Ziehl-Neelsen (ZN-stained sputum smear slides (SSS obtained from two public tuberculosis referral laboratories located in Juiz de Fora, Minas Gerais, was carried out to distinguish Mycobacterium bovis from other members of the Mycobacterium tuberculosis complex (MTC. A two-step approach was used to distinguish M. bovis from other members of MTC: (i oxyR pseudogene amplification to detect MTC and, subsequently, (ii allele-specific sequencing based on the polymorphism at position 285 of this gene. The oxyR pseudogene was successfully amplified in 100 of 177 (56.5% SSS available from 99 individuals. No molecular profile of M. bovis was found. Multivariate analysis indicated that acid-fast bacilli (AFB results and the source laboratory were associated (p < 0.05 with oxyR pseudogene amplification. SSS that were AFB++ SSS showed more oxyR pseudogene amplification than those with AFB0, possibly due to the amount of DNA. One of the two source laboratories presented a greater chance of oxyR pseudogene amplification, suggesting that differences in sputum conservation between laboratories could have influenced the preservation of DNA. This study provides evidence that stored ZN-SSS can be used for the molecular detection of MTC.

  20. A study on elongation/contraction behavior and mechanical properties of oxy-polyacrylonitrile(PAN) fiber in basic/acidic solution for artificial muscle applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.K.; Kim, S.W.; Lee, K.S.; Cho, I.H.; Lee, J.H.; Lee, J.W. [Sungkyunkwan University, Suwon (Korea); Kim, K.J. [University of Nevada, Reno (United States); Nam, J.D. [Sungkyunkwan University, Suwon (Korea)

    2002-07-01

    Oxy-PAN fiber prepared from the preoxidation and saponification of raw PAN fiber is known to elongate and contract when immersed in basic and acidic solutions, respectively. In this study, about 30% elongation in NaOH solution and 30{approx}50% contraction in HCl solution have been observed. In mechanical test, the mechanical properties of oxy-PAN fiber in the contracted state was stronger than that in the elongated state. These behaviors and mechanical properties are compared to those of living muscle and linear actuator. The change of length in NaOH and HCl solutions is due to switching between a hydrophilic and a hydrophobic structure. Other reasons are exchange of ion and water in/out of oxy-PAN fiber, and osmotic pressure difference associated with relevant ions. Much studies are needed to clarify the effective factors on but the oxy-PAN fiber's elongation/contraction behavior and mechanical properties, but the oxy-PAN fiber prepared in our laboratory has a sufficient potential for application as artificial muscle and linear actuator. (author). 20 refs., 1 tab., 9 figs.

  1. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  2. Sulfur isotope in nature. Determination of sulfur isotope ratios in coal and petroleum by mass spectrometry

    International Nuclear Information System (INIS)

    Derda, M.

    1999-01-01

    Elementary sulfur or in chemical compounds is one of the elements widespread in the earth's crust and biosphere. Its participation in earth's crust amounts to 0.26 % by weight. Measurement of isotope composition of natural samples can deliver many information about origin, creation and transformation ranges of rocks and minerals. Sulfur isotope ratio contained in minerals is variable and for this reason investigation of isotope sulfur composition can deliver useful information about the geochemistry of each component. Therefore in the investigated sample it is necessary to determine not only the content of sulfur but also the isotope composition of each component. Differentiation of contents of sulfur-34 in natural sulfur compounds can reach up to 110 per mile. So large divergences can be explained by a kinetic effect or by bacterial reduction of sulphates. In this report a wide review of the results of investigations of isotope sulfur compositions in coal and petroleum are presented as well as the methods for the preparation of samples for mass spectrometry analysis are proposed. (author)

  3. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.

    Science.gov (United States)

    Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo

    2016-09-07

    As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.

  4. Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms

    Science.gov (United States)

    Vetter, R.D.; Fry, B.

    1998-01-01

    Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.

  5. Confine sulfur in mesoporous metal–organic framework @ reduced graphene oxide for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Qu, Yaohui; Zhou, Chengkun; Wang, Xiwen; Li, Jie

    2014-01-01

    Highlights: • Metal organic framework @ reduced graphene oxide was applied for sulfur cathode. • MIL-101(Cr)@rGO/S composites are synthesized by a facile two-step liquid method. • Cycling stability of MIL-101(Cr)@rGO/S sulfur cathode was improved. -- Abstract: Mesoporous metal organic framework @ reduced graphene oxide (MIL-101(Cr)@rGO) materials have been used as a host material to prepare the multi-composite sulfur cathode through a facile and effective two-step liquid phase method successfully, which is different from the simple MIL-101(Cr)/S mixed preparation method. The successful reduced graphene oxide coating in the MIL-101(Cr)@rGO improve the electronic conductivity of meso-MOFs effectively. The discharge capacity and capacity retention rate of MIL-101(Cr)@rGO/S composite sulfur cathode are as high as 650 mAh g −1 and 66.6% at the 50th cycle at the current density of 335 mA g −1 . While the discharge capacity and capacity retention rate of MIL-101(Cr)/S mixed sulfur cathode is 458 mAh g −1 and 37.3%. Test results indicate that the MIL-101(Cr)@rGO is a promising host material for the sulfur cathode in the lithium–sulfur battery applications

  6. Intramolecular transformation of thiyl radicals to α-aminoalkyl radicals: 'ab initio' calculations on homocystein

    International Nuclear Information System (INIS)

    Chhun, S.; Berges, J.; Bleton, V.; Abedinzadeh, Z.

    2000-01-01

    One-electron oxidation of thiols by oxidizing radicals leads to the formation of thiyl radical and carbon-centered radicals. It has been shown experimentally that in the absence of oxygen, the thiyl radicals derived from certain thiols of biological interest such as glutathion, cysteine and homocysteine decay rapidly by intramolecular rearrangement reactions into the carbon-centered radical. In the present work we have investigated theoretically the structure and the stability of thiyl and carbon-centered radicals of homocysteine in order to check the possibility of this rearrangement. (author)

  7. Extraction of sulfuric acid with TOPO

    International Nuclear Information System (INIS)

    Shuyun, Xue; Yonghui, Yang; Yanzhao, Yang; Sixiu, Sun; Borong, Bao

    1998-01-01

    A study on solvent extraction of sulfuric acid by tri-octylphosphine oxide (TOPO) in n-heptane has been made. Extraction coefficients of H 2 SO 4 as a function of H 2 SO 4 concentration in aqueous phase, and extractant concentrations in organic phase have been studied. The composition of extracted species, equilibrium constants of extraction reaction have been evaluated. These results are important for interpreting extraction equilibrium data of uranium(VI) or other metal ions with TOPO in sulfuric acid media. (author)

  8. Method of making a sodium sulfur battery

    Science.gov (United States)

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  9. Ethyl 3-[7-eth­oxy-6-(4-meth­oxy­benzene­sulfonamido)-2H-indazol-2-yl]propano­ate

    Science.gov (United States)

    Abbassi, Najat; Oulemda, Bassou; Rakib, El Mostapha; Geffken, Detlef; Zouihri, Hafid

    2012-01-01

    In the title compound, C21H25N3O6S, the dihedral angle between the meth­oxy­benzene and indazole rings is 74.96 (5)°. The crystal packing is stabilized by an N—H⋯O hydrogen bond into a two-dimensional network. In addition, C—H⋯π inter­actions and a π–π contact, with a centroid–centroid distance of 3.5333 (6) Å, are observed. The crystal packing is stabilized by N—H⋯O and C—H⋯O hydrogen bonds. PMID:22589994

  10. Unanticipated coordination of tris buffer to the Radical SAM cluster of the RimO methylthiotransferase.

    Science.gov (United States)

    Molle, Thibaut; Clémancey, Martin; Latour, Jean-Marc; Kathirvelu, Velavan; Sicoli, Giuseppe; Forouhar, Farhad; Mulliez, Etienne; Gambarelli, Serge; Atta, Mohamed

    2016-07-01

    Radical SAM enzymes generally contain a [4Fe-4S](2+/1+) (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl-sulfonium bond of SAM allows for the homolytic cleavage of the latter leading to the formation of the reactive 5'-deoxyadenosyl radical used for substrate activation. Most of the structures of Radical SAM enzymes have been obtained in the presence of SAM, and therefore, little is known about the situation when SAM is not present. In this report, we show that RimO, a methylthiotransferase belonging to the radical SAM superfamily, binds a Tris molecule in the absence of SAM leading to specific spectroscopic signatures both in Mössbauer and pulsed EPR spectroscopies. These data provide a cautionary note for researchers who work with coordinative unsaturated iron sulfur clusters.

  11. Hepatotoxicity associated with the dietary supplement OxyELITE Pro™ — Hawaii, 2013

    Science.gov (United States)

    Johnston, David I.; Chang, Arthur; Viray, Melissa; Chatham-Stephens, Kevin; He, Hua; Taylor, Ethel; Wong, Linda L.; Schier, Joshua; Martin, Colleen; Fabricant, Daniel; Salter, Monique; Lewis, Lauren; Park, Sarah Y.

    2015-01-01

    Dietary supplements are increasingly marketed to and consumed by the American public for a variety of purported health benefits. On 9 September 2013, the Hawaii Department of Health (HDOH) was notified of a cluster of acute hepatitis and fulminant hepatic failure among individuals with exposure to the dietary supplement OxyELITE Pro™ (OEP). HDOH conducted an outbreak investigation in collaboration with federal partners. Physicians were asked to report cases, defined as individuals with acute onset hepatitis of unknown etiology on or after 1 April 2013, a history of weight-loss/muscle-building dietary supplement use during the 60 days before illness onset, and residence in Hawaii during the period of exposure. Reported cases’ medical records were reviewed, questionnaires were administered, and a product investigation, including chemical analyses and trace back, was conducted. Of 76 reports, 44 (58%) met case definition; of these, 36 (82%) reported OEP exposure during the two months before illness. No other common supplements or exposures were observed. Within the OEP-exposed subset, two patients required liver transplantation, and a third patient died. Excessive product dosing was not reported. No unique lot numbers were identified; there were multiple mainland distribution points, and lot numbers common to cases in Hawaii were also identified in continental states. Product analysis found consumed products were consistent with labeled ingredients; the mechanism of hepatotoxicity was not identified. We report one of the largest statewide outbreaks of dietary supplement-associated hepatotoxicity. The implicated product was OEP. The increasing popularity of dietary supplements raises the potential for additional clusters of dietary supplement-related adverse events. PMID:26538199

  12. Hepatotoxicity associated with the dietary supplement OxyELITE Pro™ - Hawaii, 2013.

    Science.gov (United States)

    Johnston, David I; Chang, Arthur; Viray, Melissa; Chatham-Stephens, Kevin; He, Hua; Taylor, Ethel; Wong, Linda L; Schier, Joshua; Martin, Colleen; Fabricant, Daniel; Salter, Monique; Lewis, Lauren; Park, Sarah Y

    2016-01-01

    Dietary supplements are increasingly marketed to and consumed by the American public for a variety of purported health benefits. On 9 September 2013, the Hawaii Department of Health (HDOH) was notified of a cluster of acute hepatitis and fulminant hepatic failure among individuals with exposure to the dietary supplement OxyELITE Pro™ (OEP). HDOH conducted an outbreak investigation in collaboration with federal partners. Physicians were asked to report cases, defined as individuals with acute onset hepatitis of unknown etiology on or after 1 April 2013, a history of weight-loss/muscle-building dietary supplement use during the 60 days before illness onset, and residence in Hawaii during the period of exposure. Reported cases' medical records were reviewed, questionnaires were administered, and a product investigation, including chemical analyses and traceback, was conducted. Of 76 reports, 44 (58%) met case definition; of these, 36 (82%) reported OEP exposure during the two months before illness. No other common supplements or exposures were observed. Within the OEP-exposed subset, two patients required liver transplantation, and a third patient died. Excessive product dosing was not reported. No unique lot numbers were identified; there were multiple mainland distribution points, and lot numbers common to cases in Hawaii were also identified in continental states. Product analysis found consumed products were consistent with labeled ingredients; the mechanism of hepatotoxicity was not identified. We report one of the largest statewide outbreaks of dietary supplement-associated hepatotoxicity. The implicated product was OEP. The increasing popularity of dietary supplements raises the potential for additional clusters of dietary supplement-related adverse events. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Coal pyrolysis and char burnout under conventional and oxy-fuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. [Stuttgart Univ. (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

    2009-07-01

    Coal utilization processes such as combustion or gasification generally involve several steps i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases, and heterogeneous reactions of the solid (char) with the reactant gases. Most of the reported work about coal pyrolysis and char burnout were performed at low temperatures under environmental conditions related to the air firing process with single particle tests. In this work, coal combustion under oxy-fuel conditions is investigated by studying coal pyrolysis and char combustion separately in practical scales, with the emphasis on improving the understanding of the effect of a CO{sub 2}-rich gas environment on coal pyrolysis and char burnout. Two coals, Klein Kopje a medium volatile bituminous coal and a low-rank coal, Lausitz coal were used. Coal pyrolysis in CO{sub 2} and N{sub 2} environments were performed for both coals at different temperatures in an entrained flow reactor. Overall mass release, pyrolysis gas concentrations, and char characterization were performed. For char characterization ultimate analysis, particle size, and BET surface area were measured. Chars for both coals were collected at 1150 C in both CO{sub 2} and N{sub 2} environments. Char combustion was performed in a once-through 20 kW test facility in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} atmospheres. Besides coal quality, oxygen partial pressure was chosen as a variable to study the effect of the gas environment on char burnout. In general, it is found that the CO{sub 2} environment and coal rank have a significant effect on coal pyrolysis and char burnout. (orig.)

  14. Thermoeconomic cost analysis of CO_2 compression and purification unit in oxy-combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    Highlights: • Thermoeconomic cost analysis for CO_2 compression and purification unit is conducted. • Exergy cost and thermoeconomic cost occur in flash separation and mixing processes. • Unit exergy costs for flash separator and multi-stream heat exchanger are identical. • Multi-stage CO_2 compressor contributes to the minimum unit exergy cost. • Thermoeconomic performance for optimized CPU is enhanced. - Abstract: High CO_2 purity products can be obtained from oxy-combustion power plants through CO_2 compression and purification unit (CPU) based on phase separation method. To identify cost formation process and potential energy savings for CPU, detailed thermoeconomic cost analysis based on structure theory of thermoeconomics is applied to an optimized CPU (with double flash separators). It is found that the largest unit exergy cost occurs in the first separation process while the multi-stage CO_2 compressor contributes to the minimum unit exergy cost. In two flash separation processes, unit exergy costs for the flash separator and multi-stream heat exchanger are identical but their unit thermoeconomic costs are different once monetary cost for each device is considered. For cost inefficiency occurring in CPU, it mainly derives from large exergy costs and thermoeconomic costs in the flash separation and mixing processes. When compared with an unoptimized CPU, thermoeconomic performance for the optimized CPU is enhanced and the maximum reduction of 5.18% for thermoeconomic cost is attained. To achieve cost effective operation, measures should be taken to improve operations of the flash separation and mixing processes.

  15. Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet

    International Nuclear Information System (INIS)

    Basu, Saptarshi; Cetegen, Baki M.

    2008-01-01

    Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mass transfer within individual droplets exposed to the HVOF environment and precipitation of ceramic precursors. A parametric study is presented for the initial droplet size, concentration of the dissolved salts and the external temperature and velocity field of the HVOF jet to explore processing conditions and injection parameters that lead to different precipitate morphologies. It is found that the high velocity of the jet induces shear break-up into several μm diameter droplets. This leads to better entrainment and rapid heat-up in the HVOF jet. Upon processing, small droplets (<5 μm) are predicted to undergo volumetric precipitation and form solid particles prior to impact at the deposit location. Droplets larger than 5 μm are predicted to form hollow or precursor containing shells similar to those processed in a DC arc plasma. However, it is found that the lower temperature of the HVOF jet compared to plasma results in slower vaporization and solute mass diffusion time inside the droplet, leading to comparatively thicker shells. These shell-type morphologies may further experience internal pressurization, resulting in possibly shattering and secondary atomization of the trapped liquid. The consequences of these different particle states on the coating microstructure are also discussed in this article

  16. Genomic and Evolutionary Perspectives on Sulfur Metabolism in Green Sulfur Bacteria

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Bryant, Donald A.

    2008-01-01

    Green sulfur bacteria (GSB) are anaerobic photoautotrophs that oxidize sulfide, elemental sulfur, thiosulfate, ferrous iron, and hydrogen for growth. We present here an analysis of the distribution and evolution of enzymes involved in oxidation of sulfur compounds in GSB based on genome sequence......, in combination with phylogenetic analyses, suggests that the Dsr system in GSB could be a recent acquisition, which was obtained by lateral gene transfer in part from sulfideoxidizing bacteria and in part from sulfate-reducing bacteria. All thiosulfate-utilizing GSB strains have an identical sox gene cluster...

  17. Radicalization In Pakistan And The Spread Of Radical Islam In Pakistan

    Directory of Open Access Journals (Sweden)

    Bahir ahmad

    2015-08-01

    Full Text Available ABSTRACT It is pertinent to mention that radicalism is not intrinsic to Islam and radical interpretations of the religion or for that matter may occur within any way of life and religion Saikal 2003 and yet the question remains as to why Muslims in certain geographical regions have more radical approaches towards their religion and also that what are the causes of such radicalization. Becoming a radical Muslim is not even a matter of a day nor is it a sudden process. There are several reasons behind making a person radical peaceful angry smiling or tolerant. For knowing the reason behind radicalization or radicals persons one has to understand the causes. Tracing these causes is one of the ways to eliminate such behavior. The first step in the elimination of the radical sentiments in a person is to develop peace in his personality Fair Malhotra amp Shapiro 2010. The chapter which has been addressed here is going to shed light on the roots and symptoms of the radicalism. There will be a brief discussion on how the roots of radicalism can be traced and can be eliminated. The assessment and discussion will be conducted on the parameters of the economy media politics and theology from social cultural point of view. According to the analysis of Ahrari 2000 political factor is one of the major and direct factors which have resulted in causing of the radicalism. These factors however intertwine with one another. Radical actions cannot take place only because of the political factors.

  18. Fluorescence lifetime measurement of radical ions

    International Nuclear Information System (INIS)

    Ichinose, Nobuyuki; Kinugasa, Jun-ichiro; Hagiri, Masahide; Nakayama, Toshihiro; Murakami, Hiroshi; Kishimoto, Maki; Daido, Hiroyuki

    2004-01-01

    One-photonic excitation of a charge transfer complex of hexamethoxybenzene (HMB) and nitrosonium tetrafluoroborate (NO + BF 4 - ) in acetonitrile afforded fluorescences emission from excited radical cation of HMB (HMB + *). Lifetime of the excited radical ion species was measured to be 7 ps by the pump-probe transient absorption technique. The lifetime was much shorter than that of free radical ion (63 ps), indicating the presence of an interaction between HMB + * and NO in the excited complex. (author)

  19. Reorientation dynamics of cyclohexadienyl radicals in zeolites

    International Nuclear Information System (INIS)

    Stolmar, M.; Roduner, E.; Dilger, H.; Himmer, U.; Shelley, M.; Reid, I.D.

    1997-01-01

    The dynamics of the muonium substituted cyclohexadienyl radical adsorbed on silicalite and NaZSM-5 is investigated by means of avoided level crossing muon spin resonance. The influence of benzene loading on the mobility of the radical is studied. At low loadings the radicals were found to be located on a single adsorption site where they undergo a wobbling type of motion. With increasing loading an additional species adsorbed on a different site is observed

  20. The Rise of Radicals in Bioinorganic Chemistry

    OpenAIRE

    Gray, Harry B.; Winkler, Jay R.

    2016-01-01

    Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O_2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) a...

  1. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  2. Determination of sulfur dioxide by a radiorelease method

    Energy Technology Data Exchange (ETDEWEB)

    Sriman Narayanan, S.; Rao, V.R.S. (Indian Inst. of Tech., Madras. Dept. of Chemistry)

    1983-04-13

    A radiorelease technique for the determination of sulfur dioxide using radiochlor /sup 36/Cl-amine-T is described. Methods for the elimination of interference from coexisting gases are also reported. 1-40 ppm sulfur dioxide can be determined.

  3. Determination of sulfur dioxide by a radiorelease method

    International Nuclear Information System (INIS)

    Sriman Narayanan, S.; Rao, V.R.S.

    1983-01-01

    A radiorelease technique for the determination of sulfur dioxide using radiochlor 36 Cl-amine-T is described. Methods for the elimination of interference from coexisting gases are also reported. 1-40 ppm sulfur dioxide can be determined. (author)

  4. Total Sulfur Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such...

  5. Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system

    International Nuclear Information System (INIS)

    Smith, C.; Jackson, J.; Petit, L.; Rivero-Baleine, C.; Richardson, K.

    2010-01-01

    New oxy-sulfo-telluride glasses have been prepared in the Ge-Sb-Te-S-O system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO 2 or Sb 2 O 3 . The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the vis-NIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge 20 Sb 6 S 64 Te 3 O 7 ) processed by melting the Ge 23 Sb 7 S 70 glass with TeO 2 or the Ge 23 Sb 2 S 72 Te 4 glass with Sb 2 O 3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO 2 starting materials as compared to that of the Sb 2 O 3 . - Graphical abstract: In this paper, we discuss our most recent findings on the processing and characterization of new ChG glasses prepared with small levels of Te, melted either with TeO 2 or Sb 2 O 3 powders. We explain how these new oxy-sulfo-telluride glasses are prepared and we correlate the physical, thermal and optical properties of the investigated glasses to the structure changes induced by the addition of oxygen in the Ge-Sb-S-Te glass network.

  6. Structural Properties of the Cr(III)-Fe(III) (Oxy)Hydroxide Compositional Series: Insights for a Nanomaterial 'Solid Solution'

    International Nuclear Information System (INIS)

    Tang, Y.; Zhang, L.; Michel, F.M.; Harrington, R.; Parise, J.B.; Reeder, R.J.

    2010-01-01

    Chromium(III) (oxy)hydroxide and mixed Cr(III)-Fe(III) (oxy)hydroxides are environmentally important compounds for controlling chromium speciation and bioaccessibility in soils and aquatic systems and are also industrially important as precursors for materials and catalyst synthesis. However, direct characterization of the atomic arrangements of these materials is complicated because of their amorphous X-ray properties. This study involves synthesis of the complete Cr(III)-Fe(III) (oxy)hydroxide compositional series, and the use of complementary thermal, microscopic, spectroscopic, and scattering techniques for the evaluation of their structural properties. Thermal analysis results show that the Cr end member has a higher hydration state than the Fe end member, likely associated with the difference in water exchange rates in the first hydration spheres of Cr(III) and Fe(III). Three stages of weight loss are observed and are likely related to the loss of surface/structural water and hydroxyl groups. As compared to the Cr end member, the intermediate composition sample shows lower dehydration temperatures and a higher exothermic transition temperature. XANES analysis shows Cr(III) and Fe(III) to be the dominant oxidation states. XANES spectra also show progressive changes in the local structure around Cr and Fe atoms over the series. Pair distribution function (PDF) analysis of synchrotron X-ray total scattering data shows that the Fe end member is nanocrystalline ferrihydrite with an intermediate-range order and average coherent domain size of ∼27 (angstrom). The Cr end member, with a coherent domain size of ∼10 (angstrom), has only short-range order. The PDFs show progressive structural changes across the compositional series. High-resolution transmission electron microscopy (HRTEM) results also show the loss of structural order with increasing Cr content. These observations provide strong structural evidence of chemical substitution and progressive structural

  7. Measurement of pO2 in a Pre-clinical Model of Rabbit Tumor Using OxyChip, a Paramagnetic Oxygen Sensor.

    Science.gov (United States)

    Hou, H; Khan, N; Kuppusamy, P

    2017-01-01

    The objective of this work was to establish a novel and robust technology, based on electron paramagnetic resonance (EPR) oximetry, as a practical tool for measurement of tumor oxygen. Previously, we have reported on the development of oxygen-sensing paramagnetic crystals (LiNc-BuO) encapsulated in a biocompatible polymer, called OxyChip. In this report we present our recent data on the use of OxyChip for pO 2 measurements in the tumor of a pre-clinical, large-animal rabbit model. The results establish that OxyChip is capable of noninvasive and repeated measurement of pO 2 in a large animal model.

  8. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard

    2015-01-01

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, an...

  9. Crystal structure of 1-meth-oxy-2,2,2-tris-(pyrazol-1-yl)ethane.

    Science.gov (United States)

    Lyubartseva, Ganna; Parkin, Sean; Coleman, Morgan D; Mallik, Uma Prasad

    2014-09-01

    The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro-gen to the distal ethane carbon of meth-oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol-ecules are linked by bifurcated C-H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C-H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.

  10. Single crystal growth of yttrium calcium oxy borate (YCOB) crystals by flux technique and their characterization. CP-3.5

    International Nuclear Information System (INIS)

    Arun Kumar, R.; Senthilkumar, M.; Dhanasekaran, R.

    2007-01-01

    Yttrium calcium oxy borate single crystals were grown by the flux technique for the first time. Polycrystalline YCOB material was prepared by solid state reaction method. Single crystals of YCOB were grown using boron-tri-oxide flux. Several transparent single crystals of dimensions 10 x 5 x 5 mm 3 were obtained. The grown crystals were characterized by powder XRD and UV- VIS-NIR studies. The results of powder XRD confirm the crystalline structure of YCOB. The UV- VIS-NIR transmission spectrum reveals that the crystal is highly transparent (above 75%) from ultraviolet (220 nm) to near IR regions enabling it as a suitable candidate for high power UV applications

  11. 3,5-Bis(4-meth-oxy-phen-yl)-1-phenyl-4,5-dihydro-1H-pyrazole.

    Science.gov (United States)

    Baktır, Zeliha; Akkurt, Mehmet; Samshuddin, S; Narayana, B; Yathirajan, H S

    2011-01-12

    In the title compound, C(23)H(22)N(2)O(2), the central pyrazole ring is nearly planar (r.m.s. deviation = 0.046 Å) and it makes a dihedral angle of 18.5 (2)° with the phenyl ring. The dihedral angles between the phenyl and the two meth-oxy-substituted phenyl rings are 26.2 (2) and 80.6 (2)°. The crystal structure is stabilized by C-H⋯π stacking inter-actions and weak π-π inter-actions [centriod-centroid distance = 3.891 (2) Å].

  12. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  13. RARE ISOTOPIC SPECIES OF SULFUR MONOXIDE: THE ROTATIONAL SPECTRUM IN THE THz REGION

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Valerio; Cazzoli, Gabriele; Puzzarini, Cristina, E-mail: lattanzi@mpe.mpg.de [Dipartimento di Chimica “Giacomo Ciamician,” Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy)

    2015-11-01

    Many sulfur-bearing species have been detected in different astronomical environments and have allowed us to derive important information about the chemical and physical composition of interstellar regions. In particular, these species have also been shown to trace and probe hot-core environment time evolution. Among the most prominent sulfur-bearing molecules is SO, the sulfur monoxide radical, one of the more ubiquitous and abundant, which is also observed in its isotopic substituted species such as {sup 34}SO and S{sup 18}O. Due to the importance of this simple diatomic system, and in order to face the challenge of modern radioastronomical facilities, an extension to the THz range of the rare isotopologues of sulfur monoxide has been performed. High-resolution rotational molecular spectroscopy has been employed to extend the available data set of four isotopic species, SO, {sup 34}SO, S{sup 17}O, and S{sup 18}O, up to the 1.5 THz region. The frequency coverage and spectral resolution of our measurements allowed a better constraint of the molecular constants of the four species considered, specifically focusing on the two oxygen-substituted isotopologues. Our measurements were also employed in an isotopically invariant fit including all of the available pure rotational and ro-vibrational transitions for all of the SO isotopologues, thus enabling accurate predictions of the rotational transitions at higher frequencies. We also provide comparisons with recent works performed on the same system, demonstrating the quality of our experiment and the improvement of the data sets for all of the species considered. Transition frequencies for this system can now be used with confidence by the astronomical community well into the THz spectral region.

  14. The Games Radicals Play: Special Issue on Free Radicals and Radical Ions

    Directory of Open Access Journals (Sweden)

    John C. Walton

    2015-02-01

    Full Text Available Chemistry and Physics have aptly been described as “most excellent children of Intellect and Art” [1]. Both these “children” engage with many playthings, and molecules rank as one of their first favorites, especially radicals, which are amongst the most lively and exciting. Checking out radicals dancing to the music of entropy round their potential energy ballrooms is surely both entertaining and enlightening. Radicals’ old favorite convolutions are noteworthy, but the new styles, modes and arrangements appearing on the scene are even more interesting. Some of these are ephemeral and enjoy only a brief appearance, others are retro-types reappearing in new guises, still others are genuinely new and “go viral” in the scientific world. This Special Issue of Molecules contains the observations and reflections of a select group of chemists and physicists fascinated by this spectacle. It contains an eclectic mix reflecting on new modes and advances as well as on permutations and combinations that revive mature themes. [...

  15. A study of reactions of sulfur dioxide in the gaseous phase. Production and evolution of aerosols resulting from these reactions

    International Nuclear Information System (INIS)

    Boulaud, Denis

    1977-01-01

    The reactions of sulfur dioxide in the gaseous phase with atmospheric pollutants (NO x ; hydrocarbons) were studied. Experiments showed that NO 2 contribution was significant and suggested that SO 2 transformation into sulfuric acid and sulfates might occur through oxidising agents mainly hydroxyl (OH) and hydro-peroxyl (HO 2 ) radicals. The production and evolution of the resulting aerosols was also studied. It was demonstrated that the effect of water vapour on particle production was significant and that primary embryos were formed from the hetero-molecular homogeneous nucleation acting on water vapour and very likely on sulfuric acid. There was a semi-quantitative agreement between our experimental results and some theoretical investigations on nucleation rate of the system (H 2 O - H 2 SO 4 ). The subsequent growth of particles was studied in a simulation chamber. Finally a model of sulfuric acid vapour evolution in presence of atmospheric aerosols made it possible to extend the previous results as far as possible to the case of atmosphere and then to compare the importance of homogeneous and heterogeneous nucleation of the vapours according to atmospheric conditions. (author) [fr

  16. Effects of Ramadan intermittent fasting on North African children's heart rate and oxy-haemoglobin saturation at rest and during sub-maximal exercise.

    Science.gov (United States)

    Fenneni, Mohamed Amine; Latiri, Imed; Aloui, Asma; Rouatbi, Sonia; Chamari, Karim; Saad, Helmi Ben

    To examine the effects of Ramadan intermittent fasting (RIF) on the heart rate (HR) and oxyhaemoglobin saturation levels (oxy-sat) of boys at rest and during a six-minute walking test (6MWT). Eighteen boys (age: 11.9 ± 0.8 years, height: 153.00 ± 8.93 cm, body mass: 55.4 ± 18.2 kg), who fasted the entire month of Ramadan in 2012 for the first time in their lives, were included. The experimental protocol comprised four testing phases: two weeks before Ramadan (pre-R), the end of the second week of Ramadan (R-2), the end of the fourth week of Ramadan (R-4), and 10 to 12 days after the end of Ramadan (post-R). During each phase, participants performed the 6MWT at approximately 15:00. HR (expressed as percentage of maximal predicted HR) and oxy-sat (%) were determined at rest and in each minute of the 6MWT. R-4 HR values were lower than those of (1) pre-R (in the second minute), (2) R-2 (in the first and second minutes), and (3) post-R (in the first, second, fourth, fifth and sixth minutes). R-2 oxy-sat values were higher than those of pre-R (in the third minute) and those of post-R (in the fifth minute). Post-R oxy-sat values were lower than those of pre-R and R-4 in the fifth minute. These oxy-sat changes were not clinically significant since the difference was less than five points. In non-athletic children, their first RIF influenced their heart rate data but had a minimal effect on oxy-sat values.

  17. Reprint of “Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions”

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2015-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: • Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  18. Mercury chemisorption by sulfur adsorbed in porous materials

    NARCIS (Netherlands)

    Steijns, M.; Peppelenbos, A.; Mars, P.

    1976-01-01

    The sorption of mercury vapor by adsorbed sulfur in the zeolites CaA (= 5A) and NaX (=13X) and two types of active carbon has been measured at a temperature of 50°C. With increasing degree of micropore filling by sulfur the fraction of sulfur accessible to mercury atoms decreased for CaA and NaX.

  19. Relationship between corrosion and the biological sulfur cycle: A review

    Energy Technology Data Exchange (ETDEWEB)

    Little, B.J.; Ray, R.I.; Pope, R.K.

    2000-04-01

    Sulfur and sulfur compounds can produce pitting, crevice corrosion, dealloying, stress corrosion cracking, and stress-oriented hydrogen-induced cracking of susceptible metals and alloys. Even though the metabolic by-products of the biological sulfur cycle are extremely corrosive, there are no correlations between numbers and types of sulfur-related organisms and the probability or rate of corrosion, Determination of specific mechanisms for corrosion caused by microbiologically mediated oxidation and reduction of sulfur and sulfur compounds is complicated by the variety of potential metabolic-energy sources and by-products; the coexistence of reduced and oxidized sulfur species; competing reactions with inorganic and organic compounds; and the versatility and adaptability of microorganisms in biofilms. The microbial ecology of sulfur-rich environments is poorly understood because of the association of aerobes and anaerobes and the mutualism or succession of heterotrophs to autotrophs. The physical scale over which the sulfur cycle influences corrosion varies with the environment. The complete sulfur cycle of oxidation and reduction reactions can take place in macroenvironments, including sewers and polluted harbors, or within the microenvironment of biofilms. In this review, reactions of sulfur and sulfur compounds resulting in corrosion were discussed in the context of environmental processes important to corrosion.

  20. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for...